xref: /linux/fs/ceph/snap.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/sort.h>
4 #include <linux/slab.h>
5 
6 #include "super.h"
7 #include "mds_client.h"
8 
9 #include <linux/ceph/decode.h>
10 
11 /*
12  * Snapshots in ceph are driven in large part by cooperation from the
13  * client.  In contrast to local file systems or file servers that
14  * implement snapshots at a single point in the system, ceph's
15  * distributed access to storage requires clients to help decide
16  * whether a write logically occurs before or after a recently created
17  * snapshot.
18  *
19  * This provides a perfect instantanous client-wide snapshot.  Between
20  * clients, however, snapshots may appear to be applied at slightly
21  * different points in time, depending on delays in delivering the
22  * snapshot notification.
23  *
24  * Snapshots are _not_ file system-wide.  Instead, each snapshot
25  * applies to the subdirectory nested beneath some directory.  This
26  * effectively divides the hierarchy into multiple "realms," where all
27  * of the files contained by each realm share the same set of
28  * snapshots.  An individual realm's snap set contains snapshots
29  * explicitly created on that realm, as well as any snaps in its
30  * parent's snap set _after_ the point at which the parent became it's
31  * parent (due to, say, a rename).  Similarly, snaps from prior parents
32  * during the time intervals during which they were the parent are included.
33  *
34  * The client is spared most of this detail, fortunately... it must only
35  * maintains a hierarchy of realms reflecting the current parent/child
36  * realm relationship, and for each realm has an explicit list of snaps
37  * inherited from prior parents.
38  *
39  * A snap_realm struct is maintained for realms containing every inode
40  * with an open cap in the system.  (The needed snap realm information is
41  * provided by the MDS whenever a cap is issued, i.e., on open.)  A 'seq'
42  * version number is used to ensure that as realm parameters change (new
43  * snapshot, new parent, etc.) the client's realm hierarchy is updated.
44  *
45  * The realm hierarchy drives the generation of a 'snap context' for each
46  * realm, which simply lists the resulting set of snaps for the realm.  This
47  * is attached to any writes sent to OSDs.
48  */
49 /*
50  * Unfortunately error handling is a bit mixed here.  If we get a snap
51  * update, but don't have enough memory to update our realm hierarchy,
52  * it's not clear what we can do about it (besides complaining to the
53  * console).
54  */
55 
56 
57 /*
58  * increase ref count for the realm
59  *
60  * caller must hold snap_rwsem for write.
61  */
62 void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
63 			 struct ceph_snap_realm *realm)
64 {
65 	dout("get_realm %p %d -> %d\n", realm,
66 	     atomic_read(&realm->nref), atomic_read(&realm->nref)+1);
67 	/*
68 	 * since we _only_ increment realm refs or empty the empty
69 	 * list with snap_rwsem held, adjusting the empty list here is
70 	 * safe.  we do need to protect against concurrent empty list
71 	 * additions, however.
72 	 */
73 	if (atomic_inc_return(&realm->nref) == 1) {
74 		spin_lock(&mdsc->snap_empty_lock);
75 		list_del_init(&realm->empty_item);
76 		spin_unlock(&mdsc->snap_empty_lock);
77 	}
78 }
79 
80 static void __insert_snap_realm(struct rb_root *root,
81 				struct ceph_snap_realm *new)
82 {
83 	struct rb_node **p = &root->rb_node;
84 	struct rb_node *parent = NULL;
85 	struct ceph_snap_realm *r = NULL;
86 
87 	while (*p) {
88 		parent = *p;
89 		r = rb_entry(parent, struct ceph_snap_realm, node);
90 		if (new->ino < r->ino)
91 			p = &(*p)->rb_left;
92 		else if (new->ino > r->ino)
93 			p = &(*p)->rb_right;
94 		else
95 			BUG();
96 	}
97 
98 	rb_link_node(&new->node, parent, p);
99 	rb_insert_color(&new->node, root);
100 }
101 
102 /*
103  * create and get the realm rooted at @ino and bump its ref count.
104  *
105  * caller must hold snap_rwsem for write.
106  */
107 static struct ceph_snap_realm *ceph_create_snap_realm(
108 	struct ceph_mds_client *mdsc,
109 	u64 ino)
110 {
111 	struct ceph_snap_realm *realm;
112 
113 	realm = kzalloc(sizeof(*realm), GFP_NOFS);
114 	if (!realm)
115 		return ERR_PTR(-ENOMEM);
116 
117 	atomic_set(&realm->nref, 1);    /* for caller */
118 	realm->ino = ino;
119 	INIT_LIST_HEAD(&realm->children);
120 	INIT_LIST_HEAD(&realm->child_item);
121 	INIT_LIST_HEAD(&realm->empty_item);
122 	INIT_LIST_HEAD(&realm->dirty_item);
123 	INIT_LIST_HEAD(&realm->inodes_with_caps);
124 	spin_lock_init(&realm->inodes_with_caps_lock);
125 	__insert_snap_realm(&mdsc->snap_realms, realm);
126 	dout("create_snap_realm %llx %p\n", realm->ino, realm);
127 	return realm;
128 }
129 
130 /*
131  * lookup the realm rooted at @ino.
