1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _FS_CEPH_SUPER_H 3 #define _FS_CEPH_SUPER_H 4 5 #include <linux/ceph/ceph_debug.h> 6 7 #include <asm/unaligned.h> 8 #include <linux/backing-dev.h> 9 #include <linux/completion.h> 10 #include <linux/exportfs.h> 11 #include <linux/fs.h> 12 #include <linux/mempool.h> 13 #include <linux/pagemap.h> 14 #include <linux/wait.h> 15 #include <linux/writeback.h> 16 #include <linux/slab.h> 17 #include <linux/posix_acl.h> 18 #include <linux/refcount.h> 19 #include <linux/security.h> 20 21 #include <linux/ceph/libceph.h> 22 23 #ifdef CONFIG_CEPH_FSCACHE 24 #define FSCACHE_USE_NEW_IO_API 25 #include <linux/fscache.h> 26 #endif 27 28 /* f_type in struct statfs */ 29 #define CEPH_SUPER_MAGIC 0x00c36400 30 31 /* large granularity for statfs utilization stats to facilitate 32 * large volume sizes on 32-bit machines. */ 33 #define CEPH_BLOCK_SHIFT 22 /* 4 MB */ 34 #define CEPH_BLOCK (1 << CEPH_BLOCK_SHIFT) 35 36 #define CEPH_MOUNT_OPT_CLEANRECOVER (1<<1) /* auto reonnect (clean mode) after blocklisted */ 37 #define CEPH_MOUNT_OPT_DIRSTAT (1<<4) /* `cat dirname` for stats */ 38 #define CEPH_MOUNT_OPT_RBYTES (1<<5) /* dir st_bytes = rbytes */ 39 #define CEPH_MOUNT_OPT_NOASYNCREADDIR (1<<7) /* no dcache readdir */ 40 #define CEPH_MOUNT_OPT_INO32 (1<<8) /* 32 bit inos */ 41 #define CEPH_MOUNT_OPT_DCACHE (1<<9) /* use dcache for readdir etc */ 42 #define CEPH_MOUNT_OPT_FSCACHE (1<<10) /* use fscache */ 43 #define CEPH_MOUNT_OPT_NOPOOLPERM (1<<11) /* no pool permission check */ 44 #define CEPH_MOUNT_OPT_MOUNTWAIT (1<<12) /* mount waits if no mds is up */ 45 #define CEPH_MOUNT_OPT_NOQUOTADF (1<<13) /* no root dir quota in statfs */ 46 #define CEPH_MOUNT_OPT_NOCOPYFROM (1<<14) /* don't use RADOS 'copy-from' op */ 47 #define CEPH_MOUNT_OPT_ASYNC_DIROPS (1<<15) /* allow async directory ops */ 48 49 #define CEPH_MOUNT_OPT_DEFAULT \ 50 (CEPH_MOUNT_OPT_DCACHE | \ 51 CEPH_MOUNT_OPT_NOCOPYFROM) 52 53 #define ceph_set_mount_opt(fsc, opt) \ 54 (fsc)->mount_options->flags |= CEPH_MOUNT_OPT_##opt 55 #define ceph_clear_mount_opt(fsc, opt) \ 56 (fsc)->mount_options->flags &= ~CEPH_MOUNT_OPT_##opt 57 #define ceph_test_mount_opt(fsc, opt) \ 58 (!!((fsc)->mount_options->flags & CEPH_MOUNT_OPT_##opt)) 59 60 /* max size of osd read request, limited by libceph */ 61 #define CEPH_MAX_READ_SIZE CEPH_MSG_MAX_DATA_LEN 62 /* osd has a configurable limitaion of max write size. 63 * CEPH_MSG_MAX_DATA_LEN should be small enough. */ 64 #define CEPH_MAX_WRITE_SIZE CEPH_MSG_MAX_DATA_LEN 65 #define CEPH_RASIZE_DEFAULT (8192*1024) /* max readahead */ 66 #define CEPH_MAX_READDIR_DEFAULT 1024 67 #define CEPH_MAX_READDIR_BYTES_DEFAULT (512*1024) 68 #define CEPH_SNAPDIRNAME_DEFAULT ".snap" 69 70 /* 71 * Delay telling the MDS we no longer want caps, in case we reopen 72 * the file. Delay a minimum amount of time, even if we send a cap 73 * message for some other reason. Otherwise, take the oppotunity to 74 * update the mds to avoid sending another message later. 75 */ 76 #define CEPH_CAPS_WANTED_DELAY_MIN_DEFAULT 5 /* cap release delay */ 77 #define CEPH_CAPS_WANTED_DELAY_MAX_DEFAULT 60 /* cap release delay */ 78 79 struct ceph_mount_options { 80 unsigned int flags; 81 82 unsigned int wsize; /* max write size */ 83 unsigned int rsize; /* max read size */ 84 unsigned int rasize; /* max readahead */ 85 unsigned int congestion_kb; /* max writeback in flight */ 86 unsigned int caps_wanted_delay_min, caps_wanted_delay_max; 87 int caps_max; 88 unsigned int max_readdir; /* max readdir result (entries) */ 89 unsigned int max_readdir_bytes; /* max readdir result (bytes) */ 90 91 /* 92 * everything above this point can be memcmp'd; everything below 93 * is handled in compare_mount_options() 94 */ 95 96 char *snapdir_name; /* default ".snap" */ 97 char *mds_namespace; /* default NULL */ 98 char *server_path; /* default NULL (means "/") */ 99 char *fscache_uniq; /* default NULL */ 100 }; 101 102 struct ceph_fs_client { 103 struct super_block *sb; 104 105 struct list_head metric_wakeup; 106 107 struct ceph_mount_options *mount_options; 108 struct ceph_client *client; 109 110 int mount_state; 111 112 bool blocklisted; 113 114 bool have_copy_from2; 115 116 u32 filp_gen; 117 loff_t max_file_size; 118 119 struct ceph_mds_client *mdsc; 120 121 atomic_long_t writeback_count; 122 123 struct workqueue_struct *inode_wq; 124 struct workqueue_struct *cap_wq; 125 126 #ifdef CONFIG_DEBUG_FS 127 struct dentry *debugfs_dentry_lru, *debugfs_caps; 128 struct dentry *debugfs_congestion_kb; 129 struct dentry *debugfs_bdi; 130 struct dentry *debugfs_mdsc, *debugfs_mdsmap; 131 struct dentry *debugfs_metric; 132 struct dentry *debugfs_status; 133 struct dentry *debugfs_mds_sessions; 134 #endif 135 136 #ifdef CONFIG_CEPH_FSCACHE 137 struct fscache_cookie *fscache; 138 #endif 139 }; 140 141 142 /* 143 * File i/o capability. This tracks shared state with the metadata 144 * server that allows us to cache or writeback attributes or to read 145 * and write data. For any given inode, we should have one or more 146 * capabilities, one issued by each metadata server, and our 147 * cumulative access is the OR of all issued capabilities. 148 * 149 * Each cap is referenced by the inode's i_caps rbtree and by per-mds 150 * session capability lists. 