1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Filesystem-level keyring for fscrypt 4 * 5 * Copyright 2019 Google LLC 6 */ 7 8 /* 9 * This file implements management of fscrypt master keys in the 10 * filesystem-level keyring, including the ioctls: 11 * 12 * - FS_IOC_ADD_ENCRYPTION_KEY 13 * - FS_IOC_REMOVE_ENCRYPTION_KEY 14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS 15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS 16 * 17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more 18 * information about these ioctls. 19 */ 20 21 #include <crypto/skcipher.h> 22 #include <linux/export.h> 23 #include <linux/key-type.h> 24 #include <linux/once.h> 25 #include <linux/random.h> 26 #include <linux/seq_file.h> 27 #include <linux/unaligned.h> 28 29 #include "fscrypt_private.h" 30 31 /* The master encryption keys for a filesystem (->s_master_keys) */ 32 struct fscrypt_keyring { 33 /* 34 * Lock that protects ->key_hashtable. It does *not* protect the 35 * fscrypt_master_key structs themselves. 36 */ 37 spinlock_t lock; 38 39 /* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */ 40 struct hlist_head key_hashtable[128]; 41 }; 42 43 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret) 44 { 45 memzero_explicit(secret, sizeof(*secret)); 46 } 47 48 static void move_master_key_secret(struct fscrypt_master_key_secret *dst, 49 struct fscrypt_master_key_secret *src) 50 { 51 memcpy(dst, src, sizeof(*dst)); 52 memzero_explicit(src, sizeof(*src)); 53 } 54 55 static void fscrypt_free_master_key(struct rcu_head *head) 56 { 57 struct fscrypt_master_key *mk = 58 container_of(head, struct fscrypt_master_key, mk_rcu_head); 59 /* 60 * The master key secret and any embedded subkeys should have already 61 * been wiped when the last active reference to the fscrypt_master_key 62 * struct was dropped; doing it here would be unnecessarily late. 63 * Nevertheless, use kfree_sensitive() in case anything was missed. 64 */ 65 kfree_sensitive(mk); 66 } 67 68 void fscrypt_put_master_key(struct fscrypt_master_key *mk) 69 { 70 if (!refcount_dec_and_test(&mk->mk_struct_refs)) 71 return; 72 /* 73 * No structural references left, so free ->mk_users, and also free the 74 * fscrypt_master_key struct itself after an RCU grace period ensures 75 * that concurrent keyring lookups can no longer find it. 76 */ 77 WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0); 78 if (mk->mk_users) { 79 /* Clear the keyring so the quota gets released right away. */ 80 keyring_clear(mk->mk_users); 81 key_put(mk->mk_users); 82 mk->mk_users = NULL; 83 } 84 call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key); 85 } 86 87 void fscrypt_put_master_key_activeref(struct super_block *sb, 88 struct fscrypt_master_key *mk) 89 { 90 size_t i; 91 92 if (!refcount_dec_and_test(&mk->mk_active_refs)) 93 return; 94 /* 95 * No active references left, so complete the full removal of this 96 * fscrypt_master_key struct by removing it from the keyring and 97 * destroying any subkeys embedded in it. 98 */ 99 100 if (WARN_ON_ONCE(!sb->s_master_keys)) 101 return; 102 spin_lock(&sb->s_master_keys->lock); 103 hlist_del_rcu(&mk->mk_node); 104 spin_unlock(&sb->s_master_keys->lock); 105 106 /* 107 * ->mk_active_refs == 0 implies that ->mk_present is false and 108 * ->mk_decrypted_inodes is empty. 109 */ 110 WARN_ON_ONCE(mk->mk_present); 111 WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes)); 112 113 for (i = 0; i <= FSCRYPT_MODE_MAX; i++) { 114 fscrypt_destroy_prepared_key( 115 sb, &mk->mk_direct_keys[i]); 116 fscrypt_destroy_prepared_key( 117 sb, &mk->mk_iv_ino_lblk_64_keys[i]); 118 fscrypt_destroy_prepared_key( 119 sb, &mk->mk_iv_ino_lblk_32_keys[i]); 120 } 121 memzero_explicit(&mk->mk_ino_hash_key, 122 sizeof(mk->mk_ino_hash_key)); 123 mk->mk_ino_hash_key_initialized = false; 124 125 /* Drop the structural ref associated with the active refs. */ 126 fscrypt_put_master_key(mk); 127 } 128 129 /* 130 * This transitions the key state from present to incompletely removed, and then 131 * potentially to absent (depending on whether inodes remain). 132 */ 133 static void fscrypt_initiate_key_removal(struct super_block *sb, 134 struct fscrypt_master_key *mk) 135 { 136 WRITE_ONCE(mk->mk_present, false); 137 wipe_master_key_secret(&mk->mk_secret); 138 fscrypt_put_master_key_activeref(sb, mk); 139 } 140 141 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec) 142 { 143 if (spec->__reserved) 144 return false; 145 return master_key_spec_len(spec) != 0; 146 } 147 148 static int fscrypt_user_key_instantiate(struct key *key, 149 struct key_preparsed_payload *prep) 150 { 151 /* 152 * We just charge FSCRYPT_MAX_RAW_KEY_SIZE bytes to the user's key quota 153 * for each key, regardless of the exact key size. The amount of memory 154 * actually used is greater than the size of the raw key anyway. 155 */ 156 return key_payload_reserve(key, FSCRYPT_MAX_RAW_KEY_SIZE); 157 } 158 159 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m) 160 { 161 seq_puts(m, key->description); 162 } 163 164 /* 165 * Type of key in ->mk_users. Each key of this type represents a particular 166 * user who has added a particular master key. 167 * 168 * Note that the name of this key type really should be something like 169 * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen 170 * mainly for simplicity of presentation in /proc/keys when read by a non-root 171 * user. And it is expected to be rare that a key is actually added by multiple 172 * users, since users should keep their encryption keys confidential. 