xref: /linux/fs/coredump.c (revision c0e297dc61f8d4453e07afbea1fa8d0e67cd4a34)
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35 
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlb.h>
39 #include <asm/exec.h>
40 
41 #include <trace/events/task.h>
42 #include "internal.h"
43 
44 #include <trace/events/sched.h>
45 
46 int core_uses_pid;
47 unsigned int core_pipe_limit;
48 char core_pattern[CORENAME_MAX_SIZE] = "core";
49 static int core_name_size = CORENAME_MAX_SIZE;
50 
51 struct core_name {
52 	char *corename;
53 	int used, size;
54 };
55 
56 /* The maximal length of core_pattern is also specified in sysctl.c */
57 
58 static int expand_corename(struct core_name *cn, int size)
59 {
60 	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
61 
62 	if (!corename)
63 		return -ENOMEM;
64 
65 	if (size > core_name_size) /* racy but harmless */
66 		core_name_size = size;
67 
68 	cn->size = ksize(corename);
69 	cn->corename = corename;
70 	return 0;
71 }
72 
73 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
74 				     va_list arg)
75 {
76 	int free, need;
77 	va_list arg_copy;
78 
79 again:
80 	free = cn->size - cn->used;
81 
82 	va_copy(arg_copy, arg);
83 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
84 	va_end(arg_copy);
85 
86 	if (need < free) {
87 		cn->used += need;
88 		return 0;
89 	}
90 
91 	if (!expand_corename(cn, cn->size + need - free + 1))
92 		goto again;
93 
94 	return -ENOMEM;
95 }
96 
97 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
98 {
99 	va_list arg;
100 	int ret;
101 
102 	va_start(arg, fmt);
103 	ret = cn_vprintf(cn, fmt, arg);
104 	va_end(arg);
105 
106 	return ret;
107 }
108 
109 static __printf(2, 3)
110 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
111 {
112 	int cur = cn->used;
113 	va_list arg;
114 	int ret;
115 
116 	va_start(arg, fmt);
117 	ret = cn_vprintf(cn, fmt, arg);
118 	va_end(arg);
119 
120 	for (; cur < cn->used; ++cur) {
121 		if (cn->corename[cur] == '/')
122 			cn->corename[cur] = '!';
123 	}
124 	return ret;
125 }
126 
127 static int cn_print_exe_file(struct core_name *cn)
128 {
129 	struct file *exe_file;
130 	char *pathbuf, *path;
131 	int ret;
132 
133 	exe_file = get_mm_exe_file(current->mm);
134 	if (!exe_file)
135 		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
136 
137 	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
138 	if (!pathbuf) {
139 		ret = -ENOMEM;
140 		goto put_exe_file;
141 	}
142 
143 	path = file_path(exe_file, pathbuf, PATH_MAX);
144 	if (IS_ERR(path)) {
145 		ret = PTR_ERR(path);
146 		goto free_buf;
147 	}
148 
149 	ret = cn_esc_printf(cn, "%s", path);
150 
151 free_buf:
152 	kfree(pathbuf);
153 put_exe_file:
154 	fput(exe_file);
155 	return ret;
156 }
157 
158 /* format_corename will inspect the pattern parameter, and output a
159  * name into corename, which must have space for at least
160  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
161  */
162 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
163 {
164 	const struct cred *cred = current_cred();
165 	const char *pat_ptr = core_pattern;
166 	int ispipe = (*pat_ptr == '|');
167 	int pid_in_pattern = 0;
168 	int err = 0;
169 
170 	cn->used = 0;
171 	cn->corename = NULL;
172 	if (expand_corename(cn, core_name_size))
173 		return -ENOMEM;
174 	cn->corename[0] = '\0';
175 
176 	if (ispipe)
177 		++pat_ptr;
178 
179 	/* Repeat as long as we have more pattern to process and more output
180 	   space */
181 	while (*pat_ptr) {
182 		if (*pat_ptr != '%') {
183 			err = cn_printf(cn, "%c", *pat_ptr++);
184 		} else {
185 			switch (*++pat_ptr) {
186 			/* single % at the end, drop that */
187 			case 0:
188 				goto out;
189 			/* Double percent, output one percent */
190 			case '%':
191 				err = cn_printf(cn, "%c", '%');
192 				break;
193 			/* pid */
194 			case 'p':
195 				pid_in_pattern = 1;
196 				err = cn_printf(cn, "%d",
197 					      task_tgid_vnr(current));
198 				break;
199 			/* global pid */
200 			case 'P':
201 				err = cn_printf(cn, "%d",
202 					      task_tgid_nr(current));
203 				break;
204 			case 'i':
205 				err = cn_printf(cn, "%d",
