1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Filesystem-level keyring for fscrypt 4 * 5 * Copyright 2019 Google LLC 6 */ 7 8 /* 9 * This file implements management of fscrypt master keys in the 10 * filesystem-level keyring, including the ioctls: 11 * 12 * - FS_IOC_ADD_ENCRYPTION_KEY 13 * - FS_IOC_REMOVE_ENCRYPTION_KEY 14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS 15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS 16 * 17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more 18 * information about these ioctls. 19 */ 20 21 #include <asm/unaligned.h> 22 #include <crypto/skcipher.h> 23 #include <linux/key-type.h> 24 #include <linux/random.h> 25 #include <linux/seq_file.h> 26 27 #include "fscrypt_private.h" 28 29 /* The master encryption keys for a filesystem (->s_master_keys) */ 30 struct fscrypt_keyring { 31 /* 32 * Lock that protects ->key_hashtable. It does *not* protect the 33 * fscrypt_master_key structs themselves. 34 */ 35 spinlock_t lock; 36 37 /* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */ 38 struct hlist_head key_hashtable[128]; 39 }; 40 41 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret) 42 { 43 fscrypt_destroy_hkdf(&secret->hkdf); 44 memzero_explicit(secret, sizeof(*secret)); 45 } 46 47 static void move_master_key_secret(struct fscrypt_master_key_secret *dst, 48 struct fscrypt_master_key_secret *src) 49 { 50 memcpy(dst, src, sizeof(*dst)); 51 memzero_explicit(src, sizeof(*src)); 52 } 53 54 static void fscrypt_free_master_key(struct rcu_head *head) 55 { 56 struct fscrypt_master_key *mk = 57 container_of(head, struct fscrypt_master_key, mk_rcu_head); 58 /* 59 * The master key secret and any embedded subkeys should have already 60 * been wiped when the last active reference to the fscrypt_master_key 61 * struct was dropped; doing it here would be unnecessarily late. 62 * Nevertheless, use kfree_sensitive() in case anything was missed. 63 */ 64 kfree_sensitive(mk); 65 } 66 67 void fscrypt_put_master_key(struct fscrypt_master_key *mk) 68 { 69 if (!refcount_dec_and_test(&mk->mk_struct_refs)) 70 return; 71 /* 72 * No structural references left, so free ->mk_users, and also free the 73 * fscrypt_master_key struct itself after an RCU grace period ensures 74 * that concurrent keyring lookups can no longer find it. 75 */ 76 WARN_ON(refcount_read(&mk->mk_active_refs) != 0); 77 key_put(mk->mk_users); 78 mk->mk_users = NULL; 79 call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key); 80 } 81 82 void fscrypt_put_master_key_activeref(struct super_block *sb, 83 struct fscrypt_master_key *mk) 84 { 85 size_t i; 86 87 if (!refcount_dec_and_test(&mk->mk_active_refs)) 88 return; 89 /* 90 * No active references left, so complete the full removal of this 91 * fscrypt_master_key struct by removing it from the keyring and 92 * destroying any subkeys embedded in it. 93 */ 94 95 spin_lock(&sb->s_master_keys->lock); 96 hlist_del_rcu(&mk->mk_node); 97 spin_unlock(&sb->s_master_keys->lock); 98 99 /* 100 * ->mk_active_refs == 0 implies that ->mk_secret is not present and 101 * that ->mk_decrypted_inodes is empty. 102 */ 103 WARN_ON(is_master_key_secret_present(&mk->mk_secret)); 104 WARN_ON(!list_empty(&mk->mk_decrypted_inodes)); 105 106 for (i = 0; i <= FSCRYPT_MODE_MAX; i++) { 107 fscrypt_destroy_prepared_key( 108 sb, &mk->mk_direct_keys[i]); 109 fscrypt_destroy_prepared_key( 110 sb, &mk->mk_iv_ino_lblk_64_keys[i]); 111 fscrypt_destroy_prepared_key( 112 sb, &mk->mk_iv_ino_lblk_32_keys[i]); 113 } 114 memzero_explicit(&mk->mk_ino_hash_key, 115 sizeof(mk->mk_ino_hash_key)); 116 mk->mk_ino_hash_key_initialized = false; 117 118 /* Drop the structural ref associated with the active refs. */ 119 fscrypt_put_master_key(mk); 120 } 121 122 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec) 123 { 124 if (spec->__reserved) 125 return false; 126 return master_key_spec_len(spec) != 0; 127 } 128 129 static int fscrypt_user_key_instantiate(struct key *key, 130 struct key_preparsed_payload *prep) 131 { 132 /* 133 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for 134 * each key, regardless of the exact key size. The amount of memory 135 * actually used is greater than the size of the raw key anyway. 136 */ 137 return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE); 138 } 139 140 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m) 141 { 142 seq_puts(m, key->description); 143 } 144 145 /* 146 * Type of key in ->mk_users. Each key of this type represents a particular 147 * user who has added a particular master key. 148 * 149 * Note that the name of this key type really should be something like 150 * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen 151 * mainly for simplicity of presentation in /proc/keys when read by a non-root 152 * user. And it is expected to be rare that a key is actually added by multiple 153 * users, since users should keep their encryption keys confidential. 