1 /* 2 * This contains encryption functions for per-file encryption. 3 * 4 * Copyright (C) 2015, Google, Inc. 5 * Copyright (C) 2015, Motorola Mobility 6 * 7 * Written by Michael Halcrow, 2014. 8 * 9 * Filename encryption additions 10 * Uday Savagaonkar, 2014 11 * Encryption policy handling additions 12 * Ildar Muslukhov, 2014 13 * Add fscrypt_pullback_bio_page() 14 * Jaegeuk Kim, 2015. 15 * 16 * This has not yet undergone a rigorous security audit. 17 * 18 * The usage of AES-XTS should conform to recommendations in NIST 19 * Special Publication 800-38E and IEEE P1619/D16. 20 */ 21 22 #include <linux/pagemap.h> 23 #include <linux/mempool.h> 24 #include <linux/module.h> 25 #include <linux/scatterlist.h> 26 #include <linux/ratelimit.h> 27 #include <linux/dcache.h> 28 #include <linux/namei.h> 29 #include <crypto/aes.h> 30 #include "fscrypt_private.h" 31 32 static unsigned int num_prealloc_crypto_pages = 32; 33 static unsigned int num_prealloc_crypto_ctxs = 128; 34 35 module_param(num_prealloc_crypto_pages, uint, 0444); 36 MODULE_PARM_DESC(num_prealloc_crypto_pages, 37 "Number of crypto pages to preallocate"); 38 module_param(num_prealloc_crypto_ctxs, uint, 0444); 39 MODULE_PARM_DESC(num_prealloc_crypto_ctxs, 40 "Number of crypto contexts to preallocate"); 41 42 static mempool_t *fscrypt_bounce_page_pool = NULL; 43 44 static LIST_HEAD(fscrypt_free_ctxs); 45 static DEFINE_SPINLOCK(fscrypt_ctx_lock); 46 47 struct workqueue_struct *fscrypt_read_workqueue; 48 static DEFINE_MUTEX(fscrypt_init_mutex); 49 50 static struct kmem_cache *fscrypt_ctx_cachep; 51 struct kmem_cache *fscrypt_info_cachep; 52 53 /** 54 * fscrypt_release_ctx() - Releases an encryption context 55 * @ctx: The encryption context to release. 56 * 57 * If the encryption context was allocated from the pre-allocated pool, returns 58 * it to that pool. Else, frees it. 59 * 60 * If there's a bounce page in the context, this frees that. 61 */ 62 void fscrypt_release_ctx(struct fscrypt_ctx *ctx) 63 { 64 unsigned long flags; 65 66 if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) { 67 mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool); 68 ctx->w.bounce_page = NULL; 69 } 70 ctx->w.control_page = NULL; 71 if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) { 72 kmem_cache_free(fscrypt_ctx_cachep, ctx); 73 } else { 74 spin_lock_irqsave(&fscrypt_ctx_lock, flags); 75 list_add(&ctx->free_list, &fscrypt_free_ctxs); 76 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); 77 } 78 } 79 EXPORT_SYMBOL(fscrypt_release_ctx); 80 81 /** 82 * fscrypt_get_ctx() - Gets an encryption context 83 * @inode: The inode for which we are doing the crypto 84 * @gfp_flags: The gfp flag for memory allocation 85 * 86 * Allocates and initializes an encryption context. 87 * 88 * Return: An allocated and initialized encryption context on success; error 89 * value or NULL otherwise. 90 */ 91 struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags) 92 { 93 struct fscrypt_ctx *ctx = NULL; 94 struct fscrypt_info *ci = inode->i_crypt_info; 95 unsigned long flags; 96 97 if (ci == NULL) 98 return ERR_PTR(-ENOKEY); 99 100 /* 101 * We first try getting the ctx from a free list because in 102 * the common case the ctx will have an allocated and 103 * initialized crypto tfm, so it's probably a worthwhile 104 * optimization. For the bounce page, we first try getting it 105 * from the kernel allocator because that's just about as fast 106 * as getting it from a list and because a cache of free pages 107 * should generally be a "last resort" option for a filesystem 108 * to be able to do its job. 109 */ 110 spin_lock_irqsave(&fscrypt_ctx_lock, flags); 