xref: /linux/fs/crypto/crypto.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * This contains encryption functions for per-file encryption.
3  *
4  * Copyright (C) 2015, Google, Inc.
5  * Copyright (C) 2015, Motorola Mobility
6  *
7  * Written by Michael Halcrow, 2014.
8  *
9  * Filename encryption additions
10  *	Uday Savagaonkar, 2014
11  * Encryption policy handling additions
12  *	Ildar Muslukhov, 2014
13  * Add fscrypt_pullback_bio_page()
14  *	Jaegeuk Kim, 2015.
15  *
16  * This has not yet undergone a rigorous security audit.
17  *
18  * The usage of AES-XTS should conform to recommendations in NIST
19  * Special Publication 800-38E and IEEE P1619/D16.
20  */
21 
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/bio.h>
28 #include <linux/dcache.h>
29 #include <linux/namei.h>
30 #include <linux/fscrypto.h>
31 #include <linux/ecryptfs.h>
32 
33 static unsigned int num_prealloc_crypto_pages = 32;
34 static unsigned int num_prealloc_crypto_ctxs = 128;
35 
36 module_param(num_prealloc_crypto_pages, uint, 0444);
37 MODULE_PARM_DESC(num_prealloc_crypto_pages,
38 		"Number of crypto pages to preallocate");
39 module_param(num_prealloc_crypto_ctxs, uint, 0444);
40 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
41 		"Number of crypto contexts to preallocate");
42 
43 static mempool_t *fscrypt_bounce_page_pool = NULL;
44 
45 static LIST_HEAD(fscrypt_free_ctxs);
46 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
47 
48 static struct workqueue_struct *fscrypt_read_workqueue;
49 static DEFINE_MUTEX(fscrypt_init_mutex);
50 
51 static struct kmem_cache *fscrypt_ctx_cachep;
52 struct kmem_cache *fscrypt_info_cachep;
53 
54 /**
55  * fscrypt_release_ctx() - Releases an encryption context
56  * @ctx: The encryption context to release.
57  *
58  * If the encryption context was allocated from the pre-allocated pool, returns
59  * it to that pool. Else, frees it.
60  *
61  * If there's a bounce page in the context, this frees that.
62  */
63 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
64 {
65 	unsigned long flags;
66 
67 	if (ctx->flags & FS_WRITE_PATH_FL && ctx->w.bounce_page) {
68 		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
69 		ctx->w.bounce_page = NULL;
70 	}
71 	ctx->w.control_page = NULL;
72 	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
73 		kmem_cache_free(fscrypt_ctx_cachep, ctx);
74 	} else {
75 		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
76 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
77 		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
78 	}
79 }
80 EXPORT_SYMBOL(fscrypt_release_ctx);
81 
82 /**
83  * fscrypt_get_ctx() - Gets an encryption context
84  * @inode:       The inode for which we are doing the crypto
85  * @gfp_flags:   The gfp flag for memory allocation
86  *
87  * Allocates and initializes an encryption context.
88  *
89  * Return: An allocated and initialized encryption context on success; error
90  * value or NULL otherwise.
91  */
92 struct fscrypt_ctx *fscrypt_get_ctx(struct inode *inode, gfp_t gfp_flags)
93 {
94 	struct fscrypt_ctx *ctx = NULL;
95 	struct fscrypt_info *ci = inode->i_crypt_info;
96 	unsigned long flags;
97 
98 	if (ci == NULL)
99 		return ERR_PTR(-ENOKEY);
100 
101 	/*
102 	 * We first try getting the ctx from a free list because in
103 	 * the common case the ctx will have an allocated and
104 	 * initialized crypto tfm, so it's probably a worthwhile
105 	 * optimization. For the bounce page, we first try getting it
106 	 * from the kernel allocator because that's just about as fast
107 	 * as getting it from a list and because a cache of free pages
108 	 * should generally be a "last resort" option for a filesystem
109 	 * to be able to do its job.
