xref: /linux/fs/coredump.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35 #include <linux/timekeeping.h>
36 
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlb.h>
40 #include <asm/exec.h>
41 
42 #include <trace/events/task.h>
43 #include "internal.h"
44 
45 #include <trace/events/sched.h>
46 
47 int core_uses_pid;
48 unsigned int core_pipe_limit;
49 char core_pattern[CORENAME_MAX_SIZE] = "core";
50 static int core_name_size = CORENAME_MAX_SIZE;
51 
52 struct core_name {
53 	char *corename;
54 	int used, size;
55 };
56 
57 /* The maximal length of core_pattern is also specified in sysctl.c */
58 
59 static int expand_corename(struct core_name *cn, int size)
60 {
61 	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
62 
63 	if (!corename)
64 		return -ENOMEM;
65 
66 	if (size > core_name_size) /* racy but harmless */
67 		core_name_size = size;
68 
69 	cn->size = ksize(corename);
70 	cn->corename = corename;
71 	return 0;
72 }
73 
74 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
75 				     va_list arg)
76 {
77 	int free, need;
78 	va_list arg_copy;
79 
80 again:
81 	free = cn->size - cn->used;
82 
83 	va_copy(arg_copy, arg);
84 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
85 	va_end(arg_copy);
86 
87 	if (need < free) {
88 		cn->used += need;
89 		return 0;
90 	}
91 
92 	if (!expand_corename(cn, cn->size + need - free + 1))
93 		goto again;
94 
95 	return -ENOMEM;
96 }
97 
98 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
99 {
100 	va_list arg;
101 	int ret;
102 
103 	va_start(arg, fmt);
104 	ret = cn_vprintf(cn, fmt, arg);
105 	va_end(arg);
106 
107 	return ret;
108 }
109 
110 static __printf(2, 3)
111 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
112 {
113 	int cur = cn->used;
114 	va_list arg;
115 	int ret;
116 
117 	va_start(arg, fmt);
118 	ret = cn_vprintf(cn, fmt, arg);
119 	va_end(arg);
120 
121 	if (ret == 0) {
122 		/*
123 		 * Ensure that this coredump name component can't cause the
124 		 * resulting corefile path to consist of a ".." or ".".
125 		 */
126 		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
127 				(cn->used - cur == 2 && cn->corename[cur] == '.'
128 				&& cn->corename[cur+1] == '.'))
129 			cn->corename[cur] = '!';
130 
131 		/*
132 		 * Empty names are fishy and could be used to create a "//" in a
133 		 * corefile name, causing the coredump to happen one directory
134 		 * level too high. Enforce that all components of the core
135 		 * pattern are at least one character long.
136 		 */
137 		if (cn->used == cur)
138 			ret = cn_printf(cn, "!");
139 	}
140 
141 	for (; cur < cn->used; ++cur) {
142 		if (cn->corename[cur] == '/')
143 			cn->corename[cur] = '!';
144 	}
145 	return ret;
146 }
147 
148 static int cn_print_exe_file(struct core_name *cn)
149 {
150 	struct file *exe_file;
151 	char *pathbuf, *path;
152 	int ret;
153 
154 	exe_file = get_mm_exe_file(current->mm);
155 	if (!exe_file)
156 		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
157 
158 	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
159 	if (!pathbuf) {
160 		ret = -ENOMEM;
161 		goto put_exe_file;
162 	}
163 
164 	path = file_path(exe_file, pathbuf, PATH_MAX);
165 	if (IS_ERR(path)) {
166 		ret = PTR_ERR(path);
167 		goto free_buf;
168 	}
169 
170 	ret = cn_esc_printf(cn, "%s", path);
171 
172 free_buf:
173 	kfree(pathbuf);
174 put_exe_file:
175 	fput(exe_file);
176 	return ret;
177 }
178 
179 /* format_corename will inspect the pattern parameter, and output a
180  * name into corename, which must have space for at least
181  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
182  */
183 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
184 {
185 	const struct cred *cred = current_cred();
186 	const char *pat_ptr = core_pattern;
187 	int ispipe = (*pat_ptr == '|');
188 	int pid_in_pattern = 0;
189 	int err = 0;