111 ctx = list_first_entry_or_null(&fscrypt_free_ctxs, 112 struct fscrypt_ctx, free_list); 113 if (ctx) 114 list_del(&ctx->free_list); 115 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); 116 if (!ctx) { 117 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags); 118 if (!ctx) 119 return ERR_PTR(-ENOMEM); 120 ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL; 121 } else { 122 ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL; 123 } 124 ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL; 125 return ctx; 126 } 127 EXPORT_SYMBOL(fscrypt_get_ctx); 128 129 int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw, 130 u64 lblk_num, struct page *src_page, 131 struct page *dest_page, unsigned int len, 132 unsigned int offs, gfp_t gfp_flags) 133 { 134 struct { 135 __le64 index; 136 u8 padding[FS_IV_SIZE - sizeof(__le64)]; 137 } iv; 138 struct skcipher_request *req = NULL; 139 DECLARE_CRYPTO_WAIT(wait); 140 struct scatterlist dst, src; 141 struct fscrypt_info *ci = inode->i_crypt_info; 142 struct crypto_skcipher *tfm = ci->ci_ctfm; 143 int res = 0; 144 145 BUG_ON(len == 0); 146 147 BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE); 148 BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE); 149 iv.index = cpu_to_le64(lblk_num); 150 memset(iv.padding, 0, sizeof(iv.padding)); 151 152 if (ci->ci_essiv_tfm != NULL) { 153 crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv, 154 (u8 *)&iv); 155 } 156 157 req = skcipher_request_alloc(tfm, gfp_flags); 158 if (!req) { 159 printk_ratelimited(KERN_ERR 160 "%s: crypto_request_alloc() failed\n", 161 __func__); 162 return -ENOMEM; 163 } 164 165 skcipher_request_set_callback( 166 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 167 crypto_req_done, &wait); 168 169 sg_init_table(&dst, 1); 170 sg_set_page(&dst, dest_page, len, offs); 171 sg_init_table(&src, 1); 172 sg_set_page(&src, src_page, len, offs); 173 skcipher_request_set_crypt(req, &src, &dst, len, &iv); 174 if (rw == FS_DECRYPT) 175 res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait); 176 else 177 res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 178 skcipher_request_free(req); 179 if (res) { 180 printk_ratelimited(KERN_ERR 181 "%s: crypto_skcipher_encrypt() returned %d\n", 182 __func__, res); 183 return res; 184 } 185 return 0; 186 } 187 188 struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx, 189 gfp_t gfp_flags) 190 { 191 ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags); 192 if (ctx->w.bounce_page == NULL) 193 return ERR_PTR(-ENOMEM); 194 ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL; 195 return ctx->w.bounce_page; 196 } 197 198 /** 199 * fscypt_encrypt_page() - Encrypts a page 200 * @inode: The inode for which the encryption should take place 201 * @page: The page to encrypt. Must be locked for bounce-page 202 * encryption. 203 * @len: Length of data to encrypt in @page and encrypted 204 * data in returned page. 205 * @offs: Offset of data within @page and returned 206 * page holding encrypted data. 207 * @lblk_num: Logical block number. This must be unique for multiple 208 * calls with same inode, except when overwriting 209 * previously written data. 210 * @gfp_flags: The gfp flag for memory allocation 211 * 212 * Encrypts @page using the ctx encryption context. Performs encryption 213 * either in-place or into a newly allocated bounce page. 214 * Called on the page write path. 215 * 216 * Bounce page allocation is the default. 217 * In this case, the contents of @page are encrypted and stored in an 218 * allocated bounce page. @page has to be locked and the caller must call 219 * fscrypt_restore_control_page() on the returned ciphertext page to 220 * release the bounce buffer and the encryption context. 