xref: /linux/fs/crypto/crypto.c (revision db6d8d5fdf9537641c76ba7f32e02b4bcc600972)
1 /*
2  * This contains encryption functions for per-file encryption.
3  *
4  * Copyright (C) 2015, Google, Inc.
5  * Copyright (C) 2015, Motorola Mobility
6  *
7  * Written by Michael Halcrow, 2014.
8  *
9  * Filename encryption additions
10  *	Uday Savagaonkar, 2014
11  * Encryption policy handling additions
12  *	Ildar Muslukhov, 2014
13  * Add fscrypt_pullback_bio_page()
14  *	Jaegeuk Kim, 2015.
15  *
16  * This has not yet undergone a rigorous security audit.
17  *
18  * The usage of AES-XTS should conform to recommendations in NIST
19  * Special Publication 800-38E and IEEE P1619/D16.
20  */
21 
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/bio.h>
28 #include <linux/dcache.h>
29 #include <linux/namei.h>
30 #include <linux/fscrypto.h>
31 
32 static unsigned int num_prealloc_crypto_pages = 32;
33 static unsigned int num_prealloc_crypto_ctxs = 128;
34 
35 module_param(num_prealloc_crypto_pages, uint, 0444);
36 MODULE_PARM_DESC(num_prealloc_crypto_pages,
37 		"Number of crypto pages to preallocate");
38 module_param(num_prealloc_crypto_ctxs, uint, 0444);
39 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
40 		"Number of crypto contexts to preallocate");
41 
42 static mempool_t *fscrypt_bounce_page_pool = NULL;
43 
44 static LIST_HEAD(fscrypt_free_ctxs);
45 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
46 
47 static struct workqueue_struct *fscrypt_read_workqueue;
48 static DEFINE_MUTEX(fscrypt_init_mutex);
49 
50 static struct kmem_cache *fscrypt_ctx_cachep;
51 struct kmem_cache *fscrypt_info_cachep;
52 
53 /**
54  * fscrypt_release_ctx() - Releases an encryption context
55  * @ctx: The encryption context to release.
56  *
57  * If the encryption context was allocated from the pre-allocated pool, returns
58  * it to that pool. Else, frees it.
59  *
60  * If there's a bounce page in the context, this frees that.
61  */
62 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
63 {
64 	unsigned long flags;
65 
66 	if (ctx->flags & FS_WRITE_PATH_FL && ctx->w.bounce_page) {
67 		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
68 		ctx->w.bounce_page = NULL;
69 	}
70 	ctx->w.control_page = NULL;
71 	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
72 		kmem_cache_free(fscrypt_ctx_cachep, ctx);
73 	} else {
74 		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
75 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
76 		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
77 	}
78 }
79 EXPORT_SYMBOL(fscrypt_release_ctx);
80 
81 /**
82  * fscrypt_get_ctx() - Gets an encryption context
83  * @inode:       The inode for which we are doing the crypto
84  * @gfp_flags:   The gfp flag for memory allocation
85  *
86  * Allocates and initializes an encryption context.
87  *
88  * Return: An allocated and initialized encryption context on success; error
89  * value or NULL otherwise.
90  */
91 struct fscrypt_ctx *fscrypt_get_ctx(struct inode *inode, gfp_t gfp_flags)
92 {
93 	struct fscrypt_ctx *ctx = NULL;
94 	struct fscrypt_info *ci = inode->i_crypt_info;
95 	unsigned long flags;
96 
97 	if (ci == NULL)
98 		return ERR_PTR(-ENOKEY);
99 
100 	/*
101 	 * We first try getting the ctx from a free list because in
102 	 * the common case the ctx will have an allocated and
103 	 * initialized crypto tfm, so it's probably a worthwhile
104 	 * optimization. For the bounce page, we first try getting it
105 	 * from the kernel allocator because that's just about as fast
106 	 * as getting it from a list and because a cache of free pages
107 	 * should generally be a "last resort" option for a filesystem
108 	 * to be able to do its job.