151 */ 152 struct ceph_cap { 153 struct ceph_inode_info *ci; 154 struct rb_node ci_node; /* per-ci cap tree */ 155 struct ceph_mds_session *session; 156 struct list_head session_caps; /* per-session caplist */ 157 u64 cap_id; /* unique cap id (mds provided) */ 158 union { 159 /* in-use caps */ 160 struct { 161 int issued; /* latest, from the mds */ 162 int implemented; /* implemented superset of 163 issued (for revocation) */ 164 int mds; /* mds index for this cap */ 165 int mds_wanted; /* caps wanted from this mds */ 166 }; 167 /* caps to release */ 168 struct { 169 u64 cap_ino; 170 int queue_release; 171 }; 172 }; 173 u32 seq, issue_seq, mseq; 174 u32 cap_gen; /* active/stale cycle */ 175 unsigned long last_used; 176 struct list_head caps_item; 177 }; 178 179 #define CHECK_CAPS_AUTHONLY 1 /* only check auth cap */ 180 #define CHECK_CAPS_FLUSH 2 /* flush any dirty caps */ 181 #define CHECK_CAPS_NOINVAL 4 /* don't invalidate pagecache */ 182 183 struct ceph_cap_flush { 184 u64 tid; 185 int caps; 186 bool wake; /* wake up flush waiters when finish ? */ 187 bool is_capsnap; /* true means capsnap */ 188 struct list_head g_list; // global 189 struct list_head i_list; // per inode 190 }; 191 192 /* 193 * Snapped cap state that is pending flush to mds. When a snapshot occurs, 194 * we first complete any in-process sync writes and writeback any dirty 195 * data before flushing the snapped state (tracked here) back to the MDS. 196 */ 197 struct ceph_cap_snap { 198 refcount_t nref; 199 struct list_head ci_item; 200 201 struct ceph_cap_flush cap_flush; 202 203 u64 follows; 204 int issued, dirty; 205 struct ceph_snap_context *context; 206 207 umode_t mode; 208 kuid_t uid; 209 kgid_t gid; 210 211 struct ceph_buffer *xattr_blob; 212 u64 xattr_version; 213 214 u64 size; 215 u64 change_attr; 216 struct timespec64 mtime, atime, ctime, btime; 217 u64 time_warp_seq; 218 u64 truncate_size; 219 u32 truncate_seq; 220 int writing; /* a sync write is still in progress */ 221 int dirty_pages; /* dirty pages awaiting writeback */ 222 bool inline_data; 223 bool need_flush; 224 }; 225 226 static inline void ceph_put_cap_snap(struct ceph_cap_snap *capsnap) 227 { 228 if (refcount_dec_and_test(&capsnap->nref)) { 229 if (capsnap->xattr_blob) 230 ceph_buffer_put(capsnap->xattr_blob); 231 kfree(capsnap); 232 } 233 } 234 235 /* 236 * The frag tree describes how a directory is fragmented, potentially across 237 * multiple metadata servers. It is also used to indicate points where 238 * metadata authority is delegated, and whether/where metadata is replicated. 239 * 240 * A _leaf_ frag will be present in the i_fragtree IFF there is 241 * delegation info. That is, if mds >= 0 || ndist > 0. 242 */ 243 #define CEPH_MAX_DIRFRAG_REP 4 244 245 struct ceph_inode_frag { 246 struct rb_node node; 247 248 /* fragtree state */ 249 u32 frag; 250 int split_by; /* i.e. 2^(split_by) children */ 251 252 /* delegation and replication info */ 253 int mds; /* -1 if same authority as parent */ 254 int ndist; /* >0 if replicated */ 255 int dist[CEPH_MAX_DIRFRAG_REP]; 256 }; 257 258 /* 259 * We cache inode xattrs as an encoded blob until they are first used, 260 * at which point we parse them into an rbtree. 261 */ 262 struct ceph_inode_xattr { 263 struct rb_node node; 264 265 const char *name; 266 int name_len; 267 const char *val; 268 int val_len; 269 int dirty; 270 271 int should_free_name; 272 int should_free_val; 273 }; 274 275 /* 276 * Ceph dentry state 277 */ 278 struct ceph_dentry_info { 279 struct dentry *dentry; 280 struct ceph_mds_session *lease_session; 281 struct list_head lease_list; 282 unsigned flags; 283 int lease_shared_gen; 284 u32 lease_gen; 285 u32 lease_seq; 286 unsigned long lease_renew_after, lease_renew_from; 287 unsigned long time; 288 u64 offset; 289 }; 290 291 #define CEPH_DENTRY_REFERENCED 1 292 #define CEPH_DENTRY_LEASE_LIST 2 293 #define CEPH_DENTRY_SHRINK_LIST 4 294 #define CEPH_DENTRY_PRIMARY_LINK 8 295 296 struct ceph_inode_xattrs_info { 297 /* 298 * (still encoded) xattr blob. we avoid the overhead of parsing 299 * this until someone actually calls getxattr, etc. 300 * 301 * blob->vec.iov_len == 4 implies there are no xattrs; blob == 302 * NULL means we don't know. 303 */ 304 struct ceph_buffer *blob, *prealloc_blob; 305 306 struct rb_root index; 307 bool dirty; 308 int count; 309 int names_size; 310 int vals_size; 311 u64 version, index_version; 312 }; 313 314 /* 315 * Ceph inode. 316 */ 317 struct ceph_inode_info { 318 struct ceph_vino i_vino; /* ceph ino + snap */ 319 320 spinlock_t i_ceph_lock; 321 322 u64 i_version; 323 u64 i_inline_version; 324 u32 i_time_warp_seq; 325 326 unsigned long i_ceph_flags; 327 atomic64_t i_release_count; 328 atomic64_t i_ordered_count; 329 atomic64_t i_complete_seq[2]; 330 331 struct ceph_dir_layout i_dir_layout; 332 struct ceph_file_layout i_layout; 333 struct ceph_file_layout i_cached_layout; // for async creates 334 char *i_symlink; 335 336 /* for dirs */ 337 struct timespec64 i_rctime; 338 u64 i_rbytes, i_rfiles, i_rsubdirs, i_rsnaps; 339 u64 i_files, i_subdirs; 340 341 /* quotas */ 342 u64 i_max_bytes, i_max_files; 343 344 s32 i_dir_pin; 345 346 struct rb_root i_fragtree; 347 int i_fragtree_nsplits; 348 struct mutex i_fragtree_mutex; 349 350 struct ceph_inode_xattrs_info i_xattrs; 351 352 /* capabilities. protected _both_ by i_ceph_lock and cap->session's 353 * s_mutex. */ 354 struct rb_root i_caps; /* cap list */ 355 struct ceph_cap *i_auth_cap; /* authoritative cap, if any */ 356 unsigned i_dirty_caps, i_flushing_caps; /* mask of dirtied fields */ 357 358 /* 359 * Link to the auth cap's session's s_cap_dirty list. s_cap_dirty 360 * is protected by the mdsc->cap_dirty_lock, but each individual item 361 * is also protected by the inode's i_ceph_lock. Walking s_cap_dirty 362 * requires the mdsc->cap_dirty_lock. List presence for an item can 363 * be tested under the i_ceph_lock. Changing anything requires both. 364 */ 365 struct list_head i_dirty_item; 366 367 /* 368 * Link to session's s_cap_flushing list. Protected in a similar 369 * fashion to i_dirty_item, but also by the s_mutex for changes. The 370 * s_cap_flushing list can be walked while holding either the s_mutex 371 * or msdc->cap_dirty_lock. List presence can also be checked while 372 * holding the i_ceph_lock for this inode. 