1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * dir.c - Operations for configfs directories. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 * 21 * Based on sysfs: 22 * sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel 23 * 24 * configfs Copyright (C) 2005 Oracle. All rights reserved. 25 */ 26 27 #undef DEBUG 28 29 #include <linux/fs.h> 30 #include <linux/mount.h> 31 #include <linux/module.h> 32 #include <linux/slab.h> 33 34 #include <linux/configfs.h> 35 #include "configfs_internal.h" 36 37 DECLARE_RWSEM(configfs_rename_sem); 38 39 static void configfs_d_iput(struct dentry * dentry, 40 struct inode * inode) 41 { 42 struct configfs_dirent * sd = dentry->d_fsdata; 43 44 if (sd) { 45 BUG_ON(sd->s_dentry != dentry); 46 sd->s_dentry = NULL; 47 configfs_put(sd); 48 } 49 iput(inode); 50 } 51 52 /* 53 * We _must_ delete our dentries on last dput, as the chain-to-parent 54 * behavior is required to clear the parents of default_groups. 55 */ 56 static int configfs_d_delete(struct dentry *dentry) 57 { 58 return 1; 59 } 60 61 static struct dentry_operations configfs_dentry_ops = { 62 .d_iput = configfs_d_iput, 63 /* simple_delete_dentry() isn't exported */ 64 .d_delete = configfs_d_delete, 65 }; 66 67 /* 68 * Allocates a new configfs_dirent and links it to the parent configfs_dirent 69 */ 70 static struct configfs_dirent *configfs_new_dirent(struct configfs_dirent * parent_sd, 71 void * element) 72 { 73 struct configfs_dirent * sd; 74 75 sd = kmem_cache_zalloc(configfs_dir_cachep, GFP_KERNEL); 76 if (!sd) 77 return NULL; 78 79 atomic_set(&sd->s_count, 1); 80 INIT_LIST_HEAD(&sd->s_links); 81 INIT_LIST_HEAD(&sd->s_children); 82 list_add(&sd->s_sibling, &parent_sd->s_children); 83 sd->s_element = element; 84 85 return sd; 86 } 87 88 /* 89 * 90 * Return -EEXIST if there is already a configfs element with the same 91 * name for the same parent. 92 * 93 * called with parent inode's i_mutex held 94 */ 95 static int configfs_dirent_exists(struct configfs_dirent *parent_sd, 96 const unsigned char *new) 97 { 98 struct configfs_dirent * sd; 99 100 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) { 101 if (sd->s_element) { 102 const unsigned char *existing = configfs_get_name(sd); 103 if (strcmp(existing, new)) 104 continue; 105 else 106 return -EEXIST; 107 } 108 } 109 110 return 0; 111 } 112 113 114 int configfs_make_dirent(struct configfs_dirent * parent_sd, 115 struct dentry * dentry, void * element, 116 umode_t mode, int type) 117 { 118 struct configfs_dirent * sd; 119 120 sd = configfs_new_dirent(parent_sd, element); 121 if (!sd) 122 return -ENOMEM; 123 124 sd->s_mode = mode; 125 sd->s_type = type; 126 sd->s_dentry = dentry; 127 if (dentry) { 128 dentry->d_fsdata = configfs_get(sd); 129 dentry->d_op = &configfs_dentry_ops; 130 } 131 132 return 0; 133 } 134 135 static int init_dir(struct inode * inode) 136 { 137 inode->i_op = &configfs_dir_inode_operations; 138 inode->i_fop = &configfs_dir_operations; 139 140 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 141 inc_nlink(inode); 142 return 0; 143 } 144 145 static int configfs_init_file(struct inode * inode) 146 { 147 inode->i_size = PAGE_SIZE; 148 inode->i_fop = &configfs_file_operations; 149 return 0; 150 } 151 152 static int init_symlink(struct inode * inode) 153 { 154 inode->i_op = &configfs_symlink_inode_operations; 155 return 0; 156 } 157 158 static int create_dir(struct config_item * k, struct dentry * p, 159 struct dentry * d) 160 { 161 int error; 162 umode_t mode = S_IFDIR| S_IRWXU | S_IRUGO | S_IXUGO; 163 164 error = configfs_dirent_exists(p->d_fsdata, d->d_name.name); 165 if (!error) 166 error = configfs_make_dirent(p->d_fsdata, d, k, mode, 167 CONFIGFS_DIR); 168 if (!error) { 169 error = configfs_create(d, mode, init_dir); 170 if (!error) { 171 inc_nlink(p->d_inode); 172 (d)->d_op = &configfs_dentry_ops; 173 } else { 174 struct configfs_dirent *sd = d->d_fsdata; 175 if (sd) { 176 list_del_init(&sd->s_sibling); 177 configfs_put(sd); 178 } 179 } 180 } 181 return error; 182 } 183 184 185 /** 186 * configfs_create_dir - create a directory for an config_item. 187 * @item: config_itemwe're creating directory for. 188 * @dentry: config_item's dentry. 189 */ 190 191 static int configfs_create_dir(struct config_item * item, struct dentry *dentry) 192 { 193 struct dentry * parent; 194 int error = 0; 195 196 BUG_ON(!item); 197 198 if (item->ci_parent) 199 parent = item->ci_parent->ci_dentry; 200 else if (configfs_mount && configfs_mount->mnt_sb) 201 parent = configfs_mount->mnt_sb->s_root; 202 else 203 return -EFAULT; 204 205 error = create_dir(item,parent,dentry); 206 if (!error) 207 item->ci_dentry = dentry; 208 return error; 209 } 210 211 int configfs_create_link(struct configfs_symlink *sl, 212 struct dentry *parent, 213 struct dentry *dentry) 214 { 215 int err = 0; 216 umode_t mode = S_IFLNK | S_IRWXUGO; 217 218 err = configfs_make_dirent(parent->d_fsdata, dentry, sl, mode, 219 