xref: /linux/fs/crypto/keyring.c (revision 1bd9a7b4afd5e0b938868a90b16d514c19808e6c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Filesystem-level keyring for fscrypt
4  *
5  * Copyright 2019 Google LLC
6  */
7 
8 /*
9  * This file implements management of fscrypt master keys in the
10  * filesystem-level keyring, including the ioctls:
11  *
12  * - FS_IOC_ADD_ENCRYPTION_KEY
13  * - FS_IOC_REMOVE_ENCRYPTION_KEY
14  * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15  * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
16  *
17  * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18  * information about these ioctls.
19  */
20 
21 #include <asm/unaligned.h>
22 #include <crypto/skcipher.h>
23 #include <linux/key-type.h>
24 #include <linux/random.h>
25 #include <linux/seq_file.h>
26 
27 #include "fscrypt_private.h"
28 
29 /* The master encryption keys for a filesystem (->s_master_keys) */
30 struct fscrypt_keyring {
31 	/*
32 	 * Lock that protects ->key_hashtable.  It does *not* protect the
33 	 * fscrypt_master_key structs themselves.
34 	 */
35 	spinlock_t lock;
36 
37 	/* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
38 	struct hlist_head key_hashtable[128];
39 };
40 
41 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
42 {
43 	fscrypt_destroy_hkdf(&secret->hkdf);
44 	memzero_explicit(secret, sizeof(*secret));
45 }
46 
47 static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
48 				   struct fscrypt_master_key_secret *src)
49 {
50 	memcpy(dst, src, sizeof(*dst));
51 	memzero_explicit(src, sizeof(*src));
52 }
53 
54 static void fscrypt_free_master_key(struct rcu_head *head)
55 {
56 	struct fscrypt_master_key *mk =
57 		container_of(head, struct fscrypt_master_key, mk_rcu_head);
58 	/*
59 	 * The master key secret and any embedded subkeys should have already
60 	 * been wiped when the last active reference to the fscrypt_master_key
61 	 * struct was dropped; doing it here would be unnecessarily late.
62 	 * Nevertheless, use kfree_sensitive() in case anything was missed.
63 	 */
64 	kfree_sensitive(mk);
65 }
66 
67 void fscrypt_put_master_key(struct fscrypt_master_key *mk)
68 {
69 	if (!refcount_dec_and_test(&mk->mk_struct_refs))
70 		return;
71 	/*
72 	 * No structural references left, so free ->mk_users, and also free the
73 	 * fscrypt_master_key struct itself after an RCU grace period ensures
74 	 * that concurrent keyring lookups can no longer find it.
75 	 */
76 	WARN_ON(refcount_read(&mk->mk_active_refs) != 0);
77 	key_put(mk->mk_users);
78 	mk->mk_users = NULL;
79 	call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
80 }
81 
82 void fscrypt_put_master_key_activeref(struct super_block *sb,
83 				      struct fscrypt_master_key *mk)
84 {
85 	size_t i;
86 
87 	if (!refcount_dec_and_test(&mk->mk_active_refs))
88 		return;
89 	/*
90 	 * No active references left, so complete the full removal of this
91 	 * fscrypt_master_key struct by removing it from the keyring and
92 	 * destroying any subkeys embedded in it.
93 	 */
94 
95 	spin_lock(&sb->s_master_keys->lock);
96 	hlist_del_rcu(&mk->mk_node);
97 	spin_unlock(&sb->s_master_keys->lock);
98 
99 	/*
100 	 * ->mk_active_refs == 0 implies that ->mk_secret is not present and
101 	 * that ->mk_decrypted_inodes is empty.
102 	 */
103 	WARN_ON(is_master_key_secret_present(&mk->mk_secret));
104 	WARN_ON(!list_empty(&mk->mk_decrypted_inodes));
105 
106 	for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
107 		fscrypt_destroy_prepared_key(
108 				sb, &mk->mk_direct_keys[i]);
109 		fscrypt_destroy_prepared_key(
110 				sb, &mk->mk_iv_ino_lblk_64_keys[i]);
111 		fscrypt_destroy_prepared_key(
112 				sb, &mk->mk_iv_ino_lblk_32_keys[i]);
113 	}
114 	memzero_explicit(&mk->mk_ino_hash_key,
115 			 sizeof(mk->mk_ino_hash_key));
116 	mk->mk_ino_hash_key_initialized = false;
117 
118 	/* Drop the structural ref associated with the active refs. */
119 	fscrypt_put_master_key(mk);
120 }
121 
122 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
123 {
124 	if (spec->__reserved)
125 		return false;
126 	return master_key_spec_len(spec) != 0;
127 }
128 
129 static int fscrypt_user_key_instantiate(struct key *key,
130 					struct key_preparsed_payload *prep)
131 {
132 	/*
133 	 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
134 	 * each key, regardless of the exact key size.  The amount of memory
135 	 * actually used is greater than the size of the raw key anyway.
136 	 */
137 	return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
138 }
139 
140 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
141 {
142 	seq_puts(m, key->description);
143 }
144 
145 /*
146  * Type of key in ->mk_users.  Each key of this type represents a particular
147  * user who has added a particular master key.
