xref: /linux/fs/coredump.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35 #include <linux/sched.h>
36 #include <linux/fs.h>
37 #include <linux/path.h>
38 #include <linux/timekeeping.h>
39 
40 #include <asm/uaccess.h>
41 #include <asm/mmu_context.h>
42 #include <asm/tlb.h>
43 #include <asm/exec.h>
44 
45 #include <trace/events/task.h>
46 #include "internal.h"
47 
48 #include <trace/events/sched.h>
49 
50 int core_uses_pid;
51 unsigned int core_pipe_limit;
52 char core_pattern[CORENAME_MAX_SIZE] = "core";
53 static int core_name_size = CORENAME_MAX_SIZE;
54 
55 struct core_name {
56 	char *corename;
57 	int used, size;
58 };
59 
60 /* The maximal length of core_pattern is also specified in sysctl.c */
61 
62 static int expand_corename(struct core_name *cn, int size)
63 {
64 	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
65 
66 	if (!corename)
67 		return -ENOMEM;
68 
69 	if (size > core_name_size) /* racy but harmless */
70 		core_name_size = size;
71 
72 	cn->size = ksize(corename);
73 	cn->corename = corename;
74 	return 0;
75 }
76 
77 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
78 				     va_list arg)
79 {
80 	int free, need;
81 	va_list arg_copy;
82 
83 again:
84 	free = cn->size - cn->used;
85 
86 	va_copy(arg_copy, arg);
87 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
88 	va_end(arg_copy);
89 
90 	if (need < free) {
91 		cn->used += need;
92 		return 0;
93 	}
94 
95 	if (!expand_corename(cn, cn->size + need - free + 1))
96 		goto again;
97 
98 	return -ENOMEM;
99 }
100 
101 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
102 {
103 	va_list arg;
104 	int ret;
105 
106 	va_start(arg, fmt);
107 	ret = cn_vprintf(cn, fmt, arg);
108 	va_end(arg);
109 
110 	return ret;
111 }
112 
113 static __printf(2, 3)
114 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
115 {
116 	int cur = cn->used;
117 	va_list arg;
118 	int ret;
119 
120 	va_start(arg, fmt);
121 	ret = cn_vprintf(cn, fmt, arg);
122 	va_end(arg);
123 
124 	if (ret == 0) {
125 		/*
126 		 * Ensure that this coredump name component can't cause the
127 		 * resulting corefile path to consist of a ".." or ".".
128 		 */
129 		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
130 				(cn->used - cur == 2 && cn->corename[cur] == '.'
131 				&& cn->corename[cur+1] == '.'))
132 			cn->corename[cur] = '!';
133 
134 		/*
135 		 * Empty names are fishy and could be used to create a "//" in a
136 		 * corefile name, causing the coredump to happen one directory
137 		 * level too high. Enforce that all components of the core
138 		 * pattern are at least one character long.
139 		 */
140 		if (cn->used == cur)
141 			ret = cn_printf(cn, "!");
142 	}
143 
144 	for (; cur < cn->used; ++cur) {
145 		if (cn->corename[cur] == '/')
146 			cn->corename[cur] = '!';
147 	}
148 	return ret;
149 }
150 
151 static int cn_print_exe_file(struct core_name *cn)
152 {
153 	struct file *exe_file;
154 	char *pathbuf, *path;
155 	int ret;
156 
157 	exe_file = get_mm_exe_file(current->mm);
158 	if (!exe_file)
159 		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
160 
161 	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
162 	if (!pathbuf) {
163 		ret = -ENOMEM;
164 		goto put_exe_file;
165 	}
166 
167 	path = file_path(exe_file, pathbuf, PATH_MAX);
168 	if (IS_ERR(path)) {
169 		ret = PTR_ERR(path);
170 		goto free_buf;
171 	}
172 
173 	ret = cn_esc_printf(cn, "%s", path);
174 
175 free_buf:
176 	kfree(pathbuf);
177 put_exe_file:
178 	fput(exe_file);
179 	return ret;
180 }
181 
182 /* format_corename will inspect the pattern parameter, and output a
183  * name into corename, which must have space for at least
184  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
185  */
186 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
187 {
188 	const struct cred *cred = current_cred();
189 	const char *pat_ptr = core_pattern;
190 	int ispipe = (*pat_ptr == '|');
191 	int pid_in_pattern = 0;
192 	int err = 0;
193 
194 	cn->used = 0;
195 	cn->corename = NULL;
196 	if (expand_corename(cn, core_name_size))
197 		return -ENOMEM;
198 	cn->corename[0] = '\0';
199 
200 	if (ispipe)
201 		++pat_ptr;
202 
203 	/* Repeat as long as we have more pattern to process and more output
204 	   space */
205 	while (*pat_ptr) {
206 		if (*pat_ptr != '%') {
207 			err = cn_printf(cn, "%c", *pat_ptr++);
