1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/crypto/hooks.c 4 * 5 * Encryption hooks for higher-level filesystem operations. 6 */ 7 8 #include "fscrypt_private.h" 9 10 /** 11 * fscrypt_file_open() - prepare to open a possibly-encrypted regular file 12 * @inode: the inode being opened 13 * @filp: the struct file being set up 14 * 15 * Currently, an encrypted regular file can only be opened if its encryption key 16 * is available; access to the raw encrypted contents is not supported. 17 * Therefore, we first set up the inode's encryption key (if not already done) 18 * and return an error if it's unavailable. 19 * 20 * We also verify that if the parent directory (from the path via which the file 21 * is being opened) is encrypted, then the inode being opened uses the same 22 * encryption policy. This is needed as part of the enforcement that all files 23 * in an encrypted directory tree use the same encryption policy, as a 24 * protection against certain types of offline attacks. Note that this check is 25 * needed even when opening an *unencrypted* file, since it's forbidden to have 26 * an unencrypted file in an encrypted directory. 27 * 28 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code 29 */ 30 int fscrypt_file_open(struct inode *inode, struct file *filp) 31 { 32 int err; 33 struct dentry *dir; 34 35 err = fscrypt_require_key(inode); 36 if (err) 37 return err; 38 39 dir = dget_parent(file_dentry(filp)); 40 if (IS_ENCRYPTED(d_inode(dir)) && 41 !fscrypt_has_permitted_context(d_inode(dir), inode)) { 42 fscrypt_warn(inode, 43 "Inconsistent encryption context (parent directory: %lu)", 44 d_inode(dir)->i_ino); 45 err = -EPERM; 46 } 47 dput(dir); 48 return err; 49 } 50 EXPORT_SYMBOL_GPL(fscrypt_file_open); 51 52 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 53 struct dentry *dentry) 54 { 55 if (fscrypt_is_nokey_name(dentry)) 56 return -ENOKEY; 57 /* 58 * We don't need to separately check that the directory inode's key is 59 * available, as it's implied by the dentry not being a no-key name. 60 */ 61 62 if (!fscrypt_has_permitted_context(dir, inode)) 63 return -EXDEV; 64 65 return 0; 66 } 67 EXPORT_SYMBOL_GPL(__fscrypt_prepare_link); 68 69 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, 70 struct inode *new_dir, struct dentry *new_dentry, 71 unsigned int flags) 72 { 73 if (fscrypt_is_nokey_name(old_dentry) || 74 fscrypt_is_nokey_name(new_dentry)) 75 return -ENOKEY; 76 /* 77 * We don't need to separately check that the directory inodes' keys are 78 * available, as it's implied by the dentries not being no-key names. 79 */ 80 81 if (old_dir != new_dir) { 82 if (IS_ENCRYPTED(new_dir) && 83 !fscrypt_has_permitted_context(new_dir, 84 d_inode(old_dentry))) 85 return -EXDEV; 86 87 if ((flags & RENAME_EXCHANGE) && 88 IS_ENCRYPTED(old_dir) && 89 !fscrypt_has_permitted_context(old_dir, 90 d_inode(new_dentry))) 91 return -EXDEV; 92 } 93 return 0; 94 } 95 EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename); 96 97 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, 98 struct fscrypt_name *fname) 99 { 100 int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname); 101 102 if (err && err != -ENOENT) 103 return err; 104 105 if (fname->is_nokey_name) { 106 spin_lock(&dentry->d_lock); 107 dentry->d_flags |= DCACHE_NOKEY_NAME; 108 spin_unlock(&dentry->d_lock); 109 } 110 return err; 111 } 112 EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup); 113 114 /** 115 * fscrypt_prepare_lookup_partial() - prepare lookup without filename setup 116 * @dir: the encrypted directory being searched 117 * @dentry: the dentry being looked up in @dir 118 * 119 * This function should be used by the ->lookup and ->atomic_open methods of 120 * filesystems that handle filename encryption and no-key name encoding 121 * themselves and thus can't use fscrypt_prepare_lookup(). Like 122 * fscrypt_prepare_lookup(), this will try to set up the directory's encryption 123 * key and will set DCACHE_NOKEY_NAME on the dentry if the key is unavailable. 