1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fscrypt_private.h 4 * 5 * Copyright (C) 2015, Google, Inc. 6 * 7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar. 8 * Heavily modified since then. 9 */ 10 11 #ifndef _FSCRYPT_PRIVATE_H 12 #define _FSCRYPT_PRIVATE_H 13 14 #include <linux/fscrypt.h> 15 #include <linux/siphash.h> 16 #include <crypto/hash.h> 17 #include <linux/blk-crypto.h> 18 19 #define CONST_STRLEN(str) (sizeof(str) - 1) 20 21 #define FSCRYPT_FILE_NONCE_SIZE 16 22 23 #define FSCRYPT_MIN_KEY_SIZE 16 24 25 #define FSCRYPT_CONTEXT_V1 1 26 #define FSCRYPT_CONTEXT_V2 2 27 28 /* Keep this in sync with include/uapi/linux/fscrypt.h */ 29 #define FSCRYPT_MODE_MAX FSCRYPT_MODE_ADIANTUM 30 31 struct fscrypt_context_v1 { 32 u8 version; /* FSCRYPT_CONTEXT_V1 */ 33 u8 contents_encryption_mode; 34 u8 filenames_encryption_mode; 35 u8 flags; 36 u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE]; 37 u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; 38 }; 39 40 struct fscrypt_context_v2 { 41 u8 version; /* FSCRYPT_CONTEXT_V2 */ 42 u8 contents_encryption_mode; 43 u8 filenames_encryption_mode; 44 u8 flags; 45 u8 __reserved[4]; 46 u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]; 47 u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; 48 }; 49 50 /* 51 * fscrypt_context - the encryption context of an inode 52 * 53 * This is the on-disk equivalent of an fscrypt_policy, stored alongside each 54 * encrypted file usually in a hidden extended attribute. It contains the 55 * fields from the fscrypt_policy, in order to identify the encryption algorithm 56 * and key with which the file is encrypted. It also contains a nonce that was 57 * randomly generated by fscrypt itself; this is used as KDF input or as a tweak 58 * to cause different files to be encrypted differently. 59 */ 60 union fscrypt_context { 61 u8 version; 62 struct fscrypt_context_v1 v1; 63 struct fscrypt_context_v2 v2; 64 }; 65 66 /* 67 * Return the size expected for the given fscrypt_context based on its version 68 * number, or 0 if the context version is unrecognized. 69 */ 70 static inline int fscrypt_context_size(const union fscrypt_context *ctx) 71 { 72 switch (ctx->version) { 73 case FSCRYPT_CONTEXT_V1: 74 BUILD_BUG_ON(sizeof(ctx->v1) != 28); 75 return sizeof(ctx->v1); 76 case FSCRYPT_CONTEXT_V2: 77 BUILD_BUG_ON(sizeof(ctx->v2) != 40); 78 return sizeof(ctx->v2); 79 } 80 return 0; 81 } 82 83 /* Check whether an fscrypt_context has a recognized version number and size */ 84 static inline bool fscrypt_context_is_valid(const union fscrypt_context *ctx, 85 int ctx_size) 86 { 87 return ctx_size >= 1 && ctx_size == fscrypt_context_size(ctx); 88 } 89 90 /* Retrieve the context's nonce, assuming the context was already validated */ 91 static inline const u8 *fscrypt_context_nonce(const union fscrypt_context *ctx) 92 { 93 switch (ctx->version) { 94 case FSCRYPT_CONTEXT_V1: 95 return ctx->v1.nonce; 96 case FSCRYPT_CONTEXT_V2: 97 return ctx->v2.nonce; 98 } 99 WARN_ON(1); 100 return NULL; 101 } 102 103 union fscrypt_policy { 104 u8 version; 105 struct fscrypt_policy_v1 v1; 106 struct fscrypt_policy_v2 v2; 107 }; 108 109 /* 110 * Return the size expected for the given fscrypt_policy based on its version 111 * number, or 0 if the policy version is unrecognized. 112 */ 113 static inline int fscrypt_policy_size(const union fscrypt_policy *policy) 114 { 115 switch (policy->version) { 116 case FSCRYPT_POLICY_V1: 117 return sizeof(policy->v1); 118 case FSCRYPT_POLICY_V2: 119 return sizeof(policy->v2); 120 } 121 return 0; 122 } 123 124 /* Return the contents encryption mode of a valid encryption policy */ 125 static inline u8 126 fscrypt_policy_contents_mode(const union fscrypt_policy *policy) 127 { 128 switch (policy->version) { 129 case FSCRYPT_POLICY_V1: 130 return policy->v1.contents_encryption_mode; 131 case FSCRYPT_POLICY_V2: 132 return policy->v2.contents_encryption_mode; 133 } 134 BUG(); 135 } 136 137 /* Return the filenames encryption mode of a valid encryption policy */ 138 static inline u8 139 fscrypt_policy_fnames_mode(const union fscrypt_policy *policy) 140 { 141 switch (policy->version) { 142 case FSCRYPT_POLICY_V1: 143 return policy->v1.filenames_encryption_mode; 144 case FSCRYPT_POLICY_V2: 145 return policy->v2.filenames_encryption_mode; 146 } 147 BUG(); 148 } 149 150 /* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */ 151 static inline u8 152 fscrypt_policy_flags(const union fscrypt_policy *policy) 153 { 154 switch (policy->version) { 155 case FSCRYPT_POLICY_V1: 156 return policy->v1.flags; 157 case FSCRYPT_POLICY_V2: 158 return policy->v2.flags; 159 } 160 BUG(); 161 } 162 163 /* 164 * For encrypted symlinks, the ciphertext length is stored at the beginning 165 * of the string in little-endian format. 166 */ 167 struct fscrypt_symlink_data { 168 __le16 len; 169 char encrypted_path[1]; 170 } __packed; 171 172 /** 173 * struct fscrypt_prepared_key - a key prepared for actual encryption/decryption 174 * @tfm: crypto API transform object 175 * @blk_key: key for blk-crypto 176 * 177 * Normally only one of the fields will be non-NULL. 178 */ 179 struct fscrypt_prepared_key { 180 struct crypto_skcipher *tfm; 181 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 182 struct fscrypt_blk_crypto_key *blk_key; 183 #endif 184 }; 185 186 /* 187 * fscrypt_info - the "encryption key" for an inode 188 * 189 * When an encrypted file's key is made available, an instance of this struct is 190 * allocated and stored in ->i_crypt_info. Once created, it remains until the 191 * inode is evicted. 192 */ 193 struct fscrypt_info { 194 195 /* The key in a form prepared for actual encryption/decryption */ 196 struct fscrypt_prepared_key ci_enc_key; 197 198 /* True if ci_enc_key should be freed when this fscrypt_info is freed */ 199 bool ci_owns_key; 200 201 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 202 /* 203 * True if this inode will use inline encryption (blk-crypto) instead of 204 * the traditional filesystem-layer encryption. 205 */ 206 bool ci_inlinecrypt; 207 #endif 208 209 /* 210 * Encryption mode used for this inode. It corresponds to either the 211 * contents or filenames encryption mode, depending on the inode type. 212 */ 213 struct fscrypt_mode *ci_mode; 214 215 /* Back-pointer to the inode */ 216 struct inode *ci_inode; 217 218 /* 219 * The master key with which this inode was unlocked (decrypted). This 220 * will be NULL if the master key was found in a process-subscribed 221 * keyring rather than in the filesystem-level keyring. 222 */ 223 struct key *ci_master_key; 224 225 /* 226 * Link in list of inodes that were unlocked with the master key. 227 * Only used when ->ci_master_key is set. 228 */ 229 struct list_head ci_master_key_link; 230 231 /* 232 * If non-NULL, then encryption is done using the master key directly 233 * and ci_enc_key will equal ci_direct_key->dk_key. 234 */ 235 struct fscrypt_direct_key *ci_direct_key; 236 237 /* 238 * This inode's hash key for filenames. This is a 128-bit SipHash-2-4 239 * key. This is only set for directories that use a keyed dirhash over 240 * the plaintext filenames -- currently just casefolded directories. 241 */ 242 siphash_key_t ci_dirhash_key; 243 bool ci_dirhash_key_initialized; 244 245 /* The encryption policy used by this inode */ 246 union fscrypt_policy ci_policy; 247 248 /* This inode's nonce, copied from the fscrypt_context */ 249 u8 ci_nonce[FSCRYPT_FILE_NONCE_SIZE]; 250 251 /* Hashed inode number. Only set for IV_INO_LBLK_32 */ 252 u32 ci_hashed_ino; 253 }; 254 255 typedef enum { 256 FS_DECRYPT = 0, 257 FS_ENCRYPT, 258 } fscrypt_direction_t; 259 260 /* crypto.c */ 261 extern struct kmem_cache *fscrypt_info_cachep; 262 int fscrypt_initialize(unsigned int cop_flags); 263 int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw, 264 u64 lblk_num, struct page *src_page, 265 struct page *dest_page, unsigned int len, 266 unsigned int offs, gfp_t gfp_flags); 267 struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags); 268 269 void __printf(3, 