206 					      task_pid_vnr(current));
207 				break;
208 			case 'I':
209 				err = cn_printf(cn, "%d",
210 					      task_pid_nr(current));
211 				break;
212 			/* uid */
213 			case 'u':
214 				err = cn_printf(cn, "%u",
215 						from_kuid(&init_user_ns,
216 							  cred->uid));
217 				break;
218 			/* gid */
219 			case 'g':
220 				err = cn_printf(cn, "%u",
221 						from_kgid(&init_user_ns,
222 							  cred->gid));
223 				break;
224 			case 'd':
225 				err = cn_printf(cn, "%d",
226 					__get_dumpable(cprm->mm_flags));
227 				break;
228 			/* signal that caused the coredump */
229 			case 's':
230 				err = cn_printf(cn, "%d",
231 						cprm->siginfo->si_signo);
232 				break;
233 			/* UNIX time of coredump */
234 			case 't': {
235 				struct timeval tv;
236 				do_gettimeofday(&tv);
237 				err = cn_printf(cn, "%lu", tv.tv_sec);
238 				break;
239 			}
240 			/* hostname */
241 			case 'h':
242 				down_read(&uts_sem);
243 				err = cn_esc_printf(cn, "%s",
244 					      utsname()->nodename);
245 				up_read(&uts_sem);
246 				break;
247 			/* executable */
248 			case 'e':
249 				err = cn_esc_printf(cn, "%s", current->comm);
250 				break;
251 			case 'E':
252 				err = cn_print_exe_file(cn);
253 				break;
254 			/* core limit size */
255 			case 'c':
256 				err = cn_printf(cn, "%lu",
257 					      rlimit(RLIMIT_CORE));
258 				break;
259 			default:
260 				break;
261 			}
262 			++pat_ptr;
263 		}
264 
265 		if (err)
266 			return err;
267 	}
268 
269 out:
270 	/* Backward compatibility with core_uses_pid:
271 	 *
272 	 * If core_pattern does not include a %p (as is the default)
273 	 * and core_uses_pid is set, then .%pid will be appended to
274 	 * the filename. Do not do this for piped commands. */
275 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
276 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
277 		if (err)
278 			return err;
279 	}
280 	return ispipe;
281 }
282 
283 static int zap_process(struct task_struct *start, int exit_code)
284 {
285 	struct task_struct *t;
286 	int nr = 0;
287 
288 	start->signal->group_exit_code = exit_code;
289 	start->signal->group_stop_count = 0;
290 
291 	t = start;
292 	do {
293 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
294 		if (t != current && t->mm) {
295 			sigaddset(&t->pending.signal, SIGKILL);
296 			signal_wake_up(t, 1);
297 			nr++;
298 		}
299 	} while_each_thread(start, t);
300 
301 	return nr;
302 }
303 
304 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
305 			struct core_state *core_state, int exit_code)
306 {
307 	struct task_struct *g, *p;
308 	unsigned long flags;
309 	int nr = -EAGAIN;
310 
311 	spin_lock_irq(&tsk->sighand->siglock);
312 	if (!signal_group_exit(tsk->signal)) {
313 		mm->core_state = core_state;
314 		nr = zap_process(tsk, exit_code);
315 		tsk->signal->group_exit_task = tsk;
316 		/* ignore all signals except SIGKILL, see prepare_signal() */
317 		tsk->signal->flags = SIGNAL_GROUP_COREDUMP;
318 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
319 	}
320 	spin_unlock_irq(&tsk->sighand->siglock);
321 	if (unlikely(nr < 0))
322 		return nr;
323 
324 	tsk->flags |= PF_DUMPCORE;
325 	if (atomic_read(&mm->mm_users) == nr + 1)
326 		goto done;
327 	/*
328 	 * We should find and kill all tasks which use this mm, and we should
329 	 * count them correctly into ->nr_threads. We don't take tasklist
330 	 * lock, but this is safe wrt:
331 	 *
332 	 * fork:
333 	 *	None of sub-threads can fork after zap_process(leader). All
334 	 *	processes which were created before this point should be
335 	 *	visible to zap_threads() because copy_process() adds the new
336 	 *	process to the tail of init_task.tasks list, and lock/unlock
337 	 *	of ->siglock provides a memory barrier.
338 	 *
339 	 * do_exit:
340 	 *	The caller holds mm->mmap_sem. This means that the task which
341 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
342 	 *	its ->mm.
343 	 *
344 	 * de_thread:
345 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
346 	 *	we must see either old or new leader, this does not matter.
