xref: /linux/fs/coredump.c (revision ae22a94997b8a03dcb3c922857c203246711f9d4)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/file.h>
4 #include <linux/fdtable.h>
5 #include <linux/freezer.h>
6 #include <linux/mm.h>
7 #include <linux/stat.h>
8 #include <linux/fcntl.h>
9 #include <linux/swap.h>
10 #include <linux/ctype.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/pagemap.h>
14 #include <linux/perf_event.h>
15 #include <linux/highmem.h>
16 #include <linux/spinlock.h>
17 #include <linux/key.h>
18 #include <linux/personality.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/sched/coredump.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/utsname.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/module.h>
27 #include <linux/namei.h>
28 #include <linux/mount.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/tsacct_kern.h>
32 #include <linux/cn_proc.h>
33 #include <linux/audit.h>
34 #include <linux/kmod.h>
35 #include <linux/fsnotify.h>
36 #include <linux/fs_struct.h>
37 #include <linux/pipe_fs_i.h>
38 #include <linux/oom.h>
39 #include <linux/compat.h>
40 #include <linux/fs.h>
41 #include <linux/path.h>
42 #include <linux/timekeeping.h>
43 #include <linux/sysctl.h>
44 #include <linux/elf.h>
45 
46 #include <linux/uaccess.h>
47 #include <asm/mmu_context.h>
48 #include <asm/tlb.h>
49 #include <asm/exec.h>
50 
51 #include <trace/events/task.h>
52 #include "internal.h"
53 
54 #include <trace/events/sched.h>
55 
56 static bool dump_vma_snapshot(struct coredump_params *cprm);
57 static void free_vma_snapshot(struct coredump_params *cprm);
58 
59 static int core_uses_pid;
60 static unsigned int core_pipe_limit;
61 static char core_pattern[CORENAME_MAX_SIZE] = "core";
62 static int core_name_size = CORENAME_MAX_SIZE;
63 
64 struct core_name {
65 	char *corename;
66 	int used, size;
67 };
68 
69 static int expand_corename(struct core_name *cn, int size)
70 {
71 	char *corename;
72 
73 	size = kmalloc_size_roundup(size);
74 	corename = krealloc(cn->corename, size, GFP_KERNEL);
75 
76 	if (!corename)
77 		return -ENOMEM;
78 
79 	if (size > core_name_size) /* racy but harmless */
80 		core_name_size = size;
81 
82 	cn->size = size;
83 	cn->corename = corename;
84 	return 0;
85 }
86 
87 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
88 				     va_list arg)
89 {
90 	int free, need;
91 	va_list arg_copy;
92 
93 again:
94 	free = cn->size - cn->used;
95 
96 	va_copy(arg_copy, arg);
97 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
98 	va_end(arg_copy);
99 
100 	if (need < free) {
101 		cn->used += need;
102 		return 0;
103 	}
104 
105 	if (!expand_corename(cn, cn->size + need - free + 1))
106 		goto again;
107 
108 	return -ENOMEM;
109 }
110 
111 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
112 {
113 	va_list arg;
114 	int ret;
115 
116 	va_start(arg, fmt);
117 	ret = cn_vprintf(cn, fmt, arg);
118 	va_end(arg);
119 
120 	return ret;
121 }
122 
123 static __printf(2, 3)
124 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
125 {
126 	int cur = cn->used;
127 	va_list arg;
128 	int ret;
129 
130 	va_start(arg, fmt);
131 	ret = cn_vprintf(cn, fmt, arg);
132 	va_end(arg);
133 
134 	if (ret == 0) {
135 		/*
136 		 * Ensure that this coredump name component can't cause the
137 		 * resulting corefile path to consist of a ".." or ".".
138 		 */
139 		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
140 				(cn->used - cur == 2 && cn->corename[cur] == '.'
141 				&& cn->corename[cur+1] == '.'))
142 			cn->corename[cur] = '!';
143 
144 		/*
145 		 * Empty names are fishy and could be used to create a "//" in a
146 		 * corefile name, causing the coredump to happen one directory
147 		 * level too high. Enforce that all components of the core
148 		 * pattern are at least one character long.
