xref: /linux/fs/crypto/crypto.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * This contains encryption functions for per-file encryption.
3  *
4  * Copyright (C) 2015, Google, Inc.
5  * Copyright (C) 2015, Motorola Mobility
6  *
7  * Written by Michael Halcrow, 2014.
8  *
9  * Filename encryption additions
10  *	Uday Savagaonkar, 2014
11  * Encryption policy handling additions
12  *	Ildar Muslukhov, 2014
13  * Add fscrypt_pullback_bio_page()
14  *	Jaegeuk Kim, 2015.
15  *
16  * This has not yet undergone a rigorous security audit.
17  *
18  * The usage of AES-XTS should conform to recommendations in NIST
19  * Special Publication 800-38E and IEEE P1619/D16.
20  */
21 
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/bio.h>
28 #include <linux/dcache.h>
29 #include <linux/namei.h>
30 #include <linux/fscrypto.h>
31 
32 static unsigned int num_prealloc_crypto_pages = 32;
33 static unsigned int num_prealloc_crypto_ctxs = 128;
34 
35 module_param(num_prealloc_crypto_pages, uint, 0444);
36 MODULE_PARM_DESC(num_prealloc_crypto_pages,
37 		"Number of crypto pages to preallocate");
38 module_param(num_prealloc_crypto_ctxs, uint, 0444);
39 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
40 		"Number of crypto contexts to preallocate");
41 
42 static mempool_t *fscrypt_bounce_page_pool = NULL;
43 
44 static LIST_HEAD(fscrypt_free_ctxs);
45 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
46 
47 static struct workqueue_struct *fscrypt_read_workqueue;
48 static DEFINE_MUTEX(fscrypt_init_mutex);
49 
50 static struct kmem_cache *fscrypt_ctx_cachep;
51 struct kmem_cache *fscrypt_info_cachep;
52 
53 /**
54  * fscrypt_release_ctx() - Releases an encryption context
55  * @ctx: The encryption context to release.
56  *
57  * If the encryption context was allocated from the pre-allocated pool, returns
58  * it to that pool. Else, frees it.
59  *
60  * If there's a bounce page in the context, this frees that.
61  */
62 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
63 {
64 	unsigned long flags;
65 
66 	if (ctx->flags & FS_WRITE_PATH_FL && ctx->w.bounce_page) {
67 		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
68 		ctx->w.bounce_page = NULL;
69 	}
70 	ctx->w.control_page = NULL;
71 	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
72 		kmem_cache_free(fscrypt_ctx_cachep, ctx);
73 	} else {
74 		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
75 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
76 		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
77 	}
78 }
79 EXPORT_SYMBOL(fscrypt_release_ctx);
80 
81 /**
82  * fscrypt_get_ctx() - Gets an encryption context
83  * @inode:       The inode for which we are doing the crypto
84  * @gfp_flags:   The gfp flag for memory allocation
85  *
86  * Allocates and initializes an encryption context.
87  *
88  * Return: An allocated and initialized encryption context on success; error
89  * value or NULL otherwise.
90  */
91 struct fscrypt_ctx *fscrypt_get_ctx(struct inode *inode, gfp_t gfp_flags)
92 {
93 	struct fscrypt_ctx *ctx = NULL;
94 	struct fscrypt_info *ci = inode->i_crypt_info;
95 	unsigned long flags;
96 
97 	if (ci == NULL)
98 		return ERR_PTR(-ENOKEY);
99 
100 	/*
101 	 * We first try getting the ctx from a free list because in
102 	 * the common case the ctx will have an allocated and
103 	 * initialized crypto tfm, so it's probably a worthwhile
104 	 * optimization. For the bounce page, we first try getting it
105 	 * from the kernel allocator because that's just about as fast
106 	 * as getting it from a list and because a cache of free pages
107 	 * should generally be a "last resort" option for a filesystem
108 	 * to be able to do its job.
