xref: /linux/fs/crypto/fscrypt_private.h (revision 5b11888471806edf699316d4dcb9b426caebbef2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fscrypt_private.h
4  *
5  * Copyright (C) 2015, Google, Inc.
6  *
7  * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8  * Heavily modified since then.
9  */
10 
11 #ifndef _FSCRYPT_PRIVATE_H
12 #define _FSCRYPT_PRIVATE_H
13 
14 #include <linux/fscrypt.h>
15 #include <linux/siphash.h>
16 #include <crypto/hash.h>
17 #include <linux/blk-crypto.h>
18 
19 #define CONST_STRLEN(str)	(sizeof(str) - 1)
20 
21 #define FSCRYPT_FILE_NONCE_SIZE	16
22 
23 /*
24  * Minimum size of an fscrypt master key.  Note: a longer key will be required
25  * if ciphers with a 256-bit security strength are used.  This is just the
26  * absolute minimum, which applies when only 128-bit encryption is used.
27  */
28 #define FSCRYPT_MIN_KEY_SIZE	16
29 
30 #define FSCRYPT_CONTEXT_V1	1
31 #define FSCRYPT_CONTEXT_V2	2
32 
33 /* Keep this in sync with include/uapi/linux/fscrypt.h */
34 #define FSCRYPT_MODE_MAX	FSCRYPT_MODE_AES_256_HCTR2
35 
36 struct fscrypt_context_v1 {
37 	u8 version; /* FSCRYPT_CONTEXT_V1 */
38 	u8 contents_encryption_mode;
39 	u8 filenames_encryption_mode;
40 	u8 flags;
41 	u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
42 	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
43 };
44 
45 struct fscrypt_context_v2 {
46 	u8 version; /* FSCRYPT_CONTEXT_V2 */
47 	u8 contents_encryption_mode;
48 	u8 filenames_encryption_mode;
49 	u8 flags;
50 	u8 log2_data_unit_size;
51 	u8 __reserved[3];
52 	u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
53 	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
54 };
55 
56 /*
57  * fscrypt_context - the encryption context of an inode
58  *
59  * This is the on-disk equivalent of an fscrypt_policy, stored alongside each
60  * encrypted file usually in a hidden extended attribute.  It contains the
61  * fields from the fscrypt_policy, in order to identify the encryption algorithm
62  * and key with which the file is encrypted.  It also contains a nonce that was
63  * randomly generated by fscrypt itself; this is used as KDF input or as a tweak
64  * to cause different files to be encrypted differently.
65  */
66 union fscrypt_context {
67 	u8 version;
68 	struct fscrypt_context_v1 v1;
69 	struct fscrypt_context_v2 v2;
70 };
71 
72 /*
73  * Return the size expected for the given fscrypt_context based on its version
74  * number, or 0 if the context version is unrecognized.
75  */
76 static inline int fscrypt_context_size(const union fscrypt_context *ctx)
77 {
78 	switch (ctx->version) {
79 	case FSCRYPT_CONTEXT_V1:
80 		BUILD_BUG_ON(sizeof(ctx->v1) != 28);
81 		return sizeof(ctx->v1);
82 	case FSCRYPT_CONTEXT_V2:
83 		BUILD_BUG_ON(sizeof(ctx->v2) != 40);
84 		return sizeof(ctx->v2);
85 	}
86 	return 0;
87 }
88 
89 /* Check whether an fscrypt_context has a recognized version number and size */
90 static inline bool fscrypt_context_is_valid(const union fscrypt_context *ctx,
91 					    int ctx_size)
92 {
93 	return ctx_size >= 1 && ctx_size == fscrypt_context_size(ctx);
94 }
95 
96 /* Retrieve the context's nonce, assuming the context was already validated */
97 static inline const u8 *fscrypt_context_nonce(const union fscrypt_context *ctx)
98 {
99 	switch (ctx->version) {
100 	case FSCRYPT_CONTEXT_V1:
101 		return ctx->v1.nonce;
102 	case FSCRYPT_CONTEXT_V2:
103 		return ctx->v2.nonce;
104 	}
105 	WARN_ON_ONCE(1);
106 	return NULL;
107 }
108 
109 union fscrypt_policy {
110 	u8 version;
111 	struct fscrypt_policy_v1 v1;
112 	struct fscrypt_policy_v2 v2;
113 };
114 
115 /*
116  * Return the size expected for the given fscrypt_policy based on its version
117  * number, or 0 if the policy version is unrecognized.
