xref: /linux/fs/coredump.c (revision 32d7e03d26fd93187c87ed0fbf59ec7023a61404)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/file.h>
4 #include <linux/fdtable.h>
5 #include <linux/freezer.h>
6 #include <linux/mm.h>
7 #include <linux/stat.h>
8 #include <linux/fcntl.h>
9 #include <linux/swap.h>
10 #include <linux/ctype.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/pagemap.h>
14 #include <linux/perf_event.h>
15 #include <linux/highmem.h>
16 #include <linux/spinlock.h>
17 #include <linux/key.h>
18 #include <linux/personality.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/sched/coredump.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/utsname.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/module.h>
27 #include <linux/namei.h>
28 #include <linux/mount.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/tsacct_kern.h>
32 #include <linux/cn_proc.h>
33 #include <linux/audit.h>
34 #include <linux/tracehook.h>
35 #include <linux/kmod.h>
36 #include <linux/fsnotify.h>
37 #include <linux/fs_struct.h>
38 #include <linux/pipe_fs_i.h>
39 #include <linux/oom.h>
40 #include <linux/compat.h>
41 #include <linux/fs.h>
42 #include <linux/path.h>
43 #include <linux/timekeeping.h>
44 
45 #include <linux/uaccess.h>
46 #include <asm/mmu_context.h>
47 #include <asm/tlb.h>
48 #include <asm/exec.h>
49 
50 #include <trace/events/task.h>
51 #include "internal.h"
52 
53 #include <trace/events/sched.h>
54 
55 int core_uses_pid;
56 unsigned int core_pipe_limit;
57 char core_pattern[CORENAME_MAX_SIZE] = "core";
58 static int core_name_size = CORENAME_MAX_SIZE;
59 
60 struct core_name {
61 	char *corename;
62 	int used, size;
63 };
64 
65 /* The maximal length of core_pattern is also specified in sysctl.c */
66 
67 static int expand_corename(struct core_name *cn, int size)
68 {
69 	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
70 
71 	if (!corename)
72 		return -ENOMEM;
73 
74 	if (size > core_name_size) /* racy but harmless */
75 		core_name_size = size;
76 
77 	cn->size = ksize(corename);
78 	cn->corename = corename;
79 	return 0;
80 }
81 
82 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
83 				     va_list arg)
84 {
85 	int free, need;
86 	va_list arg_copy;
87 
88 again:
89 	free = cn->size - cn->used;
90 
91 	va_copy(arg_copy, arg);
92 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
93 	va_end(arg_copy);
94 
95 	if (need < free) {
96 		cn->used += need;
97 		return 0;
98 	}
99 
100 	if (!expand_corename(cn, cn->size + need - free + 1))
101 		goto again;
102 
103 	return -ENOMEM;
104 }
105 
106 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
107 {
108 	va_list arg;
109 	int ret;
110 
111 	va_start(arg, fmt);
112 	ret = cn_vprintf(cn, fmt, arg);
113 	va_end(arg);
114 
115 	return ret;
116 }
117 
118 static __printf(2, 3)
119 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
120 {
121 	int cur = cn->used;
122 	va_list arg;
123 	int ret;
124 
125 	va_start(arg, fmt);
126 	ret = cn_vprintf(cn, fmt, arg);
127 	va_end(arg);
128 
129 	if (ret == 0) {
130 		/*
131 		 * Ensure that this coredump name component can't cause the
132 		 * resulting corefile path to consist of a ".." or ".".
133 		 */
134 		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
135 				(cn->used - cur == 2 && cn->corename[cur] == '.'
136 				&& cn->corename[cur+1] == '.'))
137 			cn->corename[cur] = '!';
138 
139 		/*
140 		 * Empty names are fishy and could be used to create a "//" in a
141 		 * corefile name, causing the coredump to happen one directory
142 		 * level too high. Enforce that all components of the core
143 		 * pattern are at least one character long.
