1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/sort.h> 5 #include <linux/slab.h> 6 #include <linux/iversion.h> 7 #include "super.h" 8 #include "mds_client.h" 9 #include <linux/ceph/decode.h> 10 11 /* unused map expires after 5 minutes */ 12 #define CEPH_SNAPID_MAP_TIMEOUT (5 * 60 * HZ) 13 14 /* 15 * Snapshots in ceph are driven in large part by cooperation from the 16 * client. In contrast to local file systems or file servers that 17 * implement snapshots at a single point in the system, ceph's 18 * distributed access to storage requires clients to help decide 19 * whether a write logically occurs before or after a recently created 20 * snapshot. 21 * 22 * This provides a perfect instantanous client-wide snapshot. Between 23 * clients, however, snapshots may appear to be applied at slightly 24 * different points in time, depending on delays in delivering the 25 * snapshot notification. 26 * 27 * Snapshots are _not_ file system-wide. Instead, each snapshot 28 * applies to the subdirectory nested beneath some directory. This 29 * effectively divides the hierarchy into multiple "realms," where all 30 * of the files contained by each realm share the same set of 31 * snapshots. An individual realm's snap set contains snapshots 32 * explicitly created on that realm, as well as any snaps in its 33 * parent's snap set _after_ the point at which the parent became it's 34 * parent (due to, say, a rename). Similarly, snaps from prior parents 35 * during the time intervals during which they were the parent are included. 36 * 37 * The client is spared most of this detail, fortunately... it must only 38 * maintains a hierarchy of realms reflecting the current parent/child 39 * realm relationship, and for each realm has an explicit list of snaps 40 * inherited from prior parents. 41 * 42 * A snap_realm struct is maintained for realms containing every inode 43 * with an open cap in the system. (The needed snap realm information is 44 * provided by the MDS whenever a cap is issued, i.e., on open.) A 'seq' 45 * version number is used to ensure that as realm parameters change (new 46 * snapshot, new parent, etc.) the client's realm hierarchy is updated. 47 * 48 * The realm hierarchy drives the generation of a 'snap context' for each 49 * realm, which simply lists the resulting set of snaps for the realm. This 50 * is attached to any writes sent to OSDs. 51 */ 52 /* 53 * Unfortunately error handling is a bit mixed here. If we get a snap 54 * update, but don't have enough memory to update our realm hierarchy, 55 * it's not clear what we can do about it (besides complaining to the 56 * console). 57 */ 58 59 60 /* 61 * increase ref count for the realm 62 * 63 * caller must hold snap_rwsem. 64 */ 65 void ceph_get_snap_realm(struct ceph_mds_client *mdsc, 66 struct ceph_snap_realm *realm) 67 { 68 lockdep_assert_held(&mdsc->snap_rwsem); 69 70 /* 71 * The 0->1 and 1->0 transitions must take the snap_empty_lock 72 * atomically with the refcount change. Go ahead and bump the 73 * nref here, unless it's 0, in which case we take the spinlock 74 * and then do the increment and remove it from the list. 75 */ 76 if (atomic_inc_not_zero(&realm->nref)) 77 return; 78 79 spin_lock(&mdsc->snap_empty_lock); 80 if (atomic_inc_return(&realm->nref) == 1) 81 list_del_init(&realm->empty_item); 82 spin_unlock(&mdsc->snap_empty_lock); 83 } 84 85 static void __insert_snap_realm(struct rb_root *root, 86 struct ceph_snap_realm *new) 87 { 88 struct rb_node **p = &root->rb_node; 89 struct rb_node *parent = NULL; 90 struct ceph_snap_realm *r = NULL; 91 92 while (*p) { 93 parent = *p; 94 r = rb_entry(parent, struct ceph_snap_realm, node); 95 if (new->ino < r->ino) 96 p = &(*p)->rb_left; 97 else if (new->ino > r->ino) 98 p = &(*p)->rb_right; 99 else 100 BUG(); 101 } 102 103 rb_link_node(&new->node, parent, p); 104 rb_insert_color(&new->node, root); 105 } 106 107 /* 108 * create and get the realm rooted at @ino and bump its ref count. 109 * 110 * caller must hold snap_rwsem for write. 111 */ 112 static struct ceph_snap_realm *ceph_create_snap_realm( 113 struct ceph_mds_client *mdsc, 114 u64 ino) 115 { 116 struct ceph_snap_realm *realm; 117 118 lockdep_assert_held_write(&mdsc->snap_rwsem); 119 120 realm = kzalloc(sizeof(*realm), GFP_NOFS); 121 if (!realm) 122 return ERR_PTR(-ENOMEM); 123 124 atomic_set(&realm->nref, 1); /* for caller */ 125 realm->ino = ino; 126 INIT_LIST_HEAD(&realm->children); 127 INIT_LIST_HEAD(&realm->child_item); 128 INIT_LIST_HEAD(&realm->empty_item); 129 INIT_LIST_HEAD(&realm->dirty_item); 130 INIT_LIST_HEAD(&realm->inodes_with_caps); 131 spin_lock_init(&realm->inodes_with_caps_lock); 132 __insert_snap_realm(&mdsc->snap_realms, realm); 133 mdsc->num_snap_realms++; 134 135 dout("create_snap_realm %llx %p\n", realm->ino, realm); 136 return realm; 137 } 138 139 /* 140 * lookup the realm rooted at @ino. 141 * 142 * caller must hold snap_rwsem. 