109 	 */
110 	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
111 	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
112 					struct fscrypt_ctx, free_list);
113 	if (ctx)
114 		list_del(&ctx->free_list);
115 	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
116 	if (!ctx) {
117 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
118 		if (!ctx)
119 			return ERR_PTR(-ENOMEM);
120 		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
121 	} else {
122 		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
123 	}
124 	ctx->flags &= ~FS_WRITE_PATH_FL;
125 	return ctx;
126 }
127 EXPORT_SYMBOL(fscrypt_get_ctx);
128 
129 /**
130  * page_crypt_complete() - completion callback for page crypto
131  * @req: The asynchronous cipher request context
132  * @res: The result of the cipher operation
133  */
134 static void page_crypt_complete(struct crypto_async_request *req, int res)
135 {
136 	struct fscrypt_completion_result *ecr = req->data;
137 
138 	if (res == -EINPROGRESS)
139 		return;
140 	ecr->res = res;
141 	complete(&ecr->completion);
142 }
143 
144 typedef enum {
145 	FS_DECRYPT = 0,
146 	FS_ENCRYPT,
147 } fscrypt_direction_t;
148 
149 static int do_page_crypto(struct inode *inode,
150 			fscrypt_direction_t rw, pgoff_t index,
151 			struct page *src_page, struct page *dest_page,
152 			gfp_t gfp_flags)
153 {
154 	u8 xts_tweak[FS_XTS_TWEAK_SIZE];
155 	struct skcipher_request *req = NULL;
156 	DECLARE_FS_COMPLETION_RESULT(ecr);
157 	struct scatterlist dst, src;
158 	struct fscrypt_info *ci = inode->i_crypt_info;
159 	struct crypto_skcipher *tfm = ci->ci_ctfm;
160 	int res = 0;
161 
162 	req = skcipher_request_alloc(tfm, gfp_flags);
163 	if (!req) {
164 		printk_ratelimited(KERN_ERR
165 				"%s: crypto_request_alloc() failed\n",
166 				__func__);
167 		return -ENOMEM;
168 	}
169 
170 	skcipher_request_set_callback(
171 		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
172 		page_crypt_complete, &ecr);
173 
174 	BUILD_BUG_ON(FS_XTS_TWEAK_SIZE < sizeof(index));
175 	memcpy(xts_tweak, &index, sizeof(index));
176 	memset(&xts_tweak[sizeof(index)], 0,
177 			FS_XTS_TWEAK_SIZE - sizeof(index));
178 
179 	sg_init_table(&dst, 1);
180 	sg_set_page(&dst, dest_page, PAGE_SIZE, 0);
181 	sg_init_table(&src, 1);
182 	sg_set_page(&src, src_page, PAGE_SIZE, 0);
183 	skcipher_request_set_crypt(req, &src, &dst, PAGE_SIZE,
184 					xts_tweak);
185 	if (rw == FS_DECRYPT)
186 		res = crypto_skcipher_decrypt(req);
187 	else
188 		res = crypto_skcipher_encrypt(req);
189 	if (res == -EINPROGRESS || res == -EBUSY) {
190 		BUG_ON(req->base.data != &ecr);
191 		wait_for_completion(&ecr.completion);
192 		res = ecr.res;
193 	}
194 	skcipher_request_free(req);
195 	if (res) {
196 		printk_ratelimited(KERN_ERR
197 			"%s: crypto_skcipher_encrypt() returned %d\n",
198 			__func__, res);
199 		return res;
200 	}
201 	return 0;
202 }
203 
204 static struct page *alloc_bounce_page(struct fscrypt_ctx *ctx, gfp_t gfp_flags)
205 {
206 	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
207 	if (ctx->w.bounce_page == NULL)
208 		return ERR_PTR(-ENOMEM);
209 	ctx->flags |= FS_WRITE_PATH_FL;
210 	return ctx->w.bounce_page;
211 }
212 
213 /**
214  * fscypt_encrypt_page() - Encrypts a page
215  * @inode:          The inode for which the encryption should take place
216  * @plaintext_page: The page to encrypt. Must be locked.