373 */ 374 struct list_head i_flushing_item; 375 376 /* we need to track cap writeback on a per-cap-bit basis, to allow 377 * overlapping, pipelined cap flushes to the mds. we can probably 378 * reduce the tid to 8 bits if we're concerned about inode size. */ 379 struct ceph_cap_flush *i_prealloc_cap_flush; 380 struct list_head i_cap_flush_list; 381 wait_queue_head_t i_cap_wq; /* threads waiting on a capability */ 382 unsigned long i_hold_caps_max; /* jiffies */ 383 struct list_head i_cap_delay_list; /* for delayed cap release to mds */ 384 struct ceph_cap_reservation i_cap_migration_resv; 385 struct list_head i_cap_snaps; /* snapped state pending flush to mds */ 386 struct ceph_snap_context *i_head_snapc; /* set if wr_buffer_head > 0 or 387 dirty|flushing caps */ 388 unsigned i_snap_caps; /* cap bits for snapped files */ 389 390 unsigned long i_last_rd; 391 unsigned long i_last_wr; 392 int i_nr_by_mode[CEPH_FILE_MODE_BITS]; /* open file counts */ 393 394 struct mutex i_truncate_mutex; 395 u32 i_truncate_seq; /* last truncate to smaller size */ 396 u64 i_truncate_size; /* and the size we last truncated down to */ 397 int i_truncate_pending; /* still need to call vmtruncate */ 398 399 u64 i_max_size; /* max file size authorized by mds */ 400 u64 i_reported_size; /* (max_)size reported to or requested of mds */ 401 u64 i_wanted_max_size; /* offset we'd like to write too */ 402 u64 i_requested_max_size; /* max_size we've requested */ 403 404 /* held references to caps */ 405 int i_pin_ref; 406 int i_rd_ref, i_rdcache_ref, i_wr_ref, i_wb_ref, i_fx_ref; 407 int i_wrbuffer_ref, i_wrbuffer_ref_head; 408 atomic_t i_filelock_ref; 409 atomic_t i_shared_gen; /* increment each time we get FILE_SHARED */ 410 u32 i_rdcache_gen; /* incremented each time we get FILE_CACHE. */ 411 u32 i_rdcache_revoking; /* RDCACHE gen to async invalidate, if any */ 412 413 struct list_head i_unsafe_dirops; /* uncommitted mds dir ops */ 414 struct list_head i_unsafe_iops; /* uncommitted mds inode ops */ 415 spinlock_t i_unsafe_lock; 416 417 union { 418 struct ceph_snap_realm *i_snap_realm; /* snap realm (if caps) */ 419 struct ceph_snapid_map *i_snapid_map; /* snapid -> dev_t */ 420 }; 421 struct list_head i_snap_realm_item; 422 struct list_head i_snap_flush_item; 423 struct timespec64 i_btime; 424 struct timespec64 i_snap_btime; 425 426 struct work_struct i_work; 427 unsigned long i_work_mask; 428 429 #ifdef CONFIG_CEPH_FSCACHE 430 struct fscache_cookie *fscache; 431 #endif 432 errseq_t i_meta_err; 433 434 struct inode vfs_inode; /* at end */ 435 }; 436 437 static inline struct ceph_inode_info * 438 ceph_inode(const struct inode *inode) 439 { 440 return container_of(inode, struct ceph_inode_info, vfs_inode); 441 } 442 443 static inline struct ceph_fs_client * 444 ceph_inode_to_client(const struct inode *inode) 445 { 446 return (struct ceph_fs_client *)inode->i_sb->s_fs_info; 447 } 448 449 static inline struct ceph_fs_client * 450 ceph_sb_to_client(const struct super_block *sb) 451 { 452 return (struct ceph_fs_client *)sb->s_fs_info; 453 } 454 455 static inline struct ceph_mds_client * 456 ceph_sb_to_mdsc(const struct super_block *sb) 457 { 458 return (struct ceph_mds_client *)ceph_sb_to_client(sb)->mdsc; 459 } 460 461 static inline struct ceph_vino 462 ceph_vino(const struct inode *inode) 463 { 464 return ceph_inode(inode)->i_vino; 465 } 466 467 static inline u32 ceph_ino_to_ino32(u64 vino) 468 { 469 u32 ino = vino & 0xffffffff; 470 ino ^= vino >> 32; 471 if (!ino) 472 ino = 2; 473 return ino; 474 } 475 476 /* 477 * Inode numbers in cephfs are 64 bits, but inode->i_ino is 32-bits on 478 * some arches. We generally do not use this value inside the ceph driver, but 479 * we do want to set it to something, so that generic vfs code has an 480 * appropriate value for tracepoints and the like. 481 */ 482 static inline ino_t ceph_vino_to_ino_t(struct ceph_vino vino) 483 { 484 if (sizeof(ino_t) == sizeof(u32)) 485 return ceph_ino_to_ino32(vino.ino); 486 return (ino_t)vino.ino; 487 } 488 489 /* for printf-style formatting */ 490 #define ceph_vinop(i) ceph_inode(i)->i_vino.ino, ceph_inode(i)->i_vino.snap 491 492 static inline u64 ceph_ino(struct inode *inode) 493 { 494 return ceph_inode(inode)->i_vino.ino; 495 } 496 497 static inline u64 ceph_snap(struct inode *inode) 498 { 499 return ceph_inode(inode)->i_vino.snap; 500 } 501 502 /** 503 * ceph_present_ino - format an inode number for presentation to userland 504 * @sb: superblock where the inode lives 505 * @ino: inode number to (possibly) convert 506 * 507 * If the user mounted with the ino32 option, then the 64-bit value needs 508 * to be converted to something that can fit inside 32 bits. Note that 509 * internal kernel code never uses this value, so this is entirely for 510 * userland consumption. 