1 #include <linux/slab.h> 2 #include <linux/file.h> 3 #include <linux/fdtable.h> 4 #include <linux/mm.h> 5 #include <linux/stat.h> 6 #include <linux/fcntl.h> 7 #include <linux/swap.h> 8 #include <linux/string.h> 9 #include <linux/init.h> 10 #include <linux/pagemap.h> 11 #include <linux/perf_event.h> 12 #include <linux/highmem.h> 13 #include <linux/spinlock.h> 14 #include <linux/key.h> 15 #include <linux/personality.h> 16 #include <linux/binfmts.h> 17 #include <linux/coredump.h> 18 #include <linux/utsname.h> 19 #include <linux/pid_namespace.h> 20 #include <linux/module.h> 21 #include <linux/namei.h> 22 #include <linux/mount.h> 23 #include <linux/security.h> 24 #include <linux/syscalls.h> 25 #include <linux/tsacct_kern.h> 26 #include <linux/cn_proc.h> 27 #include <linux/audit.h> 28 #include <linux/tracehook.h> 29 #include <linux/kmod.h> 30 #include <linux/fsnotify.h> 31 #include <linux/fs_struct.h> 32 #include <linux/pipe_fs_i.h> 33 #include <linux/oom.h> 34 #include <linux/compat.h> 35 #include <linux/sched.h> 36 #include <linux/fs.h> 37 #include <linux/path.h> 38 #include <linux/timekeeping.h> 39 40 #include <asm/uaccess.h> 41 #include <asm/mmu_context.h> 42 #include <asm/tlb.h> 43 #include <asm/exec.h> 44 45 #include <trace/events/task.h> 46 #include "internal.h" 47 48 #include <trace/events/sched.h> 49 50 int core_uses_pid; 51 unsigned int core_pipe_limit; 52 char core_pattern[CORENAME_MAX_SIZE] = "core"; 53 static int core_name_size = CORENAME_MAX_SIZE; 54 55 struct core_name { 56 char *corename; 57 int used, size; 58 }; 59 60 /* The maximal length of core_pattern is also specified in sysctl.c */ 61 62 static int expand_corename(struct core_name *cn, int size) 63 { 64 char *corename = krealloc(cn->corename, size, GFP_KERNEL); 65 66 if (!corename) 67 return -ENOMEM; 68 69 if (size > core_name_size) /* racy but harmless */ 70 core_name_size = size; 71 72 cn->size = ksize(corename); 73 cn->corename = corename; 74 return 0; 75 } 76 77 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt, 78 va_list arg) 79 { 80 int free, need; 81 va_list arg_copy; 82 83 again: 84 free = cn->size - cn->used; 85 86 va_copy(arg_copy, arg); 87 need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy); 88 va_end(arg_copy); 89 90 if (need < free) { 91 cn->used += need; 92 return 0; 93 } 94 95 if (!expand_corename(cn, cn->size + need - free + 1)) 96 goto again; 97 98 return -ENOMEM; 99 } 100 101 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...) 102 { 103 va_list arg; 104 int ret; 105 106 va_start(arg, fmt); 107 ret = cn_vprintf(cn, fmt, arg); 108 va_end(arg); 109 110 return ret; 111 } 112 113 static __printf(2, 3) 114 int cn_esc_printf(struct core_name *cn, const char *fmt, ...) 115 { 116 int cur = cn->used; 117 va_list arg; 118 int ret; 119 120 va_start(arg, fmt); 121 ret = cn_vprintf(cn, fmt, arg); 122 va_end(arg); 123 124 if (ret == 0) { 125 /* 126 * Ensure that this coredump name component can't cause the 127 * resulting corefile path to consist of a ".." or ".". 128 */ 129 if ((cn->used - cur == 1 && cn->corename[cur] == '.') || 130 (cn->used - cur == 2 && cn->corename[cur] == '.' 131 && cn->corename[cur+1] == '.')) 132 cn->corename[cur] = '!'; 133 134 /* 135 * Empty names are fishy and could be used to create a "//" in a 136 * corefile name, causing the coredump to happen one directory 137 * level too high. Enforce that all components of the core 138 * pattern are at least one character long. 139 */ 140 if (cn->used == cur) 141 ret = cn_printf(cn, "!"); 142 } 143 144 for (; cur < cn->used; ++cur) { 145 if (cn->corename[cur] == '/') 146 cn->corename[cur] = '!'; 147 } 148 return ret; 149 } 150 151 static int cn_print_exe_file(struct core_name *cn) 152 { 153 struct file *exe_file; 154 char *pathbuf, *path; 155 int ret; 156 