4) __cold 270 fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...); 271 272 #define fscrypt_warn(inode, fmt, ...) \ 273 fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__) 274 #define fscrypt_err(inode, fmt, ...) \ 275 fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__) 276 277 #define FSCRYPT_MAX_IV_SIZE 32 278 279 union fscrypt_iv { 280 struct { 281 /* logical block number within the file */ 282 __le64 lblk_num; 283 284 /* per-file nonce; only set in DIRECT_KEY mode */ 285 u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; 286 }; 287 u8 raw[FSCRYPT_MAX_IV_SIZE]; 288 __le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)]; 289 }; 290 291 void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num, 292 const struct fscrypt_info *ci); 293 294 /* fname.c */ 295 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname, 296 u8 *out, unsigned int olen); 297 bool fscrypt_fname_encrypted_size(const union fscrypt_policy *policy, 298 u32 orig_len, u32 max_len, 299 u32 *encrypted_len_ret); 300 301 /* hkdf.c */ 302 303 struct fscrypt_hkdf { 304 struct crypto_shash *hmac_tfm; 305 }; 306 307 int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key, 308 unsigned int master_key_size); 309 310 /* 311 * The list of contexts in which fscrypt uses HKDF. These values are used as 312 * the first byte of the HKDF application-specific info string to guarantee that 313 * info strings are never repeated between contexts. This ensures that all HKDF 314 * outputs are unique and cryptographically isolated, i.e. knowledge of one 315 * output doesn't reveal another. 316 */ 317 #define HKDF_CONTEXT_KEY_IDENTIFIER 1 /* info=<empty> */ 318 #define HKDF_CONTEXT_PER_FILE_ENC_KEY 2 /* info=file_nonce */ 319 #define HKDF_CONTEXT_DIRECT_KEY 3 /* info=mode_num */ 320 #define HKDF_CONTEXT_IV_INO_LBLK_64_KEY 4 /* info=mode_num||fs_uuid */ 321 #define HKDF_CONTEXT_DIRHASH_KEY 5 /* info=file_nonce */ 322 #define HKDF_CONTEXT_IV_INO_LBLK_32_KEY 6 /* info=mode_num||fs_uuid */ 323 #define HKDF_CONTEXT_INODE_HASH_KEY 7 /* info=<empty> */ 324 325 int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context, 326 const u8 *info, unsigned int infolen, 327 u8 *okm, unsigned int okmlen); 328 329 void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf); 330 331 /* inline_crypt.c */ 332 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 333 int fscrypt_select_encryption_impl(struct fscrypt_info *ci); 334 335 static inline bool 336 fscrypt_using_inline_encryption(const struct fscrypt_info *ci) 337 { 338 return ci->ci_inlinecrypt; 339 } 340 341 int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key, 342 const u8 *raw_key, 343 const struct fscrypt_info *ci); 344 345 void fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key); 346 347 /* 348 * Check whether the crypto transform or blk-crypto key has been allocated in 349 * @prep_key, depending on which encryption implementation the file will use. 350 */ 351 static inline bool 352 fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key, 353 const struct fscrypt_info *ci) 354 { 355 /* 356 * The two smp_load_acquire()'s here pair with the smp_store_release()'s 357 * in fscrypt_prepare_inline_crypt_key() and fscrypt_prepare_key(). 358 * I.e., in some cases (namely, if this prep_key is a per-mode 359 * encryption key) another task can publish blk_key or tfm concurrently, 360 * executing a RELEASE barrier. We need to use smp_load_acquire() here 361 * to safely ACQUIRE the memory the other task published. 