xref: /linux/fs/crypto/crypto.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This contains encryption functions for per-file encryption.
4  *
5  * Copyright (C) 2015, Google, Inc.
6  * Copyright (C) 2015, Motorola Mobility
7  *
8  * Written by Michael Halcrow, 2014.
9  *
10  * Filename encryption additions
11  *	Uday Savagaonkar, 2014
12  * Encryption policy handling additions
13  *	Ildar Muslukhov, 2014
14  * Add fscrypt_pullback_bio_page()
15  *	Jaegeuk Kim, 2015.
16  *
17  * This has not yet undergone a rigorous security audit.
18  *
19  * The usage of AES-XTS should conform to recommendations in NIST
20  * Special Publication 800-38E and IEEE P1619/D16.
21  */
22 
23 #include <linux/pagemap.h>
24 #include <linux/mempool.h>
25 #include <linux/module.h>
26 #include <linux/scatterlist.h>
27 #include <linux/ratelimit.h>
28 #include <linux/dcache.h>
29 #include <linux/namei.h>
30 #include <crypto/skcipher.h>
31 #include "fscrypt_private.h"
32 
33 static unsigned int num_prealloc_crypto_pages = 32;
34 
35 module_param(num_prealloc_crypto_pages, uint, 0444);
36 MODULE_PARM_DESC(num_prealloc_crypto_pages,
37 		"Number of crypto pages to preallocate");
38 
39 static mempool_t *fscrypt_bounce_page_pool = NULL;
40 
41 static struct workqueue_struct *fscrypt_read_workqueue;
42 static DEFINE_MUTEX(fscrypt_init_mutex);
43 
44 struct kmem_cache *fscrypt_info_cachep;
45 
46 void fscrypt_enqueue_decrypt_work(struct work_struct *work)
47 {
48 	queue_work(fscrypt_read_workqueue, work);
49 }
50 EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
51 
52 struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags)
53 {
54 	return mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
55 }
56 
57 /**
58  * fscrypt_free_bounce_page() - free a ciphertext bounce page
59  *
60  * Free a bounce page that was allocated by fscrypt_encrypt_pagecache_blocks(),
61  * or by fscrypt_alloc_bounce_page() directly.
62  */
63 void fscrypt_free_bounce_page(struct page *bounce_page)
64 {
65 	if (!bounce_page)
66 		return;
67 	set_page_private(bounce_page, (unsigned long)NULL);
68 	ClearPagePrivate(bounce_page);
69 	mempool_free(bounce_page, fscrypt_bounce_page_pool);
70 }
71 EXPORT_SYMBOL(fscrypt_free_bounce_page);
72 
73 void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
74 			 const struct fscrypt_info *ci)
75 {
76 	u8 flags = fscrypt_policy_flags(&ci->ci_policy);
77 
78 	memset(iv, 0, ci->ci_mode->ivsize);
79 
80 	if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
81 		WARN_ON_ONCE((u32)lblk_num != lblk_num);
82 		lblk_num |= (u64)ci->ci_inode->i_ino << 32;
83 	} else if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
84 		memcpy(iv->nonce, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE);
85 	}
86 	iv->lblk_num = cpu_to_le64(lblk_num);
87 }
88 
89 /* Encrypt or decrypt a single filesystem block of file contents */
90 int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
91 			u64 lblk_num, struct page *src_page,
92 			struct page *dest_page, unsigned int len,
93 			unsigned int offs, gfp_t gfp_flags)
94 {
95 	union fscrypt_iv iv;
96 	struct skcipher_request *req = NULL;
97 	DECLARE_CRYPTO_WAIT(wait);
98 	struct scatterlist dst, src;
99 	struct fscrypt_info *ci = inode->i_crypt_info;
100 	struct crypto_skcipher *tfm = ci->ci_ctfm;
101 	int res = 0;
102 
103 	if (WARN_ON_ONCE(len <= 0))
104 		return -EINVAL;
105 	if (WARN_ON_ONCE(len % FS_CRYPTO_BLOCK_SIZE != 0))
106 		return -EINVAL;
107 
108 	fscrypt_generate_iv(&iv, lblk_num, ci);
109 
110 	req = skcipher_request_alloc(tfm, gfp_flags);
111 	if (!req)
112 		return -ENOMEM;
113 
114 	skcipher_request_set_callback(
115 		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
116 		crypto_req_done, &wait);
117 
118 	sg_init_table(&dst, 1);