511 */ 512 static inline u64 ceph_present_ino(struct super_block *sb, u64 ino) 513 { 514 if (unlikely(ceph_test_mount_opt(ceph_sb_to_client(sb), INO32))) 515 return ceph_ino_to_ino32(ino); 516 return ino; 517 } 518 519 static inline u64 ceph_present_inode(struct inode *inode) 520 { 521 return ceph_present_ino(inode->i_sb, ceph_ino(inode)); 522 } 523 524 static inline int ceph_ino_compare(struct inode *inode, void *data) 525 { 526 struct ceph_vino *pvino = (struct ceph_vino *)data; 527 struct ceph_inode_info *ci = ceph_inode(inode); 528 return ci->i_vino.ino == pvino->ino && 529 ci->i_vino.snap == pvino->snap; 530 } 531 532 /* 533 * The MDS reserves a set of inodes for its own usage. These should never 534 * be accessible by clients, and so the MDS has no reason to ever hand these 535 * out. The range is CEPH_MDS_INO_MDSDIR_OFFSET..CEPH_INO_SYSTEM_BASE. 536 * 537 * These come from src/mds/mdstypes.h in the ceph sources. 538 */ 539 #define CEPH_MAX_MDS 0x100 540 #define CEPH_NUM_STRAY 10 541 #define CEPH_MDS_INO_MDSDIR_OFFSET (1 * CEPH_MAX_MDS) 542 #define CEPH_INO_SYSTEM_BASE ((6*CEPH_MAX_MDS) + (CEPH_MAX_MDS * CEPH_NUM_STRAY)) 543 544 static inline bool ceph_vino_is_reserved(const struct ceph_vino vino) 545 { 546 if (vino.ino < CEPH_INO_SYSTEM_BASE && 547 vino.ino >= CEPH_MDS_INO_MDSDIR_OFFSET) { 548 WARN_RATELIMIT(1, "Attempt to access reserved inode number 0x%llx", vino.ino); 549 return true; 550 } 551 return false; 552 } 553 554 static inline struct inode *ceph_find_inode(struct super_block *sb, 555 struct ceph_vino vino) 556 { 557 if (ceph_vino_is_reserved(vino)) 558 return NULL; 559 560 /* 561 * NB: The hashval will be run through the fs/inode.c hash function 562 * anyway, so there is no need to squash the inode number down to 563 * 32-bits first. Just use low-order bits on arches with 32-bit long. 564 */ 565 return ilookup5(sb, (unsigned long)vino.ino, ceph_ino_compare, &vino); 566 } 567 568 569 /* 570 * Ceph inode. 571 */ 572 #define CEPH_I_DIR_ORDERED (1 << 0) /* dentries in dir are ordered */ 573 #define CEPH_I_FLUSH (1 << 2) /* do not delay flush of dirty metadata */ 574 #define CEPH_I_POOL_PERM (1 << 3) /* pool rd/wr bits are valid */ 575 #define CEPH_I_POOL_RD (1 << 4) /* can read from pool */ 576 #define CEPH_I_POOL_WR (1 << 5) /* can write to pool */ 577 #define CEPH_I_SEC_INITED (1 << 6) /* security initialized */ 578 #define CEPH_I_KICK_FLUSH (1 << 7) /* kick flushing caps */ 579 #define CEPH_I_FLUSH_SNAPS (1 << 8) /* need flush snapss */ 580 #define CEPH_I_ERROR_WRITE (1 << 9) /* have seen write errors */ 581 #define CEPH_I_ERROR_FILELOCK (1 << 10) /* have seen file lock errors */ 582 #define CEPH_I_ODIRECT (1 << 11) /* inode in direct I/O mode */ 583 #define CEPH_ASYNC_CREATE_BIT (12) /* async create in flight for this */ 584 #define CEPH_I_ASYNC_CREATE (1 << CEPH_ASYNC_CREATE_BIT) 585 586 /* 587 * Masks of ceph inode work. 588 */ 589 #define CEPH_I_WORK_WRITEBACK 0 590 #define CEPH_I_WORK_INVALIDATE_PAGES 1 591 #define CEPH_I_WORK_VMTRUNCATE 2 592 #define CEPH_I_WORK_CHECK_CAPS 3 593 #define CEPH_I_WORK_FLUSH_SNAPS 4 594 595 /* 596 * We set the ERROR_WRITE bit when we start seeing write errors on an inode 597 * and then clear it when they start succeeding. Note that we do a lockless 598 * check first, and only take the lock if it looks like it needs to be changed. 599 * The write submission code just takes this as a hint, so we're not too 600 * worried if a few slip through in either direction. 601 */ 602 static inline void ceph_set_error_write(struct ceph_inode_info *ci) 603 { 604 if (!(READ_ONCE(ci->i_ceph_flags) & CEPH_I_ERROR_WRITE)) { 605 spin_lock(&ci->i_ceph_lock); 606 ci->i_ceph_flags |= CEPH_I_ERROR_WRITE; 607 spin_unlock(&ci->i_ceph_lock); 608 } 609 } 610 611 static inline void ceph_clear_error_write(struct ceph_inode_info *ci) 612 { 613 if (READ_ONCE(ci->i_ceph_flags) & CEPH_I_ERROR_WRITE) { 614 spin_lock(&ci->i_ceph_lock); 615 ci->i_ceph_flags &= ~CEPH_I_ERROR_WRITE; 616 spin_unlock(&ci->i_ceph_lock); 617 } 618 } 619 620 static inline void __ceph_dir_set_complete(struct ceph_inode_info *ci, 621 long long release_count, 622 long long ordered_count) 623 { 624 /* 625 * Makes sure operations that setup readdir cache (update page 626 * cache and i_size) are strongly ordered w.r.t. the following 627 * atomic64_set() operations. 628 */ 629 smp_mb(); 630 atomic64_set(&ci->i_complete_seq[0], release_count); 631 atomic64_set(&ci->i_complete_seq[1], ordered_count); 632 } 633 634 static inline void __ceph_dir_clear_complete(struct ceph_inode_info *ci) 635 { 636 atomic64_inc(&ci->i_release_count); 637 } 638 639 static inline void __ceph_dir_clear_ordered(struct ceph_inode_info *ci) 640 { 641 atomic64_inc(&ci->i_ordered_count); 642 } 643 644 static inline bool __ceph_dir_is_complete(struct ceph_inode_info *ci) 645 { 646 return atomic64_read(&ci->i_complete_seq[0]) == 647 atomic64_read(&ci->i_release_count); 648 } 649 650 static inline bool __ceph_dir_is_complete_ordered(struct ceph_inode_info *ci) 651 { 652 return atomic64_read(&ci->i_complete_seq[0]) == 653 atomic64_read(&ci->i_release_count) && 654 atomic64_read(&ci->i_complete_seq[1]) == 655 atomic64_read(&ci->i_ordered_count); 656 } 657 658 static inline void ceph_dir_clear_complete(struct inode *inode) 659 { 660 __ceph_dir_clear_complete(ceph_inode(inode)); 661 } 662 663 static inline void ceph_dir_clear_ordered(struct inode *inode) 664 { 665 __ceph_dir_clear_ordered(ceph_inode(inode)); 666 } 667 668 static inline bool ceph_dir_is_complete_ordered(struct inode *inode) 669 { 670 bool ret = __ceph_dir_is_complete_ordered(ceph_inode(inode)); 671 smp_rmb(); 672 return ret; 673 } 674 675 /* find a specific frag @f */ 676 extern struct ceph_inode_frag *__ceph_find_frag(struct ceph_inode_info *ci, 677 u32 f); 678 679 /* 680 * choose fragment for value @v. copy frag content to pfrag, if leaf 681 * exists 682 */ 683 extern u32 ceph_choose_frag(struct ceph_inode_info *ci, u32 v, 684 struct ceph_inode_frag *pfrag, 685 int *found); 686 687 static inline struct ceph_dentry_info *ceph_dentry(const struct dentry *dentry) 688 { 689 return (struct ceph_dentry_info *)dentry->d_fsdata; 690 } 691 692 /* 693 * caps helpers 694 */ 695 static inline bool __ceph_is_any_real_caps(struct ceph_inode_info *ci) 696 { 697 return !RB_EMPTY_ROOT(&ci->i_caps); 698 } 699 700 extern int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented); 701 extern int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int t); 702 extern int __ceph_caps_issued_mask_metric(struct ceph_inode_info *ci, int mask, 703 int t); 704 extern int __ceph_caps_issued_other(struct ceph_inode_info *ci, 705 struct ceph_cap *cap); 706 707 static inline int ceph_caps_issued(struct ceph_inode_info *ci) 708 { 709 int issued; 710 spin_lock(&ci->i_ceph_lock); 711 issued = __ceph_caps_issued(ci, NULL); 712 spin_unlock(&ci->i_ceph_lock); 713 return issued; 714 } 715 716 static inline int ceph_caps_issued_mask_metric(struct ceph_inode_info *ci, 717 int mask, int touch) 718 { 719 int r; 720 spin_lock(&ci->i_ceph_lock); 721 r = __ceph_caps_issued_mask_metric(ci, mask, touch); 722 spin_unlock(&ci->i_ceph_lock); 723 return r; 724 } 725 726 static inline int __ceph_caps_dirty(struct ceph_inode_info *ci) 727 { 728 return ci->i_dirty_caps | ci->i_flushing_caps; 729 } 730 extern struct ceph_cap_flush *ceph_alloc_cap_flush(void); 731 extern void ceph_free_cap_flush(struct ceph_cap_flush *cf); 732 extern int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask, 733 struct ceph_cap_flush **pcf); 734 735 extern int __ceph_caps_revoking_other(struct ceph_inode_info *ci, 736 struct ceph_cap *ocap, int mask); 737 extern int ceph_caps_revoking(struct ceph_inode_info *ci, int mask); 738 extern int __ceph_caps_used(struct ceph_inode_info *ci); 739 740 static inline bool __ceph_is_file_opened(struct ceph_inode_info *ci) 741 { 742 return ci->i_nr_by_mode[0]; 743 } 744 extern int __ceph_caps_file_wanted(struct ceph_inode_info *ci); 745 extern int __ceph_caps_wanted(struct ceph_inode_info *ci); 746 747 /* what the mds thinks we want */ 748 extern int __ceph_caps_mds_wanted(struct ceph_inode_info *ci, bool check); 749 750 extern void ceph_caps_init(struct ceph_mds_client *mdsc); 751 extern void ceph_caps_finalize(struct ceph_mds_client *mdsc); 752 extern void ceph_adjust_caps_max_min(struct ceph_mds_client *mdsc, 753 struct ceph_mount_options *fsopt); 754 extern int ceph_reserve_caps(struct ceph_mds_client *mdsc, 755 struct ceph_cap_reservation *ctx, int need); 756 extern void ceph_unreserve_caps(struct ceph_mds_client *mdsc, 757 struct ceph_cap_reservation *ctx); 758 extern void ceph_reservation_status(struct ceph_fs_client *client, 759 int *total, int *avail, int *used, 760 int *reserved, int *min); 761 762 763 764 /* 765 * we keep buffered readdir results attached to file->private_data 766 */ 767 #define CEPH_F_SYNC 1 768 #define CEPH_F_ATEND 2 769 770 struct ceph_file_info { 771 short fmode; /* initialized on open */ 772 short flags; /* CEPH_F_* */ 773 774 spinlock_t rw_contexts_lock; 775 struct list_head rw_contexts; 776 777 errseq_t meta_err; 778 u32 filp_gen; 779 atomic_t num_locks; 780 }; 781 782 struct ceph_dir_file_info { 783 struct ceph_file_info file_info; 784 785 /* readdir: position within the dir */ 786 u32 frag; 787 struct ceph_mds_request *last_readdir; 788 789 /* readdir: position within a frag */ 790 unsigned next_offset; /* offset of next chunk (last_name's + 1) */ 791 char *last_name; /* last entry in previous chunk */ 792 long long dir_release_count; 793 long long dir_ordered_count; 794 int readdir_cache_idx; 795 796 /* used for -o dirstat read() on directory thing */ 797 char *dir_info; 798 int dir_info_len; 799 }; 800 801 struct ceph_rw_context { 802 struct list_head list; 803 struct task_struct *thread; 804 int caps; 805 }; 806 807 #define CEPH_DEFINE_RW_CONTEXT(_name, _caps) \ 808 struct ceph_rw_context _name = { \ 809 .thread = current, \ 810 .caps = _caps, \ 811 } 812 813 static inline void ceph_add_rw_context(struct ceph_file_info *cf, 814 struct ceph_rw_context *ctx) 815 { 816 spin_lock(&cf->rw_contexts_lock); 817 list_add(&ctx->list, &cf->rw_contexts); 818 spin_unlock(&cf->rw_contexts_lock); 819 } 820 821 static inline void ceph_del_rw_context(struct ceph_file_info *cf, 822 struct ceph_rw_context *ctx) 823 { 824 spin_lock(&cf->rw_contexts_lock); 825 list_del(&ctx->list); 826 spin_unlock(&cf->rw_contexts_lock); 827 } 828 829 static inline struct ceph_rw_context* 830 ceph_find_rw_context(struct ceph_file_info *cf) 831 { 832 struct ceph_rw_context *ctx, *found = NULL; 833 spin_lock(&cf->rw_contexts_lock); 834 list_for_each_entry(ctx, &cf->rw_contexts, list) { 835 if (ctx->thread == current) { 836 found = ctx; 837 break; 838 } 839 } 840 spin_unlock(&cf->rw_contexts_lock); 841 return found; 842 } 843 844 struct ceph_readdir_cache_control { 845 struct page *page; 846 struct dentry **dentries; 847 int index; 848 }; 849 850 /* 851 * A "snap realm" describes a subset of the file hierarchy sharing 852 * the same set of snapshots that apply to it. The realms themselves 853 * are organized into a hierarchy, such that children inherit (some of) 854 * the snapshots of their parents. 