208 		} else {
209 			switch (*++pat_ptr) {
210 			/* single % at the end, drop that */
211 			case 0:
212 				goto out;
213 			/* Double percent, output one percent */
214 			case '%':
215 				err = cn_printf(cn, "%c", '%');
216 				break;
217 			/* pid */
218 			case 'p':
219 				pid_in_pattern = 1;
220 				err = cn_printf(cn, "%d",
221 					      task_tgid_vnr(current));
222 				break;
223 			/* global pid */
224 			case 'P':
225 				err = cn_printf(cn, "%d",
226 					      task_tgid_nr(current));
227 				break;
228 			case 'i':
229 				err = cn_printf(cn, "%d",
230 					      task_pid_vnr(current));
231 				break;
232 			case 'I':
233 				err = cn_printf(cn, "%d",
234 					      task_pid_nr(current));
235 				break;
236 			/* uid */
237 			case 'u':
238 				err = cn_printf(cn, "%u",
239 						from_kuid(&init_user_ns,
240 							  cred->uid));
241 				break;
242 			/* gid */
243 			case 'g':
244 				err = cn_printf(cn, "%u",
245 						from_kgid(&init_user_ns,
246 							  cred->gid));
247 				break;
248 			case 'd':
249 				err = cn_printf(cn, "%d",
250 					__get_dumpable(cprm->mm_flags));
251 				break;
252 			/* signal that caused the coredump */
253 			case 's':
254 				err = cn_printf(cn, "%d",
255 						cprm->siginfo->si_signo);
256 				break;
257 			/* UNIX time of coredump */
258 			case 't': {
259 				time64_t time;
260 
261 				time = ktime_get_real_seconds();
262 				err = cn_printf(cn, "%lld", time);
263 				break;
264 			}
265 			/* hostname */
266 			case 'h':
267 				down_read(&uts_sem);
268 				err = cn_esc_printf(cn, "%s",
269 					      utsname()->nodename);
270 				up_read(&uts_sem);
271 				break;
272 			/* executable */
273 			case 'e':
274 				err = cn_esc_printf(cn, "%s", current->comm);
275 				break;
276 			case 'E':
277 				err = cn_print_exe_file(cn);
278 				break;
279 			/* core limit size */
280 			case 'c':
281 				err = cn_printf(cn, "%lu",
282 					      rlimit(RLIMIT_CORE));
283 				break;
284 			default:
285 				break;
286 			}
287 			++pat_ptr;
288 		}
289 
290 		if (err)
291 			return err;
292 	}
293 
294 out:
295 	/* Backward compatibility with core_uses_pid:
296 	 *
297 	 * If core_pattern does not include a %p (as is the default)
298 	 * and core_uses_pid is set, then .%pid will be appended to
299 	 * the filename. Do not do this for piped commands. */
300 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
301 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
302 		if (err)
303 			return err;
304 	}
305 	return ispipe;
306 }
307 
308 static int zap_process(struct task_struct *start, int exit_code, int flags)
309 {
310 	struct task_struct *t;
311 	int nr = 0;
312 
313 	/* ignore all signals except SIGKILL, see prepare_signal() */
314 	start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
315 	start->signal->group_exit_code = exit_code;
316 	start->signal->group_stop_count = 0;
317 
318 	for_each_thread(start, t) {
319 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
320 		if (t != current && t->mm) {
321 			sigaddset(&t->pending.signal, SIGKILL);
322 			signal_wake_up(t, 1);
323 			nr++;
324 		}
325 	}
326 
327 	return nr;
328 }
329 
330 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
331 			struct core_state *core_state, int exit_code)
332 {
333 	struct task_struct *g, *p;
334 	unsigned long flags;
335 	int nr = -EAGAIN;
336 
337 	spin_lock_irq(&tsk->sighand->siglock);
338 	if (!signal_group_exit(tsk->signal)) {
339 		mm->core_state = core_state;
340 		tsk->signal->group_exit_task = tsk;
341 		nr = zap_process(tsk, exit_code, 0);
342 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
343 	}
344 	spin_unlock_irq(&tsk->sighand->siglock);
345 	if (unlikely(nr < 0))
346 		return nr;
347 
348 	tsk->flags |= PF_DUMPCORE;
349 	if (atomic_read(&mm->mm_users) == nr + 1)
350 		goto done;
351 	/*
352 	 * We should find and kill all tasks which use this mm, and we should
353 	 * count them correctly into ->nr_threads. We don't take tasklist
354 	 * lock, but this is safe wrt:
355 	 *
356 	 * fork:
357 	 *	None of sub-threads can fork after zap_process(leader). All
358 	 *	processes which were created before this point should be
359 	 *	visible to zap_threads() because copy_process() adds the new
360 	 *	process to the tail of init_task.tasks list, and lock/unlock
361 	 *	of ->siglock provides a memory barrier.
