xref: /linux/fs/crypto/crypto.c (revision 0889d07f3e4b171c453b2aaf2b257f9074cdf624)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This contains encryption functions for per-file encryption.
4  *
5  * Copyright (C) 2015, Google, Inc.
6  * Copyright (C) 2015, Motorola Mobility
7  *
8  * Written by Michael Halcrow, 2014.
9  *
10  * Filename encryption additions
11  *	Uday Savagaonkar, 2014
12  * Encryption policy handling additions
13  *	Ildar Muslukhov, 2014
14  * Add fscrypt_pullback_bio_page()
15  *	Jaegeuk Kim, 2015.
16  *
17  * This has not yet undergone a rigorous security audit.
18  *
19  * The usage of AES-XTS should conform to recommendations in NIST
20  * Special Publication 800-38E and IEEE P1619/D16.
21  */
22 
23 #include <linux/pagemap.h>
24 #include <linux/mempool.h>
25 #include <linux/module.h>
26 #include <linux/scatterlist.h>
27 #include <linux/ratelimit.h>
28 #include <linux/dcache.h>
29 #include <linux/namei.h>
30 #include <crypto/aes.h>
31 #include <crypto/skcipher.h>
32 #include "fscrypt_private.h"
33 
34 static unsigned int num_prealloc_crypto_pages = 32;
35 static unsigned int num_prealloc_crypto_ctxs = 128;
36 
37 module_param(num_prealloc_crypto_pages, uint, 0444);
38 MODULE_PARM_DESC(num_prealloc_crypto_pages,
39 		"Number of crypto pages to preallocate");
40 module_param(num_prealloc_crypto_ctxs, uint, 0444);
41 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
42 		"Number of crypto contexts to preallocate");
43 
44 static mempool_t *fscrypt_bounce_page_pool = NULL;
45 
46 static LIST_HEAD(fscrypt_free_ctxs);
47 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
48 
49 static struct workqueue_struct *fscrypt_read_workqueue;
50 static DEFINE_MUTEX(fscrypt_init_mutex);
51 
52 static struct kmem_cache *fscrypt_ctx_cachep;
53 struct kmem_cache *fscrypt_info_cachep;
54 
55 void fscrypt_enqueue_decrypt_work(struct work_struct *work)
56 {
57 	queue_work(fscrypt_read_workqueue, work);
58 }
59 EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
60 
61 /**
62  * fscrypt_release_ctx() - Release a decryption context
63  * @ctx: The decryption context to release.
64  *
65  * If the decryption context was allocated from the pre-allocated pool, return
66  * it to that pool.  Else, free it.
67  */
68 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
69 {
70 	unsigned long flags;
71 
72 	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
73 		kmem_cache_free(fscrypt_ctx_cachep, ctx);
74 	} else {
75 		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
76 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
77 		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
78 	}
79 }
80 EXPORT_SYMBOL(fscrypt_release_ctx);
81 
82 /**
83  * fscrypt_get_ctx() - Get a decryption context
84  * @gfp_flags:   The gfp flag for memory allocation
85  *
86  * Allocate and initialize a decryption context.
87  *
88  * Return: A new decryption context on success; an ERR_PTR() otherwise.
89  */
90 struct fscrypt_ctx *fscrypt_get_ctx(gfp_t gfp_flags)
91 {
92 	struct fscrypt_ctx *ctx;
93 	unsigned long flags;
94 
95 	/*
96 	 * First try getting a ctx from the free list so that we don't have to
97 	 * call into the slab allocator.
98 	 */
99 	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
100 	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
101 					struct fscrypt_ctx, free_list);
102 	if (ctx)
103 		list_del(&ctx->free_list);
104 	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
105 	if (!ctx) {
106 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
107 		if (!ctx)
108 			return ERR_PTR(-ENOMEM);
109 		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
110 	} else {
111 		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
112 	}
113 	return ctx;
114 }
115 EXPORT_SYMBOL(fscrypt_get_ctx);
116 
117 struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags)
118 {
119 	return mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
120 }
121 
122 /**
123  * fscrypt_free_bounce_page() - free a ciphertext bounce page
124  *
125  * Free a bounce page that was allocated by fscrypt_encrypt_pagecache_blocks(),
126  * or by fscrypt_alloc_bounce_page() directly.