190 
191 	cn->used = 0;
192 	cn->corename = NULL;
193 	if (expand_corename(cn, core_name_size))
194 		return -ENOMEM;
195 	cn->corename[0] = '\0';
196 
197 	if (ispipe)
198 		++pat_ptr;
199 
200 	/* Repeat as long as we have more pattern to process and more output
201 	   space */
202 	while (*pat_ptr) {
203 		if (*pat_ptr != '%') {
204 			err = cn_printf(cn, "%c", *pat_ptr++);
205 		} else {
206 			switch (*++pat_ptr) {
207 			/* single % at the end, drop that */
208 			case 0:
209 				goto out;
210 			/* Double percent, output one percent */
211 			case '%':
212 				err = cn_printf(cn, "%c", '%');
213 				break;
214 			/* pid */
215 			case 'p':
216 				pid_in_pattern = 1;
217 				err = cn_printf(cn, "%d",
218 					      task_tgid_vnr(current));
219 				break;
220 			/* global pid */
221 			case 'P':
222 				err = cn_printf(cn, "%d",
223 					      task_tgid_nr(current));
224 				break;
225 			case 'i':
226 				err = cn_printf(cn, "%d",
227 					      task_pid_vnr(current));
228 				break;
229 			case 'I':
230 				err = cn_printf(cn, "%d",
231 					      task_pid_nr(current));
232 				break;
233 			/* uid */
234 			case 'u':
235 				err = cn_printf(cn, "%u",
236 						from_kuid(&init_user_ns,
237 							  cred->uid));
238 				break;
239 			/* gid */
240 			case 'g':
241 				err = cn_printf(cn, "%u",
242 						from_kgid(&init_user_ns,
243 							  cred->gid));
244 				break;
245 			case 'd':
246 				err = cn_printf(cn, "%d",
247 					__get_dumpable(cprm->mm_flags));
248 				break;
249 			/* signal that caused the coredump */
250 			case 's':
251 				err = cn_printf(cn, "%d",
252 						cprm->siginfo->si_signo);
253 				break;
254 			/* UNIX time of coredump */
255 			case 't': {
256 				time64_t time;
257 
258 				time = ktime_get_real_seconds();
259 				err = cn_printf(cn, "%lld", time);
260 				break;
261 			}
262 			/* hostname */
263 			case 'h':
264 				down_read(&uts_sem);
265 				err = cn_esc_printf(cn, "%s",
266 					      utsname()->nodename);
267 				up_read(&uts_sem);
268 				break;
269 			/* executable */
270 			case 'e':
271 				err = cn_esc_printf(cn, "%s", current->comm);
272 				break;
273 			case 'E':
274 				err = cn_print_exe_file(cn);
275 				break;
276 			/* core limit size */
277 			case 'c':
278 				err = cn_printf(cn, "%lu",
279 					      rlimit(RLIMIT_CORE));
280 				break;
281 			default:
282 				break;
283 			}
284 			++pat_ptr;
285 		}
286 
287 		if (err)
288 			return err;
289 	}
290 
291 out:
292 	/* Backward compatibility with core_uses_pid:
293 	 *
294 	 * If core_pattern does not include a %p (as is the default)
295 	 * and core_uses_pid is set, then .%pid will be appended to
296 	 * the filename. Do not do this for piped commands. */
297 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
298 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
299 		if (err)
300 			return err;
301 	}
302 	return ispipe;
303 }
304 
305 static int zap_process(struct task_struct *start, int exit_code, int flags)
306 {
307 	struct task_struct *t;
308 	int nr = 0;
309 
310 	/* ignore all signals except SIGKILL, see prepare_signal() */
311 	start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
312 	start->signal->group_exit_code = exit_code;
313 	start->signal->group_stop_count = 0;
314 
315 	for_each_thread(start, t) {
316 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
317 		if (t != current && t->mm) {
318 			sigaddset(&t->pending.signal, SIGKILL);
319 			signal_wake_up(t, 1);
320 			nr++;
321 		}
322 	}
323 
324 	return nr;
325 }
326 
327 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
328 			struct core_state *core_state, int exit_code)
329 {
330 	struct task_struct *g, *p;
331 	unsigned long flags;
332 	int nr = -EAGAIN;
333 
334 	spin_lock_irq(&tsk->sighand->siglock);
335 	if (!signal_group_exit(tsk->signal)) {
336 		mm->core_state = core_state;
