xref: /linux/fs/crypto/crypto.c (revision a8b70ccf10e38775785d9cb12ead916474549f99)
1 /*
2  * This contains encryption functions for per-file encryption.
3  *
4  * Copyright (C) 2015, Google, Inc.
5  * Copyright (C) 2015, Motorola Mobility
6  *
7  * Written by Michael Halcrow, 2014.
8  *
9  * Filename encryption additions
10  *	Uday Savagaonkar, 2014
11  * Encryption policy handling additions
12  *	Ildar Muslukhov, 2014
13  * Add fscrypt_pullback_bio_page()
14  *	Jaegeuk Kim, 2015.
15  *
16  * This has not yet undergone a rigorous security audit.
17  *
18  * The usage of AES-XTS should conform to recommendations in NIST
19  * Special Publication 800-38E and IEEE P1619/D16.
20  */
21 
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/dcache.h>
28 #include <linux/namei.h>
29 #include <crypto/aes.h>
30 #include <crypto/skcipher.h>
31 #include "fscrypt_private.h"
32 
33 static unsigned int num_prealloc_crypto_pages = 32;
34 static unsigned int num_prealloc_crypto_ctxs = 128;
35 
36 module_param(num_prealloc_crypto_pages, uint, 0444);
37 MODULE_PARM_DESC(num_prealloc_crypto_pages,
38 		"Number of crypto pages to preallocate");
39 module_param(num_prealloc_crypto_ctxs, uint, 0444);
40 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
41 		"Number of crypto contexts to preallocate");
42 
43 static mempool_t *fscrypt_bounce_page_pool = NULL;
44 
45 static LIST_HEAD(fscrypt_free_ctxs);
46 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
47 
48 struct workqueue_struct *fscrypt_read_workqueue;
49 static DEFINE_MUTEX(fscrypt_init_mutex);
50 
51 static struct kmem_cache *fscrypt_ctx_cachep;
52 struct kmem_cache *fscrypt_info_cachep;
53 
54 /**
55  * fscrypt_release_ctx() - Releases an encryption context
56  * @ctx: The encryption context to release.
57  *
58  * If the encryption context was allocated from the pre-allocated pool, returns
59  * it to that pool. Else, frees it.
60  *
61  * If there's a bounce page in the context, this frees that.
62  */
63 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
64 {
65 	unsigned long flags;
66 
67 	if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
68 		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
69 		ctx->w.bounce_page = NULL;
70 	}
71 	ctx->w.control_page = NULL;
72 	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
73 		kmem_cache_free(fscrypt_ctx_cachep, ctx);
74 	} else {
75 		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
76 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
77 		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
78 	}
79 }
80 EXPORT_SYMBOL(fscrypt_release_ctx);
81 
82 /**
83  * fscrypt_get_ctx() - Gets an encryption context
84  * @inode:       The inode for which we are doing the crypto
85  * @gfp_flags:   The gfp flag for memory allocation
86  *
87  * Allocates and initializes an encryption context.
88  *
89  * Return: An allocated and initialized encryption context on success; error
90  * value or NULL otherwise.
91  */
92 struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
93 {
94 	struct fscrypt_ctx *ctx = NULL;
95 	struct fscrypt_info *ci = inode->i_crypt_info;
96 	unsigned long flags;
97 
98 	if (ci == NULL)
99 		return ERR_PTR(-ENOKEY);
100 
101 	/*
102 	 * We first try getting the ctx from a free list because in
103 	 * the common case the ctx will have an allocated and
104 	 * initialized crypto tfm, so it's probably a worthwhile
105 	 * optimization. For the bounce page, we first try getting it
106 	 * from the kernel allocator because that's just about as fast
107 	 * as getting it from a list and because a cache of free pages
108 	 * should generally be a "last resort" option for a filesystem
109 	 * to be able to do its job.