127  */
128 void fscrypt_free_bounce_page(struct page *bounce_page)
129 {
130 	if (!bounce_page)
131 		return;
132 	set_page_private(bounce_page, (unsigned long)NULL);
133 	ClearPagePrivate(bounce_page);
134 	mempool_free(bounce_page, fscrypt_bounce_page_pool);
135 }
136 EXPORT_SYMBOL(fscrypt_free_bounce_page);
137 
138 void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
139 			 const struct fscrypt_info *ci)
140 {
141 	memset(iv, 0, ci->ci_mode->ivsize);
142 	iv->lblk_num = cpu_to_le64(lblk_num);
143 
144 	if (fscrypt_is_direct_key_policy(&ci->ci_policy))
145 		memcpy(iv->nonce, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE);
146 
147 	if (ci->ci_essiv_tfm != NULL)
148 		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, iv->raw, iv->raw);
149 }
150 
151 /* Encrypt or decrypt a single filesystem block of file contents */
152 int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
153 			u64 lblk_num, struct page *src_page,
154 			struct page *dest_page, unsigned int len,
155 			unsigned int offs, gfp_t gfp_flags)
156 {
157 	union fscrypt_iv iv;
158 	struct skcipher_request *req = NULL;
159 	DECLARE_CRYPTO_WAIT(wait);
160 	struct scatterlist dst, src;
161 	struct fscrypt_info *ci = inode->i_crypt_info;
162 	struct crypto_skcipher *tfm = ci->ci_ctfm;
163 	int res = 0;
164 
165 	if (WARN_ON_ONCE(len <= 0))
166 		return -EINVAL;
167 	if (WARN_ON_ONCE(len % FS_CRYPTO_BLOCK_SIZE != 0))
168 		return -EINVAL;
169 
170 	fscrypt_generate_iv(&iv, lblk_num, ci);
171 
172 	req = skcipher_request_alloc(tfm, gfp_flags);
173 	if (!req)
174 		return -ENOMEM;
175 
176 	skcipher_request_set_callback(
177 		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
178 		crypto_req_done, &wait);
179 
180 	sg_init_table(&dst, 1);
181 	sg_set_page(&dst, dest_page, len, offs);
182 	sg_init_table(&src, 1);
183 	sg_set_page(&src, src_page, len, offs);
184 	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
185 	if (rw == FS_DECRYPT)
186 		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
187 	else
188 		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
189 	skcipher_request_free(req);
190 	if (res) {
191 		fscrypt_err(inode, "%scryption failed for block %llu: %d",
192 			    (rw == FS_DECRYPT ? "De" : "En"), lblk_num, res);
193 		return res;
194 	}
195 	return 0;
196 }
197 
198 /**
199  * fscrypt_encrypt_pagecache_blocks() - Encrypt filesystem blocks from a pagecache page
200  * @page:      The locked pagecache page containing the block(s) to encrypt
201  * @len:       Total size of the block(s) to encrypt.  Must be a nonzero
202  *		multiple of the filesystem's block size.
203  * @offs:      Byte offset within @page of the first block to encrypt.  Must be
204  *		a multiple of the filesystem's block size.
205  * @gfp_flags: Memory allocation flags
206  *
207  * A new bounce page is allocated, and the specified block(s) are encrypted into
208  * it.  In the bounce page, the ciphertext block(s) will be located at the same
209  * offsets at which the plaintext block(s) were located in the source page; any
210  * other parts of the bounce page will be left uninitialized.  However, normally
211  * blocksize == PAGE_SIZE and the whole page is encrypted at once.
212  *
213  * This is for use by the filesystem's ->writepages() method.
214  *
215  * Return: the new encrypted bounce page on success; an ERR_PTR() on failure
216  */
217 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
218 					      unsigned int len,
219 					      unsigned int offs,
220 					      gfp_t gfp_flags)
221 
222 {
223 	const struct inode *inode = page->mapping->host;
224 	const unsigned int blockbits = inode->i_blkbits;
225 	const unsigned int blocksize = 1 << blockbits;
226 	struct page *ciphertext_page;
227 	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
228 		       (offs >> blockbits);
229 	unsigned int i;
230 	int err;
231 
232 	if (WARN_ON_ONCE(!PageLocked(page)))
233 		return ERR_PTR(-EINVAL);
234 
235 	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
236 		return ERR_PTR(-EINVAL);
237 
238 	ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags);
239 	if (!ciphertext_page)
240 		return ERR_PTR(-ENOMEM);
241 
242 	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
243 		err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num,
244 					  page, ciphertext_page,
245 					  blocksize, i, gfp_flags);
246 		if (err) {
247 			fscrypt_free_bounce_page(ciphertext_page);
248 			return ERR_PTR(err);
249 		}
250 	}
251 	SetPagePrivate(ciphertext_page);
252 	set_page_private(ciphertext_page, (unsigned long)page);
253 	return ciphertext_page;
254 }
255 EXPORT_SYMBOL(fscrypt_encrypt_pagecache_blocks);
256 
257 /**
258  * fscrypt_encrypt_block_inplace() - Encrypt a filesystem block in-place
259  * @inode:     The inode to which this block belongs
260  * @page:      The page containing the block to encrypt
261  * @len:       Size of block to encrypt.  Doesn't need to be a multiple of the
262  *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
263  * @offs:      Byte offset within @page at which the block to encrypt begins
264  * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
265  *		number of the block within the file
266  * @gfp_flags: Memory allocation flags
267  *
268  * Encrypt a possibly-compressed filesystem block that is located in an
269  * arbitrary page, not necessarily in the original pagecache page.  The @inode
270  * and @lblk_num must be specified, as they can't be determined from @page.