149 		 */
150 		if (cn->used == cur)
151 			ret = cn_printf(cn, "!");
152 	}
153 
154 	for (; cur < cn->used; ++cur) {
155 		if (cn->corename[cur] == '/')
156 			cn->corename[cur] = '!';
157 	}
158 	return ret;
159 }
160 
161 static int cn_print_exe_file(struct core_name *cn, bool name_only)
162 {
163 	struct file *exe_file;
164 	char *pathbuf, *path, *ptr;
165 	int ret;
166 
167 	exe_file = get_mm_exe_file(current->mm);
168 	if (!exe_file)
169 		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
170 
171 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
172 	if (!pathbuf) {
173 		ret = -ENOMEM;
174 		goto put_exe_file;
175 	}
176 
177 	path = file_path(exe_file, pathbuf, PATH_MAX);
178 	if (IS_ERR(path)) {
179 		ret = PTR_ERR(path);
180 		goto free_buf;
181 	}
182 
183 	if (name_only) {
184 		ptr = strrchr(path, '/');
185 		if (ptr)
186 			path = ptr + 1;
187 	}
188 	ret = cn_esc_printf(cn, "%s", path);
189 
190 free_buf:
191 	kfree(pathbuf);
192 put_exe_file:
193 	fput(exe_file);
194 	return ret;
195 }
196 
197 /* format_corename will inspect the pattern parameter, and output a
198  * name into corename, which must have space for at least
199  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
200  */
201 static int format_corename(struct core_name *cn, struct coredump_params *cprm,
202 			   size_t **argv, int *argc)
203 {
204 	const struct cred *cred = current_cred();
205 	const char *pat_ptr = core_pattern;
206 	int ispipe = (*pat_ptr == '|');
207 	bool was_space = false;
208 	int pid_in_pattern = 0;
209 	int err = 0;
210 
211 	cn->used = 0;
212 	cn->corename = NULL;
213 	if (expand_corename(cn, core_name_size))
214 		return -ENOMEM;
215 	cn->corename[0] = '\0';
216 
217 	if (ispipe) {
218 		int argvs = sizeof(core_pattern) / 2;
219 		(*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
220 		if (!(*argv))
221 			return -ENOMEM;
222 		(*argv)[(*argc)++] = 0;
223 		++pat_ptr;
224 		if (!(*pat_ptr))
225 			return -ENOMEM;
226 	}
227 
228 	/* Repeat as long as we have more pattern to process and more output
229 	   space */
230 	while (*pat_ptr) {
231 		/*
232 		 * Split on spaces before doing template expansion so that
233 		 * %e and %E don't get split if they have spaces in them
234 		 */
235 		if (ispipe) {
236 			if (isspace(*pat_ptr)) {
237 				if (cn->used != 0)
238 					was_space = true;
239 				pat_ptr++;
240 				continue;
241 			} else if (was_space) {
242 				was_space = false;
243 				err = cn_printf(cn, "%c", '\0');
244 				if (err)
245 					return err;
246 				(*argv)[(*argc)++] = cn->used;
247 			}
248 		}
249 		if (*pat_ptr != '%') {
250 			err = cn_printf(cn, "%c", *pat_ptr++);
251 		} else {
252 			switch (*++pat_ptr) {
253 			/* single % at the end, drop that */
254 			case 0:
255 				goto out;
256 			/* Double percent, output one percent */
257 			case '%':
258 				err = cn_printf(cn, "%c", '%');
259 				break;
260 			/* pid */
261 			case 'p':
262 				pid_in_pattern = 1;
263 				err = cn_printf(cn, "%d",
264 					      task_tgid_vnr(current));
265 				break;
266 			/* global pid */
267 			case 'P':
268 				err = cn_printf(cn, "%d",
269 					      task_tgid_nr(current));
270 				break;
271 			case 'i':
272 				err = cn_printf(cn, "%d",
273 					      task_pid_vnr(current));
274 				break;
275 			case 'I':
276 				err = cn_printf(cn, "%d",
277 					      task_pid_nr(current));
278 				break;
279 			/* uid */
280 			case 'u':
281 				err = cn_printf(cn, "%u",
282 						from_kuid(&init_user_ns,
283 							  cred->uid));
284 				break;
285 			/* gid */
286 			case 'g':
287 				err = cn_printf(cn, "%u",
288 						from_kgid(&init_user_ns,
289 							  cred->gid));
290 				break;
291 			case 'd':
292 				err = cn_printf(cn, "%d",
293 					__get_dumpable(cprm->mm_flags));
294 				break;
295 			/* signal that caused the coredump */
296 			case 's':
297 				err = cn_printf(cn, "%d",
298 						cprm->siginfo->si_signo);
299 				break;
300 			/* UNIX time of coredump */
301 			case 't': {
302 				time64_t time;
303 
304 				time = ktime_get_real_seconds();
305 				err = cn_printf(cn, "%lld", time);
306 				break;
307 			}
308 			/* hostname */
309 			case 'h':
310 				down_read(&uts_sem);
311 				err = cn_esc_printf(cn, "%s",
312 					      utsname()->nodename);
313 				up_read(&uts_sem);
314 				break;
315 			/* executable, could be changed by prctl PR_SET_NAME etc */
316 			case 'e':
317 				err = cn_esc_printf(cn, "%s", current->comm);
318 				break;
319 			/* file name of executable */
320 			case 'f':
321 				err = cn_print_exe_file(cn, true);
322 				break;
323 			case 'E':
324 				err = cn_print_exe_file(cn, false);
325 				break;
326 			/* core limit size */
327 			case 'c':
328 				err = cn_printf(cn, "%lu",
329 					      rlimit(RLIMIT_CORE));
330 				break;
331 			/* CPU the task ran on */
332 			case 'C':