173 */ 174 static struct key_type key_type_fscrypt_user = { 175 .name = ".fscrypt", 176 .instantiate = fscrypt_user_key_instantiate, 177 .describe = fscrypt_user_key_describe, 178 }; 179 180 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \ 181 (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \ 182 CONST_STRLEN("-users") + 1) 183 184 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \ 185 (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1) 186 187 static void format_mk_users_keyring_description( 188 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE], 189 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 190 { 191 sprintf(description, "fscrypt-%*phN-users", 192 FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier); 193 } 194 195 static void format_mk_user_description( 196 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE], 197 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 198 { 199 200 sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE, 201 mk_identifier, __kuid_val(current_fsuid())); 202 } 203 204 /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */ 205 static int allocate_filesystem_keyring(struct super_block *sb) 206 { 207 struct fscrypt_keyring *keyring; 208 209 if (sb->s_master_keys) 210 return 0; 211 212 keyring = kzalloc(sizeof(*keyring), GFP_KERNEL); 213 if (!keyring) 214 return -ENOMEM; 215 spin_lock_init(&keyring->lock); 216 /* 217 * Pairs with the smp_load_acquire() in fscrypt_find_master_key(). 218 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that 219 * concurrent tasks can ACQUIRE it. 220 */ 221 smp_store_release(&sb->s_master_keys, keyring); 222 return 0; 223 } 224 225 /* 226 * Release all encryption keys that have been added to the filesystem, along 227 * with the keyring that contains them. 228 * 229 * This is called at unmount time, after all potentially-encrypted inodes have 230 * been evicted. The filesystem's underlying block device(s) are still 231 * available at this time; this is important because after user file accesses 232 * have been allowed, this function may need to evict keys from the keyslots of 233 * an inline crypto engine, which requires the block device(s). 234 */ 235 void fscrypt_destroy_keyring(struct super_block *sb) 236 { 237 struct fscrypt_keyring *keyring = sb->s_master_keys; 238 size_t i; 239 240 if (!keyring) 241 return; 242 243 for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) { 244 struct hlist_head *bucket = &keyring->key_hashtable[i]; 245 struct fscrypt_master_key *mk; 246 struct hlist_node *tmp; 247 248 hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) { 249 /* 250 * Since all potentially-encrypted inodes were already 251 * evicted, every key remaining in the keyring should 252 * have an empty inode list, and should only still be in 253 * the keyring due to the single active ref associated 254 * with ->mk_present. There should be no structural 255 * refs beyond the one associated with the active ref. 256 */ 257 WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1); 258 WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1); 259 WARN_ON_ONCE(!mk->mk_present); 260 fscrypt_initiate_key_removal(sb, mk); 261 } 262 } 263 kfree_sensitive(keyring); 264 sb->s_master_keys = NULL; 265 } 266 267 static struct hlist_head * 268 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring, 269 const struct fscrypt_key_specifier *mk_spec) 270 { 271 /* 272 * Since key specifiers should be "random" values, it is sufficient to 273 * use a trivial hash function that just takes the first several bits of 274 * the key specifier. 275 */ 276 unsigned long i = get_unaligned((unsigned long *)&mk_spec->u); 277 278 return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)]; 279 } 280 281 /* 282 * Find the specified master key struct in ->s_master_keys and take a structural 283 * ref to it. The structural ref guarantees that the key struct continues to 284 * exist, but it does *not* guarantee that ->s_master_keys continues to contain 285 * the key struct. The structural ref needs to be dropped by 286 * fscrypt_put_master_key(). Returns NULL if the key struct is not found. 287 */ 288 struct fscrypt_master_key * 289 fscrypt_find_master_key(struct super_block *sb, 290 const struct fscrypt_key_specifier *mk_spec) 291 { 292 struct fscrypt_keyring *keyring; 293 struct hlist_head *bucket; 294 struct fscrypt_master_key *mk; 295 296 /* 297 * Pairs with the smp_store_release() in allocate_filesystem_keyring(). 298 * I.e., another task can publish ->s_master_keys concurrently, 299 * executing a RELEASE barrier. We need to use smp_load_acquire() here 300 * to safely ACQUIRE the memory the other task published. 