CONFIGFS_ITEM_LINK); 220 if (!err) { 221 err = configfs_create(dentry, mode, init_symlink); 222 if (!err) 223 dentry->d_op = &configfs_dentry_ops; 224 else { 225 struct configfs_dirent *sd = dentry->d_fsdata; 226 if (sd) { 227 list_del_init(&sd->s_sibling); 228 configfs_put(sd); 229 } 230 } 231 } 232 return err; 233 } 234 235 static void remove_dir(struct dentry * d) 236 { 237 struct dentry * parent = dget(d->d_parent); 238 struct configfs_dirent * sd; 239 240 sd = d->d_fsdata; 241 list_del_init(&sd->s_sibling); 242 configfs_put(sd); 243 if (d->d_inode) 244 simple_rmdir(parent->d_inode,d); 245 246 pr_debug(" o %s removing done (%d)\n",d->d_name.name, 247 atomic_read(&d->d_count)); 248 249 dput(parent); 250 } 251 252 /** 253 * configfs_remove_dir - remove an config_item's directory. 254 * @item: config_item we're removing. 255 * 256 * The only thing special about this is that we remove any files in 257 * the directory before we remove the directory, and we've inlined 258 * what used to be configfs_rmdir() below, instead of calling separately. 259 */ 260 261 static void configfs_remove_dir(struct config_item * item) 262 { 263 struct dentry * dentry = dget(item->ci_dentry); 264 265 if (!dentry) 266 return; 267 268 remove_dir(dentry); 269 /** 270 * Drop reference from dget() on entrance. 271 */ 272 dput(dentry); 273 } 274 275 276 /* attaches attribute's configfs_dirent to the dentry corresponding to the 277 * attribute file 278 */ 279 static int configfs_attach_attr(struct configfs_dirent * sd, struct dentry * dentry) 280 { 281 struct configfs_attribute * attr = sd->s_element; 282 int error; 283 284 dentry->d_fsdata = configfs_get(sd); 285 sd->s_dentry = dentry; 286 error = configfs_create(dentry, (attr->ca_mode & S_IALLUGO) | S_IFREG, 287 configfs_init_file); 288 if (error) { 289 configfs_put(sd); 290 return error; 291 } 292 293 dentry->d_op = &configfs_dentry_ops; 294 d_rehash(dentry); 295 296 return 0; 297 } 298 299 static struct dentry * configfs_lookup(struct inode *dir, 300 struct dentry *dentry, 301 struct nameidata *nd) 302 { 303 struct configfs_dirent * parent_sd = dentry->d_parent->d_fsdata; 304 struct configfs_dirent * sd; 305 int found = 0; 306 int err = 0; 307 308 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) { 309 if (sd->s_type & CONFIGFS_NOT_PINNED) { 310 const unsigned char * name = configfs_get_name(sd); 311 312 if (strcmp(name, dentry->d_name.name)) 313 continue; 314 315 found = 1; 316 err = configfs_attach_attr(sd, dentry); 317 break; 318 } 319 } 320 321 if (!found) { 322 /* 323 * If it doesn't exist and it isn't a NOT_PINNED item, 324 * it must be negative. 325 */ 326 return simple_lookup(dir, dentry, nd); 327 } 328 329 return ERR_PTR(err); 330 } 331 332 /* 333 * Only subdirectories count here. Files (CONFIGFS_NOT_PINNED) are 334 * attributes and are removed by rmdir(). We recurse, taking i_mutex 335 * on all children that are candidates for default detach. If the 336 * result is clean, then configfs_detach_group() will handle dropping 337 * i_mutex. If there is an error, the caller will clean up the i_mutex 338 * holders via configfs_detach_rollback(). 339 */ 340 static int configfs_detach_prep(struct dentry *dentry) 341 { 342 struct configfs_dirent *parent_sd = dentry->d_fsdata; 343 struct configfs_dirent *sd; 344 int ret; 345 346 ret = -EBUSY; 347 if (!list_empty(&parent_sd->s_links)) 348 goto out; 349 350 ret = 0; 351 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) { 352 if (sd->s_type & CONFIGFS_NOT_PINNED) 353 continue; 354 if (sd->s_type & CONFIGFS_USET_DEFAULT) { 355 mutex_lock(&sd->s_dentry->d_inode->i_mutex); 356 /* Mark that we've taken i_mutex */ 357 sd->s_type |= CONFIGFS_USET_DROPPING; 358 359 /* 360 * Yup, recursive. If there's a problem, blame 361 * deep nesting of default_groups 362 */ 363 ret = configfs_detach_prep(sd->s_dentry); 364 if (!ret) 365 continue; 366 } else 367 ret = -ENOTEMPTY; 368 369 break; 370 } 371 372 out: 373 return ret; 374 } 375 376 /* 377 * Walk the tree, dropping i_mutex wherever CONFIGFS_USET_DROPPING is 378 * set. 379 */ 380 static void configfs_detach_rollback(struct dentry *dentry) 381 { 382 struct configfs_dirent *parent_sd = dentry->d_fsdata; 383 struct configfs_dirent *sd; 384 385 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) { 386 if (sd->s_type & CONFIGFS_USET_DEFAULT) { 387 configfs_detach_rollback(sd->s_dentry); 388 389 if (sd->s_type & CONFIGFS_USET_DROPPING) { 390 sd->s_type &= ~CONFIGFS_USET_DROPPING; 391 mutex_unlock(&sd->s_dentry->d_inode->i_mutex); 392 } 393 } 394 } 395 } 396 397 static void detach_attrs(struct config_item * item) 398 { 399 struct dentry * dentry = dget(item->ci_dentry); 400 struct configfs_dirent * parent_sd; 401 struct configfs_dirent * sd, * tmp; 402 403 if (!dentry) 404 return; 405 406 pr_debug("configfs %s: dropping attrs for dir\n", 407 dentry->d_name.name); 408 409 parent_sd = dentry->d_fsdata; 410 list_for_each_entry_safe(sd, tmp, &parent_sd->s_children, s_sibling) { 411 if (!sd->s_element || !