337 		tsk->signal->group_exit_task = tsk;
338 		nr = zap_process(tsk, exit_code, 0);
339 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
340 	}
341 	spin_unlock_irq(&tsk->sighand->siglock);
342 	if (unlikely(nr < 0))
343 		return nr;
344 
345 	tsk->flags |= PF_DUMPCORE;
346 	if (atomic_read(&mm->mm_users) == nr + 1)
347 		goto done;
348 	/*
349 	 * We should find and kill all tasks which use this mm, and we should
350 	 * count them correctly into ->nr_threads. We don't take tasklist
351 	 * lock, but this is safe wrt:
352 	 *
353 	 * fork:
354 	 *	None of sub-threads can fork after zap_process(leader). All
355 	 *	processes which were created before this point should be
356 	 *	visible to zap_threads() because copy_process() adds the new
357 	 *	process to the tail of init_task.tasks list, and lock/unlock
358 	 *	of ->siglock provides a memory barrier.
359 	 *
360 	 * do_exit:
361 	 *	The caller holds mm->mmap_sem. This means that the task which
362 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
363 	 *	its ->mm.
364 	 *
365 	 * de_thread:
366 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
367 	 *	we must see either old or new leader, this does not matter.
368 	 *	However, it can change p->sighand, so lock_task_sighand(p)
369 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
370 	 *	it can't fail.
371 	 *
372 	 *	Note also that "g" can be the old leader with ->mm == NULL
373 	 *	and already unhashed and thus removed from ->thread_group.
374 	 *	This is OK, __unhash_process()->list_del_rcu() does not
375 	 *	clear the ->next pointer, we will find the new leader via
376 	 *	next_thread().
377 	 */
378 	rcu_read_lock();
379 	for_each_process(g) {
380 		if (g == tsk->group_leader)
381 			continue;
382 		if (g->flags & PF_KTHREAD)
383 			continue;
384 
385 		for_each_thread(g, p) {
386 			if (unlikely(!p->mm))
387 				continue;
388 			if (unlikely(p->mm == mm)) {
389 				lock_task_sighand(p, &flags);
390 				nr += zap_process(p, exit_code,
391 							SIGNAL_GROUP_EXIT);
392 				unlock_task_sighand(p, &flags);
393 			}
394 			break;
395 		}
396 	}
397 	rcu_read_unlock();
398 done:
399 	atomic_set(&core_state->nr_threads, nr);
400 	return nr;
401 }
402 
403 static int coredump_wait(int exit_code, struct core_state *core_state)
404 {
405 	struct task_struct *tsk = current;
406 	struct mm_struct *mm = tsk->mm;
407 	int core_waiters = -EBUSY;
408 
409 	init_completion(&core_state->startup);
410 	core_state->dumper.task = tsk;
411 	core_state->dumper.next = NULL;
412 
413 	down_write(&mm->mmap_sem);
414 	if (!mm->core_state)
415 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
416 	up_write(&mm->mmap_sem);
417 
418 	if (core_waiters > 0) {
419 		struct core_thread *ptr;
420 
421 		wait_for_completion(&core_state->startup);
422 		/*
423 		 * Wait for all the threads to become inactive, so that
424 		 * all the thread context (extended register state, like
425 		 * fpu etc) gets copied to the memory.
426 		 */
427 		ptr = core_state->dumper.next;
428 		while (ptr != NULL) {
429 			wait_task_inactive(ptr->task, 0);
430 			ptr = ptr->next;
431 		}
432 	}
433 
434 	return core_waiters;
435 }
436 
437 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
438 {
439 	struct core_thread *curr, *next;
440 	struct task_struct *task;
441 
442 	spin_lock_irq(&current->sighand->siglock);
443 	if (core_dumped && !__fatal_signal_pending(current))
444 		current->signal->group_exit_code |= 0x80;
445 	current->signal->group_exit_task = NULL;
446 	current->signal->flags = SIGNAL_GROUP_EXIT;
447 	spin_unlock_irq(&current->sighand->siglock);
448 
449 	next = mm->core_state->dumper.next;
450 	while ((curr = next) != NULL) {
451 		next = curr->next;
452 		task = curr->task;
453 		/*
454 		 * see exit_mm(), curr->task must not see
455 		 * ->task == NULL before we read ->next.