301 */ 302 keyring = smp_load_acquire(&sb->s_master_keys); 303 if (keyring == NULL) 304 return NULL; /* No keyring yet, so no keys yet. */ 305 306 bucket = fscrypt_mk_hash_bucket(keyring, mk_spec); 307 rcu_read_lock(); 308 switch (mk_spec->type) { 309 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: 310 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 311 if (mk->mk_spec.type == 312 FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 313 memcmp(mk->mk_spec.u.descriptor, 314 mk_spec->u.descriptor, 315 FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 && 316 refcount_inc_not_zero(&mk->mk_struct_refs)) 317 goto out; 318 } 319 break; 320 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: 321 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 322 if (mk->mk_spec.type == 323 FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 324 memcmp(mk->mk_spec.u.identifier, 325 mk_spec->u.identifier, 326 FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 && 327 refcount_inc_not_zero(&mk->mk_struct_refs)) 328 goto out; 329 } 330 break; 331 } 332 mk = NULL; 333 out: 334 rcu_read_unlock(); 335 return mk; 336 } 337 338 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk) 339 { 340 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE]; 341 struct key *keyring; 342 343 format_mk_users_keyring_description(description, 344 mk->mk_spec.u.identifier); 345 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 346 current_cred(), KEY_POS_SEARCH | 347 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, 348 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 349 if (IS_ERR(keyring)) 350 return PTR_ERR(keyring); 351 352 mk->mk_users = keyring; 353 return 0; 354 } 355 356 /* 357 * Find the current user's "key" in the master key's ->mk_users. 358 * Returns ERR_PTR(-ENOKEY) if not found. 359 */ 360 static struct key *find_master_key_user(struct fscrypt_master_key *mk) 361 { 362 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 363 key_ref_t keyref; 364 365 format_mk_user_description(description, mk->mk_spec.u.identifier); 366 367 /* 368 * We need to mark the keyring reference as "possessed" so that we 369 * acquire permission to search it, via the KEY_POS_SEARCH permission. 370 */ 371 keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/), 372 &key_type_fscrypt_user, description, false); 373 if (IS_ERR(keyref)) { 374 if (PTR_ERR(keyref) == -EAGAIN || /* not found */ 375 PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */ 376 keyref = ERR_PTR(-ENOKEY); 377 return ERR_CAST(keyref); 378 } 379 return key_ref_to_ptr(keyref); 380 } 381 382 /* 383 * Give the current user a "key" in ->mk_users. This charges the user's quota 384 * and marks the master key as added by the current user, so that it cannot be 385 * removed by another user with the key. Either ->mk_sem must be held for 386 * write, or the master key must be still undergoing initialization. 387 */ 388 static int add_master_key_user(struct fscrypt_master_key *mk) 389 { 390 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 391 struct key *mk_user; 392 int err; 393 394 format_mk_user_description(description, mk->mk_spec.u.identifier); 395 mk_user = key_alloc(&key_type_fscrypt_user, description, 396 current_fsuid(), current_gid(), current_cred(), 397 KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL); 398 if (IS_ERR(mk_user)) 399 return PTR_ERR(mk_user); 400 401 err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL); 402 key_put(mk_user); 403 return err; 404 } 405 406 /* 407 * Remove the current user's "key" from ->mk_users. 408 * ->mk_sem must be held for write. 409 * 410 * Returns 0 if removed, -ENOKEY if not found, or another -errno code. 411 */ 412 static int remove_master_key_user(struct fscrypt_master_key *mk) 413 { 414 struct key *mk_user; 415 int err; 416 417 mk_user = find_master_key_user(mk); 418 if (IS_ERR(mk_user)) 419 return PTR_ERR(mk_user); 420 err = key_unlink(mk->mk_users, mk_user); 421 key_put(mk_user); 422 return err; 423 } 424 425 /* 426 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and 427 * insert it into sb->s_master_keys. 428 */ 429 static int add_new_master_key(struct super_block *sb, 430 struct fscrypt_master_key_secret *secret, 431 const struct fscrypt_key_specifier *mk_spec) 432 { 433 struct fscrypt_keyring *keyring = sb->s_master_keys; 434 struct fscrypt_master_key *mk; 435 int err; 436 437 mk = kzalloc(sizeof(*mk), GFP_KERNEL); 438 if (!mk) 439 return -ENOMEM; 440 441 init_rwsem(&mk->mk_sem); 442 refcount_set(&mk->mk_struct_refs, 1); 443 mk->mk_spec = *mk_spec; 444 445 INIT_LIST_HEAD(&mk->mk_decrypted_inodes); 446 spin_lock_init(&mk->mk_decrypted_inodes_lock); 447 448 if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 449 err = allocate_master_key_users_keyring(mk); 450 if (err) 451 goto out_put; 452 err = add_master_key_user(mk); 453 if (err) 454 goto out_put; 455 } 456 457 move_master_key_secret(&mk->mk_secret, secret); 458 mk->mk_present = true; 459 refcount_set(&mk->mk_active_refs, 1); /* ->mk_present is true */ 460 461 spin_lock(&keyring->lock); 462 hlist_add_head_rcu(&mk->mk_node, 463 fscrypt_mk_hash_bucket(keyring, mk_spec)); 464 spin_unlock(&keyring->lock); 465 return 0; 466 467 out_put: 468 fscrypt_put_master_key(mk); 469 return err; 470 } 471 472 #define KEY_DEAD 1 473 474 static int add_existing_master_key(struct fscrypt_master_key *mk, 475 struct fscrypt_master_key_secret *secret) 476 { 477 int err; 478 479 /* 480 * If the current user is already in ->mk_users, then there's nothing to 481 * do. Otherwise, we need to add the user to ->mk_users. (Neither is 482 * applicable for v1 policy keys, which have NULL ->mk_users.) 