217  * @gfp_flags:      The gfp flag for memory allocation
218  *
219  * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
220  * encryption context.
221  *
222  * Called on the page write path.  The caller must call
223  * fscrypt_restore_control_page() on the returned ciphertext page to
224  * release the bounce buffer and the encryption context.
225  *
226  * Return: An allocated page with the encrypted content on success. Else, an
227  * error value or NULL.
228  */
229 struct page *fscrypt_encrypt_page(struct inode *inode,
230 				struct page *plaintext_page, gfp_t gfp_flags)
231 {
232 	struct fscrypt_ctx *ctx;
233 	struct page *ciphertext_page = NULL;
234 	int err;
235 
236 	BUG_ON(!PageLocked(plaintext_page));
237 
238 	ctx = fscrypt_get_ctx(inode, gfp_flags);
239 	if (IS_ERR(ctx))
240 		return (struct page *)ctx;
241 
242 	/* The encryption operation will require a bounce page. */
243 	ciphertext_page = alloc_bounce_page(ctx, gfp_flags);
244 	if (IS_ERR(ciphertext_page))
245 		goto errout;
246 
247 	ctx->w.control_page = plaintext_page;
248 	err = do_page_crypto(inode, FS_ENCRYPT, plaintext_page->index,
249 					plaintext_page, ciphertext_page,
250 					gfp_flags);
251 	if (err) {
252 		ciphertext_page = ERR_PTR(err);
253 		goto errout;
254 	}
255 	SetPagePrivate(ciphertext_page);
256 	set_page_private(ciphertext_page, (unsigned long)ctx);
257 	lock_page(ciphertext_page);
258 	return ciphertext_page;
259 
260 errout:
261 	fscrypt_release_ctx(ctx);
262 	return ciphertext_page;
263 }
264 EXPORT_SYMBOL(fscrypt_encrypt_page);
265 
266 /**
267  * f2crypt_decrypt_page() - Decrypts a page in-place
268  * @page: The page to decrypt. Must be locked.
269  *
270  * Decrypts page in-place using the ctx encryption context.
271  *
272  * Called from the read completion callback.
273  *
274  * Return: Zero on success, non-zero otherwise.
275  */
276 int fscrypt_decrypt_page(struct page *page)
277 {
278 	BUG_ON(!PageLocked(page));
279 
280 	return do_page_crypto(page->mapping->host,
281 			FS_DECRYPT, page->index, page, page, GFP_NOFS);
282 }
283 EXPORT_SYMBOL(fscrypt_decrypt_page);
284 
285 int fscrypt_zeroout_range(struct inode *inode, pgoff_t lblk,
286 				sector_t pblk, unsigned int len)
287 {
288 	struct fscrypt_ctx *ctx;
289 	struct page *ciphertext_page = NULL;
290 	struct bio *bio;
291 	int ret, err = 0;
292 
293 	BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE);
294 
295 	ctx = fscrypt_get_ctx(inode, GFP_NOFS);
296 	if (IS_ERR(ctx))
297 		return PTR_ERR(ctx);
298 
299 	ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT);
300 	if (IS_ERR(ciphertext_page)) {
301 		err = PTR_ERR(ciphertext_page);
302 		goto errout;
303 	}
304 
305 	while (len--) {
306 		err = do_page_crypto(inode, FS_ENCRYPT, lblk,
307 					ZERO_PAGE(0), ciphertext_page,
308 					GFP_NOFS);
309 		if (err)
310 			goto errout;
311 
312 		bio = bio_alloc(GFP_NOWAIT, 1);
313 		if (!bio) {
314 			err = -ENOMEM;
315 			goto errout;
316 		}
317 		bio->bi_bdev = inode->i_sb->s_bdev;
318 		bio->bi_iter.bi_sector =
319 			pblk << (inode->i_sb->s_blocksize_bits - 9);
320 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
321 		ret = bio_add_page(bio, ciphertext_page,
322 					inode->i_sb->s_blocksize, 0);
323 		if (ret != inode->i_sb->s_blocksize) {
324 			/* should never happen! */
325 			WARN_ON(1);
326 			bio_put(bio);
327 			err = -EIO;
328 			goto errout;
329 		}
330 		err = submit_bio_wait(bio);
331 		if ((err == 0) && bio->bi_error)
332 			err = -EIO;
333 		bio_put(bio);
334 		if (err)
335 			goto errout;
336 		lblk++;
337 		pblk++;
338 	}
339 	err = 0;
340 errout:
341 	fscrypt_release_ctx(ctx);
342 	return err;
343 }
344 EXPORT_SYMBOL(fscrypt_zeroout_range);
345 
346 /*
347  * Validate dentries for encrypted directories to make sure we aren't
348  * potentially caching stale data after a key has been added or
349  * removed.
