1 /* 2 * This contains encryption functions for per-file encryption. 3 * 4 * Copyright (C) 2015, Google, Inc. 5 * Copyright (C) 2015, Motorola Mobility 6 * 7 * Written by Michael Halcrow, 2014. 8 * 9 * Filename encryption additions 10 * Uday Savagaonkar, 2014 11 * Encryption policy handling additions 12 * Ildar Muslukhov, 2014 13 * Add fscrypt_pullback_bio_page() 14 * Jaegeuk Kim, 2015. 15 * 16 * This has not yet undergone a rigorous security audit. 17 * 18 * The usage of AES-XTS should conform to recommendations in NIST 19 * Special Publication 800-38E and IEEE P1619/D16. 20 */ 21 22 #include <linux/pagemap.h> 23 #include <linux/mempool.h> 24 #include <linux/module.h> 25 #include <linux/scatterlist.h> 26 #include <linux/ratelimit.h> 27 #include <linux/dcache.h> 28 #include <linux/namei.h> 29 #include <crypto/aes.h> 30 #include <crypto/skcipher.h> 31 #include "fscrypt_private.h" 32 33 static unsigned int num_prealloc_crypto_pages = 32; 34 static unsigned int num_prealloc_crypto_ctxs = 128; 35 36 module_param(num_prealloc_crypto_pages, uint, 0444); 37 MODULE_PARM_DESC(num_prealloc_crypto_pages, 38 "Number of crypto pages to preallocate"); 39 module_param(num_prealloc_crypto_ctxs, uint, 0444); 40 MODULE_PARM_DESC(num_prealloc_crypto_ctxs, 41 "Number of crypto contexts to preallocate"); 42 43 static mempool_t *fscrypt_bounce_page_pool = NULL; 44 45 static LIST_HEAD(fscrypt_free_ctxs); 46 static DEFINE_SPINLOCK(fscrypt_ctx_lock); 47 48 static struct workqueue_struct *fscrypt_read_workqueue; 49 static DEFINE_MUTEX(fscrypt_init_mutex); 50 51 static struct kmem_cache *fscrypt_ctx_cachep; 52 struct kmem_cache *fscrypt_info_cachep; 53 54 void fscrypt_enqueue_decrypt_work(struct work_struct *work) 55 { 56 queue_work(fscrypt_read_workqueue, work); 57 } 58 EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work); 59 60 /** 61 * fscrypt_release_ctx() - Releases an encryption context 62 * @ctx: The encryption context to release. 63 * 64 * If the encryption context was allocated from the pre-allocated pool, returns 65 * it to that pool. Else, frees it. 66 * 67 * If there's a bounce page in the context, this frees that. 68 */ 69 void fscrypt_release_ctx(struct fscrypt_ctx *ctx) 70 { 71 unsigned long flags; 72 73 if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) { 74 mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool); 75 ctx->w.bounce_page = NULL; 76 } 77 ctx->w.control_page = NULL; 78 if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) { 79 kmem_cache_free(fscrypt_ctx_cachep, ctx); 80 } else { 81 spin_lock_irqsave(&fscrypt_ctx_lock, flags); 82 list_add(&ctx->free_list, &fscrypt_free_ctxs); 83 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); 84 } 85 } 86 EXPORT_SYMBOL(fscrypt_release_ctx); 87 88 /** 89 * fscrypt_get_ctx() - Gets an encryption context 90 * @inode: The inode for which we are doing the crypto 91 * @gfp_flags: The gfp flag for memory allocation 92 * 93 * Allocates and initializes an encryption context. 94 * 95 * Return: An allocated and initialized encryption context on success; error 96 * value or NULL otherwise. 97 */ 98 struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags) 99 { 100 struct fscrypt_ctx *ctx = NULL; 101 struct fscrypt_info *ci = inode->i_crypt_info; 102 unsigned long flags; 103 104 if (ci == NULL) 105 return ERR_PTR(-ENOKEY); 106 107 /* 108 * We first try getting the ctx from a free list because in 109 * the common case the ctx will have an allocated and 110 * initialized crypto tfm, so it's probably a worthwhile 111 * optimization. For the bounce page, we first try getting it 112 * from the kernel allocator because that's just about as fast 113 * as getting it from a list and because a cache of free pages 114 * should generally be a "last resort" option for a filesystem 115 * to be able to do its job. 116 */ 117 spin_lock_irqsave(&fscrypt_ctx_lock, flags); 118 ctx = list_first_entry_or_null(&fscrypt_free_ctxs, 119 struct fscrypt_ctx, free_list); 120 if (ctx) 121 list_del(&ctx->free_list); 122 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); 123 if (!ctx) { 124 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags); 125 if (!ctx) 126 return ERR_PTR(-ENOMEM); 127 ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL; 128 } else { 129 ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL; 130 } 131 ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL; 132 return ctx; 133 } 134 EXPORT_SYMBOL(fscrypt_get_ctx); 135 136 void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num, 137 const struct fscrypt_info *ci) 138 { 139 memset(iv, 0, ci->ci_mode->ivsize); 140 iv->lblk_num = cpu_to_le64(lblk_num); 141 142 if (ci->ci_flags & FS_POLICY_FLAG_DIRECT_KEY) 143 memcpy(iv->nonce, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE); 144 145 if (ci->ci_essiv_tfm != NULL) 146 crypto_cipher_encrypt_one(ci->ci_essiv_tfm, iv->raw, iv->raw); 147 } 148 149 int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw, 150 u64 lblk_num, struct page *src_page, 151 struct page *dest_page, unsigned int len, 152 unsigned int offs, gfp_t gfp_flags) 153 { 154 union fscrypt_iv iv; 155 struct skcipher_request *req = NULL; 156 DECLARE_CRYPTO_WAIT(wait); 157 struct scatterlist dst, src; 158 struct fscrypt_info *ci = inode->i_crypt_info; 159 struct crypto_skcipher *tfm = ci->ci_ctfm; 160 int res = 0; 161 162 BUG_ON(len == 0); 163 164 fscrypt_generate_iv(&iv, lblk_num, ci); 165 166 req = skcipher_request_alloc(tfm, gfp_flags); 167 if (!req) 168 return -ENOMEM; 169 170 skcipher_request_set_callback( 171 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 172 crypto_req_done, &wait); 173 174 sg_init_table(&dst, 1); 175 sg_set_page(&dst, dest_page, len, offs); 176 sg_init_table(&src, 1); 177 sg_set_page(&src, src_page, len, offs); 178 skcipher_request_set_crypt(req, &src, &dst, len, &iv); 179 if (rw == FS_DECRYPT) 180 res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait); 181 else 182 res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 183 skcipher_request_free(req); 184 if (res) { 185 fscrypt_err(inode->i_sb, 186 "%scryption failed for inode %lu, block %llu: %d", 187 (rw == FS_DECRYPT ? "de" : "en"), 188 inode->i_ino, lblk_num, res); 189 return res; 190 } 191 return 0; 192 } 193 194 struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx, 195 gfp_t gfp_flags) 196 { 197 ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags); 198 if (ctx->w.bounce_page == NULL) 199 return ERR_PTR(-ENOMEM); 200 ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL; 201 return ctx->w.bounce_page; 202 } 203 204 /** 205 * fscypt_encrypt_page() - Encrypts a page 206 * @inode: The inode for which the encryption should take place 207 * @page: The page to encrypt. Must be locked for bounce-page 208 * encryption. 209 * @len: Length of data to encrypt in @page and encrypted 210 * data in returned page. 211 * @offs: Offset of data within @page and returned 212 * page holding encrypted data. 213 * @lblk_num: Logical block number. This must be unique for multiple 214 * calls with same inode, except when overwriting 215 * previously written data. 216 * @gfp_flags: The gfp flag for memory allocation 217 * 218 * Encrypts @page using the ctx encryption context. Performs encryption 219 * either in-place or into a newly allocated bounce page. 220 * Called on the page write path. 221 * 222 * Bounce page allocation is the default. 223 * In this case, the contents of @page are encrypted and stored in an 224 * allocated bounce page. @page has to be locked and the caller must call 225 * fscrypt_restore_control_page() on the returned ciphertext page to 226 * release the bounce buffer and the encryption context. 227 * 228 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in 229 * fscrypt_operations. Here, the input-page is returned with its content 230 * encrypted. 