1 #include <linux/slab.h> 2 #include <linux/file.h> 3 #include <linux/fdtable.h> 4 #include <linux/mm.h> 5 #include <linux/stat.h> 6 #include <linux/fcntl.h> 7 #include <linux/swap.h> 8 #include <linux/string.h> 9 #include <linux/init.h> 10 #include <linux/pagemap.h> 11 #include <linux/perf_event.h> 12 #include <linux/highmem.h> 13 #include <linux/spinlock.h> 14 #include <linux/key.h> 15 #include <linux/personality.h> 16 #include <linux/binfmts.h> 17 #include <linux/coredump.h> 18 #include <linux/utsname.h> 19 #include <linux/pid_namespace.h> 20 #include <linux/module.h> 21 #include <linux/namei.h> 22 #include <linux/mount.h> 23 #include <linux/security.h> 24 #include <linux/syscalls.h> 25 #include <linux/tsacct_kern.h> 26 #include <linux/cn_proc.h> 27 #include <linux/audit.h> 28 #include <linux/tracehook.h> 29 #include <linux/kmod.h> 30 #include <linux/fsnotify.h> 31 #include <linux/fs_struct.h> 32 #include <linux/pipe_fs_i.h> 33 #include <linux/oom.h> 34 #include <linux/compat.h> 35 #include <linux/timekeeping.h> 36 37 #include <asm/uaccess.h> 38 #include <asm/mmu_context.h> 39 #include <asm/tlb.h> 40 #include <asm/exec.h> 41 42 #include <trace/events/task.h> 43 #include "internal.h" 44 45 #include <trace/events/sched.h> 46 47 int core_uses_pid; 48 unsigned int core_pipe_limit; 49 char core_pattern[CORENAME_MAX_SIZE] = "core"; 50 static int core_name_size = CORENAME_MAX_SIZE; 51 52 struct core_name { 53 char *corename; 54 int used, size; 55 }; 56 57 /* The maximal length of core_pattern is also specified in sysctl.c */ 58 59 static int expand_corename(struct core_name *cn, int size) 60 { 61 char *corename = krealloc(cn->corename, size, GFP_KERNEL); 62 63 if (!corename) 64 return -ENOMEM; 65 66 if (size > core_name_size) /* racy but harmless */ 67 core_name_size = size; 68 69 cn->size = ksize(corename); 70 cn->corename = corename; 71 return 0; 72 } 73 74 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt, 75 va_list arg) 76 { 77 int free, need; 78 va_list arg_copy; 79 80 again: 81 free = cn->size - cn->used; 82 83 va_copy(arg_copy, arg); 84 need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy); 85 va_end(arg_copy); 86 87 if (need < free) { 88 cn->used += need; 89 return 0; 90 } 91 92 if (!expand_corename(cn, cn->size + need - free + 1)) 93 goto again; 94 95 return -ENOMEM; 96 } 97 98 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...) 99 { 100 va_list arg; 101 int ret; 102 103 va_start(arg, fmt); 104 ret = cn_vprintf(cn, fmt, arg); 105 va_end(arg); 106 107 return ret; 108 } 109 110 static __printf(2, 3) 111 int cn_esc_printf(struct core_name *cn, const char *fmt, ...) 112 { 113 int cur = cn->used; 114 va_list arg; 115 int ret; 116 117 va_start(arg, fmt); 118 ret = cn_vprintf(cn, fmt, arg); 119 va_end(arg); 120 121 if (ret == 0) { 122 /* 123 * Ensure that this coredump name component can't cause the 124 * resulting corefile path to consist of a ".." or ".". 125 */ 126 if ((cn->used - cur == 1 && cn->corename[cur] == '.') || 127 (cn->used - cur == 2 && cn->corename[cur] == '.' 128 && cn->corename[cur+1] == '.')) 129 cn->corename[cur] = '!'; 130 131 /* 132 * Empty names are fishy and could be used to create a "//" in a 133 * corefile name, causing the coredump to happen one directory 134 * level too high. Enforce that all components of the core 135 * pattern are at least one character long. 136 */ 137 if (cn->used == cur) 138 ret = cn_printf(cn, "!"); 139 } 140 141 for (; cur < cn->used; ++cur) { 142 if (cn->corename[cur] == '/') 143 cn->corename[cur] = '!'; 144 } 145 return ret; 146 } 147 148 static int cn_print_exe_file(struct core_name *cn) 149 { 150 struct file *exe_file; 