855 * 856 * All inodes within the realm that have capabilities are linked into a 857 * per-realm list. 858 */ 859 struct ceph_snap_realm { 860 u64 ino; 861 struct inode *inode; 862 atomic_t nref; 863 struct rb_node node; 864 865 u64 created, seq; 866 u64 parent_ino; 867 u64 parent_since; /* snapid when our current parent became so */ 868 869 u64 *prior_parent_snaps; /* snaps inherited from any parents we */ 870 u32 num_prior_parent_snaps; /* had prior to parent_since */ 871 u64 *snaps; /* snaps specific to this realm */ 872 u32 num_snaps; 873 874 struct ceph_snap_realm *parent; 875 struct list_head children; /* list of child realms */ 876 struct list_head child_item; 877 878 struct list_head empty_item; /* if i have ref==0 */ 879 880 struct list_head dirty_item; /* if realm needs new context */ 881 882 /* the current set of snaps for this realm */ 883 struct ceph_snap_context *cached_context; 884 885 struct list_head inodes_with_caps; 886 spinlock_t inodes_with_caps_lock; 887 }; 888 889 static inline int default_congestion_kb(void) 890 { 891 int congestion_kb; 892 893 /* 894 * Copied from NFS 895 * 896 * congestion size, scale with available memory. 897 * 898 * 64MB: 8192k 899 * 128MB: 11585k 900 * 256MB: 16384k 901 * 512MB: 23170k 902 * 1GB: 32768k 903 * 2GB: 46340k 904 * 4GB: 65536k 905 * 8GB: 92681k 906 * 16GB: 131072k 907 * 908 * This allows larger machines to have larger/more transfers. 909 * Limit the default to 256M 910 */ 911 congestion_kb = (16*int_sqrt(totalram_pages())) << (PAGE_SHIFT-10); 912 if (congestion_kb > 256*1024) 913 congestion_kb = 256*1024; 914 915 return congestion_kb; 916 } 917 918 919 /* super.c */ 920 extern int ceph_force_reconnect(struct super_block *sb); 921 /* snap.c */ 922 struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc, 923 u64 ino); 924 extern void ceph_get_snap_realm(struct ceph_mds_client *mdsc, 925 struct ceph_snap_realm *realm); 926 extern void ceph_put_snap_realm(struct ceph_mds_client *mdsc, 927 struct ceph_snap_realm *realm); 928 extern int ceph_update_snap_trace(struct ceph_mds_client *m, 929 void *p, void *e, bool deletion, 930 struct ceph_snap_realm **realm_ret); 931 void ceph_change_snap_realm(struct inode *inode, struct ceph_snap_realm *realm); 932 extern void ceph_handle_snap(struct ceph_mds_client *mdsc, 933 struct ceph_mds_session *session, 934 struct ceph_msg *msg); 935 extern int __ceph_finish_cap_snap(struct ceph_inode_info *ci, 936 struct ceph_cap_snap *capsnap); 937 extern void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc); 938 939 extern struct ceph_snapid_map *ceph_get_snapid_map(struct ceph_mds_client *mdsc, 940 u64 snap); 941 extern void ceph_put_snapid_map(struct ceph_mds_client* mdsc, 942 struct ceph_snapid_map *sm); 943 extern void ceph_trim_snapid_map(struct ceph_mds_client *mdsc); 944 extern void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc); 945 946 947 /* 948 * a cap_snap is "pending" if it is still awaiting an in-progress 949 * sync write (that may/may not still update size, mtime, etc.). 950 */ 951 static inline bool __ceph_have_pending_cap_snap(struct ceph_inode_info *ci) 952 { 953 return !list_empty(&ci->i_cap_snaps) && 954 list_last_entry(&ci->i_cap_snaps, struct ceph_cap_snap, 955 ci_item)->writing; 956 } 957 958 /* inode.c */ 959 struct ceph_mds_reply_info_in; 960 struct ceph_mds_reply_dirfrag; 961 962 extern const struct inode_operations ceph_file_iops; 963 964 extern struct inode *ceph_alloc_inode(struct super_block *sb); 965 extern void ceph_evict_inode(struct inode *inode); 966 extern void ceph_free_inode(struct inode *inode); 967 968 extern struct inode *ceph_get_inode(struct super_block *sb, 969 struct ceph_vino vino); 970 extern struct inode *ceph_get_snapdir(struct inode *parent); 971 extern int ceph_fill_file_size(struct inode *inode, int issued, 972 u32 truncate_seq, u64 truncate_size, u64 size); 973 extern void ceph_fill_file_time(struct inode *inode, int issued, 974 u64 time_warp_seq, struct timespec64 *ctime, 975 struct timespec64 *mtime, 976 struct timespec64 *atime); 977 extern int ceph_fill_inode(struct inode *inode, struct page *locked_page, 978 struct ceph_mds_reply_info_in *iinfo, 979 struct ceph_mds_reply_dirfrag *dirinfo, 980 struct ceph_mds_session *session, int cap_fmode, 981 struct ceph_cap_reservation *caps_reservation); 982 extern int ceph_fill_trace(struct super_block *sb, 983 struct ceph_mds_request *req); 984 extern int ceph_readdir_prepopulate(struct ceph_mds_request *req, 985 struct ceph_mds_session *session); 986 987 extern int ceph_inode_holds_cap(struct inode *inode, int mask); 988 989 extern bool ceph_inode_set_size(struct inode *inode, loff_t size); 990 extern void __ceph_do_pending_vmtruncate(struct inode *inode); 991 992 void ceph_queue_inode_work(struct inode *inode, int work_bit); 993 994 static inline void ceph_queue_vmtruncate(struct inode *inode) 995 { 996 ceph_queue_inode_work(inode, CEPH_I_WORK_VMTRUNCATE); 997 } 998 999 static inline void ceph_queue_invalidate(struct inode *inode) 1000 { 1001 ceph_queue_inode_work(inode, CEPH_I_WORK_INVALIDATE_PAGES); 1002 } 1003 1004 static inline void ceph_queue_writeback(struct inode *inode) 1005 { 1006 ceph_queue_inode_work(inode, CEPH_I_WORK_WRITEBACK); 1007 } 1008 1009 static inline void ceph_queue_check_caps(struct inode *inode) 1010 { 1011 ceph_queue_inode_work(inode, CEPH_I_WORK_CHECK_CAPS); 1012 } 1013 1014 static inline void ceph_queue_flush_snaps(struct inode *inode) 1015 { 1016 ceph_queue_inode_work(inode, CEPH_I_WORK_FLUSH_SNAPS); 1017 } 1018 1019 extern int __ceph_do_getattr(struct inode *inode, struct page *locked_page, 1020 int mask, bool force); 1021 static inline int ceph_do_getattr(struct inode *inode, int mask, bool force) 1022 { 1023 return __ceph_do_getattr(inode, NULL, mask, force); 1024 } 1025 extern int ceph_permission(struct user_namespace *mnt_userns, 1026 struct inode *inode, int mask); 1027 extern int __ceph_setattr(struct inode *inode, struct iattr *attr); 