109 	 */
110 	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
111 	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
112 					struct fscrypt_ctx, free_list);
113 	if (ctx)
114 		list_del(&ctx->free_list);
115 	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
116 	if (!ctx) {
117 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
118 		if (!ctx)
119 			return ERR_PTR(-ENOMEM);
120 		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
121 	} else {
122 		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
123 	}
124 	ctx->flags &= ~FS_WRITE_PATH_FL;
125 	return ctx;
126 }
127 EXPORT_SYMBOL(fscrypt_get_ctx);
128 
129 /**
130  * page_crypt_complete() - completion callback for page crypto
131  * @req: The asynchronous cipher request context
132  * @res: The result of the cipher operation
133  */
134 static void page_crypt_complete(struct crypto_async_request *req, int res)
135 {
136 	struct fscrypt_completion_result *ecr = req->data;
137 
138 	if (res == -EINPROGRESS)
139 		return;
140 	ecr->res = res;
141 	complete(&ecr->completion);
142 }
143 
144 typedef enum {
145 	FS_DECRYPT = 0,
146 	FS_ENCRYPT,
147 } fscrypt_direction_t;
148 
149 static int do_page_crypto(struct inode *inode,
150 			fscrypt_direction_t rw, pgoff_t index,
151 			struct page *src_page, struct page *dest_page,
152 			gfp_t gfp_flags)
153 {
154 	struct {
155 		__le64 index;
156 		u8 padding[FS_XTS_TWEAK_SIZE - sizeof(__le64)];
157 	} xts_tweak;
158 	struct skcipher_request *req = NULL;
159 	DECLARE_FS_COMPLETION_RESULT(ecr);
160 	struct scatterlist dst, src;
161 	struct fscrypt_info *ci = inode->i_crypt_info;
162 	struct crypto_skcipher *tfm = ci->ci_ctfm;
163 	int res = 0;
164 
165 	req = skcipher_request_alloc(tfm, gfp_flags);
166 	if (!req) {
167 		printk_ratelimited(KERN_ERR
168 				"%s: crypto_request_alloc() failed\n",
169 				__func__);
170 		return -ENOMEM;
171 	}
172 
173 	skcipher_request_set_callback(
174 		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
175 		page_crypt_complete, &ecr);
176 
177 	BUILD_BUG_ON(sizeof(xts_tweak) != FS_XTS_TWEAK_SIZE);
178 	xts_tweak.index = cpu_to_le64(index);
179 	memset(xts_tweak.padding, 0, sizeof(xts_tweak.padding));
180 
181 	sg_init_table(&dst, 1);
182 	sg_set_page(&dst, dest_page, PAGE_SIZE, 0);
183 	sg_init_table(&src, 1);
184 	sg_set_page(&src, src_page, PAGE_SIZE, 0);
185 	skcipher_request_set_crypt(req, &src, &dst, PAGE_SIZE, &xts_tweak);
186 	if (rw == FS_DECRYPT)
187 		res = crypto_skcipher_decrypt(req);
188 	else
189 		res = crypto_skcipher_encrypt(req);
190 	if (res == -EINPROGRESS || res == -EBUSY) {
191 		BUG_ON(req->base.data != &ecr);
192 		wait_for_completion(&ecr.completion);
193 		res = ecr.res;
194 	}
195 	skcipher_request_free(req);
196 	if (res) {
197 		printk_ratelimited(KERN_ERR
198 			"%s: crypto_skcipher_encrypt() returned %d\n",
199 			__func__, res);
200 		return res;
201 	}
202 	return 0;
203 }
204 
205 static struct page *alloc_bounce_page(struct fscrypt_ctx *ctx, gfp_t gfp_flags)
206 {
207 	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
208 	if (ctx->w.bounce_page == NULL)
209 		return ERR_PTR(-ENOMEM);
210 	ctx->flags |= FS_WRITE_PATH_FL;
211 	return ctx->w.bounce_page;
212 }
213 
214 /**
215  * fscypt_encrypt_page() - Encrypts a page
216  * @inode:          The inode for which the encryption should take place
217  * @plaintext_page: The page to encrypt. Must be locked.
218  * @gfp_flags:      The gfp flag for memory allocation
219  *
220  * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
221  * encryption context.