118  */
119 static inline int fscrypt_policy_size(const union fscrypt_policy *policy)
120 {
121 	switch (policy->version) {
122 	case FSCRYPT_POLICY_V1:
123 		return sizeof(policy->v1);
124 	case FSCRYPT_POLICY_V2:
125 		return sizeof(policy->v2);
126 	}
127 	return 0;
128 }
129 
130 /* Return the contents encryption mode of a valid encryption policy */
131 static inline u8
132 fscrypt_policy_contents_mode(const union fscrypt_policy *policy)
133 {
134 	switch (policy->version) {
135 	case FSCRYPT_POLICY_V1:
136 		return policy->v1.contents_encryption_mode;
137 	case FSCRYPT_POLICY_V2:
138 		return policy->v2.contents_encryption_mode;
139 	}
140 	BUG();
141 }
142 
143 /* Return the filenames encryption mode of a valid encryption policy */
144 static inline u8
145 fscrypt_policy_fnames_mode(const union fscrypt_policy *policy)
146 {
147 	switch (policy->version) {
148 	case FSCRYPT_POLICY_V1:
149 		return policy->v1.filenames_encryption_mode;
150 	case FSCRYPT_POLICY_V2:
151 		return policy->v2.filenames_encryption_mode;
152 	}
153 	BUG();
154 }
155 
156 /* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */
157 static inline u8
158 fscrypt_policy_flags(const union fscrypt_policy *policy)
159 {
160 	switch (policy->version) {
161 	case FSCRYPT_POLICY_V1:
162 		return policy->v1.flags;
163 	case FSCRYPT_POLICY_V2:
164 		return policy->v2.flags;
165 	}
166 	BUG();
167 }
168 
169 static inline int
170 fscrypt_policy_v2_du_bits(const struct fscrypt_policy_v2 *policy,
171 			  const struct inode *inode)
172 {
173 	return policy->log2_data_unit_size ?: inode->i_blkbits;
174 }
175 
176 static inline int
177 fscrypt_policy_du_bits(const union fscrypt_policy *policy,
178 		       const struct inode *inode)
179 {
180 	switch (policy->version) {
181 	case FSCRYPT_POLICY_V1:
182 		return inode->i_blkbits;
183 	case FSCRYPT_POLICY_V2:
184 		return fscrypt_policy_v2_du_bits(&policy->v2, inode);
185 	}
186 	BUG();
187 }
188 
189 /*
190  * For encrypted symlinks, the ciphertext length is stored at the beginning
191  * of the string in little-endian format.
192  */
193 struct fscrypt_symlink_data {
194 	__le16 len;
195 	char encrypted_path[];
196 } __packed;
197 
198 /**
199  * struct fscrypt_prepared_key - a key prepared for actual encryption/decryption
200  * @tfm: crypto API transform object
201  * @blk_key: key for blk-crypto
202  *
203  * Normally only one of the fields will be non-NULL.
204  */
205 struct fscrypt_prepared_key {
206 	struct crypto_skcipher *tfm;
207 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
208 	struct blk_crypto_key *blk_key;
209 #endif
210 };
211 
212 /*
213  * fscrypt_info - the "encryption key" for an inode
214  *
215  * When an encrypted file's key is made available, an instance of this struct is
216  * allocated and stored in ->i_crypt_info.  Once created, it remains until the
217  * inode is evicted.
218  */
219 struct fscrypt_info {
220 
221 	/* The key in a form prepared for actual encryption/decryption */
222 	struct fscrypt_prepared_key ci_enc_key;
223 
224 	/* True if ci_enc_key should be freed when this fscrypt_info is freed */
225 	bool ci_owns_key;
226 
227 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
228 	/*
229 	 * True if this inode will use inline encryption (blk-crypto) instead of
230 	 * the traditional filesystem-layer encryption.
231 	 */
232 	bool ci_inlinecrypt;
233 #endif
234 
235 	/*
236 	 * log2 of the data unit size (granularity of contents encryption) of
237 	 * this file.  This is computable from ci_policy and ci_inode but is
238 	 * cached here for efficiency.  Only used for regular files.
239 	 */
240 	u8 ci_data_unit_bits;
241 
242 	/* Cached value: log2 of number of data units per FS block */
243 	u8 ci_data_units_per_block_bits;
244 
245 	/*
246 	 * Encryption mode used for this inode.  It corresponds to either the
247 	 * contents or filenames encryption mode, depending on the inode type.