1028 extern int ceph_setattr(struct user_namespace *mnt_userns, 1029 struct dentry *dentry, struct iattr *attr); 1030 extern int ceph_getattr(struct user_namespace *mnt_userns, 1031 const struct path *path, struct kstat *stat, 1032 u32 request_mask, unsigned int flags); 1033 1034 /* xattr.c */ 1035 int __ceph_setxattr(struct inode *, const char *, const void *, size_t, int); 1036 ssize_t __ceph_getxattr(struct inode *, const char *, void *, size_t); 1037 extern ssize_t ceph_listxattr(struct dentry *, char *, size_t); 1038 extern struct ceph_buffer *__ceph_build_xattrs_blob(struct ceph_inode_info *ci); 1039 extern void __ceph_destroy_xattrs(struct ceph_inode_info *ci); 1040 extern const struct xattr_handler *ceph_xattr_handlers[]; 1041 1042 struct ceph_acl_sec_ctx { 1043 #ifdef CONFIG_CEPH_FS_POSIX_ACL 1044 void *default_acl; 1045 void *acl; 1046 #endif 1047 #ifdef CONFIG_CEPH_FS_SECURITY_LABEL 1048 void *sec_ctx; 1049 u32 sec_ctxlen; 1050 #endif 1051 struct ceph_pagelist *pagelist; 1052 }; 1053 1054 #ifdef CONFIG_SECURITY 1055 extern bool ceph_security_xattr_deadlock(struct inode *in); 1056 extern bool ceph_security_xattr_wanted(struct inode *in); 1057 #else 1058 static inline bool ceph_security_xattr_deadlock(struct inode *in) 1059 { 1060 return false; 1061 } 1062 static inline bool ceph_security_xattr_wanted(struct inode *in) 1063 { 1064 return false; 1065 } 1066 #endif 1067 1068 #ifdef CONFIG_CEPH_FS_SECURITY_LABEL 1069 extern int ceph_security_init_secctx(struct dentry *dentry, umode_t mode, 1070 struct ceph_acl_sec_ctx *ctx); 1071 static inline void ceph_security_invalidate_secctx(struct inode *inode) 1072 { 1073 security_inode_invalidate_secctx(inode); 1074 } 1075 #else 1076 static inline int ceph_security_init_secctx(struct dentry *dentry, umode_t mode, 1077 struct ceph_acl_sec_ctx *ctx) 1078 { 1079 return 0; 1080 } 1081 static inline void ceph_security_invalidate_secctx(struct inode *inode) 1082 { 1083 } 1084 #endif 1085 1086 void ceph_release_acl_sec_ctx(struct ceph_acl_sec_ctx *as_ctx); 1087 1088 /* acl.c */ 1089 #ifdef CONFIG_CEPH_FS_POSIX_ACL 1090 1091 struct posix_acl *ceph_get_acl(struct inode *, int, bool); 1092 int ceph_set_acl(struct user_namespace *mnt_userns, 1093 struct inode *inode, struct posix_acl *acl, int type); 1094 int ceph_pre_init_acls(struct inode *dir, umode_t *mode, 1095 struct ceph_acl_sec_ctx *as_ctx); 1096 void ceph_init_inode_acls(struct inode *inode, 1097 struct ceph_acl_sec_ctx *as_ctx); 1098 1099 static inline void ceph_forget_all_cached_acls(struct inode *inode) 1100 { 1101 forget_all_cached_acls(inode); 1102 } 1103 1104 #else 1105 1106 #define ceph_get_acl NULL 1107 #define ceph_set_acl NULL 1108 1109 static inline int ceph_pre_init_acls(struct inode *dir, umode_t *mode, 1110 struct ceph_acl_sec_ctx *as_ctx) 1111 { 1112 return 0; 1113 } 1114 static inline void ceph_init_inode_acls(struct inode *inode, 1115 struct ceph_acl_sec_ctx *as_ctx) 1116 { 1117 } 1118 static inline int ceph_acl_chmod(struct dentry *dentry, struct inode *inode) 1119 { 1120 return 0; 1121 } 1122 1123 static inline void ceph_forget_all_cached_acls(struct inode *inode) 1124 { 1125 } 1126 1127 #endif 1128 1129 /* caps.c */ 1130 extern const char *ceph_cap_string(int c); 1131 extern void ceph_handle_caps(struct ceph_mds_session *session, 1132 struct ceph_msg *msg); 1133 extern struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc, 1134 struct ceph_cap_reservation *ctx); 1135 extern void ceph_add_cap(struct inode *inode, 1136 struct ceph_mds_session *session, u64 cap_id, 1137 unsigned issued, unsigned wanted, 1138 unsigned cap, unsigned seq, u64 realmino, int flags, 1139 struct ceph_cap **new_cap); 1140 extern void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release); 1141 extern void ceph_remove_cap(struct ceph_cap *cap, bool queue_release); 1142 extern void __ceph_remove_caps(struct ceph_inode_info *ci); 1143 extern void ceph_put_cap(struct ceph_mds_client *mdsc, 1144 struct ceph_cap *cap); 1145 extern int ceph_is_any_caps(struct inode *inode); 1146 1147 extern int ceph_write_inode(struct inode *inode, struct writeback_control *wbc); 1148 extern int ceph_fsync(struct file *file, loff_t start, loff_t end, 1149 int datasync); 1150 extern void ceph_early_kick_flushing_caps(struct ceph_mds_client *mdsc, 1151 struct ceph_mds_session *session); 1152 extern void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 1153 struct ceph_mds_session *session); 1154 void ceph_kick_flushing_inode_caps(struct ceph_mds_session *session, 1155 struct ceph_inode_info *ci); 1156 extern struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, 1157 int mds); 1158 extern void ceph_take_cap_refs(struct ceph_inode_info *ci, int caps, 1159 bool snap_rwsem_locked); 1160 extern void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps); 1161 extern void ceph_put_cap_refs(struct ceph_inode_info *ci, int had); 1162 extern void ceph_put_cap_refs_async(struct ceph_inode_info *ci, int had); 1163 extern void ceph_put_cap_refs_no_check_caps(struct ceph_inode_info *ci, 1164 int had); 1165 extern void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 1166 struct ceph_snap_context *snapc); 1167 extern void __ceph_remove_capsnap(struct inode *inode, 1168 struct ceph_cap_snap *capsnap, 1169 bool *wake_ci, bool *wake_mdsc); 1170 extern void ceph_remove_capsnap(struct inode *inode, 1171 struct ceph_cap_snap *capsnap, 1172 bool *wake_ci, bool *wake_mdsc); 1173 extern void ceph_flush_snaps(struct ceph_inode_info *ci, 1174 struct ceph_mds_session **psession); 1175 extern bool __ceph_should_report_size(struct