(sd->s_type & CONFIGFS_NOT_PINNED)) 412 continue; 413 list_del_init(&sd->s_sibling); 414 configfs_drop_dentry(sd, dentry); 415 configfs_put(sd); 416 } 417 418 /** 419 * Drop reference from dget() on entrance. 420 */ 421 dput(dentry); 422 } 423 424 static int populate_attrs(struct config_item *item) 425 { 426 struct config_item_type *t = item->ci_type; 427 struct configfs_attribute *attr; 428 int error = 0; 429 int i; 430 431 if (!t) 432 return -EINVAL; 433 if (t->ct_attrs) { 434 for (i = 0; (attr = t->ct_attrs[i]) != NULL; i++) { 435 if ((error = configfs_create_file(item, attr))) 436 break; 437 } 438 } 439 440 if (error) 441 detach_attrs(item); 442 443 return error; 444 } 445 446 static int configfs_attach_group(struct config_item *parent_item, 447 struct config_item *item, 448 struct dentry *dentry); 449 static void configfs_detach_group(struct config_item *item); 450 451 static void detach_groups(struct config_group *group) 452 { 453 struct dentry * dentry = dget(group->cg_item.ci_dentry); 454 struct dentry *child; 455 struct configfs_dirent *parent_sd; 456 struct configfs_dirent *sd, *tmp; 457 458 if (!dentry) 459 return; 460 461 parent_sd = dentry->d_fsdata; 462 list_for_each_entry_safe(sd, tmp, &parent_sd->s_children, s_sibling) { 463 if (!sd->s_element || 464 !(sd->s_type & CONFIGFS_USET_DEFAULT)) 465 continue; 466 467 child = sd->s_dentry; 468 469 configfs_detach_group(sd->s_element); 470 child->d_inode->i_flags |= S_DEAD; 471 472 /* 473 * From rmdir/unregister, a configfs_detach_prep() pass 474 * has taken our i_mutex for us. Drop it. 475 * From mkdir/register cleanup, there is no sem held. 476 */ 477 if (sd->s_type & CONFIGFS_USET_DROPPING) 478 mutex_unlock(&child->d_inode->i_mutex); 479 480 d_delete(child); 481 dput(child); 482 } 483 484 /** 485 * Drop reference from dget() on entrance. 486 */ 487 dput(dentry); 488 } 489 490 /* 491 * This fakes mkdir(2) on a default_groups[] entry. It 492 * creates a dentry, attachs it, and then does fixup 493 * on the sd->s_type. 494 * 495 * We could, perhaps, tweak our parent's ->mkdir for a minute and 496 * try using vfs_mkdir. Just a thought. 497 */ 498 static int create_default_group(struct config_group *parent_group, 499 struct config_group *group) 500 { 501 int ret; 502 struct qstr name; 503 struct configfs_dirent *sd; 504 /* We trust the caller holds a reference to parent */ 505 struct dentry *child, *parent = parent_group->cg_item.ci_dentry; 506 507 if (!group->cg_item.ci_name) 508 group->cg_item.ci_name = group->cg_item.ci_namebuf; 509 name.name = group->cg_item.ci_name; 510 name.len = strlen(name.name); 511 name.hash = full_name_hash(name.name, name.len); 512 513 ret = -ENOMEM; 514 child = d_alloc(parent, &name); 515 if (child) { 516 d_add(child, NULL); 517 518 ret = configfs_attach_group(&parent_group->cg_item, 519 &group->cg_item, child); 520 if (!ret) { 521 sd = child->d_fsdata; 522 sd->s_type |= CONFIGFS_USET_DEFAULT; 523 } else { 524 d_delete(child); 525 dput(child); 526 } 527 } 528 529 return ret; 530 } 531 532 static int populate_groups(struct config_group *group) 533 { 534 struct config_group *new_group; 535 struct dentry *dentry = group->cg_item.ci_dentry; 536 int ret = 0; 537 int i; 538 539 if (group->default_groups) { 540 /* 541 * FYI, we're faking mkdir here 542 * I'm not sure we need this semaphore, as we're called 543 * from our parent's mkdir. That holds our parent's 544 * i_mutex, so afaik lookup cannot continue through our 545 * parent to find us, let alone mess with our tree. 546 * That said, taking our i_mutex is closer to mkdir 547 * emulation, and shouldn't hurt. 548 */ 549 mutex_lock(&dentry->d_inode->i_mutex); 550 551 for (i = 0; group->default_groups[i]; i++) { 552 new_group = group->default_groups[i]; 553 554 ret = create_default_group(group, new_group); 555 if (ret) 556 break; 557 } 558 559 mutex_unlock(&dentry->d_inode->i_mutex); 560 } 561 562 if (ret) 563 detach_groups(group); 564 565 return ret; 566 } 567 568 /* 569 * All of link_obj/unlink_obj/link_group/unlink_group require that 570 * subsys->su_mutex is held. 571 */ 572 573 static void unlink_obj(struct config_item *item) 574 { 575 struct config_group *group; 576 577 group = item->ci_group; 578 if (group) { 579 list_del_init(&item->ci_entry); 580 581 item->ci_group = NULL; 582 item->ci_parent = NULL; 583 584 /* Drop the reference for ci_entry */ 585 config_item_put(item); 586 587 /* Drop the reference for ci_parent */ 588 config_group_put(group); 589 } 590 } 591 592 static void link_obj(struct config_item *parent_item, struct config_item *item) 593 { 594 /* 595 * Parent seems redundant with group, but it makes certain 596 * traversals much nicer. 