144 		 */
145 		if (cn->used == cur)
146 			ret = cn_printf(cn, "!");
147 	}
148 
149 	for (; cur < cn->used; ++cur) {
150 		if (cn->corename[cur] == '/')
151 			cn->corename[cur] = '!';
152 	}
153 	return ret;
154 }
155 
156 static int cn_print_exe_file(struct core_name *cn, bool name_only)
157 {
158 	struct file *exe_file;
159 	char *pathbuf, *path, *ptr;
160 	int ret;
161 
162 	exe_file = get_mm_exe_file(current->mm);
163 	if (!exe_file)
164 		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
165 
166 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
167 	if (!pathbuf) {
168 		ret = -ENOMEM;
169 		goto put_exe_file;
170 	}
171 
172 	path = file_path(exe_file, pathbuf, PATH_MAX);
173 	if (IS_ERR(path)) {
174 		ret = PTR_ERR(path);
175 		goto free_buf;
176 	}
177 
178 	if (name_only) {
179 		ptr = strrchr(path, '/');
180 		if (ptr)
181 			path = ptr + 1;
182 	}
183 	ret = cn_esc_printf(cn, "%s", path);
184 
185 free_buf:
186 	kfree(pathbuf);
187 put_exe_file:
188 	fput(exe_file);
189 	return ret;
190 }
191 
192 /* format_corename will inspect the pattern parameter, and output a
193  * name into corename, which must have space for at least
194  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
195  */
196 static int format_corename(struct core_name *cn, struct coredump_params *cprm,
197 			   size_t **argv, int *argc)
198 {
199 	const struct cred *cred = current_cred();
200 	const char *pat_ptr = core_pattern;
201 	int ispipe = (*pat_ptr == '|');
202 	bool was_space = false;
203 	int pid_in_pattern = 0;
204 	int err = 0;
205 
206 	cn->used = 0;
207 	cn->corename = NULL;
208 	if (expand_corename(cn, core_name_size))
209 		return -ENOMEM;
210 	cn->corename[0] = '\0';
211 
212 	if (ispipe) {
213 		int argvs = sizeof(core_pattern) / 2;
214 		(*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
215 		if (!(*argv))
216 			return -ENOMEM;
217 		(*argv)[(*argc)++] = 0;
218 		++pat_ptr;
219 		if (!(*pat_ptr))
220 			return -ENOMEM;
221 	}
222 
223 	/* Repeat as long as we have more pattern to process and more output
224 	   space */
225 	while (*pat_ptr) {
226 		/*
227 		 * Split on spaces before doing template expansion so that
228 		 * %e and %E don't get split if they have spaces in them
229 		 */
230 		if (ispipe) {
231 			if (isspace(*pat_ptr)) {
232 				if (cn->used != 0)
233 					was_space = true;
234 				pat_ptr++;
235 				continue;
236 			} else if (was_space) {
237 				was_space = false;
238 				err = cn_printf(cn, "%c", '\0');
239 				if (err)
240 					return err;
241 				(*argv)[(*argc)++] = cn->used;
242 			}
243 		}
244 		if (*pat_ptr != '%') {
245 			err = cn_printf(cn, "%c", *pat_ptr++);
246 		} else {
247 			switch (*++pat_ptr) {
248 			/* single % at the end, drop that */
249 			case 0:
250 				goto out;
251 			/* Double percent, output one percent */
252 			case '%':
253 				err = cn_printf(cn, "%c", '%');
254 				break;
255 			/* pid */
256 			case 'p':
257 				pid_in_pattern = 1;
258 				err = cn_printf(cn, "%d",
259 					      task_tgid_vnr(current));
260 				break;
261 			/* global pid */
262 			case 'P':
263 				err = cn_printf(cn, "%d",
264 					      task_tgid_nr(current));
265 				break;
266 			case 'i':
267 				err = cn_printf(cn, "%d",
268 					      task_pid_vnr(current));
269 				break;
270 			case 'I':
271 				err = cn_printf(cn, "%d",
272 					      task_pid_nr(current));
273 				break;
274 			/* uid */
275 			case 'u':
276 				err = cn_printf(cn, "%u",
277 						from_kuid(&init_user_ns,
278 							  cred->uid));
279 				break;
280 			/* gid */
281 			case 'g':
282 				err = cn_printf(cn, "%u",
283 						from_kgid(&init_user_ns,
284 							  cred->gid));
285 				break;
286 			case 'd':
287 				err = cn_printf(cn, "%d",
288 					__get_dumpable(cprm->mm_flags));
289 				break;
290 			/* signal that caused the coredump */
291 			case 's':
292 				err = cn_printf(cn, "%d",
293 						cprm->siginfo->si_signo);
294 				break;
295 			/* UNIX time of coredump */
296 			case 't': {
297 				time64_t time;
298 
299 				time = ktime_get_real_seconds();
300 				err = cn_printf(cn, "%lld", time);