132  *
133  * caller must hold snap_rwsem for write.
134  */
135 static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc,
136 						   u64 ino)
137 {
138 	struct rb_node *n = mdsc->snap_realms.rb_node;
139 	struct ceph_snap_realm *r;
140 
141 	while (n) {
142 		r = rb_entry(n, struct ceph_snap_realm, node);
143 		if (ino < r->ino)
144 			n = n->rb_left;
145 		else if (ino > r->ino)
146 			n = n->rb_right;
147 		else {
148 			dout("lookup_snap_realm %llx %p\n", r->ino, r);
149 			return r;
150 		}
151 	}
152 	return NULL;
153 }
154 
155 struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
156 					       u64 ino)
157 {
158 	struct ceph_snap_realm *r;
159 	r = __lookup_snap_realm(mdsc, ino);
160 	if (r)
161 		ceph_get_snap_realm(mdsc, r);
162 	return r;
163 }
164 
165 static void __put_snap_realm(struct ceph_mds_client *mdsc,
166 			     struct ceph_snap_realm *realm);
167 
168 /*
169  * called with snap_rwsem (write)
170  */
171 static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
172 				 struct ceph_snap_realm *realm)
173 {
174 	dout("__destroy_snap_realm %p %llx\n", realm, realm->ino);
175 
176 	rb_erase(&realm->node, &mdsc->snap_realms);
177 
178 	if (realm->parent) {
179 		list_del_init(&realm->child_item);
180 		__put_snap_realm(mdsc, realm->parent);
181 	}
182 
183 	kfree(realm->prior_parent_snaps);
184 	kfree(realm->snaps);
185 	ceph_put_snap_context(realm->cached_context);
186 	kfree(realm);
187 }
188 
189 /*
190  * caller holds snap_rwsem (write)
191  */
192 static void __put_snap_realm(struct ceph_mds_client *mdsc,
193 			     struct ceph_snap_realm *realm)
194 {
195 	dout("__put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
196 	     atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
197 	if (atomic_dec_and_test(&realm->nref))
198 		__destroy_snap_realm(mdsc, realm);
199 }
200 
201 /*
202  * caller needn't hold any locks
203  */
204 void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
205 			 struct ceph_snap_realm *realm)
206 {
207 	dout("put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
208 	     atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
209 	if (!atomic_dec_and_test(&realm->nref))
210 		return;
211 
212 	if (down_write_trylock(&mdsc->snap_rwsem)) {
213 		__destroy_snap_realm(mdsc, realm);
214 		up_write(&mdsc->snap_rwsem);
215 	} else {
216 		spin_lock(&mdsc->snap_empty_lock);
217 		list_add(&realm->empty_item, &mdsc->snap_empty);
218 		spin_unlock(&mdsc->snap_empty_lock);
219 	}
220 }
221 
222 /*
223  * Clean up any realms whose ref counts have dropped to zero.  Note
224  * that this does not include realms who were created but not yet
225  * used.
226  *
227  * Called under snap_rwsem (write)
228  */
229 static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
230 {
231 	struct ceph_snap_realm *realm;
232 
233 	spin_lock(&mdsc->snap_empty_lock);
234 	while (!list_empty(&mdsc->snap_empty)) {
235 		realm = list_first_entry(&mdsc->snap_empty,
236 				   struct ceph_snap_realm, empty_item);
237 		list_del(&realm->empty_item);
238 		spin_unlock(&mdsc->snap_empty_lock);
239 		__destroy_snap_realm(mdsc, realm);
240 		spin_lock(&mdsc->snap_empty_lock);
241 	}
242 	spin_unlock(&mdsc->snap_empty_lock);
243 }
244 
245 void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc)
246 {
247 	down_write(&mdsc->snap_rwsem);
248 	__cleanup_empty_realms(mdsc);
249 	up_write(&mdsc->snap_rwsem);
250 }
251 
252 /*
253  * adjust the parent realm of a given @realm.  adjust child list, and parent
254  * pointers, and ref counts appropriately.
255  *
256  * return true if parent was changed, 0 if unchanged, <0 on error.
257  *
258  * caller must hold snap_rwsem for write.