143 */ 144 static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc, 145 u64 ino) 146 { 147 struct rb_node *n = mdsc->snap_realms.rb_node; 148 struct ceph_snap_realm *r; 149 150 lockdep_assert_held(&mdsc->snap_rwsem); 151 152 while (n) { 153 r = rb_entry(n, struct ceph_snap_realm, node); 154 if (ino < r->ino) 155 n = n->rb_left; 156 else if (ino > r->ino) 157 n = n->rb_right; 158 else { 159 dout("lookup_snap_realm %llx %p\n", r->ino, r); 160 return r; 161 } 162 } 163 return NULL; 164 } 165 166 struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc, 167 u64 ino) 168 { 169 struct ceph_snap_realm *r; 170 r = __lookup_snap_realm(mdsc, ino); 171 if (r) 172 ceph_get_snap_realm(mdsc, r); 173 return r; 174 } 175 176 static void __put_snap_realm(struct ceph_mds_client *mdsc, 177 struct ceph_snap_realm *realm); 178 179 /* 180 * called with snap_rwsem (write) 181 */ 182 static void __destroy_snap_realm(struct ceph_mds_client *mdsc, 183 struct ceph_snap_realm *realm) 184 { 185 lockdep_assert_held_write(&mdsc->snap_rwsem); 186 187 dout("__destroy_snap_realm %p %llx\n", realm, realm->ino); 188 189 rb_erase(&realm->node, &mdsc->snap_realms); 190 mdsc->num_snap_realms--; 191 192 if (realm->parent) { 193 list_del_init(&realm->child_item); 194 __put_snap_realm(mdsc, realm->parent); 195 } 196 197 kfree(realm->prior_parent_snaps); 198 kfree(realm->snaps); 199 ceph_put_snap_context(realm->cached_context); 200 kfree(realm); 201 } 202 203 /* 204 * caller holds snap_rwsem (write) 205 */ 206 static void __put_snap_realm(struct ceph_mds_client *mdsc, 207 struct ceph_snap_realm *realm) 208 { 209 lockdep_assert_held_write(&mdsc->snap_rwsem); 210 211 /* 212 * We do not require the snap_empty_lock here, as any caller that 213 * increments the value must hold the snap_rwsem. 214 */ 215 if (atomic_dec_and_test(&realm->nref)) 216 __destroy_snap_realm(mdsc, realm); 217 } 218 219 /* 220 * See comments in ceph_get_snap_realm. Caller needn't hold any locks. 221 */ 222 void ceph_put_snap_realm(struct ceph_mds_client *mdsc, 223 struct ceph_snap_realm *realm) 224 { 225 if (!atomic_dec_and_lock(&realm->nref, &mdsc->snap_empty_lock)) 226 return; 227 228 if (down_write_trylock(&mdsc->snap_rwsem)) { 229 spin_unlock(&mdsc->snap_empty_lock); 230 __destroy_snap_realm(mdsc, realm); 231 up_write(&mdsc->snap_rwsem); 232 } else { 233 list_add(&realm->empty_item, &mdsc->snap_empty); 234 spin_unlock(&mdsc->snap_empty_lock); 235 } 236 } 237 238 /* 239 * Clean up any realms whose ref counts have dropped to zero. Note 240 * that this does not include realms who were created but not yet 241 * used. 242 * 243 * Called under snap_rwsem (write) 244 */ 245 static void __cleanup_empty_realms(struct ceph_mds_client *mdsc) 246 { 247 struct ceph_snap_realm *realm; 248 249 lockdep_assert_held_write(&mdsc->snap_rwsem); 250 251 spin_lock(&mdsc->snap_empty_lock); 252 while (!list_empty(&mdsc->snap_empty)) { 253 realm = list_first_entry(&mdsc->snap_empty, 254 struct ceph_snap_realm, empty_item); 255 list_del(&realm->empty_item); 256 spin_unlock(&mdsc->snap_empty_lock); 257 __destroy_snap_realm(mdsc, realm); 258 spin_lock(&mdsc->snap_empty_lock); 259 } 260 spin_unlock(&mdsc->snap_empty_lock); 261 } 262 263 void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc) 264 { 265 down_write(&mdsc->snap_rwsem); 266 __cleanup_empty_realms(mdsc); 267 up_write(&mdsc->snap_rwsem); 268 } 269 270 /* 271 * adjust the parent realm of a given @realm. adjust child list, and parent 272 * pointers, and ref counts appropriately. 273 * 274 * return true if parent was changed, 0 if unchanged, <0 on error. 275 * 276 * caller must hold snap_rwsem for write. 