154 */ 155 static struct key_type key_type_fscrypt_user = { 156 .name = ".fscrypt", 157 .instantiate = fscrypt_user_key_instantiate, 158 .describe = fscrypt_user_key_describe, 159 }; 160 161 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \ 162 (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \ 163 CONST_STRLEN("-users") + 1) 164 165 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \ 166 (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1) 167 168 static void format_mk_users_keyring_description( 169 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE], 170 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 171 { 172 sprintf(description, "fscrypt-%*phN-users", 173 FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier); 174 } 175 176 static void format_mk_user_description( 177 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE], 178 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 179 { 180 181 sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE, 182 mk_identifier, __kuid_val(current_fsuid())); 183 } 184 185 /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */ 186 static int allocate_filesystem_keyring(struct super_block *sb) 187 { 188 struct fscrypt_keyring *keyring; 189 190 if (sb->s_master_keys) 191 return 0; 192 193 keyring = kzalloc(sizeof(*keyring), GFP_KERNEL); 194 if (!keyring) 195 return -ENOMEM; 196 spin_lock_init(&keyring->lock); 197 /* 198 * Pairs with the smp_load_acquire() in fscrypt_find_master_key(). 199 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that 200 * concurrent tasks can ACQUIRE it. 201 */ 202 smp_store_release(&sb->s_master_keys, keyring); 203 return 0; 204 } 205 206 /* 207 * Release all encryption keys that have been added to the filesystem, along 208 * with the keyring that contains them. 209 * 210 * This is called at unmount time. The filesystem's underlying block device(s) 211 * are still available at this time; this is important because after user file 212 * accesses have been allowed, this function may need to evict keys from the 213 * keyslots of an inline crypto engine, which requires the block device(s). 214 */ 215 void fscrypt_destroy_keyring(struct super_block *sb) 216 { 217 struct fscrypt_keyring *keyring = sb->s_master_keys; 218 size_t i; 219 220 if (!keyring) 221 return; 222 223 for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) { 224 struct hlist_head *bucket = &keyring->key_hashtable[i]; 225 struct fscrypt_master_key *mk; 226 struct hlist_node *tmp; 227 228 hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) { 229 /* 230 * Since all inodes were already evicted, every key 231 * remaining in the keyring should have an empty inode 232 * list, and should only still be in the keyring due to 233 * the single active ref associated with ->mk_secret. 234 * There should be no structural refs beyond the one 235 * associated with the active ref. 236 */ 237 WARN_ON(refcount_read(&mk->mk_active_refs) != 1); 238 WARN_ON(refcount_read(&mk->mk_struct_refs) != 1); 239 WARN_ON(!is_master_key_secret_present(&mk->mk_secret)); 240 wipe_master_key_secret(&mk->mk_secret); 241 fscrypt_put_master_key_activeref(sb, mk); 242 } 243 } 244 kfree_sensitive(keyring); 245 sb->s_master_keys = NULL; 246 } 247 248 static struct hlist_head * 249 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring, 250 const struct fscrypt_key_specifier *mk_spec) 251 { 252 /* 253 * Since key specifiers should be "random" values, it is sufficient to 254 * use a trivial hash function that just takes the first several bits of 255 * the key specifier. 256 */ 257 unsigned long i = get_unaligned((unsigned long *)&mk_spec->u); 258 259 return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)]; 260 } 261 262 /* 263 * Find the specified master key struct in ->s_master_keys and take a structural 264 * ref to it. The structural ref guarantees that the key struct continues to 265 * exist, but it does *not* guarantee that ->s_master_keys continues to contain 266 * the key struct. The structural ref needs to be dropped by 267 * fscrypt_put_master_key(). Returns NULL if the key struct is not found. 268 */ 269 struct fscrypt_master_key * 270 fscrypt_find_master_key(struct super_block *sb, 271 const struct fscrypt_key_specifier *mk_spec) 272 { 273 struct fscrypt_keyring *keyring; 274 struct hlist_head *bucket; 275 struct fscrypt_master_key *mk; 276 277 /* 278 * Pairs with the smp_store_release() in allocate_filesystem_keyring(). 279 * I.e., another task can publish ->s_master_keys concurrently, 280 * executing a RELEASE barrier. We need to use smp_load_acquire() here 281 * to safely ACQUIRE the memory the other task published. 