301 				break;
302 			}
303 			/* hostname */
304 			case 'h':
305 				down_read(&uts_sem);
306 				err = cn_esc_printf(cn, "%s",
307 					      utsname()->nodename);
308 				up_read(&uts_sem);
309 				break;
310 			/* executable, could be changed by prctl PR_SET_NAME etc */
311 			case 'e':
312 				err = cn_esc_printf(cn, "%s", current->comm);
313 				break;
314 			/* file name of executable */
315 			case 'f':
316 				err = cn_print_exe_file(cn, true);
317 				break;
318 			case 'E':
319 				err = cn_print_exe_file(cn, false);
320 				break;
321 			/* core limit size */
322 			case 'c':
323 				err = cn_printf(cn, "%lu",
324 					      rlimit(RLIMIT_CORE));
325 				break;
326 			default:
327 				break;
328 			}
329 			++pat_ptr;
330 		}
331 
332 		if (err)
333 			return err;
334 	}
335 
336 out:
337 	/* Backward compatibility with core_uses_pid:
338 	 *
339 	 * If core_pattern does not include a %p (as is the default)
340 	 * and core_uses_pid is set, then .%pid will be appended to
341 	 * the filename. Do not do this for piped commands. */
342 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
343 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
344 		if (err)
345 			return err;
346 	}
347 	return ispipe;
348 }
349 
350 static int zap_process(struct task_struct *start, int exit_code, int flags)
351 {
352 	struct task_struct *t;
353 	int nr = 0;
354 
355 	/* ignore all signals except SIGKILL, see prepare_signal() */
356 	start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
357 	start->signal->group_exit_code = exit_code;
358 	start->signal->group_stop_count = 0;
359 
360 	for_each_thread(start, t) {
361 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
362 		if (t != current && !(t->flags & PF_POSTCOREDUMP)) {
363 			sigaddset(&t->pending.signal, SIGKILL);
364 			signal_wake_up(t, 1);
365 			nr++;
366 		}
367 	}
368 
369 	return nr;
370 }
371 
372 static int zap_threads(struct task_struct *tsk,
373 			struct core_state *core_state, int exit_code)
374 {
375 	int nr = -EAGAIN;
376 
377 	spin_lock_irq(&tsk->sighand->siglock);
378 	if (!signal_group_exit(tsk->signal)) {
379 		tsk->signal->core_state = core_state;
380 		tsk->signal->group_exit_task = tsk;
381 		nr = zap_process(tsk, exit_code, 0);
382 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
383 		tsk->flags |= PF_DUMPCORE;
384 		atomic_set(&core_state->nr_threads, nr);
385 	}
386 	spin_unlock_irq(&tsk->sighand->siglock);
387 	return nr;
388 }
389 
390 static int coredump_wait(int exit_code, struct core_state *core_state)
391 {
392 	struct task_struct *tsk = current;
393 	int core_waiters = -EBUSY;
394 
395 	init_completion(&core_state->startup);
396 	core_state->dumper.task = tsk;
397 	core_state->dumper.next = NULL;
398 
399 	core_waiters = zap_threads(tsk, core_state, exit_code);
400 	if (core_waiters > 0) {
401 		struct core_thread *ptr;
402 
403 		freezer_do_not_count();
404 		wait_for_completion(&core_state->startup);
405 		freezer_count();
406 		/*
407 		 * Wait for all the threads to become inactive, so that
408 		 * all the thread context (extended register state, like
409 		 * fpu etc) gets copied to the memory.
410 		 */
411 		ptr = core_state->dumper.next;
412 		while (ptr != NULL) {
413 			wait_task_inactive(ptr->task, 0);
414 			ptr = ptr->next;
415 		}
416 	}
417 
418 	return core_waiters;
419 }
420 
421 static void coredump_finish(bool core_dumped)
422 {
423 	struct core_thread *curr, *next;
424 	struct task_struct *task;
425 
426 	spin_lock_irq(&current->sighand->siglock);
427 	if (core_dumped && !__fatal_signal_pending(current))
428 		current->signal->group_exit_code |= 0x80;
429 	current->signal->group_exit_task = NULL;
430 	current->signal->flags = SIGNAL_GROUP_EXIT;
431 	next = current->signal->core_state->dumper.next;
432 	current->signal->core_state = NULL;
433 	spin_unlock_irq(&current->sighand->siglock);
434 
435 	while ((curr = next) != NULL) {
436 		next = curr->next;
437 		task = curr->task;
438 		/*
439 		 * see coredump_task_exit(), curr->task must not see
440 		 * ->task == NULL before we read ->next.