110 	 */
111 	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
112 	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
113 					struct fscrypt_ctx, free_list);
114 	if (ctx)
115 		list_del(&ctx->free_list);
116 	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
117 	if (!ctx) {
118 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
119 		if (!ctx)
120 			return ERR_PTR(-ENOMEM);
121 		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
122 	} else {
123 		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
124 	}
125 	ctx->flags &= ~FS_WRITE_PATH_FL;
126 	return ctx;
127 }
128 EXPORT_SYMBOL(fscrypt_get_ctx);
129 
130 /**
131  * fscrypt_complete() - The completion callback for page encryption
132  * @req: The asynchronous encryption request context
133  * @res: The result of the encryption operation
134  */
135 static void fscrypt_complete(struct crypto_async_request *req, int res)
136 {
137 	struct fscrypt_completion_result *ecr = req->data;
138 
139 	if (res == -EINPROGRESS)
140 		return;
141 	ecr->res = res;
142 	complete(&ecr->completion);
143 }
144 
145 typedef enum {
146 	FS_DECRYPT = 0,
147 	FS_ENCRYPT,
148 } fscrypt_direction_t;
149 
150 static int do_page_crypto(struct inode *inode,
151 			fscrypt_direction_t rw, pgoff_t index,
152 			struct page *src_page, struct page *dest_page,
153 			gfp_t gfp_flags)
154 {
155 	u8 xts_tweak[FS_XTS_TWEAK_SIZE];
156 	struct skcipher_request *req = NULL;
157 	DECLARE_FS_COMPLETION_RESULT(ecr);
158 	struct scatterlist dst, src;
159 	struct fscrypt_info *ci = inode->i_crypt_info;
160 	struct crypto_skcipher *tfm = ci->ci_ctfm;
161 	int res = 0;
162 
163 	req = skcipher_request_alloc(tfm, gfp_flags);
164 	if (!req) {
165 		printk_ratelimited(KERN_ERR
166 				"%s: crypto_request_alloc() failed\n",
167 				__func__);
168 		return -ENOMEM;
169 	}
170 
171 	skcipher_request_set_callback(
172 		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
173 		fscrypt_complete, &ecr);
174 
175 	BUILD_BUG_ON(FS_XTS_TWEAK_SIZE < sizeof(index));
176 	memcpy(xts_tweak, &index, sizeof(index));
177 	memset(&xts_tweak[sizeof(index)], 0,
178 			FS_XTS_TWEAK_SIZE - sizeof(index));
179 
180 	sg_init_table(&dst, 1);
181 	sg_set_page(&dst, dest_page, PAGE_SIZE, 0);
182 	sg_init_table(&src, 1);
183 	sg_set_page(&src, src_page, PAGE_SIZE, 0);
184 	skcipher_request_set_crypt(req, &src, &dst, PAGE_SIZE,
185 					xts_tweak);
186 	if (rw == FS_DECRYPT)
187 		res = crypto_skcipher_decrypt(req);
188 	else
189 		res = crypto_skcipher_encrypt(req);
190 	if (res == -EINPROGRESS || res == -EBUSY) {
191 		BUG_ON(req->base.data != &ecr);
192 		wait_for_completion(&ecr.completion);
193 		res = ecr.res;
194 	}
195 	skcipher_request_free(req);
196 	if (res) {
197 		printk_ratelimited(KERN_ERR
198 			"%s: crypto_skcipher_encrypt() returned %d\n",
199 			__func__, res);
200 		return res;
201 	}
202 	return 0;
203 }
204 
205 static struct page *alloc_bounce_page(struct fscrypt_ctx *ctx, gfp_t gfp_flags)
206 {
207 	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
208 	if (ctx->w.bounce_page == NULL)
209 		return ERR_PTR(-ENOMEM);
210 	ctx->flags |= FS_WRITE_PATH_FL;
211 	return ctx->w.bounce_page;
212 }
213 
214 /**
215  * fscypt_encrypt_page() - Encrypts a page
216  * @inode:          The inode for which the encryption should take place
217  * @plaintext_page: The page to encrypt. Must be locked.
218  * @gfp_flags:      The gfp flag for memory allocation
219  *
220  * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
221  * encryption context.