597 */ 598 item->ci_parent = parent_item; 599 600 /* 601 * We hold a reference on the parent for the child's ci_parent 602 * link. 603 */ 604 item->ci_group = config_group_get(to_config_group(parent_item)); 605 list_add_tail(&item->ci_entry, &item->ci_group->cg_children); 606 607 /* 608 * We hold a reference on the child for ci_entry on the parent's 609 * cg_children 610 */ 611 config_item_get(item); 612 } 613 614 static void unlink_group(struct config_group *group) 615 { 616 int i; 617 struct config_group *new_group; 618 619 if (group->default_groups) { 620 for (i = 0; group->default_groups[i]; i++) { 621 new_group = group->default_groups[i]; 622 unlink_group(new_group); 623 } 624 } 625 626 group->cg_subsys = NULL; 627 unlink_obj(&group->cg_item); 628 } 629 630 static void link_group(struct config_group *parent_group, struct config_group *group) 631 { 632 int i; 633 struct config_group *new_group; 634 struct configfs_subsystem *subsys = NULL; /* gcc is a turd */ 635 636 link_obj(&parent_group->cg_item, &group->cg_item); 637 638 if (parent_group->cg_subsys) 639 subsys = parent_group->cg_subsys; 640 else if (configfs_is_root(&parent_group->cg_item)) 641 subsys = to_configfs_subsystem(group); 642 else 643 BUG(); 644 group->cg_subsys = subsys; 645 646 if (group->default_groups) { 647 for (i = 0; group->default_groups[i]; i++) { 648 new_group = group->default_groups[i]; 649 link_group(group, new_group); 650 } 651 } 652 } 653 654 /* 655 * The goal is that configfs_attach_item() (and 656 * configfs_attach_group()) can be called from either the VFS or this 657 * module. That is, they assume that the items have been created, 658 * the dentry allocated, and the dcache is all ready to go. 659 * 660 * If they fail, they must clean up after themselves as if they 661 * had never been called. The caller (VFS or local function) will 662 * handle cleaning up the dcache bits. 663 * 664 * configfs_detach_group() and configfs_detach_item() behave similarly on 665 * the way out. They assume that the proper semaphores are held, they 666 * clean up the configfs items, and they expect their callers will 667 * handle the dcache bits. 668 */ 669 static int configfs_attach_item(struct config_item *parent_item, 670 struct config_item *item, 671 struct dentry *dentry) 672 { 673 int ret; 674 675 ret = configfs_create_dir(item, dentry); 676 if (!ret) { 677 ret = populate_attrs(item); 678 if (ret) { 679 configfs_remove_dir(item); 680 d_delete(dentry); 681 } 682 } 683 684 return ret; 685 } 686 687 static void configfs_detach_item(struct config_item *item) 688 { 689 detach_attrs(item); 690 configfs_remove_dir(item); 691 } 692 693 static int configfs_attach_group(struct config_item *parent_item, 694 struct config_item *item, 695 struct dentry *dentry) 696 { 697 int ret; 698 struct configfs_dirent *sd; 699 700 ret = configfs_attach_item(parent_item, item, dentry); 701 if (!ret) { 702 sd = dentry->d_fsdata; 703 sd->s_type |= CONFIGFS_USET_DIR; 704 705 ret = populate_groups(to_config_group(item)); 706 if (ret) { 707 configfs_detach_item(item); 708 d_delete(dentry); 709 } 710 } 711 712 return ret; 713 } 714 715 static void configfs_detach_group(struct config_item *item) 716 { 717 detach_groups(to_config_group(item)); 718 configfs_detach_item(item); 719 } 720 721 /* 722 * After the item has been detached from the filesystem view, we are 723 * ready to tear it out of the hierarchy. Notify the client before 724 * we do that so they can perform any cleanup that requires 725 * navigating the hierarchy. A client does not need to provide this 726 * callback. The subsystem semaphore MUST be held by the caller, and 727 * references must be valid for both items. It also assumes the 728 * caller has validated ci_type. 729 */ 730 static void client_disconnect_notify(struct config_item *parent_item, 731 struct config_item *item) 732 { 733 struct config_item_type *type; 734 735 type = parent_item->ci_type; 736 BUG_ON(!type); 737 738 if (type->ct_group_ops && type->ct_group_ops->disconnect_notify) 739 type->ct_group_ops->disconnect_notify(to_config_group(parent_item), 740 item); 741 } 742 743 /* 744 * Drop the initial reference from make_item()/make_group() 745 * This function assumes that reference is held on item 746 * and that item holds a valid reference to the parent. Also, it 747 * assumes the caller has validated ci_type. 748 */ 749 static void client_drop_item(struct config_item *parent_item, 750 struct config_item *item) 751 { 752 struct config_item_type *type; 753 754 type = parent_item->ci_type; 755 BUG_ON(!type); 756 757 /* 758 * If ->drop_item() exists, it is responsible for the 759 * config_item_put(). 760 */ 761 if (type->ct_group_ops && type->ct_group_ops->drop_item) 762 type->ct_group_ops->drop_item(to_config_group(parent_item), 763 item); 764 else 765 config_item_put(item); 766 } 767 768 #ifdef DEBUG 769 static void configfs_dump_one(struct configfs_dirent *sd, int level) 770 { 771 printk(KERN_INFO "%*s\"%s\":\n", level, " ", configfs_get_name(sd)); 772 773 #define type_print(_type) if (sd->s_type & _type) printk(KERN_INFO "%*s %s\n", level, " ", #_type); 774 type_print(CONFIGFS_ROOT); 775 type_print(CONFIGFS_DIR); 776 type_print(CONFIGFS_ITEM_ATTR); 777 type_print(CONFIGFS_ITEM_LINK); 778 type_print(CONFIGFS_USET_DIR); 779 type_print(CONFIGFS_USET_DEFAULT); 780 type_print(CONFIGFS_USET_DROPPING); 781 #undef type_print 782 } 783 784 static int configfs_dump(struct configfs_dirent *sd, int level) 785 { 786 struct configfs_dirent *child_sd; 787 int ret = 0; 788 789 configfs_dump_one(sd, level); 790 791 if (!