1 /* 2 * This contains encryption functions for per-file encryption. 3 * 4 * Copyright (C) 2015, Google, Inc. 5 * Copyright (C) 2015, Motorola Mobility 6 * 7 * Written by Michael Halcrow, 2014. 8 * 9 * Filename encryption additions 10 * Uday Savagaonkar, 2014 11 * Encryption policy handling additions 12 * Ildar Muslukhov, 2014 13 * Add fscrypt_pullback_bio_page() 14 * Jaegeuk Kim, 2015. 15 * 16 * This has not yet undergone a rigorous security audit. 17 * 18 * The usage of AES-XTS should conform to recommendations in NIST 19 * Special Publication 800-38E and IEEE P1619/D16. 20 */ 21 22 #include <linux/pagemap.h> 23 #include <linux/mempool.h> 24 #include <linux/module.h> 25 #include <linux/scatterlist.h> 26 #include <linux/ratelimit.h> 27 #include <linux/bio.h> 28 #include <linux/dcache.h> 29 #include <linux/namei.h> 30 #include "fscrypt_private.h" 31 32 static unsigned int num_prealloc_crypto_pages = 32; 33 static unsigned int num_prealloc_crypto_ctxs = 128; 34 35 module_param(num_prealloc_crypto_pages, uint, 0444); 36 MODULE_PARM_DESC(num_prealloc_crypto_pages, 37 "Number of crypto pages to preallocate"); 38 module_param(num_prealloc_crypto_ctxs, uint, 0444); 39 MODULE_PARM_DESC(num_prealloc_crypto_ctxs, 40 "Number of crypto contexts to preallocate"); 41 42 static mempool_t *fscrypt_bounce_page_pool = NULL; 43 44 static LIST_HEAD(fscrypt_free_ctxs); 45 static DEFINE_SPINLOCK(fscrypt_ctx_lock); 46 47 static struct workqueue_struct *fscrypt_read_workqueue; 48 static DEFINE_MUTEX(fscrypt_init_mutex); 49 50 static struct kmem_cache *fscrypt_ctx_cachep; 51 struct kmem_cache *fscrypt_info_cachep; 52 53 /** 54 * fscrypt_release_ctx() - Releases an encryption context 55 * @ctx: The encryption context to release. 56 * 57 * If the encryption context was allocated from the pre-allocated pool, returns 58 * it to that pool. Else, frees it. 59 * 60 * If there's a bounce page in the context, this frees that. 61 */ 62 void fscrypt_release_ctx(struct fscrypt_ctx *ctx) 63 { 64 unsigned long flags; 65 66 if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) { 67 mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool); 68 ctx->w.bounce_page = NULL; 69 } 70 ctx->w.control_page = NULL; 71 if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) { 72 kmem_cache_free(fscrypt_ctx_cachep, ctx); 73 } else { 74 spin_lock_irqsave(&fscrypt_ctx_lock, flags); 75 list_add(&ctx->free_list, &fscrypt_free_ctxs); 76 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); 77 } 78 } 79 EXPORT_SYMBOL(fscrypt_release_ctx); 80 81 /** 82 * fscrypt_get_ctx() - Gets an encryption context 83 * @inode: The inode for which we are doing the crypto 84 * @gfp_flags: The gfp flag for memory allocation 85 * 86 * Allocates and initializes an encryption context. 87 * 88 * Return: An allocated and initialized encryption context on success; error 89 * value or NULL otherwise. 90 */ 91 struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags) 92 { 93 struct fscrypt_ctx *ctx = NULL; 94 struct fscrypt_info *ci = inode->i_crypt_info; 95 unsigned long flags; 96 97 if (ci == NULL) 98 return ERR_PTR(-ENOKEY); 99 100 /* 101 * We first try getting the ctx from a free list because in 102 * the common case the ctx will have an allocated and 103 * initialized crypto tfm, so it's probably a worthwhile 104 * optimization. For the bounce page, we first try getting it 105 * from the kernel allocator because that's just about as fast 106 * as getting it from a list and because a cache of free pages 107 * should generally be a "last resort" option for a filesystem 108 * to be able to do its job. 109 */ 110 spin_lock_irqsave(&fscrypt_ctx_lock, flags); 111 