456 		 */
457 		smp_mb();
458 		curr->task = NULL;
459 		wake_up_process(task);
460 	}
461 
462 	mm->core_state = NULL;
463 }
464 
465 static bool dump_interrupted(void)
466 {
467 	/*
468 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
469 	 * can do try_to_freeze() and check __fatal_signal_pending(),
470 	 * but then we need to teach dump_write() to restart and clear
471 	 * TIF_SIGPENDING.
472 	 */
473 	return signal_pending(current);
474 }
475 
476 static void wait_for_dump_helpers(struct file *file)
477 {
478 	struct pipe_inode_info *pipe = file->private_data;
479 
480 	pipe_lock(pipe);
481 	pipe->readers++;
482 	pipe->writers--;
483 	wake_up_interruptible_sync(&pipe->wait);
484 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
485 	pipe_unlock(pipe);
486 
487 	/*
488 	 * We actually want wait_event_freezable() but then we need
489 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
490 	 */
491 	wait_event_interruptible(pipe->wait, pipe->readers == 1);
492 
493 	pipe_lock(pipe);
494 	pipe->readers--;
495 	pipe->writers++;
496 	pipe_unlock(pipe);
497 }
498 
499 /*
500  * umh_pipe_setup
501  * helper function to customize the process used
502  * to collect the core in userspace.  Specifically
503  * it sets up a pipe and installs it as fd 0 (stdin)
504  * for the process.  Returns 0 on success, or
505  * PTR_ERR on failure.
506  * Note that it also sets the core limit to 1.  This
507  * is a special value that we use to trap recursive
508  * core dumps
509  */
510 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
511 {
512 	struct file *files[2];
513 	struct coredump_params *cp = (struct coredump_params *)info->data;
514 	int err = create_pipe_files(files, 0);
515 	if (err)
516 		return err;
517 
518 	cp->file = files[1];
519 
520 	err = replace_fd(0, files[0], 0);
521 	fput(files[0]);
522 	/* and disallow core files too */
523 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
524 
525 	return err;
526 }
527 
528 void do_coredump(const siginfo_t *siginfo)
529 {
530 	struct core_state core_state;
531 	struct core_name cn;
532 	struct mm_struct *mm = current->mm;
533 	struct linux_binfmt * binfmt;
534 	const struct cred *old_cred;
535 	struct cred *cred;
536 	int retval = 0;
537 	int ispipe;
538 	struct files_struct *displaced;
539 	/* require nonrelative corefile path and be extra careful */
540 	bool need_suid_safe = false;
541 	bool core_dumped = false;
542 	static atomic_t core_dump_count = ATOMIC_INIT(0);
543 	struct coredump_params cprm = {
544 		.siginfo = siginfo,
545 		.regs = signal_pt_regs(),
546 		.limit = rlimit(RLIMIT_CORE),
547 		/*
548 		 * We must use the same mm->flags while dumping core to avoid
549 		 * inconsistency of bit flags, since this flag is not protected
550 		 * by any locks.
551 		 */
552 		.mm_flags = mm->flags,
553 	};
554 
555 	audit_core_dumps(siginfo->si_signo);
556 
557 	binfmt = mm->binfmt;
558 	if (!binfmt || !binfmt->core_dump)
559 		goto fail;
560 	if (!__get_dumpable(cprm.mm_flags))
561 		goto fail;
562 
563 	cred = prepare_creds();
564 	if (!cred)
565 		goto fail;
566 	/*
567 	 * We cannot trust fsuid as being the "true" uid of the process
568 	 * nor do we know its entire history. We only know it was tainted
569 	 * so we dump it as root in mode 2, and only into a controlled
570 	 * environment (pipe handler or fully qualified path).