259  */
260 static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
261 				    struct ceph_snap_realm *realm,
262 				    u64 parentino)
263 {
264 	struct ceph_snap_realm *parent;
265 
266 	if (realm->parent_ino == parentino)
267 		return 0;
268 
269 	parent = ceph_lookup_snap_realm(mdsc, parentino);
270 	if (!parent) {
271 		parent = ceph_create_snap_realm(mdsc, parentino);
272 		if (IS_ERR(parent))
273 			return PTR_ERR(parent);
274 	}
275 	dout("adjust_snap_realm_parent %llx %p: %llx %p -> %llx %p\n",
276 	     realm->ino, realm, realm->parent_ino, realm->parent,
277 	     parentino, parent);
278 	if (realm->parent) {
279 		list_del_init(&realm->child_item);
280 		ceph_put_snap_realm(mdsc, realm->parent);
281 	}
282 	realm->parent_ino = parentino;
283 	realm->parent = parent;
284 	list_add(&realm->child_item, &parent->children);
285 	return 1;
286 }
287 
288 
289 static int cmpu64_rev(const void *a, const void *b)
290 {
291 	if (*(u64 *)a < *(u64 *)b)
292 		return 1;
293 	if (*(u64 *)a > *(u64 *)b)
294 		return -1;
295 	return 0;
296 }
297 
298 
299 struct ceph_snap_context *ceph_empty_snapc;
300 
301 /*
302  * build the snap context for a given realm.
303  */
304 static int build_snap_context(struct ceph_snap_realm *realm)
305 {
306 	struct ceph_snap_realm *parent = realm->parent;
307 	struct ceph_snap_context *snapc;
308 	int err = 0;
309 	u32 num = realm->num_prior_parent_snaps + realm->num_snaps;
310 
311 	/*
312 	 * build parent context, if it hasn't been built.
313 	 * conservatively estimate that all parent snaps might be
314 	 * included by us.
315 	 */
316 	if (parent) {
317 		if (!parent->cached_context) {
318 			err = build_snap_context(parent);
319 			if (err)
320 				goto fail;
321 		}
322 		num += parent->cached_context->num_snaps;
323 	}
324 
325 	/* do i actually need to update?  not if my context seq
326 	   matches realm seq, and my parents' does to.  (this works
327 	   because we rebuild_snap_realms() works _downward_ in
328 	   hierarchy after each update.) */
329 	if (realm->cached_context &&
330 	    realm->cached_context->seq == realm->seq &&
331 	    (!parent ||
332 	     realm->cached_context->seq >= parent->cached_context->seq)) {
333 		dout("build_snap_context %llx %p: %p seq %lld (%u snaps)"
334 		     " (unchanged)\n",
335 		     realm->ino, realm, realm->cached_context,
336 		     realm->cached_context->seq,
337 		     (unsigned int) realm->cached_context->num_snaps);
338 		return 0;
339 	}
340 
341 	/* alloc new snap context */
342 	err = -ENOMEM;
343 	if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64))
344 		goto fail;
345 	snapc = ceph_create_snap_context(num, GFP_NOFS);
346 	if (!snapc)
347 		goto fail;
348 
349 	/* build (reverse sorted) snap vector */
350 	num = 0;
351 	snapc->seq = realm->seq;
352 	if (parent) {
353 		u32 i;
354 
355 		/* include any of parent's snaps occurring _after_ my
356 		   parent became my parent */
357 		for (i = 0; i < parent->cached_context->num_snaps; i++)
358 			if (parent->cached_context->snaps[i] >=
359 			    realm->parent_since)
360 				snapc->snaps[num++] =
361 					parent->cached_context->snaps[i];
362 		if (parent->cached_context->seq > snapc->seq)
363 			snapc->seq = parent->cached_context->seq;
364 	}
365 	memcpy(snapc->snaps + num, realm->snaps,
366 	       sizeof(u64)*realm->num_snaps);
367 	num += realm->num_snaps;
368 	memcpy(snapc->snaps + num, realm->prior_parent_snaps,
369 	       sizeof(u64)*realm->num_prior_parent_snaps);
370 	num += realm->num_prior_parent_snaps;
371 
372 	sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
373 	snapc->num_snaps = num;
374 	dout("build_snap_context %llx %p: %p seq %lld (%u snaps)\n",
375 	     realm->ino, realm, snapc, snapc->seq,
376 	     (unsigned int) snapc->num_snaps);
377 
378 	ceph_put_snap_context(realm->cached_context);
379 	realm->cached_context = snapc;
380 	return 0;
381 
382 fail:
383 	/*
384 	 * if we fail, clear old (incorrect) cached_context... hopefully
385 	 * we'll have better luck building it later
386 	 */
387 	if (realm->cached_context) {
388 		ceph_put_snap_context(realm->cached_context);
389 		realm->cached_context = NULL;
390 	}
391 	pr_err("build_snap_context %llx %p fail %d\n", realm->ino,
392 	       realm, err);
393 	return err;
394 }
395 
396 /*
397  * rebuild snap context for the given realm and all of its children.
