1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Filesystem-level keyring for fscrypt 4 * 5 * Copyright 2019 Google LLC 6 */ 7 8 /* 9 * This file implements management of fscrypt master keys in the 10 * filesystem-level keyring, including the ioctls: 11 * 12 * - FS_IOC_ADD_ENCRYPTION_KEY 13 * - FS_IOC_REMOVE_ENCRYPTION_KEY 14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS 15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS 16 * 17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more 18 * information about these ioctls. 19 */ 20 21 #include <crypto/skcipher.h> 22 #include <linux/export.h> 23 #include <linux/key-type.h> 24 #include <linux/once.h> 25 #include <linux/random.h> 26 #include <linux/seq_file.h> 27 #include <linux/unaligned.h> 28 29 #include "fscrypt_private.h" 30 31 /* The master encryption keys for a filesystem (->s_master_keys) */ 32 struct fscrypt_keyring { 33 /* 34 * Lock that protects ->key_hashtable. It does *not* protect the 35 * fscrypt_master_key structs themselves. 36 */ 37 spinlock_t lock; 38 39 /* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */ 40 struct hlist_head key_hashtable[128]; 41 }; 42 43 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret) 44 { 45 fscrypt_destroy_hkdf(&secret->hkdf); 46 memzero_explicit(secret, sizeof(*secret)); 47 } 48 49 static void move_master_key_secret(struct fscrypt_master_key_secret *dst, 50 struct fscrypt_master_key_secret *src) 51 { 52 memcpy(dst, src, sizeof(*dst)); 53 memzero_explicit(src, sizeof(*src)); 54 } 55 56 static void fscrypt_free_master_key(struct rcu_head *head) 57 { 58 struct fscrypt_master_key *mk = 59 container_of(head, struct fscrypt_master_key, mk_rcu_head); 60 /* 61 * The master key secret and any embedded subkeys should have already 62 * been wiped when the last active reference to the fscrypt_master_key 63 * struct was dropped; doing it here would be unnecessarily late. 64 * Nevertheless, use kfree_sensitive() in case anything was missed. 65 */ 66 kfree_sensitive(mk); 67 } 68 69 void fscrypt_put_master_key(struct fscrypt_master_key *mk) 70 { 71 if (!refcount_dec_and_test(&mk->mk_struct_refs)) 72 return; 73 /* 74 * No structural references left, so free ->mk_users, and also free the 75 * fscrypt_master_key struct itself after an RCU grace period ensures 76 * that concurrent keyring lookups can no longer find it. 77 */ 78 WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0); 79 if (mk->mk_users) { 80 /* Clear the keyring so the quota gets released right away. */ 81 keyring_clear(mk->mk_users); 82 key_put(mk->mk_users); 83 mk->mk_users = NULL; 84 } 85 call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key); 86 } 87 88 void fscrypt_put_master_key_activeref(struct super_block *sb, 89 struct fscrypt_master_key *mk) 90 { 91 size_t i; 92 93 if (!refcount_dec_and_test(&mk->mk_active_refs)) 94 return; 95 /* 96 * No active references left, so complete the full removal of this 97 * fscrypt_master_key struct by removing it from the keyring and 98 * destroying any subkeys embedded in it. 99 */ 100 101 if (WARN_ON_ONCE(!sb->s_master_keys)) 102 return; 103 spin_lock(&sb->s_master_keys->lock); 104 hlist_del_rcu(&mk->mk_node); 105 spin_unlock(&sb->s_master_keys->lock); 106 107 /* 108 * ->mk_active_refs == 0 implies that ->mk_present is false and 109 * ->mk_decrypted_inodes is empty. 110 */ 111 WARN_ON_ONCE(mk->mk_present); 112 WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes)); 113 114 for (i = 0; i <= FSCRYPT_MODE_MAX; i++) { 115 fscrypt_destroy_prepared_key( 116 sb, &mk->mk_direct_keys[i]); 117 fscrypt_destroy_prepared_key( 118 sb, &mk->mk_iv_ino_lblk_64_keys[i]); 119 fscrypt_destroy_prepared_key( 120 sb, &mk->mk_iv_ino_lblk_32_keys[i]); 121 } 122 memzero_explicit(&mk->mk_ino_hash_key, 123 sizeof(mk->mk_ino_hash_key)); 124 mk->mk_ino_hash_key_initialized = false; 125 126 /* Drop the structural ref associated with the active refs. */ 127 fscrypt_put_master_key(mk); 128 } 129 130 /* 131 * This transitions the key state from present to incompletely removed, and then 132 * potentially to absent (depending on whether inodes remain). 133 */ 134 static void fscrypt_initiate_key_removal(struct super_block *sb, 135 struct fscrypt_master_key *mk) 136 { 137 WRITE_ONCE(mk->mk_present, false); 138 wipe_master_key_secret(&mk->mk_secret); 139 fscrypt_put_master_key_activeref(sb, mk); 140 } 141 142 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec) 143 { 144 if (spec->__reserved) 145 return false; 146 return master_key_spec_len(spec) != 0; 147 } 148 149 static int fscrypt_user_key_instantiate(struct key *key, 150 struct key_preparsed_payload *prep) 151 { 152 /* 153 * We just charge FSCRYPT_MAX_RAW_KEY_SIZE bytes to the user's key quota 154 * for each key, regardless of the exact key size. The amount of memory 155 * actually used is greater than the size of the raw key anyway. 156 */ 157 return key_payload_reserve(key, FSCRYPT_MAX_RAW_KEY_SIZE); 158 } 159 160 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m) 161 { 162 seq_puts(m, key->description); 163 } 164 165 /* 166 * Type of key in ->mk_users. Each key of this type represents a particular 167 * user who has added a particular master key. 168 * 169 * Note that the name of this key type really should be something like 170 * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen 171 * mainly for simplicity of presentation in /proc/keys when read by a non-root 172 * user. And it is expected to be rare that a key is actually added by multiple 173 * users, since users should keep their encryption keys confidential. 