157 exe_file = get_mm_exe_file(current->mm); 158 if (!exe_file) 159 return cn_esc_printf(cn, "%s (path unknown)", current->comm); 160 161 pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY); 162 if (!pathbuf) { 163 ret = -ENOMEM; 164 goto put_exe_file; 165 } 166 167 path = file_path(exe_file, pathbuf, PATH_MAX); 168 if (IS_ERR(path)) { 169 ret = PTR_ERR(path); 170 goto free_buf; 171 } 172 173 ret = cn_esc_printf(cn, "%s", path); 174 175 free_buf: 176 kfree(pathbuf); 177 put_exe_file: 178 fput(exe_file); 179 return ret; 180 } 181 182 /* format_corename will inspect the pattern parameter, and output a 183 * name into corename, which must have space for at least 184 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 185 */ 186 static int format_corename(struct core_name *cn, struct coredump_params *cprm) 187 { 188 const struct cred *cred = current_cred(); 189 const char *pat_ptr = core_pattern; 190 int ispipe = (*pat_ptr == '|'); 191 int pid_in_pattern = 0; 192 int err = 0; 193 194 cn->used = 0; 195 cn->corename = NULL; 196 if (expand_corename(cn, core_name_size)) 197 return -ENOMEM; 198 cn->corename[0] = '\0'; 199 200 if (ispipe) 201 ++pat_ptr; 202 203 /* Repeat as long as we have more pattern to process and more output 204 space */ 205 while (*pat_ptr) { 206 if (*pat_ptr != '%') { 207 err = cn_printf(cn, "%c", *pat_ptr++); 208 } else { 209 switch (*++pat_ptr) { 210 /* single % at the end, drop that */ 211 case 0: 212 goto out; 213 /* Double percent, output one percent */ 214 case '%': 215 err = cn_printf(cn, "%c", '%'); 216 break; 217 /* pid */ 218 case 'p': 219 pid_in_pattern = 1; 220 err = cn_printf(cn, "%d", 221 task_tgid_vnr(current)); 222 break; 223 /* global pid */ 224 case 'P': 225 err = cn_printf(cn, "%d", 226 task_tgid_nr(current)); 227 break; 228 case 'i': 229 err = cn_printf(cn, "%d", 230 task_pid_vnr(current)); 231 break; 232 case 'I': 233 err = cn_printf(cn, "%d", 234 task_pid_nr(current)); 235 break; 236 /* uid */ 237 case 'u': 238 err = cn_printf(cn, "%u", 239 from_kuid(&init_user_ns, 240 cred->uid)); 241 break; 242 /* gid */ 243 case 'g': 244 err = cn_printf(cn, "%u", 245 from_kgid(&init_user_ns, 246 cred->gid)); 247 break; 248 case 'd': 249 err = cn_printf(cn, "%d", 250 __get_dumpable(cprm->mm_flags)); 251 break; 252 /* signal that caused the coredump */ 253 case 's': 254 err = cn_printf(cn, "%d", 255 cprm->siginfo->si_signo); 256 break; 257 /* UNIX time of coredump */ 258 case 't': { 259 time64_t time; 260 261 time = ktime_get_real_seconds(); 262 err = cn_printf(cn, "%lld", time); 263 break; 264 } 265 /* hostname */ 266 case 'h': 267 down_read(&uts_sem); 268 err = cn_esc_printf(cn, "%s", 269 utsname()->nodename); 270 up_read(&uts_sem); 271 break; 272 /* executable */ 273 case 'e': 274 err = cn_esc_printf(cn, "%s", current->comm); 275 break; 276 case 'E': 277 err = cn_print_exe_file(cn); 278 break; 279 /* core limit size */ 280 case 'c': 281 err = cn_printf(cn, "%lu", 282 rlimit(RLIMIT_CORE)); 283 break; 284 default: 285 break; 286 } 287 ++pat_ptr; 288 } 289 290 if (err) 291 return err; 292 } 293 294 out: 295 /* Backward compatibility with core_uses_pid: 296 * 297 * If core_pattern does not include a %p (as is the default) 298 * and core_uses_pid is set, then .%pid will be appended to 299 * the filename. Do not do this for piped commands. */ 300 if (!ispipe && !pid_in_pattern && core_uses_pid) { 301 err = cn_printf(cn, ".