398  */
399 static void rebuild_snap_realms(struct ceph_snap_realm *realm)
400 {
401 	struct ceph_snap_realm *child;
402 
403 	dout("rebuild_snap_realms %llx %p\n", realm->ino, realm);
404 	build_snap_context(realm);
405 
406 	list_for_each_entry(child, &realm->children, child_item)
407 		rebuild_snap_realms(child);
408 }
409 
410 
411 /*
412  * helper to allocate and decode an array of snapids.  free prior
413  * instance, if any.
414  */
415 static int dup_array(u64 **dst, __le64 *src, u32 num)
416 {
417 	u32 i;
418 
419 	kfree(*dst);
420 	if (num) {
421 		*dst = kcalloc(num, sizeof(u64), GFP_NOFS);
422 		if (!*dst)
423 			return -ENOMEM;
424 		for (i = 0; i < num; i++)
425 			(*dst)[i] = get_unaligned_le64(src + i);
426 	} else {
427 		*dst = NULL;
428 	}
429 	return 0;
430 }
431 
432 static bool has_new_snaps(struct ceph_snap_context *o,
433 			  struct ceph_snap_context *n)
434 {
435 	if (n->num_snaps == 0)
436 		return false;
437 	/* snaps are in descending order */
438 	return n->snaps[0] > o->seq;
439 }
440 
441 /*
442  * When a snapshot is applied, the size/mtime inode metadata is queued
443  * in a ceph_cap_snap (one for each snapshot) until writeback
444  * completes and the metadata can be flushed back to the MDS.
445  *
446  * However, if a (sync) write is currently in-progress when we apply
447  * the snapshot, we have to wait until the write succeeds or fails
448  * (and a final size/mtime is known).  In this case the
449  * cap_snap->writing = 1, and is said to be "pending."  When the write
450  * finishes, we __ceph_finish_cap_snap().
451  *
452  * Caller must hold snap_rwsem for read (i.e., the realm topology won't
453  * change).
454  */
455 void ceph_queue_cap_snap(struct ceph_inode_info *ci)
456 {
457 	struct inode *inode = &ci->vfs_inode;
458 	struct ceph_cap_snap *capsnap;
459 	struct ceph_snap_context *old_snapc, *new_snapc;
460 	int used, dirty;
461 
462 	capsnap = kzalloc(sizeof(*capsnap), GFP_NOFS);
463 	if (!capsnap) {
464 		pr_err("ENOMEM allocating ceph_cap_snap on %p\n", inode);
465 		return;
466 	}
467 
468 	spin_lock(&ci->i_ceph_lock);
469 	used = __ceph_caps_used(ci);
470 	dirty = __ceph_caps_dirty(ci);
471 
472 	old_snapc = ci->i_head_snapc;
473 	new_snapc = ci->i_snap_realm->cached_context;
474 
475 	/*
476 	 * If there is a write in progress, treat that as a dirty Fw,
477 	 * even though it hasn't completed yet; by the time we finish
478 	 * up this capsnap it will be.
479 	 */
480 	if (used & CEPH_CAP_FILE_WR)
481 		dirty |= CEPH_CAP_FILE_WR;
482 
483 	if (__ceph_have_pending_cap_snap(ci)) {
484 		/* there is no point in queuing multiple "pending" cap_snaps,
485 		   as no new writes are allowed to start when pending, so any
486 		   writes in progress now were started before the previous
487 		   cap_snap.  lucky us. */
488 		dout("queue_cap_snap %p already pending\n", inode);
489 		goto update_snapc;
490 	}
491 	if (ci->i_wrbuffer_ref_head == 0 &&
492 	    !(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) {
493 		dout("queue_cap_snap %p nothing dirty|writing\n", inode);
494 		goto update_snapc;
495 	}
496 
497 	BUG_ON(!old_snapc);
498 
499 	/*
500 	 * There is no need to send FLUSHSNAP message to MDS if there is
501 	 * no new snapshot. But when there is dirty pages or on-going
502 	 * writes, we still need to create cap_snap. cap_snap is needed
503 	 * by the write path and page writeback path.