483 */ 484 if (mk->mk_users) { 485 struct key *mk_user = find_master_key_user(mk); 486 487 if (mk_user != ERR_PTR(-ENOKEY)) { 488 if (IS_ERR(mk_user)) 489 return PTR_ERR(mk_user); 490 key_put(mk_user); 491 return 0; 492 } 493 err = add_master_key_user(mk); 494 if (err) 495 return err; 496 } 497 498 /* If the key is incompletely removed, make it present again. */ 499 if (!mk->mk_present) { 500 if (!refcount_inc_not_zero(&mk->mk_active_refs)) { 501 /* 502 * Raced with the last active ref being dropped, so the 503 * key has become, or is about to become, "absent". 504 * Therefore, we need to allocate a new key struct. 505 */ 506 return KEY_DEAD; 507 } 508 move_master_key_secret(&mk->mk_secret, secret); 509 WRITE_ONCE(mk->mk_present, true); 510 } 511 512 return 0; 513 } 514 515 static int do_add_master_key(struct super_block *sb, 516 struct fscrypt_master_key_secret *secret, 517 const struct fscrypt_key_specifier *mk_spec) 518 { 519 static DEFINE_MUTEX(fscrypt_add_key_mutex); 520 struct fscrypt_master_key *mk; 521 int err; 522 523 mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */ 524 525 mk = fscrypt_find_master_key(sb, mk_spec); 526 if (!mk) { 527 /* Didn't find the key in ->s_master_keys. Add it. */ 528 err = allocate_filesystem_keyring(sb); 529 if (!err) 530 err = add_new_master_key(sb, secret, mk_spec); 531 } else { 532 /* 533 * Found the key in ->s_master_keys. Add the user to ->mk_users 534 * if needed, and make the key "present" again if possible. 535 */ 536 down_write(&mk->mk_sem); 537 err = add_existing_master_key(mk, secret); 538 up_write(&mk->mk_sem); 539 if (err == KEY_DEAD) { 540 /* 541 * We found a key struct, but it's already been fully 542 * removed. Ignore the old struct and add a new one. 543 * fscrypt_add_key_mutex means we don't need to worry 544 * about concurrent adds. 545 */ 546 err = add_new_master_key(sb, secret, mk_spec); 547 } 548 fscrypt_put_master_key(mk); 549 } 550 mutex_unlock(&fscrypt_add_key_mutex); 551 return err; 552 } 553 554 static int add_master_key(struct super_block *sb, 555 struct fscrypt_master_key_secret *secret, 556 struct fscrypt_key_specifier *key_spec) 557 { 558 int err; 559 560 if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 561 u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE]; 562 u8 *kdf_key = secret->bytes; 563 unsigned int kdf_key_size = secret->size; 564 u8 keyid_kdf_ctx = HKDF_CONTEXT_KEY_IDENTIFIER_FOR_RAW_KEY; 565 566 /* 567 * For raw keys, the fscrypt master key is used directly as the 568 * fscrypt KDF key. For hardware-wrapped keys, we have to pass 569 * the master key to the hardware to derive the KDF key, which 570 * is then only used to derive non-file-contents subkeys. 571 */ 572 if (secret->is_hw_wrapped) { 573 err = fscrypt_derive_sw_secret(sb, secret->bytes, 574 secret->size, sw_secret); 575 if (err) 576 return err; 577 kdf_key = sw_secret; 578 kdf_key_size = sizeof(sw_secret); 579 /* 580 * To avoid weird behavior if someone manages to 581 * determine sw_secret and add it as a raw key, ensure 582 * that hardware-wrapped keys and raw keys will have 583 * different key identifiers by deriving their key 584 * identifiers using different KDF contexts. 585 */ 586 keyid_kdf_ctx = 587 HKDF_CONTEXT_KEY_IDENTIFIER_FOR_HW_WRAPPED_KEY; 588 } 589 fscrypt_init_hkdf(&secret->hkdf, kdf_key, kdf_key_size); 590 /* 591 * Now that the KDF context is initialized, the raw KDF key is 592 * no longer needed. 593 */ 594 memzero_explicit(kdf_key, kdf_key_size); 595 596 /* Calculate the key identifier */ 597 fscrypt_hkdf_expand(&secret->hkdf, keyid_kdf_ctx, NULL, 0, 598 key_spec->u.identifier, 599 FSCRYPT_KEY_IDENTIFIER_SIZE); 600 } 601 return do_add_master_key(sb, secret, key_spec); 602 } 603 604 /* 605 * Validate the size of an fscrypt master key being added. Note that this is 606 * just an initial check, as we don't know which ciphers will be used yet. 607 * There is a stricter size check later when the key is actually used by a file. 608 */ 609 static inline bool fscrypt_valid_key_size(size_t size, u32 add_key_flags) 610 { 611 u32 max_size = (add_key_flags & FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED) ? 612 FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE : 613 FSCRYPT_MAX_RAW_KEY_SIZE; 614 615 return size >= FSCRYPT_MIN_KEY_SIZE && size <= max_size; 616 } 617 618 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep) 619 { 620 const struct fscrypt_provisioning_key_payload *payload = prep->data; 621 622 if (prep->datalen < sizeof(*payload)) 623 return -EINVAL; 624 625 if (!fscrypt_valid_key_size(prep->datalen - sizeof(*payload), 626 payload->flags)) 627 return -EINVAL; 628 629 if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 630 payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) 631 return -EINVAL; 632 633 if (payload->flags & ~FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED) 634 return -EINVAL; 635 636 prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL); 637 if (!prep->payload.data[0]) 638 return -ENOMEM; 639 640 prep->quotalen = prep->datalen; 641 return 0; 642 } 643 644 static void fscrypt_provisioning_key_free_preparse( 645 struct key_preparsed_payload *prep) 646 { 647 kfree_sensitive(prep->payload.data[0]); 648 } 649 650 static void fscrypt_provisioning_key_describe(const