xref: /linux/fs/crypto/crypto.c (revision 5ff328836dfde0cef9f28c8b8791a90a36d7a183)
1 /*
2  * This contains encryption functions for per-file encryption.
3  *
4  * Copyright (C) 2015, Google, Inc.
5  * Copyright (C) 2015, Motorola Mobility
6  *
7  * Written by Michael Halcrow, 2014.
8  *
9  * Filename encryption additions
10  *	Uday Savagaonkar, 2014
11  * Encryption policy handling additions
12  *	Ildar Muslukhov, 2014
13  * Add fscrypt_pullback_bio_page()
14  *	Jaegeuk Kim, 2015.
15  *
16  * This has not yet undergone a rigorous security audit.
17  *
18  * The usage of AES-XTS should conform to recommendations in NIST
19  * Special Publication 800-38E and IEEE P1619/D16.
20  */
21 
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/dcache.h>
28 #include <linux/namei.h>
29 #include <crypto/aes.h>
30 #include <crypto/skcipher.h>
31 #include "fscrypt_private.h"
32 
33 static unsigned int num_prealloc_crypto_pages = 32;
34 static unsigned int num_prealloc_crypto_ctxs = 128;
35 
36 module_param(num_prealloc_crypto_pages, uint, 0444);
37 MODULE_PARM_DESC(num_prealloc_crypto_pages,
38 		"Number of crypto pages to preallocate");
39 module_param(num_prealloc_crypto_ctxs, uint, 0444);
40 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
41 		"Number of crypto contexts to preallocate");
42 
43 static mempool_t *fscrypt_bounce_page_pool = NULL;
44 
45 static LIST_HEAD(fscrypt_free_ctxs);
46 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
47 
48 static struct workqueue_struct *fscrypt_read_workqueue;
49 static DEFINE_MUTEX(fscrypt_init_mutex);
50 
51 static struct kmem_cache *fscrypt_ctx_cachep;
52 struct kmem_cache *fscrypt_info_cachep;
53 
54 void fscrypt_enqueue_decrypt_work(struct work_struct *work)
55 {
56 	queue_work(fscrypt_read_workqueue, work);
57 }
58 EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
59 
60 /**
61  * fscrypt_release_ctx() - Releases an encryption context
62  * @ctx: The encryption context to release.
63  *
64  * If the encryption context was allocated from the pre-allocated pool, returns
65  * it to that pool. Else, frees it.
66  *
67  * If there's a bounce page in the context, this frees that.
68  */
69 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
70 {
71 	unsigned long flags;
72 
73 	if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
74 		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
75 		ctx->w.bounce_page = NULL;
76 	}
77 	ctx->w.control_page = NULL;
78 	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
79 		kmem_cache_free(fscrypt_ctx_cachep, ctx);
80 	} else {
81 		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
82 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
83 		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
84 	}
85 }
86 EXPORT_SYMBOL(fscrypt_release_ctx);
87 
88 /**
89  * fscrypt_get_ctx() - Gets an encryption context
90  * @inode:       The inode for which we are doing the crypto
91  * @gfp_flags:   The gfp flag for memory allocation
92  *
93  * Allocates and initializes an encryption context.
94  *
95  * Return: An allocated and initialized encryption context on success; error
96  * value or NULL otherwise.
97  */
98 struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
99 {
100 	struct fscrypt_ctx *ctx = NULL;
101 	struct fscrypt_info *ci = inode->i_crypt_info;
102 	unsigned long flags;
103 
104 	if (ci == NULL)
105 		return ERR_PTR(-ENOKEY);
106 
107 	/*
108 	 * We first try getting the ctx from a free list because in
109 	 * the common case the ctx will have an allocated and
110 	 * initialized crypto tfm, so it's probably a worthwhile
111 	 * optimization. For the bounce page, we first try getting it
112 	 * from the kernel allocator because that's just about as fast
113 	 * as getting it from a list and because a cache of free pages
114 	 * should generally be a "last resort" option for a filesystem
115 	 * to be able to do its job.