504 	 *
505 	 * also see ceph_try_drop_cap_snap()
506 	 */
507 	if (has_new_snaps(old_snapc, new_snapc)) {
508 		if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))
509 			capsnap->need_flush = true;
510 	} else {
511 		if (!(used & CEPH_CAP_FILE_WR) &&
512 		    ci->i_wrbuffer_ref_head == 0) {
513 			dout("queue_cap_snap %p "
514 			     "no new_snap|dirty_page|writing\n", inode);
515 			goto update_snapc;
516 		}
517 	}
518 
519 	dout("queue_cap_snap %p cap_snap %p queuing under %p %s %s\n",
520 	     inode, capsnap, old_snapc, ceph_cap_string(dirty),
521 	     capsnap->need_flush ? "" : "no_flush");
522 	ihold(inode);
523 
524 	atomic_set(&capsnap->nref, 1);
525 	capsnap->ci = ci;
526 	INIT_LIST_HEAD(&capsnap->ci_item);
527 	INIT_LIST_HEAD(&capsnap->flushing_item);
528 
529 	capsnap->follows = old_snapc->seq;
530 	capsnap->issued = __ceph_caps_issued(ci, NULL);
531 	capsnap->dirty = dirty;
532 
533 	capsnap->mode = inode->i_mode;
534 	capsnap->uid = inode->i_uid;
535 	capsnap->gid = inode->i_gid;
536 
537 	if (dirty & CEPH_CAP_XATTR_EXCL) {
538 		__ceph_build_xattrs_blob(ci);
539 		capsnap->xattr_blob =
540 			ceph_buffer_get(ci->i_xattrs.blob);
541 		capsnap->xattr_version = ci->i_xattrs.version;
542 	} else {
543 		capsnap->xattr_blob = NULL;
544 		capsnap->xattr_version = 0;
545 	}
546 
547 	capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
548 
549 	/* dirty page count moved from _head to this cap_snap;
550 	   all subsequent writes page dirties occur _after_ this
551 	   snapshot. */
552 	capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
553 	ci->i_wrbuffer_ref_head = 0;
554 	capsnap->context = old_snapc;
555 	list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
556 	old_snapc = NULL;
557 
558 	if (used & CEPH_CAP_FILE_WR) {
559 		dout("queue_cap_snap %p cap_snap %p snapc %p"
560 		     " seq %llu used WR, now pending\n", inode,
561 		     capsnap, old_snapc, old_snapc->seq);
562 		capsnap->writing = 1;
563 	} else {
564 		/* note mtime, size NOW. */
565 		__ceph_finish_cap_snap(ci, capsnap);
566 	}
567 	capsnap = NULL;
568 
569 update_snapc:
570 	if (ci->i_head_snapc) {
571 		ci->i_head_snapc = ceph_get_snap_context(new_snapc);
572 		dout(" new snapc is %p\n", new_snapc);
573 	}
574 	spin_unlock(&ci->i_ceph_lock);
575 
576 	kfree(capsnap);
577 	ceph_put_snap_context(old_snapc);
578 }
579 
580 /*
581  * Finalize the size, mtime for a cap_snap.. that is, settle on final values
582  * to be used for the snapshot, to be flushed back to the mds.
583  *
584  * If capsnap can now be flushed, add to snap_flush list, and return 1.
585  *
586  * Caller must hold i_ceph_lock.
587  */
588 int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
589 			    struct ceph_cap_snap *capsnap)
590 {
591 	struct inode *inode = &ci->vfs_inode;
592 	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
593 
594 	BUG_ON(capsnap->writing);
595 	capsnap->size = inode->i_size;
596 	capsnap->mtime = inode->i_mtime;
597 	capsnap->atime = inode->i_atime;
598 	capsnap->ctime = inode->i_ctime;
599 	capsnap->time_warp_seq = ci->i_time_warp_seq;
600 	if (capsnap->dirty_pages) {
601 		dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu "
602 		     "still has %d dirty pages\n", inode, capsnap,
603 		     capsnap->context, capsnap->context->seq,
604 		     ceph_cap_string(capsnap->dirty), capsnap->size,
605 		     capsnap->dirty_pages);
606 		return 0;
607 	}
608 	dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu\n",
609 	     inode, capsnap, capsnap->context,
610 	     capsnap->context->seq, ceph_cap_string(capsnap->dirty),
611 	     capsnap->size);
612 
613 	spin_lock(&mdsc->snap_flush_lock);
614 	list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
615 	spin_unlock(&mdsc->snap_flush_lock);
616 	return 1;  /* caller may want to ceph_flush_snaps */
617 }
618 
619 /*
620  * Queue cap_snaps for snap writeback for this realm and its children.
621  * Called under snap_rwsem, so realm topology won't change.