174 */ 175 static struct key_type key_type_fscrypt_user = { 176 .name = ".fscrypt", 177 .instantiate = fscrypt_user_key_instantiate, 178 .describe = fscrypt_user_key_describe, 179 }; 180 181 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \ 182 (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \ 183 CONST_STRLEN("-users") + 1) 184 185 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \ 186 (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1) 187 188 static void format_mk_users_keyring_description( 189 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE], 190 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 191 { 192 sprintf(description, "fscrypt-%*phN-users", 193 FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier); 194 } 195 196 static void format_mk_user_description( 197 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE], 198 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 199 { 200 201 sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE, 202 mk_identifier, __kuid_val(current_fsuid())); 203 } 204 205 /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */ 206 static int allocate_filesystem_keyring(struct super_block *sb) 207 { 208 struct fscrypt_keyring *keyring; 209 210 if (sb->s_master_keys) 211 return 0; 212 213 keyring = kzalloc(sizeof(*keyring), GFP_KERNEL); 214 if (!keyring) 215 return -ENOMEM; 216 spin_lock_init(&keyring->lock); 217 /* 218 * Pairs with the smp_load_acquire() in fscrypt_find_master_key(). 219 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that 220 * concurrent tasks can ACQUIRE it. 221 */ 222 smp_store_release(&sb->s_master_keys, keyring); 223 return 0; 224 } 225 226 /* 227 * Release all encryption keys that have been added to the filesystem, along 228 * with the keyring that contains them. 229 * 230 * This is called at unmount time, after all potentially-encrypted inodes have 231 * been evicted. The filesystem's underlying block device(s) are still 232 * available at this time; this is important because after user file accesses 233 * have been allowed, this function may need to evict keys from the keyslots of 234 * an inline crypto engine, which requires the block device(s). 235 */ 236 void fscrypt_destroy_keyring(struct super_block *sb) 237 { 238 struct fscrypt_keyring *keyring = sb->s_master_keys; 239 size_t i; 240 241 if (!keyring) 242 return; 243 244 for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) { 245 struct hlist_head *bucket = &keyring->key_hashtable[i]; 246 struct fscrypt_master_key *mk; 247 struct hlist_node *tmp; 248 249 hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) { 250 /* 251 * Since all potentially-encrypted inodes were already 252 * evicted, every key remaining in the keyring should 253 * have an empty inode list, and should only still be in 254 * the keyring due to the single active ref associated 255 * with ->mk_present. There should be no structural 256 * refs beyond the one associated with the active ref. 257 */ 258 WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1); 259 WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1); 260 WARN_ON_ONCE(!mk->mk_present); 261 fscrypt_initiate_key_removal(sb, mk); 262 } 263 } 264 kfree_sensitive(keyring); 265 sb->s_master_keys = NULL; 266 } 267 268 static struct hlist_head * 269 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring, 270 const struct fscrypt_key_specifier *mk_spec) 271 { 272 /* 273 * Since key specifiers should be "random" values, it is sufficient to 274 * use a trivial hash function that just takes the first several bits of 275 * the key specifier. 276 */ 277 unsigned long i = get_unaligned((unsigned long *)&mk_spec->u); 278 279 return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)]; 280 } 281 282 /* 283 * Find the specified master key struct in ->s_master_keys and take a structural 284 * ref to it. The structural ref guarantees that the key struct continues to 285 * exist, but it does *not* guarantee that ->s_master_keys continues to contain 286 * the key struct. The structural ref needs to be dropped by 287 * fscrypt_put_master_key(). Returns NULL if the key struct is not found. 288 */ 289 struct fscrypt_master_key * 290 fscrypt_find_master_key(struct super_block *sb, 291 const struct fscrypt_key_specifier *mk_spec) 292 { 293 struct fscrypt_keyring *keyring; 294 struct hlist_head *bucket; 295 struct fscrypt_master_key *mk; 296 297 /* 298 * Pairs with the smp_store_release() in allocate_filesystem_keyring(). 299 * I.e., another task can publish ->s_master_keys concurrently, 300 * executing a RELEASE barrier. We need to use smp_load_acquire() here 301 * to safely ACQUIRE the memory the other task published. 