116 	 */
117 	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
118 	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
119 					struct fscrypt_ctx, free_list);
120 	if (ctx)
121 		list_del(&ctx->free_list);
122 	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
123 	if (!ctx) {
124 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
125 		if (!ctx)
126 			return ERR_PTR(-ENOMEM);
127 		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
128 	} else {
129 		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
130 	}
131 	ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
132 	return ctx;
133 }
134 EXPORT_SYMBOL(fscrypt_get_ctx);
135 
136 void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
137 			 const struct fscrypt_info *ci)
138 {
139 	memset(iv, 0, ci->ci_mode->ivsize);
140 	iv->lblk_num = cpu_to_le64(lblk_num);
141 
142 	if (ci->ci_flags & FS_POLICY_FLAG_DIRECT_KEY)
143 		memcpy(iv->nonce, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE);
144 
145 	if (ci->ci_essiv_tfm != NULL)
146 		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, iv->raw, iv->raw);
147 }
148 
149 int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
150 			   u64 lblk_num, struct page *src_page,
151 			   struct page *dest_page, unsigned int len,
152 			   unsigned int offs, gfp_t gfp_flags)
153 {
154 	union fscrypt_iv iv;
155 	struct skcipher_request *req = NULL;
156 	DECLARE_CRYPTO_WAIT(wait);
157 	struct scatterlist dst, src;
158 	struct fscrypt_info *ci = inode->i_crypt_info;
159 	struct crypto_skcipher *tfm = ci->ci_ctfm;
160 	int res = 0;
161 
162 	BUG_ON(len == 0);
163 
164 	fscrypt_generate_iv(&iv, lblk_num, ci);
165 
166 	req = skcipher_request_alloc(tfm, gfp_flags);
167 	if (!req)
168 		return -ENOMEM;
169 
170 	skcipher_request_set_callback(
171 		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
172 		crypto_req_done, &wait);
173 
174 	sg_init_table(&dst, 1);
175 	sg_set_page(&dst, dest_page, len, offs);
176 	sg_init_table(&src, 1);
177 	sg_set_page(&src, src_page, len, offs);
178 	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
179 	if (rw == FS_DECRYPT)
180 		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
181 	else
182 		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
183 	skcipher_request_free(req);
184 	if (res) {
185 		fscrypt_err(inode->i_sb,
186 			    "%scryption failed for inode %lu, block %llu: %d",
187 			    (rw == FS_DECRYPT ? "de" : "en"),
188 			    inode->i_ino, lblk_num, res);
189 		return res;
190 	}
191 	return 0;
192 }
193 
194 struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
195 				       gfp_t gfp_flags)
196 {
197 	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
198 	if (ctx->w.bounce_page == NULL)
199 		return ERR_PTR(-ENOMEM);
200 	ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
201 	return ctx->w.bounce_page;
202 }
203 
204 /**
205  * fscypt_encrypt_page() - Encrypts a page
206  * @inode:     The inode for which the encryption should take place
207  * @page:      The page to encrypt. Must be locked for bounce-page
208  *             encryption.
209  * @len:       Length of data to encrypt in @page and encrypted
210  *             data in returned page.
211  * @offs:      Offset of data within @page and returned
212  *             page holding encrypted data.
213  * @lblk_num:  Logical block number. This must be unique for multiple
214  *             calls with same inode, except when overwriting
215  *             previously written data.
216  * @gfp_flags: The gfp flag for memory allocation
217  *
218  * Encrypts @page using the ctx encryption context. Performs encryption
219  * either in-place or into a newly allocated bounce page.
220  * Called on the page write path.
221  *
222  * Bounce page allocation is the default.
223  * In this case, the contents of @page are encrypted and stored in an
224  * allocated bounce page. @page has to be locked and the caller must call
225  * fscrypt_restore_control_page() on the returned ciphertext page to
226  * release the bounce buffer and the encryption context.
227  *
228  * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
229  * fscrypt_operations. Here, the input-page is returned with its content
230  * encrypted.
231  *
232  * Return: A page with the encrypted content on success. Else, an
233  * error value or NULL.