350  */
351 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
352 {
353 	struct dentry *dir;
354 	struct fscrypt_info *ci;
355 	int dir_has_key, cached_with_key;
356 
357 	if (flags & LOOKUP_RCU)
358 		return -ECHILD;
359 
360 	dir = dget_parent(dentry);
361 	if (!d_inode(dir)->i_sb->s_cop->is_encrypted(d_inode(dir))) {
362 		dput(dir);
363 		return 0;
364 	}
365 
366 	ci = d_inode(dir)->i_crypt_info;
367 	if (ci && ci->ci_keyring_key &&
368 	    (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
369 					  (1 << KEY_FLAG_REVOKED) |
370 					  (1 << KEY_FLAG_DEAD))))
371 		ci = NULL;
372 
373 	/* this should eventually be an flag in d_flags */
374 	spin_lock(&dentry->d_lock);
375 	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
376 	spin_unlock(&dentry->d_lock);
377 	dir_has_key = (ci != NULL);
378 	dput(dir);
379 
380 	/*
381 	 * If the dentry was cached without the key, and it is a
382 	 * negative dentry, it might be a valid name.  We can't check
383 	 * if the key has since been made available due to locking
384 	 * reasons, so we fail the validation so ext4_lookup() can do
385 	 * this check.
386 	 *
387 	 * We also fail the validation if the dentry was created with
388 	 * the key present, but we no longer have the key, or vice versa.
389 	 */
390 	if ((!cached_with_key && d_is_negative(dentry)) ||
391 			(!cached_with_key && dir_has_key) ||
392 			(cached_with_key && !dir_has_key))
393 		return 0;
394 	return 1;
395 }
396 
397 const struct dentry_operations fscrypt_d_ops = {
398 	.d_revalidate = fscrypt_d_revalidate,
399 };
400 EXPORT_SYMBOL(fscrypt_d_ops);
401 
402 /*
403  * Call fscrypt_decrypt_page on every single page, reusing the encryption
404  * context.
405  */
406 static void completion_pages(struct work_struct *work)
407 {
408 	struct fscrypt_ctx *ctx =
409 		container_of(work, struct fscrypt_ctx, r.work);
410 	struct bio *bio = ctx->r.bio;
411 	struct bio_vec *bv;
412 	int i;
413 
414 	bio_for_each_segment_all(bv, bio, i) {
415 		struct page *page = bv->bv_page;
416 		int ret = fscrypt_decrypt_page(page);
417 
418 		if (ret) {
419 			WARN_ON_ONCE(1);
420 			SetPageError(page);
421 		} else {
422 			SetPageUptodate(page);
423 		}
424 		unlock_page(page);
425 	}
426 	fscrypt_release_ctx(ctx);
427 	bio_put(bio);
428 }
429 
430 void fscrypt_decrypt_bio_pages(struct fscrypt_ctx *ctx, struct bio *bio)
431 {
432 	INIT_WORK(&ctx->r.work, completion_pages);
433 	ctx->r.bio = bio;
434 	queue_work(fscrypt_read_workqueue, &ctx->r.work);
435 }
436 EXPORT_SYMBOL(fscrypt_decrypt_bio_pages);
437 
438 void fscrypt_pullback_bio_page(struct page **page, bool restore)
439 {
440 	struct fscrypt_ctx *ctx;
441 	struct page *bounce_page;
442 
443 	/* The bounce data pages are unmapped. */
444 	if ((*page)->mapping)
445 		return;
446 
447 	/* The bounce data page is unmapped. */
448 	bounce_page = *page;
449 	ctx = (struct fscrypt_ctx *)page_private(bounce_page);
450 
451 	/* restore control page */
452 	*page = ctx->w.control_page;
453 
454 	if (restore)
455 		fscrypt_restore_control_page(bounce_page);