%d", task_tgid_vnr(current)); 302 if (err) 303 return err; 304 } 305 return ispipe; 306 } 307 308 static int zap_process(struct task_struct *start, int exit_code, int flags) 309 { 310 struct task_struct *t; 311 int nr = 0; 312 313 /* ignore all signals except SIGKILL, see prepare_signal() */ 314 start->signal->flags = SIGNAL_GROUP_COREDUMP | flags; 315 start->signal->group_exit_code = exit_code; 316 start->signal->group_stop_count = 0; 317 318 for_each_thread(start, t) { 319 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 320 if (t != current && t->mm) { 321 sigaddset(&t->pending.signal, SIGKILL); 322 signal_wake_up(t, 1); 323 nr++; 324 } 325 } 326 327 return nr; 328 } 329 330 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 331 struct core_state *core_state, int exit_code) 332 { 333 struct task_struct *g, *p; 334 unsigned long flags; 335 int nr = -EAGAIN; 336 337 spin_lock_irq(&tsk->sighand->siglock); 338 if (!signal_group_exit(tsk->signal)) { 339 mm->core_state = core_state; 340 tsk->signal->group_exit_task = tsk; 341 nr = zap_process(tsk, exit_code, 0); 342 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 343 } 344 spin_unlock_irq(&tsk->sighand->siglock); 345 if (unlikely(nr < 0)) 346 return nr; 347 348 tsk->flags |= PF_DUMPCORE; 349 if (atomic_read(&mm->mm_users) == nr + 1) 350 goto done; 351 /* 352 * We should find and kill all tasks which use this mm, and we should 353 * count them correctly into ->nr_threads. We don't take tasklist 354 * lock, but this is safe wrt: 355 * 356 * fork: 357 * None of sub-threads can fork after zap_process(leader). All 358 * processes which were created before this point should be 359 * visible to zap_threads() because copy_process() adds the new 360 * process to the tail of init_task.tasks list, and lock/unlock 361 * of ->siglock provides a memory barrier. 362 * 363 * do_exit: 364 * The caller holds mm->mmap_sem. This means that the task which 365 * uses this mm can't pass exit_mm(), so it can't exit or clear 366 * its ->mm. 367 * 368 * de_thread: 369 * It does list_replace_rcu(&leader->tasks, ¤t->tasks), 370 * we must see either old or new leader, this does not matter. 371 * However, it can change p->sighand, so lock_task_sighand(p) 372 * must be used. Since p->mm != NULL and we hold ->mmap_sem 373 * it can't fail. 374 * 375 * Note also that "g" can be the old leader with ->mm == NULL 376 * and already unhashed and thus removed from ->thread_group. 377 * This is OK, __unhash_process()->list_del_rcu() does not 378 * clear the ->next pointer, we will find the new leader via 379 * next_thread(). 380 */ 381 rcu_read_lock(); 382 for_each_process(g) { 383 if (g == tsk->group_leader) 384 continue; 385 if (g->flags & PF_KTHREAD) 386 continue; 387 388 for_each_thread(g, p) { 389 if (unlikely(!p->mm)) 390 continue; 391 if (unlikely(p->mm == mm)) { 392 lock_task_sighand(p, &flags); 393 nr += zap_process(p, exit_code, 394 SIGNAL_GROUP_EXIT); 395 unlock_task_sighand(p, &flags); 396 } 397 break; 398 } 399 } 400 rcu_read_unlock(); 401 done: 402 atomic_set(&core_state->nr_threads, nr); 403 return nr; 404 } 405 406 static int coredump_wait(int exit_code, struct core_state *core_state) 407 { 408 struct task_struct *tsk = current; 409 struct mm_struct *mm = tsk->mm; 410 int core_waiters = -EBUSY; 411 412 init_completion(&core_state->startup); 413 core_state->dumper.task = tsk; 414 core_state->dumper.next = NULL; 415 416 down_write(&mm->mmap_sem); 417 if (!mm->core_state) 418 core_waiters = zap_threads(tsk, mm, core_state, exit_code); 419 up_write(&mm->mmap_sem); 420 421 if (core_waiters > 0) { 422 struct core_thread *ptr; 423 424 wait_for_completion(&core_state->startup); 425 /* 426 * Wait for all the threads to become inactive, so that 427 * all the thread context (extended register state, like 428 * fpu etc) gets copied to the memory. 429 */ 430 ptr = core_state->dumper.next; 431 while (ptr != NULL) { 432 wait_task_inactive(ptr->task, 0); 433 ptr = ptr->next; 434 } 435 } 436 437 return core_waiters; 438 } 439 440 static void coredump_finish(struct mm_struct *mm, bool core_dumped) 441 { 442 struct core_thread *curr, *next; 443 struct task_struct *task; 444 445 spin_lock_irq(¤t->sighand->siglock); 446 if (core_dumped && !