333 				err = cn_printf(cn, "%d", cprm->cpu);
334 				break;
335 			default:
336 				break;
337 			}
338 			++pat_ptr;
339 		}
340 
341 		if (err)
342 			return err;
343 	}
344 
345 out:
346 	/* Backward compatibility with core_uses_pid:
347 	 *
348 	 * If core_pattern does not include a %p (as is the default)
349 	 * and core_uses_pid is set, then .%pid will be appended to
350 	 * the filename. Do not do this for piped commands. */
351 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
352 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
353 		if (err)
354 			return err;
355 	}
356 	return ispipe;
357 }
358 
359 static int zap_process(struct task_struct *start, int exit_code)
360 {
361 	struct task_struct *t;
362 	int nr = 0;
363 
364 	/* Allow SIGKILL, see prepare_signal() */
365 	start->signal->flags = SIGNAL_GROUP_EXIT;
366 	start->signal->group_exit_code = exit_code;
367 	start->signal->group_stop_count = 0;
368 
369 	for_each_thread(start, t) {
370 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
371 		if (t != current && !(t->flags & PF_POSTCOREDUMP)) {
372 			sigaddset(&t->pending.signal, SIGKILL);
373 			signal_wake_up(t, 1);
374 			/* The vhost_worker does not particpate in coredumps */
375 			if ((t->flags & (PF_USER_WORKER | PF_IO_WORKER)) != PF_USER_WORKER)
376 				nr++;
377 		}
378 	}
379 
380 	return nr;
381 }
382 
383 static int zap_threads(struct task_struct *tsk,
384 			struct core_state *core_state, int exit_code)
385 {
386 	struct signal_struct *signal = tsk->signal;
387 	int nr = -EAGAIN;
388 
389 	spin_lock_irq(&tsk->sighand->siglock);
390 	if (!(signal->flags & SIGNAL_GROUP_EXIT) && !signal->group_exec_task) {
391 		signal->core_state = core_state;
392 		nr = zap_process(tsk, exit_code);
393 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
394 		tsk->flags |= PF_DUMPCORE;
395 		atomic_set(&core_state->nr_threads, nr);
396 	}
397 	spin_unlock_irq(&tsk->sighand->siglock);
398 	return nr;
399 }
400 
401 static int coredump_wait(int exit_code, struct core_state *core_state)
402 {
403 	struct task_struct *tsk = current;
404 	int core_waiters = -EBUSY;
405 
406 	init_completion(&core_state->startup);
407 	core_state->dumper.task = tsk;
408 	core_state->dumper.next = NULL;
409 
410 	core_waiters = zap_threads(tsk, core_state, exit_code);
411 	if (core_waiters > 0) {
412 		struct core_thread *ptr;
413 
414 		wait_for_completion_state(&core_state->startup,
415 					  TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
416 		/*
417 		 * Wait for all the threads to become inactive, so that
418 		 * all the thread context (extended register state, like
419 		 * fpu etc) gets copied to the memory.
420 		 */
421 		ptr = core_state->dumper.next;
422 		while (ptr != NULL) {
423 			wait_task_inactive(ptr->task, TASK_ANY);
424 			ptr = ptr->next;
425 		}
426 	}
427 
428 	return core_waiters;
429 }
430 
431 static void coredump_finish(bool core_dumped)
432 {
433 	struct core_thread *curr, *next;
434 	struct task_struct *task;
435 
436 	spin_lock_irq(&current->sighand->siglock);
437 	if (core_dumped && !__fatal_signal_pending(current))
438 		current->signal->group_exit_code |= 0x80;
439 	next = current->signal->core_state->dumper.next;
440 	current->signal->core_state = NULL;
441 	spin_unlock_irq(&current->sighand->siglock);
442 
443 	while ((curr = next) != NULL) {
444 		next = curr->next;
445 		task = curr->task;
446 		/*
447 		 * see coredump_task_exit(), curr->task must not see
448 		 * ->task == NULL before we read ->next.
449 		 */
450 		smp_mb();
451 		curr->task = NULL;
452 		wake_up_process(task);
453 	}
454 }
455 
456 static bool dump_interrupted(void)
457 {
458 	/*
459 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
460 	 * can do try_to_freeze() and check __fatal_signal_pending(),
461 	 * but then we need to teach dump_write() to restart and clear
462 	 * TIF_SIGPENDING.
463 	 */
464 	return fatal_signal_pending(current) || freezing(current);
465 }
466 
467 static void wait_for_dump_helpers(struct file *file)
468 {
469 	struct pipe_inode_info *pipe = file->private_data;
470 
471 	pipe_lock(pipe);
472 	pipe->readers++;
473 	pipe->writers--;
474 	wake_up_interruptible_sync(&pipe->rd_wait);
475 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
476 	pipe_unlock(pipe);
477 
478 	/*
479 	 * We actually want wait_event_freezable() but then we need
480 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
481 	 */
482 	wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
483 
484 	pipe_lock(pipe);
485 	pipe->readers--;
486 	pipe->writers++;
487 	pipe_unlock(pipe);
488 }
489 
490 /*
491  * umh_pipe_setup
492  * helper function to customize the process used
493  * to collect the core in userspace.  Specifically
494  * it sets up a pipe and installs it as fd 0 (stdin)
495  * for the process.  Returns 0 on success, or
496  * PTR_ERR on failure.