248 	 */
249 	struct fscrypt_mode *ci_mode;
250 
251 	/* Back-pointer to the inode */
252 	struct inode *ci_inode;
253 
254 	/*
255 	 * The master key with which this inode was unlocked (decrypted).  This
256 	 * will be NULL if the master key was found in a process-subscribed
257 	 * keyring rather than in the filesystem-level keyring.
258 	 */
259 	struct fscrypt_master_key *ci_master_key;
260 
261 	/*
262 	 * Link in list of inodes that were unlocked with the master key.
263 	 * Only used when ->ci_master_key is set.
264 	 */
265 	struct list_head ci_master_key_link;
266 
267 	/*
268 	 * If non-NULL, then encryption is done using the master key directly
269 	 * and ci_enc_key will equal ci_direct_key->dk_key.
270 	 */
271 	struct fscrypt_direct_key *ci_direct_key;
272 
273 	/*
274 	 * This inode's hash key for filenames.  This is a 128-bit SipHash-2-4
275 	 * key.  This is only set for directories that use a keyed dirhash over
276 	 * the plaintext filenames -- currently just casefolded directories.
277 	 */
278 	siphash_key_t ci_dirhash_key;
279 	bool ci_dirhash_key_initialized;
280 
281 	/* The encryption policy used by this inode */
282 	union fscrypt_policy ci_policy;
283 
284 	/* This inode's nonce, copied from the fscrypt_context */
285 	u8 ci_nonce[FSCRYPT_FILE_NONCE_SIZE];
286 
287 	/* Hashed inode number.  Only set for IV_INO_LBLK_32 */
288 	u32 ci_hashed_ino;
289 };
290 
291 typedef enum {
292 	FS_DECRYPT = 0,
293 	FS_ENCRYPT,
294 } fscrypt_direction_t;
295 
296 /* crypto.c */
297 extern struct kmem_cache *fscrypt_info_cachep;
298 int fscrypt_initialize(struct super_block *sb);
299 int fscrypt_crypt_data_unit(const struct fscrypt_info *ci,
300 			    fscrypt_direction_t rw, u64 index,
301 			    struct page *src_page, struct page *dest_page,
302 			    unsigned int len, unsigned int offs,
303 			    gfp_t gfp_flags);
304 struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
305 
306 void __printf(3, 4) __cold
307 fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
308 
309 #define fscrypt_warn(inode, fmt, ...)		\
310 	fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
311 #define fscrypt_err(inode, fmt, ...)		\
312 	fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
313 
314 #define FSCRYPT_MAX_IV_SIZE	32
315 
316 union fscrypt_iv {
317 	struct {
318 		/* zero-based index of data unit within the file */
319 		__le64 index;
320 
321 		/* per-file nonce; only set in DIRECT_KEY mode */
322 		u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
323 	};
324 	u8 raw[FSCRYPT_MAX_IV_SIZE];
325 	__le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)];
326 };
327 
328 void fscrypt_generate_iv(union fscrypt_iv *iv, u64 index,
329 			 const struct fscrypt_info *ci);
330 
331 /*
332  * Return the number of bits used by the maximum file data unit index that is
333  * possible on the given filesystem, using the given log2 data unit size.
334  */
335 static inline int
336 fscrypt_max_file_dun_bits(const struct super_block *sb, int du_bits)
337 {
338 	return fls64(sb->s_maxbytes - 1) - du_bits;
339 }
340 
341 /* fname.c */
342 bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
343 				    u32 orig_len, u32 max_len,
344 				    u32 *encrypted_len_ret);
345 
346 /* hkdf.c */
347 struct fscrypt_hkdf {
348 	struct crypto_shash *hmac_tfm;
349 };
350 
351 int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
352 		      unsigned int master_key_size);
353 
354 /*
355  * The list of contexts in which fscrypt uses HKDF.  These values are used as
356  * the first byte of the HKDF application-specific info string to guarantee that
357  * info strings are never repeated between contexts.  This ensures that all HKDF
358  * outputs are unique and cryptographically isolated, i.e. knowledge of one
359  * output doesn't reveal another.