271  *
272  * Return: 0 on success; -errno on failure
273  */
274 int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
275 				  unsigned int len, unsigned int offs,
276 				  u64 lblk_num, gfp_t gfp_flags)
277 {
278 	return fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num, page, page,
279 				   len, offs, gfp_flags);
280 }
281 EXPORT_SYMBOL(fscrypt_encrypt_block_inplace);
282 
283 /**
284  * fscrypt_decrypt_pagecache_blocks() - Decrypt filesystem blocks in a pagecache page
285  * @page:      The locked pagecache page containing the block(s) to decrypt
286  * @len:       Total size of the block(s) to decrypt.  Must be a nonzero
287  *		multiple of the filesystem's block size.
288  * @offs:      Byte offset within @page of the first block to decrypt.  Must be
289  *		a multiple of the filesystem's block size.
290  *
291  * The specified block(s) are decrypted in-place within the pagecache page,
292  * which must still be locked and not uptodate.  Normally, blocksize ==
293  * PAGE_SIZE and the whole page is decrypted at once.
294  *
295  * This is for use by the filesystem's ->readpages() method.
296  *
297  * Return: 0 on success; -errno on failure
298  */
299 int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
300 				     unsigned int offs)
301 {
302 	const struct inode *inode = page->mapping->host;
303 	const unsigned int blockbits = inode->i_blkbits;
304 	const unsigned int blocksize = 1 << blockbits;
305 	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
306 		       (offs >> blockbits);
307 	unsigned int i;
308 	int err;
309 
310 	if (WARN_ON_ONCE(!PageLocked(page)))
311 		return -EINVAL;
312 
313 	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
314 		return -EINVAL;
315 
316 	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
317 		err = fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page,
318 					  page, blocksize, i, GFP_NOFS);
319 		if (err)
320 			return err;
321 	}
322 	return 0;
323 }
324 EXPORT_SYMBOL(fscrypt_decrypt_pagecache_blocks);
325 
326 /**
327  * fscrypt_decrypt_block_inplace() - Decrypt a filesystem block in-place
328  * @inode:     The inode to which this block belongs
329  * @page:      The page containing the block to decrypt
330  * @len:       Size of block to decrypt.  Doesn't need to be a multiple of the
331  *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
332  * @offs:      Byte offset within @page at which the block to decrypt begins
333  * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
334  *		number of the block within the file
335  *
336  * Decrypt a possibly-compressed filesystem block that is located in an
337  * arbitrary page, not necessarily in the original pagecache page.  The @inode
338  * and @lblk_num must be specified, as they can't be determined from @page.
339  *
340  * Return: 0 on success; -errno on failure
341  */
342 int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
343 				  unsigned int len, unsigned int offs,
344 				  u64 lblk_num)
345 {
346 	return fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page, page,
347 				   len, offs, GFP_NOFS);
348 }
349 EXPORT_SYMBOL(fscrypt_decrypt_block_inplace);
350 
351 /*
352  * Validate dentries in encrypted directories to make sure we aren't potentially
353  * caching stale dentries after a key has been added.
354  */
355 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
356 {
357 	struct dentry *dir;
358 	int err;
359 	int valid;
360 
361 	/*
362 	 * Plaintext names are always valid, since fscrypt doesn't support
363 	 * reverting to ciphertext names without evicting the directory's inode
364 	 * -- which implies eviction of the dentries in the directory.
365 	 */
366 	if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
367 		return 1;
368 
369 	/*
370 	 * Ciphertext name; valid if the directory's key is still unavailable.
371 	 *
372 	 * Although fscrypt forbids rename() on ciphertext names, we still must
373 	 * use dget_parent() here rather than use ->d_parent directly.  That's
374 	 * because a corrupted fs image may contain directory hard links, which
375 	 * the VFS handles by moving the directory's dentry tree in the dcache
376 	 * each time ->lookup() finds the directory and it already has a dentry
377 	 * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
378 	 * a reference to some ->d_parent to prevent it from being freed.