362 	 *
363 	 * do_exit:
364 	 *	The caller holds mm->mmap_sem. This means that the task which
365 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
366 	 *	its ->mm.
367 	 *
368 	 * de_thread:
369 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
370 	 *	we must see either old or new leader, this does not matter.
371 	 *	However, it can change p->sighand, so lock_task_sighand(p)
372 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
373 	 *	it can't fail.
374 	 *
375 	 *	Note also that "g" can be the old leader with ->mm == NULL
376 	 *	and already unhashed and thus removed from ->thread_group.
377 	 *	This is OK, __unhash_process()->list_del_rcu() does not
378 	 *	clear the ->next pointer, we will find the new leader via
379 	 *	next_thread().
380 	 */
381 	rcu_read_lock();
382 	for_each_process(g) {
383 		if (g == tsk->group_leader)
384 			continue;
385 		if (g->flags & PF_KTHREAD)
386 			continue;
387 
388 		for_each_thread(g, p) {
389 			if (unlikely(!p->mm))
390 				continue;
391 			if (unlikely(p->mm == mm)) {
392 				lock_task_sighand(p, &flags);
393 				nr += zap_process(p, exit_code,
394 							SIGNAL_GROUP_EXIT);
395 				unlock_task_sighand(p, &flags);
396 			}
397 			break;
398 		}
399 	}
400 	rcu_read_unlock();
401 done:
402 	atomic_set(&core_state->nr_threads, nr);
403 	return nr;
404 }
405 
406 static int coredump_wait(int exit_code, struct core_state *core_state)
407 {
408 	struct task_struct *tsk = current;
409 	struct mm_struct *mm = tsk->mm;
410 	int core_waiters = -EBUSY;
411 
412 	init_completion(&core_state->startup);
413 	core_state->dumper.task = tsk;
414 	core_state->dumper.next = NULL;
415 
416 	down_write(&mm->mmap_sem);
417 	if (!mm->core_state)
418 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
419 	up_write(&mm->mmap_sem);
420 
421 	if (core_waiters > 0) {
422 		struct core_thread *ptr;
423 
424 		wait_for_completion(&core_state->startup);
425 		/*
426 		 * Wait for all the threads to become inactive, so that
427 		 * all the thread context (extended register state, like
428 		 * fpu etc) gets copied to the memory.
429 		 */
430 		ptr = core_state->dumper.next;
431 		while (ptr != NULL) {
432 			wait_task_inactive(ptr->task, 0);
433 			ptr = ptr->next;
434 		}
435 	}
436 
437 	return core_waiters;
438 }
439 
440 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
441 {
442 	struct core_thread *curr, *next;
443 	struct task_struct *task;
444 
445 	spin_lock_irq(&current->sighand->siglock);
446 	if (core_dumped && !__fatal_signal_pending(current))
447 		current->signal->group_exit_code |= 0x80;
448 	current->signal->group_exit_task = NULL;
449 	current->signal->flags = SIGNAL_GROUP_EXIT;
450 	spin_unlock_irq(&current->sighand->siglock);
451 
452 	next = mm->core_state->dumper.next;
453 	while ((curr = next) != NULL) {
454 		next = curr->next;
455 		task = curr->task;
456 		/*
457 		 * see exit_mm(), curr->task must not see
458 		 * ->task == NULL before we read ->next.