497  * Note that it also sets the core limit to 1.  This
498  * is a special value that we use to trap recursive
499  * core dumps
500  */
501 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
502 {
503 	struct file *files[2];
504 	struct coredump_params *cp = (struct coredump_params *)info->data;
505 	int err = create_pipe_files(files, 0);
506 	if (err)
507 		return err;
508 
509 	cp->file = files[1];
510 
511 	err = replace_fd(0, files[0], 0);
512 	fput(files[0]);
513 	/* and disallow core files too */
514 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
515 
516 	return err;
517 }
518 
519 void do_coredump(const kernel_siginfo_t *siginfo)
520 {
521 	struct core_state core_state;
522 	struct core_name cn;
523 	struct mm_struct *mm = current->mm;
524 	struct linux_binfmt * binfmt;
525 	const struct cred *old_cred;
526 	struct cred *cred;
527 	int retval = 0;
528 	int ispipe;
529 	size_t *argv = NULL;
530 	int argc = 0;
531 	/* require nonrelative corefile path and be extra careful */
532 	bool need_suid_safe = false;
533 	bool core_dumped = false;
534 	static atomic_t core_dump_count = ATOMIC_INIT(0);
535 	struct coredump_params cprm = {
536 		.siginfo = siginfo,
537 		.limit = rlimit(RLIMIT_CORE),
538 		/*
539 		 * We must use the same mm->flags while dumping core to avoid
540 		 * inconsistency of bit flags, since this flag is not protected
541 		 * by any locks.
542 		 */
543 		.mm_flags = mm->flags,
544 		.vma_meta = NULL,
545 		.cpu = raw_smp_processor_id(),
546 	};
547 
548 	audit_core_dumps(siginfo->si_signo);
549 
550 	binfmt = mm->binfmt;
551 	if (!binfmt || !binfmt->core_dump)
552 		goto fail;
553 	if (!__get_dumpable(cprm.mm_flags))
554 		goto fail;
555 
556 	cred = prepare_creds();
557 	if (!cred)
558 		goto fail;
559 	/*
560 	 * We cannot trust fsuid as being the "true" uid of the process
561 	 * nor do we know its entire history. We only know it was tainted
562 	 * so we dump it as root in mode 2, and only into a controlled
563 	 * environment (pipe handler or fully qualified path).
564 	 */
565 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
566 		/* Setuid core dump mode */
567 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
568 		need_suid_safe = true;
569 	}
570 
571 	retval = coredump_wait(siginfo->si_signo, &core_state);
572 	if (retval < 0)
573 		goto fail_creds;
574 
575 	old_cred = override_creds(cred);
576 
577 	ispipe = format_corename(&cn, &cprm, &argv, &argc);
578 
579 	if (ispipe) {
580 		int argi;
581 		int dump_count;
582 		char **helper_argv;
583 		struct subprocess_info *sub_info;
584 
585 		if (ispipe < 0) {
586 			printk(KERN_WARNING "format_corename failed\n");
587 			printk(KERN_WARNING "Aborting core\n");
588 			goto fail_unlock;
589 		}
590 
591 		if (cprm.limit == 1) {
592 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
593 			 *
594 			 * Normally core limits are irrelevant to pipes, since
595 			 * we're not writing to the file system, but we use
596 			 * cprm.limit of 1 here as a special value, this is a
597 			 * consistent way to catch recursive crashes.
598 			 * We can still crash if the core_pattern binary sets
599 			 * RLIM_CORE = !1, but it runs as root, and can do
600 			 * lots of stupid things.
601 			 *
602 			 * Note that we use task_tgid_vnr here to grab the pid
603 			 * of the process group leader.  That way we get the
604 			 * right pid if a thread in a multi-threaded
605 			 * core_pattern process dies.
606 			 */
607 			printk(KERN_WARNING
608 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
609 				task_tgid_vnr(current), current->comm);
610 			printk(KERN_WARNING "Aborting core\n");
611 			goto fail_unlock;
612 		}
613 		cprm.limit = RLIM_INFINITY;
614 
615 		dump_count = atomic_inc_return(&core_dump_count);
616 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
617 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
618 			       task_tgid_vnr(current), current->comm);
619 			printk(KERN_WARNING "Skipping core dump\n");
620 			goto fail_dropcount;
621 		}
622 
623 		helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
624 					    GFP_KERNEL);
625 		if (!helper_argv) {
626 			printk(KERN_WARNING "%s failed to allocate memory\n",
627 			       __func__);
628 			goto fail_dropcount;
629 		}
630 		for (argi = 0; argi < argc; argi++)
631 			helper_argv[argi] = cn.corename + argv[argi];
632 		helper_argv[argi] = NULL;
633 
634 		retval = -ENOMEM;
635 		sub_info = call_usermodehelper_setup(helper_argv[0],
636 						helper_argv, NULL, GFP_KERNEL,
637 						umh_pipe_setup, NULL, &cprm);
638 		if (sub_info)
639 			retval = call_usermodehelper_exec(sub_info,
640 							  UMH_WAIT_EXEC);
641 
642 		kfree(helper_argv);
643 		if (retval) {
644 			printk(KERN_INFO "Core dump to |%s pipe failed\n",
645 			       cn.corename);
646 			goto close_fail;
647 		}
648 	} else {
649 		struct mnt_idmap *idmap;
650 		struct inode *inode;
651 		int open_flags = O_CREAT | O_WRONLY | O_NOFOLLOW |
652 				 O_LARGEFILE | O_EXCL;
653 
654 		if (cprm.limit < binfmt->min_coredump)
655 			goto fail_unlock;
656 
657 		if (need_suid_safe && cn.corename[0] != '/') {
658 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
659 				"to fully qualified path!\n",
660 				task_tgid_vnr(current), current->comm);
661 			printk(KERN_WARNING "Skipping core dump\n");
662 			goto fail_unlock;
663 		}
664 
665 		/*
666 		 * Unlink the file if it exists unless this is a SUID
667 		 * binary - in that case, we're running around with root
668 		 * privs and don't want to unlink another user's coredump.