277 */ 278 static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc, 279 struct ceph_snap_realm *realm, 280 u64 parentino) 281 { 282 struct ceph_snap_realm *parent; 283 284 lockdep_assert_held_write(&mdsc->snap_rwsem); 285 286 if (realm->parent_ino == parentino) 287 return 0; 288 289 parent = ceph_lookup_snap_realm(mdsc, parentino); 290 if (!parent) { 291 parent = ceph_create_snap_realm(mdsc, parentino); 292 if (IS_ERR(parent)) 293 return PTR_ERR(parent); 294 } 295 dout("adjust_snap_realm_parent %llx %p: %llx %p -> %llx %p\n", 296 realm->ino, realm, realm->parent_ino, realm->parent, 297 parentino, parent); 298 if (realm->parent) { 299 list_del_init(&realm->child_item); 300 ceph_put_snap_realm(mdsc, realm->parent); 301 } 302 realm->parent_ino = parentino; 303 realm->parent = parent; 304 list_add(&realm->child_item, &parent->children); 305 return 1; 306 } 307 308 309 static int cmpu64_rev(const void *a, const void *b) 310 { 311 if (*(u64 *)a < *(u64 *)b) 312 return 1; 313 if (*(u64 *)a > *(u64 *)b) 314 return -1; 315 return 0; 316 } 317 318 319 /* 320 * build the snap context for a given realm. 321 */ 322 static int build_snap_context(struct ceph_snap_realm *realm, 323 struct list_head* dirty_realms) 324 { 325 struct ceph_snap_realm *parent = realm->parent; 326 struct ceph_snap_context *snapc; 327 int err = 0; 328 u32 num = realm->num_prior_parent_snaps + realm->num_snaps; 329 330 /* 331 * build parent context, if it hasn't been built. 332 * conservatively estimate that all parent snaps might be 333 * included by us. 334 */ 335 if (parent) { 336 if (!parent->cached_context) { 337 err = build_snap_context(parent, dirty_realms); 338 if (err) 339 goto fail; 340 } 341 num += parent->cached_context->num_snaps; 342 } 343 344 /* do i actually need to update? not if my context seq 345 matches realm seq, and my parents' does to. (this works 346 because we rebuild_snap_realms() works _downward_ in 347 hierarchy after each update.) */ 348 if (realm->cached_context && 349 realm->cached_context->seq == realm->seq && 350 (!parent || 351 realm->cached_context->seq >= parent->cached_context->seq)) { 352 dout("build_snap_context %llx %p: %p seq %lld (%u snaps)" 353 " (unchanged)\n", 354 realm->ino, realm, realm->cached_context, 355 realm->cached_context->seq, 356 (unsigned int)realm->cached_context->num_snaps); 357 return 0; 358 } 359 360 /* alloc new snap context */ 361 err = -ENOMEM; 362 if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64)) 363 goto fail; 364 snapc = ceph_create_snap_context(num, GFP_NOFS); 365 if (!snapc) 366 goto fail; 367 368 /* build (reverse sorted) snap vector */ 369 num = 0; 370 snapc->seq = realm->seq; 371 if (parent) { 372 u32 i; 373 374 /* include any of parent's snaps occurring _after_ my 375 parent became my parent */ 376 for (i = 0; i < parent->cached_context->num_snaps; i++) 377 if (parent->cached_context->snaps[i] >= 378 realm->parent_since) 379 snapc->snaps[num++] = 380 parent->cached_context->snaps[i]; 381 if (parent->cached_context->seq > snapc->seq) 382 snapc->seq = parent->cached_context->seq; 383 } 384 memcpy(snapc->snaps + num, realm->snaps, 385 sizeof(u64)*realm->num_snaps); 386 num += realm->num_snaps; 387 memcpy(snapc->snaps + num, realm->prior_parent_snaps, 388 sizeof(u64)*realm->num_prior_parent_snaps); 389 num += realm->num_prior_parent_snaps; 390 391 sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL); 392 snapc->num_snaps = num; 393 dout("build_snap_context %llx %p: %p seq %lld (%u snaps)\n", 394 realm->ino, realm, snapc, snapc->seq, 395 (unsigned int) snapc->num_snaps); 396 397 ceph_put_snap_context(realm->cached_context); 398 realm->cached_context = snapc; 399 /* queue realm for cap_snap creation */ 400 list_add_tail(&realm->dirty_item, dirty_realms); 401 return 0; 402 403 fail: 404 /* 405 * if we fail, clear old (incorrect) cached_context... hopefully 406 * we'll have better luck building it later 407 */ 408 if (realm->cached_context) { 409 ceph_put_snap_context(realm->cached_context); 410 realm->cached_context = NULL; 411 } 412 pr_err("build_snap_context %llx %p fail %d\n", realm->ino, 413 realm, err); 414 return err; 415 } 416 417 /* 418 * rebuild snap context for the given realm and all of its children. 419 */ 420 static void rebuild_snap_realms(struct ceph_snap_realm *realm, 421 struct list_head *dirty_realms) 422 { 423 struct ceph_snap_realm *child; 424 425 dout("rebuild_snap_realms %llx %p\n", realm->ino, realm); 426 build_snap_context(realm, dirty_realms); 427 428 list_for_each_entry(child, &realm->children, child_item) 429 rebuild_snap_realms(child, dirty_realms); 430 } 431 432 433 /* 434 * helper to allocate and decode an array of snapids. free prior 435 * instance, if any. 436 */ 437 static int dup_array(u64 **dst, __le64 *src, u32 num) 438 { 439 u32 i; 440 441 kfree(*dst); 442 if (num) { 443 *dst = kcalloc(num, sizeof(u64), GFP_NOFS); 444 if (!