xref: /linux/fs/crypto/hooks.c (revision 2dbc0838bcf24ca59cabc3130cf3b1d6809cdcd4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/crypto/hooks.c
4  *
5  * Encryption hooks for higher-level filesystem operations.
6  */
7 
8 #include "fscrypt_private.h"
9 
10 /**
11  * fscrypt_file_open - prepare to open a possibly-encrypted regular file
12  * @inode: the inode being opened
13  * @filp: the struct file being set up
14  *
15  * Currently, an encrypted regular file can only be opened if its encryption key
16  * is available; access to the raw encrypted contents is not supported.
17  * Therefore, we first set up the inode's encryption key (if not already done)
18  * and return an error if it's unavailable.
19  *
20  * We also verify that if the parent directory (from the path via which the file
21  * is being opened) is encrypted, then the inode being opened uses the same
22  * encryption policy.  This is needed as part of the enforcement that all files
23  * in an encrypted directory tree use the same encryption policy, as a
24  * protection against certain types of offline attacks.  Note that this check is
25  * needed even when opening an *unencrypted* file, since it's forbidden to have
26  * an unencrypted file in an encrypted directory.
27  *
28  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
29  */
30 int fscrypt_file_open(struct inode *inode, struct file *filp)
31 {
32 	int err;
33 	struct dentry *dir;
34 
35 	err = fscrypt_require_key(inode);
36 	if (err)
37 		return err;
38 
39 	dir = dget_parent(file_dentry(filp));
40 	if (IS_ENCRYPTED(d_inode(dir)) &&
41 	    !fscrypt_has_permitted_context(d_inode(dir), inode)) {
42 		fscrypt_warn(inode->i_sb,
43 			     "inconsistent encryption contexts: %lu/%lu",
44 			     d_inode(dir)->i_ino, inode->i_ino);
45 		err = -EPERM;
46 	}
47 	dput(dir);
48 	return err;
49 }
50 EXPORT_SYMBOL_GPL(fscrypt_file_open);
51 
52 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
53 			   struct dentry *dentry)
54 {
55 	int err;
56 
57 	err = fscrypt_require_key(dir);
58 	if (err)
59 		return err;
60 
61 	/* ... in case we looked up ciphertext name before key was added */
62 	if (dentry->d_flags & DCACHE_ENCRYPTED_NAME)
63 		return -ENOKEY;
64 
65 	if (!fscrypt_has_permitted_context(dir, inode))
66 		return -EXDEV;
67 
68 	return 0;
69 }
70 EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
71 
72 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
73 			     struct inode *new_dir, struct dentry *new_dentry,
74 			     unsigned int flags)
75 {
76 	int err;
77 
78 	err = fscrypt_require_key(old_dir);
79 	if (err)
80 		return err;
81 
82 	err = fscrypt_require_key(new_dir);
83 	if (err)
84 		return err;
85 
86 	/* ... in case we looked up ciphertext name(s) before key was added */
87 	if ((old_dentry->d_flags | new_dentry->d_flags) &
88 	    DCACHE_ENCRYPTED_NAME)
89 		return -ENOKEY;
90 
91 	if (old_dir != new_dir) {
92 		if (IS_ENCRYPTED(new_dir) &&
93 		    !fscrypt_has_permitted_context(new_dir,
94 						   d_inode(old_dentry)))
95 			return -EXDEV;
96 
97 		if ((flags & RENAME_EXCHANGE) &&
98 		    IS_ENCRYPTED(old_dir) &&
99 		    !fscrypt_has_permitted_context(old_dir,
100 						   d_inode(new_dentry)))
101 			return -EXDEV;
102 	}
103 	return 0;
104 }
105 EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
106 
107 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
108 			     struct fscrypt_name *fname)
109 {
110 	int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
111 
112 	if (err && err != -ENOENT)
113 		return err;
114 
115 	if (fname->is_ciphertext_name) {
116 		spin_lock(&dentry->d_lock);
117 		dentry->d_flags |= DCACHE_ENCRYPTED_NAME;
118 		spin_unlock(&dentry->d_lock);
119 		d_set_d_op(dentry, &fscrypt_d_ops);
120 	}
121 	return err;
122 }
123 EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
124 
125 int __fscrypt_prepare_symlink(struct inode *dir, unsigned int len,
126 			      unsigned int max_len,
127 			      struct fscrypt_str *disk_link)
128 {
129 	int err;
130 
131 	/*
132 	 * To calculate the size of the encrypted symlink target we need to know
133 	 * the amount of NUL padding, which is determined by the flags set in
134 	 * the encryption policy which will be inherited from the directory.
135 	 * The easiest way to get access to this is to just load the directory's
136 	 * fscrypt_info, since we'll need it to create the dir_entry anyway.
137 	 *
138 	 * Note: in test_dummy_encryption mode, @dir may be unencrypted.
139 	 */
140 	err = fscrypt_get_encryption_info(dir);
141 	if (err)
142 		return err;
143 	if (!fscrypt_has_encryption_key(dir))
144 		return -ENOKEY;
145 
146 	/*
147 	 * Calculate the size of the encrypted symlink and verify it won't
148 	 * exceed max_len.  Note that for historical reasons, encrypted symlink
149 	 * targets are prefixed with the ciphertext length, despite this
150 	 * actually being redundant with i_size.  This decreases by 2 bytes the
151 	 * longest symlink target we can accept.