669 		 */
670 		if (!need_suid_safe) {
671 			/*
672 			 * If it doesn't exist, that's fine. If there's some
673 			 * other problem, we'll catch it at the filp_open().
674 			 */
675 			do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
676 		}
677 
678 		/*
679 		 * There is a race between unlinking and creating the
680 		 * file, but if that causes an EEXIST here, that's
681 		 * fine - another process raced with us while creating
682 		 * the corefile, and the other process won. To userspace,
683 		 * what matters is that at least one of the two processes
684 		 * writes its coredump successfully, not which one.
685 		 */
686 		if (need_suid_safe) {
687 			/*
688 			 * Using user namespaces, normal user tasks can change
689 			 * their current->fs->root to point to arbitrary
690 			 * directories. Since the intention of the "only dump
691 			 * with a fully qualified path" rule is to control where
692 			 * coredumps may be placed using root privileges,
693 			 * current->fs->root must not be used. Instead, use the
694 			 * root directory of init_task.
695 			 */
696 			struct path root;
697 
698 			task_lock(&init_task);
699 			get_fs_root(init_task.fs, &root);
700 			task_unlock(&init_task);
701 			cprm.file = file_open_root(&root, cn.corename,
702 						   open_flags, 0600);
703 			path_put(&root);
704 		} else {
705 			cprm.file = filp_open(cn.corename, open_flags, 0600);
706 		}
707 		if (IS_ERR(cprm.file))
708 			goto fail_unlock;
709 
710 		inode = file_inode(cprm.file);
711 		if (inode->i_nlink > 1)
712 			goto close_fail;
713 		if (d_unhashed(cprm.file->f_path.dentry))
714 			goto close_fail;
715 		/*
716 		 * AK: actually i see no reason to not allow this for named
717 		 * pipes etc, but keep the previous behaviour for now.
718 		 */
719 		if (!S_ISREG(inode->i_mode))
720 			goto close_fail;
721 		/*
722 		 * Don't dump core if the filesystem changed owner or mode
723 		 * of the file during file creation. This is an issue when
724 		 * a process dumps core while its cwd is e.g. on a vfat
725 		 * filesystem.
726 		 */
727 		idmap = file_mnt_idmap(cprm.file);
728 		if (!vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode),
729 				    current_fsuid())) {
730 			pr_info_ratelimited("Core dump to %s aborted: cannot preserve file owner\n",
731 					    cn.corename);
732 			goto close_fail;
733 		}
734 		if ((inode->i_mode & 0677) != 0600) {
735 			pr_info_ratelimited("Core dump to %s aborted: cannot preserve file permissions\n",
736 					    cn.corename);
737 			goto close_fail;
738 		}
739 		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
740 			goto close_fail;
741 		if (do_truncate(idmap, cprm.file->f_path.dentry,
742 				0, 0, cprm.file))
743 			goto close_fail;
744 	}
745 
746 	/* get us an unshared descriptor table; almost always a no-op */
747 	/* The cell spufs coredump code reads the file descriptor tables */
748 	retval = unshare_files();
749 	if (retval)
750 		goto close_fail;
751 	if (!dump_interrupted()) {
752 		/*
753 		 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
754 		 * have this set to NULL.
755 		 */
756 		if (!cprm.file) {
757 			pr_info("Core dump to |%s disabled\n", cn.corename);
758 			goto close_fail;
759 		}
760 		if (!dump_vma_snapshot(&cprm))
761 			goto close_fail;
762 
763 		file_start_write(cprm.file);
764 		core_dumped = binfmt->core_dump(&cprm);
765 		/*
766 		 * Ensures that file size is big enough to contain the current
767 		 * file postion. This prevents gdb from complaining about
768 		 * a truncated file if the last "write" to the file was
769 		 * dump_skip.
770 		 */
771 		if (cprm.to_skip) {
772 			cprm.to_skip--;
773 			dump_emit(&cprm, "", 1);
774 		}
775 		file_end_write(cprm.file);
776 		free_vma_snapshot(&cprm);
777 	}
778 	if (ispipe && core_pipe_limit)
779 		wait_for_dump_helpers(cprm.file);
780 close_fail:
781 	if (cprm.file)
782 		filp_close(cprm.file, NULL);
783 fail_dropcount:
784 	if (ispipe)
785 		atomic_dec(&core_dump_count);
786 fail_unlock:
787 	kfree(argv);
788 	kfree(cn.corename);
789 	coredump_finish(core_dumped);
790 	revert_creds(old_cred);
791 fail_creds:
792 	put_cred(cred);
793 fail:
794 	return;
795 }
796 
797 /*
798  * Core dumping helper functions.  These are the only things you should
799  * do on a core-file: use only these functions to write out all the
800  * necessary info.