*dst) 445 return -ENOMEM; 446 for (i = 0; i < num; i++) 447 (*dst)[i] = get_unaligned_le64(src + i); 448 } else { 449 *dst = NULL; 450 } 451 return 0; 452 } 453 454 static bool has_new_snaps(struct ceph_snap_context *o, 455 struct ceph_snap_context *n) 456 { 457 if (n->num_snaps == 0) 458 return false; 459 /* snaps are in descending order */ 460 return n->snaps[0] > o->seq; 461 } 462 463 /* 464 * When a snapshot is applied, the size/mtime inode metadata is queued 465 * in a ceph_cap_snap (one for each snapshot) until writeback 466 * completes and the metadata can be flushed back to the MDS. 467 * 468 * However, if a (sync) write is currently in-progress when we apply 469 * the snapshot, we have to wait until the write succeeds or fails 470 * (and a final size/mtime is known). In this case the 471 * cap_snap->writing = 1, and is said to be "pending." When the write 472 * finishes, we __ceph_finish_cap_snap(). 473 * 474 * Caller must hold snap_rwsem for read (i.e., the realm topology won't 475 * change). 476 */ 477 static void ceph_queue_cap_snap(struct ceph_inode_info *ci) 478 { 479 struct inode *inode = &ci->vfs_inode; 480 struct ceph_cap_snap *capsnap; 481 struct ceph_snap_context *old_snapc, *new_snapc; 482 struct ceph_buffer *old_blob = NULL; 483 int used, dirty; 484 485 capsnap = kzalloc(sizeof(*capsnap), GFP_NOFS); 486 if (!capsnap) { 487 pr_err("ENOMEM allocating ceph_cap_snap on %p\n", inode); 488 return; 489 } 490 capsnap->cap_flush.is_capsnap = true; 491 INIT_LIST_HEAD(&capsnap->cap_flush.i_list); 492 INIT_LIST_HEAD(&capsnap->cap_flush.g_list); 493 494 spin_lock(&ci->i_ceph_lock); 495 used = __ceph_caps_used(ci); 496 dirty = __ceph_caps_dirty(ci); 497 498 old_snapc = ci->i_head_snapc; 499 new_snapc = ci->i_snap_realm->cached_context; 500 501 /* 502 * If there is a write in progress, treat that as a dirty Fw, 503 * even though it hasn't completed yet; by the time we finish 504 * up this capsnap it will be. 505 */ 506 if (used & CEPH_CAP_FILE_WR) 507 dirty |= CEPH_CAP_FILE_WR; 508 509 if (__ceph_have_pending_cap_snap(ci)) { 510 /* there is no point in queuing multiple "pending" cap_snaps, 511 as no new writes are allowed to start when pending, so any 512 writes in progress now were started before the previous 513 cap_snap. lucky us. */ 514 dout("queue_cap_snap %p already pending\n", inode); 515 goto update_snapc; 516 } 517 if (ci->i_wrbuffer_ref_head == 0 && 518 !(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) { 519 dout("queue_cap_snap %p nothing dirty|writing\n", inode); 520 goto update_snapc; 521 } 522 523 BUG_ON(!old_snapc); 524 525 /* 526 * There is no need to send FLUSHSNAP message to MDS if there is 527 * no new snapshot. But when there is dirty pages or on-going 528 * writes, we still need to create cap_snap. cap_snap is needed 529 * by the write path and page writeback path. 530 * 531 * also see ceph_try_drop_cap_snap() 532 */ 533 if (has_new_snaps(old_snapc, new_snapc)) { 534 if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR)) 535 capsnap->need_flush = true; 536 } else { 537 if (!(used & CEPH_CAP_FILE_WR) && 538 ci->i_wrbuffer_ref_head == 0) { 539 dout("queue_cap_snap %p " 540 "no new_snap|dirty_page|writing\n", inode); 541 goto update_snapc; 542 } 543 } 544 545 dout("queue_cap_snap %p cap_snap %p queuing under %p %s %s\n", 546 inode, capsnap, old_snapc, ceph_cap_string(dirty), 547 capsnap->need_flush ? "" : "no_flush"); 548 ihold(inode); 549 550 refcount_set(&capsnap->nref, 1); 551 INIT_LIST_HEAD(&capsnap->ci_item); 552 553 capsnap->follows = old_snapc->seq; 554 capsnap->issued = __ceph_caps_issued(ci, NULL); 555 capsnap->dirty = dirty; 556 557 capsnap->mode = inode->i_mode; 558 capsnap->uid = inode->i_uid; 559 capsnap->gid = inode->i_gid; 560 561 if (dirty & CEPH_CAP_XATTR_EXCL) { 562 old_blob = __ceph_build_xattrs_blob(ci); 563 capsnap->xattr_blob = 564 ceph_buffer_get(ci->i_xattrs.blob); 565 capsnap->xattr_version = ci->i_xattrs.version; 566 } else { 567 capsnap->xattr_blob = NULL; 568 capsnap->xattr_version = 0; 569 } 570 571 capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE; 572 573 /* dirty page count moved from _head to this cap_snap; 574 all subsequent writes page dirties occur _after_ this 575 snapshot. */ 576 capsnap->dirty_pages = ci->i_wrbuffer_ref_head; 577 ci->i_wrbuffer_ref_head = 0; 578 capsnap->context = old_snapc; 579 list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps); 580 581 if (used & CEPH_CAP_FILE_WR) { 582 dout("queue_cap_snap %p cap_snap %p snapc %p" 583 " seq %llu used WR, now pending\n", inode, 584 capsnap, old_snapc, old_snapc->seq); 585 capsnap->writing = 1; 586 } else { 587 /* note mtime, size NOW. */ 