622  */
623 static void queue_realm_cap_snaps(struct ceph_snap_realm *realm)
624 {
625 	struct ceph_inode_info *ci;
626 	struct inode *lastinode = NULL;
627 	struct ceph_snap_realm *child;
628 
629 	dout("queue_realm_cap_snaps %p %llx inodes\n", realm, realm->ino);
630 
631 	spin_lock(&realm->inodes_with_caps_lock);
632 	list_for_each_entry(ci, &realm->inodes_with_caps,
633 			    i_snap_realm_item) {
634 		struct inode *inode = igrab(&ci->vfs_inode);
635 		if (!inode)
636 			continue;
637 		spin_unlock(&realm->inodes_with_caps_lock);
638 		iput(lastinode);
639 		lastinode = inode;
640 		ceph_queue_cap_snap(ci);
641 		spin_lock(&realm->inodes_with_caps_lock);
642 	}
643 	spin_unlock(&realm->inodes_with_caps_lock);
644 	iput(lastinode);
645 
646 	list_for_each_entry(child, &realm->children, child_item) {
647 		dout("queue_realm_cap_snaps %p %llx queue child %p %llx\n",
648 		     realm, realm->ino, child, child->ino);
649 		list_del_init(&child->dirty_item);
650 		list_add(&child->dirty_item, &realm->dirty_item);
651 	}
652 
653 	list_del_init(&realm->dirty_item);
654 	dout("queue_realm_cap_snaps %p %llx done\n", realm, realm->ino);
655 }
656 
657 /*
658  * Parse and apply a snapblob "snap trace" from the MDS.  This specifies
659  * the snap realm parameters from a given realm and all of its ancestors,
660  * up to the root.
661  *
662  * Caller must hold snap_rwsem for write.
663  */
664 int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
665 			   void *p, void *e, bool deletion,
666 			   struct ceph_snap_realm **realm_ret)
667 {
668 	struct ceph_mds_snap_realm *ri;    /* encoded */
669 	__le64 *snaps;                     /* encoded */
670 	__le64 *prior_parent_snaps;        /* encoded */
671 	struct ceph_snap_realm *realm = NULL;
672 	struct ceph_snap_realm *first_realm = NULL;
673 	int invalidate = 0;
674 	int err = -ENOMEM;
675 	LIST_HEAD(dirty_realms);
676 
677 	dout("update_snap_trace deletion=%d\n", deletion);
678 more:
679 	ceph_decode_need(&p, e, sizeof(*ri), bad);
680 	ri = p;
681 	p += sizeof(*ri);
682 	ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
683 			    le32_to_cpu(ri->num_prior_parent_snaps)), bad);
684 	snaps = p;
685 	p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
686 	prior_parent_snaps = p;
687 	p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
688 
689 	realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
690 	if (!realm) {
691 		realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
692 		if (IS_ERR(realm)) {
693 			err = PTR_ERR(realm);
694 			goto fail;
695 		}
696 	}
697 
698 	/* ensure the parent is correct */
699 	err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
700 	if (err < 0)
701 		goto fail;
702 	invalidate += err;
703 
704 	if (le64_to_cpu(ri->seq) > realm->seq) {
705 		dout("update_snap_trace updating %llx %p %lld -> %lld\n",
706 		     realm->ino, realm, realm->seq, le64_to_cpu(ri->seq));
707 		/* update realm parameters, snap lists */
708 		realm->seq = le64_to_cpu(ri->seq);
709 		realm->created = le64_to_cpu(ri->created);
710 		realm->parent_since = le64_to_cpu(ri->parent_since);
711 
712 		realm->num_snaps = le32_to_cpu(ri->num_snaps);
713 		err = dup_array(&realm->snaps, snaps, realm->num_snaps);
714 		if (err < 0)
715 			goto fail;
716 
717 		realm->num_prior_parent_snaps =
718 			le32_to_cpu(ri->num_prior_parent_snaps);
719 		err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
720 				realm->num_prior_parent_snaps);
721 		if (err < 0)
722 			goto fail;
723 
724 		/* queue realm for cap_snap creation */
725 		list_add(&realm->dirty_item, &dirty_realms);
726 		if (realm->seq > mdsc->last_snap_seq)
727 			mdsc->last_snap_seq = realm->seq;
728 
729 		invalidate = 1;
730 	} else if (!realm->cached_context) {
731 		dout("update_snap_trace %llx %p seq %lld new\n",
732 		     realm->ino, realm, realm->seq);
733 		invalidate = 1;
734 	} else {
735 		dout("update_snap_trace %llx %p seq %lld unchanged\n",
736 		     realm->ino, realm, realm->seq);
737 	}
738 
739 	dout("done with %llx %p, invalidated=%d, %p %p\n", realm->ino,
740 	     realm, invalidate, p, e);
741 
742 	/* invalidate when we reach the _end_ (root) of the trace */
743 	if (invalidate && p >= e)
744 		rebuild_snap_realms(realm);
745 
746 	if (!first_realm)
747 		first_realm = realm;
748 	else
749 		ceph_put_snap_realm(mdsc, realm);
750 
751 	if (p < e)
752 		goto more;
753 
754 	/*
755 	 * queue cap snaps _after_ we've built the new snap contexts,
756 	 * so that i_head_snapc can be set appropriately.