234  */
235 struct page *fscrypt_encrypt_page(const struct inode *inode,
236 				struct page *page,
237 				unsigned int len,
238 				unsigned int offs,
239 				u64 lblk_num, gfp_t gfp_flags)
240 
241 {
242 	struct fscrypt_ctx *ctx;
243 	struct page *ciphertext_page = page;
244 	int err;
245 
246 	BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);
247 
248 	if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
249 		/* with inplace-encryption we just encrypt the page */
250 		err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
251 					     ciphertext_page, len, offs,
252 					     gfp_flags);
253 		if (err)
254 			return ERR_PTR(err);
255 
256 		return ciphertext_page;
257 	}
258 
259 	BUG_ON(!PageLocked(page));
260 
261 	ctx = fscrypt_get_ctx(inode, gfp_flags);
262 	if (IS_ERR(ctx))
263 		return (struct page *)ctx;
264 
265 	/* The encryption operation will require a bounce page. */
266 	ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
267 	if (IS_ERR(ciphertext_page))
268 		goto errout;
269 
270 	ctx->w.control_page = page;
271 	err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
272 				     page, ciphertext_page, len, offs,
273 				     gfp_flags);
274 	if (err) {
275 		ciphertext_page = ERR_PTR(err);
276 		goto errout;
277 	}
278 	SetPagePrivate(ciphertext_page);
279 	set_page_private(ciphertext_page, (unsigned long)ctx);
280 	lock_page(ciphertext_page);
281 	return ciphertext_page;
282 
283 errout:
284 	fscrypt_release_ctx(ctx);
285 	return ciphertext_page;
286 }
287 EXPORT_SYMBOL(fscrypt_encrypt_page);
288 
289 /**
290  * fscrypt_decrypt_page() - Decrypts a page in-place
291  * @inode:     The corresponding inode for the page to decrypt.
292  * @page:      The page to decrypt. Must be locked in case
293  *             it is a writeback page (FS_CFLG_OWN_PAGES unset).
294  * @len:       Number of bytes in @page to be decrypted.
295  * @offs:      Start of data in @page.
296  * @lblk_num:  Logical block number.
297  *
298  * Decrypts page in-place using the ctx encryption context.
299  *
300  * Called from the read completion callback.
301  *
302  * Return: Zero on success, non-zero otherwise.
303  */
304 int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
305 			unsigned int len, unsigned int offs, u64 lblk_num)
306 {
307 	if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
308 		BUG_ON(!PageLocked(page));
309 
310 	return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
311 				      len, offs, GFP_NOFS);
312 }
313 EXPORT_SYMBOL(fscrypt_decrypt_page);
314 
315 /*
316  * Validate dentries for encrypted directories to make sure we aren't
317  * potentially caching stale data after a key has been added or
318  * removed.
319  */
320 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
321 {
322 	struct dentry *dir;
323 	int dir_has_key, cached_with_key;
324 
325 	if (flags & LOOKUP_RCU)
326 		return -ECHILD;
327 
328 	dir = dget_parent(dentry);
329 	if (!IS_ENCRYPTED(d_inode(dir))) {
330 		dput(dir);
331 		return 0;
332 	}
333 
334 	spin_lock(&dentry->d_lock);
335 	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
336 	spin_unlock(&dentry->d_lock);
337 	dir_has_key = (d_inode(dir)->i_crypt_info != NULL);
338 	dput(dir);
339 
340 	/*
341 	 * If the dentry was cached without the key, and it is a
342 	 * negative dentry, it might be a valid name.  We can't check
343 	 * if the key has since been made available due to locking
344 	 * reasons, so we fail the validation so ext4_lookup() can do
345 	 * this check.
346 	 *
347 	 * We also fail the validation if the dentry was created with
348 	 * the key present, but we no longer have the key, or vice versa.
349 	 */
350 	if ((!cached_with_key && d_is_negative(dentry)) ||
351 			(!cached_with_key && dir_has_key) ||
352 			(cached_with_key && !dir_has_key))
353 		return 0;
354 	return 1;
355 }
356 
357 const struct dentry_operations fscrypt_d_ops = {
358 	.d_revalidate = fscrypt_d_revalidate,
359 };
360 
361 void fscrypt_restore_control_page(struct page *page)
362 {
363 	struct fscrypt_ctx *ctx;
364 
365 	ctx = (struct fscrypt_ctx *)page_private(page);
366 	set_page_private(page, (unsigned long)NULL);
367 	ClearPagePrivate(page);
368 	unlock_page(page);
369 	fscrypt_release_ctx(ctx);
370 }
371 EXPORT_SYMBOL(fscrypt_restore_control_page);
372 
373 static void fscrypt_destroy(void)
374 {
375 	struct fscrypt_ctx *pos, *n;
376 
377 	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
378 		kmem_cache_free(fscrypt_ctx_cachep, pos);
379 	INIT_LIST_HEAD(&fscrypt_free_ctxs);
380 	mempool_destroy(fscrypt_bounce_page_pool);
381 	fscrypt_bounce_page_pool = NULL;
382 }
383 
384 /**
385  * fscrypt_initialize() - allocate major buffers for fs encryption.