151 char *pathbuf, *path; 152 int ret; 153 154 exe_file = get_mm_exe_file(current->mm); 155 if (!exe_file) 156 return cn_esc_printf(cn, "%s (path unknown)", current->comm); 157 158 pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY); 159 if (!pathbuf) { 160 ret = -ENOMEM; 161 goto put_exe_file; 162 } 163 164 path = file_path(exe_file, pathbuf, PATH_MAX); 165 if (IS_ERR(path)) { 166 ret = PTR_ERR(path); 167 goto free_buf; 168 } 169 170 ret = cn_esc_printf(cn, "%s", path); 171 172 free_buf: 173 kfree(pathbuf); 174 put_exe_file: 175 fput(exe_file); 176 return ret; 177 } 178 179 /* format_corename will inspect the pattern parameter, and output a 180 * name into corename, which must have space for at least 181 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 182 */ 183 static int format_corename(struct core_name *cn, struct coredump_params *cprm) 184 { 185 const struct cred *cred = current_cred(); 186 const char *pat_ptr = core_pattern; 187 int ispipe = (*pat_ptr == '|'); 188 int pid_in_pattern = 0; 189 int err = 0; 190 191 cn->used = 0; 192 cn->corename = NULL; 193 if (expand_corename(cn, core_name_size)) 194 return -ENOMEM; 195 cn->corename[0] = '\0'; 196 197 if (ispipe) 198 ++pat_ptr; 199 200 /* Repeat as long as we have more pattern to process and more output 201 space */ 202 while (*pat_ptr) { 203 if (*pat_ptr != '%') { 204 err = cn_printf(cn, "%c", *pat_ptr++); 205 } else { 206 switch (*++pat_ptr) { 207 /* single % at the end, drop that */ 208 case 0: 209 goto out; 210 /* Double percent, output one percent */ 211 case '%': 212 err = cn_printf(cn, "%c", '%'); 213 break; 214 /* pid */ 215 case 'p': 216 pid_in_pattern = 1; 217 err = cn_printf(cn, "%d", 218 task_tgid_vnr(current)); 219 break; 220 /* global pid */ 221 case 'P': 222 err = cn_printf(cn, "%d", 223 task_tgid_nr(current)); 224 break; 225 case 'i': 226 err = cn_printf(cn, "%d", 227 task_pid_vnr(current)); 228 break; 229 case 'I': 230 err = cn_printf(cn, "%d", 231 task_pid_nr(current)); 232 break; 233 /* uid */ 234 case 'u': 235 err = cn_printf(cn, "%u", 236 from_kuid(&init_user_ns, 237 cred->uid)); 238 break; 239 /* gid */ 240 case 'g': 241 err = cn_printf(cn, "%u", 242 from_kgid(&init_user_ns, 243 cred->gid)); 244 break; 245 case 'd': 246 err = cn_printf(cn, "%d", 247 __get_dumpable(cprm->mm_flags)); 248 break; 249 /* signal that caused the coredump */ 250 case 's': 251 err = cn_printf(cn, "%d", 252 cprm->siginfo->si_signo); 253 break; 254 /* UNIX time of coredump */ 255 case 't': { 256 time64_t time; 257 258 time = ktime_get_real_seconds(); 259 err = cn_printf(cn, "%lld", time); 260 break; 261 } 262 /* hostname */ 263 case 'h': 264 down_read(&uts_sem); 265 err = cn_esc_printf(cn, "%s", 266 utsname()->nodename); 267 up_read(&uts_sem); 268 break; 269 /* executable */ 270 case 'e': 271 err = cn_esc_printf(cn, "%s", current->comm); 272 break; 273 case 'E': 274 err = cn_print_exe_file(cn); 275 break; 276 /* core limit size */ 277 case 'c': 278 err = cn_printf(cn, "%lu", 279 rlimit(RLIMIT_CORE)); 280 break; 281 default: 282 break; 283 } 284 ++pat_ptr; 285 } 286 287 if (err) 288 return err; 289 } 290 291 out: 292 /* Backward compatibility with core_uses_pid: 293 * 294 * If core_pattern does not include a %p (as is the default) 295 * and core_uses_pid is set, then .%pid will be appended to 296 * the filename. Do not do this for piped commands. */ 297 if (!ispipe && !pid_in_pattern && core_uses_pid) { 298 err = cn_printf(cn, ".