221 * 222 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in 223 * fscrypt_operations. Here, the input-page is returned with its content 224 * encrypted. 225 * 226 * Return: A page with the encrypted content on success. Else, an 227 * error value or NULL. 228 */ 229 struct page *fscrypt_encrypt_page(const struct inode *inode, 230 struct page *page, 231 unsigned int len, 232 unsigned int offs, 233 u64 lblk_num, gfp_t gfp_flags) 234 235 { 236 struct fscrypt_ctx *ctx; 237 struct page *ciphertext_page = page; 238 int err; 239 240 BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0); 241 242 if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) { 243 /* with inplace-encryption we just encrypt the page */ 244 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page, 245 ciphertext_page, len, offs, 246 gfp_flags); 247 if (err) 248 return ERR_PTR(err); 249 250 return ciphertext_page; 251 } 252 253 BUG_ON(!PageLocked(page)); 254 255 ctx = fscrypt_get_ctx(inode, gfp_flags); 256 if (IS_ERR(ctx)) 257 return (struct page *)ctx; 258 259 /* The encryption operation will require a bounce page. */ 260 ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags); 261 if (IS_ERR(ciphertext_page)) 262 goto errout; 263 264 ctx->w.control_page = page; 265 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, 266 page, ciphertext_page, len, offs, 267 gfp_flags); 268 if (err) { 269 ciphertext_page = ERR_PTR(err); 270 goto errout; 271 } 272 SetPagePrivate(ciphertext_page); 273 set_page_private(ciphertext_page, (unsigned long)ctx); 274 lock_page(ciphertext_page); 275 return ciphertext_page; 276 277 errout: 278 fscrypt_release_ctx(ctx); 279 return ciphertext_page; 280 } 281 EXPORT_SYMBOL(fscrypt_encrypt_page); 282 283 /** 284 * fscrypt_decrypt_page() - Decrypts a page in-place 285 * @inode: The corresponding inode for the page to decrypt. 286 * @page: The page to decrypt. Must be locked in case 287 * it is a writeback page (FS_CFLG_OWN_PAGES unset). 288 * @len: Number of bytes in @page to be decrypted. 289 * @offs: Start of data in @page. 290 * @lblk_num: Logical block number. 291 * 292 * Decrypts page in-place using the ctx encryption context. 293 * 294 * Called from the read completion callback. 295 * 296 * Return: Zero on success, non-zero otherwise. 297 */ 298 int fscrypt_decrypt_page(const struct inode *inode, struct page *page, 299 unsigned int len, unsigned int offs, u64 lblk_num) 300 { 301 if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES)) 302 BUG_ON(!PageLocked(page)); 303 304 return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page, 305 len, offs, GFP_NOFS); 306 } 307 EXPORT_SYMBOL(fscrypt_decrypt_page); 308 309 /* 310 * Validate dentries for encrypted directories to make sure we aren't 311 * potentially caching stale data after a key has been added or 312 * removed. 313 */ 314 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) 315 { 316 struct dentry *dir; 317 int dir_has_key, cached_with_key; 318 319 if (flags & LOOKUP_RCU) 320 return -ECHILD; 321 322 dir = dget_parent(dentry); 323 if (!IS_ENCRYPTED(d_inode(dir))) { 324 dput(dir); 325 return 0; 326 } 327 328 /* this should eventually be an flag in d_flags */ 329 spin_lock(&dentry->d_lock); 330 cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY; 331 spin_unlock(&dentry->d_lock); 332 dir_has_key = (d_inode(dir)->i_crypt_info != NULL); 333 dput(dir); 334 335 /* 336 * If the dentry was cached without the key, and it is a 337 * negative dentry, it might be a valid name. We can't check 338 * if the key has since been made available due to locking 339 * reasons, so we fail the validation so ext4_lookup() can do 340 * this check. 