282 */ 283 keyring = smp_load_acquire(&sb->s_master_keys); 284 if (keyring == NULL) 285 return NULL; /* No keyring yet, so no keys yet. */ 286 287 bucket = fscrypt_mk_hash_bucket(keyring, mk_spec); 288 rcu_read_lock(); 289 switch (mk_spec->type) { 290 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: 291 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 292 if (mk->mk_spec.type == 293 FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 294 memcmp(mk->mk_spec.u.descriptor, 295 mk_spec->u.descriptor, 296 FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 && 297 refcount_inc_not_zero(&mk->mk_struct_refs)) 298 goto out; 299 } 300 break; 301 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: 302 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 303 if (mk->mk_spec.type == 304 FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 305 memcmp(mk->mk_spec.u.identifier, 306 mk_spec->u.identifier, 307 FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 && 308 refcount_inc_not_zero(&mk->mk_struct_refs)) 309 goto out; 310 } 311 break; 312 } 313 mk = NULL; 314 out: 315 rcu_read_unlock(); 316 return mk; 317 } 318 319 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk) 320 { 321 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE]; 322 struct key *keyring; 323 324 format_mk_users_keyring_description(description, 325 mk->mk_spec.u.identifier); 326 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 327 current_cred(), KEY_POS_SEARCH | 328 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, 329 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 330 if (IS_ERR(keyring)) 331 return PTR_ERR(keyring); 332 333 mk->mk_users = keyring; 334 return 0; 335 } 336 337 /* 338 * Find the current user's "key" in the master key's ->mk_users. 339 * Returns ERR_PTR(-ENOKEY) if not found. 340 */ 341 static struct key *find_master_key_user(struct fscrypt_master_key *mk) 342 { 343 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 344 key_ref_t keyref; 345 346 format_mk_user_description(description, mk->mk_spec.u.identifier); 347 348 /* 349 * We need to mark the keyring reference as "possessed" so that we 350 * acquire permission to search it, via the KEY_POS_SEARCH permission. 351 */ 352 keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/), 353 &key_type_fscrypt_user, description, false); 354 if (IS_ERR(keyref)) { 355 if (PTR_ERR(keyref) == -EAGAIN || /* not found */ 356 PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */ 357 keyref = ERR_PTR(-ENOKEY); 358 return ERR_CAST(keyref); 359 } 360 return key_ref_to_ptr(keyref); 361 } 362 363 /* 364 * Give the current user a "key" in ->mk_users. This charges the user's quota 365 * and marks the master key as added by the current user, so that it cannot be 366 * removed by another user with the key. Either ->mk_sem must be held for 367 * write, or the master key must be still undergoing initialization. 368 */ 369 static int add_master_key_user(struct fscrypt_master_key *mk) 370 { 371 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 372 struct key *mk_user; 373 int err; 374 375 format_mk_user_description(description, mk->mk_spec.u.identifier); 376 mk_user = key_alloc(&key_type_fscrypt_user, description, 377 current_fsuid(), current_gid(), current_cred(), 378 KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL); 379 if (IS_ERR(mk_user)) 380 return PTR_ERR(mk_user); 381 382 err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL); 383 key_put(mk_user); 384 return err; 385 } 386 387 /* 388 * Remove the current user's "key" from ->mk_users. 389 * ->mk_sem must be held for write. 390 * 391 * Returns 0 if removed, -ENOKEY if not found, or another -errno code. 392 */ 393 static int remove_master_key_user(struct fscrypt_master_key *mk) 394 { 395 struct key *mk_user; 396 int err; 397 398 mk_user = find_master_key_user(mk); 399 if (IS_ERR(mk_user)) 400 return PTR_ERR(mk_user); 401 err = key_unlink(mk->mk_users, mk_user); 402 key_put(mk_user); 403 return err; 404 } 405 406 /* 407 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and 408 * insert it into sb->s_master_keys. 409 */ 410 static int add_new_master_key(struct super_block *sb, 411 struct fscrypt_master_key_secret *secret, 412 const struct fscrypt_key_specifier *mk_spec) 413 { 414 struct fscrypt_keyring *keyring = sb->s_master_keys; 415 struct fscrypt_master_key *mk; 416 int err; 417 418 mk = kzalloc(sizeof(*mk), GFP_KERNEL); 419 if (!mk) 420 return -ENOMEM; 421 422 init_rwsem(&mk->mk_sem); 423 refcount_set(&mk->mk_struct_refs, 1); 424 mk->mk_spec = *mk_spec; 425 426 INIT_LIST_HEAD(&mk->mk_decrypted_inodes); 427 spin_lock_init(&mk->mk_decrypted_inodes_lock); 428 429 if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 430 err = allocate_master_key_users_keyring(mk); 431 if (err) 432 goto out_put; 433 err = add_master_key_user(mk); 434 if (err) 435 goto out_put; 436 } 437 438 move_master_key_secret(&mk->mk_secret, secret); 439 refcount_set(&mk->mk_active_refs, 1); /* ->mk_secret is present */ 440 441 spin_lock(&keyring->lock); 442 hlist_add_head_rcu(&mk->mk_node, 443 fscrypt_mk_hash_bucket(keyring, mk_spec)); 444 spin_unlock(&keyring->lock); 445 return 0; 446 447 out_put: 448 fscrypt_put_master_key(mk); 449 return err; 450 } 451 452 #define KEY_DEAD 1 453 454 static int add_existing_master_key(struct fscrypt_master_key *mk, 455 struct fscrypt_master_key_secret *secret) 456 { 457 int err; 458 459 /* 460 * If the current user is already in ->mk_users, then there's nothing to 461 * do. Otherwise, we need to add the user to ->mk_users. (Neither is 462 * applicable for v1 policy keys, which have NULL ->mk_users.) 