ctx = list_first_entry_or_null(&fscrypt_free_ctxs, 112 struct fscrypt_ctx, free_list); 113 if (ctx) 114 list_del(&ctx->free_list); 115 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); 116 if (!ctx) { 117 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags); 118 if (!ctx) 119 return ERR_PTR(-ENOMEM); 120 ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL; 121 } else { 122 ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL; 123 } 124 ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL; 125 return ctx; 126 } 127 EXPORT_SYMBOL(fscrypt_get_ctx); 128 129 /** 130 * page_crypt_complete() - completion callback for page crypto 131 * @req: The asynchronous cipher request context 132 * @res: The result of the cipher operation 133 */ 134 static void page_crypt_complete(struct crypto_async_request *req, int res) 135 { 136 struct fscrypt_completion_result *ecr = req->data; 137 138 if (res == -EINPROGRESS) 139 return; 140 ecr->res = res; 141 complete(&ecr->completion); 142 } 143 144 typedef enum { 145 FS_DECRYPT = 0, 146 FS_ENCRYPT, 147 } fscrypt_direction_t; 148 149 static int do_page_crypto(const struct inode *inode, 150 fscrypt_direction_t rw, u64 lblk_num, 151 struct page *src_page, struct page *dest_page, 152 unsigned int len, unsigned int offs, 153 gfp_t gfp_flags) 154 { 155 struct { 156 __le64 index; 157 u8 padding[FS_XTS_TWEAK_SIZE - sizeof(__le64)]; 158 } xts_tweak; 159 struct skcipher_request *req = NULL; 160 DECLARE_FS_COMPLETION_RESULT(ecr); 161 struct scatterlist dst, src; 162 struct fscrypt_info *ci = inode->i_crypt_info; 163 struct crypto_skcipher *tfm = ci->ci_ctfm; 164 int res = 0; 165 166 BUG_ON(len == 0); 167 168 req = skcipher_request_alloc(tfm, gfp_flags); 169 if (!req) { 170 printk_ratelimited(KERN_ERR 171 "%s: crypto_request_alloc() failed\n", 172 __func__); 173 return -ENOMEM; 174 } 175 176 skcipher_request_set_callback( 177 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 178 page_crypt_complete, &ecr); 179 180 BUILD_BUG_ON(sizeof(xts_tweak) != FS_XTS_TWEAK_SIZE); 181 xts_tweak.index = cpu_to_le64(lblk_num); 182 memset(xts_tweak.padding, 0, sizeof(xts_tweak.padding)); 183 184 sg_init_table(&dst, 1); 185 sg_set_page(&dst, dest_page, len, offs); 186 sg_init_table(&src, 1); 187 sg_set_page(&src, src_page, len, offs); 188 skcipher_request_set_crypt(req, &src, &dst, len, &xts_tweak); 189 if (rw == FS_DECRYPT) 190 res = crypto_skcipher_decrypt(req); 191 else 192 res = crypto_skcipher_encrypt(req); 193 if (res == -EINPROGRESS || res == -EBUSY) { 194 BUG_ON(req->base.data != &ecr); 195 wait_for_completion(&ecr.completion); 196 res = ecr.res; 197 } 198 skcipher_request_free(req); 199 if (res) { 200 printk_ratelimited(KERN_ERR 201 "%s: crypto_skcipher_encrypt() returned %d\n", 202 __func__, res); 203 return res; 204 } 205 return 0; 206 } 207 208 static struct page *alloc_bounce_page(struct fscrypt_ctx *ctx, gfp_t gfp_flags) 209 { 210 ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags); 211 if (ctx->w.bounce_page == NULL) 212 return ERR_PTR(-ENOMEM); 213 ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL; 214 return ctx->w.bounce_page; 215 } 216 217 /** 218 * fscypt_encrypt_page() - Encrypts a page 219 * @inode: The inode for which the encryption should take place 220 * @page: The page to encrypt. Must be locked for bounce-page 221 * encryption. 222 * @len: Length of data to encrypt in @page and encrypted 223 * data in returned page. 224 * @offs: Offset of data within @page and returned 225 * page holding encrypted data. 226 * @lblk_num: Logical block number. This must be unique for multiple 227 * calls with same inode, except when overwriting 228 * previously written data. 229 * @gfp_flags: The gfp flag for memory allocation 230 * 231 * Encrypts @page using the ctx encryption context. Performs encryption 232 * either in-place or into a newly allocated bounce page. 233 * Called on the page write path. 234 * 235 * Bounce page allocation is the default. 