360  */
361 #define HKDF_CONTEXT_KEY_IDENTIFIER	1 /* info=<empty>		*/
362 #define HKDF_CONTEXT_PER_FILE_ENC_KEY	2 /* info=file_nonce		*/
363 #define HKDF_CONTEXT_DIRECT_KEY		3 /* info=mode_num		*/
364 #define HKDF_CONTEXT_IV_INO_LBLK_64_KEY	4 /* info=mode_num||fs_uuid	*/
365 #define HKDF_CONTEXT_DIRHASH_KEY	5 /* info=file_nonce		*/
366 #define HKDF_CONTEXT_IV_INO_LBLK_32_KEY	6 /* info=mode_num||fs_uuid	*/
367 #define HKDF_CONTEXT_INODE_HASH_KEY	7 /* info=<empty>		*/
368 
369 int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context,
370 			const u8 *info, unsigned int infolen,
371 			u8 *okm, unsigned int okmlen);
372 
373 void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
374 
375 /* inline_crypt.c */
376 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
377 int fscrypt_select_encryption_impl(struct fscrypt_info *ci);
378 
379 static inline bool
380 fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
381 {
382 	return ci->ci_inlinecrypt;
383 }
384 
385 int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
386 				     const u8 *raw_key,
387 				     const struct fscrypt_info *ci);
388 
389 void fscrypt_destroy_inline_crypt_key(struct super_block *sb,
390 				      struct fscrypt_prepared_key *prep_key);
391 
392 /*
393  * Check whether the crypto transform or blk-crypto key has been allocated in
394  * @prep_key, depending on which encryption implementation the file will use.
395  */
396 static inline bool
397 fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
398 			const struct fscrypt_info *ci)
399 {
400 	/*
401 	 * The two smp_load_acquire()'s here pair with the smp_store_release()'s
402 	 * in fscrypt_prepare_inline_crypt_key() and fscrypt_prepare_key().
403 	 * I.e., in some cases (namely, if this prep_key is a per-mode
404 	 * encryption key) another task can publish blk_key or tfm concurrently,
405 	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
406 	 * to safely ACQUIRE the memory the other task published.
407 	 */
408 	if (fscrypt_using_inline_encryption(ci))
409 		return smp_load_acquire(&prep_key->blk_key) != NULL;
410 	return smp_load_acquire(&prep_key->tfm) != NULL;
411 }
412 
413 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
414 
415 static inline int fscrypt_select_encryption_impl(struct fscrypt_info *ci)
416 {
417 	return 0;
418 }
419 
420 static inline bool
421 fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
422 {
423 	return false;
424 }
425 
426 static inline int
427 fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
428 				 const u8 *raw_key,
429 				 const struct fscrypt_info *ci)
430 {
431 	WARN_ON_ONCE(1);
432 	return -EOPNOTSUPP;
433 }
434 
435 static inline void
436 fscrypt_destroy_inline_crypt_key(struct super_block *sb,
437 				 struct fscrypt_prepared_key *prep_key)
438 {
439 }
440 
441 static inline bool
442 fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
443 			const struct fscrypt_info *ci)
444 {
445 	return smp_load_acquire(&prep_key->tfm) != NULL;
446 }
447 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
448 
449 /* keyring.c */
450 
451 /*
452  * fscrypt_master_key_secret - secret key material of an in-use master key
453  */
454 struct fscrypt_master_key_secret {
455 
456 	/*
457 	 * For v2 policy keys: HKDF context keyed by this master key.
458 	 * For v1 policy keys: not set (hkdf.hmac_tfm == NULL).
459 	 */
460 	struct fscrypt_hkdf	hkdf;
461 
462 	/*
463 	 * Size of the raw key in bytes.  This remains set even if ->raw was
464 	 * zeroized due to no longer being needed.  I.e. we still remember the
465 	 * size of the key even if we don't need to remember the key itself.
466 	 */
467 	u32			size;
468 
469 	/* For v1 policy keys: the raw key.  Wiped for v2 policy keys. */
470 	u8			raw[FSCRYPT_MAX_KEY_SIZE];
471 
472 } __randomize_layout;
473 
474 /*
475  * fscrypt_master_key - an in-use master key
476  *
477  * This represents a master encryption key which has been added to the
478  * filesystem and can be used to "unlock" the encrypted files which were
479  * encrypted with it.
480  */
481 struct fscrypt_master_key {
482 
483 	/*
484 	 * Link in ->s_master_keys->key_hashtable.