struct key *key, 651 struct seq_file *m) 652 { 653 seq_puts(m, key->description); 654 if (key_is_positive(key)) { 655 const struct fscrypt_provisioning_key_payload *payload = 656 key->payload.data[0]; 657 658 seq_printf(m, ": %u [%u]", key->datalen, payload->type); 659 } 660 } 661 662 static void fscrypt_provisioning_key_destroy(struct key *key) 663 { 664 kfree_sensitive(key->payload.data[0]); 665 } 666 667 static struct key_type key_type_fscrypt_provisioning = { 668 .name = "fscrypt-provisioning", 669 .preparse = fscrypt_provisioning_key_preparse, 670 .free_preparse = fscrypt_provisioning_key_free_preparse, 671 .instantiate = generic_key_instantiate, 672 .describe = fscrypt_provisioning_key_describe, 673 .destroy = fscrypt_provisioning_key_destroy, 674 }; 675 676 /* 677 * Retrieve the key from the Linux keyring key specified by 'key_id', and store 678 * it into 'secret'. 679 * 680 * The key must be of type "fscrypt-provisioning" and must have the 'type' and 681 * 'flags' field of the payload set to the given values, indicating that the key 682 * is intended for use for the specified purpose. We don't use the "logon" key 683 * type because there's no way to completely restrict the use of such keys; they 684 * can be used by any kernel API that accepts "logon" keys and doesn't require a 685 * specific service prefix. 686 * 687 * The ability to specify the key via Linux keyring key is intended for cases 688 * where userspace needs to re-add keys after the filesystem is unmounted and 689 * re-mounted. Most users should just provide the key directly instead. 690 */ 691 static int get_keyring_key(u32 key_id, u32 type, u32 flags, 692 struct fscrypt_master_key_secret *secret) 693 { 694 key_ref_t ref; 695 struct key *key; 696 const struct fscrypt_provisioning_key_payload *payload; 697 int err; 698 699 ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH); 700 if (IS_ERR(ref)) 701 return PTR_ERR(ref); 702 key = key_ref_to_ptr(ref); 703 704 if (key->type != &key_type_fscrypt_provisioning) 705 goto bad_key; 706 payload = key->payload.data[0]; 707 708 /* 709 * Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. 710 * Similarly, don't allow hardware-wrapped keys to be used as 711 * non-hardware-wrapped keys and vice versa. 712 */ 713 if (payload->type != type || payload->flags != flags) 714 goto bad_key; 715 716 secret->size = key->datalen - sizeof(*payload); 717 memcpy(secret->bytes, payload->raw, secret->size); 718 err = 0; 719 goto out_put; 720 721 bad_key: 722 err = -EKEYREJECTED; 723 out_put: 724 key_ref_put(ref); 725 return err; 726 } 727 728 /* 729 * Add a master encryption key to the filesystem, causing all files which were 730 * encrypted with it to appear "unlocked" (decrypted) when accessed. 731 * 732 * When adding a key for use by v1 encryption policies, this ioctl is 733 * privileged, and userspace must provide the 'key_descriptor'. 734 * 735 * When adding a key for use by v2+ encryption policies, this ioctl is 736 * unprivileged. This is needed, in general, to allow non-root users to use 737 * encryption without encountering the visibility problems of process-subscribed 738 * keyrings and the inability to properly remove keys. This works by having 739 * each key identified by its cryptographically secure hash --- the 740 * 'key_identifier'. The cryptographic hash ensures that a malicious user 741 * cannot add the wrong key for a given identifier. Furthermore, each added key 742 * is charged to the appropriate user's quota for the keyrings service, which 743 * prevents a malicious user from adding too many keys. Finally, we forbid a 744 * user from removing a key while other users have added it too, which prevents 745 * a user who knows another user's key from causing a denial-of-service by 746 * removing it at an inopportune time. (We tolerate that a user who knows a key 747 * can prevent other users from removing it.) 748 * 749 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of 750 * Documentation/filesystems/fscrypt.rst. 751 */ 752 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg) 753 { 754 struct super_block *sb = file_inode(filp)->i_sb; 755 struct fscrypt_add_key_arg __user *uarg = _uarg; 756 struct fscrypt_add_key_arg arg; 757 struct fscrypt_master_key_secret secret; 758 int err; 759 760 if (copy_from_user(&arg, uarg, sizeof(arg))) 761 return -EFAULT; 762 763 if (!valid_key_spec(&arg.key_spec)) 764 return -EINVAL; 765 766 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 767 return -EINVAL; 768 769 /* 770 * Only root can add keys that are identified by an arbitrary descriptor 771 * rather than by a cryptographic hash --- since otherwise a malicious 772 * user could add the wrong key. 773 */ 774 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 775 !capable(CAP_SYS_ADMIN)) 776 return -EACCES; 777 778 memset(&secret, 0, sizeof(secret)); 779 780 if (arg.flags) { 781 if (arg.flags & ~FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED) 782 return -EINVAL; 783 if (arg.key_spec.type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) 784 return -EINVAL; 785 secret.is_hw_wrapped = true; 786 } 787 788 if (arg.key_id) { 789 if (arg.raw_size != 0) 790 return -EINVAL; 791 err = get_keyring_key(arg.key_id, arg.key_spec.type, arg.flags, 792 &secret); 793 if (err) 