588 __ceph_finish_cap_snap(ci, capsnap); 589 } 590 capsnap = NULL; 591 old_snapc = NULL; 592 593 update_snapc: 594 if (ci->i_wrbuffer_ref_head == 0 && 595 ci->i_wr_ref == 0 && 596 ci->i_dirty_caps == 0 && 597 ci->i_flushing_caps == 0) { 598 ci->i_head_snapc = NULL; 599 } else { 600 ci->i_head_snapc = ceph_get_snap_context(new_snapc); 601 dout(" new snapc is %p\n", new_snapc); 602 } 603 spin_unlock(&ci->i_ceph_lock); 604 605 ceph_buffer_put(old_blob); 606 kfree(capsnap); 607 ceph_put_snap_context(old_snapc); 608 } 609 610 /* 611 * Finalize the size, mtime for a cap_snap.. that is, settle on final values 612 * to be used for the snapshot, to be flushed back to the mds. 613 * 614 * If capsnap can now be flushed, add to snap_flush list, and return 1. 615 * 616 * Caller must hold i_ceph_lock. 617 */ 618 int __ceph_finish_cap_snap(struct ceph_inode_info *ci, 619 struct ceph_cap_snap *capsnap) 620 { 621 struct inode *inode = &ci->vfs_inode; 622 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 623 624 BUG_ON(capsnap->writing); 625 capsnap->size = i_size_read(inode); 626 capsnap->mtime = inode->i_mtime; 627 capsnap->atime = inode->i_atime; 628 capsnap->ctime = inode->i_ctime; 629 capsnap->btime = ci->i_btime; 630 capsnap->change_attr = inode_peek_iversion_raw(inode); 631 capsnap->time_warp_seq = ci->i_time_warp_seq; 632 capsnap->truncate_size = ci->i_truncate_size; 633 capsnap->truncate_seq = ci->i_truncate_seq; 634 if (capsnap->dirty_pages) { 635 dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu " 636 "still has %d dirty pages\n", inode, capsnap, 637 capsnap->context, capsnap->context->seq, 638 ceph_cap_string(capsnap->dirty), capsnap->size, 639 capsnap->dirty_pages); 640 return 0; 641 } 642 643 /* Fb cap still in use, delay it */ 644 if (ci->i_wb_ref) { 645 dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu " 646 "used WRBUFFER, delaying\n", inode, capsnap, 647 capsnap->context, capsnap->context->seq, 648 ceph_cap_string(capsnap->dirty), capsnap->size); 649 capsnap->writing = 1; 650 return 0; 651 } 652 653 ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS; 654 dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu\n", 655 inode, capsnap, capsnap->context, 656 capsnap->context->seq, ceph_cap_string(capsnap->dirty), 657 capsnap->size); 658 659 spin_lock(&mdsc->snap_flush_lock); 660 if (list_empty(&ci->i_snap_flush_item)) 661 list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list); 662 spin_unlock(&mdsc->snap_flush_lock); 663 return 1; /* caller may want to ceph_flush_snaps */ 664 } 665 666 /* 667 * Queue cap_snaps for snap writeback for this realm and its children. 668 * Called under snap_rwsem, so realm topology won't change. 669 */ 670 static void queue_realm_cap_snaps(struct ceph_snap_realm *realm) 671 { 672 struct ceph_inode_info *ci; 673 struct inode *lastinode = NULL; 674 675 dout("queue_realm_cap_snaps %p %llx inodes\n", realm, realm->ino); 676 677 spin_lock(&realm->inodes_with_caps_lock); 678 list_for_each_entry(ci, &realm->inodes_with_caps, i_snap_realm_item) { 679 struct inode *inode = igrab(&ci->vfs_inode); 680 if (!inode) 681 continue; 682 spin_unlock(&realm->inodes_with_caps_lock); 683 iput(lastinode); 684 lastinode = inode; 685 ceph_queue_cap_snap(ci); 686 spin_lock(&realm->inodes_with_caps_lock); 687 } 688 spin_unlock(&realm->inodes_with_caps_lock); 689 iput(lastinode); 690 691 dout("queue_realm_cap_snaps %p %llx done\n", realm, realm->ino); 692 } 693 694 /* 695 * Parse and apply a snapblob "snap trace" from the MDS. This specifies 696 * the snap realm parameters from a given realm and all of its ancestors, 697 * up to the root. 698 * 699 * Caller must hold snap_rwsem for write. 700 */ 701 int ceph_update_snap_trace(struct ceph_mds_client *mdsc, 702 void *p, void *e, bool deletion, 703 struct ceph_snap_realm **realm_ret) 704 { 705 struct ceph_mds_snap_realm *ri; /* encoded */ 706 __le64 *snaps; /* encoded */ 707 __le64 *prior_parent_snaps; /* encoded */ 708 struct ceph_snap_realm *realm = NULL; 709 struct ceph_snap_realm *first_realm = NULL; 710 int invalidate = 0; 711 int err = -ENOMEM; 712 LIST_HEAD(dirty_realms); 713 714 lockdep_assert_held_write(&mdsc->snap_rwsem); 715 716 dout("update_snap_trace deletion=%d\n", deletion); 717 more: 718 ceph_decode_need(&p, e, sizeof(*ri), bad); 719 ri = p; 720 p += sizeof(*ri); 721 ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) + 722 le32_to_cpu(ri->num_prior_parent_snaps)), bad); 723 snaps = p; 724 p += sizeof(u64) * le32_to_cpu(ri->num_snaps); 725 prior_parent_snaps = p; 726 p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps); 727 728 realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino)); 729 if (!realm) { 730 realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino)); 731 if (IS_ERR(realm)) { 732 err = PTR_ERR(realm); 733 goto fail; 734 } 735 } 736 737 /* ensure the parent is correct */ 738 err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent)); 739 if (err < 0) 740 goto fail; 741 invalidate += err; 742 743 if (le64_to_cpu(ri->seq) > realm->seq) { 744 dout("update_snap_trace updating %llx %p %lld -> %lld\n", 745 realm->ino, realm, realm->seq, le64_to_cpu(ri->seq)); 746 /* update realm parameters, snap lists */ 747 realm->seq = le64_to_cpu(ri->seq); 748 realm->created = le64_to_cpu(ri->created); 749 realm->parent_since = le64_to_cpu(ri->parent_since); 750 751 realm->num_snaps = le32_to_cpu(ri->num_snaps); 752 err = dup_array(&realm->snaps, snaps, realm->num_snaps); 753 if (err < 0) 754 goto fail; 755 756 realm->num_prior_parent_snaps = 757 le32_to_cpu(ri->num_prior_parent_snaps); 758 err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps, 759 realm->num_prior_parent_snaps); 760 if (err < 0) 761 goto fail; 762 763 if (realm->seq > mdsc->last_snap_seq) 764 mdsc->last_snap_seq = realm->seq; 765 766 invalidate = 1; 767 } else if (!realm->cached_context) { 768 dout("update_snap_trace %llx %p seq %lld new\n", 769 realm->ino, realm, realm->seq); 770 invalidate = 1; 771 } else { 772 dout("update_snap_trace %llx %p seq %lld unchanged\n", 773 realm->ino, realm, realm->seq); 774 } 775 776 dout("done with %llx %p, invalidated=%d, %p %p\n", realm->ino, 777 realm, invalidate, p, e); 778 779 /* invalidate when we reach the _end_ (root) of the trace */ 780 if (invalidate && p >= e) 781 rebuild_snap_realms(realm, &dirty_realms); 782 783 if (!first_realm) 784 first_realm = realm; 785 else 786 ceph_put_snap_realm(mdsc, realm); 787 788 if (p < e) 789 goto more; 790 791 /* 792 * queue cap snaps _after_ we've built the new snap contexts, 793 * so that i_head_snapc can be set appropriately. 794 */ 795 while (!list_empty(&dirty_realms)) { 796 realm = list_first_entry(&dirty_realms, struct ceph_snap_realm, 797 dirty_item); 798 list_del_init(&realm->dirty_item); 799 queue_realm_cap_snaps(realm); 800 } 801 802 if (realm_ret) 803 *realm_ret = first_realm; 804 else 805 ceph_put_snap_realm(mdsc, first_realm); 806 807 __cleanup_empty_realms(mdsc); 808 return 0; 809 810 bad: 811 err = -EIO; 812 fail: 813 if (realm && !IS_ERR(realm)) 814 ceph_put_snap_realm(mdsc, realm); 815 if (first_realm) 816 ceph_put_snap_realm(mdsc, first_realm); 817 pr_err("update_snap_trace error %d\n", err); 818 return err; 819 } 820 821 822 /* 823 * Send any cap_snaps that are queued for flush. Try to carry 824 * s_mutex across multiple snap flushes to avoid locking overhead. 825 * 826 * Caller holds no locks. 827 */ 828 static void flush_snaps(struct ceph_mds_client *mdsc) 829 { 830 struct ceph_inode_info *ci; 831 struct inode *inode; 832 struct ceph_mds_session *session = NULL; 833 834 dout("flush_snaps\n"); 835 spin_lock(&mdsc->snap_flush_lock); 836 while (!list_empty(&mdsc->snap_flush_list)) { 837 ci = list_first_entry(&mdsc->snap_flush_list, 838 struct ceph_inode_info, i_snap_flush_item); 839 inode = &ci->vfs_inode; 840 ihold(inode); 841 spin_unlock(&mdsc->snap_flush_lock); 842 ceph_flush_snaps(ci, &session); 843 iput(inode); 844 spin_lock(&mdsc->snap_flush_lock); 845 } 846 spin_unlock(&mdsc->snap_flush_lock); 847 848 ceph_put_mds_session(session); 849 dout("flush_snaps done\n"); 850 } 851 852 /** 853 * ceph_change_snap_realm - change the snap_realm for an inode 854 * @inode: inode to move to new snap realm 855 * @realm: new realm to move inode into (may be NULL) 856 * 857 * Detach an inode from its old snaprealm (if any) and attach it to 858 * the new snaprealm (if any). The old snap realm reference held by 859 * the inode is put. If realm is non-NULL, then the caller's reference 860 * to it is taken over by the inode. 