757 	 */
758 	while (!list_empty(&dirty_realms)) {
759 		realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
760 					 dirty_item);
761 		queue_realm_cap_snaps(realm);
762 	}
763 
764 	if (realm_ret)
765 		*realm_ret = first_realm;
766 	else
767 		ceph_put_snap_realm(mdsc, first_realm);
768 
769 	__cleanup_empty_realms(mdsc);
770 	return 0;
771 
772 bad:
773 	err = -EINVAL;
774 fail:
775 	if (realm && !IS_ERR(realm))
776 		ceph_put_snap_realm(mdsc, realm);
777 	if (first_realm)
778 		ceph_put_snap_realm(mdsc, first_realm);
779 	pr_err("update_snap_trace error %d\n", err);
780 	return err;
781 }
782 
783 
784 /*
785  * Send any cap_snaps that are queued for flush.  Try to carry
786  * s_mutex across multiple snap flushes to avoid locking overhead.
787  *
788  * Caller holds no locks.
789  */
790 static void flush_snaps(struct ceph_mds_client *mdsc)
791 {
792 	struct ceph_inode_info *ci;
793 	struct inode *inode;
794 	struct ceph_mds_session *session = NULL;
795 
796 	dout("flush_snaps\n");
797 	spin_lock(&mdsc->snap_flush_lock);
798 	while (!list_empty(&mdsc->snap_flush_list)) {
799 		ci = list_first_entry(&mdsc->snap_flush_list,
800 				struct ceph_inode_info, i_snap_flush_item);
801 		inode = &ci->vfs_inode;
802 		ihold(inode);
803 		spin_unlock(&mdsc->snap_flush_lock);
804 		spin_lock(&ci->i_ceph_lock);
805 		__ceph_flush_snaps(ci, &session, 0);
806 		spin_unlock(&ci->i_ceph_lock);
807 		iput(inode);
808 		spin_lock(&mdsc->snap_flush_lock);
809 	}
810 	spin_unlock(&mdsc->snap_flush_lock);
811 
812 	if (session) {
813 		mutex_unlock(&session->s_mutex);
814 		ceph_put_mds_session(session);
815 	}
816 	dout("flush_snaps done\n");
817 }
818 
819 
820 /*
821  * Handle a snap notification from the MDS.
822  *
823  * This can take two basic forms: the simplest is just a snap creation
824  * or deletion notification on an existing realm.  This should update the
825  * realm and its children.
826  *
827  * The more difficult case is realm creation, due to snap creation at a
828  * new point in the file hierarchy, or due to a rename that moves a file or
829  * directory into another realm.
830  */
831 void ceph_handle_snap(struct ceph_mds_client *mdsc,
832 		      struct ceph_mds_session *session,
833 		      struct ceph_msg *msg)
834 {
835 	struct super_block *sb = mdsc->fsc->sb;
836 	int mds = session->s_mds;
837 	u64 split;
838 	int op;
839 	int trace_len;
840 	struct ceph_snap_realm *realm = NULL;
841 	void *p = msg->front.iov_base;
842 	void *e = p + msg->front.iov_len;
843 	struct ceph_mds_snap_head *h;
844 	int num_split_inos, num_split_realms;
845 	__le64 *split_inos = NULL, *split_realms = NULL;
846 	int i;
847 	int locked_rwsem = 0;
848 
849 	/* decode */
850 	if (msg->front.iov_len < sizeof(*h))
851 		goto bad;
852 	h = p;
853 	op = le32_to_cpu(h->op);
854 	split = le64_to_cpu(h->split);   /* non-zero if we are splitting an
855 					  * existing realm */
856 	num_split_inos = le32_to_cpu(h->num_split_inos);
857 	num_split_realms = le32_to_cpu(h->num_split_realms);
858 	trace_len = le32_to_cpu(h->trace_len);
859 	p += sizeof(*h);
860 
861 	dout("handle_snap from mds%d op %s split %llx tracelen %d\n", mds,
862 	     ceph_snap_op_name(op), split, trace_len);
863 
864 	mutex_lock(&session->s_mutex);
865 	session->s_seq++;
866 	mutex_unlock(&session->s_mutex);
867 
868 	down_write(&mdsc->snap_rwsem);
869 	locked_rwsem = 1;
870 
871 	if (op == CEPH_SNAP_OP_SPLIT) {
872 		struct ceph_mds_snap_realm *ri;
873 
874 		/*
875 		 * A "split" breaks part of an existing realm off into
876 		 * a new realm.  The MDS provides a list of inodes
877 		 * (with caps) and child realms that belong to the new
878 		 * child.