441 		 */
442 		smp_mb();
443 		curr->task = NULL;
444 		wake_up_process(task);
445 	}
446 }
447 
448 static bool dump_interrupted(void)
449 {
450 	/*
451 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
452 	 * can do try_to_freeze() and check __fatal_signal_pending(),
453 	 * but then we need to teach dump_write() to restart and clear
454 	 * TIF_SIGPENDING.
455 	 */
456 	return fatal_signal_pending(current) || freezing(current);
457 }
458 
459 static void wait_for_dump_helpers(struct file *file)
460 {
461 	struct pipe_inode_info *pipe = file->private_data;
462 
463 	pipe_lock(pipe);
464 	pipe->readers++;
465 	pipe->writers--;
466 	wake_up_interruptible_sync(&pipe->rd_wait);
467 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
468 	pipe_unlock(pipe);
469 
470 	/*
471 	 * We actually want wait_event_freezable() but then we need
472 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
473 	 */
474 	wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
475 
476 	pipe_lock(pipe);
477 	pipe->readers--;
478 	pipe->writers++;
479 	pipe_unlock(pipe);
480 }
481 
482 /*
483  * umh_pipe_setup
484  * helper function to customize the process used
485  * to collect the core in userspace.  Specifically
486  * it sets up a pipe and installs it as fd 0 (stdin)
487  * for the process.  Returns 0 on success, or
488  * PTR_ERR on failure.
489  * Note that it also sets the core limit to 1.  This
490  * is a special value that we use to trap recursive
491  * core dumps
492  */
493 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
494 {
495 	struct file *files[2];
496 	struct coredump_params *cp = (struct coredump_params *)info->data;
497 	int err = create_pipe_files(files, 0);
498 	if (err)
499 		return err;
500 
501 	cp->file = files[1];
502 
503 	err = replace_fd(0, files[0], 0);
504 	fput(files[0]);
505 	/* and disallow core files too */
506 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
507 
508 	return err;
509 }
510 
511 void do_coredump(const kernel_siginfo_t *siginfo)
512 {
513 	struct core_state core_state;
514 	struct core_name cn;
515 	struct mm_struct *mm = current->mm;
516 	struct linux_binfmt * binfmt;
517 	const struct cred *old_cred;
518 	struct cred *cred;
519 	int retval = 0;
520 	int ispipe;
521 	size_t *argv = NULL;
522 	int argc = 0;
523 	/* require nonrelative corefile path and be extra careful */
524 	bool need_suid_safe = false;
525 	bool core_dumped = false;
526 	static atomic_t core_dump_count = ATOMIC_INIT(0);
527 	struct coredump_params cprm = {
528 		.siginfo = siginfo,
529 		.regs = signal_pt_regs(),
530 		.limit = rlimit(RLIMIT_CORE),
531 		/*
532 		 * We must use the same mm->flags while dumping core to avoid
533 		 * inconsistency of bit flags, since this flag is not protected
534 		 * by any locks.
535 		 */
536 		.mm_flags = mm->flags,
537 	};
538 
539 	audit_core_dumps(siginfo->si_signo);
540 
541 	binfmt = mm->binfmt;
542 	if (!binfmt || !binfmt->core_dump)
543 		goto fail;
544 	if (!__get_dumpable(cprm.mm_flags))
545 		goto fail;
546 
547 	cred = prepare_creds();
548 	if (!cred)
549 		goto fail;
550 	/*
551 	 * We cannot trust fsuid as being the "true" uid of the process
552 	 * nor do we know its entire history. We only know it was tainted
553 	 * so we dump it as root in mode 2, and only into a controlled
554 	 * environment (pipe handler or fully qualified path).