%d", task_tgid_vnr(current)); 299 if (err) 300 return err; 301 } 302 return ispipe; 303 } 304 305 static int zap_process(struct task_struct *start, int exit_code, int flags) 306 { 307 struct task_struct *t; 308 int nr = 0; 309 310 /* ignore all signals except SIGKILL, see prepare_signal() */ 311 start->signal->flags = SIGNAL_GROUP_COREDUMP | flags; 312 start->signal->group_exit_code = exit_code; 313 start->signal->group_stop_count = 0; 314 315 for_each_thread(start, t) { 316 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 317 if (t != current && t->mm) { 318 sigaddset(&t->pending.signal, SIGKILL); 319 signal_wake_up(t, 1); 320 nr++; 321 } 322 } 323 324 return nr; 325 } 326 327 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 328 struct core_state *core_state, int exit_code) 329 { 330 struct task_struct *g, *p; 331 unsigned long flags; 332 int nr = -EAGAIN; 333 334 spin_lock_irq(&tsk->sighand->siglock); 335 if (!signal_group_exit(tsk->signal)) { 336 mm->core_state = core_state; 337 tsk->signal->group_exit_task = tsk; 338 nr = zap_process(tsk, exit_code, 0); 339 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 340 } 341 spin_unlock_irq(&tsk->sighand->siglock); 342 if (unlikely(nr < 0)) 343 return nr; 344 345 tsk->flags |= PF_DUMPCORE; 346 if (atomic_read(&mm->mm_users) == nr + 1) 347 goto done; 348 /* 349 * We should find and kill all tasks which use this mm, and we should 350 * count them correctly into ->nr_threads. We don't take tasklist 351 * lock, but this is safe wrt: 352 * 353 * fork: 354 * None of sub-threads can fork after zap_process(leader). All 355 * processes which were created before this point should be 356 * visible to zap_threads() because copy_process() adds the new 357 * process to the tail of init_task.tasks list, and lock/unlock 358 * of ->siglock provides a memory barrier. 359 * 360 * do_exit: 361 * The caller holds mm->mmap_sem. This means that the task which 362 * uses this mm can't pass exit_mm(), so it can't exit or clear 363 * its ->mm. 364 * 365 * de_thread: 366 * It does list_replace_rcu(&leader->tasks, ¤t->tasks), 367 * we must see either old or new leader, this does not matter. 368 * However, it can change p->sighand, so lock_task_sighand(p) 369 * must be used. Since p->mm != NULL and we hold ->mmap_sem 370 * it can't fail. 371 * 372 * Note also that "g" can be the old leader with ->mm == NULL 373 * and already unhashed and thus removed from ->thread_group. 374 * This is OK, __unhash_process()->list_del_rcu() does not 375 * clear the ->next pointer, we will find the new leader via 376 * next_thread(). 377 */ 378 rcu_read_lock(); 379 for_each_process(g) { 380 if (g == tsk->group_leader) 381 continue; 382 if (g->flags & PF_KTHREAD) 383 continue; 384 385 for_each_thread(g, p) { 386 if (unlikely(!p->mm)) 387 continue; 388 if (unlikely(p->mm == mm)) { 389 lock_task_sighand(p, &flags); 390 nr += zap_process(p, exit_code, 391 SIGNAL_GROUP_EXIT); 392 unlock_task_sighand(p, &flags); 393 } 394 break; 395 } 396 } 397 rcu_read_unlock(); 398 done: 399 atomic_set(&core_state->nr_threads, nr); 400 return nr; 401 } 402 403 static int coredump_wait(int exit_code, struct core_state *core_state) 404 { 405 struct task_struct *tsk = current; 406 struct mm_struct *mm = tsk->mm; 407 int core_waiters = -EBUSY; 408 409 init_completion(&core_state->startup); 410 core_state->dumper.task = tsk; 411 core_state->dumper.next = NULL; 412 413 down_write(&mm->mmap_sem); 414 if (!mm->core_state) 415 core_waiters = zap_threads(tsk, mm, core_state, exit_code); 416 up_write(&mm->mmap_sem); 417 418 if (core_waiters > 0) { 419 struct core_thread *ptr; 420 421 wait_for_completion(&core_state->startup); 422 /* 423 * Wait for all the threads to become inactive, so that 424 * all the thread context (extended register state, like 425 * fpu etc) gets copied to the memory. 