347 	 *	However, it can change p->sighand, so lock_task_sighand(p)
348 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
349 	 *	it can't fail.
350 	 *
351 	 *	Note also that "g" can be the old leader with ->mm == NULL
352 	 *	and already unhashed and thus removed from ->thread_group.
353 	 *	This is OK, __unhash_process()->list_del_rcu() does not
354 	 *	clear the ->next pointer, we will find the new leader via
355 	 *	next_thread().
356 	 */
357 	rcu_read_lock();
358 	for_each_process(g) {
359 		if (g == tsk->group_leader)
360 			continue;
361 		if (g->flags & PF_KTHREAD)
362 			continue;
363 		p = g;
364 		do {
365 			if (p->mm) {
366 				if (unlikely(p->mm == mm)) {
367 					lock_task_sighand(p, &flags);
368 					nr += zap_process(p, exit_code);
369 					p->signal->flags = SIGNAL_GROUP_EXIT;
370 					unlock_task_sighand(p, &flags);
371 				}
372 				break;
373 			}
374 		} while_each_thread(g, p);
375 	}
376 	rcu_read_unlock();
377 done:
378 	atomic_set(&core_state->nr_threads, nr);
379 	return nr;
380 }
381 
382 static int coredump_wait(int exit_code, struct core_state *core_state)
383 {
384 	struct task_struct *tsk = current;
385 	struct mm_struct *mm = tsk->mm;
386 	int core_waiters = -EBUSY;
387 
388 	init_completion(&core_state->startup);
389 	core_state->dumper.task = tsk;
390 	core_state->dumper.next = NULL;
391 
392 	down_write(&mm->mmap_sem);
393 	if (!mm->core_state)
394 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
395 	up_write(&mm->mmap_sem);
396 
397 	if (core_waiters > 0) {
398 		struct core_thread *ptr;
399 
400 		wait_for_completion(&core_state->startup);
401 		/*
402 		 * Wait for all the threads to become inactive, so that
403 		 * all the thread context (extended register state, like
404 		 * fpu etc) gets copied to the memory.
405 		 */
406 		ptr = core_state->dumper.next;
407 		while (ptr != NULL) {
408 			wait_task_inactive(ptr->task, 0);
409 			ptr = ptr->next;
410 		}
411 	}
412 
413 	return core_waiters;
414 }
415 
416 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
417 {
418 	struct core_thread *curr, *next;
419 	struct task_struct *task;
420 
421 	spin_lock_irq(&current->sighand->siglock);
422 	if (core_dumped && !__fatal_signal_pending(current))
423 		current->signal->group_exit_code |= 0x80;
424 	current->signal->group_exit_task = NULL;
425 	current->signal->flags = SIGNAL_GROUP_EXIT;
426 	spin_unlock_irq(&current->sighand->siglock);
427 
428 	next = mm->core_state->dumper.next;
429 	while ((curr = next) != NULL) {
430 		next = curr->next;
431 		task = curr->task;
432 		/*
433 		 * see exit_mm(), curr->task must not see
434 		 * ->task == NULL before we read ->next.
435 		 */
436 		smp_mb();
437 		curr->task = NULL;
438 		wake_up_process(task);
439 	}
440 
441 	mm->core_state = NULL;
442 }
443 
444 static bool dump_interrupted(void)
445 {
446 	/*
447 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
448 	 * can do try_to_freeze() and check __fatal_signal_pending(),
449 	 * but then we need to teach dump_write() to restart and clear
450 	 * TIF_SIGPENDING.
451 	 */
452 	return signal_pending(current);
453 }
454 
455 static void wait_for_dump_helpers(struct file *file)
456 {
457 	struct pipe_inode_info *pipe = file->private_data;
458 
459 	pipe_lock(pipe);
460 	pipe->readers++;
461 	pipe->writers--;
462 	wake_up_interruptible_sync(&pipe->wait);
463 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
464 	pipe_unlock(pipe);
465 
466 	/*
467 	 * We actually want wait_event_freezable() but then we need
468 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
469 	 */
470 	wait_event_interruptible(pipe->wait, pipe->readers == 1);
471 
472 	pipe_lock(pipe);
473 	pipe->readers--;
474 	pipe->writers++;
475 	pipe_unlock(pipe);
476 }
477 
478 /*
479  * umh_pipe_setup
480  * helper function to customize the process used
481  * to collect the core in userspace.  Specifically
482  * it sets up a pipe and installs it as fd 0 (stdin)
483  * for the process.  Returns 0 on success, or
484  * PTR_ERR on failure.