801  */
802 static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr)
803 {
804 	struct file *file = cprm->file;
805 	loff_t pos = file->f_pos;
806 	ssize_t n;
807 	if (cprm->written + nr > cprm->limit)
808 		return 0;
809 
810 
811 	if (dump_interrupted())
812 		return 0;
813 	n = __kernel_write(file, addr, nr, &pos);
814 	if (n != nr)
815 		return 0;
816 	file->f_pos = pos;
817 	cprm->written += n;
818 	cprm->pos += n;
819 
820 	return 1;
821 }
822 
823 static int __dump_skip(struct coredump_params *cprm, size_t nr)
824 {
825 	static char zeroes[PAGE_SIZE];
826 	struct file *file = cprm->file;
827 	if (file->f_mode & FMODE_LSEEK) {
828 		if (dump_interrupted() ||
829 		    vfs_llseek(file, nr, SEEK_CUR) < 0)
830 			return 0;
831 		cprm->pos += nr;
832 		return 1;
833 	} else {
834 		while (nr > PAGE_SIZE) {
835 			if (!__dump_emit(cprm, zeroes, PAGE_SIZE))
836 				return 0;
837 			nr -= PAGE_SIZE;
838 		}
839 		return __dump_emit(cprm, zeroes, nr);
840 	}
841 }
842 
843 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
844 {
845 	if (cprm->to_skip) {
846 		if (!__dump_skip(cprm, cprm->to_skip))
847 			return 0;
848 		cprm->to_skip = 0;
849 	}
850 	return __dump_emit(cprm, addr, nr);
851 }
852 EXPORT_SYMBOL(dump_emit);
853 
854 void dump_skip_to(struct coredump_params *cprm, unsigned long pos)
855 {
856 	cprm->to_skip = pos - cprm->pos;
857 }
858 EXPORT_SYMBOL(dump_skip_to);
859 
860 void dump_skip(struct coredump_params *cprm, size_t nr)
861 {
862 	cprm->to_skip += nr;
863 }
864 EXPORT_SYMBOL(dump_skip);
865 
866 #ifdef CONFIG_ELF_CORE
867 static int dump_emit_page(struct coredump_params *cprm, struct page *page)
868 {
869 	struct bio_vec bvec;
870 	struct iov_iter iter;
871 	struct file *file = cprm->file;
872 	loff_t pos;
873 	ssize_t n;
874 
875 	if (!page)
876 		return 0;
877 
878 	if (cprm->to_skip) {
879 		if (!__dump_skip(cprm, cprm->to_skip))
880 			return 0;
881 		cprm->to_skip = 0;
882 	}
883 	if (cprm->written + PAGE_SIZE > cprm->limit)
884 		return 0;
885 	if (dump_interrupted())
886 		return 0;
887 	pos = file->f_pos;
888 	bvec_set_page(&bvec, page, PAGE_SIZE, 0);
889 	iov_iter_bvec(&iter, ITER_SOURCE, &bvec, 1, PAGE_SIZE);
890 	n = __kernel_write_iter(cprm->file, &iter, &pos);
891 	if (n != PAGE_SIZE)
892 		return 0;
893 	file->f_pos = pos;
894 	cprm->written += PAGE_SIZE;
895 	cprm->pos += PAGE_SIZE;
896 
897 	return 1;
898 }
899 
900 /*
901  * If we might get machine checks from kernel accesses during the
902  * core dump, let's get those errors early rather than during the
903  * IO. This is not performance-critical enough to warrant having
904  * all the machine check logic in the iovec paths.
905  */
906 #ifdef copy_mc_to_kernel
907 
908 #define dump_page_alloc() alloc_page(GFP_KERNEL)
909 #define dump_page_free(x) __free_page(x)
910 static struct page *dump_page_copy(struct page *src, struct page *dst)
911 {
912 	void *buf = kmap_local_page(src);
913 	size_t left = copy_mc_to_kernel(page_address(dst), buf, PAGE_SIZE);
914 	kunmap_local(buf);
915 	return left ? NULL : dst;
916 }
917 
918 #else
919 
920 /* We just want to return non-NULL; it's never used. */
921 #define dump_page_alloc() ERR_PTR(-EINVAL)
922 #define dump_page_free(x) ((void)(x))
923 static inline struct page *dump_page_copy(struct page *src, struct page *dst)
924 {
925 	return src;
926 }
927 #endif
928 
929 int dump_user_range(struct coredump_params *cprm, unsigned long start,
930 		    unsigned long len)
931 {
932 	unsigned long addr;
933 	struct page *dump_page;
934 
935 	dump_page = dump_page_alloc();
936 	if (!dump_page)
937 		return 0;
938 
939 	for (addr = start; addr < start + len; addr += PAGE_SIZE) {
940 		struct page *page;
941 
942 		/*
943 		 * To avoid having to allocate page tables for virtual address
944 		 * ranges that have never been used yet, and also to make it
945 		 * easy to generate sparse core files, use a helper that returns
946 		 * NULL when encountering an empty page table entry that would
947 		 * otherwise have been filled with the zero page.