110 	 */
111 	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
112 	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
113 					struct fscrypt_ctx, free_list);
114 	if (ctx)
115 		list_del(&ctx->free_list);
116 	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
117 	if (!ctx) {
118 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
119 		if (!ctx)
120 			return ERR_PTR(-ENOMEM);
121 		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
122 	} else {
123 		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
124 	}
125 	ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
126 	return ctx;
127 }
128 EXPORT_SYMBOL(fscrypt_get_ctx);
129 
130 int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
131 			   u64 lblk_num, struct page *src_page,
132 			   struct page *dest_page, unsigned int len,
133 			   unsigned int offs, gfp_t gfp_flags)
134 {
135 	struct {
136 		__le64 index;
137 		u8 padding[FS_IV_SIZE - sizeof(__le64)];
138 	} iv;
139 	struct skcipher_request *req = NULL;
140 	DECLARE_CRYPTO_WAIT(wait);
141 	struct scatterlist dst, src;
142 	struct fscrypt_info *ci = inode->i_crypt_info;
143 	struct crypto_skcipher *tfm = ci->ci_ctfm;
144 	int res = 0;
145 
146 	BUG_ON(len == 0);
147 
148 	BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE);
149 	BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE);
150 	iv.index = cpu_to_le64(lblk_num);
151 	memset(iv.padding, 0, sizeof(iv.padding));
152 
153 	if (ci->ci_essiv_tfm != NULL) {
154 		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv,
155 					  (u8 *)&iv);
156 	}
157 
158 	req = skcipher_request_alloc(tfm, gfp_flags);
159 	if (!req) {
160 		printk_ratelimited(KERN_ERR
161 				"%s: crypto_request_alloc() failed\n",
162 				__func__);
163 		return -ENOMEM;
164 	}
165 
166 	skcipher_request_set_callback(
167 		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
168 		crypto_req_done, &wait);
169 
170 	sg_init_table(&dst, 1);
171 	sg_set_page(&dst, dest_page, len, offs);
172 	sg_init_table(&src, 1);
173 	sg_set_page(&src, src_page, len, offs);
174 	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
175 	if (rw == FS_DECRYPT)
176 		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
177 	else
178 		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
179 	skcipher_request_free(req);
180 	if (res) {
181 		printk_ratelimited(KERN_ERR
182 			"%s: crypto_skcipher_encrypt() returned %d\n",
183 			__func__, res);
184 		return res;
185 	}
186 	return 0;
187 }
188 
189 struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
190 				       gfp_t gfp_flags)
191 {
192 	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
193 	if (ctx->w.bounce_page == NULL)
194 		return ERR_PTR(-ENOMEM);
195 	ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
196 	return ctx->w.bounce_page;
197 }
198 
199 /**
200  * fscypt_encrypt_page() - Encrypts a page
201  * @inode:     The inode for which the encryption should take place
202  * @page:      The page to encrypt. Must be locked for bounce-page
203  *             encryption.
204  * @len:       Length of data to encrypt in @page and encrypted
205  *             data in returned page.
206  * @offs:      Offset of data within @page and returned
207  *             page holding encrypted data.
208  * @lblk_num:  Logical block number. This must be unique for multiple
209  *             calls with same inode, except when overwriting
210  *             previously written data.
211  * @gfp_flags: The gfp flag for memory allocation
212  *
213  * Encrypts @page using the ctx encryption context. Performs encryption
214  * either in-place or into a newly allocated bounce page.
215  * Called on the page write path.
216  *
217  * Bounce page allocation is the default.
218  * In this case, the contents of @page are encrypted and stored in an
219  * allocated bounce page. @page has to be locked and the caller must call
220  * fscrypt_restore_control_page() on the returned ciphertext page to
221  * release the bounce buffer and the encryption context.
222  *
223  * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
224  * fscrypt_operations. Here, the input-page is returned with its content
225  * encrypted.
226  *
227  * Return: A page with the encrypted content on success. Else, an
228  * error value or NULL.
