1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This contains functions for filename crypto management 4 * 5 * Copyright (C) 2015, Google, Inc. 6 * Copyright (C) 2015, Motorola Mobility 7 * 8 * Written by Uday Savagaonkar, 2014. 9 * Modified by Jaegeuk Kim, 2015. 10 * 11 * This has not yet undergone a rigorous security audit. 12 */ 13 14 #include <crypto/sha2.h> 15 #include <crypto/skcipher.h> 16 #include <linux/export.h> 17 #include <linux/namei.h> 18 #include <linux/scatterlist.h> 19 #include <linux/base64.h> 20 21 #include "fscrypt_private.h" 22 23 /* 24 * The minimum message length (input and output length), in bytes, for all 25 * filenames encryption modes. Filenames shorter than this will be zero-padded 26 * before being encrypted. 27 */ 28 #define FSCRYPT_FNAME_MIN_MSG_LEN 16 29 30 /* 31 * struct fscrypt_nokey_name - identifier for directory entry when key is absent 32 * 33 * When userspace lists an encrypted directory without access to the key, the 34 * filesystem must present a unique "no-key name" for each filename that allows 35 * it to find the directory entry again if requested. Naively, that would just 36 * mean using the ciphertext filenames. However, since the ciphertext filenames 37 * can contain illegal characters ('\0' and '/'), they must be encoded in some 38 * way. We use base64url. But that can cause names to exceed NAME_MAX (255 39 * bytes), so we also need to use a strong hash to abbreviate long names. 40 * 41 * The filesystem may also need another kind of hash, the "dirhash", to quickly 42 * find the directory entry. Since filesystems normally compute the dirhash 43 * over the on-disk filename (i.e. the ciphertext), it's not computable from 44 * no-key names that abbreviate the ciphertext using the strong hash to fit in 45 * NAME_MAX. It's also not computable if it's a keyed hash taken over the 46 * plaintext (but it may still be available in the on-disk directory entry); 47 * casefolded directories use this type of dirhash. At least in these cases, 48 * each no-key name must include the name's dirhash too. 49 * 50 * To meet all these requirements, we base64url-encode the following 51 * variable-length structure. It contains the dirhash, or 0's if the filesystem 52 * didn't provide one; up to 149 bytes of the ciphertext name; and for 53 * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes. 54 * 55 * This ensures that each no-key name contains everything needed to find the 56 * directory entry again, contains only legal characters, doesn't exceed 57 * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only 58 * take the performance hit of SHA-256 on very long filenames (which are rare). 59 */ 60 struct fscrypt_nokey_name { 61 u32 dirhash[2]; 62 u8 bytes[149]; 63 u8 sha256[SHA256_DIGEST_SIZE]; 64 }; /* 189 bytes => 252 bytes base64url-encoded, which is <= NAME_MAX (255) */ 65 66 /* 67 * Decoded size of max-size no-key name, i.e. a name that was abbreviated using 68 * the strong hash and thus includes the 'sha256' field. This isn't simply 69 * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included. 70 */ 71 #define FSCRYPT_NOKEY_NAME_MAX offsetofend(struct fscrypt_nokey_name, sha256) 72 73 /* Encoded size of max-size no-key name */ 74 #define FSCRYPT_NOKEY_NAME_MAX_ENCODED \ 75 BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX) 76 77 static inline bool fscrypt_is_dot_dotdot(const struct qstr *str) 78 { 79 return is_dot_dotdot(str->name, str->len); 80 } 81 82 /** 83 * fscrypt_fname_encrypt() - encrypt a filename 84 * @inode: inode of the parent directory (for regular filenames) 85 * or of the symlink (for symlink targets). Key must already be 86 * set up. 87 * @iname: the filename to encrypt 88 * @out: (output) the encrypted filename 89 * @olen: size of the encrypted filename. It must be at least @iname->len. 90 * Any extra space is filled with NUL padding before encryption. 