948 		 */
949 		page = get_dump_page(addr);
950 		if (page) {
951 			int stop = !dump_emit_page(cprm, dump_page_copy(page, dump_page));
952 			put_page(page);
953 			if (stop) {
954 				dump_page_free(dump_page);
955 				return 0;
956 			}
957 		} else {
958 			dump_skip(cprm, PAGE_SIZE);
959 		}
960 	}
961 	dump_page_free(dump_page);
962 	return 1;
963 }
964 #endif
965 
966 int dump_align(struct coredump_params *cprm, int align)
967 {
968 	unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1);
969 	if (align & (align - 1))
970 		return 0;
971 	if (mod)
972 		cprm->to_skip += align - mod;
973 	return 1;
974 }
975 EXPORT_SYMBOL(dump_align);
976 
977 #ifdef CONFIG_SYSCTL
978 
979 void validate_coredump_safety(void)
980 {
981 	if (suid_dumpable == SUID_DUMP_ROOT &&
982 	    core_pattern[0] != '/' && core_pattern[0] != '|') {
983 		pr_warn(
984 "Unsafe core_pattern used with fs.suid_dumpable=2.\n"
985 "Pipe handler or fully qualified core dump path required.\n"
986 "Set kernel.core_pattern before fs.suid_dumpable.\n"
987 		);
988 	}
989 }
990 
991 static int proc_dostring_coredump(struct ctl_table *table, int write,
992 		  void *buffer, size_t *lenp, loff_t *ppos)
993 {
994 	int error = proc_dostring(table, write, buffer, lenp, ppos);
995 
996 	if (!error)
997 		validate_coredump_safety();
998 	return error;
999 }
1000 
1001 static struct ctl_table coredump_sysctls[] = {
1002 	{
1003 		.procname	= "core_uses_pid",
1004 		.data		= &core_uses_pid,
1005 		.maxlen		= sizeof(int),
1006 		.mode		= 0644,
1007 		.proc_handler	= proc_dointvec,
1008 	},
1009 	{
1010 		.procname	= "core_pattern",
1011 		.data		= core_pattern,
1012 		.maxlen		= CORENAME_MAX_SIZE,
1013 		.mode		= 0644,
1014 		.proc_handler	= proc_dostring_coredump,
1015 	},
1016 	{
1017 		.procname	= "core_pipe_limit",
1018 		.data		= &core_pipe_limit,
1019 		.maxlen		= sizeof(unsigned int),
1020 		.mode		= 0644,
1021 		.proc_handler	= proc_dointvec,
1022 	},
1023 };
1024 
1025 static int __init init_fs_coredump_sysctls(void)
1026 {
1027 	register_sysctl_init("kernel", coredump_sysctls);
1028 	return 0;
1029 }
1030 fs_initcall(init_fs_coredump_sysctls);
1031 #endif /* CONFIG_SYSCTL */
1032 
1033 /*
1034  * The purpose of always_dump_vma() is to make sure that special kernel mappings
1035  * that are useful for post-mortem analysis are included in every core dump.
1036  * In that way we ensure that the core dump is fully interpretable later
1037  * without matching up the same kernel and hardware config to see what PC values
1038  * meant. These special mappings include - vDSO, vsyscall, and other
1039  * architecture specific mappings
1040  */
1041 static bool always_dump_vma(struct vm_area_struct *vma)
1042 {
1043 	/* Any vsyscall mappings? */
1044 	if (vma == get_gate_vma(vma->vm_mm))
1045 		return true;
1046 
1047 	/*
1048 	 * Assume that all vmas with a .name op should always be dumped.
1049 	 * If this changes, a new vm_ops field can easily be added.
1050 	 */
1051 	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1052 		return true;
1053 
1054 	/*
1055 	 * arch_vma_name() returns non-NULL for special architecture mappings,
1056 	 * such as vDSO sections.
1057 	 */
1058 	if (arch_vma_name(vma))
1059 		return true;
1060 
1061 	return false;
1062 }
1063 
1064 #define DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER 1
1065 
1066 /*
1067  * Decide how much of @vma's contents should be included in a core dump.
1068  */
1069 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1070 				   unsigned long mm_flags)
1071 {
1072 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1073 
1074 	/* always dump the vdso and vsyscall sections */
1075 	if (always_dump_vma(vma))
1076 		goto whole;
1077 
1078 	if (vma->vm_flags & VM_DONTDUMP)
1079 		return 0;
1080 
1081 	/* support for DAX */
1082 	if (vma_is_dax(vma)) {
1083 		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1084 			goto whole;
1085 		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1086 			goto whole;
1087 		return 0;
1088 	}
1089 
1090 	/* Hugetlb memory check */
1091 	if (is_vm_hugetlb_page(vma)) {
1092 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1093 			goto whole;
1094 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1095 			goto whole;
1096 		return 0;
1097 	}
1098 
1099 	/* Do not dump I/O mapped devices or special mappings */
1100 	if (vma->vm_flags & VM_IO)
1101 		return 0;
1102 
1103 	/* By default, dump shared memory if mapped from an anonymous file. */
1104 	if (vma->vm_flags & VM_SHARED) {
1105 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1106 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1107 			goto whole;
1108 		return 0;
1109 	}
1110 
1111 	/* Dump segments that have been written to.  */
1112 	if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
1113 		goto whole;
1114 	if (vma->vm_file == NULL)
1115 		return 0;
1116 
1117 	if (FILTER(MAPPED_PRIVATE))
1118 		goto whole;
1119 
1120 	/*
1121 	 * If this is the beginning of an executable file mapping,
1122 	 * dump the first page to aid in determining what was mapped here.