794 goto out_wipe_secret; 795 } else { 796 if (!fscrypt_valid_key_size(arg.raw_size, arg.flags)) 797 return -EINVAL; 798 secret.size = arg.raw_size; 799 err = -EFAULT; 800 if (copy_from_user(secret.bytes, uarg->raw, secret.size)) 801 goto out_wipe_secret; 802 } 803 804 err = add_master_key(sb, &secret, &arg.key_spec); 805 if (err) 806 goto out_wipe_secret; 807 808 /* Return the key identifier to userspace, if applicable */ 809 err = -EFAULT; 810 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 811 copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier, 812 FSCRYPT_KEY_IDENTIFIER_SIZE)) 813 goto out_wipe_secret; 814 err = 0; 815 out_wipe_secret: 816 wipe_master_key_secret(&secret); 817 return err; 818 } 819 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key); 820 821 static void 822 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret) 823 { 824 static u8 test_key[FSCRYPT_MAX_RAW_KEY_SIZE]; 825 826 get_random_once(test_key, sizeof(test_key)); 827 828 memset(secret, 0, sizeof(*secret)); 829 secret->size = sizeof(test_key); 830 memcpy(secret->bytes, test_key, sizeof(test_key)); 831 } 832 833 void fscrypt_get_test_dummy_key_identifier( 834 u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 835 { 836 struct fscrypt_master_key_secret secret; 837 838 fscrypt_get_test_dummy_secret(&secret); 839 fscrypt_init_hkdf(&secret.hkdf, secret.bytes, secret.size); 840 fscrypt_hkdf_expand(&secret.hkdf, 841 HKDF_CONTEXT_KEY_IDENTIFIER_FOR_RAW_KEY, NULL, 0, 842 key_identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); 843 wipe_master_key_secret(&secret); 844 } 845 846 /** 847 * fscrypt_add_test_dummy_key() - add the test dummy encryption key 848 * @sb: the filesystem instance to add the key to 849 * @key_spec: the key specifier of the test dummy encryption key 850 * 851 * Add the key for the test_dummy_encryption mount option to the filesystem. To 852 * prevent misuse of this mount option, a per-boot random key is used instead of 853 * a hardcoded one. This makes it so that any encrypted files created using 854 * this option won't be accessible after a reboot. 855 * 856 * Return: 0 on success, -errno on failure 857 */ 858 int fscrypt_add_test_dummy_key(struct super_block *sb, 859 struct fscrypt_key_specifier *key_spec) 860 { 861 struct fscrypt_master_key_secret secret; 862 int err; 863 864 fscrypt_get_test_dummy_secret(&secret); 865 err = add_master_key(sb, &secret, key_spec); 866 wipe_master_key_secret(&secret); 867 return err; 868 } 869 870 /* 871 * Verify that the current user has added a master key with the given identifier 872 * (returns -ENOKEY if not). This is needed to prevent a user from encrypting 873 * their files using some other user's key which they don't actually know. 874 * Cryptographically this isn't much of a problem, but the semantics of this 875 * would be a bit weird, so it's best to just forbid it. 876 * 877 * The system administrator (CAP_FOWNER) can override this, which should be 878 * enough for any use cases where encryption policies are being set using keys 879 * that were chosen ahead of time but aren't available at the moment. 880 * 881 * Note that the key may have already removed by the time this returns, but 882 * that's okay; we just care whether the key was there at some point. 883 * 884 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code 885 */ 886 int fscrypt_verify_key_added(struct super_block *sb, 887 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 888 { 889 struct fscrypt_key_specifier mk_spec; 890 struct fscrypt_master_key *mk; 891 struct key *mk_user; 892 int err; 893 894 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; 895 memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); 896 897 mk = fscrypt_find_master_key(sb, &mk_spec); 898 if (!mk) { 899 err = -ENOKEY; 900 goto out; 901 } 902 down_read(&mk->mk_sem); 903 mk_user = find_master_key_user(mk); 904 if (IS_ERR(mk_user)) { 905 err = PTR_ERR(mk_user); 906 } else { 907 key_put(mk_user); 908 err = 0; 909 } 910 up_read(&mk->mk_sem); 911 fscrypt_put_master_key(mk); 912 out: 913 if (err == -ENOKEY && capable(CAP_FOWNER)) 914 err = 0; 915 return err; 916 } 917 918 /* 919 * Try to evict the inode's dentries from the dentry cache. If the inode is a 920 * directory, then it can have at most one dentry; however, that dentry may be 921 * pinned by child dentries, so first try to evict the children too. 922 */ 923 static void shrink_dcache_inode(struct inode *inode) 924 { 925 struct dentry *dentry; 926 927 if (S_ISDIR(inode->i_mode)) { 928 dentry = d_find_any_alias(inode); 929 if (dentry) { 930 shrink_dcache_parent(dentry); 931 dput(dentry); 932 } 933 } 934 d_prune_aliases(inode); 935 } 936 937 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk) 938 { 939 struct fscrypt_inode_info *ci; 940 struct inode *inode; 941 struct inode *toput_inode = NULL; 942 943 spin_lock(&mk->mk_decrypted_inodes_lock); 944 945 list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) { 946 inode = ci->ci_inode; 947 spin_lock(&inode->i_lock); 948 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { 949 spin_unlock(&inode->i_lock); 950 continue; 951 } 952 __iget(inode); 953 spin_unlock(&inode->i_lock); 954 spin_unlock(&mk->mk_decrypted_inodes_lock); 955 956 shrink_dcache_inode(inode); 957 