(sd->s_type & (CONFIGFS_DIR|CONFIGFS_ROOT))) 792 return 0; 793 794 list_for_each_entry(child_sd, &sd->s_children, s_sibling) { 795 ret = configfs_dump(child_sd, level + 2); 796 if (ret) 797 break; 798 } 799 800 return ret; 801 } 802 #endif 803 804 805 /* 806 * configfs_depend_item() and configfs_undepend_item() 807 * 808 * WARNING: Do not call these from a configfs callback! 809 * 810 * This describes these functions and their helpers. 811 * 812 * Allow another kernel system to depend on a config_item. If this 813 * happens, the item cannot go away until the dependant can live without 814 * it. The idea is to give client modules as simple an interface as 815 * possible. When a system asks them to depend on an item, they just 816 * call configfs_depend_item(). If the item is live and the client 817 * driver is in good shape, we'll happily do the work for them. 818 * 819 * Why is the locking complex? Because configfs uses the VFS to handle 820 * all locking, but this function is called outside the normal 821 * VFS->configfs path. So it must take VFS locks to prevent the 822 * VFS->configfs stuff (configfs_mkdir(), configfs_rmdir(), etc). This is 823 * why you can't call these functions underneath configfs callbacks. 824 * 825 * Note, btw, that this can be called at *any* time, even when a configfs 826 * subsystem isn't registered, or when configfs is loading or unloading. 827 * Just like configfs_register_subsystem(). So we take the same 828 * precautions. We pin the filesystem. We lock each i_mutex _in_order_ 829 * on our way down the tree. If we can find the target item in the 830 * configfs tree, it must be part of the subsystem tree as well, so we 831 * do not need the subsystem semaphore. Holding the i_mutex chain locks 832 * out mkdir() and rmdir(), who might be racing us. 833 */ 834 835 /* 836 * configfs_depend_prep() 837 * 838 * Only subdirectories count here. Files (CONFIGFS_NOT_PINNED) are 839 * attributes. This is similar but not the same to configfs_detach_prep(). 840 * Note that configfs_detach_prep() expects the parent to be locked when it 841 * is called, but we lock the parent *inside* configfs_depend_prep(). We 842 * do that so we can unlock it if we find nothing. 843 * 844 * Here we do a depth-first search of the dentry hierarchy looking for 845 * our object. We take i_mutex on each step of the way down. IT IS 846 * ESSENTIAL THAT i_mutex LOCKING IS ORDERED. If we come back up a branch, 847 * we'll drop the i_mutex. 848 * 849 * If the target is not found, -ENOENT is bubbled up and we have released 850 * all locks. If the target was found, the locks will be cleared by 851 * configfs_depend_rollback(). 852 * 853 * This adds a requirement that all config_items be unique! 854 * 855 * This is recursive because the locking traversal is tricky. There isn't 856 * much on the stack, though, so folks that need this function - be careful 857 * about your stack! Patches will be accepted to make it iterative. 858 */ 859 static int configfs_depend_prep(struct dentry *origin, 860 struct config_item *target) 861 { 862 struct configfs_dirent *child_sd, *sd = origin->d_fsdata; 863 int ret = 0; 864 865 BUG_ON(!origin || !sd); 866 867 /* Lock this guy on the way down */ 868 mutex_lock(&sd->s_dentry->d_inode->i_mutex); 869 if (sd->s_element == target) /* Boo-yah */ 870 goto out; 871 872 list_for_each_entry(child_sd, &sd->s_children, s_sibling) { 873 if (child_sd->s_type & CONFIGFS_DIR) { 874 ret = configfs_depend_prep(child_sd->s_dentry, 875 target); 876 if (!ret) 877 goto out; /* Child path boo-yah */ 878 } 879 } 880 881 /* We looped all our children and didn't find target */ 882 mutex_unlock(&sd->s_dentry->d_inode->i_mutex); 883 ret = -ENOENT; 884 885 out: 886 return ret; 887 } 888 889 /* 890 * This is ONLY called if configfs_depend_prep() did its job. So we can 891 * trust the entire path from item back up to origin. 892 * 893 * We walk backwards from item, unlocking each i_mutex. We finish by 894 * unlocking origin. 895 */ 896 static void configfs_depend_rollback(struct dentry *origin, 897 struct config_item *item) 898 { 899 struct dentry *dentry = item->ci_dentry; 900 901 while (dentry != origin) { 902 mutex_unlock(&dentry->d_inode->i_mutex); 903 dentry = dentry->d_parent; 904 } 905 906 mutex_unlock(&origin->d_inode->i_mutex); 907 } 908 909 int configfs_depend_item(struct configfs_subsystem *subsys, 910 struct config_item *target) 911 { 912 int ret; 913 struct configfs_dirent *p, *root_sd, *subsys_sd = NULL; 914 struct config_item *s_item = &subsys->su_group.cg_item; 915 916 /* 917 * Pin the configfs filesystem. This means we can safely access 918 * the root of the configfs filesystem. 