229  */
230 struct page *fscrypt_encrypt_page(const struct inode *inode,
231 				struct page *page,
232 				unsigned int len,
233 				unsigned int offs,
234 				u64 lblk_num, gfp_t gfp_flags)
235 
236 {
237 	struct fscrypt_ctx *ctx;
238 	struct page *ciphertext_page = page;
239 	int err;
240 
241 	BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);
242 
243 	if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
244 		/* with inplace-encryption we just encrypt the page */
245 		err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
246 					     ciphertext_page, len, offs,
247 					     gfp_flags);
248 		if (err)
249 			return ERR_PTR(err);
250 
251 		return ciphertext_page;
252 	}
253 
254 	BUG_ON(!PageLocked(page));
255 
256 	ctx = fscrypt_get_ctx(inode, gfp_flags);
257 	if (IS_ERR(ctx))
258 		return (struct page *)ctx;
259 
260 	/* The encryption operation will require a bounce page. */
261 	ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
262 	if (IS_ERR(ciphertext_page))
263 		goto errout;
264 
265 	ctx->w.control_page = page;
266 	err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
267 				     page, ciphertext_page, len, offs,
268 				     gfp_flags);
269 	if (err) {
270 		ciphertext_page = ERR_PTR(err);
271 		goto errout;
272 	}
273 	SetPagePrivate(ciphertext_page);
274 	set_page_private(ciphertext_page, (unsigned long)ctx);
275 	lock_page(ciphertext_page);
276 	return ciphertext_page;
277 
278 errout:
279 	fscrypt_release_ctx(ctx);
280 	return ciphertext_page;
281 }
282 EXPORT_SYMBOL(fscrypt_encrypt_page);
283 
284 /**
285  * fscrypt_decrypt_page() - Decrypts a page in-place
286  * @inode:     The corresponding inode for the page to decrypt.
287  * @page:      The page to decrypt. Must be locked in case
288  *             it is a writeback page (FS_CFLG_OWN_PAGES unset).
289  * @len:       Number of bytes in @page to be decrypted.
290  * @offs:      Start of data in @page.
291  * @lblk_num:  Logical block number.
292  *
293  * Decrypts page in-place using the ctx encryption context.
294  *
295  * Called from the read completion callback.
296  *
297  * Return: Zero on success, non-zero otherwise.
298  */
299 int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
300 			unsigned int len, unsigned int offs, u64 lblk_num)
301 {
302 	if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
303 		BUG_ON(!PageLocked(page));
304 
305 	return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
306 				      len, offs, GFP_NOFS);
307 }
308 EXPORT_SYMBOL(fscrypt_decrypt_page);
309 
310 /*
311  * Validate dentries for encrypted directories to make sure we aren't
312  * potentially caching stale data after a key has been added or
313  * removed.
314  */
315 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
316 {
317 	struct dentry *dir;
318 	int dir_has_key, cached_with_key;
319 
320 	if (flags & LOOKUP_RCU)
321 		return -ECHILD;
322 
323 	dir = dget_parent(dentry);
324 	if (!IS_ENCRYPTED(d_inode(dir))) {
325 		dput(dir);
326 		return 0;
327 	}
328 
329 	/* this should eventually be an flag in d_flags */
330 	spin_lock(&dentry->d_lock);
331 	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
332 	spin_unlock(&dentry->d_lock);
333 	dir_has_key = (d_inode(dir)->i_crypt_info != NULL);
334 	dput(dir);
335 
336 	/*
337 	 * If the dentry was cached without the key, and it is a
338 	 * negative dentry, it might be a valid name.  We can't check
339 	 * if the key has since been made available due to locking
340 	 * reasons, so we fail the validation so ext4_lookup() can do
341 	 * this check.
342 	 *
343 	 * We also fail the validation if the dentry was created with
344 	 * the key present, but we no longer have the key, or vice versa.