119 	sg_set_page(&dst, dest_page, len, offs);
120 	sg_init_table(&src, 1);
121 	sg_set_page(&src, src_page, len, offs);
122 	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
123 	if (rw == FS_DECRYPT)
124 		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
125 	else
126 		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
127 	skcipher_request_free(req);
128 	if (res) {
129 		fscrypt_err(inode, "%scryption failed for block %llu: %d",
130 			    (rw == FS_DECRYPT ? "De" : "En"), lblk_num, res);
131 		return res;
132 	}
133 	return 0;
134 }
135 
136 /**
137  * fscrypt_encrypt_pagecache_blocks() - Encrypt filesystem blocks from a pagecache page
138  * @page:      The locked pagecache page containing the block(s) to encrypt
139  * @len:       Total size of the block(s) to encrypt.  Must be a nonzero
140  *		multiple of the filesystem's block size.
141  * @offs:      Byte offset within @page of the first block to encrypt.  Must be
142  *		a multiple of the filesystem's block size.
143  * @gfp_flags: Memory allocation flags
144  *
145  * A new bounce page is allocated, and the specified block(s) are encrypted into
146  * it.  In the bounce page, the ciphertext block(s) will be located at the same
147  * offsets at which the plaintext block(s) were located in the source page; any
148  * other parts of the bounce page will be left uninitialized.  However, normally
149  * blocksize == PAGE_SIZE and the whole page is encrypted at once.
150  *
151  * This is for use by the filesystem's ->writepages() method.
152  *
153  * Return: the new encrypted bounce page on success; an ERR_PTR() on failure
154  */
155 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
156 					      unsigned int len,
157 					      unsigned int offs,
158 					      gfp_t gfp_flags)
159 
160 {
161 	const struct inode *inode = page->mapping->host;
162 	const unsigned int blockbits = inode->i_blkbits;
163 	const unsigned int blocksize = 1 << blockbits;
164 	struct page *ciphertext_page;
165 	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
166 		       (offs >> blockbits);
167 	unsigned int i;
168 	int err;
169 
170 	if (WARN_ON_ONCE(!PageLocked(page)))
171 		return ERR_PTR(-EINVAL);
172 
173 	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
174 		return ERR_PTR(-EINVAL);
175 
176 	ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags);
177 	if (!ciphertext_page)
178 		return ERR_PTR(-ENOMEM);
179 
180 	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
181 		err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num,
182 					  page, ciphertext_page,
183 					  blocksize, i, gfp_flags);
184 		if (err) {
185 			fscrypt_free_bounce_page(ciphertext_page);
186 			return ERR_PTR(err);
187 		}
188 	}
189 	SetPagePrivate(ciphertext_page);
190 	set_page_private(ciphertext_page, (unsigned long)page);
191 	return ciphertext_page;
192 }
193 EXPORT_SYMBOL(fscrypt_encrypt_pagecache_blocks);
194 
195 /**
196  * fscrypt_encrypt_block_inplace() - Encrypt a filesystem block in-place
197  * @inode:     The inode to which this block belongs
198  * @page:      The page containing the block to encrypt
199  * @len:       Size of block to encrypt.  Doesn't need to be a multiple of the
200  *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
201  * @offs:      Byte offset within @page at which the block to encrypt begins
202  * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
203  *		number of the block within the file
204  * @gfp_flags: Memory allocation flags
205  *
206  * Encrypt a possibly-compressed filesystem block that is located in an
207  * arbitrary page, not necessarily in the original pagecache page.  The @inode
208  * and @lblk_num must be specified, as they can't be determined from @page.