555 	 */
556 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
557 		/* Setuid core dump mode */
558 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
559 		need_suid_safe = true;
560 	}
561 
562 	retval = coredump_wait(siginfo->si_signo, &core_state);
563 	if (retval < 0)
564 		goto fail_creds;
565 
566 	old_cred = override_creds(cred);
567 
568 	ispipe = format_corename(&cn, &cprm, &argv, &argc);
569 
570 	if (ispipe) {
571 		int argi;
572 		int dump_count;
573 		char **helper_argv;
574 		struct subprocess_info *sub_info;
575 
576 		if (ispipe < 0) {
577 			printk(KERN_WARNING "format_corename failed\n");
578 			printk(KERN_WARNING "Aborting core\n");
579 			goto fail_unlock;
580 		}
581 
582 		if (cprm.limit == 1) {
583 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
584 			 *
585 			 * Normally core limits are irrelevant to pipes, since
586 			 * we're not writing to the file system, but we use
587 			 * cprm.limit of 1 here as a special value, this is a
588 			 * consistent way to catch recursive crashes.
589 			 * We can still crash if the core_pattern binary sets
590 			 * RLIM_CORE = !1, but it runs as root, and can do
591 			 * lots of stupid things.
592 			 *
593 			 * Note that we use task_tgid_vnr here to grab the pid
594 			 * of the process group leader.  That way we get the
595 			 * right pid if a thread in a multi-threaded
596 			 * core_pattern process dies.
597 			 */
598 			printk(KERN_WARNING
599 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
600 				task_tgid_vnr(current), current->comm);
601 			printk(KERN_WARNING "Aborting core\n");
602 			goto fail_unlock;
603 		}
604 		cprm.limit = RLIM_INFINITY;
605 
606 		dump_count = atomic_inc_return(&core_dump_count);
607 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
608 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
609 			       task_tgid_vnr(current), current->comm);
610 			printk(KERN_WARNING "Skipping core dump\n");
611 			goto fail_dropcount;
612 		}
613 
614 		helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
615 					    GFP_KERNEL);
616 		if (!helper_argv) {
617 			printk(KERN_WARNING "%s failed to allocate memory\n",
618 			       __func__);
619 			goto fail_dropcount;
620 		}
621 		for (argi = 0; argi < argc; argi++)
622 			helper_argv[argi] = cn.corename + argv[argi];
623 		helper_argv[argi] = NULL;
624 
625 		retval = -ENOMEM;
626 		sub_info = call_usermodehelper_setup(helper_argv[0],
627 						helper_argv, NULL, GFP_KERNEL,
628 						umh_pipe_setup, NULL, &cprm);
629 		if (sub_info)
630 			retval = call_usermodehelper_exec(sub_info,
631 							  UMH_WAIT_EXEC);
632 
633 		kfree(helper_argv);
634 		if (retval) {
635 			printk(KERN_INFO "Core dump to |%s pipe failed\n",
636 			       cn.corename);
637 			goto close_fail;
638 		}
639 	} else {
640 		struct user_namespace *mnt_userns;
641 		struct inode *inode;
642 		int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
643 				 O_LARGEFILE | O_EXCL;
644 
645 		if (cprm.limit < binfmt->min_coredump)
646 			goto fail_unlock;
647 
648 		if (need_suid_safe && cn.corename[0] != '/') {
649 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
650 				"to fully qualified path!\n",
651 				task_tgid_vnr(current), current->comm);
652 			printk(KERN_WARNING "Skipping core dump\n");
653 			goto fail_unlock;
654 		}
655 
656 		/*
657 		 * Unlink the file if it exists unless this is a SUID
658 		 * binary - in that case, we're running around with root
659 		 * privs and don't want to unlink another user's coredump.
660 		 */
661 		if (!need_suid_safe) {
662 			/*
663 			 * If it doesn't exist, that's fine. If there's some
664 			 * other problem, we'll catch it at the filp_open().
665 			 */
666 			do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
667 		}
668 
669 		/*
670 		 * There is a race between unlinking and creating the
671 		 * file, but if that causes an EEXIST here, that's
672 		 * fine - another process raced with us while creating
673 		 * the corefile, and the other process won. To userspace,
674 		 * what matters is that at least one of the two processes
675 		 * writes its coredump successfully, not which one.
676 		 */
677 		if (need_suid_safe) {
678 			/*
679 			 * Using user namespaces, normal user tasks can change
680 			 * their current->fs->root to point to arbitrary
681 			 * directories. Since the intention of the "only dump
682 			 * with a fully qualified path" rule is to control where
683 			 * coredumps may be placed using root privileges,
684 			 * current->fs->root must not be used. Instead, use the
685 			 * root directory of init_task.