302 */ 303 keyring = smp_load_acquire(&sb->s_master_keys); 304 if (keyring == NULL) 305 return NULL; /* No keyring yet, so no keys yet. */ 306 307 bucket = fscrypt_mk_hash_bucket(keyring, mk_spec); 308 rcu_read_lock(); 309 switch (mk_spec->type) { 310 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: 311 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 312 if (mk->mk_spec.type == 313 FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 314 memcmp(mk->mk_spec.u.descriptor, 315 mk_spec->u.descriptor, 316 FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 && 317 refcount_inc_not_zero(&mk->mk_struct_refs)) 318 goto out; 319 } 320 break; 321 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: 322 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 323 if (mk->mk_spec.type == 324 FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 325 memcmp(mk->mk_spec.u.identifier, 326 mk_spec->u.identifier, 327 FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 && 328 refcount_inc_not_zero(&mk->mk_struct_refs)) 329 goto out; 330 } 331 break; 332 } 333 mk = NULL; 334 out: 335 rcu_read_unlock(); 336 return mk; 337 } 338 339 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk) 340 { 341 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE]; 342 struct key *keyring; 343 344 format_mk_users_keyring_description(description, 345 mk->mk_spec.u.identifier); 346 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 347 current_cred(), KEY_POS_SEARCH | 348 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, 349 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 350 if (IS_ERR(keyring)) 351 return PTR_ERR(keyring); 352 353 mk->mk_users = keyring; 354 return 0; 355 } 356 357 /* 358 * Find the current user's "key" in the master key's ->mk_users. 359 * Returns ERR_PTR(-ENOKEY) if not found. 360 */ 361 static struct key *find_master_key_user(struct fscrypt_master_key *mk) 362 { 363 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 364 key_ref_t keyref; 365 366 format_mk_user_description(description, mk->mk_spec.u.identifier); 367 368 /* 369 * We need to mark the keyring reference as "possessed" so that we 370 * acquire permission to search it, via the KEY_POS_SEARCH permission. 371 */ 372 keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/), 373 &key_type_fscrypt_user, description, false); 374 if (IS_ERR(keyref)) { 375 if (PTR_ERR(keyref) == -EAGAIN || /* not found */ 376 PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */ 377 keyref = ERR_PTR(-ENOKEY); 378 return ERR_CAST(keyref); 379 } 380 return key_ref_to_ptr(keyref); 381 } 382 383 /* 384 * Give the current user a "key" in ->mk_users. This charges the user's quota 385 * and marks the master key as added by the current user, so that it cannot be 386 * removed by another user with the key. Either ->mk_sem must be held for 387 * write, or the master key must be still undergoing initialization. 388 */ 389 static int add_master_key_user(struct fscrypt_master_key *mk) 390 { 391 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 392 struct key *mk_user; 393 int err; 394 395 format_mk_user_description(description, mk->mk_spec.u.identifier); 396 mk_user = key_alloc(&key_type_fscrypt_user, description, 397 current_fsuid(), current_gid(), current_cred(), 398 KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL); 399 if (IS_ERR(mk_user)) 400 return PTR_ERR(mk_user); 401 402 err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL); 403 key_put(mk_user); 404 return err; 405 } 406 407 /* 408 * Remove the current user's "key" from ->mk_users. 409 * ->mk_sem must be held for write. 410 * 411 * Returns 0 if removed, -ENOKEY if not found, or another -errno code. 412 */ 413 static int remove_master_key_user(struct fscrypt_master_key *mk) 414 { 415 struct key *mk_user; 416 int err; 417 418 mk_user = find_master_key_user(mk); 419 if (IS_ERR(mk_user)) 420 return PTR_ERR(mk_user); 421 err = key_unlink(mk->mk_users, mk_user); 422 key_put(mk_user); 423 return err; 424 } 425 426 /* 427 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and 428 * insert it into sb->s_master_keys. 429 */ 430 static int add_new_master_key(struct super_block *sb, 431 struct fscrypt_master_key_secret *secret, 432 const struct fscrypt_key_specifier *mk_spec) 433 { 434 struct fscrypt_keyring *keyring = sb->s_master_keys; 435 struct fscrypt_master_key *mk; 436 int err; 437 438 mk = kzalloc(sizeof(*mk), GFP_KERNEL); 439 if (!mk) 440 return -ENOMEM; 441 442 init_rwsem(&mk->mk_sem); 443 refcount_set(&mk->mk_struct_refs, 1); 444 mk->mk_spec = *mk_spec; 445 446 INIT_LIST_HEAD(&mk->mk_decrypted_inodes); 447 spin_lock_init(&mk->mk_decrypted_inodes_lock); 448 449 if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 450 err = allocate_master_key_users_keyring(mk); 451 if (err) 452 goto out_put; 453 err = add_master_key_user(mk); 454 if (err) 455 goto out_put; 456 } 457 458 move_master_key_secret(&mk->mk_secret, secret); 459 mk->mk_present = true; 460 refcount_set(&mk->mk_active_refs, 1); /* ->mk_present is true */ 461 462 spin_lock(&keyring->lock); 463 hlist_add_head_rcu(&mk->mk_node, 464 fscrypt_mk_hash_bucket(keyring, mk_spec)); 465 spin_unlock(&keyring->lock); 466 return 0; 467 468 out_put: 469 fscrypt_put_master_key(mk); 470 return err; 471 } 472 473 #define KEY_DEAD 1 474 475 static int add_existing_master_key(struct fscrypt_master_key *mk, 476 struct fscrypt_master_key_secret *secret) 477 { 478 int err; 479 480 /* 481 * If the current user is already in ->mk_users, then there's nothing to 482 * do. Otherwise, we need to add the user to ->mk_users. (Neither is 483 * applicable for v1 policy keys, which have NULL ->mk_users.) 