861 */ 862 void ceph_change_snap_realm(struct inode *inode, struct ceph_snap_realm *realm) 863 { 864 struct ceph_inode_info *ci = ceph_inode(inode); 865 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 866 struct ceph_snap_realm *oldrealm = ci->i_snap_realm; 867 868 lockdep_assert_held(&ci->i_ceph_lock); 869 870 if (oldrealm) { 871 spin_lock(&oldrealm->inodes_with_caps_lock); 872 list_del_init(&ci->i_snap_realm_item); 873 if (oldrealm->ino == ci->i_vino.ino) 874 oldrealm->inode = NULL; 875 spin_unlock(&oldrealm->inodes_with_caps_lock); 876 ceph_put_snap_realm(mdsc, oldrealm); 877 } 878 879 ci->i_snap_realm = realm; 880 881 if (realm) { 882 spin_lock(&realm->inodes_with_caps_lock); 883 list_add(&ci->i_snap_realm_item, &realm->inodes_with_caps); 884 if (realm->ino == ci->i_vino.ino) 885 realm->inode = inode; 886 spin_unlock(&realm->inodes_with_caps_lock); 887 } 888 } 889 890 /* 891 * Handle a snap notification from the MDS. 892 * 893 * This can take two basic forms: the simplest is just a snap creation 894 * or deletion notification on an existing realm. This should update the 895 * realm and its children. 896 * 897 * The more difficult case is realm creation, due to snap creation at a 898 * new point in the file hierarchy, or due to a rename that moves a file or 899 * directory into another realm. 900 */ 901 void ceph_handle_snap(struct ceph_mds_client *mdsc, 902 struct ceph_mds_session *session, 903 struct ceph_msg *msg) 904 { 905 struct super_block *sb = mdsc->fsc->sb; 906 int mds = session->s_mds; 907 u64 split; 908 int op; 909 int trace_len; 910 struct ceph_snap_realm *realm = NULL; 911 void *p = msg->front.iov_base; 912 void *e = p + msg->front.iov_len; 913 struct ceph_mds_snap_head *h; 914 int num_split_inos, num_split_realms; 915 __le64 *split_inos = NULL, *split_realms = NULL; 916 int i; 917 int locked_rwsem = 0; 918 919 /* decode */ 920 if (msg->front.iov_len < sizeof(*h)) 921 goto bad; 922 h = p; 923 op = le32_to_cpu(h->op); 924 split = le64_to_cpu(h->split); /* non-zero if we are splitting an 925 * existing realm */ 926 num_split_inos = le32_to_cpu(h->num_split_inos); 927 num_split_realms = le32_to_cpu(h->num_split_realms); 928 trace_len = le32_to_cpu(h->trace_len); 929 p += sizeof(*h); 930 931 dout("handle_snap from mds%d op %s split %llx tracelen %d\n", mds, 932 ceph_snap_op_name(op), split, trace_len); 933 934 mutex_lock(&session->s_mutex); 935 inc_session_sequence(session); 936 mutex_unlock(&session->s_mutex); 937 938 down_write(&mdsc->snap_rwsem); 939 locked_rwsem = 1; 940 941 if (op == CEPH_SNAP_OP_SPLIT) { 942 struct ceph_mds_snap_realm *ri; 943 944 /* 945 * A "split" breaks part of an existing realm off into 946 * a new realm. The MDS provides a list of inodes 947 * (with caps) and child realms that belong to the new 948 * child. 949 */ 950 split_inos = p; 951 p += sizeof(u64) * num_split_inos; 952 split_realms = p; 953 p += sizeof(u64) * num_split_realms; 954 ceph_decode_need(&p, e, sizeof(*ri), bad); 955 /* we will peek at realm info here, but will _not_ 956 * advance p, as the realm update will occur below in 957 * ceph_update_snap_trace. */ 958 ri = p; 959 960 realm = ceph_lookup_snap_realm(mdsc, split); 961 if (!realm) { 962 realm = ceph_create_snap_realm(mdsc, split); 963 if (IS_ERR(realm)) 964 goto out; 965 } 966 967 dout("splitting snap_realm %llx %p\n", realm->ino, realm); 968 for (i = 0; i < num_split_inos; i++) { 969 struct ceph_vino vino = { 970 .ino = le64_to_cpu(split_inos[i]), 971 .snap = CEPH_NOSNAP, 972 }; 973 struct inode *inode = ceph_find_inode(sb, vino); 974 struct ceph_inode_info *ci; 975 976 if (!inode) 977 continue; 978 ci = ceph_inode(inode); 979 980 spin_lock(&ci->i_ceph_lock); 981 if (!ci->i_snap_realm) 982 goto skip_inode; 983 /* 984 * If this inode belongs to a realm that was 985 * created after our new realm, we experienced 986 * a race (due to another split notifications 987 * arriving from a different MDS). So skip 988 * this inode. 989 */ 990 if (ci->i_snap_realm->created > 991 le64_to_cpu(ri->created)) { 992 dout(" leaving %p in newer realm %llx %p\n", 993 inode, ci->i_snap_realm->ino, 994 ci->i_snap_realm); 995 goto skip_inode; 996 } 997 dout(" will move %p to split realm %llx %p\n", 998 inode, realm->ino, realm); 999 1000 ceph_get_snap_realm(mdsc, realm); 1001 ceph_change_snap_realm(inode, realm); 1002 spin_unlock(&ci->i_ceph_lock); 1003 iput(inode); 1004 continue; 1005 1006 skip_inode: 1007 spin_unlock(&ci->i_ceph_lock); 1008 iput(inode); 1009 } 1010 1011 /* we may have taken some of the old realm's children. */ 1012 for (i = 0; i < num_split_realms; i++) { 1013 struct ceph_snap_realm *child = 1014 __lookup_snap_realm(mdsc, 1015 le64_to_cpu(split_realms[i])); 1016 if (!child) 1017 continue; 1018 adjust_snap_realm_parent(mdsc, child, realm->ino); 1019 } 1020 } 1021 1022 /* 1023 * update using the provided snap trace. if we are deleting a 1024 * snap, we can avoid queueing cap_snaps. 