686 			 */
687 			struct path root;
688 
689 			task_lock(&init_task);
690 			get_fs_root(init_task.fs, &root);
691 			task_unlock(&init_task);
692 			cprm.file = file_open_root(&root, cn.corename,
693 						   open_flags, 0600);
694 			path_put(&root);
695 		} else {
696 			cprm.file = filp_open(cn.corename, open_flags, 0600);
697 		}
698 		if (IS_ERR(cprm.file))
699 			goto fail_unlock;
700 
701 		inode = file_inode(cprm.file);
702 		if (inode->i_nlink > 1)
703 			goto close_fail;
704 		if (d_unhashed(cprm.file->f_path.dentry))
705 			goto close_fail;
706 		/*
707 		 * AK: actually i see no reason to not allow this for named
708 		 * pipes etc, but keep the previous behaviour for now.
709 		 */
710 		if (!S_ISREG(inode->i_mode))
711 			goto close_fail;
712 		/*
713 		 * Don't dump core if the filesystem changed owner or mode
714 		 * of the file during file creation. This is an issue when
715 		 * a process dumps core while its cwd is e.g. on a vfat
716 		 * filesystem.
717 		 */
718 		mnt_userns = file_mnt_user_ns(cprm.file);
719 		if (!uid_eq(i_uid_into_mnt(mnt_userns, inode),
720 			    current_fsuid())) {
721 			pr_info_ratelimited("Core dump to %s aborted: cannot preserve file owner\n",
722 					    cn.corename);
723 			goto close_fail;
724 		}
725 		if ((inode->i_mode & 0677) != 0600) {
726 			pr_info_ratelimited("Core dump to %s aborted: cannot preserve file permissions\n",
727 					    cn.corename);
728 			goto close_fail;
729 		}
730 		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
731 			goto close_fail;
732 		if (do_truncate(mnt_userns, cprm.file->f_path.dentry,
733 				0, 0, cprm.file))
734 			goto close_fail;
735 	}
736 
737 	/* get us an unshared descriptor table; almost always a no-op */
738 	/* The cell spufs coredump code reads the file descriptor tables */
739 	retval = unshare_files();
740 	if (retval)
741 		goto close_fail;
742 	if (!dump_interrupted()) {
743 		/*
744 		 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
745 		 * have this set to NULL.
746 		 */
747 		if (!cprm.file) {
748 			pr_info("Core dump to |%s disabled\n", cn.corename);
749 			goto close_fail;
750 		}
751 		file_start_write(cprm.file);
752 		core_dumped = binfmt->core_dump(&cprm);
753 		/*
754 		 * Ensures that file size is big enough to contain the current
755 		 * file postion. This prevents gdb from complaining about
756 		 * a truncated file if the last "write" to the file was
757 		 * dump_skip.
758 		 */
759 		if (cprm.to_skip) {
760 			cprm.to_skip--;
761 			dump_emit(&cprm, "", 1);
762 		}
763 		file_end_write(cprm.file);
764 	}
765 	if (ispipe && core_pipe_limit)
766 		wait_for_dump_helpers(cprm.file);
767 close_fail:
768 	if (cprm.file)
769 		filp_close(cprm.file, NULL);
770 fail_dropcount:
771 	if (ispipe)
772 		atomic_dec(&core_dump_count);
773 fail_unlock:
774 	kfree(argv);
775 	kfree(cn.corename);
776 	coredump_finish(core_dumped);
777 	revert_creds(old_cred);
778 fail_creds:
779 	put_cred(cred);
780 fail:
781 	return;
782 }
783 
784 /*
785  * Core dumping helper functions.  These are the only things you should
786  * do on a core-file: use only these functions to write out all the
787  * necessary info.