91 * 92 * Return: 0 on success, -errno on failure 93 */ 94 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname, 95 u8 *out, unsigned int olen) 96 { 97 const struct fscrypt_inode_info *ci = fscrypt_get_inode_info_raw(inode); 98 struct crypto_sync_skcipher *tfm = ci->ci_enc_key.tfm; 99 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm); 100 union fscrypt_iv iv; 101 struct scatterlist sg; 102 int err; 103 104 /* 105 * Copy the filename to the output buffer for encrypting in-place and 106 * pad it with the needed number of NUL bytes. 107 */ 108 if (WARN_ON_ONCE(olen < iname->len)) 109 return -ENOBUFS; 110 memcpy(out, iname->name, iname->len); 111 memset(out + iname->len, 0, olen - iname->len); 112 113 fscrypt_generate_iv(&iv, 0, ci); 114 115 skcipher_request_set_callback( 116 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 117 NULL, NULL); 118 sg_init_one(&sg, out, olen); 119 skcipher_request_set_crypt(req, &sg, &sg, olen, &iv); 120 err = crypto_skcipher_encrypt(req); 121 if (err) 122 fscrypt_err(inode, "Filename encryption failed: %d", err); 123 return err; 124 } 125 EXPORT_SYMBOL_GPL(fscrypt_fname_encrypt); 126 127 /** 128 * fname_decrypt() - decrypt a filename 129 * @inode: inode of the parent directory (for regular filenames) 130 * or of the symlink (for symlink targets) 131 * @iname: the encrypted filename to decrypt 132 * @oname: (output) the decrypted filename. The caller must have allocated 133 * enough space for this, e.g. using fscrypt_fname_alloc_buffer(). 134 * 135 * Return: 0 on success, -errno on failure 136 */ 137 static int fname_decrypt(const struct inode *inode, 138 const struct fscrypt_str *iname, 139 struct fscrypt_str *oname) 140 { 141 const struct fscrypt_inode_info *ci = fscrypt_get_inode_info_raw(inode); 142 struct crypto_sync_skcipher *tfm = ci->ci_enc_key.tfm; 143 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm); 144 union fscrypt_iv iv; 145 struct scatterlist src_sg, dst_sg; 146 int err; 147 148 fscrypt_generate_iv(&iv, 0, ci); 149 150 skcipher_request_set_callback( 151 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 152 NULL, NULL); 153 sg_init_one(&src_sg, iname->name, iname->len); 154 sg_init_one(&dst_sg, oname->name, oname->len); 155 skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv); 156 err = crypto_skcipher_decrypt(req); 157 if (err) { 158 fscrypt_err(inode, "Filename decryption failed: %d", err); 159 return err; 160 } 161 162 oname->len = strnlen(oname->name, iname->len); 163 return 0; 164 } 165 166 bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy, 167 u32 orig_len, u32 max_len, 168 u32 *encrypted_len_ret) 169 { 170 int padding = 4 << (fscrypt_policy_flags(policy) & 171 FSCRYPT_POLICY_FLAGS_PAD_MASK); 172 u32 encrypted_len; 173 174 if (orig_len > max_len) 175 return false; 176 encrypted_len = max_t(u32, orig_len, FSCRYPT_FNAME_MIN_MSG_LEN); 177 encrypted_len = round_up(encrypted_len, padding); 178 *encrypted_len_ret = min(encrypted_len, max_len); 179 return true; 180 } 181 182 /** 183 * fscrypt_fname_encrypted_size() - calculate length of encrypted filename 184 * @inode: parent inode of dentry name being encrypted. Key must 185 * already be set up. 186 * @orig_len: length of the original filename 187 * @max_len: maximum length to return 188 * @encrypted_len_ret: where calculated length should be returned (on success) 189 * 190 * Filenames that are shorter than the maximum length may have their lengths 191 * increased slightly by encryption, due to padding that is applied. 192 * 193 * Return: false if the orig_len is greater than max_len. Otherwise, true and 194 * fill out encrypted_len_ret with the length (up to max_len). 