571 	 */
572 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
573 		/* Setuid core dump mode */
574 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
575 		need_suid_safe = true;
576 	}
577 
578 	retval = coredump_wait(siginfo->si_signo, &core_state);
579 	if (retval < 0)
580 		goto fail_creds;
581 
582 	old_cred = override_creds(cred);
583 
584 	ispipe = format_corename(&cn, &cprm);
585 
586 	if (ispipe) {
587 		int dump_count;
588 		char **helper_argv;
589 		struct subprocess_info *sub_info;
590 
591 		if (ispipe < 0) {
592 			printk(KERN_WARNING "format_corename failed\n");
593 			printk(KERN_WARNING "Aborting core\n");
594 			goto fail_unlock;
595 		}
596 
597 		if (cprm.limit == 1) {
598 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
599 			 *
600 			 * Normally core limits are irrelevant to pipes, since
601 			 * we're not writing to the file system, but we use
602 			 * cprm.limit of 1 here as a special value, this is a
603 			 * consistent way to catch recursive crashes.
604 			 * We can still crash if the core_pattern binary sets
605 			 * RLIM_CORE = !1, but it runs as root, and can do
606 			 * lots of stupid things.
607 			 *
608 			 * Note that we use task_tgid_vnr here to grab the pid
609 			 * of the process group leader.  That way we get the
610 			 * right pid if a thread in a multi-threaded
611 			 * core_pattern process dies.
612 			 */
613 			printk(KERN_WARNING
614 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
615 				task_tgid_vnr(current), current->comm);
616 			printk(KERN_WARNING "Aborting core\n");
617 			goto fail_unlock;
618 		}
619 		cprm.limit = RLIM_INFINITY;
620 
621 		dump_count = atomic_inc_return(&core_dump_count);
622 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
623 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
624 			       task_tgid_vnr(current), current->comm);
625 			printk(KERN_WARNING "Skipping core dump\n");
626 			goto fail_dropcount;
627 		}
628 
629 		helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
630 		if (!helper_argv) {
631 			printk(KERN_WARNING "%s failed to allocate memory\n",
632 			       __func__);
633 			goto fail_dropcount;
634 		}
635 
636 		retval = -ENOMEM;
637 		sub_info = call_usermodehelper_setup(helper_argv[0],
638 						helper_argv, NULL, GFP_KERNEL,
639 						umh_pipe_setup, NULL, &cprm);
640 		if (sub_info)
641 			retval = call_usermodehelper_exec(sub_info,
642 							  UMH_WAIT_EXEC);
643 
644 		argv_free(helper_argv);
645 		if (retval) {
646 			printk(KERN_INFO "Core dump to |%s pipe failed\n",
647 			       cn.corename);
648 			goto close_fail;
649 		}
650 	} else {
651 		struct inode *inode;
652 
653 		if (cprm.limit < binfmt->min_coredump)
654 			goto fail_unlock;
655 
656 		if (need_suid_safe && cn.corename[0] != '/') {
657 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
658 				"to fully qualified path!\n",
659 				task_tgid_vnr(current), current->comm);
660 			printk(KERN_WARNING "Skipping core dump\n");
661 			goto fail_unlock;
662 		}
663 
664 		/*
665 		 * Unlink the file if it exists unless this is a SUID
666 		 * binary - in that case, we're running around with root
667 		 * privs and don't want to unlink another user's coredump.
668 		 */
669 		if (!need_suid_safe) {
670 			mm_segment_t old_fs;
671 
672 			old_fs = get_fs();
673 			set_fs(KERNEL_DS);
674 			/*
675 			 * If it doesn't exist, that's fine. If there's some
676 			 * other problem, we'll catch it at the filp_open().
677 			 */
678 			(void) sys_unlink((const char __user *)cn.corename);
679 			set_fs(old_fs);
680 		}
681 
682 		/*
683 		 * There is a race between unlinking and creating the
684 		 * file, but if that causes an EEXIST here, that's
685 		 * fine - another process raced with us while creating
686 		 * the corefile, and the other process won. To userspace,
687 		 * what matters is that at least one of the two processes
688 		 * writes its coredump successfully, not which one.