788  */
789 static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr)
790 {
791 	struct file *file = cprm->file;
792 	loff_t pos = file->f_pos;
793 	ssize_t n;
794 	if (cprm->written + nr > cprm->limit)
795 		return 0;
796 
797 
798 	if (dump_interrupted())
799 		return 0;
800 	n = __kernel_write(file, addr, nr, &pos);
801 	if (n != nr)
802 		return 0;
803 	file->f_pos = pos;
804 	cprm->written += n;
805 	cprm->pos += n;
806 
807 	return 1;
808 }
809 
810 static int __dump_skip(struct coredump_params *cprm, size_t nr)
811 {
812 	static char zeroes[PAGE_SIZE];
813 	struct file *file = cprm->file;
814 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
815 		if (dump_interrupted() ||
816 		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
817 			return 0;
818 		cprm->pos += nr;
819 		return 1;
820 	} else {
821 		while (nr > PAGE_SIZE) {
822 			if (!__dump_emit(cprm, zeroes, PAGE_SIZE))
823 				return 0;
824 			nr -= PAGE_SIZE;
825 		}
826 		return __dump_emit(cprm, zeroes, nr);
827 	}
828 }
829 
830 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
831 {
832 	if (cprm->to_skip) {
833 		if (!__dump_skip(cprm, cprm->to_skip))
834 			return 0;
835 		cprm->to_skip = 0;
836 	}
837 	return __dump_emit(cprm, addr, nr);
838 }
839 EXPORT_SYMBOL(dump_emit);
840 
841 void dump_skip_to(struct coredump_params *cprm, unsigned long pos)
842 {
843 	cprm->to_skip = pos - cprm->pos;
844 }
845 EXPORT_SYMBOL(dump_skip_to);
846 
847 void dump_skip(struct coredump_params *cprm, size_t nr)
848 {
849 	cprm->to_skip += nr;
850 }
851 EXPORT_SYMBOL(dump_skip);
852 
853 #ifdef CONFIG_ELF_CORE
854 int dump_user_range(struct coredump_params *cprm, unsigned long start,
855 		    unsigned long len)
856 {
857 	unsigned long addr;
858 
859 	for (addr = start; addr < start + len; addr += PAGE_SIZE) {
860 		struct page *page;
861 		int stop;
862 
863 		/*
864 		 * To avoid having to allocate page tables for virtual address
865 		 * ranges that have never been used yet, and also to make it
866 		 * easy to generate sparse core files, use a helper that returns
867 		 * NULL when encountering an empty page table entry that would
868 		 * otherwise have been filled with the zero page.
869 		 */
870 		page = get_dump_page(addr);
871 		if (page) {
872 			void *kaddr = kmap_local_page(page);
873 
874 			stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
875 			kunmap_local(kaddr);
876 			put_page(page);
877 			if (stop)
878 				return 0;
879 		} else {
880 			dump_skip(cprm, PAGE_SIZE);
881 		}
882 	}
883 	return 1;
884 }
885 #endif
886 
887 int dump_align(struct coredump_params *cprm, int align)
888 {
889 	unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1);
890 	if (align & (align - 1))
891 		return 0;
892 	if (mod)
893 		cprm->to_skip += align - mod;
894 	return 1;
895 }
896 EXPORT_SYMBOL(dump_align);
897 
898 /*
899  * The purpose of always_dump_vma() is to make sure that special kernel mappings
900  * that are useful for post-mortem analysis are included in every core dump.
901  * In that way we ensure that the core dump is fully interpretable later
902  * without matching up the same kernel and hardware config to see what PC values
903  * meant. These special mappings include - vDSO, vsyscall, and other
904  * architecture specific mappings
905  */
906 static bool always_dump_vma(struct vm_area_struct *vma)
907 {
908 	/* Any vsyscall mappings? */
909 	if (vma == get_gate_vma(vma->vm_mm))
910 		return true;
911 
912 	/*
913 	 * Assume that all vmas with a .name op should always be dumped.
914 	 * If this changes, a new vm_ops field can easily be added.
915 	 */
916 	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
917 		return true;
918 
919 	/*
920 	 * arch_vma_name() returns non-NULL for special architecture mappings,
921 	 * such as vDSO sections.
922 	 */
923 	if (arch_vma_name(vma))
924 		return true;
925 
926 	return false;
927 }
928 
929 /*
930  * Decide how much of @vma's contents should be included in a core dump.