195 */ 196 bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len, 197 u32 max_len, u32 *encrypted_len_ret) 198 { 199 const struct fscrypt_inode_info *ci = fscrypt_get_inode_info_raw(inode); 200 201 return __fscrypt_fname_encrypted_size(&ci->ci_policy, orig_len, max_len, 202 encrypted_len_ret); 203 } 204 EXPORT_SYMBOL_GPL(fscrypt_fname_encrypted_size); 205 206 /** 207 * fscrypt_fname_alloc_buffer() - allocate a buffer for presented filenames 208 * @max_encrypted_len: maximum length of encrypted filenames the buffer will be 209 * used to present 210 * @crypto_str: (output) buffer to allocate 211 * 212 * Allocate a buffer that is large enough to hold any decrypted or encoded 213 * filename (null-terminated), for the given maximum encrypted filename length. 214 * 215 * Return: 0 on success, -errno on failure 216 */ 217 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, 218 struct fscrypt_str *crypto_str) 219 { 220 u32 max_presented_len = max_t(u32, FSCRYPT_NOKEY_NAME_MAX_ENCODED, 221 max_encrypted_len); 222 223 crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS); 224 if (!crypto_str->name) 225 return -ENOMEM; 226 crypto_str->len = max_presented_len; 227 return 0; 228 } 229 EXPORT_SYMBOL(fscrypt_fname_alloc_buffer); 230 231 /** 232 * fscrypt_fname_free_buffer() - free a buffer for presented filenames 233 * @crypto_str: the buffer to free 234 * 235 * Free a buffer that was allocated by fscrypt_fname_alloc_buffer(). 236 */ 237 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) 238 { 239 if (!crypto_str) 240 return; 241 kfree(crypto_str->name); 242 crypto_str->name = NULL; 243 } 244 EXPORT_SYMBOL(fscrypt_fname_free_buffer); 245 246 /** 247 * fscrypt_fname_disk_to_usr() - convert an encrypted filename to 248 * user-presentable form 249 * @inode: inode of the parent directory (for regular filenames) 250 * or of the symlink (for symlink targets) 251 * @hash: first part of the name's dirhash, if applicable. This only needs to 252 * be provided if the filename is located in an indexed directory whose 253 * encryption key may be unavailable. Not needed for symlink targets. 254 * @minor_hash: second part of the name's dirhash, if applicable 255 * @iname: encrypted filename to convert. May also be "." or "..", which 256 * aren't actually encrypted. 257 * @oname: output buffer for the user-presentable filename. The caller must 258 * have allocated enough space for this, e.g. using 259 * fscrypt_fname_alloc_buffer(). 260 * 261 * If the key is available, we'll decrypt the disk name. Otherwise, we'll 262 * encode it for presentation in fscrypt_nokey_name format. 263 * See struct fscrypt_nokey_name for details. 264 * 265 * Return: 0 on success, -errno on failure 266 */ 267 int fscrypt_fname_disk_to_usr(const struct inode *inode, 268 u32 hash, u32 minor_hash, 269 const struct fscrypt_str *iname, 270 struct fscrypt_str *oname) 271 { 272 const struct qstr qname = FSTR_TO_QSTR(iname); 273 struct fscrypt_nokey_name nokey_name; 274 u32 size; /* size of the unencoded no-key name */ 275 276 if (fscrypt_is_dot_dotdot(&qname)) { 277 oname->name[0] = '.'; 278 oname->name[iname->len - 1] = '.'; 279 oname->len = iname->len; 280 return 0; 281 } 282 283 if (iname->len < FSCRYPT_FNAME_MIN_MSG_LEN) 284 return -EUCLEAN; 285 286 if (fscrypt_has_encryption_key(inode)) 287 return fname_decrypt(inode, iname, oname); 288 289 /* 290 * Sanity check that struct fscrypt_nokey_name doesn't have padding 291 * between fields and that its encoded size never exceeds NAME_MAX. 292 */ 293 BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) != 294 offsetof(struct fscrypt_nokey_name, bytes)); 295 BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) != 296 offsetof(struct fscrypt_nokey_name, sha256)); 297 BUILD_BUG_ON(FSCRYPT_NOKEY_NAME_MAX_ENCODED > NAME_MAX); 298 299 nokey_name.dirhash[0] = hash; 300 nokey_name.dirhash[1] = minor_hash; 