463 */ 464 if (mk->mk_users) { 465 struct key *mk_user = find_master_key_user(mk); 466 467 if (mk_user != ERR_PTR(-ENOKEY)) { 468 if (IS_ERR(mk_user)) 469 return PTR_ERR(mk_user); 470 key_put(mk_user); 471 return 0; 472 } 473 err = add_master_key_user(mk); 474 if (err) 475 return err; 476 } 477 478 /* Re-add the secret if needed. */ 479 if (!is_master_key_secret_present(&mk->mk_secret)) { 480 if (!refcount_inc_not_zero(&mk->mk_active_refs)) 481 return KEY_DEAD; 482 move_master_key_secret(&mk->mk_secret, secret); 483 } 484 485 return 0; 486 } 487 488 static int do_add_master_key(struct super_block *sb, 489 struct fscrypt_master_key_secret *secret, 490 const struct fscrypt_key_specifier *mk_spec) 491 { 492 static DEFINE_MUTEX(fscrypt_add_key_mutex); 493 struct fscrypt_master_key *mk; 494 int err; 495 496 mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */ 497 498 mk = fscrypt_find_master_key(sb, mk_spec); 499 if (!mk) { 500 /* Didn't find the key in ->s_master_keys. Add it. */ 501 err = allocate_filesystem_keyring(sb); 502 if (!err) 503 err = add_new_master_key(sb, secret, mk_spec); 504 } else { 505 /* 506 * Found the key in ->s_master_keys. Re-add the secret if 507 * needed, and add the user to ->mk_users if needed. 508 */ 509 down_write(&mk->mk_sem); 510 err = add_existing_master_key(mk, secret); 511 up_write(&mk->mk_sem); 512 if (err == KEY_DEAD) { 513 /* 514 * We found a key struct, but it's already been fully 515 * removed. Ignore the old struct and add a new one. 516 * fscrypt_add_key_mutex means we don't need to worry 517 * about concurrent adds. 518 */ 519 err = add_new_master_key(sb, secret, mk_spec); 520 } 521 fscrypt_put_master_key(mk); 522 } 523 mutex_unlock(&fscrypt_add_key_mutex); 524 return err; 525 } 526 527 static int add_master_key(struct super_block *sb, 528 struct fscrypt_master_key_secret *secret, 529 struct fscrypt_key_specifier *key_spec) 530 { 531 int err; 532 533 if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 534 err = fscrypt_init_hkdf(&secret->hkdf, secret->raw, 535 secret->size); 536 if (err) 537 return err; 538 539 /* 540 * Now that the HKDF context is initialized, the raw key is no 541 * longer needed. 542 */ 543 memzero_explicit(secret->raw, secret->size); 544 545 /* Calculate the key identifier */ 546 err = fscrypt_hkdf_expand(&secret->hkdf, 547 HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0, 548 key_spec->u.identifier, 549 FSCRYPT_KEY_IDENTIFIER_SIZE); 550 if (err) 551 return err; 552 } 553 return do_add_master_key(sb, secret, key_spec); 554 } 555 556 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep) 557 { 558 const struct fscrypt_provisioning_key_payload *payload = prep->data; 559 560 if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE || 561 prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE) 562 return -EINVAL; 563 564 if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 565 payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) 566 return -EINVAL; 567 568 if (payload->__reserved) 569 return -EINVAL; 570 571 prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL); 572 if (!prep->payload.data[0]) 573 return -ENOMEM; 574 575 prep->quotalen = prep->datalen; 576 return 0; 577 } 578 579 static void fscrypt_provisioning_key_free_preparse( 580 struct key_preparsed_payload *prep) 581 { 582 kfree_sensitive(prep->payload.data[0]); 583 } 584 585 static void fscrypt_provisioning_key_describe(const struct key *key, 586 struct seq_file *m) 587 { 588 seq_puts(m, key->description); 589 if (key_is_positive(key)) { 590 const struct fscrypt_provisioning_key_payload *payload = 591 key->payload.data[0]; 592 593 seq_printf(m, ": %u [%u]", key->datalen, payload->type); 594 } 595 } 596 597 static void fscrypt_provisioning_key_destroy(struct key *key) 598 { 599 kfree_sensitive(key->payload.data[0]); 600 } 601 602 static struct key_type key_type_fscrypt_provisioning = { 603 .name = "fscrypt-provisioning", 604 .preparse = fscrypt_provisioning_key_preparse, 605 .free_preparse = fscrypt_provisioning_key_free_preparse, 606 .instantiate = generic_key_instantiate, 607 .describe = fscrypt_provisioning_key_describe, 608 .destroy = fscrypt_provisioning_key_destroy, 609 }; 610 611 /* 612 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and 613 * store it into 'secret'. 614 * 615 * The key must be of type "fscrypt-provisioning" and must have the field 616 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's 617 * only usable with fscrypt with the particular KDF version identified by 618 * 'type'. We don't use the "logon" key type because there's no way to 619 * completely restrict the use of such keys; they can be used by any kernel API 620 * that accepts "logon" keys and doesn't require a specific service prefix. 