iput(toput_inode); 958 toput_inode = inode; 959 960 spin_lock(&mk->mk_decrypted_inodes_lock); 961 } 962 963 spin_unlock(&mk->mk_decrypted_inodes_lock); 964 iput(toput_inode); 965 } 966 967 static int check_for_busy_inodes(struct super_block *sb, 968 struct fscrypt_master_key *mk) 969 { 970 struct list_head *pos; 971 size_t busy_count = 0; 972 unsigned long ino; 973 char ino_str[50] = ""; 974 975 spin_lock(&mk->mk_decrypted_inodes_lock); 976 977 list_for_each(pos, &mk->mk_decrypted_inodes) 978 busy_count++; 979 980 if (busy_count == 0) { 981 spin_unlock(&mk->mk_decrypted_inodes_lock); 982 return 0; 983 } 984 985 { 986 /* select an example file to show for debugging purposes */ 987 struct inode *inode = 988 list_first_entry(&mk->mk_decrypted_inodes, 989 struct fscrypt_inode_info, 990 ci_master_key_link)->ci_inode; 991 ino = inode->i_ino; 992 } 993 spin_unlock(&mk->mk_decrypted_inodes_lock); 994 995 /* If the inode is currently being created, ino may still be 0. */ 996 if (ino) 997 snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino); 998 999 fscrypt_warn(NULL, 1000 "%s: %zu inode(s) still busy after removing key with %s %*phN%s", 1001 sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec), 1002 master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u, 1003 ino_str); 1004 return -EBUSY; 1005 } 1006 1007 static int try_to_lock_encrypted_files(struct super_block *sb, 1008 struct fscrypt_master_key *mk) 1009 { 1010 int err1; 1011 int err2; 1012 1013 /* 1014 * An inode can't be evicted while it is dirty or has dirty pages. 1015 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes. 1016 * 1017 * Just do it the easy way: call sync_filesystem(). It's overkill, but 1018 * it works, and it's more important to minimize the amount of caches we 1019 * drop than the amount of data we sync. Also, unprivileged users can 1020 * already call sync_filesystem() via sys_syncfs() or sys_sync(). 1021 */ 1022 down_read(&sb->s_umount); 1023 err1 = sync_filesystem(sb); 1024 up_read(&sb->s_umount); 1025 /* If a sync error occurs, still try to evict as much as possible. */ 1026 1027 /* 1028 * Inodes are pinned by their dentries, so we have to evict their 1029 * dentries. shrink_dcache_sb() would suffice, but would be overkill 1030 * and inappropriate for use by unprivileged users. So instead go 1031 * through the inodes' alias lists and try to evict each dentry. 1032 */ 1033 evict_dentries_for_decrypted_inodes(mk); 1034 1035 /* 1036 * evict_dentries_for_decrypted_inodes() already iput() each inode in 1037 * the list; any inodes for which that dropped the last reference will 1038 * have been evicted due to fscrypt_drop_inode() detecting the key 1039 * removal and telling the VFS to evict the inode. So to finish, we 1040 * just need to check whether any inodes couldn't be evicted. 1041 */ 1042 err2 = check_for_busy_inodes(sb, mk); 1043 1044 return err1 ?: err2; 1045 } 1046 1047 /* 1048 * Try to remove an fscrypt master encryption key. 1049 * 1050 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's 1051 * claim to the key, then removes the key itself if no other users have claims. 1052 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the 1053 * key itself. 1054 * 1055 * To "remove the key itself", first we transition the key to the "incompletely 1056 * removed" state, so that no more inodes can be unlocked with it. Then we try 1057 * to evict all cached inodes that had been unlocked with the key. 1058 * 1059 * If all inodes were evicted, then we unlink the fscrypt_master_key from the 1060 * keyring. Otherwise it remains in the keyring in the "incompletely removed" 1061 * state where it tracks the list of remaining inodes. Userspace can execute 1062 * the ioctl again later to retry eviction, or alternatively can re-add the key. 1063 * 1064 * For more details, see the "Removing keys" section of 1065 * Documentation/filesystems/fscrypt.rst. 1066 */ 1067 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users) 1068 { 1069 struct super_block *sb = file_inode(filp)->i_sb; 1070 struct fscrypt_remove_key_arg __user *uarg = _uarg; 1071 struct fscrypt_remove_key_arg arg; 1072 struct fscrypt_master_key *mk; 1073 u32 status_flags = 0; 1074 int err; 1075 bool inodes_remain; 1076 1077 if (copy_from_user(&arg, uarg, sizeof(arg))) 1078 return -EFAULT; 1079 1080 if (!valid_key_spec(&arg.key_spec)) 1081 return -EINVAL; 1082 1083 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1084 return -EINVAL; 1085 1086 /* 1087 * Only root can add and remove keys that are identified by an arbitrary 1088 * descriptor rather than by a cryptographic hash. 1089 */ 1090 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 1091 !capable(CAP_SYS_ADMIN)) 1092 return -EACCES; 1093 1094 /* Find the key being removed. */ 1095 mk = fscrypt_find_master_key(sb, &arg.key_spec); 1096 if (!mk) 1097 return -ENOKEY; 1098 down_write(&mk->mk_sem); 1099 1100 /* If relevant, remove current user's (or all users) claim to the key */ 1101 if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) { 1102 if (all_users) 1103 err = keyring_clear(mk->mk_users); 1104 else 1105 err = remove_master_key_user(mk); 1106 if (err) { 1107 up_write(&mk->mk_sem); 1108 goto out_put_key; 1109 } 1110 if (mk->mk_users->keys.nr_leaves_on_tree != 0) { 1111 /* 1112 * Other users have still added the key too. We removed 1113 * the current user's claim to the key, but we still 1114 * can't remove the key itself. 