148  *
149  * Note that the name of this key type really should be something like
150  * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
151  * mainly for simplicity of presentation in /proc/keys when read by a non-root
152  * user.  And it is expected to be rare that a key is actually added by multiple
153  * users, since users should keep their encryption keys confidential.
154  */
155 static struct key_type key_type_fscrypt_user = {
156 	.name			= ".fscrypt",
157 	.instantiate		= fscrypt_user_key_instantiate,
158 	.describe		= fscrypt_user_key_describe,
159 };
160 
161 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
162 	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
163 	 CONST_STRLEN("-users") + 1)
164 
165 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
166 	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
167 
168 static void format_mk_users_keyring_description(
169 			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
170 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
171 {
172 	sprintf(description, "fscrypt-%*phN-users",
173 		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
174 }
175 
176 static void format_mk_user_description(
177 			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
178 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
179 {
180 
181 	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
182 		mk_identifier, __kuid_val(current_fsuid()));
183 }
184 
185 /* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
186 static int allocate_filesystem_keyring(struct super_block *sb)
187 {
188 	struct fscrypt_keyring *keyring;
189 
190 	if (sb->s_master_keys)
191 		return 0;
192 
193 	keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
194 	if (!keyring)
195 		return -ENOMEM;
196 	spin_lock_init(&keyring->lock);
197 	/*
198 	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
199 	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
200 	 * concurrent tasks can ACQUIRE it.
201 	 */
202 	smp_store_release(&sb->s_master_keys, keyring);
203 	return 0;
204 }
205 
206 /*
207  * Release all encryption keys that have been added to the filesystem, along
208  * with the keyring that contains them.
209  *
210  * This is called at unmount time.  The filesystem's underlying block device(s)
211  * are still available at this time; this is important because after user file
212  * accesses have been allowed, this function may need to evict keys from the
213  * keyslots of an inline crypto engine, which requires the block device(s).
214  *
215  * This is also called when the super_block is being freed.  This is needed to
216  * avoid a memory leak if mounting fails after the "test_dummy_encryption"
217  * option was processed, as in that case the unmount-time call isn't made.
218  */
219 void fscrypt_destroy_keyring(struct super_block *sb)
220 {
221 	struct fscrypt_keyring *keyring = sb->s_master_keys;
222 	size_t i;
223 
224 	if (!keyring)
225 		return;
226 
227 	for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
228 		struct hlist_head *bucket = &keyring->key_hashtable[i];
229 		struct fscrypt_master_key *mk;
230 		struct hlist_node *tmp;
231 
232 		hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
233 			/*
234 			 * Since all inodes were already evicted, every key
235 			 * remaining in the keyring should have an empty inode
236 			 * list, and should only still be in the keyring due to
237 			 * the single active ref associated with ->mk_secret.
238 			 * There should be no structural refs beyond the one
239 			 * associated with the active ref.
240 			 */
241 			WARN_ON(refcount_read(&mk->mk_active_refs) != 1);
242 			WARN_ON(refcount_read(&mk->mk_struct_refs) != 1);
243 			WARN_ON(!is_master_key_secret_present(&mk->mk_secret));
244 			wipe_master_key_secret(&mk->mk_secret);
245 			fscrypt_put_master_key_activeref(sb, mk);
246 		}
247 	}
248 	kfree_sensitive(keyring);
249 	sb->s_master_keys = NULL;
250 }
251 
252 static struct hlist_head *
253 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
254 		       const struct fscrypt_key_specifier *mk_spec)
255 {
256 	/*
257 	 * Since key specifiers should be "random" values, it is sufficient to
258 	 * use a trivial hash function that just takes the first several bits of
259 	 * the key specifier.
260 	 */
261 	unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
262 
263 	return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
264 }
265 
266 /*
267  * Find the specified master key struct in ->s_master_keys and take a structural
268  * ref to it.  The structural ref guarantees that the key struct continues to
269  * exist, but it does *not* guarantee that ->s_master_keys continues to contain
270  * the key struct.  The structural ref needs to be dropped by
271  * fscrypt_put_master_key().  Returns NULL if the key struct is not found.
272  */
273 struct fscrypt_master_key *
274 fscrypt_find_master_key(struct super_block *sb,
275 			const struct fscrypt_key_specifier *mk_spec)
276 {
277 	struct fscrypt_keyring *keyring;
278 	struct hlist_head *bucket;
279 	struct fscrypt_master_key *mk;
280 
281 	/*
282 	 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
283 	 * I.e., another task can publish ->s_master_keys concurrently,
284 	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
285 	 * to safely ACQUIRE the memory the other task published.