ceph_inode_info *ci); 1176 extern void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1177 struct ceph_mds_session *session); 1178 extern unsigned long ceph_check_delayed_caps(struct ceph_mds_client *mdsc); 1179 extern void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc); 1180 extern int ceph_drop_caps_for_unlink(struct inode *inode); 1181 extern int ceph_encode_inode_release(void **p, struct inode *inode, 1182 int mds, int drop, int unless, int force); 1183 extern int ceph_encode_dentry_release(void **p, struct dentry *dn, 1184 struct inode *dir, 1185 int mds, int drop, int unless); 1186 1187 extern int ceph_get_caps(struct file *filp, int need, int want, 1188 loff_t endoff, int *got); 1189 extern int ceph_try_get_caps(struct inode *inode, 1190 int need, int want, bool nonblock, int *got); 1191 1192 /* for counting open files by mode */ 1193 extern void ceph_get_fmode(struct ceph_inode_info *ci, int mode, int count); 1194 extern void ceph_put_fmode(struct ceph_inode_info *ci, int mode, int count); 1195 extern void __ceph_touch_fmode(struct ceph_inode_info *ci, 1196 struct ceph_mds_client *mdsc, int fmode); 1197 1198 /* addr.c */ 1199 extern const struct address_space_operations ceph_aops; 1200 extern int ceph_mmap(struct file *file, struct vm_area_struct *vma); 1201 extern int ceph_uninline_data(struct file *filp, struct page *locked_page); 1202 extern int ceph_pool_perm_check(struct inode *inode, int need); 1203 extern void ceph_pool_perm_destroy(struct ceph_mds_client* mdsc); 1204 1205 /* file.c */ 1206 extern const struct file_operations ceph_file_fops; 1207 1208 extern int ceph_renew_caps(struct inode *inode, int fmode); 1209 extern int ceph_open(struct inode *inode, struct file *file); 1210 extern int ceph_atomic_open(struct inode *dir, struct dentry *dentry, 1211 struct file *file, unsigned flags, umode_t mode); 1212 extern int ceph_release(struct inode *inode, struct file *filp); 1213 extern void ceph_fill_inline_data(struct inode *inode, struct page *locked_page, 1214 char *data, size_t len); 1215 1216 /* dir.c */ 1217 extern const struct file_operations ceph_dir_fops; 1218 extern const struct file_operations ceph_snapdir_fops; 1219 extern const struct inode_operations ceph_dir_iops; 1220 extern const struct inode_operations ceph_snapdir_iops; 1221 extern const struct dentry_operations ceph_dentry_ops; 1222 1223 extern loff_t ceph_make_fpos(unsigned high, unsigned off, bool hash_order); 1224 extern int ceph_handle_notrace_create(struct inode *dir, struct dentry *dentry); 1225 extern struct dentry *ceph_handle_snapdir(struct ceph_mds_request *req, 1226 struct dentry *dentry); 1227 extern struct dentry *ceph_finish_lookup(struct ceph_mds_request *req, 1228 struct dentry *dentry, int err); 1229 1230 extern void __ceph_dentry_lease_touch(struct ceph_dentry_info *di); 1231 extern void __ceph_dentry_dir_lease_touch(struct ceph_dentry_info *di); 1232 extern void ceph_invalidate_dentry_lease(struct dentry *dentry); 1233 extern int ceph_trim_dentries(struct ceph_mds_client *mdsc); 1234 extern unsigned ceph_dentry_hash(struct inode *dir, struct dentry *dn); 1235 extern void ceph_readdir_cache_release(struct ceph_readdir_cache_control *ctl); 1236 1237 /* ioctl.c */ 1238 extern long ceph_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 1239 1240 /* export.c */ 1241 extern const struct export_operations ceph_export_ops; 1242 struct inode *ceph_lookup_inode(struct super_block *sb, u64 ino); 1243 1244 /* locks.c */ 1245 extern __init void ceph_flock_init(void); 1246 extern int ceph_lock(struct file *file, int cmd, struct file_lock *fl); 1247 extern int ceph_flock(struct file *file, int cmd, struct file_lock *fl); 1248 extern void ceph_count_locks(struct inode *inode, int *p_num, int *f_num); 1249 extern int ceph_encode_locks_to_buffer(struct inode *inode, 1250 struct ceph_filelock *flocks, 1251 int num_fcntl_locks, 1252 int num_flock_locks); 1253 extern int ceph_locks_to_pagelist(struct ceph_filelock *flocks, 1254 struct ceph_pagelist *pagelist, 1255 int num_fcntl_locks, int num_flock_locks); 1256 1257 /* debugfs.c */ 1258 extern void ceph_fs_debugfs_init(struct ceph_fs_client *client); 1259 extern void ceph_fs_debugfs_cleanup(struct ceph_fs_client *client); 1260 1261 /* quota.c */ 1262 static inline bool __ceph_has_any_quota(struct ceph_inode_info *ci) 1263 { 1264 return ci->i_max_files || ci->i_max_bytes; 1265 } 1266 1267 extern void ceph_adjust_quota_realms_count(struct inode *inode, bool inc); 1268 1269 static inline void __ceph_update_quota(struct ceph_inode_info *ci, 1270 u64 max_bytes, u64 max_files) 1271 { 1272 bool had_quota, has_quota; 1273 had_quota = __ceph_has_any_quota(ci); 1274 ci->i_max_bytes = max_bytes; 1275 ci->i_max_files = max_files; 1276 has_quota = __ceph_has_any_quota(ci); 1277 1278 if (had_quota != has_quota) 1279 ceph_adjust_quota_realms_count(&ci->vfs_inode, has_quota); 1280 } 1281 1282 extern void ceph_handle_quota(struct ceph_mds_client *mdsc, 1283 struct ceph_mds_session *session, 1284 struct ceph_msg *msg); 1285 extern bool ceph_quota_is_max_files_exceeded(struct inode *inode); 1286 extern bool ceph_quota_is_same_realm(struct inode *old, struct inode *new); 1287 extern bool ceph_quota_is_max_bytes_exceeded(struct inode *inode, 1288 loff_t newlen); 1289 extern bool ceph_quota_is_max_bytes_approaching(struct inode *inode, 1290 loff_t newlen); 1291 extern bool ceph_quota_update_statfs(struct ceph_fs_client *fsc, 1292 struct kstatfs *buf); 1293 extern void ceph_cleanup_quotarealms_inodes(struct ceph_mds_client *mdsc); 1294 1295 #endif /* _FS_CEPH_SUPER_H */ 1296