485 	 * Only valid if ->mk_active_refs > 0.
486 	 */
487 	struct hlist_node			mk_node;
488 
489 	/* Semaphore that protects ->mk_secret and ->mk_users */
490 	struct rw_semaphore			mk_sem;
491 
492 	/*
493 	 * Active and structural reference counts.  An active ref guarantees
494 	 * that the struct continues to exist, continues to be in the keyring
495 	 * ->s_master_keys, and that any embedded subkeys (e.g.
496 	 * ->mk_direct_keys) that have been prepared continue to exist.
497 	 * A structural ref only guarantees that the struct continues to exist.
498 	 *
499 	 * There is one active ref associated with ->mk_secret being present,
500 	 * and one active ref for each inode in ->mk_decrypted_inodes.
501 	 *
502 	 * There is one structural ref associated with the active refcount being
503 	 * nonzero.  Finding a key in the keyring also takes a structural ref,
504 	 * which is then held temporarily while the key is operated on.
505 	 */
506 	refcount_t				mk_active_refs;
507 	refcount_t				mk_struct_refs;
508 
509 	struct rcu_head				mk_rcu_head;
510 
511 	/*
512 	 * The secret key material.  After FS_IOC_REMOVE_ENCRYPTION_KEY is
513 	 * executed, this is wiped and no new inodes can be unlocked with this
514 	 * key; however, there may still be inodes in ->mk_decrypted_inodes
515 	 * which could not be evicted.  As long as some inodes still remain,
516 	 * FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or
517 	 * FS_IOC_ADD_ENCRYPTION_KEY can add the secret again.
518 	 *
519 	 * While ->mk_secret is present, one ref in ->mk_active_refs is held.
520 	 *
521 	 * Locking: protected by ->mk_sem.  The manipulation of ->mk_active_refs
522 	 *	    associated with this field is protected by ->mk_sem as well.
523 	 */
524 	struct fscrypt_master_key_secret	mk_secret;
525 
526 	/*
527 	 * For v1 policy keys: an arbitrary key descriptor which was assigned by
528 	 * userspace (->descriptor).
529 	 *
530 	 * For v2 policy keys: a cryptographic hash of this key (->identifier).
531 	 */
532 	struct fscrypt_key_specifier		mk_spec;
533 
534 	/*
535 	 * Keyring which contains a key of type 'key_type_fscrypt_user' for each
536 	 * user who has added this key.  Normally each key will be added by just
537 	 * one user, but it's possible that multiple users share a key, and in
538 	 * that case we need to keep track of those users so that one user can't
539 	 * remove the key before the others want it removed too.
540 	 *
541 	 * This is NULL for v1 policy keys; those can only be added by root.
542 	 *
543 	 * Locking: protected by ->mk_sem.  (We don't just rely on the keyrings
544 	 * subsystem semaphore ->mk_users->sem, as we need support for atomic
545 	 * search+insert along with proper synchronization with ->mk_secret.)
546 	 */
547 	struct key		*mk_users;
548 
549 	/*
550 	 * List of inodes that were unlocked using this key.  This allows the
551 	 * inodes to be evicted efficiently if the key is removed.
552 	 */
553 	struct list_head	mk_decrypted_inodes;
554 	spinlock_t		mk_decrypted_inodes_lock;
555 
556 	/*
557 	 * Per-mode encryption keys for the various types of encryption policies
558 	 * that use them.  Allocated and derived on-demand.
559 	 */
560 	struct fscrypt_prepared_key mk_direct_keys[FSCRYPT_MODE_MAX + 1];
561 	struct fscrypt_prepared_key mk_iv_ino_lblk_64_keys[FSCRYPT_MODE_MAX + 1];
562 	struct fscrypt_prepared_key mk_iv_ino_lblk_32_keys[FSCRYPT_MODE_MAX + 1];
563 
564 	/* Hash key for inode numbers.  Initialized only when needed. */
565 	siphash_key_t		mk_ino_hash_key;
566 	bool			mk_ino_hash_key_initialized;
567 
568 } __randomize_layout;
569 
570 static inline bool
571 is_master_key_secret_present(const struct fscrypt_master_key_secret *secret)
572 {
573 	/*
574 	 * The READ_ONCE() is only necessary for fscrypt_drop_inode().