459 		 */
460 		smp_mb();
461 		curr->task = NULL;
462 		wake_up_process(task);
463 	}
464 
465 	mm->core_state = NULL;
466 }
467 
468 static bool dump_interrupted(void)
469 {
470 	/*
471 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
472 	 * can do try_to_freeze() and check __fatal_signal_pending(),
473 	 * but then we need to teach dump_write() to restart and clear
474 	 * TIF_SIGPENDING.
475 	 */
476 	return signal_pending(current);
477 }
478 
479 static void wait_for_dump_helpers(struct file *file)
480 {
481 	struct pipe_inode_info *pipe = file->private_data;
482 
483 	pipe_lock(pipe);
484 	pipe->readers++;
485 	pipe->writers--;
486 	wake_up_interruptible_sync(&pipe->wait);
487 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
488 	pipe_unlock(pipe);
489 
490 	/*
491 	 * We actually want wait_event_freezable() but then we need
492 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
493 	 */
494 	wait_event_interruptible(pipe->wait, pipe->readers == 1);
495 
496 	pipe_lock(pipe);
497 	pipe->readers--;
498 	pipe->writers++;
499 	pipe_unlock(pipe);
500 }
501 
502 /*
503  * umh_pipe_setup
504  * helper function to customize the process used
505  * to collect the core in userspace.  Specifically
506  * it sets up a pipe and installs it as fd 0 (stdin)
507  * for the process.  Returns 0 on success, or
508  * PTR_ERR on failure.
509  * Note that it also sets the core limit to 1.  This
510  * is a special value that we use to trap recursive
511  * core dumps
512  */
513 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
514 {
515 	struct file *files[2];
516 	struct coredump_params *cp = (struct coredump_params *)info->data;
517 	int err = create_pipe_files(files, 0);
518 	if (err)
519 		return err;
520 
521 	cp->file = files[1];
522 
523 	err = replace_fd(0, files[0], 0);
524 	fput(files[0]);
525 	/* and disallow core files too */
526 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
527 
528 	return err;
529 }
530 
531 void do_coredump(const siginfo_t *siginfo)
532 {
533 	struct core_state core_state;
534 	struct core_name cn;
535 	struct mm_struct *mm = current->mm;
536 	struct linux_binfmt * binfmt;
537 	const struct cred *old_cred;
538 	struct cred *cred;
539 	int retval = 0;
540 	int ispipe;
541 	struct files_struct *displaced;
542 	/* require nonrelative corefile path and be extra careful */
543 	bool need_suid_safe = false;
544 	bool core_dumped = false;
545 	static atomic_t core_dump_count = ATOMIC_INIT(0);
546 	struct coredump_params cprm = {
547 		.siginfo = siginfo,
548 		.regs = signal_pt_regs(),
549 		.limit = rlimit(RLIMIT_CORE),
550 		/*
551 		 * We must use the same mm->flags while dumping core to avoid
552 		 * inconsistency of bit flags, since this flag is not protected
553 		 * by any locks.
554 		 */
555 		.mm_flags = mm->flags,
556 	};
557 
558 	audit_core_dumps(siginfo->si_signo);
559 
560 	binfmt = mm->binfmt;
561 	if (!binfmt || !binfmt->core_dump)
562 		goto fail;
563 	if (!__get_dumpable(cprm.mm_flags))
564 		goto fail;
565 
566 	cred = prepare_creds();
567 	if (!cred)
568 		goto fail;
569 	/*
570 	 * We cannot trust fsuid as being the "true" uid of the process
571 	 * nor do we know its entire history. We only know it was tainted
572 	 * so we dump it as root in mode 2, and only into a controlled
573 	 * environment (pipe handler or fully qualified path).