379 	 */
380 
381 	if (flags & LOOKUP_RCU)
382 		return -ECHILD;
383 
384 	dir = dget_parent(dentry);
385 	err = fscrypt_get_encryption_info(d_inode(dir));
386 	valid = !fscrypt_has_encryption_key(d_inode(dir));
387 	dput(dir);
388 
389 	if (err < 0)
390 		return err;
391 
392 	return valid;
393 }
394 
395 const struct dentry_operations fscrypt_d_ops = {
396 	.d_revalidate = fscrypt_d_revalidate,
397 };
398 
399 static void fscrypt_destroy(void)
400 {
401 	struct fscrypt_ctx *pos, *n;
402 
403 	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
404 		kmem_cache_free(fscrypt_ctx_cachep, pos);
405 	INIT_LIST_HEAD(&fscrypt_free_ctxs);
406 	mempool_destroy(fscrypt_bounce_page_pool);
407 	fscrypt_bounce_page_pool = NULL;
408 }
409 
410 /**
411  * fscrypt_initialize() - allocate major buffers for fs encryption.
412  * @cop_flags:  fscrypt operations flags
413  *
414  * We only call this when we start accessing encrypted files, since it
415  * results in memory getting allocated that wouldn't otherwise be used.
416  *
417  * Return: Zero on success, non-zero otherwise.
418  */
419 int fscrypt_initialize(unsigned int cop_flags)
420 {
421 	int i, res = -ENOMEM;
422 
423 	/* No need to allocate a bounce page pool if this FS won't use it. */
424 	if (cop_flags & FS_CFLG_OWN_PAGES)
425 		return 0;
426 
427 	mutex_lock(&fscrypt_init_mutex);
428 	if (fscrypt_bounce_page_pool)
429 		goto already_initialized;
430 
431 	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
432 		struct fscrypt_ctx *ctx;
433 
434 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
435 		if (!ctx)
436 			goto fail;
437 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
438 	}
439 
440 	fscrypt_bounce_page_pool =
441 		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
442 	if (!fscrypt_bounce_page_pool)
443 		goto fail;
444 
445 already_initialized:
446 	mutex_unlock(&fscrypt_init_mutex);
447 	return 0;
448 fail:
449 	fscrypt_destroy();
450 	mutex_unlock(&fscrypt_init_mutex);
451 	return res;
452 }
453 
454 void fscrypt_msg(const struct inode *inode, const char *level,
455 		 const char *fmt, ...)
456 {
457 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
458 				      DEFAULT_RATELIMIT_BURST);
459 	struct va_format vaf;
460 	va_list args;
461 
462 	if (!__ratelimit(&rs))
463 		return;
464 
465 	va_start(args, fmt);
466 	vaf.fmt = fmt;
467 	vaf.va = &args;
468 	if (inode)
469 		printk("%sfscrypt (%s, inode %lu): %pV\n",
470 		       level, inode->i_sb->s_id, inode->i_ino, &vaf);
471 	else
472 		printk("%sfscrypt: %pV\n", level, &vaf);
473 	va_end(args);
474 }
475 
476 /**
477  * fscrypt_init() - Set up for fs encryption.
478  */
479 static int __init fscrypt_init(void)
480 {
481 	int err = -ENOMEM;
482 
483 	/*
484 	 * Use an unbound workqueue to allow bios to be decrypted in parallel
485 	 * even when they happen to complete on the same CPU.  This sacrifices
486 	 * locality, but it's worthwhile since decryption is CPU-intensive.
487 	 *
488 	 * Also use a high-priority workqueue to prioritize decryption work,
489 	 * which blocks reads from completing, over regular application tasks.
490 	 */
491 	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
492 						 WQ_UNBOUND | WQ_HIGHPRI,
493 						 num_online_cpus());
494 	if (!fscrypt_read_workqueue)
495 		goto fail;
496 
497 	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
498 	if (!fscrypt_ctx_cachep)
499 		goto fail_free_queue;
500 
501 	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
502 	if (!fscrypt_info_cachep)
503 		goto fail_free_ctx;
504 
505 	err = fscrypt_init_keyring();
506 	if (err)
507 		goto fail_free_info;
508 
509 	return 0;
510 
511 fail_free_info:
512 	kmem_cache_destroy(fscrypt_info_cachep);
513 fail_free_ctx:
514 	kmem_cache_destroy(fscrypt_ctx_cachep);
515 fail_free_queue:
516 	destroy_workqueue(fscrypt_read_workqueue);
517 fail:
518 	return err;
519 }
520 late_initcall(fscrypt_init)
521