286 	 */
287 	keyring = smp_load_acquire(&sb->s_master_keys);
288 	if (keyring == NULL)
289 		return NULL; /* No keyring yet, so no keys yet. */
290 
291 	bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
292 	rcu_read_lock();
293 	switch (mk_spec->type) {
294 	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
295 		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
296 			if (mk->mk_spec.type ==
297 				FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
298 			    memcmp(mk->mk_spec.u.descriptor,
299 				   mk_spec->u.descriptor,
300 				   FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
301 			    refcount_inc_not_zero(&mk->mk_struct_refs))
302 				goto out;
303 		}
304 		break;
305 	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
306 		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
307 			if (mk->mk_spec.type ==
308 				FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
309 			    memcmp(mk->mk_spec.u.identifier,
310 				   mk_spec->u.identifier,
311 				   FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
312 			    refcount_inc_not_zero(&mk->mk_struct_refs))
313 				goto out;
314 		}
315 		break;
316 	}
317 	mk = NULL;
318 out:
319 	rcu_read_unlock();
320 	return mk;
321 }
322 
323 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
324 {
325 	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
326 	struct key *keyring;
327 
328 	format_mk_users_keyring_description(description,
329 					    mk->mk_spec.u.identifier);
330 	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
331 				current_cred(), KEY_POS_SEARCH |
332 				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
333 				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
334 	if (IS_ERR(keyring))
335 		return PTR_ERR(keyring);
336 
337 	mk->mk_users = keyring;
338 	return 0;
339 }
340 
341 /*
342  * Find the current user's "key" in the master key's ->mk_users.
343  * Returns ERR_PTR(-ENOKEY) if not found.
344  */
345 static struct key *find_master_key_user(struct fscrypt_master_key *mk)
346 {
347 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
348 	key_ref_t keyref;
349 
350 	format_mk_user_description(description, mk->mk_spec.u.identifier);
351 
352 	/*
353 	 * We need to mark the keyring reference as "possessed" so that we
354 	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
355 	 */
356 	keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
357 				&key_type_fscrypt_user, description, false);
358 	if (IS_ERR(keyref)) {
359 		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
360 		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
361 			keyref = ERR_PTR(-ENOKEY);
362 		return ERR_CAST(keyref);
363 	}
364 	return key_ref_to_ptr(keyref);
365 }
366 
367 /*
368  * Give the current user a "key" in ->mk_users.  This charges the user's quota
369  * and marks the master key as added by the current user, so that it cannot be
370  * removed by another user with the key.  Either ->mk_sem must be held for
371  * write, or the master key must be still undergoing initialization.
372  */
373 static int add_master_key_user(struct fscrypt_master_key *mk)
374 {
375 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
376 	struct key *mk_user;
377 	int err;
378 
379 	format_mk_user_description(description, mk->mk_spec.u.identifier);
380 	mk_user = key_alloc(&key_type_fscrypt_user, description,
381 			    current_fsuid(), current_gid(), current_cred(),
382 			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
383 	if (IS_ERR(mk_user))
384 		return PTR_ERR(mk_user);
385 
386 	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
387 	key_put(mk_user);
388 	return err;
389 }
390 
391 /*
392  * Remove the current user's "key" from ->mk_users.
393  * ->mk_sem must be held for write.
394  *
395  * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
396  */
397 static int remove_master_key_user(struct fscrypt_master_key *mk)
398 {
399 	struct key *mk_user;
400 	int err;
401 
402 	mk_user = find_master_key_user(mk);
403 	if (IS_ERR(mk_user))
404 		return PTR_ERR(mk_user);
405 	err = key_unlink(mk->mk_users, mk_user);
406 	key_put(mk_user);
407 	return err;
408 }
409 
410 /*
411  * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
412  * insert it into sb->s_master_keys.
413  */
414 static int add_new_master_key(struct super_block *sb,
415 			      struct fscrypt_master_key_secret *secret,
416 			      const struct fscrypt_key_specifier *mk_spec)
417 {
418 	struct fscrypt_keyring *keyring = sb->s_master_keys;
419 	struct fscrypt_master_key *mk;
420 	int err;
421 
422 	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
423 	if (!mk)
424 		return -ENOMEM;
425 
426 	init_rwsem(&mk->mk_sem);
427 	refcount_set(&mk->mk_struct_refs, 1);
428 	mk->mk_spec = *mk_spec;
429 
430 	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
431 	spin_lock_init(&mk->mk_decrypted_inodes_lock);
432 
433 	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
434 		err = allocate_master_key_users_keyring(mk);
435 		if (err)
436 			goto out_put;
437 		err = add_master_key_user(mk);
438 		if (err)
439 			goto out_put;
440 	}
441 
442 	move_master_key_secret(&mk->mk_secret, secret);
443 	refcount_set(&mk->mk_active_refs, 1); /* ->mk_secret is present */
444 
445 	spin_lock(&keyring->lock);
446 	hlist_add_head_rcu(&mk->mk_node,
447 			   fscrypt_mk_hash_bucket(keyring, mk_spec));
448 	spin_unlock(&keyring->lock);
449 	return 0;
450 
451 out_put:
452 	fscrypt_put_master_key(mk);
453 	return err;
454 }
455 
456 #define KEY_DEAD	1
457 
458 static int add_existing_master_key(struct fscrypt_master_key *mk,
459 				   struct fscrypt_master_key_secret *secret)
460 {
461 	int err;
462 
463 	/*
464 	 * If the current user is already in ->mk_users, then there's nothing to
465 	 * do.  Otherwise, we need to add the user to ->mk_users.  (Neither is
466 	 * applicable for v1 policy keys, which have NULL ->mk_users.)