222  *
223  * Called on the page write path.  The caller must call
224  * fscrypt_restore_control_page() on the returned ciphertext page to
225  * release the bounce buffer and the encryption context.
226  *
227  * Return: An allocated page with the encrypted content on success. Else, an
228  * error value or NULL.
229  */
230 struct page *fscrypt_encrypt_page(struct inode *inode,
231 				struct page *plaintext_page, gfp_t gfp_flags)
232 {
233 	struct fscrypt_ctx *ctx;
234 	struct page *ciphertext_page = NULL;
235 	int err;
236 
237 	BUG_ON(!PageLocked(plaintext_page));
238 
239 	ctx = fscrypt_get_ctx(inode, gfp_flags);
240 	if (IS_ERR(ctx))
241 		return (struct page *)ctx;
242 
243 	/* The encryption operation will require a bounce page. */
244 	ciphertext_page = alloc_bounce_page(ctx, gfp_flags);
245 	if (IS_ERR(ciphertext_page))
246 		goto errout;
247 
248 	ctx->w.control_page = plaintext_page;
249 	err = do_page_crypto(inode, FS_ENCRYPT, plaintext_page->index,
250 					plaintext_page, ciphertext_page,
251 					gfp_flags);
252 	if (err) {
253 		ciphertext_page = ERR_PTR(err);
254 		goto errout;
255 	}
256 	SetPagePrivate(ciphertext_page);
257 	set_page_private(ciphertext_page, (unsigned long)ctx);
258 	lock_page(ciphertext_page);
259 	return ciphertext_page;
260 
261 errout:
262 	fscrypt_release_ctx(ctx);
263 	return ciphertext_page;
264 }
265 EXPORT_SYMBOL(fscrypt_encrypt_page);
266 
267 /**
268  * f2crypt_decrypt_page() - Decrypts a page in-place
269  * @page: The page to decrypt. Must be locked.
270  *
271  * Decrypts page in-place using the ctx encryption context.
272  *
273  * Called from the read completion callback.
274  *
275  * Return: Zero on success, non-zero otherwise.
276  */
277 int fscrypt_decrypt_page(struct page *page)
278 {
279 	BUG_ON(!PageLocked(page));
280 
281 	return do_page_crypto(page->mapping->host,
282 			FS_DECRYPT, page->index, page, page, GFP_NOFS);
283 }
284 EXPORT_SYMBOL(fscrypt_decrypt_page);
285 
286 int fscrypt_zeroout_range(struct inode *inode, pgoff_t lblk,
287 				sector_t pblk, unsigned int len)
288 {
289 	struct fscrypt_ctx *ctx;
290 	struct page *ciphertext_page = NULL;
291 	struct bio *bio;
292 	int ret, err = 0;
293 
294 	BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE);
295 
296 	ctx = fscrypt_get_ctx(inode, GFP_NOFS);
297 	if (IS_ERR(ctx))
298 		return PTR_ERR(ctx);
299 
300 	ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT);
301 	if (IS_ERR(ciphertext_page)) {
302 		err = PTR_ERR(ciphertext_page);
303 		goto errout;
304 	}
305 
306 	while (len--) {
307 		err = do_page_crypto(inode, FS_ENCRYPT, lblk,
308 					ZERO_PAGE(0), ciphertext_page,
309 					GFP_NOFS);
310 		if (err)
311 			goto errout;
312 
313 		bio = bio_alloc(GFP_NOWAIT, 1);
314 		if (!bio) {
315 			err = -ENOMEM;
316 			goto errout;
317 		}
318 		bio->bi_bdev = inode->i_sb->s_bdev;
319 		bio->bi_iter.bi_sector =
320 			pblk << (inode->i_sb->s_blocksize_bits - 9);
321 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
322 		ret = bio_add_page(bio, ciphertext_page,
323 					inode->i_sb->s_blocksize, 0);
324 		if (ret != inode->i_sb->s_blocksize) {
325 			/* should never happen! */
326 			WARN_ON(1);
327 			bio_put(bio);
328 			err = -EIO;
329 			goto errout;
330 		}
331 		err = submit_bio_wait(bio);
332 		if ((err == 0) && bio->bi_error)
333 			err = -EIO;
334 		bio_put(bio);
335 		if (err)
336 			goto errout;
337 		lblk++;
338 		pblk++;
339 	}
340 	err = 0;
341 errout:
342 	fscrypt_release_ctx(ctx);
343 	return err;
344 }
345 EXPORT_SYMBOL(fscrypt_zeroout_range);
346 
347 /*
348  * Validate dentries for encrypted directories to make sure we aren't
349  * potentially caching stale data after a key has been added or
350  * removed.