621 * 622 * The ability to specify the key via Linux keyring key is intended for cases 623 * where userspace needs to re-add keys after the filesystem is unmounted and 624 * re-mounted. Most users should just provide the raw key directly instead. 625 */ 626 static int get_keyring_key(u32 key_id, u32 type, 627 struct fscrypt_master_key_secret *secret) 628 { 629 key_ref_t ref; 630 struct key *key; 631 const struct fscrypt_provisioning_key_payload *payload; 632 int err; 633 634 ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH); 635 if (IS_ERR(ref)) 636 return PTR_ERR(ref); 637 key = key_ref_to_ptr(ref); 638 639 if (key->type != &key_type_fscrypt_provisioning) 640 goto bad_key; 641 payload = key->payload.data[0]; 642 643 /* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */ 644 if (payload->type != type) 645 goto bad_key; 646 647 secret->size = key->datalen - sizeof(*payload); 648 memcpy(secret->raw, payload->raw, secret->size); 649 err = 0; 650 goto out_put; 651 652 bad_key: 653 err = -EKEYREJECTED; 654 out_put: 655 key_ref_put(ref); 656 return err; 657 } 658 659 /* 660 * Add a master encryption key to the filesystem, causing all files which were 661 * encrypted with it to appear "unlocked" (decrypted) when accessed. 662 * 663 * When adding a key for use by v1 encryption policies, this ioctl is 664 * privileged, and userspace must provide the 'key_descriptor'. 665 * 666 * When adding a key for use by v2+ encryption policies, this ioctl is 667 * unprivileged. This is needed, in general, to allow non-root users to use 668 * encryption without encountering the visibility problems of process-subscribed 669 * keyrings and the inability to properly remove keys. This works by having 670 * each key identified by its cryptographically secure hash --- the 671 * 'key_identifier'. The cryptographic hash ensures that a malicious user 672 * cannot add the wrong key for a given identifier. Furthermore, each added key 673 * is charged to the appropriate user's quota for the keyrings service, which 674 * prevents a malicious user from adding too many keys. Finally, we forbid a 675 * user from removing a key while other users have added it too, which prevents 676 * a user who knows another user's key from causing a denial-of-service by 677 * removing it at an inopportune time. (We tolerate that a user who knows a key 678 * can prevent other users from removing it.) 679 * 680 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of 681 * Documentation/filesystems/fscrypt.rst. 682 */ 683 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg) 684 { 685 struct super_block *sb = file_inode(filp)->i_sb; 686 struct fscrypt_add_key_arg __user *uarg = _uarg; 687 struct fscrypt_add_key_arg arg; 688 struct fscrypt_master_key_secret secret; 689 int err; 690 691 if (copy_from_user(&arg, uarg, sizeof(arg))) 692 return -EFAULT; 693 694 if (!valid_key_spec(&arg.key_spec)) 695 return -EINVAL; 696 697 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 698 return -EINVAL; 699 700 /* 701 * Only root can add keys that are identified by an arbitrary descriptor 702 * rather than by a cryptographic hash --- since otherwise a malicious 703 * user could add the wrong key. 704 */ 705 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 706 !capable(CAP_SYS_ADMIN)) 707 return -EACCES; 708 709 memset(&secret, 0, sizeof(secret)); 710 if (arg.key_id) { 711 if (arg.raw_size != 0) 712 return -EINVAL; 713 err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret); 714 if (err) 715 goto out_wipe_secret; 716 } else { 717 if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE || 718 arg.raw_size > FSCRYPT_MAX_KEY_SIZE) 719 return -EINVAL; 720 secret.size = arg.raw_size; 721 err = -EFAULT; 722 if (copy_from_user(secret.raw, uarg->raw, secret.size)) 723 goto out_wipe_secret; 724 } 725 726 err = add_master_key(sb, &secret, &arg.key_spec); 727 if (err) 728 goto out_wipe_secret; 729 730 /* Return the key identifier to userspace, if applicable */ 731 err = -EFAULT; 732 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 733 copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier, 734 FSCRYPT_KEY_IDENTIFIER_SIZE)) 735 goto out_wipe_secret; 736 err = 0; 737 out_wipe_secret: 738 wipe_master_key_secret(&secret); 739 return err; 740 } 741 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key); 742 743 static void 744 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret) 745 { 746 static u8 test_key[FSCRYPT_MAX_KEY_SIZE]; 747 748 get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE); 749 750 memset(secret, 0, sizeof(*secret)); 751 secret->size = FSCRYPT_MAX_KEY_SIZE; 752 memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE); 753 } 754 755 int fscrypt_get_test_dummy_key_identifier( 