467 	 */
468 	if (mk->mk_users) {
469 		struct key *mk_user = find_master_key_user(mk);
470 
471 		if (mk_user != ERR_PTR(-ENOKEY)) {
472 			if (IS_ERR(mk_user))
473 				return PTR_ERR(mk_user);
474 			key_put(mk_user);
475 			return 0;
476 		}
477 		err = add_master_key_user(mk);
478 		if (err)
479 			return err;
480 	}
481 
482 	/* Re-add the secret if needed. */
483 	if (!is_master_key_secret_present(&mk->mk_secret)) {
484 		if (!refcount_inc_not_zero(&mk->mk_active_refs))
485 			return KEY_DEAD;
486 		move_master_key_secret(&mk->mk_secret, secret);
487 	}
488 
489 	return 0;
490 }
491 
492 static int do_add_master_key(struct super_block *sb,
493 			     struct fscrypt_master_key_secret *secret,
494 			     const struct fscrypt_key_specifier *mk_spec)
495 {
496 	static DEFINE_MUTEX(fscrypt_add_key_mutex);
497 	struct fscrypt_master_key *mk;
498 	int err;
499 
500 	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
501 
502 	mk = fscrypt_find_master_key(sb, mk_spec);
503 	if (!mk) {
504 		/* Didn't find the key in ->s_master_keys.  Add it. */
505 		err = allocate_filesystem_keyring(sb);
506 		if (!err)
507 			err = add_new_master_key(sb, secret, mk_spec);
508 	} else {
509 		/*
510 		 * Found the key in ->s_master_keys.  Re-add the secret if
511 		 * needed, and add the user to ->mk_users if needed.
512 		 */
513 		down_write(&mk->mk_sem);
514 		err = add_existing_master_key(mk, secret);
515 		up_write(&mk->mk_sem);
516 		if (err == KEY_DEAD) {
517 			/*
518 			 * We found a key struct, but it's already been fully
519 			 * removed.  Ignore the old struct and add a new one.
520 			 * fscrypt_add_key_mutex means we don't need to worry
521 			 * about concurrent adds.
522 			 */
523 			err = add_new_master_key(sb, secret, mk_spec);
524 		}
525 		fscrypt_put_master_key(mk);
526 	}
527 	mutex_unlock(&fscrypt_add_key_mutex);
528 	return err;
529 }
530 
531 static int add_master_key(struct super_block *sb,
532 			  struct fscrypt_master_key_secret *secret,
533 			  struct fscrypt_key_specifier *key_spec)
534 {
535 	int err;
536 
537 	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
538 		err = fscrypt_init_hkdf(&secret->hkdf, secret->raw,
539 					secret->size);
540 		if (err)
541 			return err;
542 
543 		/*
544 		 * Now that the HKDF context is initialized, the raw key is no
545 		 * longer needed.
546 		 */
547 		memzero_explicit(secret->raw, secret->size);
548 
549 		/* Calculate the key identifier */
550 		err = fscrypt_hkdf_expand(&secret->hkdf,
551 					  HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0,
552 					  key_spec->u.identifier,
553 					  FSCRYPT_KEY_IDENTIFIER_SIZE);
554 		if (err)
555 			return err;
556 	}
557 	return do_add_master_key(sb, secret, key_spec);
558 }
559 
560 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
561 {
562 	const struct fscrypt_provisioning_key_payload *payload = prep->data;
563 
564 	if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
565 	    prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE)
566 		return -EINVAL;
567 
568 	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
569 	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
570 		return -EINVAL;
571 
572 	if (payload->__reserved)
573 		return -EINVAL;
574 
575 	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
576 	if (!prep->payload.data[0])
577 		return -ENOMEM;
578 
579 	prep->quotalen = prep->datalen;
580 	return 0;
581 }
582 
583 static void fscrypt_provisioning_key_free_preparse(
584 					struct key_preparsed_payload *prep)
585 {
586 	kfree_sensitive(prep->payload.data[0]);
587 }
588 
589 static void fscrypt_provisioning_key_describe(const struct key *key,
590 					      struct seq_file *m)
591 {
592 	seq_puts(m, key->description);
593 	if (key_is_positive(key)) {
594 		const struct fscrypt_provisioning_key_payload *payload =
595 			key->payload.data[0];
596 
597 		seq_printf(m, ": %u [%u]", key->datalen, payload->type);
598 	}
599 }
600 
601 static void fscrypt_provisioning_key_destroy(struct key *key)
602 {
603 	kfree_sensitive(key->payload.data[0]);
604 }
605 
606 static struct key_type key_type_fscrypt_provisioning = {
607 	.name			= "fscrypt-provisioning",
608 	.preparse		= fscrypt_provisioning_key_preparse,
609 	.free_preparse		= fscrypt_provisioning_key_free_preparse,
610 	.instantiate		= generic_key_instantiate,
611 	.describe		= fscrypt_provisioning_key_describe,
612 	.destroy		= fscrypt_provisioning_key_destroy,
613 };
614 
615 /*
616  * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
617  * store it into 'secret'.