485  * Note that it also sets the core limit to 1.  This
486  * is a special value that we use to trap recursive
487  * core dumps
488  */
489 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
490 {
491 	struct file *files[2];
492 	struct coredump_params *cp = (struct coredump_params *)info->data;
493 	int err = create_pipe_files(files, 0);
494 	if (err)
495 		return err;
496 
497 	cp->file = files[1];
498 
499 	err = replace_fd(0, files[0], 0);
500 	fput(files[0]);
501 	/* and disallow core files too */
502 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
503 
504 	return err;
505 }
506 
507 void do_coredump(const siginfo_t *siginfo)
508 {
509 	struct core_state core_state;
510 	struct core_name cn;
511 	struct mm_struct *mm = current->mm;
512 	struct linux_binfmt * binfmt;
513 	const struct cred *old_cred;
514 	struct cred *cred;
515 	int retval = 0;
516 	int flag = 0;
517 	int ispipe;
518 	struct files_struct *displaced;
519 	bool need_nonrelative = false;
520 	bool core_dumped = false;
521 	static atomic_t core_dump_count = ATOMIC_INIT(0);
522 	struct coredump_params cprm = {
523 		.siginfo = siginfo,
524 		.regs = signal_pt_regs(),
525 		.limit = rlimit(RLIMIT_CORE),
526 		/*
527 		 * We must use the same mm->flags while dumping core to avoid
528 		 * inconsistency of bit flags, since this flag is not protected
529 		 * by any locks.
530 		 */
531 		.mm_flags = mm->flags,
532 	};
533 
534 	audit_core_dumps(siginfo->si_signo);
535 
536 	binfmt = mm->binfmt;
537 	if (!binfmt || !binfmt->core_dump)
538 		goto fail;
539 	if (!__get_dumpable(cprm.mm_flags))
540 		goto fail;
541 
542 	cred = prepare_creds();
543 	if (!cred)
544 		goto fail;
545 	/*
546 	 * We cannot trust fsuid as being the "true" uid of the process
547 	 * nor do we know its entire history. We only know it was tainted
548 	 * so we dump it as root in mode 2, and only into a controlled
549 	 * environment (pipe handler or fully qualified path).
550 	 */
551 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
552 		/* Setuid core dump mode */
553 		flag = O_EXCL;		/* Stop rewrite attacks */
554 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
555 		need_nonrelative = true;
556 	}
557 
558 	retval = coredump_wait(siginfo->si_signo, &core_state);
559 	if (retval < 0)
560 		goto fail_creds;
561 
562 	old_cred = override_creds(cred);
563 
564 	ispipe = format_corename(&cn, &cprm);
565 
566 	if (ispipe) {
567 		int dump_count;
568 		char **helper_argv;
569 		struct subprocess_info *sub_info;
570 
571 		if (ispipe < 0) {
572 			printk(KERN_WARNING "format_corename failed\n");
573 			printk(KERN_WARNING "Aborting core\n");
574 			goto fail_unlock;
575 		}
576 
577 		if (cprm.limit == 1) {
578 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
579 			 *
580 			 * Normally core limits are irrelevant to pipes, since
581 			 * we're not writing to the file system, but we use
582 			 * cprm.limit of 1 here as a special value, this is a
583 			 * consistent way to catch recursive crashes.
584 			 * We can still crash if the core_pattern binary sets
585 			 * RLIM_CORE = !1, but it runs as root, and can do
586 			 * lots of stupid things.
587 			 *
588 			 * Note that we use task_tgid_vnr here to grab the pid
589 			 * of the process group leader.  That way we get the
590 			 * right pid if a thread in a multi-threaded
591 			 * core_pattern process dies.