756 u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 757 { 758 struct fscrypt_master_key_secret secret; 759 int err; 760 761 fscrypt_get_test_dummy_secret(&secret); 762 763 err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size); 764 if (err) 765 goto out; 766 err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER, 767 NULL, 0, key_identifier, 768 FSCRYPT_KEY_IDENTIFIER_SIZE); 769 out: 770 wipe_master_key_secret(&secret); 771 return err; 772 } 773 774 /** 775 * fscrypt_add_test_dummy_key() - add the test dummy encryption key 776 * @sb: the filesystem instance to add the key to 777 * @key_spec: the key specifier of the test dummy encryption key 778 * 779 * Add the key for the test_dummy_encryption mount option to the filesystem. To 780 * prevent misuse of this mount option, a per-boot random key is used instead of 781 * a hardcoded one. This makes it so that any encrypted files created using 782 * this option won't be accessible after a reboot. 783 * 784 * Return: 0 on success, -errno on failure 785 */ 786 int fscrypt_add_test_dummy_key(struct super_block *sb, 787 struct fscrypt_key_specifier *key_spec) 788 { 789 struct fscrypt_master_key_secret secret; 790 int err; 791 792 fscrypt_get_test_dummy_secret(&secret); 793 err = add_master_key(sb, &secret, key_spec); 794 wipe_master_key_secret(&secret); 795 return err; 796 } 797 798 /* 799 * Verify that the current user has added a master key with the given identifier 800 * (returns -ENOKEY if not). This is needed to prevent a user from encrypting 801 * their files using some other user's key which they don't actually know. 802 * Cryptographically this isn't much of a problem, but the semantics of this 803 * would be a bit weird, so it's best to just forbid it. 804 * 805 * The system administrator (CAP_FOWNER) can override this, which should be 806 * enough for any use cases where encryption policies are being set using keys 807 * that were chosen ahead of time but aren't available at the moment. 808 * 809 * Note that the key may have already removed by the time this returns, but 810 * that's okay; we just care whether the key was there at some point. 811 * 812 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code 813 */ 814 int fscrypt_verify_key_added(struct super_block *sb, 815 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 816 { 817 struct fscrypt_key_specifier mk_spec; 818 struct fscrypt_master_key *mk; 819 struct key *mk_user; 820 int err; 821 822 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; 823 memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); 824 825 mk = fscrypt_find_master_key(sb, &mk_spec); 826 if (!mk) { 827 err = -ENOKEY; 828 goto out; 829 } 830 down_read(&mk->mk_sem); 831 mk_user = find_master_key_user(mk); 832 if (IS_ERR(mk_user)) { 833 err = PTR_ERR(mk_user); 834 } else { 835 key_put(mk_user); 836 err = 0; 837 } 838 up_read(&mk->mk_sem); 839 fscrypt_put_master_key(mk); 840 out: 841 if (err == -ENOKEY && capable(CAP_FOWNER)) 842 err = 0; 843 return err; 844 } 845 846 /* 847 * Try to evict the inode's dentries from the dentry cache. If the inode is a 848 * directory, then it can have at most one dentry; however, that dentry may be 849 * pinned by child dentries, so first try to evict the children too. 850 */ 851 static void shrink_dcache_inode(struct inode *inode) 852 { 853 struct dentry *dentry; 854 855 if (S_ISDIR(inode->i_mode)) { 856 dentry = d_find_any_alias(inode); 857 if (dentry) { 858 shrink_dcache_parent(dentry); 859 dput(dentry); 860 } 861 } 862 d_prune_aliases(inode); 863 } 864 865 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk) 866 { 867 struct fscrypt_info *ci; 868 struct inode *inode; 869 struct inode *toput_inode = NULL; 870 871 spin_lock(&mk->mk_decrypted_inodes_lock); 872 873 list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) { 874 inode = ci->ci_inode; 875 spin_lock(&inode->i_lock); 876 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { 877 spin_unlock(&inode->i_lock); 878 continue; 879 } 880 __iget(inode); 881 spin_unlock(&inode->i_lock); 882 spin_unlock(&mk->mk_decrypted_inodes_lock); 883 884 shrink_dcache_inode(inode); 885 iput(toput_inode); 886 toput_inode = inode; 887 888 spin_lock(&mk->mk_decrypted_inodes_lock); 889 } 890 891 spin_unlock(&mk->mk_decrypted_inodes_lock); 892 iput(toput_inode); 893 } 894 895 static int check_for_busy_inodes(struct super_block *sb, 896 struct fscrypt_master_key *mk) 897 { 898 struct list_head *pos; 899 size_t busy_count = 0; 900 unsigned long ino; 901 char ino_str[50] = ""; 902 903 spin_lock(&mk->mk_decrypted_inodes_lock); 904 905 list_for_each(pos, &mk->mk_decrypted_inodes) 906 busy_count++; 907 908 if (busy_count == 0) { 909 spin_unlock(&mk->mk_decrypted_inodes_lock); 910 return 0; 911 } 912 913 { 914 /* select an example file to show for debugging purposes */ 915 struct inode *inode = 916 list_first_entry(&mk->mk_decrypted_inodes, 917 struct fscrypt_info, 