919 */ 920 ret = configfs_pin_fs(); 921 if (ret) 922 return ret; 923 924 /* 925 * Next, lock the root directory. We're going to check that the 926 * subsystem is really registered, and so we need to lock out 927 * configfs_[un]register_subsystem(). 928 */ 929 mutex_lock(&configfs_sb->s_root->d_inode->i_mutex); 930 931 root_sd = configfs_sb->s_root->d_fsdata; 932 933 list_for_each_entry(p, &root_sd->s_children, s_sibling) { 934 if (p->s_type & CONFIGFS_DIR) { 935 if (p->s_element == s_item) { 936 subsys_sd = p; 937 break; 938 } 939 } 940 } 941 942 if (!subsys_sd) { 943 ret = -ENOENT; 944 goto out_unlock_fs; 945 } 946 947 /* Ok, now we can trust subsys/s_item */ 948 949 /* Scan the tree, locking i_mutex recursively, return 0 if found */ 950 ret = configfs_depend_prep(subsys_sd->s_dentry, target); 951 if (ret) 952 goto out_unlock_fs; 953 954 /* We hold all i_mutexes from the subsystem down to the target */ 955 p = target->ci_dentry->d_fsdata; 956 p->s_dependent_count += 1; 957 958 configfs_depend_rollback(subsys_sd->s_dentry, target); 959 960 out_unlock_fs: 961 mutex_unlock(&configfs_sb->s_root->d_inode->i_mutex); 962 963 /* 964 * If we succeeded, the fs is pinned via other methods. If not, 965 * we're done with it anyway. So release_fs() is always right. 966 */ 967 configfs_release_fs(); 968 969 return ret; 970 } 971 EXPORT_SYMBOL(configfs_depend_item); 972 973 /* 974 * Release the dependent linkage. This is much simpler than 975 * configfs_depend_item() because we know that that the client driver is 976 * pinned, thus the subsystem is pinned, and therefore configfs is pinned. 977 */ 978 void configfs_undepend_item(struct configfs_subsystem *subsys, 979 struct config_item *target) 980 { 981 struct configfs_dirent *sd; 982 983 /* 984 * Since we can trust everything is pinned, we just need i_mutex 985 * on the item. 986 */ 987 mutex_lock(&target->ci_dentry->d_inode->i_mutex); 988 989 sd = target->ci_dentry->d_fsdata; 990 BUG_ON(sd->s_dependent_count < 1); 991 992 sd->s_dependent_count -= 1; 993 994 /* 995 * After this unlock, we cannot trust the item to stay alive! 996 * DO NOT REFERENCE item after this unlock. 997 */ 998 mutex_unlock(&target->ci_dentry->d_inode->i_mutex); 999 } 1000 EXPORT_SYMBOL(configfs_undepend_item); 1001 1002 static int configfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1003 { 1004 int ret, module_got = 0; 1005 struct config_group *group; 1006 struct config_item *item; 1007 struct config_item *parent_item; 1008 struct configfs_subsystem *subsys; 1009 struct configfs_dirent *sd; 1010 struct config_item_type *type; 1011 struct module *owner = NULL; 1012 char *name; 1013 1014 if (dentry->d_parent == configfs_sb->s_root) { 1015 ret = -EPERM; 1016 goto out; 1017 } 1018 1019 sd = dentry->d_parent->d_fsdata; 1020 if (!(sd->s_type & CONFIGFS_USET_DIR)) { 1021 ret = -EPERM; 1022 goto out; 1023 } 1024 1025 /* Get a working ref for the duration of this function */ 1026 parent_item = configfs_get_config_item(dentry->d_parent); 1027 type = parent_item->ci_type; 1028 subsys = to_config_group(parent_item)->cg_subsys; 1029 BUG_ON(!subsys); 1030 1031 if (!type || !type->ct_group_ops || 1032 (!type->ct_group_ops->make_group && 1033 !type->ct_group_ops->make_item)) { 1034 ret = -EPERM; /* Lack-of-mkdir returns -EPERM */ 1035 goto out_put; 1036 } 1037 1038 name = kmalloc(dentry->d_name.len + 1, GFP_KERNEL); 1039 if (!name) { 1040 ret = -ENOMEM; 1041 goto out_put; 1042 } 1043 1044 snprintf(name, dentry->d_name.len + 1, "%s", dentry->d_name.name); 1045 1046 mutex_lock(&subsys->su_mutex); 1047 group = NULL; 1048 item = NULL; 1049 if (type->ct_group_ops->make_group) { 1050 group = type->ct_group_ops->make_group(to_config_group(parent_item), name); 1051 if (group) { 1052 link_group(to_config_group(parent_item), group); 1053 item = &group->cg_item; 1054 } 1055 } else { 1056 item = type->ct_group_ops->make_item(to_config_group(parent_item), name); 1057 if (item) 1058 link_obj(parent_item, item); 1059 } 1060 mutex_unlock(&subsys->su_mutex); 1061 1062 kfree(name); 1063 if (!item) { 1064 /* 1065 * If item == NULL, then link_obj() was never called. 1066 * There are no extra references to clean up. 1067 */ 1068 ret = -ENOMEM; 1069 goto out_put; 1070 } 1071 1072 /* 1073 * link_obj() has been called (via link_group() for groups). 1074 * From here on out, errors must clean that up. 1075 */ 1076 1077 type = item->ci_type; 1078 if (!type) { 1079 ret = -EINVAL; 1080 goto out_unlink; 1081 } 1082 1083 owner = type->ct_owner; 1084 if (!try_module_get(owner)) { 1085 ret = -EINVAL; 1086 goto out_unlink; 1087 } 1088 1089 /* 1090 * I hate doing it this way, but if there is 1091 * an error, module_put() probably should 1092 * happen after any cleanup. 