xref: /linux/fs/crypto/hkdf.c (revision 7bc5c428a660d4d1bc95ba54bf4cb6bccf8c3029)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implementation of HKDF ("HMAC-based Extract-and-Expand Key Derivation
4  * Function"), aka RFC 5869.  See also the original paper (Krawczyk 2010):
5  * "Cryptographic Extraction and Key Derivation: The HKDF Scheme".
6  *
7  * This is used to derive keys from the fscrypt master keys.
8  *
9  * Copyright 2019 Google LLC
10  */
11 
12 #include <crypto/hash.h>
13 #include <crypto/sha.h>
14 
15 #include "fscrypt_private.h"
16 
17 /*
18  * HKDF supports any unkeyed cryptographic hash algorithm, but fscrypt uses
19  * SHA-512 because it is reasonably secure and efficient; and since it produces
20  * a 64-byte digest, deriving an AES-256-XTS key preserves all 64 bytes of
21  * entropy from the master key and requires only one iteration of HKDF-Expand.
22  */
23 #define HKDF_HMAC_ALG		"hmac(sha512)"
24 #define HKDF_HASHLEN		SHA512_DIGEST_SIZE
25 
26 /*
27  * HKDF consists of two steps:
28  *
29  * 1. HKDF-Extract: extract a pseudorandom key of length HKDF_HASHLEN bytes from
30  *    the input keying material and optional salt.
31  * 2. HKDF-Expand: expand the pseudorandom key into output keying material of
32  *    any length, parameterized by an application-specific info string.
33  *
34  * HKDF-Extract can be skipped if the input is already a pseudorandom key of
35  * length HKDF_HASHLEN bytes.  However, cipher modes other than AES-256-XTS take
36  * shorter keys, and we don't want to force users of those modes to provide
37  * unnecessarily long master keys.  Thus fscrypt still does HKDF-Extract.  No
38  * salt is used, since fscrypt master keys should already be pseudorandom and
39  * there's no way to persist a random salt per master key from kernel mode.
40  */
41 
42 /* HKDF-Extract (RFC 5869 section 2.2), unsalted */
43 static int hkdf_extract(struct crypto_shash *hmac_tfm, const u8 *ikm,
44 			unsigned int ikmlen, u8 prk[HKDF_HASHLEN])
45 {
46 	static const u8 default_salt[HKDF_HASHLEN];
47 	int err;
48 
49 	err = crypto_shash_setkey(hmac_tfm, default_salt, HKDF_HASHLEN);
50 	if (err)
51 		return err;
52 
53 	return crypto_shash_tfm_digest(hmac_tfm, ikm, ikmlen, prk);
54 }
55 
56 /*
57  * Compute HKDF-Extract using the given master key as the input keying material,
58  * and prepare an HMAC transform object keyed by the resulting pseudorandom key.
59  *
60  * Afterwards, the keyed HMAC transform object can be used for HKDF-Expand many
61  * times without having to recompute HKDF-Extract each time.
62  */
63 int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
64 		      unsigned int master_key_size)
65 {
66 	struct crypto_shash *hmac_tfm;
67 	u8 prk[HKDF_HASHLEN];
68 	int err;
69 
70 	hmac_tfm = crypto_alloc_shash(HKDF_HMAC_ALG, 0, 0);
71 	if (IS_ERR(hmac_tfm)) {
72 		fscrypt_err(NULL, "Error allocating " HKDF_HMAC_ALG ": %ld",
73 			    PTR_ERR(hmac_tfm));
74 		return PTR_ERR(hmac_tfm);
75 	}
76 
77 	if (WARN_ON(crypto_shash_digestsize(hmac_tfm) != sizeof(prk))) {
78 		err = -EINVAL;
79 		goto err_free_tfm;
80 	}
81 
82 	err = hkdf_extract(hmac_tfm, master_key, master_key_size, prk);
83 	if (err)
84 		goto err_free_tfm;
85 
86 	err = crypto_shash_setkey(hmac_tfm, prk, sizeof(prk));
87 	if (err)
88 		goto err_free_tfm;
89 
90 	hkdf->hmac_tfm = hmac_tfm;
91 	goto out;
92 
93 err_free_tfm:
94 	crypto_free_shash(hmac_tfm);
95 out:
96 	memzero_explicit(prk, sizeof(prk));
97 	return err;
98 }
99 
100 /*
101  * HKDF-Expand (RFC 5869 section 2.3).  This expands the pseudorandom key, which
102  * was already keyed into 'hkdf->hmac_tfm' by fscrypt_init_hkdf(), into 'okmlen'
103  * bytes of output keying material parameterized by the application-specific
104  * 'info' of length 'infolen' bytes, prefixed by "fscrypt\0" and the 'context'
105  * byte.  This is thread-safe and may be called by multiple threads in parallel.
106  *
107  * ('context' isn't part of the HKDF specification; it's just a prefix fscrypt
108  * adds to its application-specific info strings to guarantee that it doesn't
109  * accidentally repeat an info string when using HKDF for different purposes.)
110  */
111 int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context,
112 			const u8 *info, unsigned int infolen,
113 			u8 *okm, unsigned int okmlen)
114 {
115 	SHASH_DESC_ON_STACK(desc, hkdf->hmac_tfm);
116 	u8 prefix[9];
117 	unsigned int i;
118 	int err;
119 	const u8 *prev = NULL;
120 	u8 counter = 1;
121 	u8 tmp[HKDF_HASHLEN];
122 
123 	if (WARN_ON(okmlen > 255 * HKDF_HASHLEN))
124 		return -EINVAL;
125 
126 	desc->tfm = hkdf->hmac_tfm;
127 
128 	memcpy(prefix, "fscrypt\0", 8);
129 	prefix[8] = context;
130 
131 	for (i = 0; i < okmlen; i += HKDF_HASHLEN) {
132 
133 		err = crypto_shash_init(desc);
134 		if (err)
135 			goto out;
136 
137 		if (prev) {
138 			err = crypto_shash_update(desc, prev, HKDF_HASHLEN);
139 			if (err)
140 				goto out;
141 		}
142 
143 		err = crypto_shash_update(desc, prefix, sizeof(prefix));
144 		if (err)
145 			goto out;
146 
147 		err = crypto_shash_update(desc, info, infolen);
148 		if (err)
149 			goto out;
150 
151 		BUILD_BUG_ON(sizeof(counter) != 1);
152 		if (okmlen - i < HKDF_HASHLEN) {
153 			err = crypto_shash_finup(desc, &counter, 1, tmp);
154 			if (err)
155 				goto out;
156 			memcpy(&okm[i], tmp, okmlen - i);
157 			memzero_explicit(tmp, sizeof(tmp));
158 		} else {
159 			err = crypto_shash_finup(desc, &counter, 1, &okm[i]);
160 			if (err)
161 				goto out;
162 		}
163 		counter++;
164 		prev = &okm[i];
165 	}
166 	err = 0;
167 out:
168 	if (unlikely(err))
169 		memzero_explicit(okm, okmlen); /* so caller doesn't need to */
170 	shash_desc_zero(desc);
171 	return err;
172 }
173 
174 void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf)
175 {
176 	crypto_free_shash(hkdf->hmac_tfm);
177 }
178