918 ci_master_key_link)->ci_inode; 919 ino = inode->i_ino; 920 } 921 spin_unlock(&mk->mk_decrypted_inodes_lock); 922 923 /* If the inode is currently being created, ino may still be 0. */ 924 if (ino) 925 snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino); 926 927 fscrypt_warn(NULL, 928 "%s: %zu inode(s) still busy after removing key with %s %*phN%s", 929 sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec), 930 master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u, 931 ino_str); 932 return -EBUSY; 933 } 934 935 static int try_to_lock_encrypted_files(struct super_block *sb, 936 struct fscrypt_master_key *mk) 937 { 938 int err1; 939 int err2; 940 941 /* 942 * An inode can't be evicted while it is dirty or has dirty pages. 943 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes. 944 * 945 * Just do it the easy way: call sync_filesystem(). It's overkill, but 946 * it works, and it's more important to minimize the amount of caches we 947 * drop than the amount of data we sync. Also, unprivileged users can 948 * already call sync_filesystem() via sys_syncfs() or sys_sync(). 949 */ 950 down_read(&sb->s_umount); 951 err1 = sync_filesystem(sb); 952 up_read(&sb->s_umount); 953 /* If a sync error occurs, still try to evict as much as possible. */ 954 955 /* 956 * Inodes are pinned by their dentries, so we have to evict their 957 * dentries. shrink_dcache_sb() would suffice, but would be overkill 958 * and inappropriate for use by unprivileged users. So instead go 959 * through the inodes' alias lists and try to evict each dentry. 960 */ 961 evict_dentries_for_decrypted_inodes(mk); 962 963 /* 964 * evict_dentries_for_decrypted_inodes() already iput() each inode in 965 * the list; any inodes for which that dropped the last reference will 966 * have been evicted due to fscrypt_drop_inode() detecting the key 967 * removal and telling the VFS to evict the inode. So to finish, we 968 * just need to check whether any inodes couldn't be evicted. 969 */ 970 err2 = check_for_busy_inodes(sb, mk); 971 972 return err1 ?: err2; 973 } 974 975 /* 976 * Try to remove an fscrypt master encryption key. 977 * 978 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's 979 * claim to the key, then removes the key itself if no other users have claims. 980 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the 981 * key itself. 982 * 983 * To "remove the key itself", first we wipe the actual master key secret, so 984 * that no more inodes can be unlocked with it. Then we try to evict all cached 985 * inodes that had been unlocked with the key. 986 * 987 * If all inodes were evicted, then we unlink the fscrypt_master_key from the 988 * keyring. Otherwise it remains in the keyring in the "incompletely removed" 989 * state (without the actual secret key) where it tracks the list of remaining 990 * inodes. Userspace can execute the ioctl again later to retry eviction, or 991 * alternatively can re-add the secret key again. 992 * 993 * For more details, see the "Removing keys" section of 994 * Documentation/filesystems/fscrypt.rst. 995 */ 996 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users) 997 { 998 struct super_block *sb = file_inode(filp)->i_sb; 999 struct fscrypt_remove_key_arg __user *uarg = _uarg; 1000 struct fscrypt_remove_key_arg arg; 1001 struct fscrypt_master_key *mk; 1002 u32 status_flags = 0; 1003 int err; 1004 bool inodes_remain; 1005 1006 if (copy_from_user(&arg, uarg, sizeof(arg))) 1007 return -EFAULT; 1008 1009 if (!valid_key_spec(&arg.key_spec)) 1010 return -EINVAL; 1011 1012 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1013 return -EINVAL; 1014 1015 /* 1016 * Only root can add and remove keys that are identified by an arbitrary 1017 * descriptor rather than by a cryptographic hash. 1018 */ 1019 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 1020 !capable(CAP_SYS_ADMIN)) 1021 return -EACCES; 1022 1023 /* Find the key being removed. */ 1024 mk = fscrypt_find_master_key(sb, &arg.key_spec); 1025 if (!mk) 1026 return -ENOKEY; 1027 down_write(&mk->mk_sem); 1028 1029 /* If relevant, remove current user's (or all users) claim to the key */ 1030 if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) { 1031 if (all_users) 1032 err = keyring_clear(mk->mk_users); 1033 else 1034 err = remove_master_key_user(mk); 1035 if (err) { 1036 up_write(&mk->mk_sem); 1037 goto out_put_key; 1038 } 1039 if (mk->mk_users->keys.nr_leaves_on_tree != 0) { 1040 /* 1041 * Other users have still added the key too. We removed 1042 * the current user's claim to the key, but we still 1043 * can't remove the key itself. 