345 	 */
346 	if ((!cached_with_key && d_is_negative(dentry)) ||
347 			(!cached_with_key && dir_has_key) ||
348 			(cached_with_key && !dir_has_key))
349 		return 0;
350 	return 1;
351 }
352 
353 const struct dentry_operations fscrypt_d_ops = {
354 	.d_revalidate = fscrypt_d_revalidate,
355 };
356 EXPORT_SYMBOL(fscrypt_d_ops);
357 
358 void fscrypt_restore_control_page(struct page *page)
359 {
360 	struct fscrypt_ctx *ctx;
361 
362 	ctx = (struct fscrypt_ctx *)page_private(page);
363 	set_page_private(page, (unsigned long)NULL);
364 	ClearPagePrivate(page);
365 	unlock_page(page);
366 	fscrypt_release_ctx(ctx);
367 }
368 EXPORT_SYMBOL(fscrypt_restore_control_page);
369 
370 static void fscrypt_destroy(void)
371 {
372 	struct fscrypt_ctx *pos, *n;
373 
374 	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
375 		kmem_cache_free(fscrypt_ctx_cachep, pos);
376 	INIT_LIST_HEAD(&fscrypt_free_ctxs);
377 	mempool_destroy(fscrypt_bounce_page_pool);
378 	fscrypt_bounce_page_pool = NULL;
379 }
380 
381 /**
382  * fscrypt_initialize() - allocate major buffers for fs encryption.
383  * @cop_flags:  fscrypt operations flags
384  *
385  * We only call this when we start accessing encrypted files, since it
386  * results in memory getting allocated that wouldn't otherwise be used.
387  *
388  * Return: Zero on success, non-zero otherwise.
389  */
390 int fscrypt_initialize(unsigned int cop_flags)
391 {
392 	int i, res = -ENOMEM;
393 
394 	/* No need to allocate a bounce page pool if this FS won't use it. */
395 	if (cop_flags & FS_CFLG_OWN_PAGES)
396 		return 0;
397 
398 	mutex_lock(&fscrypt_init_mutex);
399 	if (fscrypt_bounce_page_pool)
400 		goto already_initialized;
401 
402 	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
403 		struct fscrypt_ctx *ctx;
404 
405 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
406 		if (!ctx)
407 			goto fail;
408 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
409 	}
410 
411 	fscrypt_bounce_page_pool =
412 		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
413 	if (!fscrypt_bounce_page_pool)
414 		goto fail;
415 
416 already_initialized:
417 	mutex_unlock(&fscrypt_init_mutex);
418 	return 0;
419 fail:
420 	fscrypt_destroy();
421 	mutex_unlock(&fscrypt_init_mutex);
422 	return res;
423 }
424 
425 /**
426  * fscrypt_init() - Set up for fs encryption.
427  */
428 static int __init fscrypt_init(void)
429 {
430 	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
431 							WQ_HIGHPRI, 0);
432 	if (!fscrypt_read_workqueue)
433 		goto fail;
434 
435 	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
436 	if (!fscrypt_ctx_cachep)
437 		goto fail_free_queue;
438 
439 	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
440 	if (!fscrypt_info_cachep)
441 		goto fail_free_ctx;
442 
443 	return 0;
444 
445 fail_free_ctx:
446 	kmem_cache_destroy(fscrypt_ctx_cachep);
447 fail_free_queue:
448 	destroy_workqueue(fscrypt_read_workqueue);
449 fail:
450 	return -ENOMEM;
451 }
452 module_init(fscrypt_init)
453 
454 /**
455  * fscrypt_exit() - Shutdown the fs encryption system
456  */
457 static void __exit fscrypt_exit(void)
458 {
459 	fscrypt_destroy();
460 
461 	if (fscrypt_read_workqueue)
462 		destroy_workqueue(fscrypt_read_workqueue);
463 	kmem_cache_destroy(fscrypt_ctx_cachep);
464 	kmem_cache_destroy(fscrypt_info_cachep);
465 
466 	fscrypt_essiv_cleanup();
467 }
468 module_exit(fscrypt_exit);
469 
470 MODULE_LICENSE("GPL");
471