362 */ 363 if (fscrypt_using_inline_encryption(ci)) 364 return smp_load_acquire(&prep_key->blk_key) != NULL; 365 return smp_load_acquire(&prep_key->tfm) != NULL; 366 } 367 368 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 369 370 static inline int fscrypt_select_encryption_impl(struct fscrypt_info *ci) 371 { 372 return 0; 373 } 374 375 static inline bool 376 fscrypt_using_inline_encryption(const struct fscrypt_info *ci) 377 { 378 return false; 379 } 380 381 static inline int 382 fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key, 383 const u8 *raw_key, 384 const struct fscrypt_info *ci) 385 { 386 WARN_ON(1); 387 return -EOPNOTSUPP; 388 } 389 390 static inline void 391 fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key) 392 { 393 } 394 395 static inline bool 396 fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key, 397 const struct fscrypt_info *ci) 398 { 399 return smp_load_acquire(&prep_key->tfm) != NULL; 400 } 401 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ 402 403 /* keyring.c */ 404 405 /* 406 * fscrypt_master_key_secret - secret key material of an in-use master key 407 */ 408 struct fscrypt_master_key_secret { 409 410 /* 411 * For v2 policy keys: HKDF context keyed by this master key. 412 * For v1 policy keys: not set (hkdf.hmac_tfm == NULL). 413 */ 414 struct fscrypt_hkdf hkdf; 415 416 /* Size of the raw key in bytes. Set even if ->raw isn't set. */ 417 u32 size; 418 419 /* For v1 policy keys: the raw key. Wiped for v2 policy keys. */ 420 u8 raw[FSCRYPT_MAX_KEY_SIZE]; 421 422 } __randomize_layout; 423 424 /* 425 * fscrypt_master_key - an in-use master key 426 * 427 * This represents a master encryption key which has been added to the 428 * filesystem and can be used to "unlock" the encrypted files which were 429 * encrypted with it. 430 */ 431 struct fscrypt_master_key { 432 433 /* 434 * The secret key material. After FS_IOC_REMOVE_ENCRYPTION_KEY is 435 * executed, this is wiped and no new inodes can be unlocked with this 436 * key; however, there may still be inodes in ->mk_decrypted_inodes 437 * which could not be evicted. As long as some inodes still remain, 438 * FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or 439 * FS_IOC_ADD_ENCRYPTION_KEY can add the secret again. 440 * 441 * Locking: protected by this master key's key->sem. 442 */ 443 struct fscrypt_master_key_secret mk_secret; 444 445 /* 446 * For v1 policy keys: an arbitrary key descriptor which was assigned by 447 * userspace (->descriptor). 448 * 449 * For v2 policy keys: a cryptographic hash of this key (->identifier). 450 */ 451 struct fscrypt_key_specifier mk_spec; 452 453 /* 454 * Keyring which contains a key of type 'key_type_fscrypt_user' for each 455 * user who has added this key. Normally each key will be added by just 456 * one user, but it's possible that multiple users share a key, and in 457 * that case we need to keep track of those users so that one user can't 458 * remove the key before the others want it removed too. 459 * 460 * This is NULL for v1 policy keys; those can only be added by root. 461 * 462 * Locking: in addition to this keyring's own semaphore, this is 463 * protected by this master key's key->sem, so we can do atomic 464 * search+insert. It can also be searched without taking any locks, but 465 * in that case the returned key may have already been removed. 466 */ 467 struct key *mk_users; 468 469 /* 470 * Length of ->mk_decrypted_inodes, plus one if mk_secret is present. 471 * Once this goes to 0, the master key is removed from ->s_master_keys. 472 * The 'struct fscrypt_master_key' will continue to live as long as the 473 * 'struct key' whose payload it is, but we won't let this reference 474 * count rise again. 475 */ 476 refcount_t mk_refcount; 477 478 /* 479 * List of inodes that were unlocked using this key. This allows the 480 * inodes to be evicted efficiently if the key is removed. 481 */ 482 struct list_head mk_decrypted_inodes; 483 spinlock_t mk_decrypted_inodes_lock; 484 485 /* 486 * Per-mode encryption keys for the various types of encryption policies 487 * that use them. Allocated and derived on-demand. 