1044 */ 1045 status_flags |= 1046 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS; 1047 err = 0; 1048 up_write(&mk->mk_sem); 1049 goto out_put_key; 1050 } 1051 } 1052 1053 /* No user claims remaining. Go ahead and wipe the secret. */ 1054 err = -ENOKEY; 1055 if (is_master_key_secret_present(&mk->mk_secret)) { 1056 wipe_master_key_secret(&mk->mk_secret); 1057 fscrypt_put_master_key_activeref(sb, mk); 1058 err = 0; 1059 } 1060 inodes_remain = refcount_read(&mk->mk_active_refs) > 0; 1061 up_write(&mk->mk_sem); 1062 1063 if (inodes_remain) { 1064 /* Some inodes still reference this key; try to evict them. */ 1065 err = try_to_lock_encrypted_files(sb, mk); 1066 if (err == -EBUSY) { 1067 status_flags |= 1068 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY; 1069 err = 0; 1070 } 1071 } 1072 /* 1073 * We return 0 if we successfully did something: removed a claim to the 1074 * key, wiped the secret, or tried locking the files again. Users need 1075 * to check the informational status flags if they care whether the key 1076 * has been fully removed including all files locked. 1077 */ 1078 out_put_key: 1079 fscrypt_put_master_key(mk); 1080 if (err == 0) 1081 err = put_user(status_flags, &uarg->removal_status_flags); 1082 return err; 1083 } 1084 1085 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg) 1086 { 1087 return do_remove_key(filp, uarg, false); 1088 } 1089 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key); 1090 1091 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg) 1092 { 1093 if (!capable(CAP_SYS_ADMIN)) 1094 return -EACCES; 1095 return do_remove_key(filp, uarg, true); 1096 } 1097 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users); 1098 1099 /* 1100 * Retrieve the status of an fscrypt master encryption key. 1101 * 1102 * We set ->status to indicate whether the key is absent, present, or 1103 * incompletely removed. "Incompletely removed" means that the master key 1104 * secret has been removed, but some files which had been unlocked with it are 1105 * still in use. This field allows applications to easily determine the state 1106 * of an encrypted directory without using a hack such as trying to open a 1107 * regular file in it (which can confuse the "incompletely removed" state with 1108 * absent or present). 1109 * 1110 * In addition, for v2 policy keys we allow applications to determine, via 1111 * ->status_flags and ->user_count, whether the key has been added by the 1112 * current user, by other users, or by both. Most applications should not need 1113 * this, since ordinarily only one user should know a given key. However, if a 1114 * secret key is shared by multiple users, applications may wish to add an 1115 * already-present key to prevent other users from removing it. This ioctl can 1116 * be used to check whether that really is the case before the work is done to 1117 * add the key --- which might e.g. require prompting the user for a passphrase. 1118 * 1119 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of 1120 * Documentation/filesystems/fscrypt.rst. 1121 */ 1122 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg) 1123 { 1124 struct super_block *sb = file_inode(filp)->i_sb; 1125 struct fscrypt_get_key_status_arg arg; 1126 struct fscrypt_master_key *mk; 1127 int err; 1128 1129 if (copy_from_user(&arg, uarg, sizeof(arg))) 1130 return -EFAULT; 1131 1132 if (!valid_key_spec(&arg.key_spec)) 1133 return -EINVAL; 1134 1135 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1136 return -EINVAL; 1137 1138 arg.status_flags = 0; 1139 arg.user_count = 0; 1140 memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved)); 1141 1142 mk = fscrypt_find_master_key(sb, &arg.key_spec); 1143 if (!mk) { 1144 arg.status = FSCRYPT_KEY_STATUS_ABSENT; 1145 err = 0; 1146 goto out; 1147 } 1148 down_read(&mk->mk_sem); 1149 1150 if (!is_master_key_secret_present(&mk->mk_secret)) { 1151 arg.status = refcount_read(&mk->mk_active_refs) > 0 ? 1152 FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED : 1153 FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */; 1154 err = 0; 1155 goto out_release_key; 1156 } 1157 1158 arg.status = FSCRYPT_KEY_STATUS_PRESENT; 1159 if (mk->mk_users) { 1160 struct key *mk_user; 1161 1162 arg.user_count = mk->mk_users->keys.nr_leaves_on_tree; 1163 mk_user = find_master_key_user(mk); 1164 if (!IS_ERR(mk_user)) { 1165 arg.status_flags |= 1166 FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF; 1167 key_put(mk_user); 1168 } else if (mk_user != ERR_PTR(-ENOKEY)) { 1169 err = PTR_ERR(mk_user); 1170 goto out_release_key; 1171 } 1172 } 1173 err = 0; 1174 out_release_key: 1175 up_read(&mk->mk_sem); 1176 fscrypt_put_master_key(mk); 1177 out: 1178 if (!err && copy_to_user(uarg, &arg, sizeof(arg))) 1179 err = -EFAULT; 1180 return err; 1181 } 1182 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status); 1183 1184 int __init fscrypt_init_keyring(void) 1185 { 1186 int err; 1187 1188 err = register_key_type(&key_type_fscrypt_user); 1189 if (err) 1190 return err; 1191 1192 err = register_key_type(&key_type_fscrypt_provisioning); 1193 if (err) 1194 goto err_unregister_fscrypt_user; 1195 1196 return 0; 1197 1198 err_unregister_fscrypt_user: 1199 unregister_key_type(&key_type_fscrypt_user); 1200 return err; 1201 } 1202