222  *
223  * Called on the page write path.  The caller must call
224  * fscrypt_restore_control_page() on the returned ciphertext page to
225  * release the bounce buffer and the encryption context.
226  *
227  * Return: An allocated page with the encrypted content on success. Else, an
228  * error value or NULL.
229  */
230 struct page *fscrypt_encrypt_page(struct inode *inode,
231 				struct page *plaintext_page, gfp_t gfp_flags)
232 {
233 	struct fscrypt_ctx *ctx;
234 	struct page *ciphertext_page = NULL;
235 	int err;
236 
237 	BUG_ON(!PageLocked(plaintext_page));
238 
239 	ctx = fscrypt_get_ctx(inode, gfp_flags);
240 	if (IS_ERR(ctx))
241 		return (struct page *)ctx;
242 
243 	/* The encryption operation will require a bounce page. */
244 	ciphertext_page = alloc_bounce_page(ctx, gfp_flags);
245 	if (IS_ERR(ciphertext_page))
246 		goto errout;
247 
248 	ctx->w.control_page = plaintext_page;
249 	err = do_page_crypto(inode, FS_ENCRYPT, plaintext_page->index,
250 					plaintext_page, ciphertext_page,
251 					gfp_flags);
252 	if (err) {
253 		ciphertext_page = ERR_PTR(err);
254 		goto errout;
255 	}
256 	SetPagePrivate(ciphertext_page);
257 	set_page_private(ciphertext_page, (unsigned long)ctx);
258 	lock_page(ciphertext_page);
259 	return ciphertext_page;
260 
261 errout:
262 	fscrypt_release_ctx(ctx);
263 	return ciphertext_page;
264 }
265 EXPORT_SYMBOL(fscrypt_encrypt_page);
266 
267 /**
268  * f2crypt_decrypt_page() - Decrypts a page in-place
269  * @page: The page to decrypt. Must be locked.
270  *
271  * Decrypts page in-place using the ctx encryption context.
272  *
273  * Called from the read completion callback.
274  *
275  * Return: Zero on success, non-zero otherwise.
276  */
277 int fscrypt_decrypt_page(struct page *page)
278 {
279 	BUG_ON(!PageLocked(page));
280 
281 	return do_page_crypto(page->mapping->host,
282 			FS_DECRYPT, page->index, page, page, GFP_NOFS);
283 }
284 EXPORT_SYMBOL(fscrypt_decrypt_page);
285 
286 int fscrypt_zeroout_range(struct inode *inode, pgoff_t lblk,
287 				sector_t pblk, unsigned int len)
288 {
289 	struct fscrypt_ctx *ctx;
290 	struct page *ciphertext_page = NULL;
291 	struct bio *bio;
292 	int ret, err = 0;
293 
294 	BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE);
295 
296 	ctx = fscrypt_get_ctx(inode, GFP_NOFS);
297 	if (IS_ERR(ctx))
298 		return PTR_ERR(ctx);
299 
300 	ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT);
301 	if (IS_ERR(ciphertext_page)) {
302 		err = PTR_ERR(ciphertext_page);
303 		goto errout;
304 	}
305 
306 	while (len--) {
307 		err = do_page_crypto(inode, FS_ENCRYPT, lblk,
308 					ZERO_PAGE(0), ciphertext_page,
309 					GFP_NOFS);
310 		if (err)
311 			goto errout;
312 
313 		bio = bio_alloc(GFP_NOWAIT, 1);
314 		if (!bio) {
315 			err = -ENOMEM;
316 			goto errout;
317 		}
318 		bio->bi_bdev = inode->i_sb->s_bdev;
319 		bio->bi_iter.bi_sector =
320 			pblk << (inode->i_sb->s_blocksize_bits - 9);
321 		ret = bio_add_page(bio, ciphertext_page,
322 					inode->i_sb->s_blocksize, 0);
323 		if (ret != inode->i_sb->s_blocksize) {
324 			/* should never happen! */
325 			WARN_ON(1);
326 			bio_put(bio);
327 			err = -EIO;
328 			goto errout;
329 		}
330 		err = submit_bio_wait(WRITE, bio);
331 		if ((err == 0) && bio->bi_error)
332 			err = -EIO;
333 		bio_put(bio);
334 		if (err)
335 			goto errout;
336 		lblk++;
337 		pblk++;
338 	}
339 	err = 0;
340 errout:
341 	fscrypt_release_ctx(ctx);
342 	return err;
343 }
344 EXPORT_SYMBOL(fscrypt_zeroout_range);
345 
346 /*
347  * Validate dentries for encrypted directories to make sure we aren't
348  * potentially caching stale data after a key has been added or
349  * removed.