574 	 */
575 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
576 		/* Setuid core dump mode */
577 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
578 		need_suid_safe = true;
579 	}
580 
581 	retval = coredump_wait(siginfo->si_signo, &core_state);
582 	if (retval < 0)
583 		goto fail_creds;
584 
585 	old_cred = override_creds(cred);
586 
587 	ispipe = format_corename(&cn, &cprm);
588 
589 	if (ispipe) {
590 		int dump_count;
591 		char **helper_argv;
592 		struct subprocess_info *sub_info;
593 
594 		if (ispipe < 0) {
595 			printk(KERN_WARNING "format_corename failed\n");
596 			printk(KERN_WARNING "Aborting core\n");
597 			goto fail_unlock;
598 		}
599 
600 		if (cprm.limit == 1) {
601 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
602 			 *
603 			 * Normally core limits are irrelevant to pipes, since
604 			 * we're not writing to the file system, but we use
605 			 * cprm.limit of 1 here as a special value, this is a
606 			 * consistent way to catch recursive crashes.
607 			 * We can still crash if the core_pattern binary sets
608 			 * RLIM_CORE = !1, but it runs as root, and can do
609 			 * lots of stupid things.
610 			 *
611 			 * Note that we use task_tgid_vnr here to grab the pid
612 			 * of the process group leader.  That way we get the
613 			 * right pid if a thread in a multi-threaded
614 			 * core_pattern process dies.
615 			 */
616 			printk(KERN_WARNING
617 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
618 				task_tgid_vnr(current), current->comm);
619 			printk(KERN_WARNING "Aborting core\n");
620 			goto fail_unlock;
621 		}
622 		cprm.limit = RLIM_INFINITY;
623 
624 		dump_count = atomic_inc_return(&core_dump_count);
625 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
626 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
627 			       task_tgid_vnr(current), current->comm);
628 			printk(KERN_WARNING "Skipping core dump\n");
629 			goto fail_dropcount;
630 		}
631 
632 		helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
633 		if (!helper_argv) {
634 			printk(KERN_WARNING "%s failed to allocate memory\n",
635 			       __func__);
636 			goto fail_dropcount;
637 		}
638 
639 		retval = -ENOMEM;
640 		sub_info = call_usermodehelper_setup(helper_argv[0],
641 						helper_argv, NULL, GFP_KERNEL,
642 						umh_pipe_setup, NULL, &cprm);
643 		if (sub_info)
644 			retval = call_usermodehelper_exec(sub_info,
645 							  UMH_WAIT_EXEC);
646 
647 		argv_free(helper_argv);
648 		if (retval) {
649 			printk(KERN_INFO "Core dump to |%s pipe failed\n",
650 			       cn.corename);
651 			goto close_fail;
652 		}
653 	} else {
654 		struct inode *inode;
655 		int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
656 				 O_LARGEFILE | O_EXCL;
657 
658 		if (cprm.limit < binfmt->min_coredump)
659 			goto fail_unlock;
660 
661 		if (need_suid_safe && cn.corename[0] != '/') {
662 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
663 				"to fully qualified path!\n",
664 				task_tgid_vnr(current), current->comm);
665 			printk(KERN_WARNING "Skipping core dump\n");
666 			goto fail_unlock;
667 		}
668 
669 		/*
670 		 * Unlink the file if it exists unless this is a SUID
671 		 * binary - in that case, we're running around with root
672 		 * privs and don't want to unlink another user's coredump.
673 		 */
674 		if (!need_suid_safe) {
675 			mm_segment_t old_fs;
676 
677 			old_fs = get_fs();
678 			set_fs(KERNEL_DS);
679 			/*
680 			 * If it doesn't exist, that's fine. If there's some
681 			 * other problem, we'll catch it at the filp_open().
682 			 */
683 			(void) sys_unlink((const char __user *)cn.corename);
684 			set_fs(old_fs);
685 		}
686 
687 		/*
688 		 * There is a race between unlinking and creating the
689 		 * file, but if that causes an EEXIST here, that's
690 		 * fine - another process raced with us while creating
691 		 * the corefile, and the other process won. To userspace,
692 		 * what matters is that at least one of the two processes
693 		 * writes its coredump successfully, not which one.
694 		 */
695 		if (need_suid_safe) {
696 			/*
697 			 * Using user namespaces, normal user tasks can change
698 			 * their current->fs->root to point to arbitrary
699 			 * directories. Since the intention of the "only dump
700 			 * with a fully qualified path" rule is to control where
701 			 * coredumps may be placed using root privileges,
702 			 * current->fs->root must not be used. Instead, use the
703 			 * root directory of init_task.