1093 */ 1094 module_got = 1; 1095 1096 if (group) 1097 ret = configfs_attach_group(parent_item, item, dentry); 1098 else 1099 ret = configfs_attach_item(parent_item, item, dentry); 1100 1101 out_unlink: 1102 if (ret) { 1103 /* Tear down everything we built up */ 1104 mutex_lock(&subsys->su_mutex); 1105 1106 client_disconnect_notify(parent_item, item); 1107 if (group) 1108 unlink_group(group); 1109 else 1110 unlink_obj(item); 1111 client_drop_item(parent_item, item); 1112 1113 mutex_unlock(&subsys->su_mutex); 1114 1115 if (module_got) 1116 module_put(owner); 1117 } 1118 1119 out_put: 1120 /* 1121 * link_obj()/link_group() took a reference from child->parent, 1122 * so the parent is safely pinned. We can drop our working 1123 * reference. 1124 */ 1125 config_item_put(parent_item); 1126 1127 out: 1128 return ret; 1129 } 1130 1131 static int configfs_rmdir(struct inode *dir, struct dentry *dentry) 1132 { 1133 struct config_item *parent_item; 1134 struct config_item *item; 1135 struct configfs_subsystem *subsys; 1136 struct configfs_dirent *sd; 1137 struct module *owner = NULL; 1138 int ret; 1139 1140 if (dentry->d_parent == configfs_sb->s_root) 1141 return -EPERM; 1142 1143 sd = dentry->d_fsdata; 1144 if (sd->s_type & CONFIGFS_USET_DEFAULT) 1145 return -EPERM; 1146 1147 /* 1148 * Here's where we check for dependents. We're protected by 1149 * i_mutex. 1150 */ 1151 if (sd->s_dependent_count) 1152 return -EBUSY; 1153 1154 /* Get a working ref until we have the child */ 1155 parent_item = configfs_get_config_item(dentry->d_parent); 1156 subsys = to_config_group(parent_item)->cg_subsys; 1157 BUG_ON(!subsys); 1158 1159 if (!parent_item->ci_type) { 1160 config_item_put(parent_item); 1161 return -EINVAL; 1162 } 1163 1164 ret = configfs_detach_prep(dentry); 1165 if (ret) { 1166 configfs_detach_rollback(dentry); 1167 config_item_put(parent_item); 1168 return ret; 1169 } 1170 1171 /* Get a working ref for the duration of this function */ 1172 item = configfs_get_config_item(dentry); 1173 1174 /* Drop reference from above, item already holds one. */ 1175 config_item_put(parent_item); 1176 1177 if (item->ci_type) 1178 owner = item->ci_type->ct_owner; 1179 1180 if (sd->s_type & CONFIGFS_USET_DIR) { 1181 configfs_detach_group(item); 1182 1183 mutex_lock(&subsys->su_mutex); 1184 client_disconnect_notify(parent_item, item); 1185 unlink_group(to_config_group(item)); 1186 } else { 1187 configfs_detach_item(item); 1188 1189 mutex_lock(&subsys->su_mutex); 1190 client_disconnect_notify(parent_item, item); 1191 unlink_obj(item); 1192 } 1193 1194 client_drop_item(parent_item, item); 1195 mutex_unlock(&subsys->su_mutex); 1196 1197 /* Drop our reference from above */ 1198 config_item_put(item); 1199 1200 module_put(owner); 1201 1202 return 0; 1203 } 1204 1205 const struct inode_operations configfs_dir_inode_operations = { 1206 .mkdir = configfs_mkdir, 1207 .rmdir = configfs_rmdir, 1208 .symlink = configfs_symlink, 1209 .unlink = configfs_unlink, 1210 .lookup = configfs_lookup, 1211 .setattr = configfs_setattr, 1212 }; 1213 1214 #if 0 1215 int configfs_rename_dir(struct config_item * item, const char *new_name) 1216 { 1217 int error = 0; 1218 struct dentry * new_dentry, * parent; 1219 1220 if (!strcmp(config_item_name(item), new_name)) 1221 return -EINVAL; 1222 1223 if (!item->parent) 1224 return -EINVAL; 1225 1226 down_write(&configfs_rename_sem); 1227 parent = item->parent->dentry; 1228 1229 mutex_lock(&parent->d_inode->i_mutex); 1230 1231 new_dentry = lookup_one_len(new_name, parent, strlen(new_name)); 1232 if (!IS_ERR(new_dentry)) { 1233 if (!new_dentry->d_inode) { 1234 error = config_item_set_name(item, "%s", new_name); 1235 if (!error) { 1236 d_add(new_dentry, NULL); 1237 d_move(item->dentry, new_dentry); 1238 } 1239 else 1240 d_delete(new_dentry); 1241 } else 1242 error = -EEXIST; 1243 dput(new_dentry); 1244 } 1245 mutex_unlock(&parent->d_inode->i_mutex); 1246 up_write(&configfs_rename_sem); 1247 1248 return error; 1249 } 1250 #endif 1251 1252 static int configfs_dir_open(struct inode *inode, struct file *file) 1253 { 1254 struct dentry * dentry = file->f_path.dentry; 1255 struct configfs_dirent * parent_sd = dentry->d_fsdata; 1256 1257 mutex_lock(&dentry->d_inode->i_mutex); 1258 file->private_data = configfs_new_dirent(parent_sd, NULL); 1259 mutex_unlock(&dentry->d_inode->i_mutex); 1260 1261 return file->private_data ? 