124 * However, this function doesn't set up a struct fscrypt_name for the filename. 125 * 126 * Return: 0 on success; -errno on error. Note that the encryption key being 127 * unavailable is not considered an error. It is also not an error if 128 * the encryption policy is unsupported by this kernel; that is treated 129 * like the key being unavailable, so that files can still be deleted. 130 */ 131 int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry) 132 { 133 int err = fscrypt_get_encryption_info(dir, true); 134 135 if (!err && !fscrypt_has_encryption_key(dir)) { 136 spin_lock(&dentry->d_lock); 137 dentry->d_flags |= DCACHE_NOKEY_NAME; 138 spin_unlock(&dentry->d_lock); 139 } 140 return err; 141 } 142 EXPORT_SYMBOL_GPL(fscrypt_prepare_lookup_partial); 143 144 int __fscrypt_prepare_readdir(struct inode *dir) 145 { 146 return fscrypt_get_encryption_info(dir, true); 147 } 148 EXPORT_SYMBOL_GPL(__fscrypt_prepare_readdir); 149 150 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr) 151 { 152 if (attr->ia_valid & ATTR_SIZE) 153 return fscrypt_require_key(d_inode(dentry)); 154 return 0; 155 } 156 EXPORT_SYMBOL_GPL(__fscrypt_prepare_setattr); 157 158 /** 159 * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS 160 * @inode: the inode on which flags are being changed 161 * @oldflags: the old flags 162 * @flags: the new flags 163 * 164 * The caller should be holding i_rwsem for write. 165 * 166 * Return: 0 on success; -errno if the flags change isn't allowed or if 167 * another error occurs. 168 */ 169 int fscrypt_prepare_setflags(struct inode *inode, 170 unsigned int oldflags, unsigned int flags) 171 { 172 struct fscrypt_inode_info *ci; 173 struct fscrypt_master_key *mk; 174 int err; 175 176 /* 177 * When the CASEFOLD flag is set on an encrypted directory, we must 178 * derive the secret key needed for the dirhash. This is only possible 179 * if the directory uses a v2 encryption policy. 180 */ 181 if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) { 182 err = fscrypt_require_key(inode); 183 if (err) 184 return err; 185 ci = inode->i_crypt_info; 186 if (ci->ci_policy.version != FSCRYPT_POLICY_V2) 187 return -EINVAL; 188 mk = ci->ci_master_key; 189 down_read(&mk->mk_sem); 190 if (mk->mk_present) 191 err = fscrypt_derive_dirhash_key(ci, mk); 192 else 193 err = -ENOKEY; 194 up_read(&mk->mk_sem); 195 return err; 196 } 197 return 0; 198 } 199 200 /** 201 * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink 202 * @dir: directory in which the symlink is being created 203 * @target: plaintext symlink target 204 * @len: length of @target excluding null terminator 205 * @max_len: space the filesystem has available to store the symlink target 206 * @disk_link: (out) the on-disk symlink target being prepared 207 * 208 * This function computes the size the symlink target will require on-disk, 209 * stores it in @disk_link->len, and validates it against @max_len. An 210 * encrypted symlink may be longer than the original. 211 * 212 * Additionally, @disk_link->name is set to @target if the symlink will be 213 * unencrypted, but left NULL if the symlink will be encrypted. For encrypted 214 * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the 215 * on-disk target later. (The reason for the two-step process is that some 216 * filesystems need to know the size of the symlink target before creating the 217 * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.) 218 * 219 * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long, 220 * -ENOKEY if the encryption key is missing, or another -errno code if a problem 221 * occurred while setting up the encryption key. 222 */ 223 int fscrypt_prepare_symlink(struct inode *dir, const char *target, 224 unsigned int len, unsigned int max_len, 225 struct fscrypt_str *disk_link) 226 { 227 const union fscrypt_policy *policy; 228 229 /* 230 * To calculate the size of the encrypted symlink target we need to know 231 * the amount of NUL padding, which is determined by the flags set in 232 * the encryption policy which will be inherited from the directory. 