351  */
352 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
353 {
354 	struct dentry *dir;
355 	struct fscrypt_info *ci;
356 	int dir_has_key, cached_with_key;
357 
358 	if (flags & LOOKUP_RCU)
359 		return -ECHILD;
360 
361 	dir = dget_parent(dentry);
362 	if (!d_inode(dir)->i_sb->s_cop->is_encrypted(d_inode(dir))) {
363 		dput(dir);
364 		return 0;
365 	}
366 
367 	ci = d_inode(dir)->i_crypt_info;
368 	if (ci && ci->ci_keyring_key &&
369 	    (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
370 					  (1 << KEY_FLAG_REVOKED) |
371 					  (1 << KEY_FLAG_DEAD))))
372 		ci = NULL;
373 
374 	/* this should eventually be an flag in d_flags */
375 	spin_lock(&dentry->d_lock);
376 	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
377 	spin_unlock(&dentry->d_lock);
378 	dir_has_key = (ci != NULL);
379 	dput(dir);
380 
381 	/*
382 	 * If the dentry was cached without the key, and it is a
383 	 * negative dentry, it might be a valid name.  We can't check
384 	 * if the key has since been made available due to locking
385 	 * reasons, so we fail the validation so ext4_lookup() can do
386 	 * this check.
387 	 *
388 	 * We also fail the validation if the dentry was created with
389 	 * the key present, but we no longer have the key, or vice versa.
390 	 */
391 	if ((!cached_with_key && d_is_negative(dentry)) ||
392 			(!cached_with_key && dir_has_key) ||
393 			(cached_with_key && !dir_has_key))
394 		return 0;
395 	return 1;
396 }
397 
398 const struct dentry_operations fscrypt_d_ops = {
399 	.d_revalidate = fscrypt_d_revalidate,
400 };
401 EXPORT_SYMBOL(fscrypt_d_ops);
402 
403 /*
404  * Call fscrypt_decrypt_page on every single page, reusing the encryption
405  * context.
406  */
407 static void completion_pages(struct work_struct *work)
408 {
409 	struct fscrypt_ctx *ctx =
410 		container_of(work, struct fscrypt_ctx, r.work);
411 	struct bio *bio = ctx->r.bio;
412 	struct bio_vec *bv;
413 	int i;
414 
415 	bio_for_each_segment_all(bv, bio, i) {
416 		struct page *page = bv->bv_page;
417 		int ret = fscrypt_decrypt_page(page);
418 
419 		if (ret) {
420 			WARN_ON_ONCE(1);
421 			SetPageError(page);
422 		} else {
423 			SetPageUptodate(page);
424 		}
425 		unlock_page(page);
426 	}
427 	fscrypt_release_ctx(ctx);
428 	bio_put(bio);
429 }
430 
431 void fscrypt_decrypt_bio_pages(struct fscrypt_ctx *ctx, struct bio *bio)
432 {
433 	INIT_WORK(&ctx->r.work, completion_pages);
434 	ctx->r.bio = bio;
435 	queue_work(fscrypt_read_workqueue, &ctx->r.work);
436 }
437 EXPORT_SYMBOL(fscrypt_decrypt_bio_pages);
438 
439 void fscrypt_pullback_bio_page(struct page **page, bool restore)
440 {
441 	struct fscrypt_ctx *ctx;
442 	struct page *bounce_page;
443 
444 	/* The bounce data pages are unmapped. */
445 	if ((*page)->mapping)
446 		return;
447 
448 	/* The bounce data page is unmapped. */
449 	bounce_page = *page;
450 	ctx = (struct fscrypt_ctx *)page_private(bounce_page);
451 
452 	/* restore control page */
453 	*page = ctx->w.control_page;
454 
455 	if (restore)
456 		fscrypt_restore_control_page(bounce_page);