209  *
210  * Return: 0 on success; -errno on failure
211  */
212 int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
213 				  unsigned int len, unsigned int offs,
214 				  u64 lblk_num, gfp_t gfp_flags)
215 {
216 	return fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num, page, page,
217 				   len, offs, gfp_flags);
218 }
219 EXPORT_SYMBOL(fscrypt_encrypt_block_inplace);
220 
221 /**
222  * fscrypt_decrypt_pagecache_blocks() - Decrypt filesystem blocks in a pagecache page
223  * @page:      The locked pagecache page containing the block(s) to decrypt
224  * @len:       Total size of the block(s) to decrypt.  Must be a nonzero
225  *		multiple of the filesystem's block size.
226  * @offs:      Byte offset within @page of the first block to decrypt.  Must be
227  *		a multiple of the filesystem's block size.
228  *
229  * The specified block(s) are decrypted in-place within the pagecache page,
230  * which must still be locked and not uptodate.  Normally, blocksize ==
231  * PAGE_SIZE and the whole page is decrypted at once.
232  *
233  * This is for use by the filesystem's ->readpages() method.
234  *
235  * Return: 0 on success; -errno on failure
236  */
237 int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
238 				     unsigned int offs)
239 {
240 	const struct inode *inode = page->mapping->host;
241 	const unsigned int blockbits = inode->i_blkbits;
242 	const unsigned int blocksize = 1 << blockbits;
243 	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
244 		       (offs >> blockbits);
245 	unsigned int i;
246 	int err;
247 
248 	if (WARN_ON_ONCE(!PageLocked(page)))
249 		return -EINVAL;
250 
251 	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
252 		return -EINVAL;
253 
254 	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
255 		err = fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page,
256 					  page, blocksize, i, GFP_NOFS);
257 		if (err)
258 			return err;
259 	}
260 	return 0;
261 }
262 EXPORT_SYMBOL(fscrypt_decrypt_pagecache_blocks);
263 
264 /**
265  * fscrypt_decrypt_block_inplace() - Decrypt a filesystem block in-place
266  * @inode:     The inode to which this block belongs
267  * @page:      The page containing the block to decrypt
268  * @len:       Size of block to decrypt.  Doesn't need to be a multiple of the
269  *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
270  * @offs:      Byte offset within @page at which the block to decrypt begins
271  * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
272  *		number of the block within the file
273  *
274  * Decrypt a possibly-compressed filesystem block that is located in an
275  * arbitrary page, not necessarily in the original pagecache page.  The @inode
276  * and @lblk_num must be specified, as they can't be determined from @page.
277  *
278  * Return: 0 on success; -errno on failure
279  */
280 int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
281 				  unsigned int len, unsigned int offs,
282 				  u64 lblk_num)
283 {
284 	return fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page, page,
285 				   len, offs, GFP_NOFS);
286 }
287 EXPORT_SYMBOL(fscrypt_decrypt_block_inplace);
288 
289 /*
290  * Validate dentries in encrypted directories to make sure we aren't potentially
291  * caching stale dentries after a key has been added.
292  */
293 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
294 {
295 	struct dentry *dir;
296 	int err;
297 	int valid;
298 
299 	/*
300 	 * Plaintext names are always valid, since fscrypt doesn't support
301 	 * reverting to ciphertext names without evicting the directory's inode
302 	 * -- which implies eviction of the dentries in the directory.
303 	 */
304 	if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
305 		return 1;
306 
307 	/*
308 	 * Ciphertext name; valid if the directory's key is still unavailable.