879 		 */
880 		split_inos = p;
881 		p += sizeof(u64) * num_split_inos;
882 		split_realms = p;
883 		p += sizeof(u64) * num_split_realms;
884 		ceph_decode_need(&p, e, sizeof(*ri), bad);
885 		/* we will peek at realm info here, but will _not_
886 		 * advance p, as the realm update will occur below in
887 		 * ceph_update_snap_trace. */
888 		ri = p;
889 
890 		realm = ceph_lookup_snap_realm(mdsc, split);
891 		if (!realm) {
892 			realm = ceph_create_snap_realm(mdsc, split);
893 			if (IS_ERR(realm))
894 				goto out;
895 		}
896 
897 		dout("splitting snap_realm %llx %p\n", realm->ino, realm);
898 		for (i = 0; i < num_split_inos; i++) {
899 			struct ceph_vino vino = {
900 				.ino = le64_to_cpu(split_inos[i]),
901 				.snap = CEPH_NOSNAP,
902 			};
903 			struct inode *inode = ceph_find_inode(sb, vino);
904 			struct ceph_inode_info *ci;
905 			struct ceph_snap_realm *oldrealm;
906 
907 			if (!inode)
908 				continue;
909 			ci = ceph_inode(inode);
910 
911 			spin_lock(&ci->i_ceph_lock);
912 			if (!ci->i_snap_realm)
913 				goto skip_inode;
914 			/*
915 			 * If this inode belongs to a realm that was
916 			 * created after our new realm, we experienced
917 			 * a race (due to another split notifications
918 			 * arriving from a different MDS).  So skip
919 			 * this inode.
920 			 */
921 			if (ci->i_snap_realm->created >
922 			    le64_to_cpu(ri->created)) {
923 				dout(" leaving %p in newer realm %llx %p\n",
924 				     inode, ci->i_snap_realm->ino,
925 				     ci->i_snap_realm);
926 				goto skip_inode;
927 			}
928 			dout(" will move %p to split realm %llx %p\n",
929 			     inode, realm->ino, realm);
930 			/*
931 			 * Move the inode to the new realm
932 			 */
933 			spin_lock(&realm->inodes_with_caps_lock);
934 			list_del_init(&ci->i_snap_realm_item);
935 			list_add(&ci->i_snap_realm_item,
936 				 &realm->inodes_with_caps);
937 			oldrealm = ci->i_snap_realm;
938 			ci->i_snap_realm = realm;
939 			spin_unlock(&realm->inodes_with_caps_lock);
940 			spin_unlock(&ci->i_ceph_lock);
941 
942 			ceph_get_snap_realm(mdsc, realm);
943 			ceph_put_snap_realm(mdsc, oldrealm);
944 
945 			iput(inode);
946 			continue;
947 
948 skip_inode:
949 			spin_unlock(&ci->i_ceph_lock);
950 			iput(inode);
951 		}
952 
953 		/* we may have taken some of the old realm's children. */
954 		for (i = 0; i < num_split_realms; i++) {
955 			struct ceph_snap_realm *child =
956 				__lookup_snap_realm(mdsc,
957 					   le64_to_cpu(split_realms[i]));
958 			if (!child)
959 				continue;
960 			adjust_snap_realm_parent(mdsc, child, realm->ino);
961 		}
962 	}
963 
964 	/*
965 	 * update using the provided snap trace. if we are deleting a
966 	 * snap, we can avoid queueing cap_snaps.
967 	 */
968 	ceph_update_snap_trace(mdsc, p, e,
969 			       op == CEPH_SNAP_OP_DESTROY, NULL);
970 
971 	if (op == CEPH_SNAP_OP_SPLIT)
972 		/* we took a reference when we created the realm, above */
973 		ceph_put_snap_realm(mdsc, realm);
974 
975 	__cleanup_empty_realms(mdsc);
976 
977 	up_write(&mdsc->snap_rwsem);
978 
979 	flush_snaps(mdsc);
980 	return;
981 
982 bad:
983 	pr_err("corrupt snap message from mds%d\n", mds);
984 	ceph_msg_dump(msg);
985 out:
986 	if (locked_rwsem)
987 		up_write(&mdsc->snap_rwsem);
988 	return;
989 }
990 
991 int __init ceph_snap_init(void)
992 {
993 	ceph_empty_snapc = ceph_create_snap_context(0, GFP_NOFS);
994 	if (!ceph_empty_snapc)
995 		return -ENOMEM;
996 	ceph_empty_snapc->seq = 1;
997 	return 0;
998 }
999 
1000 void ceph_snap_exit(void)
1001 {
1002 	ceph_put_snap_context(ceph_empty_snapc);
1003 }
1004