426 */ 427 ptr = core_state->dumper.next; 428 while (ptr != NULL) { 429 wait_task_inactive(ptr->task, 0); 430 ptr = ptr->next; 431 } 432 } 433 434 return core_waiters; 435 } 436 437 static void coredump_finish(struct mm_struct *mm, bool core_dumped) 438 { 439 struct core_thread *curr, *next; 440 struct task_struct *task; 441 442 spin_lock_irq(¤t->sighand->siglock); 443 if (core_dumped && !__fatal_signal_pending(current)) 444 current->signal->group_exit_code |= 0x80; 445 current->signal->group_exit_task = NULL; 446 current->signal->flags = SIGNAL_GROUP_EXIT; 447 spin_unlock_irq(¤t->sighand->siglock); 448 449 next = mm->core_state->dumper.next; 450 while ((curr = next) != NULL) { 451 next = curr->next; 452 task = curr->task; 453 /* 454 * see exit_mm(), curr->task must not see 455 * ->task == NULL before we read ->next. 456 */ 457 smp_mb(); 458 curr->task = NULL; 459 wake_up_process(task); 460 } 461 462 mm->core_state = NULL; 463 } 464 465 static bool dump_interrupted(void) 466 { 467 /* 468 * SIGKILL or freezing() interrupt the coredumping. Perhaps we 469 * can do try_to_freeze() and check __fatal_signal_pending(), 470 * but then we need to teach dump_write() to restart and clear 471 * TIF_SIGPENDING. 472 */ 473 return signal_pending(current); 474 } 475 476 static void wait_for_dump_helpers(struct file *file) 477 { 478 struct pipe_inode_info *pipe = file->private_data; 479 480 pipe_lock(pipe); 481 pipe->readers++; 482 pipe->writers--; 483 wake_up_interruptible_sync(&pipe->wait); 484 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 485 pipe_unlock(pipe); 486 487 /* 488 * We actually want wait_event_freezable() but then we need 489 * to clear TIF_SIGPENDING and improve dump_interrupted(). 490 */ 491 wait_event_interruptible(pipe->wait, pipe->readers == 1); 492 493 pipe_lock(pipe); 494 pipe->readers--; 495 pipe->writers++; 496 pipe_unlock(pipe); 497 } 498 499 /* 500 * umh_pipe_setup 501 * helper function to customize the process used 502 * to collect the core in userspace. Specifically 503 * it sets up a pipe and installs it as fd 0 (stdin) 504 * for the process. Returns 0 on success, or 505 * PTR_ERR on failure. 506 * Note that it also sets the core limit to 1. This 507 * is a special value that we use to trap recursive 508 * core dumps 509 */ 510 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new) 511 { 512 struct file *files[2]; 513 struct coredump_params *cp = (struct coredump_params *)info->data; 514 int err = create_pipe_files(files, 0); 515 if (err) 516 return err; 517 518 cp->file = files[1]; 519 520 err = replace_fd(0, files[0], 0); 521 fput(files[0]); 522 /* and disallow core files too */ 523 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; 524 525 return err; 526 } 527 528 void do_coredump(const siginfo_t *siginfo) 529 { 530 struct core_state core_state; 531 struct core_name cn; 532 struct mm_struct *mm = current->mm; 533 struct linux_binfmt * binfmt; 534 const struct cred *old_cred; 535 struct cred *cred; 536 int retval = 0; 537 int ispipe; 538 struct files_struct *displaced; 539 /* require nonrelative corefile path and be extra careful */ 540 bool need_suid_safe = false; 541 bool core_dumped = false; 542 static atomic_t core_dump_count = ATOMIC_INIT(0); 543 struct coredump_params cprm = { 544 .siginfo = siginfo, 545 .regs = signal_pt_regs(), 546 .limit = rlimit(RLIMIT_CORE), 547 /* 548 * We must use the same mm->flags while dumping core to avoid 549 * inconsistency of bit flags, since this flag is not protected 550 * by any locks. 551 */ 552 .mm_flags = mm->flags, 553 }; 554 555 audit_core_dumps(siginfo->si_signo); 556 557 binfmt = mm->binfmt; 558 if (!binfmt || !binfmt->core_dump) 559 goto fail; 560 if (!