484 */ 485 if (mk->mk_users) { 486 struct key *mk_user = find_master_key_user(mk); 487 488 if (mk_user != ERR_PTR(-ENOKEY)) { 489 if (IS_ERR(mk_user)) 490 return PTR_ERR(mk_user); 491 key_put(mk_user); 492 return 0; 493 } 494 err = add_master_key_user(mk); 495 if (err) 496 return err; 497 } 498 499 /* If the key is incompletely removed, make it present again. */ 500 if (!mk->mk_present) { 501 if (!refcount_inc_not_zero(&mk->mk_active_refs)) { 502 /* 503 * Raced with the last active ref being dropped, so the 504 * key has become, or is about to become, "absent". 505 * Therefore, we need to allocate a new key struct. 506 */ 507 return KEY_DEAD; 508 } 509 move_master_key_secret(&mk->mk_secret, secret); 510 WRITE_ONCE(mk->mk_present, true); 511 } 512 513 return 0; 514 } 515 516 static int do_add_master_key(struct super_block *sb, 517 struct fscrypt_master_key_secret *secret, 518 const struct fscrypt_key_specifier *mk_spec) 519 { 520 static DEFINE_MUTEX(fscrypt_add_key_mutex); 521 struct fscrypt_master_key *mk; 522 int err; 523 524 mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */ 525 526 mk = fscrypt_find_master_key(sb, mk_spec); 527 if (!mk) { 528 /* Didn't find the key in ->s_master_keys. Add it. */ 529 err = allocate_filesystem_keyring(sb); 530 if (!err) 531 err = add_new_master_key(sb, secret, mk_spec); 532 } else { 533 /* 534 * Found the key in ->s_master_keys. Add the user to ->mk_users 535 * if needed, and make the key "present" again if possible. 536 */ 537 down_write(&mk->mk_sem); 538 err = add_existing_master_key(mk, secret); 539 up_write(&mk->mk_sem); 540 if (err == KEY_DEAD) { 541 /* 542 * We found a key struct, but it's already been fully 543 * removed. Ignore the old struct and add a new one. 544 * fscrypt_add_key_mutex means we don't need to worry 545 * about concurrent adds. 546 */ 547 err = add_new_master_key(sb, secret, mk_spec); 548 } 549 fscrypt_put_master_key(mk); 550 } 551 mutex_unlock(&fscrypt_add_key_mutex); 552 return err; 553 } 554 555 static int add_master_key(struct super_block *sb, 556 struct fscrypt_master_key_secret *secret, 557 struct fscrypt_key_specifier *key_spec) 558 { 559 int err; 560 561 if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 562 u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE]; 563 u8 *kdf_key = secret->bytes; 564 unsigned int kdf_key_size = secret->size; 565 u8 keyid_kdf_ctx = HKDF_CONTEXT_KEY_IDENTIFIER_FOR_RAW_KEY; 566 567 /* 568 * For raw keys, the fscrypt master key is used directly as the 569 * fscrypt KDF key. For hardware-wrapped keys, we have to pass 570 * the master key to the hardware to derive the KDF key, which 571 * is then only used to derive non-file-contents subkeys. 572 */ 573 if (secret->is_hw_wrapped) { 574 err = fscrypt_derive_sw_secret(sb, secret->bytes, 575 secret->size, sw_secret); 576 if (err) 577 return err; 578 kdf_key = sw_secret; 579 kdf_key_size = sizeof(sw_secret); 580 /* 581 * To avoid weird behavior if someone manages to 582 * determine sw_secret and add it as a raw key, ensure 583 * that hardware-wrapped keys and raw keys will have 584 * different key identifiers by deriving their key 585 * identifiers using different KDF contexts. 586 */ 587 keyid_kdf_ctx = 588 HKDF_CONTEXT_KEY_IDENTIFIER_FOR_HW_WRAPPED_KEY; 589 } 590 err = fscrypt_init_hkdf(&secret->hkdf, kdf_key, kdf_key_size); 591 /* 592 * Now that the KDF context is initialized, the raw KDF key is 593 * no longer needed. 594 */ 595 memzero_explicit(kdf_key, kdf_key_size); 596 if (err) 597 return err; 598 599 /* Calculate the key identifier */ 600 err = fscrypt_hkdf_expand(&secret->hkdf, keyid_kdf_ctx, NULL, 0, 601 key_spec->u.identifier, 602 FSCRYPT_KEY_IDENTIFIER_SIZE); 603 if (err) 604 return err; 605 } 606 return do_add_master_key(sb, secret, key_spec); 607 } 608 609 /* 610 * Validate the size of an fscrypt master key being added. Note that this is 611 * just an initial check, as we don't know which ciphers will be used yet. 612 * There is a stricter size check later when the key is actually used by a file. 613 */ 614 static inline bool fscrypt_valid_key_size(size_t size, u32 add_key_flags) 615 { 616 u32 max_size = (add_key_flags & FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED) ? 617 FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE : 618 FSCRYPT_MAX_RAW_KEY_SIZE; 619 620 return size >= FSCRYPT_MIN_KEY_SIZE && size <= max_size; 621 } 622 623 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep) 624 { 625 const struct fscrypt_provisioning_key_payload *payload = prep->data; 626 627 if (prep->datalen < sizeof(*payload)) 628 return -EINVAL; 629 630 if (!fscrypt_valid_key_size(prep->datalen - sizeof(*payload), 631 payload->flags)) 632 return -EINVAL; 633 634 if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 635 payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) 636 return -EINVAL; 637 638 if (payload->flags & ~FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED) 639 return -EINVAL; 640 641 prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL); 642 if (!prep->payload.data[0]) 643 return -ENOMEM; 644 645 prep->quotalen = prep->datalen; 646 return 0; 647 } 648 649 static void fscrypt_provisioning_key_free_preparse( 650 struct key_preparsed_payload *prep) 651 { 652 kfree_sensitive(prep->payload.data[0]); 653 } 654 655 static void