1025 */ 1026 ceph_update_snap_trace(mdsc, p, e, 1027 op == CEPH_SNAP_OP_DESTROY, NULL); 1028 1029 if (op == CEPH_SNAP_OP_SPLIT) 1030 /* we took a reference when we created the realm, above */ 1031 ceph_put_snap_realm(mdsc, realm); 1032 1033 __cleanup_empty_realms(mdsc); 1034 1035 up_write(&mdsc->snap_rwsem); 1036 1037 flush_snaps(mdsc); 1038 return; 1039 1040 bad: 1041 pr_err("corrupt snap message from mds%d\n", mds); 1042 ceph_msg_dump(msg); 1043 out: 1044 if (locked_rwsem) 1045 up_write(&mdsc->snap_rwsem); 1046 return; 1047 } 1048 1049 struct ceph_snapid_map* ceph_get_snapid_map(struct ceph_mds_client *mdsc, 1050 u64 snap) 1051 { 1052 struct ceph_snapid_map *sm, *exist; 1053 struct rb_node **p, *parent; 1054 int ret; 1055 1056 exist = NULL; 1057 spin_lock(&mdsc->snapid_map_lock); 1058 p = &mdsc->snapid_map_tree.rb_node; 1059 while (*p) { 1060 exist = rb_entry(*p, struct ceph_snapid_map, node); 1061 if (snap > exist->snap) { 1062 p = &(*p)->rb_left; 1063 } else if (snap < exist->snap) { 1064 p = &(*p)->rb_right; 1065 } else { 1066 if (atomic_inc_return(&exist->ref) == 1) 1067 list_del_init(&exist->lru); 1068 break; 1069 } 1070 exist = NULL; 1071 } 1072 spin_unlock(&mdsc->snapid_map_lock); 1073 if (exist) { 1074 dout("found snapid map %llx -> %x\n", exist->snap, exist->dev); 1075 return exist; 1076 } 1077 1078 sm = kmalloc(sizeof(*sm), GFP_NOFS); 1079 if (!sm) 1080 return NULL; 1081 1082 ret = get_anon_bdev(&sm->dev); 1083 if (ret < 0) { 1084 kfree(sm); 1085 return NULL; 1086 } 1087 1088 INIT_LIST_HEAD(&sm->lru); 1089 atomic_set(&sm->ref, 1); 1090 sm->snap = snap; 1091 1092 exist = NULL; 1093 parent = NULL; 1094 p = &mdsc->snapid_map_tree.rb_node; 1095 spin_lock(&mdsc->snapid_map_lock); 1096 while (*p) { 1097 parent = *p; 1098 exist = rb_entry(*p, struct ceph_snapid_map, node); 1099 if (snap > exist->snap) 1100 p = &(*p)->rb_left; 1101 else if (snap < exist->snap) 1102 p = &(*p)->rb_right; 1103 else 1104 break; 1105 exist = NULL; 1106 } 1107 if (exist) { 1108 if (atomic_inc_return(&exist->ref) == 1) 1109 list_del_init(&exist->lru); 1110 } else { 1111 rb_link_node(&sm->node, parent, p); 1112 rb_insert_color(&sm->node, &mdsc->snapid_map_tree); 1113 } 1114 spin_unlock(&mdsc->snapid_map_lock); 1115 if (exist) { 1116 free_anon_bdev(sm->dev); 1117 kfree(sm); 1118 dout("found snapid map %llx -> %x\n", exist->snap, exist->dev); 1119 return exist; 1120 } 1121 1122 dout("create snapid map %llx -> %x\n", sm->snap, sm->dev); 1123 return sm; 1124 } 1125 1126 void ceph_put_snapid_map(struct ceph_mds_client* mdsc, 1127 struct ceph_snapid_map *sm) 1128 { 1129 if (!sm) 1130 return; 1131 if (atomic_dec_and_lock(&sm->ref, &mdsc->snapid_map_lock)) { 1132 if (!RB_EMPTY_NODE(&sm->node)) { 1133 sm->last_used = jiffies; 1134 list_add_tail(&sm->lru, &mdsc->snapid_map_lru); 1135 spin_unlock(&mdsc->snapid_map_lock); 1136 } else { 1137 /* already cleaned up by 1138 * ceph_cleanup_snapid_map() */ 1139 spin_unlock(&mdsc->snapid_map_lock); 1140 kfree(sm); 1141 } 1142 } 1143 } 1144 1145 void ceph_trim_snapid_map(struct ceph_mds_client *mdsc) 1146 { 1147 struct ceph_snapid_map *sm; 1148 unsigned long now; 1149 LIST_HEAD(to_free); 1150 1151 spin_lock(&mdsc->snapid_map_lock); 1152 now = jiffies; 1153 1154 while (!list_empty(&mdsc->snapid_map_lru)) { 1155 sm = list_first_entry(&mdsc->snapid_map_lru, 1156 struct ceph_snapid_map, lru); 1157 if (time_after(sm->last_used + CEPH_SNAPID_MAP_TIMEOUT, now)) 1158 break; 1159 1160 rb_erase(&sm->node, &mdsc->snapid_map_tree); 1161 list_move(&sm->lru, &to_free); 1162 } 1163 spin_unlock(&mdsc->snapid_map_lock); 1164 1165 while (!list_empty(&to_free)) { 1166 sm = list_first_entry(&to_free, struct ceph_snapid_map, lru); 1167 list_del(&sm->lru); 1168 dout("trim snapid map %llx -> %x\n", sm->snap, sm->dev); 1169 free_anon_bdev(sm->dev); 1170 kfree(sm); 1171 } 1172 } 1173 1174 void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc) 1175 { 1176 struct ceph_snapid_map *sm; 1177 struct rb_node *p; 1178 LIST_HEAD(to_free); 1179 1180 spin_lock(&mdsc->snapid_map_lock); 1181 while ((p = rb_first(&mdsc->snapid_map_tree))) { 1182 sm = rb_entry(p, struct ceph_snapid_map, node); 1183 rb_erase(p, &mdsc->snapid_map_tree); 1184 RB_CLEAR_NODE(p); 1185 list_move(&sm->lru, &to_free); 1186 } 1187 spin_unlock(&mdsc->snapid_map_lock); 1188 1189 while (!list_empty(&to_free)) { 1190 sm = list_first_entry(&to_free, struct ceph_snapid_map, lru); 1191 list_del(&sm->lru); 1192 free_anon_bdev(sm->dev); 1193 if (WARN_ON_ONCE(atomic_read(&sm->ref))) { 1194 pr_err("snapid map %llx -> %x still in use\n", 1195 sm->snap, sm->dev); 1196 } 1197 kfree(sm); 1198 } 1199 } 1200