236 * In this case, the contents of @page are encrypted and stored in an 237 * allocated bounce page. @page has to be locked and the caller must call 238 * fscrypt_restore_control_page() on the returned ciphertext page to 239 * release the bounce buffer and the encryption context. 240 * 241 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in 242 * fscrypt_operations. Here, the input-page is returned with its content 243 * encrypted. 244 * 245 * Return: A page with the encrypted content on success. Else, an 246 * error value or NULL. 247 */ 248 struct page *fscrypt_encrypt_page(const struct inode *inode, 249 struct page *page, 250 unsigned int len, 251 unsigned int offs, 252 u64 lblk_num, gfp_t gfp_flags) 253 254 { 255 struct fscrypt_ctx *ctx; 256 struct page *ciphertext_page = page; 257 int err; 258 259 BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0); 260 261 if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) { 262 /* with inplace-encryption we just encrypt the page */ 263 err = do_page_crypto(inode, FS_ENCRYPT, lblk_num, 264 page, ciphertext_page, 265 len, offs, gfp_flags); 266 if (err) 267 return ERR_PTR(err); 268 269 return ciphertext_page; 270 } 271 272 BUG_ON(!PageLocked(page)); 273 274 ctx = fscrypt_get_ctx(inode, gfp_flags); 275 if (IS_ERR(ctx)) 276 return (struct page *)ctx; 277 278 /* The encryption operation will require a bounce page. */ 279 ciphertext_page = alloc_bounce_page(ctx, gfp_flags); 280 if (IS_ERR(ciphertext_page)) 281 goto errout; 282 283 ctx->w.control_page = page; 284 err = do_page_crypto(inode, FS_ENCRYPT, lblk_num, 285 page, ciphertext_page, 286 len, offs, gfp_flags); 287 if (err) { 288 ciphertext_page = ERR_PTR(err); 289 goto errout; 290 } 291 SetPagePrivate(ciphertext_page); 292 set_page_private(ciphertext_page, (unsigned long)ctx); 293 lock_page(ciphertext_page); 294 return ciphertext_page; 295 296 errout: 297 fscrypt_release_ctx(ctx); 298 return ciphertext_page; 299 } 300 EXPORT_SYMBOL(fscrypt_encrypt_page); 301 302 /** 303 * fscrypt_decrypt_page() - Decrypts a page in-place 304 * @inode: The corresponding inode for the page to decrypt. 305 * @page: The page to decrypt. Must be locked in case 306 * it is a writeback page (FS_CFLG_OWN_PAGES unset). 307 * @len: Number of bytes in @page to be decrypted. 308 * @offs: Start of data in @page. 309 * @lblk_num: Logical block number. 310 * 311 * Decrypts page in-place using the ctx encryption context. 312 * 313 * Called from the read completion callback. 314 * 315 * Return: Zero on success, non-zero otherwise. 316 */ 317 int fscrypt_decrypt_page(const struct inode *inode, struct page *page, 318 unsigned int len, unsigned int offs, u64 lblk_num) 319 { 320 if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES)) 321 BUG_ON(!PageLocked(page)); 322 323 return do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page, len, 324 offs, GFP_NOFS); 325 } 326 EXPORT_SYMBOL(fscrypt_decrypt_page); 327 328 int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 329 sector_t pblk, unsigned int len) 330 { 331 struct fscrypt_ctx *ctx; 332 struct page *ciphertext_page = NULL; 333 struct bio *bio; 334 int ret, err = 0; 335 336 BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE); 337 338 ctx = fscrypt_get_ctx(inode, GFP_NOFS); 339 if (IS_ERR(ctx)) 340 return PTR_ERR(ctx); 341 342 ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT); 