__fatal_signal_pending(current)) 447 current->signal->group_exit_code |= 0x80; 448 current->signal->group_exit_task = NULL; 449 current->signal->flags = SIGNAL_GROUP_EXIT; 450 spin_unlock_irq(¤t->sighand->siglock); 451 452 next = mm->core_state->dumper.next; 453 while ((curr = next) != NULL) { 454 next = curr->next; 455 task = curr->task; 456 /* 457 * see exit_mm(), curr->task must not see 458 * ->task == NULL before we read ->next. 459 */ 460 smp_mb(); 461 curr->task = NULL; 462 wake_up_process(task); 463 } 464 465 mm->core_state = NULL; 466 } 467 468 static bool dump_interrupted(void) 469 { 470 /* 471 * SIGKILL or freezing() interrupt the coredumping. Perhaps we 472 * can do try_to_freeze() and check __fatal_signal_pending(), 473 * but then we need to teach dump_write() to restart and clear 474 * TIF_SIGPENDING. 475 */ 476 return signal_pending(current); 477 } 478 479 static void wait_for_dump_helpers(struct file *file) 480 { 481 struct pipe_inode_info *pipe = file->private_data; 482 483 pipe_lock(pipe); 484 pipe->readers++; 485 pipe->writers--; 486 wake_up_interruptible_sync(&pipe->wait); 487 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 488 pipe_unlock(pipe); 489 490 /* 491 * We actually want wait_event_freezable() but then we need 492 * to clear TIF_SIGPENDING and improve dump_interrupted(). 493 */ 494 wait_event_interruptible(pipe->wait, pipe->readers == 1); 495 496 pipe_lock(pipe); 497 pipe->readers--; 498 pipe->writers++; 499 pipe_unlock(pipe); 500 } 501 502 /* 503 * umh_pipe_setup 504 * helper function to customize the process used 505 * to collect the core in userspace. Specifically 506 * it sets up a pipe and installs it as fd 0 (stdin) 507 * for the process. Returns 0 on success, or 508 * PTR_ERR on failure. 509 * Note that it also sets the core limit to 1. This 510 * is a special value that we use to trap recursive 511 * core dumps 512 */ 513 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new) 514 { 515 struct file *files[2]; 516 struct coredump_params *cp = (struct coredump_params *)info->data; 517 int err = create_pipe_files(files, 0); 518 if (err) 519 return err; 520 521 cp->file = files[1]; 522 523 err = replace_fd(0, files[0], 0); 524 fput(files[0]); 525 /* and disallow core files too */ 526 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; 527 528 return err; 529 } 530 531 void do_coredump(const siginfo_t *siginfo) 532 { 533 struct core_state core_state; 534 struct core_name cn; 535 struct mm_struct *mm = current->mm; 536 struct linux_binfmt * binfmt; 537 const struct cred *old_cred; 538 struct cred *cred; 539 int retval = 0; 540 int ispipe; 541 struct files_struct *displaced; 542 /* require nonrelative corefile path and be extra careful */ 543 bool need_suid_safe = false; 544 bool core_dumped = false; 545 static atomic_t core_dump_count = ATOMIC_INIT(0); 546 struct coredump_params cprm = { 547 .siginfo = siginfo, 548 .regs = signal_pt_regs(), 549 .limit = rlimit(RLIMIT_CORE), 550 /* 551 * We must use the same mm->flags while dumping core to avoid 552 * inconsistency of bit flags, since this flag is not protected 553 * by any locks. 554 */ 555 .mm_flags = mm->flags, 556 }; 557 558 audit_core_dumps(siginfo->si_signo); 559 560 binfmt = mm->binfmt; 561 if (!binfmt || !binfmt->core_dump) 562 goto fail; 563 if (!__get_dumpable(cprm.mm_flags)) 564 goto fail; 565 566 cred = prepare_creds(); 567 if (!cred) 568 goto fail; 569 /* 570 * We cannot trust fsuid as being the "true" uid of the process 571 * nor do we know its entire history. We only know it was tainted 572 * so we dump it as root in mode 2, and only into a controlled 573 * environment (pipe handler or fully qualified path). 