575 	 * fscrypt_drop_inode() runs in atomic context, so it can't take the key
576 	 * semaphore and thus 'secret' can change concurrently which would be a
577 	 * data race.  But fscrypt_drop_inode() only need to know whether the
578 	 * secret *was* present at the time of check, so READ_ONCE() suffices.
579 	 */
580 	return READ_ONCE(secret->size) != 0;
581 }
582 
583 static inline const char *master_key_spec_type(
584 				const struct fscrypt_key_specifier *spec)
585 {
586 	switch (spec->type) {
587 	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
588 		return "descriptor";
589 	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
590 		return "identifier";
591 	}
592 	return "[unknown]";
593 }
594 
595 static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
596 {
597 	switch (spec->type) {
598 	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
599 		return FSCRYPT_KEY_DESCRIPTOR_SIZE;
600 	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
601 		return FSCRYPT_KEY_IDENTIFIER_SIZE;
602 	}
603 	return 0;
604 }
605 
606 void fscrypt_put_master_key(struct fscrypt_master_key *mk);
607 
608 void fscrypt_put_master_key_activeref(struct super_block *sb,
609 				      struct fscrypt_master_key *mk);
610 
611 struct fscrypt_master_key *
612 fscrypt_find_master_key(struct super_block *sb,
613 			const struct fscrypt_key_specifier *mk_spec);
614 
615 int fscrypt_get_test_dummy_key_identifier(
616 			  u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
617 
618 int fscrypt_add_test_dummy_key(struct super_block *sb,
619 			       struct fscrypt_key_specifier *key_spec);
620 
621 int fscrypt_verify_key_added(struct super_block *sb,
622 			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
623 
624 int __init fscrypt_init_keyring(void);
625 
626 /* keysetup.c */
627 
628 struct fscrypt_mode {
629 	const char *friendly_name;
630 	const char *cipher_str;
631 	int keysize;		/* key size in bytes */
632 	int security_strength;	/* security strength in bytes */
633 	int ivsize;		/* IV size in bytes */
634 	int logged_cryptoapi_impl;
635 	int logged_blk_crypto_native;
636 	int logged_blk_crypto_fallback;
637 	enum blk_crypto_mode_num blk_crypto_mode;
638 };
639 
640 extern struct fscrypt_mode fscrypt_modes[];
641 
642 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
643 			const u8 *raw_key, const struct fscrypt_info *ci);
644 
645 void fscrypt_destroy_prepared_key(struct super_block *sb,
646 				  struct fscrypt_prepared_key *prep_key);
647 
648 int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key);
649 
650 int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
651 			       const struct fscrypt_master_key *mk);
652 
653 void fscrypt_hash_inode_number(struct fscrypt_info *ci,
654 			       const struct fscrypt_master_key *mk);
655 
656 int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported);
657 
658 /**
659  * fscrypt_require_key() - require an inode's encryption key
660  * @inode: the inode we need the key for
661  *
662  * If the inode is encrypted, set up its encryption key if not already done.
663  * Then require that the key be present and return -ENOKEY otherwise.
664  *
665  * No locks are needed, and the key will live as long as the struct inode --- so
666  * it won't go away from under you.
667  *
668  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
669  * if a problem occurred while setting up the encryption key.
670  */
671 static inline int fscrypt_require_key(struct inode *inode)
672 {
673 	if (IS_ENCRYPTED(inode)) {
674 		int err = fscrypt_get_encryption_info(inode, false);
675 
676 		if (err)
677 			return err;
678 		if (!fscrypt_has_encryption_key(inode))
679 			return -ENOKEY;
680 	}
681 	return 0;
682 }
683 
684 /* keysetup_v1.c */
685 
686 void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
687 
688 int fscrypt_setup_v1_file_key(struct fscrypt_info *ci,
689 			      const u8 *raw_master_key);
690 
691 int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci);
692 
693 /* policy.c */
694 
695 bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
696 			    const union fscrypt_policy *policy2);
697 int fscrypt_policy_to_key_spec(const union fscrypt_policy *policy,
698 			       struct fscrypt_key_specifier *key_spec);
699 const union fscrypt_policy *fscrypt_get_dummy_policy(struct super_block *sb);
700 bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
701 			      const struct inode *inode);
702 int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
703 				const union fscrypt_context *ctx_u,
704 				int ctx_size);
705 const union fscrypt_policy *fscrypt_policy_to_inherit(struct inode *dir);
706 
707 #endif /* _FSCRYPT_PRIVATE_H */
708