152 	 *
153 	 * We could recover 1 byte by not counting a null terminator, but
154 	 * counting it (even though it is meaningless for ciphertext) is simpler
155 	 * for now since filesystems will assume it is there and subtract it.
156 	 */
157 	if (!fscrypt_fname_encrypted_size(dir, len,
158 					  max_len - sizeof(struct fscrypt_symlink_data),
159 					  &disk_link->len))
160 		return -ENAMETOOLONG;
161 	disk_link->len += sizeof(struct fscrypt_symlink_data);
162 
163 	disk_link->name = NULL;
164 	return 0;
165 }
166 EXPORT_SYMBOL_GPL(__fscrypt_prepare_symlink);
167 
168 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
169 			      unsigned int len, struct fscrypt_str *disk_link)
170 {
171 	int err;
172 	struct qstr iname = QSTR_INIT(target, len);
173 	struct fscrypt_symlink_data *sd;
174 	unsigned int ciphertext_len;
175 
176 	err = fscrypt_require_key(inode);
177 	if (err)
178 		return err;
179 
180 	if (disk_link->name) {
181 		/* filesystem-provided buffer */
182 		sd = (struct fscrypt_symlink_data *)disk_link->name;
183 	} else {
184 		sd = kmalloc(disk_link->len, GFP_NOFS);
185 		if (!sd)
186 			return -ENOMEM;
187 	}
188 	ciphertext_len = disk_link->len - sizeof(*sd);
189 	sd->len = cpu_to_le16(ciphertext_len);
190 
191 	err = fname_encrypt(inode, &iname, sd->encrypted_path, ciphertext_len);
192 	if (err)
193 		goto err_free_sd;
194 
195 	/*
196 	 * Null-terminating the ciphertext doesn't make sense, but we still
197 	 * count the null terminator in the length, so we might as well
198 	 * initialize it just in case the filesystem writes it out.
199 	 */
200 	sd->encrypted_path[ciphertext_len] = '\0';
201 
202 	/* Cache the plaintext symlink target for later use by get_link() */
203 	err = -ENOMEM;
204 	inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
205 	if (!inode->i_link)
206 		goto err_free_sd;
207 
208 	if (!disk_link->name)
209 		disk_link->name = (unsigned char *)sd;
210 	return 0;
211 
212 err_free_sd:
213 	if (!disk_link->name)
214 		kfree(sd);
215 	return err;
216 }
217 EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
218 
219 /**
220  * fscrypt_get_symlink - get the target of an encrypted symlink
221  * @inode: the symlink inode
222  * @caddr: the on-disk contents of the symlink
223  * @max_size: size of @caddr buffer
224  * @done: if successful, will be set up to free the returned target if needed
225  *
226  * If the symlink's encryption key is available, we decrypt its target.
227  * Otherwise, we encode its target for presentation.
228  *
229  * This may sleep, so the filesystem must have dropped out of RCU mode already.
230  *
231  * Return: the presentable symlink target or an ERR_PTR()
232  */
233 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
234 				unsigned int max_size,
235 				struct delayed_call *done)
236 {
237 	const struct fscrypt_symlink_data *sd;
238 	struct fscrypt_str cstr, pstr;
239 	bool has_key;
240 	int err;
241 
242 	/* This is for encrypted symlinks only */
243 	if (WARN_ON(!IS_ENCRYPTED(inode)))
244 		return ERR_PTR(-EINVAL);
245 
246 	/* If the decrypted target is already cached, just return it. */
247 	pstr.name = READ_ONCE(inode->i_link);
248 	if (pstr.name)
249 		return pstr.name;
250 
251 	/*
252 	 * Try to set up the symlink's encryption key, but we can continue
253 	 * regardless of whether the key is available or not.
254 	 */
255 	err = fscrypt_get_encryption_info(inode);
256 	if (err)
257 		return ERR_PTR(err);
258 	has_key = fscrypt_has_encryption_key(inode);
259 
260 	/*
261 	 * For historical reasons, encrypted symlink targets are prefixed with
262 	 * the ciphertext length, even though this is redundant with i_size.
263 	 */
264 
265 	if (max_size < sizeof(*sd))
266 		return ERR_PTR(-EUCLEAN);
267 	sd = caddr;
268 	cstr.name = (unsigned char *)sd->encrypted_path;
269 	cstr.len = le16_to_cpu(sd->len);
270 
271 	if (cstr.len == 0)
272 		return ERR_PTR(-EUCLEAN);
273 
274 	if (cstr.len + sizeof(*sd) - 1 > max_size)
275 		return ERR_PTR(-EUCLEAN);
276 
277 	err = fscrypt_fname_alloc_buffer(inode, cstr.len, &pstr);
278 	if (err)
279 		return ERR_PTR(err);
280 
281 	err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
282 	if (err)
283 		goto err_kfree;
284 
285 	err = -EUCLEAN;
286 	if (pstr.name[0] == '\0')
287 		goto err_kfree;
288 
289 	pstr.name[pstr.len] = '\0';
290 
291 	/*
292 	 * Cache decrypted symlink targets in i_link for later use.  Don't cache
293 	 * symlink targets encoded without the key, since those become outdated
294 	 * once the key is added.  This pairs with the READ_ONCE() above and in
295 	 * the VFS path lookup code.
296 	 */
297 	if (!has_key ||
298 	    cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
299 		set_delayed_call(done, kfree_link, pstr.name);
300 
301 	return pstr.name;
302 
303 err_kfree:
304 	kfree(pstr.name);
305 	return ERR_PTR(err);
306 }
307 EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
308