574 */ 575 if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) { 576 /* Setuid core dump mode */ 577 cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */ 578 need_suid_safe = true; 579 } 580 581 retval = coredump_wait(siginfo->si_signo, &core_state); 582 if (retval < 0) 583 goto fail_creds; 584 585 old_cred = override_creds(cred); 586 587 ispipe = format_corename(&cn, &cprm); 588 589 if (ispipe) { 590 int dump_count; 591 char **helper_argv; 592 struct subprocess_info *sub_info; 593 594 if (ispipe < 0) { 595 printk(KERN_WARNING "format_corename failed\n"); 596 printk(KERN_WARNING "Aborting core\n"); 597 goto fail_unlock; 598 } 599 600 if (cprm.limit == 1) { 601 /* See umh_pipe_setup() which sets RLIMIT_CORE = 1. 602 * 603 * Normally core limits are irrelevant to pipes, since 604 * we're not writing to the file system, but we use 605 * cprm.limit of 1 here as a special value, this is a 606 * consistent way to catch recursive crashes. 607 * We can still crash if the core_pattern binary sets 608 * RLIM_CORE = !1, but it runs as root, and can do 609 * lots of stupid things. 610 * 611 * Note that we use task_tgid_vnr here to grab the pid 612 * of the process group leader. That way we get the 613 * right pid if a thread in a multi-threaded 614 * core_pattern process dies. 615 */ 616 printk(KERN_WARNING 617 "Process %d(%s) has RLIMIT_CORE set to 1\n", 618 task_tgid_vnr(current), current->comm); 619 printk(KERN_WARNING "Aborting core\n"); 620 goto fail_unlock; 621 } 622 cprm.limit = RLIM_INFINITY; 623 624 dump_count = atomic_inc_return(&core_dump_count); 625 if (core_pipe_limit && (core_pipe_limit < dump_count)) { 626 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", 627 task_tgid_vnr(current), current->comm); 628 printk(KERN_WARNING "Skipping core dump\n"); 629 goto fail_dropcount; 630 } 631 632 helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL); 633 if (!helper_argv) { 634 printk(KERN_WARNING "%s failed to allocate memory\n", 635 __func__); 636 goto fail_dropcount; 637 } 638 639 retval = -ENOMEM; 640 sub_info = call_usermodehelper_setup(helper_argv[0], 641 helper_argv, NULL, GFP_KERNEL, 642 umh_pipe_setup, NULL, &cprm); 643 if (sub_info) 644 retval = call_usermodehelper_exec(sub_info, 645 UMH_WAIT_EXEC); 646 647 argv_free(helper_argv); 648 if (retval) { 649 printk(KERN_INFO "Core dump to |%s pipe failed\n", 650 cn.corename); 651 goto close_fail; 652 } 653 } else { 654 struct inode *inode; 655 int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW | 656 O_LARGEFILE | O_EXCL; 657 658 if (cprm.limit < binfmt->min_coredump) 659 goto fail_unlock; 660 661 if (need_suid_safe && cn.corename[0] != '/') { 662 printk(KERN_WARNING "Pid %d(%s) can only dump core "\ 663 "to fully qualified path!\n", 664 task_tgid_vnr(current), current->comm); 665 printk(KERN_WARNING "Skipping core dump\n"); 666 goto fail_unlock; 667 } 668 669 /* 670 * Unlink the file if it exists unless this is a SUID 671 * binary - in that case, we're running around with root 672 * privs and don't want to unlink another user's coredump. 673 */ 674 if (!need_suid_safe) { 675 mm_segment_t old_fs; 676 677 old_fs = get_fs(); 678 set_fs(KERNEL_DS); 679 /* 680 * If it doesn't exist, that's fine. If there's some 681 * other problem, we'll catch it at the filp_open(). 