343 if (IS_ERR(ciphertext_page)) { 344 err = PTR_ERR(ciphertext_page); 345 goto errout; 346 } 347 348 while (len--) { 349 err = do_page_crypto(inode, FS_ENCRYPT, lblk, 350 ZERO_PAGE(0), ciphertext_page, 351 PAGE_SIZE, 0, GFP_NOFS); 352 if (err) 353 goto errout; 354 355 bio = bio_alloc(GFP_NOWAIT, 1); 356 if (!bio) { 357 err = -ENOMEM; 358 goto errout; 359 } 360 bio->bi_bdev = inode->i_sb->s_bdev; 361 bio->bi_iter.bi_sector = 362 pblk << (inode->i_sb->s_blocksize_bits - 9); 363 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 364 ret = bio_add_page(bio, ciphertext_page, 365 inode->i_sb->s_blocksize, 0); 366 if (ret != inode->i_sb->s_blocksize) { 367 /* should never happen! */ 368 WARN_ON(1); 369 bio_put(bio); 370 err = -EIO; 371 goto errout; 372 } 373 err = submit_bio_wait(bio); 374 if ((err == 0) && bio->bi_error) 375 err = -EIO; 376 bio_put(bio); 377 if (err) 378 goto errout; 379 lblk++; 380 pblk++; 381 } 382 err = 0; 383 errout: 384 fscrypt_release_ctx(ctx); 385 return err; 386 } 387 EXPORT_SYMBOL(fscrypt_zeroout_range); 388 389 /* 390 * Validate dentries for encrypted directories to make sure we aren't 391 * potentially caching stale data after a key has been added or 392 * removed. 393 */ 394 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) 395 { 396 struct dentry *dir; 397 struct fscrypt_info *ci; 398 int dir_has_key, cached_with_key; 399 400 if (flags & LOOKUP_RCU) 401 return -ECHILD; 402 403 dir = dget_parent(dentry); 404 if (!d_inode(dir)->i_sb->s_cop->is_encrypted(d_inode(dir))) { 405 dput(dir); 406 return 0; 407 } 408 409 ci = d_inode(dir)->i_crypt_info; 410 if (ci && ci->ci_keyring_key && 411 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) | 412 (1 << KEY_FLAG_REVOKED) | 413 (1 << KEY_FLAG_DEAD)))) 414 ci = NULL; 415 416 /* this should eventually be an flag in d_flags */ 417 spin_lock(&dentry->d_lock); 418 cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY; 419 spin_unlock(&dentry->d_lock); 420 dir_has_key = (ci != NULL); 421 dput(dir); 422 423 /* 424 * If the dentry was cached without the key, and it is a 425 * negative dentry, it might be a valid name. We can't check 426 * if the key has since been made available due to locking 427 * reasons, so we fail the validation so ext4_lookup() can do 428 * this check. 429 * 430 * We also fail the validation if the dentry was created with 431 * the key present, but we no longer have the key, or vice versa. 432 */ 433 if ((!cached_with_key && d_is_negative(dentry)) || 434 (!cached_with_key && dir_has_key) || 435 (cached_with_key && !dir_has_key)) 436 return 0; 437 return 1; 438 } 439 440 const struct dentry_operations fscrypt_d_ops = { 441 .d_revalidate = fscrypt_d_revalidate, 442 }; 443 EXPORT_SYMBOL(fscrypt_d_ops); 444 445 /* 446 * Call fscrypt_decrypt_page on every single page, reusing the encryption 447 * context. 448 */ 449 static void completion_pages(struct work_struct *work) 450 { 451 struct fscrypt_ctx *ctx = 452 container_of(work, struct fscrypt_ctx, r.work); 453 struct bio *bio = ctx->r.bio; 454 struct bio_vec *bv; 455 int i; 456 457 bio_for_each_segment_all(bv, bio, i) { 458 struct page *page = bv->bv_page; 459 int ret = fscrypt_decrypt_page(page->mapping->host, page, 460 PAGE_SIZE, 0, page->index); 461 462 if (ret) { 463 WARN_ON_ONCE(1); 464 SetPageError(page); 465 } else { 466 SetPageUptodate(page); 467 } 468 unlock_page(page); 469 } 470 fscrypt_release_ctx(ctx); 471 bio_put(bio); 472 } 473 474 void fscrypt_decrypt_bio_pages(struct fscrypt_ctx *ctx, struct bio *bio) 475 { 476 INIT_WORK(&ctx->r.work, completion_pages); 477 ctx->r.bio = bio; 478 queue_work(fscrypt_read_workqueue, &ctx->r.work); 