457 }
458 EXPORT_SYMBOL(fscrypt_pullback_bio_page);
459 
460 void fscrypt_restore_control_page(struct page *page)
461 {
462 	struct fscrypt_ctx *ctx;
463 
464 	ctx = (struct fscrypt_ctx *)page_private(page);
465 	set_page_private(page, (unsigned long)NULL);
466 	ClearPagePrivate(page);
467 	unlock_page(page);
468 	fscrypt_release_ctx(ctx);
469 }
470 EXPORT_SYMBOL(fscrypt_restore_control_page);
471 
472 static void fscrypt_destroy(void)
473 {
474 	struct fscrypt_ctx *pos, *n;
475 
476 	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
477 		kmem_cache_free(fscrypt_ctx_cachep, pos);
478 	INIT_LIST_HEAD(&fscrypt_free_ctxs);
479 	mempool_destroy(fscrypt_bounce_page_pool);
480 	fscrypt_bounce_page_pool = NULL;
481 }
482 
483 /**
484  * fscrypt_initialize() - allocate major buffers for fs encryption.
485  *
486  * We only call this when we start accessing encrypted files, since it
487  * results in memory getting allocated that wouldn't otherwise be used.
488  *
489  * Return: Zero on success, non-zero otherwise.
490  */
491 int fscrypt_initialize(void)
492 {
493 	int i, res = -ENOMEM;
494 
495 	if (fscrypt_bounce_page_pool)
496 		return 0;
497 
498 	mutex_lock(&fscrypt_init_mutex);
499 	if (fscrypt_bounce_page_pool)
500 		goto already_initialized;
501 
502 	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
503 		struct fscrypt_ctx *ctx;
504 
505 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
506 		if (!ctx)
507 			goto fail;
508 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
509 	}
510 
511 	fscrypt_bounce_page_pool =
512 		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
513 	if (!fscrypt_bounce_page_pool)
514 		goto fail;
515 
516 already_initialized:
517 	mutex_unlock(&fscrypt_init_mutex);
518 	return 0;
519 fail:
520 	fscrypt_destroy();
521 	mutex_unlock(&fscrypt_init_mutex);
522 	return res;
523 }
524 EXPORT_SYMBOL(fscrypt_initialize);
525 
526 /**
527  * fscrypt_init() - Set up for fs encryption.
528  */
529 static int __init fscrypt_init(void)
530 {
531 	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
532 							WQ_HIGHPRI, 0);
533 	if (!fscrypt_read_workqueue)
534 		goto fail;
535 
536 	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
537 	if (!fscrypt_ctx_cachep)
538 		goto fail_free_queue;
539 
540 	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
541 	if (!fscrypt_info_cachep)
542 		goto fail_free_ctx;
543 
544 	return 0;
545 
546 fail_free_ctx:
547 	kmem_cache_destroy(fscrypt_ctx_cachep);
548 fail_free_queue:
549 	destroy_workqueue(fscrypt_read_workqueue);
550 fail:
551 	return -ENOMEM;
552 }
553 module_init(fscrypt_init)
554 
555 /**
556  * fscrypt_exit() - Shutdown the fs encryption system
557  */
558 static void __exit fscrypt_exit(void)
559 {
560 	fscrypt_destroy();
561 
562 	if (fscrypt_read_workqueue)
563 		destroy_workqueue(fscrypt_read_workqueue);
564 	kmem_cache_destroy(fscrypt_ctx_cachep);
565 	kmem_cache_destroy(fscrypt_info_cachep);
566 }
567 module_exit(fscrypt_exit);
568 
569 MODULE_LICENSE("GPL");
570