350  */
351 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
352 {
353 	struct dentry *dir;
354 	struct fscrypt_info *ci;
355 	int dir_has_key, cached_with_key;
356 
357 	if (flags & LOOKUP_RCU)
358 		return -ECHILD;
359 
360 	dir = dget_parent(dentry);
361 	if (!d_inode(dir)->i_sb->s_cop->is_encrypted(d_inode(dir))) {
362 		dput(dir);
363 		return 0;
364 	}
365 
366 	ci = d_inode(dir)->i_crypt_info;
367 	if (ci && ci->ci_keyring_key &&
368 	    (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
369 					  (1 << KEY_FLAG_REVOKED) |
370 					  (1 << KEY_FLAG_DEAD))))
371 		ci = NULL;
372 
373 	/* this should eventually be an flag in d_flags */
374 	spin_lock(&dentry->d_lock);
375 	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
376 	spin_unlock(&dentry->d_lock);
377 	dir_has_key = (ci != NULL);
378 	dput(dir);
379 
380 	/*
381 	 * If the dentry was cached without the key, and it is a
382 	 * negative dentry, it might be a valid name.  We can't check
383 	 * if the key has since been made available due to locking
384 	 * reasons, so we fail the validation so ext4_lookup() can do
385 	 * this check.
386 	 *
387 	 * We also fail the validation if the dentry was created with
388 	 * the key present, but we no longer have the key, or vice versa.
389 	 */
390 	if ((!cached_with_key && d_is_negative(dentry)) ||
391 			(!cached_with_key && dir_has_key) ||
392 			(cached_with_key && !dir_has_key))
393 		return 0;
394 	return 1;
395 }
396 
397 const struct dentry_operations fscrypt_d_ops = {
398 	.d_revalidate = fscrypt_d_revalidate,
399 };
400 EXPORT_SYMBOL(fscrypt_d_ops);
401 
402 /*
403  * Call fscrypt_decrypt_page on every single page, reusing the encryption
404  * context.
405  */
406 static void completion_pages(struct work_struct *work)
407 {
408 	struct fscrypt_ctx *ctx =
409 		container_of(work, struct fscrypt_ctx, r.work);
410 	struct bio *bio = ctx->r.bio;
411 	struct bio_vec *bv;
412 	int i;
413 
414 	bio_for_each_segment_all(bv, bio, i) {
415 		struct page *page = bv->bv_page;
416 		int ret = fscrypt_decrypt_page(page);
417 
418 		if (ret) {
419 			WARN_ON_ONCE(1);
420 			SetPageError(page);
421 		} else {
422 			SetPageUptodate(page);
423 		}
424 		unlock_page(page);
425 	}
426 	fscrypt_release_ctx(ctx);
427 	bio_put(bio);
428 }
429 
430 void fscrypt_decrypt_bio_pages(struct fscrypt_ctx *ctx, struct bio *bio)
431 {
432 	INIT_WORK(&ctx->r.work, completion_pages);
433 	ctx->r.bio = bio;
434 	queue_work(fscrypt_read_workqueue, &ctx->r.work);
435 }
436 EXPORT_SYMBOL(fscrypt_decrypt_bio_pages);
437 
438 void fscrypt_pullback_bio_page(struct page **page, bool restore)
439 {
440 	struct fscrypt_ctx *ctx;
441 	struct page *bounce_page;
442 
443 	/* The bounce data pages are unmapped. */
444 	if ((*page)->mapping)
445 		return;
446 
447 	/* The bounce data page is unmapped. */
448 	bounce_page = *page;
449 	ctx = (struct fscrypt_ctx *)page_private(bounce_page);
450 
451 	/* restore control page */
452 	*page = ctx->w.control_page;
453 
454 	if (restore)
455 		fscrypt_restore_control_page(bounce_page);