618  *
619  * The key must be of type "fscrypt-provisioning" and must have the field
620  * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
621  * only usable with fscrypt with the particular KDF version identified by
622  * 'type'.  We don't use the "logon" key type because there's no way to
623  * completely restrict the use of such keys; they can be used by any kernel API
624  * that accepts "logon" keys and doesn't require a specific service prefix.
625  *
626  * The ability to specify the key via Linux keyring key is intended for cases
627  * where userspace needs to re-add keys after the filesystem is unmounted and
628  * re-mounted.  Most users should just provide the raw key directly instead.
629  */
630 static int get_keyring_key(u32 key_id, u32 type,
631 			   struct fscrypt_master_key_secret *secret)
632 {
633 	key_ref_t ref;
634 	struct key *key;
635 	const struct fscrypt_provisioning_key_payload *payload;
636 	int err;
637 
638 	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
639 	if (IS_ERR(ref))
640 		return PTR_ERR(ref);
641 	key = key_ref_to_ptr(ref);
642 
643 	if (key->type != &key_type_fscrypt_provisioning)
644 		goto bad_key;
645 	payload = key->payload.data[0];
646 
647 	/* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
648 	if (payload->type != type)
649 		goto bad_key;
650 
651 	secret->size = key->datalen - sizeof(*payload);
652 	memcpy(secret->raw, payload->raw, secret->size);
653 	err = 0;
654 	goto out_put;
655 
656 bad_key:
657 	err = -EKEYREJECTED;
658 out_put:
659 	key_ref_put(ref);
660 	return err;
661 }
662 
663 /*
664  * Add a master encryption key to the filesystem, causing all files which were
665  * encrypted with it to appear "unlocked" (decrypted) when accessed.
666  *
667  * When adding a key for use by v1 encryption policies, this ioctl is
668  * privileged, and userspace must provide the 'key_descriptor'.
669  *
670  * When adding a key for use by v2+ encryption policies, this ioctl is
671  * unprivileged.  This is needed, in general, to allow non-root users to use
672  * encryption without encountering the visibility problems of process-subscribed
673  * keyrings and the inability to properly remove keys.  This works by having
674  * each key identified by its cryptographically secure hash --- the
675  * 'key_identifier'.  The cryptographic hash ensures that a malicious user
676  * cannot add the wrong key for a given identifier.  Furthermore, each added key
677  * is charged to the appropriate user's quota for the keyrings service, which
678  * prevents a malicious user from adding too many keys.  Finally, we forbid a
679  * user from removing a key while other users have added it too, which prevents
680  * a user who knows another user's key from causing a denial-of-service by
681  * removing it at an inopportune time.  (We tolerate that a user who knows a key
682  * can prevent other users from removing it.)
683  *
684  * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
685  * Documentation/filesystems/fscrypt.rst.
686  */
687 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
688 {
689 	struct super_block *sb = file_inode(filp)->i_sb;
690 	struct fscrypt_add_key_arg __user *uarg = _uarg;
691 	struct fscrypt_add_key_arg arg;
692 	struct fscrypt_master_key_secret secret;
693 	int err;
694 
695 	if (copy_from_user(&arg, uarg, sizeof(arg)))
696 		return -EFAULT;
697 
698 	if (!valid_key_spec(&arg.key_spec))
699 		return -EINVAL;
700 
701 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
702 		return -EINVAL;
703 
704 	/*
705 	 * Only root can add keys that are identified by an arbitrary descriptor
706 	 * rather than by a cryptographic hash --- since otherwise a malicious
707 	 * user could add the wrong key.
708 	 */
709 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
710 	    !capable(CAP_SYS_ADMIN))
711 		return -EACCES;
712 
713 	memset(&secret, 0, sizeof(secret));
714 	if (arg.key_id) {
715 		if (arg.raw_size != 0)
716 			return -EINVAL;
717 		err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
718 		if (err)
719 			goto out_wipe_secret;
720 	} else {
721 		if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
722 		    arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
723 			return -EINVAL;
724 		secret.size = arg.raw_size;
725 		err = -EFAULT;
726 		if (copy_from_user(secret.raw, uarg->raw, secret.size))
727 			goto out_wipe_secret;
728 	}
729 
730 	err = add_master_key(sb, &secret, &arg.key_spec);
731 	if (err)
732 		goto out_wipe_secret;
733 
734 	/* Return the key identifier to userspace, if applicable */
735 	err = -EFAULT;
736 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
737 	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
738 			 FSCRYPT_KEY_IDENTIFIER_SIZE))
739 		goto out_wipe_secret;
740 	err = 0;
741 out_wipe_secret:
742 	wipe_master_key_secret(&secret);
743 	return err;
744 }
745 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
746 
747 static void
748 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret)
749 {
750 	static u8 test_key[FSCRYPT_MAX_KEY_SIZE];
751 
752 	get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE);
753 
754 	memset(secret, 0, sizeof(*secret));
755 	secret->size = FSCRYPT_MAX_KEY_SIZE;
756 	memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE);
757 }
758 
759 int fscrypt_get_test_dummy_key_identifier(
760 				u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
761 {
762 	struct fscrypt_master_key_secret secret;
763 	int err;
764 
765 	fscrypt_get_test_dummy_secret(&secret);
766 
767 	err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size);
768 	if (err)
769 		goto out;
770 	err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER,
771 				  NULL, 0, key_identifier,
772 				  FSCRYPT_KEY_IDENTIFIER_SIZE);
773 out:
774 	wipe_master_key_secret(&secret);
775 	return err;
776 }
777 
778 /**
779  * fscrypt_add_test_dummy_key() - add the test dummy encryption key
780  * @sb: the filesystem instance to add the key to
781  * @dummy_policy: the encryption policy for test_dummy_encryption
782  *
783  * If needed, add the key for the test_dummy_encryption mount option to the
784  * filesystem.  To prevent misuse of this mount option, a per-boot random key is
785  * used instead of a hardcoded one.  This makes it so that any encrypted files
786  * created using this option won't be accessible after a reboot.