301 302 if (iname->len <= sizeof(nokey_name.bytes)) { 303 memcpy(nokey_name.bytes, iname->name, iname->len); 304 size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]); 305 } else { 306 memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes)); 307 /* Compute strong hash of remaining part of name. */ 308 sha256(&iname->name[sizeof(nokey_name.bytes)], 309 iname->len - sizeof(nokey_name.bytes), 310 nokey_name.sha256); 311 size = FSCRYPT_NOKEY_NAME_MAX; 312 } 313 oname->len = base64_encode((const u8 *)&nokey_name, size, 314 oname->name, false, BASE64_URLSAFE); 315 return 0; 316 } 317 EXPORT_SYMBOL(fscrypt_fname_disk_to_usr); 318 319 /** 320 * fscrypt_setup_filename() - prepare to search a possibly encrypted directory 321 * @dir: the directory that will be searched 322 * @iname: the user-provided filename being searched for 323 * @lookup: 1 if we're allowed to proceed without the key because it's 324 * ->lookup() or we're finding the dir_entry for deletion; 0 if we cannot 325 * proceed without the key because we're going to create the dir_entry. 326 * @fname: the filename information to be filled in 327 * 328 * Given a user-provided filename @iname, this function sets @fname->disk_name 329 * to the name that would be stored in the on-disk directory entry, if possible. 330 * If the directory is unencrypted this is simply @iname. Else, if we have the 331 * directory's encryption key, then @iname is the plaintext, so we encrypt it to 332 * get the disk_name. 333 * 334 * Else, for keyless @lookup operations, @iname should be a no-key name, so we 335 * decode it to get the struct fscrypt_nokey_name. Non-@lookup operations will 336 * be impossible in this case, so we fail them with ENOKEY. 337 * 338 * If successful, fscrypt_free_filename() must be called later to clean up. 339 * 340 * Return: 0 on success, -errno on failure 341 */ 342 int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname, 343 int lookup, struct fscrypt_name *fname) 344 { 345 struct fscrypt_nokey_name *nokey_name; 346 int ret; 347 348 memset(fname, 0, sizeof(struct fscrypt_name)); 349 fname->usr_fname = iname; 350 351 if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) { 352 fname->disk_name.name = (unsigned char *)iname->name; 353 fname->disk_name.len = iname->len; 354 return 0; 355 } 356 ret = fscrypt_get_encryption_info(dir, lookup); 357 if (ret) 358 return ret; 359 360 if (fscrypt_has_encryption_key(dir)) { 361 if (!fscrypt_fname_encrypted_size(dir, iname->len, NAME_MAX, 362 &fname->crypto_buf.len)) 363 return -ENAMETOOLONG; 364 fname->crypto_buf.name = kmalloc(fname->crypto_buf.len, 365 GFP_NOFS); 366 if (!fname->crypto_buf.name) 367 return -ENOMEM; 368 369 ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name, 370 fname->crypto_buf.len); 371 if (ret) 372 goto errout; 373 fname->disk_name.name = fname->crypto_buf.name; 374 fname->disk_name.len = fname->crypto_buf.len; 375 return 0; 376 } 377 if (!lookup) 378 return -ENOKEY; 379 fname->is_nokey_name = true; 380 381 /* 382 * We don't have the key and we are doing a lookup; decode the 383 * user-supplied name 384 */ 385 386 if (iname->len > FSCRYPT_NOKEY_NAME_MAX_ENCODED) 387 return -ENOENT; 388 389 fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL); 390 if (fname->crypto_buf.name == NULL) 391 return -ENOMEM; 392 393 ret = base64_decode(iname->name, iname->len, 394 fname->crypto_buf.name, false, BASE64_URLSAFE); 395 if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) || 396 (ret > offsetof(struct fscrypt_nokey_name, sha256) && 397 ret != FSCRYPT_NOKEY_NAME_MAX)) { 398 ret = -ENOENT; 399 goto errout; 400 } 401 fname->crypto_buf.len = ret; 402 403 nokey_name = (void *)fname->crypto_buf.name; 404 fname->hash = nokey_name->dirhash[0]; 405 fname->minor_hash = nokey_name->dirhash[1]; 406 if (ret != FSCRYPT_NOKEY_NAME_MAX) { 407 /* The full ciphertext filename is available. */ 408 fname->disk_name.name = nokey_name->bytes; 409 fname->disk_name.len = 410 ret - offsetof(struct fscrypt_nokey_name, bytes); 411 } 412 return 0; 413 414 errout: 415 kfree(fname->crypto_buf.name); 416 return ret; 417 } 418 EXPORT_SYMBOL(fscrypt_setup_filename); 419 420 /** 421 * fscrypt_match_name() - test whether the given name matches a directory entry 422 * @fname: the name being searched for 423 * @de_name: the name from the directory entry 424 * @de_name_len: the length of @de_name in bytes 425 * 426 * Normally @fname->disk_name will be set, and in that case we simply compare 427 * that to the name stored in the directory entry. The only exception is that 428 * if we don't have the key for an encrypted directory and the name we're 429 * looking for is very long, then we won't have the full disk_name and instead 430 * we'll need to match against a fscrypt_nokey_name that includes a strong hash. 431 * 432 * Return: %true if the name matches, otherwise %false. 433 */ 434 bool fscrypt_match_name(const struct fscrypt_name *fname, 435 const u8 *de_name, u32 de_name_len) 436 { 437 const struct fscrypt_nokey_name *nokey_name = 438 (const void *)fname->crypto_buf.name; 439 u8 digest[SHA256_DIGEST_SIZE]; 440 441 if (likely(fname->disk_name.name)) { 442 if (de_name_len != fname->disk_name.len) 443 return false; 444 return !memcmp(de_name, fname->disk_name.name, de_name_len); 445 } 446 if (de_name_len <= sizeof(nokey_name->bytes)) 447 return false; 448 if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes))) 449 return false; 450 sha256(&de_name[sizeof(nokey_name->bytes)], 451 de_name_len - sizeof(nokey_name->bytes), digest); 452 return !memcmp(digest, nokey_name->sha256, sizeof(digest)); 453 } 454 EXPORT_SYMBOL_GPL(fscrypt_match_name); 455 456 /** 457 * fscrypt_fname_siphash() - calculate the SipHash of a filename 458 * @dir: the parent directory 459 * @name: the filename to calculate the SipHash of 460 * 461 * Given a plaintext filename @name and a directory @dir which uses SipHash as 462 * its dirhash method and has had its fscrypt key set up, this function 463 * calculates the SipHash of that name using the directory's secret dirhash key. 464 * 465 * Return: the SipHash of @name using the hash key of @dir 466 */ 467 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name) 468 { 469 const struct fscrypt_inode_info *ci = fscrypt_get_inode_info_raw(dir); 470 471 WARN_ON_ONCE(!ci->ci_dirhash_key_initialized); 472 473 return siphash(name->name, name->len, &ci->ci_dirhash_key); 474 } 475 EXPORT_SYMBOL_GPL(fscrypt_fname_siphash); 476 477 /* 478 * Validate dentries in encrypted directories to make sure we aren't potentially 479 * caching stale dentries after a key has been added. 480 */ 481 int fscrypt_d_revalidate(struct inode *dir, const struct qstr *name, 482 struct dentry *dentry, unsigned int flags) 483 { 484 int err; 485 486 /* 487 * Plaintext names are always valid, since fscrypt doesn't support 488 * reverting to no-key names without evicting the directory's inode 489 * -- which implies eviction of the dentries in the directory. 490 */ 491 if (!(dentry->d_flags & DCACHE_NOKEY_NAME)) 492 return 1; 493 494 /* 495 * No-key name; valid if the directory's key is still unavailable. 496 * 497 * Note in RCU mode we have to bail if we get here - 498 * fscrypt_get_encryption_info() may block. 499 */ 500 501 if (flags & LOOKUP_RCU) 502 return -ECHILD; 503 504 /* 505 * Pass allow_unsupported=true, so that files with an unsupported 506 * encryption policy can be deleted. 507 */ 508 err = fscrypt_get_encryption_info(dir, true); 509 if (err < 0) 510 return err; 511 512 return !fscrypt_has_encryption_key(dir); 513 } 514 EXPORT_SYMBOL_GPL(fscrypt_d_revalidate); 515