231 * 232 * Return: A page with the encrypted content on success. Else, an 233 * error value or NULL. 234 */ 235 struct page *fscrypt_encrypt_page(const struct inode *inode, 236 struct page *page, 237 unsigned int len, 238 unsigned int offs, 239 u64 lblk_num, gfp_t gfp_flags) 240 241 { 242 struct fscrypt_ctx *ctx; 243 struct page *ciphertext_page = page; 244 int err; 245 246 BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0); 247 248 if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) { 249 /* with inplace-encryption we just encrypt the page */ 250 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page, 251 ciphertext_page, len, offs, 252 gfp_flags); 253 if (err) 254 return ERR_PTR(err); 255 256 return ciphertext_page; 257 } 258 259 BUG_ON(!PageLocked(page)); 260 261 ctx = fscrypt_get_ctx(inode, gfp_flags); 262 if (IS_ERR(ctx)) 263 return (struct page *)ctx; 264 265 /* The encryption operation will require a bounce page. */ 266 ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags); 267 if (IS_ERR(ciphertext_page)) 268 goto errout; 269 270 ctx->w.control_page = page; 271 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, 272 page, ciphertext_page, len, offs, 273 gfp_flags); 274 if (err) { 275 ciphertext_page = ERR_PTR(err); 276 goto errout; 277 } 278 SetPagePrivate(ciphertext_page); 279 set_page_private(ciphertext_page, (unsigned long)ctx); 280 lock_page(ciphertext_page); 281 return ciphertext_page; 282 283 errout: 284 fscrypt_release_ctx(ctx); 285 return ciphertext_page; 286 } 287 EXPORT_SYMBOL(fscrypt_encrypt_page); 288 289 /** 290 * fscrypt_decrypt_page() - Decrypts a page in-place 291 * @inode: The corresponding inode for the page to decrypt. 292 * @page: The page to decrypt. Must be locked in case 293 * it is a writeback page (FS_CFLG_OWN_PAGES unset). 294 * @len: Number of bytes in @page to be decrypted. 295 * @offs: Start of data in @page. 296 * @lblk_num: Logical block number. 297 * 298 * Decrypts page in-place using the ctx encryption context. 299 * 300 * Called from the read completion callback. 301 * 302 * Return: Zero on success, non-zero otherwise. 303 */ 304 int fscrypt_decrypt_page(const struct inode *inode, struct page *page, 305 unsigned int len, unsigned int offs, u64 lblk_num) 306 { 307 if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES)) 308 BUG_ON(!PageLocked(page)); 309 310 return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page, 311 len, offs, GFP_NOFS); 312 } 313 EXPORT_SYMBOL(fscrypt_decrypt_page); 314 315 /* 316 * Validate dentries for encrypted directories to make sure we aren't 317 * potentially caching stale data after a key has been added or 318 * removed. 319 */ 320 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) 321 { 322 struct dentry *dir; 323 int dir_has_key, cached_with_key; 324 325 if (flags & LOOKUP_RCU) 326 return -ECHILD; 327 328 dir = dget_parent(dentry); 329 if (!IS_ENCRYPTED(d_inode(dir))) { 330 dput(dir); 331 return 0; 332 } 333 334 spin_lock(&dentry->d_lock); 335 cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY; 336 spin_unlock(&dentry->d_lock); 337 dir_has_key = (d_inode(dir)->i_crypt_info != NULL); 338 dput(dir); 339 340 /* 341 * If the dentry was cached without the key, and it is a 342 * negative dentry, it might be a valid name. We can't check 343 * if the key has since been made available due to locking 344 * reasons, so we fail the validation so ext4_lookup() can do 345 * this check. 346 * 347 * We also fail the validation if the dentry was created with 348 * the key present, but we no longer have the key, or vice versa. 