456 }
457 EXPORT_SYMBOL(fscrypt_pullback_bio_page);
458 
459 void fscrypt_restore_control_page(struct page *page)
460 {
461 	struct fscrypt_ctx *ctx;
462 
463 	ctx = (struct fscrypt_ctx *)page_private(page);
464 	set_page_private(page, (unsigned long)NULL);
465 	ClearPagePrivate(page);
466 	unlock_page(page);
467 	fscrypt_release_ctx(ctx);
468 }
469 EXPORT_SYMBOL(fscrypt_restore_control_page);
470 
471 static void fscrypt_destroy(void)
472 {
473 	struct fscrypt_ctx *pos, *n;
474 
475 	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
476 		kmem_cache_free(fscrypt_ctx_cachep, pos);
477 	INIT_LIST_HEAD(&fscrypt_free_ctxs);
478 	mempool_destroy(fscrypt_bounce_page_pool);
479 	fscrypt_bounce_page_pool = NULL;
480 }
481 
482 /**
483  * fscrypt_initialize() - allocate major buffers for fs encryption.
484  *
485  * We only call this when we start accessing encrypted files, since it
486  * results in memory getting allocated that wouldn't otherwise be used.
487  *
488  * Return: Zero on success, non-zero otherwise.
489  */
490 int fscrypt_initialize(void)
491 {
492 	int i, res = -ENOMEM;
493 
494 	if (fscrypt_bounce_page_pool)
495 		return 0;
496 
497 	mutex_lock(&fscrypt_init_mutex);
498 	if (fscrypt_bounce_page_pool)
499 		goto already_initialized;
500 
501 	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
502 		struct fscrypt_ctx *ctx;
503 
504 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
505 		if (!ctx)
506 			goto fail;
507 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
508 	}
509 
510 	fscrypt_bounce_page_pool =
511 		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
512 	if (!fscrypt_bounce_page_pool)
513 		goto fail;
514 
515 already_initialized:
516 	mutex_unlock(&fscrypt_init_mutex);
517 	return 0;
518 fail:
519 	fscrypt_destroy();
520 	mutex_unlock(&fscrypt_init_mutex);
521 	return res;
522 }
523 EXPORT_SYMBOL(fscrypt_initialize);
524 
525 /**
526  * fscrypt_init() - Set up for fs encryption.
527  */
528 static int __init fscrypt_init(void)
529 {
530 	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
531 							WQ_HIGHPRI, 0);
532 	if (!fscrypt_read_workqueue)
533 		goto fail;
534 
535 	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
536 	if (!fscrypt_ctx_cachep)
537 		goto fail_free_queue;
538 
539 	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
540 	if (!fscrypt_info_cachep)
541 		goto fail_free_ctx;
542 
543 	return 0;
544 
545 fail_free_ctx:
546 	kmem_cache_destroy(fscrypt_ctx_cachep);
547 fail_free_queue:
548 	destroy_workqueue(fscrypt_read_workqueue);
549 fail:
550 	return -ENOMEM;
551 }
552 module_init(fscrypt_init)
553 
554 /**
555  * fscrypt_exit() - Shutdown the fs encryption system
556  */
557 static void __exit fscrypt_exit(void)
558 {
559 	fscrypt_destroy();
560 
561 	if (fscrypt_read_workqueue)
562 		destroy_workqueue(fscrypt_read_workqueue);
563 	kmem_cache_destroy(fscrypt_ctx_cachep);
564 	kmem_cache_destroy(fscrypt_info_cachep);
565 }
566 module_exit(fscrypt_exit);
567 
568 MODULE_LICENSE("GPL");
569