787  *
788  * Return: 0 on success, -errno on failure
789  */
790 int fscrypt_add_test_dummy_key(struct super_block *sb,
791 			       const struct fscrypt_dummy_policy *dummy_policy)
792 {
793 	const union fscrypt_policy *policy = dummy_policy->policy;
794 	struct fscrypt_key_specifier key_spec;
795 	struct fscrypt_master_key_secret secret;
796 	int err;
797 
798 	if (!policy)
799 		return 0;
800 	err = fscrypt_policy_to_key_spec(policy, &key_spec);
801 	if (err)
802 		return err;
803 	fscrypt_get_test_dummy_secret(&secret);
804 	err = add_master_key(sb, &secret, &key_spec);
805 	wipe_master_key_secret(&secret);
806 	return err;
807 }
808 EXPORT_SYMBOL_GPL(fscrypt_add_test_dummy_key);
809 
810 /*
811  * Verify that the current user has added a master key with the given identifier
812  * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
813  * their files using some other user's key which they don't actually know.
814  * Cryptographically this isn't much of a problem, but the semantics of this
815  * would be a bit weird, so it's best to just forbid it.
816  *
817  * The system administrator (CAP_FOWNER) can override this, which should be
818  * enough for any use cases where encryption policies are being set using keys
819  * that were chosen ahead of time but aren't available at the moment.
820  *
821  * Note that the key may have already removed by the time this returns, but
822  * that's okay; we just care whether the key was there at some point.
823  *
824  * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
825  */
826 int fscrypt_verify_key_added(struct super_block *sb,
827 			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
828 {
829 	struct fscrypt_key_specifier mk_spec;
830 	struct fscrypt_master_key *mk;
831 	struct key *mk_user;
832 	int err;
833 
834 	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
835 	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
836 
837 	mk = fscrypt_find_master_key(sb, &mk_spec);
838 	if (!mk) {
839 		err = -ENOKEY;
840 		goto out;
841 	}
842 	down_read(&mk->mk_sem);
843 	mk_user = find_master_key_user(mk);
844 	if (IS_ERR(mk_user)) {
845 		err = PTR_ERR(mk_user);
846 	} else {
847 		key_put(mk_user);
848 		err = 0;
849 	}
850 	up_read(&mk->mk_sem);
851 	fscrypt_put_master_key(mk);
852 out:
853 	if (err == -ENOKEY && capable(CAP_FOWNER))
854 		err = 0;
855 	return err;
856 }
857 
858 /*
859  * Try to evict the inode's dentries from the dentry cache.  If the inode is a
860  * directory, then it can have at most one dentry; however, that dentry may be
861  * pinned by child dentries, so first try to evict the children too.
862  */
863 static void shrink_dcache_inode(struct inode *inode)
864 {
865 	struct dentry *dentry;
866 
867 	if (S_ISDIR(inode->i_mode)) {
868 		dentry = d_find_any_alias(inode);
869 		if (dentry) {
870 			shrink_dcache_parent(dentry);
871 			dput(dentry);
872 		}
873 	}
874 	d_prune_aliases(inode);
875 }
876 
877 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
878 {
879 	struct fscrypt_info *ci;
880 	struct inode *inode;
881 	struct inode *toput_inode = NULL;
882 
883 	spin_lock(&mk->mk_decrypted_inodes_lock);
884 
885 	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
886 		inode = ci->ci_inode;
887 		spin_lock(&inode->i_lock);
888 		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
889 			spin_unlock(&inode->i_lock);
890 			continue;
891 		}
892 		__iget(inode);
893 		spin_unlock(&inode->i_lock);
894 		spin_unlock(&mk->mk_decrypted_inodes_lock);
895 
896 		shrink_dcache_inode(inode);
897 		iput(toput_inode);
898 		toput_inode = inode;
899 
900 		spin_lock(&mk->mk_decrypted_inodes_lock);
901 	}
902 
903 	spin_unlock(&mk->mk_decrypted_inodes_lock);
904 	iput(toput_inode);
905 }
906 
907 static int check_for_busy_inodes(struct super_block *sb,
908 				 struct fscrypt_master_key *mk)
909 {
910 	struct list_head *pos;
911 	size_t busy_count = 0;
912 	unsigned long ino;
913 	char ino_str[50] = "";
914 
915 	spin_lock(&mk->mk_decrypted_inodes_lock);
916 
917 	list_for_each(pos, &mk->mk_decrypted_inodes)
918 		busy_count++;
919 
920 	if (busy_count == 0) {
921 		spin_unlock(&mk->mk_decrypted_inodes_lock);
922 		return 0;
923 	}
924 
925 	{
926 		/* select an example file to show for debugging purposes */
927 		struct inode *inode =
928 			list_first_entry(&mk->mk_decrypted_inodes,
929 					 struct fscrypt_info,
930 					 ci_master_key_link)->ci_inode;
931 		ino = inode->i_ino;
932 	}
933 	spin_unlock(&mk->mk_decrypted_inodes_lock);
934 
935 	/* If the inode is currently being created, ino may still be 0. */
936 	if (ino)
937 		snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
938 
939 	fscrypt_warn(NULL,
940 		     "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
941 		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
942 		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
943 		     ino_str);
944 	return -EBUSY;
945 }
946 
947 static int try_to_lock_encrypted_files(struct super_block *sb,
948 				       struct fscrypt_master_key *mk)
949 {
950 	int err1;
951 	int err2;
952 
953 	/*
954 	 * An inode can't be evicted while it is dirty or has dirty pages.