386  * @cop_flags:  fscrypt operations flags
387  *
388  * We only call this when we start accessing encrypted files, since it
389  * results in memory getting allocated that wouldn't otherwise be used.
390  *
391  * Return: Zero on success, non-zero otherwise.
392  */
393 int fscrypt_initialize(unsigned int cop_flags)
394 {
395 	int i, res = -ENOMEM;
396 
397 	/* No need to allocate a bounce page pool if this FS won't use it. */
398 	if (cop_flags & FS_CFLG_OWN_PAGES)
399 		return 0;
400 
401 	mutex_lock(&fscrypt_init_mutex);
402 	if (fscrypt_bounce_page_pool)
403 		goto already_initialized;
404 
405 	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
406 		struct fscrypt_ctx *ctx;
407 
408 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
409 		if (!ctx)
410 			goto fail;
411 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
412 	}
413 
414 	fscrypt_bounce_page_pool =
415 		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
416 	if (!fscrypt_bounce_page_pool)
417 		goto fail;
418 
419 already_initialized:
420 	mutex_unlock(&fscrypt_init_mutex);
421 	return 0;
422 fail:
423 	fscrypt_destroy();
424 	mutex_unlock(&fscrypt_init_mutex);
425 	return res;
426 }
427 
428 void fscrypt_msg(struct super_block *sb, const char *level,
429 		 const char *fmt, ...)
430 {
431 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
432 				      DEFAULT_RATELIMIT_BURST);
433 	struct va_format vaf;
434 	va_list args;
435 
436 	if (!__ratelimit(&rs))
437 		return;
438 
439 	va_start(args, fmt);
440 	vaf.fmt = fmt;
441 	vaf.va = &args;
442 	if (sb)
443 		printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf);
444 	else
445 		printk("%sfscrypt: %pV\n", level, &vaf);
446 	va_end(args);
447 }
448 
449 /**
450  * fscrypt_init() - Set up for fs encryption.
451  */
452 static int __init fscrypt_init(void)
453 {
454 	/*
455 	 * Use an unbound workqueue to allow bios to be decrypted in parallel
456 	 * even when they happen to complete on the same CPU.  This sacrifices
457 	 * locality, but it's worthwhile since decryption is CPU-intensive.
458 	 *
459 	 * Also use a high-priority workqueue to prioritize decryption work,
460 	 * which blocks reads from completing, over regular application tasks.
461 	 */
462 	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
463 						 WQ_UNBOUND | WQ_HIGHPRI,
464 						 num_online_cpus());
465 	if (!fscrypt_read_workqueue)
466 		goto fail;
467 
468 	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
469 	if (!fscrypt_ctx_cachep)
470 		goto fail_free_queue;
471 
472 	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
473 	if (!fscrypt_info_cachep)
474 		goto fail_free_ctx;
475 
476 	return 0;
477 
478 fail_free_ctx:
479 	kmem_cache_destroy(fscrypt_ctx_cachep);
480 fail_free_queue:
481 	destroy_workqueue(fscrypt_read_workqueue);
482 fail:
483 	return -ENOMEM;
484 }
485 module_init(fscrypt_init)
486 
487 /**
488  * fscrypt_exit() - Shutdown the fs encryption system
489  */
490 static void __exit fscrypt_exit(void)
491 {
492 	fscrypt_destroy();
493 
494 	if (fscrypt_read_workqueue)
495 		destroy_workqueue(fscrypt_read_workqueue);
496 	kmem_cache_destroy(fscrypt_ctx_cachep);
497 	kmem_cache_destroy(fscrypt_info_cachep);
498 
499 	fscrypt_essiv_cleanup();
500 }
501 module_exit(fscrypt_exit);
502 
503 MODULE_LICENSE("GPL");
504