fscrypt_provisioning_key_describe(const struct key *key, 656 struct seq_file *m) 657 { 658 seq_puts(m, key->description); 659 if (key_is_positive(key)) { 660 const struct fscrypt_provisioning_key_payload *payload = 661 key->payload.data[0]; 662 663 seq_printf(m, ": %u [%u]", key->datalen, payload->type); 664 } 665 } 666 667 static void fscrypt_provisioning_key_destroy(struct key *key) 668 { 669 kfree_sensitive(key->payload.data[0]); 670 } 671 672 static struct key_type key_type_fscrypt_provisioning = { 673 .name = "fscrypt-provisioning", 674 .preparse = fscrypt_provisioning_key_preparse, 675 .free_preparse = fscrypt_provisioning_key_free_preparse, 676 .instantiate = generic_key_instantiate, 677 .describe = fscrypt_provisioning_key_describe, 678 .destroy = fscrypt_provisioning_key_destroy, 679 }; 680 681 /* 682 * Retrieve the key from the Linux keyring key specified by 'key_id', and store 683 * it into 'secret'. 684 * 685 * The key must be of type "fscrypt-provisioning" and must have the 'type' and 686 * 'flags' field of the payload set to the given values, indicating that the key 687 * is intended for use for the specified purpose. We don't use the "logon" key 688 * type because there's no way to completely restrict the use of such keys; they 689 * can be used by any kernel API that accepts "logon" keys and doesn't require a 690 * specific service prefix. 691 * 692 * The ability to specify the key via Linux keyring key is intended for cases 693 * where userspace needs to re-add keys after the filesystem is unmounted and 694 * re-mounted. Most users should just provide the key directly instead. 695 */ 696 static int get_keyring_key(u32 key_id, u32 type, u32 flags, 697 struct fscrypt_master_key_secret *secret) 698 { 699 key_ref_t ref; 700 struct key *key; 701 const struct fscrypt_provisioning_key_payload *payload; 702 int err; 703 704 ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH); 705 if (IS_ERR(ref)) 706 return PTR_ERR(ref); 707 key = key_ref_to_ptr(ref); 708 709 if (key->type != &key_type_fscrypt_provisioning) 710 goto bad_key; 711 payload = key->payload.data[0]; 712 713 /* 714 * Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. 715 * Similarly, don't allow hardware-wrapped keys to be used as 716 * non-hardware-wrapped keys and vice versa. 717 */ 718 if (payload->type != type || payload->flags != flags) 719 goto bad_key; 720 721 secret->size = key->datalen - sizeof(*payload); 722 memcpy(secret->bytes, payload->raw, secret->size); 723 err = 0; 724 goto out_put; 725 726 bad_key: 727 err = -EKEYREJECTED; 728 out_put: 729 key_ref_put(ref); 730 return err; 731 } 732 733 /* 734 * Add a master encryption key to the filesystem, causing all files which were 735 * encrypted with it to appear "unlocked" (decrypted) when accessed. 736 * 737 * When adding a key for use by v1 encryption policies, this ioctl is 738 * privileged, and userspace must provide the 'key_descriptor'. 739 * 740 * When adding a key for use by v2+ encryption policies, this ioctl is 741 * unprivileged. This is needed, in general, to allow non-root users to use 742 * encryption without encountering the visibility problems of process-subscribed 743 * keyrings and the inability to properly remove keys. This works by having 744 * each key identified by its cryptographically secure hash --- the 745 * 'key_identifier'. The cryptographic hash ensures that a malicious user 746 * cannot add the wrong key for a given identifier. Furthermore, each added key 747 * is charged to the appropriate user's quota for the keyrings service, which 748 * prevents a malicious user from adding too many keys. Finally, we forbid a 749 * user from removing a key while other users have added it too, which prevents 750 * a user who knows another user's key from causing a denial-of-service by 751 * removing it at an inopportune time. (We tolerate that a user who knows a key 752 * can prevent other users from removing it.) 753 * 754 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of 755 * Documentation/filesystems/fscrypt.rst. 756 */ 757 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg) 758 { 759 struct super_block *sb = file_inode(filp)->i_sb; 760 struct fscrypt_add_key_arg __user *uarg = _uarg; 761 struct fscrypt_add_key_arg arg; 762 struct fscrypt_master_key_secret secret; 763 int err; 764 765 if (copy_from_user(&arg, uarg, sizeof(arg))) 766 return -EFAULT; 767 768 if (!valid_key_spec(&arg.key_spec)) 769 return -EINVAL; 770 771 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 772 return -EINVAL; 773 774 /* 775 * Only root can add keys that are identified by an arbitrary descriptor 776 * rather than by a cryptographic hash --- since otherwise a malicious 777 * user could add the wrong key. 778 */ 779 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 780 !capable(CAP_SYS_ADMIN)) 781 return -EACCES; 782 783 memset(&secret, 0, sizeof(secret)); 784 785 if (arg.flags) { 786 if (arg.flags & ~FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED) 787 return -EINVAL; 788 if (arg.key_spec.type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) 789 return -EINVAL; 790 secret.is_hw_wrapped = true; 791 } 792 793 if (arg.key_id) { 794 if (arg.raw_size != 0) 795 return -EINVAL; 796 err = get_keyring_key(arg.key_id, arg.key_spec.type, arg.flags, 797 &secret); 798 if (err) 799 