592 			 */
593 			printk(KERN_WARNING
594 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
595 				task_tgid_vnr(current), current->comm);
596 			printk(KERN_WARNING "Aborting core\n");
597 			goto fail_unlock;
598 		}
599 		cprm.limit = RLIM_INFINITY;
600 
601 		dump_count = atomic_inc_return(&core_dump_count);
602 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
603 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
604 			       task_tgid_vnr(current), current->comm);
605 			printk(KERN_WARNING "Skipping core dump\n");
606 			goto fail_dropcount;
607 		}
608 
609 		helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
610 		if (!helper_argv) {
611 			printk(KERN_WARNING "%s failed to allocate memory\n",
612 			       __func__);
613 			goto fail_dropcount;
614 		}
615 
616 		retval = -ENOMEM;
617 		sub_info = call_usermodehelper_setup(helper_argv[0],
618 						helper_argv, NULL, GFP_KERNEL,
619 						umh_pipe_setup, NULL, &cprm);
620 		if (sub_info)
621 			retval = call_usermodehelper_exec(sub_info,
622 							  UMH_WAIT_EXEC);
623 
624 		argv_free(helper_argv);
625 		if (retval) {
626 			printk(KERN_INFO "Core dump to |%s pipe failed\n",
627 			       cn.corename);
628 			goto close_fail;
629 		}
630 	} else {
631 		struct inode *inode;
632 
633 		if (cprm.limit < binfmt->min_coredump)
634 			goto fail_unlock;
635 
636 		if (need_nonrelative && cn.corename[0] != '/') {
637 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
638 				"to fully qualified path!\n",
639 				task_tgid_vnr(current), current->comm);
640 			printk(KERN_WARNING "Skipping core dump\n");
641 			goto fail_unlock;
642 		}
643 
644 		cprm.file = filp_open(cn.corename,
645 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
646 				 0600);
647 		if (IS_ERR(cprm.file))
648 			goto fail_unlock;
649 
650 		inode = file_inode(cprm.file);
651 		if (inode->i_nlink > 1)
652 			goto close_fail;
653 		if (d_unhashed(cprm.file->f_path.dentry))
654 			goto close_fail;
655 		/*
656 		 * AK: actually i see no reason to not allow this for named
657 		 * pipes etc, but keep the previous behaviour for now.
658 		 */
659 		if (!S_ISREG(inode->i_mode))
660 			goto close_fail;
661 		/*
662 		 * Dont allow local users get cute and trick others to coredump
663 		 * into their pre-created files.
664 		 */
665 		if (!uid_eq(inode->i_uid, current_fsuid()))
666 			goto close_fail;
667 		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
668 			goto close_fail;
669 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
670 			goto close_fail;
671 	}
672 
673 	/* get us an unshared descriptor table; almost always a no-op */
674 	retval = unshare_files(&displaced);
675 	if (retval)
676 		goto close_fail;
677 	if (displaced)
678 		put_files_struct(displaced);
679 	if (!dump_interrupted()) {
680 		file_start_write(cprm.file);
681 		core_dumped = binfmt->core_dump(&cprm);
682 		file_end_write(cprm.file);
683 	}
684 	if (ispipe && core_pipe_limit)
685 		wait_for_dump_helpers(cprm.file);
686 close_fail:
687 	if (cprm.file)
688 		filp_close(cprm.file, NULL);
689 fail_dropcount:
690 	if (ispipe)
691 		atomic_dec(&core_dump_count);
692 fail_unlock:
693 	kfree(cn.corename);
694 	coredump_finish(mm, core_dumped);
695 	revert_creds(old_cred);
696 fail_creds:
697 	put_cred(cred);
698 fail:
699 	return;
700 }
701 
702 /*
703  * Core dumping helper functions.  These are the only things you should
704  * do on a core-file: use only these functions to write out all the
705  * necessary info.
706  */
707 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
708 {
709 	struct file *file = cprm->file;
710 	loff_t pos = file->f_pos;
711 	ssize_t n;
712 	if (cprm->written + nr > cprm->limit)
713 		return 0;
714 	while (nr) {
715 		if (dump_interrupted())
716 			return 0;
717 		n = __kernel_write(file, addr, nr, &pos);
718 		if (n <= 0)
719 			return 0;
720 		file->f_pos = pos;
721 		cprm->written += n;
722 		nr -= n;
723 	}
724 	return 1;
725 }
726 EXPORT_SYMBOL(dump_emit);
727 
728 int dump_skip(struct coredump_params *cprm, size_t nr)
729 {
730 	static char zeroes[PAGE_SIZE];
731 	struct file *file = cprm->file;
732 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
733 		if (cprm->written + nr > cprm->limit)
734 			return 0;
735 		if (dump_interrupted() ||
736 		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
737 			return 0;
738 		cprm->written += nr;
739 		return 1;
740 	} else {
741 		while (nr > PAGE_SIZE) {
742 			if (!dump_emit(cprm, zeroes, PAGE_SIZE))
743 				return 0;
744 			nr -= PAGE_SIZE;
745 		}
746 		return dump_emit(cprm, zeroes, nr);
747 	}
748 }
749 EXPORT_SYMBOL(dump_skip);
750 
751 int dump_align(struct coredump_params *cprm, int align)
752 {
753 	unsigned mod = cprm->written & (align - 1);
754 	if (align & (align - 1))
755 		return 0;
756 	return mod ? dump_skip(cprm, align - mod) : 1;
757 }
758 EXPORT_SYMBOL(dump_align);
759