704 			 */
705 			struct path root;
706 
707 			task_lock(&init_task);
708 			get_fs_root(init_task.fs, &root);
709 			task_unlock(&init_task);
710 			cprm.file = file_open_root(root.dentry, root.mnt,
711 				cn.corename, open_flags, 0600);
712 			path_put(&root);
713 		} else {
714 			cprm.file = filp_open(cn.corename, open_flags, 0600);
715 		}
716 		if (IS_ERR(cprm.file))
717 			goto fail_unlock;
718 
719 		inode = file_inode(cprm.file);
720 		if (inode->i_nlink > 1)
721 			goto close_fail;
722 		if (d_unhashed(cprm.file->f_path.dentry))
723 			goto close_fail;
724 		/*
725 		 * AK: actually i see no reason to not allow this for named
726 		 * pipes etc, but keep the previous behaviour for now.
727 		 */
728 		if (!S_ISREG(inode->i_mode))
729 			goto close_fail;
730 		/*
731 		 * Don't dump core if the filesystem changed owner or mode
732 		 * of the file during file creation. This is an issue when
733 		 * a process dumps core while its cwd is e.g. on a vfat
734 		 * filesystem.
735 		 */
736 		if (!uid_eq(inode->i_uid, current_fsuid()))
737 			goto close_fail;
738 		if ((inode->i_mode & 0677) != 0600)
739 			goto close_fail;
740 		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
741 			goto close_fail;
742 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
743 			goto close_fail;
744 	}
745 
746 	/* get us an unshared descriptor table; almost always a no-op */
747 	retval = unshare_files(&displaced);
748 	if (retval)
749 		goto close_fail;
750 	if (displaced)
751 		put_files_struct(displaced);
752 	if (!dump_interrupted()) {
753 		file_start_write(cprm.file);
754 		core_dumped = binfmt->core_dump(&cprm);
755 		file_end_write(cprm.file);
756 	}
757 	if (ispipe && core_pipe_limit)
758 		wait_for_dump_helpers(cprm.file);
759 close_fail:
760 	if (cprm.file)
761 		filp_close(cprm.file, NULL);
762 fail_dropcount:
763 	if (ispipe)
764 		atomic_dec(&core_dump_count);
765 fail_unlock:
766 	kfree(cn.corename);
767 	coredump_finish(mm, core_dumped);
768 	revert_creds(old_cred);
769 fail_creds:
770 	put_cred(cred);
771 fail:
772 	return;
773 }
774 
775 /*
776  * Core dumping helper functions.  These are the only things you should
777  * do on a core-file: use only these functions to write out all the
778  * necessary info.
779  */
780 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
781 {
782 	struct file *file = cprm->file;
783 	loff_t pos = file->f_pos;
784 	ssize_t n;
785 	if (cprm->written + nr > cprm->limit)
786 		return 0;
787 	while (nr) {
788 		if (dump_interrupted())
789 			return 0;
790 		n = __kernel_write(file, addr, nr, &pos);
791 		if (n <= 0)
792 			return 0;
793 		file->f_pos = pos;
794 		cprm->written += n;
795 		nr -= n;
796 	}
797 	return 1;
798 }
799 EXPORT_SYMBOL(dump_emit);
800 
801 int dump_skip(struct coredump_params *cprm, size_t nr)
802 {
803 	static char zeroes[PAGE_SIZE];
804 	struct file *file = cprm->file;
805 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
806 		if (cprm->written + nr > cprm->limit)
807 			return 0;
808 		if (dump_interrupted() ||
809 		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
810 			return 0;
811 		cprm->written += nr;
812 		return 1;
813 	} else {
814 		while (nr > PAGE_SIZE) {
815 			if (!dump_emit(cprm, zeroes, PAGE_SIZE))
816 				return 0;
817 			nr -= PAGE_SIZE;
818 		}
819 		return dump_emit(cprm, zeroes, nr);
820 	}
821 }
822 EXPORT_SYMBOL(dump_skip);
823 
824 int dump_align(struct coredump_params *cprm, int align)
825 {
826 	unsigned mod = cprm->written & (align - 1);
827 	if (align & (align - 1))
828 		return 0;
829 	return mod ? dump_skip(cprm, align - mod) : 1;
830 }
831 EXPORT_SYMBOL(dump_align);
832