__get_dumpable(cprm.mm_flags)) 561 goto fail; 562 563 cred = prepare_creds(); 564 if (!cred) 565 goto fail; 566 /* 567 * We cannot trust fsuid as being the "true" uid of the process 568 * nor do we know its entire history. We only know it was tainted 569 * so we dump it as root in mode 2, and only into a controlled 570 * environment (pipe handler or fully qualified path). 571 */ 572 if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) { 573 /* Setuid core dump mode */ 574 cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */ 575 need_suid_safe = true; 576 } 577 578 retval = coredump_wait(siginfo->si_signo, &core_state); 579 if (retval < 0) 580 goto fail_creds; 581 582 old_cred = override_creds(cred); 583 584 ispipe = format_corename(&cn, &cprm); 585 586 if (ispipe) { 587 int dump_count; 588 char **helper_argv; 589 struct subprocess_info *sub_info; 590 591 if (ispipe < 0) { 592 printk(KERN_WARNING "format_corename failed\n"); 593 printk(KERN_WARNING "Aborting core\n"); 594 goto fail_unlock; 595 } 596 597 if (cprm.limit == 1) { 598 /* See umh_pipe_setup() which sets RLIMIT_CORE = 1. 599 * 600 * Normally core limits are irrelevant to pipes, since 601 * we're not writing to the file system, but we use 602 * cprm.limit of 1 here as a special value, this is a 603 * consistent way to catch recursive crashes. 604 * We can still crash if the core_pattern binary sets 605 * RLIM_CORE = !1, but it runs as root, and can do 606 * lots of stupid things. 607 * 608 * Note that we use task_tgid_vnr here to grab the pid 609 * of the process group leader. That way we get the 610 * right pid if a thread in a multi-threaded 611 * core_pattern process dies. 612 */ 613 printk(KERN_WARNING 614 "Process %d(%s) has RLIMIT_CORE set to 1\n", 615 task_tgid_vnr(current), current->comm); 616 printk(KERN_WARNING "Aborting core\n"); 617 goto fail_unlock; 618 } 619 cprm.limit = RLIM_INFINITY; 620 621 dump_count = atomic_inc_return(&core_dump_count); 622 if (core_pipe_limit && (core_pipe_limit < dump_count)) { 623 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", 624 task_tgid_vnr(current), current->comm); 625 printk(KERN_WARNING "Skipping core dump\n"); 626 goto fail_dropcount; 627 } 628 629 helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL); 630 if (!helper_argv) { 631 printk(KERN_WARNING "%s failed to allocate memory\n", 632 __func__); 633 goto fail_dropcount; 634 } 635 636 retval = -ENOMEM; 637 sub_info = call_usermodehelper_setup(helper_argv[0], 638 helper_argv, NULL, GFP_KERNEL, 639 umh_pipe_setup, NULL, &cprm); 640 if (sub_info) 641 retval = call_usermodehelper_exec(sub_info, 642 UMH_WAIT_EXEC); 643 644 argv_free(helper_argv); 645 if (retval) { 646 printk(KERN_INFO "Core dump to |%s pipe failed\n", 647 cn.corename); 648 goto close_fail; 649 } 650 } else { 651 struct inode *inode; 652 653 if (cprm.limit < binfmt->min_coredump) 654 goto fail_unlock; 655 656 if (need_suid_safe && cn.corename[0] != '/') { 657 printk(KERN_WARNING "Pid %d(%s) can only dump core "\ 658 "to fully qualified path!\n", 659 task_tgid_vnr(current), current->comm); 660 printk(KERN_WARNING "Skipping core dump\n"); 661 goto fail_unlock; 662 } 663 664 /* 665 * Unlink the file if it exists unless this is a SUID 666 * binary - in that case, we're running around with root 667 * privs and don't want to unlink another user's coredump. 668 */ 669 if (!need_suid_safe) { 670 mm_segment_t old_fs; 671 672 old_fs = get_fs(); 673 set_fs(KERNEL_DS); 674 /* 675 * If it doesn't exist, that's fine. If there's some 676 * other problem, we'll catch it at the filp_open(). 