0 : -ENOMEM; 1262 1263 } 1264 1265 static int configfs_dir_close(struct inode *inode, struct file *file) 1266 { 1267 struct dentry * dentry = file->f_path.dentry; 1268 struct configfs_dirent * cursor = file->private_data; 1269 1270 mutex_lock(&dentry->d_inode->i_mutex); 1271 list_del_init(&cursor->s_sibling); 1272 mutex_unlock(&dentry->d_inode->i_mutex); 1273 1274 release_configfs_dirent(cursor); 1275 1276 return 0; 1277 } 1278 1279 /* Relationship between s_mode and the DT_xxx types */ 1280 static inline unsigned char dt_type(struct configfs_dirent *sd) 1281 { 1282 return (sd->s_mode >> 12) & 15; 1283 } 1284 1285 static int configfs_readdir(struct file * filp, void * dirent, filldir_t filldir) 1286 { 1287 struct dentry *dentry = filp->f_path.dentry; 1288 struct configfs_dirent * parent_sd = dentry->d_fsdata; 1289 struct configfs_dirent *cursor = filp->private_data; 1290 struct list_head *p, *q = &cursor->s_sibling; 1291 ino_t ino; 1292 int i = filp->f_pos; 1293 1294 switch (i) { 1295 case 0: 1296 ino = dentry->d_inode->i_ino; 1297 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 1298 break; 1299 filp->f_pos++; 1300 i++; 1301 /* fallthrough */ 1302 case 1: 1303 ino = parent_ino(dentry); 1304 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 1305 break; 1306 filp->f_pos++; 1307 i++; 1308 /* fallthrough */ 1309 default: 1310 if (filp->f_pos == 2) { 1311 list_move(q, &parent_sd->s_children); 1312 } 1313 for (p=q->next; p!= &parent_sd->s_children; p=p->next) { 1314 struct configfs_dirent *next; 1315 const char * name; 1316 int len; 1317 1318 next = list_entry(p, struct configfs_dirent, 1319 s_sibling); 1320 if (!next->s_element) 1321 continue; 1322 1323 name = configfs_get_name(next); 1324 len = strlen(name); 1325 if (next->s_dentry) 1326 ino = next->s_dentry->d_inode->i_ino; 1327 else 1328 ino = iunique(configfs_sb, 2); 1329 1330 if (filldir(dirent, name, len, filp->f_pos, ino, 1331 dt_type(next)) < 0) 1332 return 0; 1333 1334 list_move(q, p); 1335 p = q; 1336 filp->f_pos++; 1337 } 1338 } 1339 return 0; 1340 } 1341 1342 static loff_t configfs_dir_lseek(struct file * file, loff_t offset, int origin) 1343 { 1344 struct dentry * dentry = file->f_path.dentry; 1345 1346 mutex_lock(&dentry->d_inode->i_mutex); 1347 switch (origin) { 1348 case 1: 1349 offset += file->f_pos; 1350 case 0: 1351 if (offset >= 0) 1352 break; 1353 default: 1354 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex); 1355 return -EINVAL; 1356 } 1357 if (offset != file->f_pos) { 1358 file->f_pos = offset; 1359 if (file->f_pos >= 2) { 1360 struct configfs_dirent *sd = dentry->d_fsdata; 1361 struct configfs_dirent *cursor = file->private_data; 1362 struct list_head *p; 1363 loff_t n = file->f_pos - 2; 1364 1365 list_del(&cursor->s_sibling); 1366 p = sd->s_children.next; 1367 while (n && p != &sd->s_children) { 1368 struct configfs_dirent *next; 1369 next = list_entry(p, struct configfs_dirent, 1370 s_sibling); 1371 if (next->s_element) 1372 n--; 1373 p = p->next; 1374 } 1375 list_add_tail(&cursor->s_sibling, p); 1376 } 1377 } 1378 mutex_unlock(&dentry->d_inode->i_mutex); 1379 return offset; 1380 } 1381 1382 const struct file_operations configfs_dir_operations = { 1383 .open = configfs_dir_open, 1384 .release = configfs_dir_close, 1385 .llseek = configfs_dir_lseek, 1386 .read = generic_read_dir, 1387 .readdir = configfs_readdir, 1388 }; 1389 1390 int configfs_register_subsystem(struct configfs_subsystem *subsys) 1391 { 1392 int err; 1393 struct config_group *group = &subsys->su_group; 1394 struct qstr name; 1395 struct dentry *dentry; 1396 struct configfs_dirent *sd; 1397 1398 err = configfs_pin_fs(); 1399 if (err) 1400 return err; 1401 1402 if (!group->cg_item.ci_name) 1403 group->cg_item.ci_name = group->cg_item.ci_namebuf; 1404 1405 sd = configfs_sb->s_root->d_fsdata; 1406 link_group(to_config_group(sd->s_element), group); 1407 1408 mutex_lock(&configfs_sb->s_root->d_inode->i_mutex); 1409 1410 name.name = group->cg_item.ci_name; 1411 name.len = strlen(name.name); 1412 name.hash = full_name_hash(name.name, name.len); 1413 1414 err = -ENOMEM; 1415 dentry = d_alloc(configfs_sb->s_root, &name); 1416 if (dentry) { 1417 d_add(dentry, NULL); 1418 1419 err = configfs_attach_group(sd->s_element, &group->cg_item, 1420 dentry); 1421 if (err) { 1422 d_delete(dentry); 1423 dput(dentry); 1424 } 1425 } 1426 1427 mutex_unlock(&configfs_sb->s_root->d_inode->i_mutex); 1428 1429 if (err) { 1430 unlink_group(group); 1431 configfs_release_fs(); 1432 } 1433 1434 return err; 1435 } 1436 1437 void configfs_unregister_subsystem(struct configfs_subsystem *subsys) 1438 { 1439 struct config_group *group = &subsys->su_group; 1440 struct dentry *dentry = group->cg_item.ci_dentry; 1441 1442 if (dentry->d_parent != configfs_sb->s_root) { 1443 printk(KERN_ERR "configfs: Tried to unregister non-subsystem!\n"); 1444 return; 1445 } 1446 1447 mutex_lock_nested(&configfs_sb->s_root->d_inode->i_mutex, 1448 I_MUTEX_PARENT); 1449 mutex_lock_nested(&dentry->d_inode->i_mutex, I_MUTEX_CHILD); 1450 if (configfs_detach_prep(dentry)) { 1451 printk(KERN_ERR "configfs: Tried to unregister non-empty subsystem!\n"); 1452 } 1453 configfs_detach_group(&group->cg_item); 1454 dentry->d_inode->i_flags |= S_DEAD; 1455 mutex_unlock(&dentry->d_inode->i_mutex); 1456 1457 d_delete(dentry); 1458 1459 mutex_unlock(&configfs_sb->s_root->d_inode->i_mutex); 1460 1461 dput(dentry); 1462 1463 unlink_group(group); 1464 configfs_release_fs(); 1465 } 1466 1467 EXPORT_SYMBOL(configfs_register_subsystem); 1468 EXPORT_SYMBOL(configfs_unregister_subsystem); 1469