goto out_wipe_secret; 800 } else { 801 if (!fscrypt_valid_key_size(arg.raw_size, arg.flags)) 802 return -EINVAL; 803 secret.size = arg.raw_size; 804 err = -EFAULT; 805 if (copy_from_user(secret.bytes, uarg->raw, secret.size)) 806 goto out_wipe_secret; 807 } 808 809 err = add_master_key(sb, &secret, &arg.key_spec); 810 if (err) 811 goto out_wipe_secret; 812 813 /* Return the key identifier to userspace, if applicable */ 814 err = -EFAULT; 815 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 816 copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier, 817 FSCRYPT_KEY_IDENTIFIER_SIZE)) 818 goto out_wipe_secret; 819 err = 0; 820 out_wipe_secret: 821 wipe_master_key_secret(&secret); 822 return err; 823 } 824 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key); 825 826 static void 827 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret) 828 { 829 static u8 test_key[FSCRYPT_MAX_RAW_KEY_SIZE]; 830 831 get_random_once(test_key, sizeof(test_key)); 832 833 memset(secret, 0, sizeof(*secret)); 834 secret->size = sizeof(test_key); 835 memcpy(secret->bytes, test_key, sizeof(test_key)); 836 } 837 838 int fscrypt_get_test_dummy_key_identifier( 839 u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 840 { 841 struct fscrypt_master_key_secret secret; 842 int err; 843 844 fscrypt_get_test_dummy_secret(&secret); 845 846 err = fscrypt_init_hkdf(&secret.hkdf, secret.bytes, secret.size); 847 if (err) 848 goto out; 849 err = fscrypt_hkdf_expand(&secret.hkdf, 850 HKDF_CONTEXT_KEY_IDENTIFIER_FOR_RAW_KEY, 851 NULL, 0, key_identifier, 852 FSCRYPT_KEY_IDENTIFIER_SIZE); 853 out: 854 wipe_master_key_secret(&secret); 855 return err; 856 } 857 858 /** 859 * fscrypt_add_test_dummy_key() - add the test dummy encryption key 860 * @sb: the filesystem instance to add the key to 861 * @key_spec: the key specifier of the test dummy encryption key 862 * 863 * Add the key for the test_dummy_encryption mount option to the filesystem. To 864 * prevent misuse of this mount option, a per-boot random key is used instead of 865 * a hardcoded one. This makes it so that any encrypted files created using 866 * this option won't be accessible after a reboot. 867 * 868 * Return: 0 on success, -errno on failure 869 */ 870 int fscrypt_add_test_dummy_key(struct super_block *sb, 871 struct fscrypt_key_specifier *key_spec) 872 { 873 struct fscrypt_master_key_secret secret; 874 int err; 875 876 fscrypt_get_test_dummy_secret(&secret); 877 err = add_master_key(sb, &secret, key_spec); 878 wipe_master_key_secret(&secret); 879 return err; 880 } 881 882 /* 883 * Verify that the current user has added a master key with the given identifier 884 * (returns -ENOKEY if not). This is needed to prevent a user from encrypting 885 * their files using some other user's key which they don't actually know. 886 * Cryptographically this isn't much of a problem, but the semantics of this 887 * would be a bit weird, so it's best to just forbid it. 888 * 889 * The system administrator (CAP_FOWNER) can override this, which should be 890 * enough for any use cases where encryption policies are being set using keys 891 * that were chosen ahead of time but aren't available at the moment. 892 * 893 * Note that the key may have already removed by the time this returns, but 894 * that's okay; we just care whether the key was there at some point. 895 * 896 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code 897 */ 898 int fscrypt_verify_key_added(struct super_block *sb, 899 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 900 { 901 struct fscrypt_key_specifier mk_spec; 902 struct fscrypt_master_key *mk; 903 struct key *mk_user; 904 int err; 905 906 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; 907 memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); 908 909 mk = fscrypt_find_master_key(sb, &mk_spec); 910 if (!mk) { 911 err = -ENOKEY; 912 goto out; 913 } 914 down_read(&mk->mk_sem); 915 mk_user = find_master_key_user(mk); 916 if (IS_ERR(mk_user)) { 917 err = PTR_ERR(mk_user); 918 } else { 919 key_put(mk_user); 920 err = 0; 921 } 922 up_read(&mk->mk_sem); 923 fscrypt_put_master_key(mk); 924 out: 925 if (err == -ENOKEY && capable(CAP_FOWNER)) 926 err = 0; 927 return err; 928 } 929 930 /* 931 * Try to evict the inode's dentries from the dentry cache. If the inode is a 932 * directory, then it can have at most one dentry; however, that dentry may be 933 * pinned by child dentries, so first try to evict the children too. 934 */ 935 static void shrink_dcache_inode(struct inode *inode) 936 { 937 struct dentry *dentry; 938 939 if (S_ISDIR(inode->i_mode)) { 940 dentry = d_find_any_alias(inode); 941 if (dentry) { 942 shrink_dcache_parent(dentry); 943 dput(dentry); 944 } 945 } 946 d_prune_aliases(inode); 947 } 948 949 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk) 950 { 951 struct fscrypt_inode_info *ci; 952 struct inode *inode; 953 struct inode *toput_inode = NULL; 954 955 spin_lock(&mk->mk_decrypted_inodes_lock); 956 957 list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) { 958 inode = ci->ci_inode; 959 spin_lock(&inode->i_lock); 960 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { 961 spin_unlock(&inode->i_lock); 962 continue; 963 } 964 __iget(inode); 965 spin_unlock(&inode->i_lock); 966 spin_unlock(&mk->mk_decrypted_inodes_lock); 967 968 