233 */ 234 policy = fscrypt_policy_to_inherit(dir); 235 if (policy == NULL) { 236 /* Not encrypted */ 237 disk_link->name = (unsigned char *)target; 238 disk_link->len = len + 1; 239 if (disk_link->len > max_len) 240 return -ENAMETOOLONG; 241 return 0; 242 } 243 if (IS_ERR(policy)) 244 return PTR_ERR(policy); 245 246 /* 247 * Calculate the size of the encrypted symlink and verify it won't 248 * exceed max_len. Note that for historical reasons, encrypted symlink 249 * targets are prefixed with the ciphertext length, despite this 250 * actually being redundant with i_size. This decreases by 2 bytes the 251 * longest symlink target we can accept. 252 * 253 * We could recover 1 byte by not counting a null terminator, but 254 * counting it (even though it is meaningless for ciphertext) is simpler 255 * for now since filesystems will assume it is there and subtract it. 256 */ 257 if (!__fscrypt_fname_encrypted_size(policy, len, 258 max_len - sizeof(struct fscrypt_symlink_data) - 1, 259 &disk_link->len)) 260 return -ENAMETOOLONG; 261 disk_link->len += sizeof(struct fscrypt_symlink_data) + 1; 262 263 disk_link->name = NULL; 264 return 0; 265 } 266 EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink); 267 268 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, 269 unsigned int len, struct fscrypt_str *disk_link) 270 { 271 int err; 272 struct qstr iname = QSTR_INIT(target, len); 273 struct fscrypt_symlink_data *sd; 274 unsigned int ciphertext_len; 275 276 /* 277 * fscrypt_prepare_new_inode() should have already set up the new 278 * symlink inode's encryption key. We don't wait until now to do it, 279 * since we may be in a filesystem transaction now. 280 */ 281 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode))) 282 return -ENOKEY; 283 284 if (disk_link->name) { 285 /* filesystem-provided buffer */ 286 sd = (struct fscrypt_symlink_data *)disk_link->name; 287 } else { 288 sd = kmalloc(disk_link->len, GFP_NOFS); 289 if (!sd) 290 return -ENOMEM; 291 } 292 ciphertext_len = disk_link->len - sizeof(*sd) - 1; 293 sd->len = cpu_to_le16(ciphertext_len); 294 295 err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path, 296 ciphertext_len); 297 if (err) 298 goto err_free_sd; 299 300 /* 301 * Null-terminating the ciphertext doesn't make sense, but we still 302 * count the null terminator in the length, so we might as well 303 * initialize it just in case the filesystem writes it out. 304 */ 305 sd->encrypted_path[ciphertext_len] = '\0'; 306 307 /* Cache the plaintext symlink target for later use by get_link() */ 308 err = -ENOMEM; 309 inode->i_link = kmemdup(target, len + 1, GFP_NOFS); 310 if (!inode->i_link) 311 goto err_free_sd; 312 313 if (!disk_link->name) 314 disk_link->name = (unsigned char *)sd; 315 return 0; 316 317 err_free_sd: 318 if (!disk_link->name) 319 kfree(sd); 320 return err; 321 } 322 EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink); 323 324 /** 325 * fscrypt_get_symlink() - get the target of an encrypted symlink 326 * @inode: the symlink inode 327 * @caddr: the on-disk contents of the symlink 328 * @max_size: size of @caddr buffer 329 * @done: if successful, will be set up to free the returned target if needed 330 * 331 * If the symlink's encryption key is available, we decrypt its target. 332 * Otherwise, we encode its target for presentation. 333 * 334 * This may sleep, so the filesystem must have dropped out of RCU mode already. 