479 } 480 EXPORT_SYMBOL(fscrypt_decrypt_bio_pages); 481 482 void fscrypt_pullback_bio_page(struct page **page, bool restore) 483 { 484 struct fscrypt_ctx *ctx; 485 struct page *bounce_page; 486 487 /* The bounce data pages are unmapped. */ 488 if ((*page)->mapping) 489 return; 490 491 /* The bounce data page is unmapped. */ 492 bounce_page = *page; 493 ctx = (struct fscrypt_ctx *)page_private(bounce_page); 494 495 /* restore control page */ 496 *page = ctx->w.control_page; 497 498 if (restore) 499 fscrypt_restore_control_page(bounce_page); 500 } 501 EXPORT_SYMBOL(fscrypt_pullback_bio_page); 502 503 void fscrypt_restore_control_page(struct page *page) 504 { 505 struct fscrypt_ctx *ctx; 506 507 ctx = (struct fscrypt_ctx *)page_private(page); 508 set_page_private(page, (unsigned long)NULL); 509 ClearPagePrivate(page); 510 unlock_page(page); 511 fscrypt_release_ctx(ctx); 512 } 513 EXPORT_SYMBOL(fscrypt_restore_control_page); 514 515 static void fscrypt_destroy(void) 516 { 517 struct fscrypt_ctx *pos, *n; 518 519 list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list) 520 kmem_cache_free(fscrypt_ctx_cachep, pos); 521 INIT_LIST_HEAD(&fscrypt_free_ctxs); 522 mempool_destroy(fscrypt_bounce_page_pool); 523 fscrypt_bounce_page_pool = NULL; 524 } 525 526 /** 527 * fscrypt_initialize() - allocate major buffers for fs encryption. 528 * @cop_flags: fscrypt operations flags 529 * 530 * We only call this when we start accessing encrypted files, since it 531 * results in memory getting allocated that wouldn't otherwise be used. 532 * 533 * Return: Zero on success, non-zero otherwise. 534 */ 535 int fscrypt_initialize(unsigned int cop_flags) 536 { 537 int i, res = -ENOMEM; 538 539 /* 540 * No need to allocate a bounce page pool if there already is one or 541 * this FS won't use it. 542 */ 543 if (cop_flags & FS_CFLG_OWN_PAGES || fscrypt_bounce_page_pool) 544 return 0; 545 546 mutex_lock(&fscrypt_init_mutex); 547 if (fscrypt_bounce_page_pool) 548 goto already_initialized; 549 550 for (i = 0; i < num_prealloc_crypto_ctxs; i++) { 551 struct fscrypt_ctx *ctx; 552 553 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS); 554 if (!ctx) 555 goto fail; 556 list_add(&ctx->free_list, &fscrypt_free_ctxs); 557 } 558 559 fscrypt_bounce_page_pool = 560 mempool_create_page_pool(num_prealloc_crypto_pages, 0); 561 if (!fscrypt_bounce_page_pool) 562 goto fail; 563 564 already_initialized: 565 mutex_unlock(&fscrypt_init_mutex); 566 return 0; 567 fail: 568 fscrypt_destroy(); 569 mutex_unlock(&fscrypt_init_mutex); 570 return res; 571 } 572 573 /** 574 * fscrypt_init() - Set up for fs encryption. 575 */ 576 static int __init fscrypt_init(void) 577 { 578 fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue", 579 WQ_HIGHPRI, 0); 580 if (!fscrypt_read_workqueue) 581 goto fail; 582 583 fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT); 584 if (!fscrypt_ctx_cachep) 585 goto fail_free_queue; 586 587 fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT); 588 if (!fscrypt_info_cachep) 589 goto fail_free_ctx; 590 591 return 0; 592 593 fail_free_ctx: 594 kmem_cache_destroy(fscrypt_ctx_cachep); 595 fail_free_queue: 596 destroy_workqueue(fscrypt_read_workqueue); 597 fail: 598 return -ENOMEM; 599 } 600 module_init(fscrypt_init) 601 602 /** 603 * fscrypt_exit() - Shutdown the fs encryption system 604 */ 605 static void __exit fscrypt_exit(void) 606 { 607 fscrypt_destroy(); 608 609 if (fscrypt_read_workqueue) 610 destroy_workqueue(fscrypt_read_workqueue); 611 kmem_cache_destroy(fscrypt_ctx_cachep); 612 kmem_cache_destroy(fscrypt_info_cachep); 613 } 614 module_exit(fscrypt_exit); 615 616 MODULE_LICENSE("GPL"); 617