shrink_dcache_inode(inode); 969 iput(toput_inode); 970 toput_inode = inode; 971 972 spin_lock(&mk->mk_decrypted_inodes_lock); 973 } 974 975 spin_unlock(&mk->mk_decrypted_inodes_lock); 976 iput(toput_inode); 977 } 978 979 static int check_for_busy_inodes(struct super_block *sb, 980 struct fscrypt_master_key *mk) 981 { 982 struct list_head *pos; 983 size_t busy_count = 0; 984 unsigned long ino; 985 char ino_str[50] = ""; 986 987 spin_lock(&mk->mk_decrypted_inodes_lock); 988 989 list_for_each(pos, &mk->mk_decrypted_inodes) 990 busy_count++; 991 992 if (busy_count == 0) { 993 spin_unlock(&mk->mk_decrypted_inodes_lock); 994 return 0; 995 } 996 997 { 998 /* select an example file to show for debugging purposes */ 999 struct inode *inode = 1000 list_first_entry(&mk->mk_decrypted_inodes, 1001 struct fscrypt_inode_info, 1002 ci_master_key_link)->ci_inode; 1003 ino = inode->i_ino; 1004 } 1005 spin_unlock(&mk->mk_decrypted_inodes_lock); 1006 1007 /* If the inode is currently being created, ino may still be 0. */ 1008 if (ino) 1009 snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino); 1010 1011 fscrypt_warn(NULL, 1012 "%s: %zu inode(s) still busy after removing key with %s %*phN%s", 1013 sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec), 1014 master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u, 1015 ino_str); 1016 return -EBUSY; 1017 } 1018 1019 static int try_to_lock_encrypted_files(struct super_block *sb, 1020 struct fscrypt_master_key *mk) 1021 { 1022 int err1; 1023 int err2; 1024 1025 /* 1026 * An inode can't be evicted while it is dirty or has dirty pages. 1027 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes. 1028 * 1029 * Just do it the easy way: call sync_filesystem(). It's overkill, but 1030 * it works, and it's more important to minimize the amount of caches we 1031 * drop than the amount of data we sync. Also, unprivileged users can 1032 * already call sync_filesystem() via sys_syncfs() or sys_sync(). 1033 */ 1034 down_read(&sb->s_umount); 1035 err1 = sync_filesystem(sb); 1036 up_read(&sb->s_umount); 1037 /* If a sync error occurs, still try to evict as much as possible. */ 1038 1039 /* 1040 * Inodes are pinned by their dentries, so we have to evict their 1041 * dentries. shrink_dcache_sb() would suffice, but would be overkill 1042 * and inappropriate for use by unprivileged users. So instead go 1043 * through the inodes' alias lists and try to evict each dentry. 1044 */ 1045 evict_dentries_for_decrypted_inodes(mk); 1046 1047 /* 1048 * evict_dentries_for_decrypted_inodes() already iput() each inode in 1049 * the list; any inodes for which that dropped the last reference will 1050 * have been evicted due to fscrypt_drop_inode() detecting the key 1051 * removal and telling the VFS to evict the inode. So to finish, we 1052 * just need to check whether any inodes couldn't be evicted. 1053 */ 1054 err2 = check_for_busy_inodes(sb, mk); 1055 1056 return err1 ?: err2; 1057 } 1058 1059 /* 1060 * Try to remove an fscrypt master encryption key. 1061 * 1062 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's 1063 * claim to the key, then removes the key itself if no other users have claims. 1064 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the 1065 * key itself. 1066 * 1067 * To "remove the key itself", first we transition the key to the "incompletely 1068 * removed" state, so that no more inodes can be unlocked with it. Then we try 1069 * to evict all cached inodes that had been unlocked with the key. 1070 * 1071 * If all inodes were evicted, then we unlink the fscrypt_master_key from the 1072 * keyring. Otherwise it remains in the keyring in the "incompletely removed" 1073 * state where it tracks the list of remaining inodes. Userspace can execute 1074 * the ioctl again later to retry eviction, or alternatively can re-add the key. 1075 * 1076 * For more details, see the "Removing keys" section of 1077 * Documentation/filesystems/fscrypt.rst. 1078 */ 1079 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users) 1080 { 1081 struct super_block *sb = file_inode(filp)->i_sb; 1082 struct fscrypt_remove_key_arg __user *uarg = _uarg; 1083 struct fscrypt_remove_key_arg arg; 1084 struct fscrypt_master_key *mk; 1085 u32 status_flags = 0; 1086 int err; 1087 bool inodes_remain; 1088 1089 if (copy_from_user(&arg, uarg, sizeof(arg))) 1090 return -EFAULT; 1091 1092 if (!valid_key_spec(&arg.key_spec)) 1093 return -EINVAL; 1094 1095 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1096 return -EINVAL; 1097 1098 /* 1099 * Only root can add and remove keys that are identified by an arbitrary 1100 * descriptor rather than by a cryptographic hash. 1101 */ 1102 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 1103 !capable(CAP_SYS_ADMIN)) 1104 return -EACCES; 1105 1106 /* Find the key being removed. */ 1107 mk = fscrypt_find_master_key(sb, &arg.key_spec); 1108 if (!mk) 1109 return -ENOKEY; 1110 down_write(&mk->mk_sem); 1111 1112 /* If relevant, remove current user's (or all users) claim to the key */ 1113 if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) { 1114 if (all_users) 1115 err = keyring_clear(mk->mk_users); 1116 else 1117 err = remove_master_key_user(mk); 1118 if (err) { 1119 up_write(&mk->mk_sem); 1120 goto out_put_key; 1121 } 1122 if (mk->mk_users->keys.nr_leaves_on_tree != 0) { 1123 /* 1124 * Other users have still added the key too. We removed 1125 * the current user's claim to the key, but we still 1126 * can't remove the key itself. 