682 */ 683 (void) sys_unlink((const char __user *)cn.corename); 684 set_fs(old_fs); 685 } 686 687 /* 688 * There is a race between unlinking and creating the 689 * file, but if that causes an EEXIST here, that's 690 * fine - another process raced with us while creating 691 * the corefile, and the other process won. To userspace, 692 * what matters is that at least one of the two processes 693 * writes its coredump successfully, not which one. 694 */ 695 if (need_suid_safe) { 696 /* 697 * Using user namespaces, normal user tasks can change 698 * their current->fs->root to point to arbitrary 699 * directories. Since the intention of the "only dump 700 * with a fully qualified path" rule is to control where 701 * coredumps may be placed using root privileges, 702 * current->fs->root must not be used. Instead, use the 703 * root directory of init_task. 704 */ 705 struct path root; 706 707 task_lock(&init_task); 708 get_fs_root(init_task.fs, &root); 709 task_unlock(&init_task); 710 cprm.file = file_open_root(root.dentry, root.mnt, 711 cn.corename, open_flags, 0600); 712 path_put(&root); 713 } else { 714 cprm.file = filp_open(cn.corename, open_flags, 0600); 715 } 716 if (IS_ERR(cprm.file)) 717 goto fail_unlock; 718 719 inode = file_inode(cprm.file); 720 if (inode->i_nlink > 1) 721 goto close_fail; 722 if (d_unhashed(cprm.file->f_path.dentry)) 723 goto close_fail; 724 /* 725 * AK: actually i see no reason to not allow this for named 726 * pipes etc, but keep the previous behaviour for now. 727 */ 728 if (!S_ISREG(inode->i_mode)) 729 goto close_fail; 730 /* 731 * Don't dump core if the filesystem changed owner or mode 732 * of the file during file creation. This is an issue when 733 * a process dumps core while its cwd is e.g. on a vfat 734 * filesystem. 735 */ 736 if (!uid_eq(inode->i_uid, current_fsuid())) 737 goto close_fail; 738 if ((inode->i_mode & 0677) != 0600) 739 goto close_fail; 740 if (!(cprm.file->f_mode & FMODE_CAN_WRITE)) 741 goto close_fail; 742 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file)) 743 goto close_fail; 744 } 745 746 /* get us an unshared descriptor table; almost always a no-op */ 747 retval = unshare_files(&displaced); 748 if (retval) 749 goto close_fail; 750 if (displaced) 751 put_files_struct(displaced); 752 if (!dump_interrupted()) { 753 file_start_write(cprm.file); 754 core_dumped = binfmt->core_dump(&cprm); 755 file_end_write(cprm.file); 756 } 757 if (ispipe && core_pipe_limit) 758 wait_for_dump_helpers(cprm.file); 759 close_fail: 760 if (cprm.file) 761 filp_close(cprm.file, NULL); 762 fail_dropcount: 763 if (ispipe) 764 atomic_dec(&core_dump_count); 765 fail_unlock: 766 kfree(cn.corename); 767 coredump_finish(mm, core_dumped); 768 revert_creds(old_cred); 769 fail_creds: 770 put_cred(cred); 771 fail: 772 return; 773 } 774 775 /* 776 * Core dumping helper functions. These are the only things you should 777 * do on a core-file: use only these functions to write out all the 778 * necessary info. 779 */ 780 int dump_emit(struct coredump_params *cprm, const void *addr, int nr) 781 { 782 struct file *file = cprm->file; 783 loff_t pos = file->f_pos; 784 ssize_t n; 785 if (cprm->written + nr > cprm->limit) 786 return 0; 787 while (nr) { 788 if (dump_interrupted()) 789 return 0; 790 n = __kernel_write(file, addr, nr, &pos); 791 if (n <= 0) 792 return 0; 793 file->f_pos = pos; 794 cprm->written += n; 795 nr -= n; 796 } 797 return 1; 798 } 799 EXPORT_SYMBOL(dump_emit); 800 801 int dump_skip(struct coredump_params *cprm, size_t nr) 802 { 803 static char zeroes[PAGE_SIZE]; 804 struct file *file = cprm->file; 805 if (file->f_op->llseek && file->f_op->llseek != no_llseek) { 806 if (cprm->written + nr > cprm->limit) 807 return 0; 808 if (dump_interrupted() || 809 file->f_op->llseek(file, nr, SEEK_CUR) < 0) 810 return 0; 811 cprm->written += nr; 812 return 1; 813 } else { 814 while (nr > PAGE_SIZE) { 815 if (!dump_emit(cprm, zeroes, PAGE_SIZE)) 816 return 0; 817 nr -= PAGE_SIZE; 818 } 819 return dump_emit(cprm, zeroes, nr); 820 } 821 } 822 EXPORT_SYMBOL(dump_skip); 823 824 int dump_align(struct coredump_params *cprm, int align) 825 { 826 unsigned mod = cprm->written & (align - 1); 827 if (align & (align - 1)) 828 return 0; 829 return mod ? dump_skip(cprm, align - mod) : 1; 830 } 831 EXPORT_SYMBOL(dump_align); 832