309 	 *
310 	 * Although fscrypt forbids rename() on ciphertext names, we still must
311 	 * use dget_parent() here rather than use ->d_parent directly.  That's
312 	 * because a corrupted fs image may contain directory hard links, which
313 	 * the VFS handles by moving the directory's dentry tree in the dcache
314 	 * each time ->lookup() finds the directory and it already has a dentry
315 	 * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
316 	 * a reference to some ->d_parent to prevent it from being freed.
317 	 */
318 
319 	if (flags & LOOKUP_RCU)
320 		return -ECHILD;
321 
322 	dir = dget_parent(dentry);
323 	err = fscrypt_get_encryption_info(d_inode(dir));
324 	valid = !fscrypt_has_encryption_key(d_inode(dir));
325 	dput(dir);
326 
327 	if (err < 0)
328 		return err;
329 
330 	return valid;
331 }
332 
333 const struct dentry_operations fscrypt_d_ops = {
334 	.d_revalidate = fscrypt_d_revalidate,
335 };
336 
337 /**
338  * fscrypt_initialize() - allocate major buffers for fs encryption.
339  * @cop_flags:  fscrypt operations flags
340  *
341  * We only call this when we start accessing encrypted files, since it
342  * results in memory getting allocated that wouldn't otherwise be used.
343  *
344  * Return: 0 on success; -errno on failure
345  */
346 int fscrypt_initialize(unsigned int cop_flags)
347 {
348 	int err = 0;
349 
350 	/* No need to allocate a bounce page pool if this FS won't use it. */
351 	if (cop_flags & FS_CFLG_OWN_PAGES)
352 		return 0;
353 
354 	mutex_lock(&fscrypt_init_mutex);
355 	if (fscrypt_bounce_page_pool)
356 		goto out_unlock;
357 
358 	err = -ENOMEM;
359 	fscrypt_bounce_page_pool =
360 		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
361 	if (!fscrypt_bounce_page_pool)
362 		goto out_unlock;
363 
364 	err = 0;
365 out_unlock:
366 	mutex_unlock(&fscrypt_init_mutex);
367 	return err;
368 }
369 
370 void fscrypt_msg(const struct inode *inode, const char *level,
371 		 const char *fmt, ...)
372 {
373 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
374 				      DEFAULT_RATELIMIT_BURST);
375 	struct va_format vaf;
376 	va_list args;
377 
378 	if (!__ratelimit(&rs))
379 		return;
380 
381 	va_start(args, fmt);
382 	vaf.fmt = fmt;
383 	vaf.va = &args;
384 	if (inode)
385 		printk("%sfscrypt (%s, inode %lu): %pV\n",
386 		       level, inode->i_sb->s_id, inode->i_ino, &vaf);
387 	else
388 		printk("%sfscrypt: %pV\n", level, &vaf);
389 	va_end(args);
390 }
391 
392 /**
393  * fscrypt_init() - Set up for fs encryption.
394  */
395 static int __init fscrypt_init(void)
396 {
397 	int err = -ENOMEM;
398 
399 	/*
400 	 * Use an unbound workqueue to allow bios to be decrypted in parallel
401 	 * even when they happen to complete on the same CPU.  This sacrifices
402 	 * locality, but it's worthwhile since decryption is CPU-intensive.
403 	 *
404 	 * Also use a high-priority workqueue to prioritize decryption work,
405 	 * which blocks reads from completing, over regular application tasks.
406 	 */
407 	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
408 						 WQ_UNBOUND | WQ_HIGHPRI,
409 						 num_online_cpus());
410 	if (!fscrypt_read_workqueue)
411 		goto fail;
412 
413 	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
414 	if (!fscrypt_info_cachep)
415 		goto fail_free_queue;
416 
417 	err = fscrypt_init_keyring();
418 	if (err)
419 		goto fail_free_info;
420 
421 	return 0;
422 
423 fail_free_info:
424 	kmem_cache_destroy(fscrypt_info_cachep);
425 fail_free_queue:
426 	destroy_workqueue(fscrypt_read_workqueue);
427 fail:
428 	return err;
429 }
430 late_initcall(fscrypt_init)
431