1127 */ 1128 status_flags |= 1129 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS; 1130 err = 0; 1131 up_write(&mk->mk_sem); 1132 goto out_put_key; 1133 } 1134 } 1135 1136 /* No user claims remaining. Initiate removal of the key. */ 1137 err = -ENOKEY; 1138 if (mk->mk_present) { 1139 fscrypt_initiate_key_removal(sb, mk); 1140 err = 0; 1141 } 1142 inodes_remain = refcount_read(&mk->mk_active_refs) > 0; 1143 up_write(&mk->mk_sem); 1144 1145 if (inodes_remain) { 1146 /* Some inodes still reference this key; try to evict them. */ 1147 err = try_to_lock_encrypted_files(sb, mk); 1148 if (err == -EBUSY) { 1149 status_flags |= 1150 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY; 1151 err = 0; 1152 } 1153 } 1154 /* 1155 * We return 0 if we successfully did something: removed a claim to the 1156 * key, initiated removal of the key, or tried locking the files again. 1157 * Users need to check the informational status flags if they care 1158 * whether the key has been fully removed including all files locked. 1159 */ 1160 out_put_key: 1161 fscrypt_put_master_key(mk); 1162 if (err == 0) 1163 err = put_user(status_flags, &uarg->removal_status_flags); 1164 return err; 1165 } 1166 1167 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg) 1168 { 1169 return do_remove_key(filp, uarg, false); 1170 } 1171 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key); 1172 1173 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg) 1174 { 1175 if (!capable(CAP_SYS_ADMIN)) 1176 return -EACCES; 1177 return do_remove_key(filp, uarg, true); 1178 } 1179 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users); 1180 1181 /* 1182 * Retrieve the status of an fscrypt master encryption key. 1183 * 1184 * We set ->status to indicate whether the key is absent, present, or 1185 * incompletely removed. (For an explanation of what these statuses mean and 1186 * how they are represented internally, see struct fscrypt_master_key.) This 1187 * field allows applications to easily determine the status of an encrypted 1188 * directory without using a hack such as trying to open a regular file in it 1189 * (which can confuse the "incompletely removed" status with absent or present). 1190 * 1191 * In addition, for v2 policy keys we allow applications to determine, via 1192 * ->status_flags and ->user_count, whether the key has been added by the 1193 * current user, by other users, or by both. Most applications should not need 1194 * this, since ordinarily only one user should know a given key. However, if a 1195 * secret key is shared by multiple users, applications may wish to add an 1196 * already-present key to prevent other users from removing it. This ioctl can 1197 * be used to check whether that really is the case before the work is done to 1198 * add the key --- which might e.g. require prompting the user for a passphrase. 1199 * 1200 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of 1201 * Documentation/filesystems/fscrypt.rst. 1202 */ 1203 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg) 1204 { 1205 struct super_block *sb = file_inode(filp)->i_sb; 1206 struct fscrypt_get_key_status_arg arg; 1207 struct fscrypt_master_key *mk; 1208 int err; 1209 1210 if (copy_from_user(&arg, uarg, sizeof(arg))) 1211 return -EFAULT; 1212 1213 if (!valid_key_spec(&arg.key_spec)) 1214 return -EINVAL; 1215 1216 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1217 return -EINVAL; 1218 1219 arg.status_flags = 0; 1220 arg.user_count = 0; 1221 memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved)); 1222 1223 mk = fscrypt_find_master_key(sb, &arg.key_spec); 1224 if (!mk) { 1225 arg.status = FSCRYPT_KEY_STATUS_ABSENT; 1226 err = 0; 1227 goto out; 1228 } 1229 down_read(&mk->mk_sem); 1230 1231 if (!mk->mk_present) { 1232 arg.status = refcount_read(&mk->mk_active_refs) > 0 ? 1233 FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED : 1234 FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */; 1235 err = 0; 1236 goto out_release_key; 1237 } 1238 1239 arg.status = FSCRYPT_KEY_STATUS_PRESENT; 1240 if (mk->mk_users) { 1241 struct key *mk_user; 1242 1243 arg.user_count = mk->mk_users->keys.nr_leaves_on_tree; 1244 mk_user = find_master_key_user(mk); 1245 if (!IS_ERR(mk_user)) { 1246 arg.status_flags |= 1247 FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF; 1248 key_put(mk_user); 1249 } else if (mk_user != ERR_PTR(-ENOKEY)) { 1250 err = PTR_ERR(mk_user); 1251 goto out_release_key; 1252 } 1253 } 1254 err = 0; 1255 out_release_key: 1256 up_read(&mk->mk_sem); 1257 fscrypt_put_master_key(mk); 1258 out: 1259 if (!err && copy_to_user(uarg, &arg, sizeof(arg))) 1260 err = -EFAULT; 1261 return err; 1262 } 1263 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status); 1264 1265 int __init fscrypt_init_keyring(void) 1266 { 1267 int err; 1268 1269 err = register_key_type(&key_type_fscrypt_user); 1270 if (err) 1271 return err; 1272 1273 err = register_key_type(&key_type_fscrypt_provisioning); 1274 if (err) 1275 goto err_unregister_fscrypt_user; 1276 1277 return 0; 1278 1279 err_unregister_fscrypt_user: 1280 unregister_key_type(&key_type_fscrypt_user); 1281 return err; 1282 } 1283