689 		 */
690 		cprm.file = filp_open(cn.corename,
691 				 O_CREAT | 2 | O_NOFOLLOW |
692 				 O_LARGEFILE | O_EXCL,
693 				 0600);
694 		if (IS_ERR(cprm.file))
695 			goto fail_unlock;
696 
697 		inode = file_inode(cprm.file);
698 		if (inode->i_nlink > 1)
699 			goto close_fail;
700 		if (d_unhashed(cprm.file->f_path.dentry))
701 			goto close_fail;
702 		/*
703 		 * AK: actually i see no reason to not allow this for named
704 		 * pipes etc, but keep the previous behaviour for now.
705 		 */
706 		if (!S_ISREG(inode->i_mode))
707 			goto close_fail;
708 		/*
709 		 * Don't dump core if the filesystem changed owner or mode
710 		 * of the file during file creation. This is an issue when
711 		 * a process dumps core while its cwd is e.g. on a vfat
712 		 * filesystem.
713 		 */
714 		if (!uid_eq(inode->i_uid, current_fsuid()))
715 			goto close_fail;
716 		if ((inode->i_mode & 0677) != 0600)
717 			goto close_fail;
718 		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
719 			goto close_fail;
720 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
721 			goto close_fail;
722 	}
723 
724 	/* get us an unshared descriptor table; almost always a no-op */
725 	retval = unshare_files(&displaced);
726 	if (retval)
727 		goto close_fail;
728 	if (displaced)
729 		put_files_struct(displaced);
730 	if (!dump_interrupted()) {
731 		file_start_write(cprm.file);
732 		core_dumped = binfmt->core_dump(&cprm);
733 		file_end_write(cprm.file);
734 	}
735 	if (ispipe && core_pipe_limit)
736 		wait_for_dump_helpers(cprm.file);
737 close_fail:
738 	if (cprm.file)
739 		filp_close(cprm.file, NULL);
740 fail_dropcount:
741 	if (ispipe)
742 		atomic_dec(&core_dump_count);
743 fail_unlock:
744 	kfree(cn.corename);
745 	coredump_finish(mm, core_dumped);
746 	revert_creds(old_cred);
747 fail_creds:
748 	put_cred(cred);
749 fail:
750 	return;
751 }
752 
753 /*
754  * Core dumping helper functions.  These are the only things you should
755  * do on a core-file: use only these functions to write out all the
756  * necessary info.
757  */
758 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
759 {
760 	struct file *file = cprm->file;
761 	loff_t pos = file->f_pos;
762 	ssize_t n;
763 	if (cprm->written + nr > cprm->limit)
764 		return 0;
765 	while (nr) {
766 		if (dump_interrupted())
767 			return 0;
768 		n = __kernel_write(file, addr, nr, &pos);
769 		if (n <= 0)
770 			return 0;
771 		file->f_pos = pos;
772 		cprm->written += n;
773 		nr -= n;
774 	}
775 	return 1;
776 }
777 EXPORT_SYMBOL(dump_emit);
778 
779 int dump_skip(struct coredump_params *cprm, size_t nr)
780 {
781 	static char zeroes[PAGE_SIZE];
782 	struct file *file = cprm->file;
783 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
784 		if (cprm->written + nr > cprm->limit)
785 			return 0;
786 		if (dump_interrupted() ||
787 		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
788 			return 0;
789 		cprm->written += nr;
790 		return 1;
791 	} else {
792 		while (nr > PAGE_SIZE) {
793 			if (!dump_emit(cprm, zeroes, PAGE_SIZE))
794 				return 0;
795 			nr -= PAGE_SIZE;
796 		}
797 		return dump_emit(cprm, zeroes, nr);
798 	}
799 }
800 EXPORT_SYMBOL(dump_skip);
801 
802 int dump_align(struct coredump_params *cprm, int align)
803 {
804 	unsigned mod = cprm->written & (align - 1);
805 	if (align & (align - 1))
806 		return 0;
807 	return mod ? dump_skip(cprm, align - mod) : 1;
808 }
809 EXPORT_SYMBOL(dump_align);
810