1123 	 */
1124 	if (FILTER(ELF_HEADERS) &&
1125 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1126 		if ((READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
1127 			return PAGE_SIZE;
1128 
1129 		/*
1130 		 * ELF libraries aren't always executable.
1131 		 * We'll want to check whether the mapping starts with the ELF
1132 		 * magic, but not now - we're holding the mmap lock,
1133 		 * so copy_from_user() doesn't work here.
1134 		 * Use a placeholder instead, and fix it up later in
1135 		 * dump_vma_snapshot().
1136 		 */
1137 		return DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER;
1138 	}
1139 
1140 #undef	FILTER
1141 
1142 	return 0;
1143 
1144 whole:
1145 	return vma->vm_end - vma->vm_start;
1146 }
1147 
1148 /*
1149  * Helper function for iterating across a vma list.  It ensures that the caller
1150  * will visit `gate_vma' prior to terminating the search.
1151  */
1152 static struct vm_area_struct *coredump_next_vma(struct vma_iterator *vmi,
1153 				       struct vm_area_struct *vma,
1154 				       struct vm_area_struct *gate_vma)
1155 {
1156 	if (gate_vma && (vma == gate_vma))
1157 		return NULL;
1158 
1159 	vma = vma_next(vmi);
1160 	if (vma)
1161 		return vma;
1162 	return gate_vma;
1163 }
1164 
1165 static void free_vma_snapshot(struct coredump_params *cprm)
1166 {
1167 	if (cprm->vma_meta) {
1168 		int i;
1169 		for (i = 0; i < cprm->vma_count; i++) {
1170 			struct file *file = cprm->vma_meta[i].file;
1171 			if (file)
1172 				fput(file);
1173 		}
1174 		kvfree(cprm->vma_meta);
1175 		cprm->vma_meta = NULL;
1176 	}
1177 }
1178 
1179 /*
1180  * Under the mmap_lock, take a snapshot of relevant information about the task's
1181  * VMAs.
1182  */
1183 static bool dump_vma_snapshot(struct coredump_params *cprm)
1184 {
1185 	struct vm_area_struct *gate_vma, *vma = NULL;
1186 	struct mm_struct *mm = current->mm;
1187 	VMA_ITERATOR(vmi, mm, 0);
1188 	int i = 0;
1189 
1190 	/*
1191 	 * Once the stack expansion code is fixed to not change VMA bounds
1192 	 * under mmap_lock in read mode, this can be changed to take the
1193 	 * mmap_lock in read mode.
1194 	 */
1195 	if (mmap_write_lock_killable(mm))
1196 		return false;
1197 
1198 	cprm->vma_data_size = 0;
1199 	gate_vma = get_gate_vma(mm);
1200 	cprm->vma_count = mm->map_count + (gate_vma ? 1 : 0);
1201 
1202 	cprm->vma_meta = kvmalloc_array(cprm->vma_count, sizeof(*cprm->vma_meta), GFP_KERNEL);
1203 	if (!cprm->vma_meta) {
1204 		mmap_write_unlock(mm);
1205 		return false;
1206 	}
1207 
1208 	while ((vma = coredump_next_vma(&vmi, vma, gate_vma)) != NULL) {
1209 		struct core_vma_metadata *m = cprm->vma_meta + i;
1210 
1211 		m->start = vma->vm_start;
1212 		m->end = vma->vm_end;
1213 		m->flags = vma->vm_flags;
1214 		m->dump_size = vma_dump_size(vma, cprm->mm_flags);
1215 		m->pgoff = vma->vm_pgoff;
1216 		m->file = vma->vm_file;
1217 		if (m->file)
1218 			get_file(m->file);
1219 		i++;
1220 	}
1221 
1222 	mmap_write_unlock(mm);
1223 
1224 	for (i = 0; i < cprm->vma_count; i++) {
1225 		struct core_vma_metadata *m = cprm->vma_meta + i;
1226 
1227 		if (m->dump_size == DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER) {
1228 			char elfmag[SELFMAG];
1229 
1230 			if (copy_from_user(elfmag, (void __user *)m->start, SELFMAG) ||
1231 					memcmp(elfmag, ELFMAG, SELFMAG) != 0) {
1232 				m->dump_size = 0;
1233 			} else {
1234 				m->dump_size = PAGE_SIZE;
1235 			}
1236 		}
1237 
1238 		cprm->vma_data_size += m->dump_size;
1239 	}
1240 
1241 	return true;
1242 }
1243