931  */
932 static unsigned long vma_dump_size(struct vm_area_struct *vma,
933 				   unsigned long mm_flags)
934 {
935 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
936 
937 	/* always dump the vdso and vsyscall sections */
938 	if (always_dump_vma(vma))
939 		goto whole;
940 
941 	if (vma->vm_flags & VM_DONTDUMP)
942 		return 0;
943 
944 	/* support for DAX */
945 	if (vma_is_dax(vma)) {
946 		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
947 			goto whole;
948 		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
949 			goto whole;
950 		return 0;
951 	}
952 
953 	/* Hugetlb memory check */
954 	if (is_vm_hugetlb_page(vma)) {
955 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
956 			goto whole;
957 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
958 			goto whole;
959 		return 0;
960 	}
961 
962 	/* Do not dump I/O mapped devices or special mappings */
963 	if (vma->vm_flags & VM_IO)
964 		return 0;
965 
966 	/* By default, dump shared memory if mapped from an anonymous file. */
967 	if (vma->vm_flags & VM_SHARED) {
968 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
969 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
970 			goto whole;
971 		return 0;
972 	}
973 
974 	/* Dump segments that have been written to.  */
975 	if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
976 		goto whole;
977 	if (vma->vm_file == NULL)
978 		return 0;
979 
980 	if (FILTER(MAPPED_PRIVATE))
981 		goto whole;
982 
983 	/*
984 	 * If this is the beginning of an executable file mapping,
985 	 * dump the first page to aid in determining what was mapped here.
986 	 */
987 	if (FILTER(ELF_HEADERS) &&
988 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ) &&
989 	    (READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
990 		return PAGE_SIZE;
991 
992 #undef	FILTER
993 
994 	return 0;
995 
996 whole:
997 	return vma->vm_end - vma->vm_start;
998 }
999 
1000 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1001 					struct vm_area_struct *gate_vma)
1002 {
1003 	struct vm_area_struct *ret = tsk->mm->mmap;
1004 
1005 	if (ret)
1006 		return ret;
1007 	return gate_vma;
1008 }
1009 
1010 /*
1011  * Helper function for iterating across a vma list.  It ensures that the caller
1012  * will visit `gate_vma' prior to terminating the search.
1013  */
1014 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1015 				       struct vm_area_struct *gate_vma)
1016 {
1017 	struct vm_area_struct *ret;
1018 
1019 	ret = this_vma->vm_next;
1020 	if (ret)
1021 		return ret;
1022 	if (this_vma == gate_vma)
1023 		return NULL;
1024 	return gate_vma;
1025 }
1026 
1027 /*
1028  * Under the mmap_lock, take a snapshot of relevant information about the task's
1029  * VMAs.
1030  */
1031 int dump_vma_snapshot(struct coredump_params *cprm, int *vma_count,
1032 		      struct core_vma_metadata **vma_meta,
1033 		      size_t *vma_data_size_ptr)
1034 {
1035 	struct vm_area_struct *vma, *gate_vma;
1036 	struct mm_struct *mm = current->mm;
1037 	int i;
1038 	size_t vma_data_size = 0;
1039 
1040 	/*
1041 	 * Once the stack expansion code is fixed to not change VMA bounds
1042 	 * under mmap_lock in read mode, this can be changed to take the
1043 	 * mmap_lock in read mode.
1044 	 */
1045 	if (mmap_write_lock_killable(mm))
1046 		return -EINTR;
1047 
1048 	gate_vma = get_gate_vma(mm);
1049 	*vma_count = mm->map_count + (gate_vma ? 1 : 0);
1050 
1051 	*vma_meta = kvmalloc_array(*vma_count, sizeof(**vma_meta), GFP_KERNEL);
1052 	if (!*vma_meta) {
1053 		mmap_write_unlock(mm);
1054 		return -ENOMEM;
1055 	}
1056 
1057 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
1058 			vma = next_vma(vma, gate_vma), i++) {
1059 		struct core_vma_metadata *m = (*vma_meta) + i;
1060 
1061 		m->start = vma->vm_start;
1062 		m->end = vma->vm_end;
1063 		m->flags = vma->vm_flags;
1064 		m->dump_size = vma_dump_size(vma, cprm->mm_flags);
1065 
1066 		vma_data_size += m->dump_size;
1067 	}
1068 
1069 	mmap_write_unlock(mm);
1070 
1071 	if (WARN_ON(i != *vma_count)) {
1072 		kvfree(*vma_meta);
1073 		return -EFAULT;
1074 	}
1075 
1076 	*vma_data_size_ptr = vma_data_size;
1077 	return 0;
1078 }
1079