335 * 336 * Return: the presentable symlink target or an ERR_PTR() 337 */ 338 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, 339 unsigned int max_size, 340 struct delayed_call *done) 341 { 342 const struct fscrypt_symlink_data *sd; 343 struct fscrypt_str cstr, pstr; 344 bool has_key; 345 int err; 346 347 /* This is for encrypted symlinks only */ 348 if (WARN_ON_ONCE(!IS_ENCRYPTED(inode))) 349 return ERR_PTR(-EINVAL); 350 351 /* If the decrypted target is already cached, just return it. */ 352 pstr.name = READ_ONCE(inode->i_link); 353 if (pstr.name) 354 return pstr.name; 355 356 /* 357 * Try to set up the symlink's encryption key, but we can continue 358 * regardless of whether the key is available or not. 359 */ 360 err = fscrypt_get_encryption_info(inode, false); 361 if (err) 362 return ERR_PTR(err); 363 has_key = fscrypt_has_encryption_key(inode); 364 365 /* 366 * For historical reasons, encrypted symlink targets are prefixed with 367 * the ciphertext length, even though this is redundant with i_size. 368 */ 369 370 if (max_size < sizeof(*sd) + 1) 371 return ERR_PTR(-EUCLEAN); 372 sd = caddr; 373 cstr.name = (unsigned char *)sd->encrypted_path; 374 cstr.len = le16_to_cpu(sd->len); 375 376 if (cstr.len == 0) 377 return ERR_PTR(-EUCLEAN); 378 379 if (cstr.len + sizeof(*sd) > max_size) 380 return ERR_PTR(-EUCLEAN); 381 382 err = fscrypt_fname_alloc_buffer(cstr.len, &pstr); 383 if (err) 384 return ERR_PTR(err); 385 386 err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr); 387 if (err) 388 goto err_kfree; 389 390 err = -EUCLEAN; 391 if (pstr.name[0] == '\0') 392 goto err_kfree; 393 394 pstr.name[pstr.len] = '\0'; 395 396 /* 397 * Cache decrypted symlink targets in i_link for later use. Don't cache 398 * symlink targets encoded without the key, since those become outdated 399 * once the key is added. This pairs with the READ_ONCE() above and in 400 * the VFS path lookup code. 401 */ 402 if (!has_key || 403 cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL) 404 set_delayed_call(done, kfree_link, pstr.name); 405 406 return pstr.name; 407 408 err_kfree: 409 kfree(pstr.name); 410 return ERR_PTR(err); 411 } 412 EXPORT_SYMBOL_GPL(fscrypt_get_symlink); 413 414 /** 415 * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks 416 * @path: the path for the encrypted symlink being queried 417 * @stat: the struct being filled with the symlink's attributes 418 * 419 * Override st_size of encrypted symlinks to be the length of the decrypted 420 * symlink target (or the no-key encoded symlink target, if the key is 421 * unavailable) rather than the length of the encrypted symlink target. This is 422 * necessary for st_size to match the symlink target that userspace actually 423 * sees. POSIX requires this, and some userspace programs depend on it. 424 * 425 * This requires reading the symlink target from disk if needed, setting up the 426 * inode's encryption key if possible, and then decrypting or encoding the 427 * symlink target. This makes lstat() more heavyweight than is normally the 428 * case. However, decrypted symlink targets will be cached in ->i_link, so 429 * usually the symlink won't have to be read and decrypted again later if/when 430 * it is actually followed, readlink() is called, or lstat() is called again. 431 * 432 * Return: 0 on success, -errno on failure 433 */ 434 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat) 435 { 436 struct dentry *dentry = path->dentry; 437 struct inode *inode = d_inode(dentry); 438 const char *link; 439 DEFINE_DELAYED_CALL(done); 440 441 /* 442 * To get the symlink target that userspace will see (whether it's the 443 * decrypted target or the no-key encoded target), we can just get it in 444 * the same way the VFS does during path resolution and readlink(). 445 */ 446 link = READ_ONCE(inode->i_link); 447 if (!link) { 448 link = inode->i_op->get_link(dentry, inode, &done); 449 if (IS_ERR(link)) 450 return PTR_ERR(link); 451 } 452 stat->size = strlen(link); 453 do_delayed_call(&done); 454 return 0; 455 } 456 EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr); 457