1115 */ 1116 status_flags |= 1117 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS; 1118 err = 0; 1119 up_write(&mk->mk_sem); 1120 goto out_put_key; 1121 } 1122 } 1123 1124 /* No user claims remaining. Initiate removal of the key. */ 1125 err = -ENOKEY; 1126 if (mk->mk_present) { 1127 fscrypt_initiate_key_removal(sb, mk); 1128 err = 0; 1129 } 1130 inodes_remain = refcount_read(&mk->mk_active_refs) > 0; 1131 up_write(&mk->mk_sem); 1132 1133 if (inodes_remain) { 1134 /* Some inodes still reference this key; try to evict them. */ 1135 err = try_to_lock_encrypted_files(sb, mk); 1136 if (err == -EBUSY) { 1137 status_flags |= 1138 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY; 1139 err = 0; 1140 } 1141 } 1142 /* 1143 * We return 0 if we successfully did something: removed a claim to the 1144 * key, initiated removal of the key, or tried locking the files again. 1145 * Users need to check the informational status flags if they care 1146 * whether the key has been fully removed including all files locked. 1147 */ 1148 out_put_key: 1149 fscrypt_put_master_key(mk); 1150 if (err == 0) 1151 err = put_user(status_flags, &uarg->removal_status_flags); 1152 return err; 1153 } 1154 1155 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg) 1156 { 1157 return do_remove_key(filp, uarg, false); 1158 } 1159 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key); 1160 1161 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg) 1162 { 1163 if (!capable(CAP_SYS_ADMIN)) 1164 return -EACCES; 1165 return do_remove_key(filp, uarg, true); 1166 } 1167 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users); 1168 1169 /* 1170 * Retrieve the status of an fscrypt master encryption key. 1171 * 1172 * We set ->status to indicate whether the key is absent, present, or 1173 * incompletely removed. (For an explanation of what these statuses mean and 1174 * how they are represented internally, see struct fscrypt_master_key.) This 1175 * field allows applications to easily determine the status of an encrypted 1176 * directory without using a hack such as trying to open a regular file in it 1177 * (which can confuse the "incompletely removed" status with absent or present). 1178 * 1179 * In addition, for v2 policy keys we allow applications to determine, via 1180 * ->status_flags and ->user_count, whether the key has been added by the 1181 * current user, by other users, or by both. Most applications should not need 1182 * this, since ordinarily only one user should know a given key. However, if a 1183 * secret key is shared by multiple users, applications may wish to add an 1184 * already-present key to prevent other users from removing it. This ioctl can 1185 * be used to check whether that really is the case before the work is done to 1186 * add the key --- which might e.g. require prompting the user for a passphrase. 1187 * 1188 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of 1189 * Documentation/filesystems/fscrypt.rst. 1190 */ 1191 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg) 1192 { 1193 struct super_block *sb = file_inode(filp)->i_sb; 1194 struct fscrypt_get_key_status_arg arg; 1195 struct fscrypt_master_key *mk; 1196 int err; 1197 1198 if (copy_from_user(&arg, uarg, sizeof(arg))) 1199 return -EFAULT; 1200 1201 if (!valid_key_spec(&arg.key_spec)) 1202 return -EINVAL; 1203 1204 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1205 return -EINVAL; 1206 1207 arg.status_flags = 0; 1208 arg.user_count = 0; 1209 memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved)); 1210 1211 mk = fscrypt_find_master_key(sb, &arg.key_spec); 1212 if (!mk) { 1213 arg.status = FSCRYPT_KEY_STATUS_ABSENT; 1214 err = 0; 1215 goto out; 1216 } 1217 down_read(&mk->mk_sem); 1218 1219 if (!mk->mk_present) { 1220 arg.status = refcount_read(&mk->mk_active_refs) > 0 ? 1221 FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED : 1222 FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */; 1223 err = 0; 1224 goto out_release_key; 1225 } 1226 1227 arg.status = FSCRYPT_KEY_STATUS_PRESENT; 1228 if (mk->mk_users) { 1229 struct key *mk_user; 1230 1231 arg.user_count = mk->mk_users->keys.nr_leaves_on_tree; 1232 mk_user = find_master_key_user(mk); 1233 if (!IS_ERR(mk_user)) { 1234 arg.status_flags |= 1235 FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF; 1236 key_put(mk_user); 1237 } else if (mk_user != ERR_PTR(-ENOKEY)) { 1238 err = PTR_ERR(mk_user); 1239 goto out_release_key; 1240 } 1241 } 1242 err = 0; 1243 out_release_key: 1244 up_read(&mk->mk_sem); 1245 fscrypt_put_master_key(mk); 1246 out: 1247 if (!err && copy_to_user(uarg, &arg, sizeof(arg))) 1248 err = -EFAULT; 1249 return err; 1250 } 1251 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status); 1252 1253 int __init fscrypt_init_keyring(void) 1254 { 1255 int err; 1256 1257 err = register_key_type(&key_type_fscrypt_user); 1258 if (err) 1259 return err; 1260 1261 err = register_key_type(&key_type_fscrypt_provisioning); 1262 if (err) 1263 goto err_unregister_fscrypt_user; 1264 1265 return 0; 1266 1267 err_unregister_fscrypt_user: 1268 unregister_key_type(&key_type_fscrypt_user); 1269 return err; 1270 } 1271