341 * 342 * We also fail the validation if the dentry was created with 343 * the key present, but we no longer have the key, or vice versa. 344 */ 345 if ((!cached_with_key && d_is_negative(dentry)) || 346 (!cached_with_key && dir_has_key) || 347 (cached_with_key && !dir_has_key)) 348 return 0; 349 return 1; 350 } 351 352 const struct dentry_operations fscrypt_d_ops = { 353 .d_revalidate = fscrypt_d_revalidate, 354 }; 355 EXPORT_SYMBOL(fscrypt_d_ops); 356 357 void fscrypt_restore_control_page(struct page *page) 358 { 359 struct fscrypt_ctx *ctx; 360 361 ctx = (struct fscrypt_ctx *)page_private(page); 362 set_page_private(page, (unsigned long)NULL); 363 ClearPagePrivate(page); 364 unlock_page(page); 365 fscrypt_release_ctx(ctx); 366 } 367 EXPORT_SYMBOL(fscrypt_restore_control_page); 368 369 static void fscrypt_destroy(void) 370 { 371 struct fscrypt_ctx *pos, *n; 372 373 list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list) 374 kmem_cache_free(fscrypt_ctx_cachep, pos); 375 INIT_LIST_HEAD(&fscrypt_free_ctxs); 376 mempool_destroy(fscrypt_bounce_page_pool); 377 fscrypt_bounce_page_pool = NULL; 378 } 379 380 /** 381 * fscrypt_initialize() - allocate major buffers for fs encryption. 382 * @cop_flags: fscrypt operations flags 383 * 384 * We only call this when we start accessing encrypted files, since it 385 * results in memory getting allocated that wouldn't otherwise be used. 386 * 387 * Return: Zero on success, non-zero otherwise. 388 */ 389 int fscrypt_initialize(unsigned int cop_flags) 390 { 391 int i, res = -ENOMEM; 392 393 /* No need to allocate a bounce page pool if this FS won't use it. */ 394 if (cop_flags & FS_CFLG_OWN_PAGES) 395 return 0; 396 397 mutex_lock(&fscrypt_init_mutex); 398 if (fscrypt_bounce_page_pool) 399 goto already_initialized; 400 401 for (i = 0; i < num_prealloc_crypto_ctxs; i++) { 402 struct fscrypt_ctx *ctx; 403 404 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS); 405 if (!ctx) 406 goto fail; 407 list_add(&ctx->free_list, &fscrypt_free_ctxs); 408 } 409 410 fscrypt_bounce_page_pool = 411 mempool_create_page_pool(num_prealloc_crypto_pages, 0); 412 if (!fscrypt_bounce_page_pool) 413 goto fail; 414 415 already_initialized: 416 mutex_unlock(&fscrypt_init_mutex); 417 return 0; 418 fail: 419 fscrypt_destroy(); 420 mutex_unlock(&fscrypt_init_mutex); 421 return res; 422 } 423 424 /** 425 * fscrypt_init() - Set up for fs encryption. 426 */ 427 static int __init fscrypt_init(void) 428 { 429 fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue", 430 WQ_HIGHPRI, 0); 431 if (!fscrypt_read_workqueue) 432 goto fail; 433 434 fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT); 435 if (!fscrypt_ctx_cachep) 436 goto fail_free_queue; 437 438 fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT); 439 if (!fscrypt_info_cachep) 440 goto fail_free_ctx; 441 442 return 0; 443 444 fail_free_ctx: 445 kmem_cache_destroy(fscrypt_ctx_cachep); 446 fail_free_queue: 447 destroy_workqueue(fscrypt_read_workqueue); 448 fail: 449 return -ENOMEM; 450 } 451 module_init(fscrypt_init) 452 453 /** 454 * fscrypt_exit() - Shutdown the fs encryption system 455 */ 456 static void __exit fscrypt_exit(void) 457 { 458 fscrypt_destroy(); 459 460 if (fscrypt_read_workqueue) 461 destroy_workqueue(fscrypt_read_workqueue); 462 kmem_cache_destroy(fscrypt_ctx_cachep); 463 kmem_cache_destroy(fscrypt_info_cachep); 464 465 fscrypt_essiv_cleanup(); 466 } 467 module_exit(fscrypt_exit); 468 469 MODULE_LICENSE("GPL"); 470