456 }
457 EXPORT_SYMBOL(fscrypt_pullback_bio_page);
458 
459 void fscrypt_restore_control_page(struct page *page)
460 {
461 	struct fscrypt_ctx *ctx;
462 
463 	ctx = (struct fscrypt_ctx *)page_private(page);
464 	set_page_private(page, (unsigned long)NULL);
465 	ClearPagePrivate(page);
466 	unlock_page(page);
467 	fscrypt_release_ctx(ctx);
468 }
469 EXPORT_SYMBOL(fscrypt_restore_control_page);
470 
471 static void fscrypt_destroy(void)
472 {
473 	struct fscrypt_ctx *pos, *n;
474 
475 	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
476 		kmem_cache_free(fscrypt_ctx_cachep, pos);
477 	INIT_LIST_HEAD(&fscrypt_free_ctxs);
478 	mempool_destroy(fscrypt_bounce_page_pool);
479 	fscrypt_bounce_page_pool = NULL;
480 }
481 
482 /**
483  * fscrypt_initialize() - allocate major buffers for fs encryption.
484  *
485  * We only call this when we start accessing encrypted files, since it
486  * results in memory getting allocated that wouldn't otherwise be used.
487  *
488  * Return: Zero on success, non-zero otherwise.
489  */
490 int fscrypt_initialize(void)
491 {
492 	int i, res = -ENOMEM;
493 
494 	if (fscrypt_bounce_page_pool)
495 		return 0;
496 
497 	mutex_lock(&fscrypt_init_mutex);
498 	if (fscrypt_bounce_page_pool)
499 		goto already_initialized;
500 
501 	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
502 		struct fscrypt_ctx *ctx;
503 
504 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
505 		if (!ctx)
506 			goto fail;
507 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
508 	}
509 
510 	fscrypt_bounce_page_pool =
511 		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
512 	if (!fscrypt_bounce_page_pool)
513 		goto fail;
514 
515 already_initialized:
516 	mutex_unlock(&fscrypt_init_mutex);
517 	return 0;
518 fail:
519 	fscrypt_destroy();
520 	mutex_unlock(&fscrypt_init_mutex);
521 	return res;
522 }
523 EXPORT_SYMBOL(fscrypt_initialize);
524 
525 /**
526  * fscrypt_init() - Set up for fs encryption.
527  */
528 static int __init fscrypt_init(void)
529 {
530 	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
531 							WQ_HIGHPRI, 0);
532 	if (!fscrypt_read_workqueue)
533 		goto fail;
534 
535 	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
536 	if (!fscrypt_ctx_cachep)
537 		goto fail_free_queue;
538 
539 	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
540 	if (!fscrypt_info_cachep)
541 		goto fail_free_ctx;
542 
543 	return 0;
544 
545 fail_free_ctx:
546 	kmem_cache_destroy(fscrypt_ctx_cachep);
547 fail_free_queue:
548 	destroy_workqueue(fscrypt_read_workqueue);
549 fail:
550 	return -ENOMEM;
551 }
552 module_init(fscrypt_init)
553 
554 /**
555  * fscrypt_exit() - Shutdown the fs encryption system
556  */
557 static void __exit fscrypt_exit(void)
558 {
559 	fscrypt_destroy();
560 
561 	if (fscrypt_read_workqueue)
562 		destroy_workqueue(fscrypt_read_workqueue);
563 	kmem_cache_destroy(fscrypt_ctx_cachep);
564 	kmem_cache_destroy(fscrypt_info_cachep);
565 }
566 module_exit(fscrypt_exit);
567 
568 MODULE_LICENSE("GPL");
569