677 */ 678 (void) sys_unlink((const char __user *)cn.corename); 679 set_fs(old_fs); 680 } 681 682 /* 683 * There is a race between unlinking and creating the 684 * file, but if that causes an EEXIST here, that's 685 * fine - another process raced with us while creating 686 * the corefile, and the other process won. To userspace, 687 * what matters is that at least one of the two processes 688 * writes its coredump successfully, not which one. 689 */ 690 cprm.file = filp_open(cn.corename, 691 O_CREAT | 2 | O_NOFOLLOW | 692 O_LARGEFILE | O_EXCL, 693 0600); 694 if (IS_ERR(cprm.file)) 695 goto fail_unlock; 696 697 inode = file_inode(cprm.file); 698 if (inode->i_nlink > 1) 699 goto close_fail; 700 if (d_unhashed(cprm.file->f_path.dentry)) 701 goto close_fail; 702 /* 703 * AK: actually i see no reason to not allow this for named 704 * pipes etc, but keep the previous behaviour for now. 705 */ 706 if (!S_ISREG(inode->i_mode)) 707 goto close_fail; 708 /* 709 * Don't dump core if the filesystem changed owner or mode 710 * of the file during file creation. This is an issue when 711 * a process dumps core while its cwd is e.g. on a vfat 712 * filesystem. 713 */ 714 if (!uid_eq(inode->i_uid, current_fsuid())) 715 goto close_fail; 716 if ((inode->i_mode & 0677) != 0600) 717 goto close_fail; 718 if (!(cprm.file->f_mode & FMODE_CAN_WRITE)) 719 goto close_fail; 720 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file)) 721 goto close_fail; 722 } 723 724 /* get us an unshared descriptor table; almost always a no-op */ 725 retval = unshare_files(&displaced); 726 if (retval) 727 goto close_fail; 728 if (displaced) 729 put_files_struct(displaced); 730 if (!dump_interrupted()) { 731 file_start_write(cprm.file); 732 core_dumped = binfmt->core_dump(&cprm); 733 file_end_write(cprm.file); 734 } 735 if (ispipe && core_pipe_limit) 736 wait_for_dump_helpers(cprm.file); 737 close_fail: 738 if (cprm.file) 739 filp_close(cprm.file, NULL); 740 fail_dropcount: 741 if (ispipe) 742 atomic_dec(&core_dump_count); 743 fail_unlock: 744 kfree(cn.corename); 745 coredump_finish(mm, core_dumped); 746 revert_creds(old_cred); 747 fail_creds: 748 put_cred(cred); 749 fail: 750 return; 751 } 752 753 /* 754 * Core dumping helper functions. These are the only things you should 755 * do on a core-file: use only these functions to write out all the 756 * necessary info. 757 */ 758 int dump_emit(struct coredump_params *cprm, const void *addr, int nr) 759 { 760 struct file *file = cprm->file; 761 loff_t pos = file->f_pos; 762 ssize_t n; 763 if (cprm->written + nr > cprm->limit) 764 return 0; 765 while (nr) { 766 if (dump_interrupted()) 767 return 0; 768 n = __kernel_write(file, addr, nr, &pos); 769 if (n <= 0) 770 return 0; 771 file->f_pos = pos; 772 cprm->written += n; 773 nr -= n; 774 } 775 return 1; 776 } 777 EXPORT_SYMBOL(dump_emit); 778 779 int dump_skip(struct coredump_params *cprm, size_t nr) 780 { 781 static char zeroes[PAGE_SIZE]; 782 struct file *file = cprm->file; 783 if (file->f_op->llseek && file->f_op->llseek != no_llseek) { 784 if (cprm->written + nr > cprm->limit) 785 return 0; 786 if (dump_interrupted() || 787 file->f_op->llseek(file, nr, SEEK_CUR) < 0) 788 return 0; 789 cprm->written += nr; 790 return 1; 791 } else { 792 while (nr > PAGE_SIZE) { 793 if (!dump_emit(cprm, zeroes, PAGE_SIZE)) 794 return 0; 795 nr -= PAGE_SIZE; 796 } 797 return dump_emit(cprm, zeroes, nr); 798 } 799 } 800 EXPORT_SYMBOL(dump_skip); 801 802 int dump_align(struct coredump_params *cprm, int align) 803 { 804 unsigned mod = cprm->written & (align - 1); 805 if (align & (align - 1)) 806 return 0; 807 return mod ? dump_skip(cprm, align - mod) : 1; 808 } 809 EXPORT_SYMBOL(dump_align); 810