488 */ 489 struct fscrypt_prepared_key mk_direct_keys[FSCRYPT_MODE_MAX + 1]; 490 struct fscrypt_prepared_key mk_iv_ino_lblk_64_keys[FSCRYPT_MODE_MAX + 1]; 491 struct fscrypt_prepared_key mk_iv_ino_lblk_32_keys[FSCRYPT_MODE_MAX + 1]; 492 493 /* Hash key for inode numbers. Initialized only when needed. */ 494 siphash_key_t mk_ino_hash_key; 495 bool mk_ino_hash_key_initialized; 496 497 } __randomize_layout; 498 499 static inline bool 500 is_master_key_secret_present(const struct fscrypt_master_key_secret *secret) 501 { 502 /* 503 * The READ_ONCE() is only necessary for fscrypt_drop_inode() and 504 * fscrypt_key_describe(). These run in atomic context, so they can't 505 * take the key semaphore and thus 'secret' can change concurrently 506 * which would be a data race. But they only need to know whether the 507 * secret *was* present at the time of check, so READ_ONCE() suffices. 508 */ 509 return READ_ONCE(secret->size) != 0; 510 } 511 512 static inline const char *master_key_spec_type( 513 const struct fscrypt_key_specifier *spec) 514 { 515 switch (spec->type) { 516 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: 517 return "descriptor"; 518 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: 519 return "identifier"; 520 } 521 return "[unknown]"; 522 } 523 524 static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec) 525 { 526 switch (spec->type) { 527 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: 528 return FSCRYPT_KEY_DESCRIPTOR_SIZE; 529 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: 530 return FSCRYPT_KEY_IDENTIFIER_SIZE; 531 } 532 return 0; 533 } 534 535 struct key * 536 fscrypt_find_master_key(struct super_block *sb, 537 const struct fscrypt_key_specifier *mk_spec); 538 539 int fscrypt_add_test_dummy_key(struct super_block *sb, 540 struct fscrypt_key_specifier *key_spec); 541 542 int fscrypt_verify_key_added(struct super_block *sb, 543 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]); 544 545 int __init fscrypt_init_keyring(void); 546 547 /* keysetup.c */ 548 549 struct fscrypt_mode { 550 const char *friendly_name; 551 const char *cipher_str; 552 int keysize; 553 int ivsize; 554 int logged_impl_name; 555 enum blk_crypto_mode_num blk_crypto_mode; 556 }; 557 558 extern struct fscrypt_mode fscrypt_modes[]; 559 560 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key, 561 const u8 *raw_key, const struct fscrypt_info *ci); 562 563 void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key); 564 565 int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key); 566 567 int fscrypt_derive_dirhash_key(struct fscrypt_info *ci, 568 const struct fscrypt_master_key *mk); 569 570 void fscrypt_hash_inode_number(struct fscrypt_info *ci, 571 const struct fscrypt_master_key *mk); 572 573 int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported); 574 575 /** 576 * fscrypt_require_key() - require an inode's encryption key 577 * @inode: the inode we need the key for 578 * 579 * If the inode is encrypted, set up its encryption key if not already done. 580 * Then require that the key be present and return -ENOKEY otherwise. 581 * 582 * No locks are needed, and the key will live as long as the struct inode --- so 583 * it won't go away from under you. 584 * 585 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code 586 * if a problem occurred while setting up the encryption key. 587 */ 588 static inline int fscrypt_require_key(struct inode *inode) 589 { 590 if (IS_ENCRYPTED(inode)) { 591 int err = fscrypt_get_encryption_info(inode, false); 592 593 if (err) 594 return err; 595 if (!fscrypt_has_encryption_key(inode)) 596 return -ENOKEY; 597 } 598 return 0; 599 } 600 601 /* keysetup_v1.c */ 602 603 void fscrypt_put_direct_key(struct fscrypt_direct_key *dk); 604 605 int fscrypt_setup_v1_file_key(struct fscrypt_info *ci, 606 const u8 *raw_master_key); 607 608 int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci); 609 610 /* policy.c */ 611 612 bool fscrypt_policies_equal(const union fscrypt_policy *policy1, 613 const union fscrypt_policy *policy2); 614 bool fscrypt_supported_policy(const union fscrypt_policy *policy_u, 615 const struct inode *inode); 616 int fscrypt_policy_from_context(union fscrypt_policy *policy_u, 617 const union fscrypt_context *ctx_u, 618 int ctx_size); 619 const union fscrypt_policy *fscrypt_policy_to_inherit(struct inode *dir); 620 621 #endif /* _FSCRYPT_PRIVATE_H */ 622