349 */ 350 if ((!cached_with_key && d_is_negative(dentry)) || 351 (!cached_with_key && dir_has_key) || 352 (cached_with_key && !dir_has_key)) 353 return 0; 354 return 1; 355 } 356 357 const struct dentry_operations fscrypt_d_ops = { 358 .d_revalidate = fscrypt_d_revalidate, 359 }; 360 361 void fscrypt_restore_control_page(struct page *page) 362 { 363 struct fscrypt_ctx *ctx; 364 365 ctx = (struct fscrypt_ctx *)page_private(page); 366 set_page_private(page, (unsigned long)NULL); 367 ClearPagePrivate(page); 368 unlock_page(page); 369 fscrypt_release_ctx(ctx); 370 } 371 EXPORT_SYMBOL(fscrypt_restore_control_page); 372 373 static void fscrypt_destroy(void) 374 { 375 struct fscrypt_ctx *pos, *n; 376 377 list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list) 378 kmem_cache_free(fscrypt_ctx_cachep, pos); 379 INIT_LIST_HEAD(&fscrypt_free_ctxs); 380 mempool_destroy(fscrypt_bounce_page_pool); 381 fscrypt_bounce_page_pool = NULL; 382 } 383 384 /** 385 * fscrypt_initialize() - allocate major buffers for fs encryption. 386 * @cop_flags: fscrypt operations flags 387 * 388 * We only call this when we start accessing encrypted files, since it 389 * results in memory getting allocated that wouldn't otherwise be used. 390 * 391 * Return: Zero on success, non-zero otherwise. 392 */ 393 int fscrypt_initialize(unsigned int cop_flags) 394 { 395 int i, res = -ENOMEM; 396 397 /* No need to allocate a bounce page pool if this FS won't use it. */ 398 if (cop_flags & FS_CFLG_OWN_PAGES) 399 return 0; 400 401 mutex_lock(&fscrypt_init_mutex); 402 if (fscrypt_bounce_page_pool) 403 goto already_initialized; 404 405 for (i = 0; i < num_prealloc_crypto_ctxs; i++) { 406 struct fscrypt_ctx *ctx; 407 408 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS); 409 if (!ctx) 410 goto fail; 411 list_add(&ctx->free_list, &fscrypt_free_ctxs); 412 } 413 414 fscrypt_bounce_page_pool = 415 mempool_create_page_pool(num_prealloc_crypto_pages, 0); 416 if (!fscrypt_bounce_page_pool) 417 goto fail; 418 419 already_initialized: 420 mutex_unlock(&fscrypt_init_mutex); 421 return 0; 422 fail: 423 fscrypt_destroy(); 424 mutex_unlock(&fscrypt_init_mutex); 425 return res; 426 } 427 428 void fscrypt_msg(struct super_block *sb, const char *level, 429 const char *fmt, ...) 430 { 431 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 432 DEFAULT_RATELIMIT_BURST); 433 struct va_format vaf; 434 va_list args; 435 436 if (!__ratelimit(&rs)) 437 return; 438 439 va_start(args, fmt); 440 vaf.fmt = fmt; 441 vaf.va = &args; 442 if (sb) 443 printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf); 444 else 445 printk("%sfscrypt: %pV\n", level, &vaf); 446 va_end(args); 447 } 448 449 /** 450 * fscrypt_init() - Set up for fs encryption. 451 */ 452 static int __init fscrypt_init(void) 453 { 454 /* 455 * Use an unbound workqueue to allow bios to be decrypted in parallel 456 * even when they happen to complete on the same CPU. This sacrifices 457 * locality, but it's worthwhile since decryption is CPU-intensive. 458 * 459 * Also use a high-priority workqueue to prioritize decryption work, 460 * which blocks reads from completing, over regular application tasks. 461 */ 462 fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue", 463 WQ_UNBOUND | WQ_HIGHPRI, 464 num_online_cpus()); 465 if (!fscrypt_read_workqueue) 466 goto fail; 467 468 fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT); 469 if (!fscrypt_ctx_cachep) 470 goto fail_free_queue; 471 472 fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT); 473 if (!fscrypt_info_cachep) 474 goto fail_free_ctx; 475 476 return 0; 477 478 fail_free_ctx: 479 kmem_cache_destroy(fscrypt_ctx_cachep); 480 fail_free_queue: 481 destroy_workqueue(fscrypt_read_workqueue); 482 fail: 483 return -ENOMEM; 484 } 485 module_init(fscrypt_init) 486 487 /** 488 * fscrypt_exit() - Shutdown the fs encryption system 489 */ 490 static void __exit fscrypt_exit(void) 491 { 492 fscrypt_destroy(); 493 494 if (fscrypt_read_workqueue) 495 destroy_workqueue(fscrypt_read_workqueue); 496 kmem_cache_destroy(fscrypt_ctx_cachep); 497 kmem_cache_destroy(fscrypt_info_cachep); 498 499 fscrypt_essiv_cleanup(); 500 } 501 module_exit(fscrypt_exit); 502 503 MODULE_LICENSE("GPL"); 504