955 	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
956 	 *
957 	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
958 	 * it works, and it's more important to minimize the amount of caches we
959 	 * drop than the amount of data we sync.  Also, unprivileged users can
960 	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
961 	 */
962 	down_read(&sb->s_umount);
963 	err1 = sync_filesystem(sb);
964 	up_read(&sb->s_umount);
965 	/* If a sync error occurs, still try to evict as much as possible. */
966 
967 	/*
968 	 * Inodes are pinned by their dentries, so we have to evict their
969 	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
970 	 * and inappropriate for use by unprivileged users.  So instead go
971 	 * through the inodes' alias lists and try to evict each dentry.
972 	 */
973 	evict_dentries_for_decrypted_inodes(mk);
974 
975 	/*
976 	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
977 	 * the list; any inodes for which that dropped the last reference will
978 	 * have been evicted due to fscrypt_drop_inode() detecting the key
979 	 * removal and telling the VFS to evict the inode.  So to finish, we
980 	 * just need to check whether any inodes couldn't be evicted.
981 	 */
982 	err2 = check_for_busy_inodes(sb, mk);
983 
984 	return err1 ?: err2;
985 }
986 
987 /*
988  * Try to remove an fscrypt master encryption key.
989  *
990  * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
991  * claim to the key, then removes the key itself if no other users have claims.
992  * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
993  * key itself.
994  *
995  * To "remove the key itself", first we wipe the actual master key secret, so
996  * that no more inodes can be unlocked with it.  Then we try to evict all cached
997  * inodes that had been unlocked with the key.
998  *
999  * If all inodes were evicted, then we unlink the fscrypt_master_key from the
1000  * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
1001  * state (without the actual secret key) where it tracks the list of remaining
1002  * inodes.  Userspace can execute the ioctl again later to retry eviction, or
1003  * alternatively can re-add the secret key again.
1004  *
1005  * For more details, see the "Removing keys" section of
1006  * Documentation/filesystems/fscrypt.rst.
1007  */
1008 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
1009 {
1010 	struct super_block *sb = file_inode(filp)->i_sb;
1011 	struct fscrypt_remove_key_arg __user *uarg = _uarg;
1012 	struct fscrypt_remove_key_arg arg;
1013 	struct fscrypt_master_key *mk;
1014 	u32 status_flags = 0;
1015 	int err;
1016 	bool inodes_remain;
1017 
1018 	if (copy_from_user(&arg, uarg, sizeof(arg)))
1019 		return -EFAULT;
1020 
1021 	if (!valid_key_spec(&arg.key_spec))
1022 		return -EINVAL;
1023 
1024 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1025 		return -EINVAL;
1026 
1027 	/*
1028 	 * Only root can add and remove keys that are identified by an arbitrary
1029 	 * descriptor rather than by a cryptographic hash.
1030 	 */
1031 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
1032 	    !capable(CAP_SYS_ADMIN))
1033 		return -EACCES;
1034 
1035 	/* Find the key being removed. */
1036 	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1037 	if (!mk)
1038 		return -ENOKEY;
1039 	down_write(&mk->mk_sem);
1040 
1041 	/* If relevant, remove current user's (or all users) claim to the key */
1042 	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
1043 		if (all_users)
1044 			err = keyring_clear(mk->mk_users);
1045 		else
1046 			err = remove_master_key_user(mk);
1047 		if (err) {
1048 			up_write(&mk->mk_sem);
1049 			goto out_put_key;
1050 		}
1051 		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
1052 			/*
1053 			 * Other users have still added the key too.  We removed
1054 			 * the current user's claim to the key, but we still
1055 			 * can't remove the key itself.
1056 			 */
1057 			status_flags |=
1058 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
1059 			err = 0;
1060 			up_write(&mk->mk_sem);
1061 			goto out_put_key;
1062 		}
1063 	}
1064 
1065 	/* No user claims remaining.  Go ahead and wipe the secret. */
1066 	err = -ENOKEY;
1067 	if (is_master_key_secret_present(&mk->mk_secret)) {
1068 		wipe_master_key_secret(&mk->mk_secret);
1069 		fscrypt_put_master_key_activeref(sb, mk);
1070 		err = 0;
1071 	}
1072 	inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
1073 	up_write(&mk->mk_sem);
1074 
1075 	if (inodes_remain) {
1076 		/* Some inodes still reference this key; try to evict them. */
1077 		err = try_to_lock_encrypted_files(sb, mk);
1078 		if (err == -EBUSY) {
1079 			status_flags |=
1080 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
1081 			err = 0;
1082 		}
1083 	}
1084 	/*
1085 	 * We return 0 if we successfully did something: removed a claim to the
1086 	 * key, wiped the secret, or tried locking the files again.  Users need
1087 	 * to check the informational status flags if they care whether the key
1088 	 * has been fully removed including all files locked.
1089 	 */
1090 out_put_key:
1091 	fscrypt_put_master_key(mk);
1092 	if (err == 0)
1093 		err = put_user(status_flags, &uarg->removal_status_flags);
1094 	return err;
1095 }
1096 
1097 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1098 {
1099 	return do_remove_key(filp, uarg, false);
1100 }
1101 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1102 
1103 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1104 {
1105 	if (!capable(CAP_SYS_ADMIN))
1106 		return -EACCES;
1107 	return do_remove_key(filp, uarg, true);
1108 }
1109 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1110 
1111 /*
1112  * Retrieve the status of an fscrypt master encryption key.
1113  *
1114  * We set ->status to indicate whether the key is absent, present, or
1115  * incompletely removed.  "Incompletely removed" means that the master key
1116  * secret has been removed, but some files which had been unlocked with it are
1117  * still in use.  This field allows applications to easily determine the state
1118  * of an encrypted directory without using a hack such as trying to open a
1119  * regular file in it (which can confuse the "incompletely removed" state with
1120  * absent or present).
1121  *
1122  * In addition, for v2 policy keys we allow applications to determine, via
1123  * ->status_flags and ->user_count, whether the key has been added by the
1124  * current user, by other users, or by both.  Most applications should not need
1125  * this, since ordinarily only one user should know a given key.  However, if a
1126  * secret key is shared by multiple users, applications may wish to add an
1127  * already-present key to prevent other users from removing it.  This ioctl can
1128  * be used to check whether that really is the case before the work is done to
1129  * add the key --- which might e.g. require prompting the user for a passphrase.
1130  *
1131  * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1132  * Documentation/filesystems/fscrypt.rst.
1133  */
1134 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1135 {
1136 	struct super_block *sb = file_inode(filp)->i_sb;
1137 	struct fscrypt_get_key_status_arg arg;
1138 	struct fscrypt_master_key *mk;
1139 	int err;
1140 
1141 	if (copy_from_user(&arg, uarg, sizeof(arg)))
1142 		return -EFAULT;
1143 
1144 	if (!valid_key_spec(&arg.key_spec))
1145 		return -EINVAL;
1146 
1147 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1148 		return -EINVAL;
1149 
1150 	arg.status_flags = 0;
1151 	arg.user_count = 0;
1152 	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1153 
1154 	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1155 	if (!mk) {
1156 		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1157 		err = 0;
1158 		goto out;
1159 	}
1160 	down_read(&mk->mk_sem);
1161 
1162 	if (!is_master_key_secret_present(&mk->mk_secret)) {
1163 		arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
1164 			FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
1165 			FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
1166 		err = 0;
1167 		goto out_release_key;
1168 	}
1169 
1170 	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1171 	if (mk->mk_users) {
1172 		struct key *mk_user;
1173 
1174 		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1175 		mk_user = find_master_key_user(mk);
1176 		if (!IS_ERR(mk_user)) {
1177 			arg.status_flags |=
1178 				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1179 			key_put(mk_user);
1180 		} else if (mk_user != ERR_PTR(-ENOKEY)) {
1181 			err = PTR_ERR(mk_user);
1182 			goto out_release_key;
1183 		}
1184 	}
1185 	err = 0;
1186 out_release_key:
1187 	up_read(&mk->mk_sem);
1188 	fscrypt_put_master_key(mk);
1189 out:
1190 	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1191 		err = -EFAULT;
1192 	return err;
1193 }
1194 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1195 
1196 int __init fscrypt_init_keyring(void)
1197 {
1198 	int err;
1199 
1200 	err = register_key_type(&key_type_fscrypt_user);
1201 	if (err)
1202 		return err;
1203 
1204 	err = register_key_type(&key_type_fscrypt_provisioning);
1205 	if (err)
1206 		goto err_unregister_fscrypt_user;
1207 
1208 	return 0;
1209 
1210 err_unregister_fscrypt_user:
1211 	unregister_key_type(&key_type_fscrypt_user);
1212 	return err;
1213 }
1214