1 #include "ceph_debug.h" 2 3 #include <linux/wait.h> 4 #include <linux/slab.h> 5 #include <linux/sched.h> 6 7 #include "mds_client.h" 8 #include "mon_client.h" 9 #include "super.h" 10 #include "messenger.h" 11 #include "decode.h" 12 #include "auth.h" 13 #include "pagelist.h" 14 15 /* 16 * A cluster of MDS (metadata server) daemons is responsible for 17 * managing the file system namespace (the directory hierarchy and 18 * inodes) and for coordinating shared access to storage. Metadata is 19 * partitioning hierarchically across a number of servers, and that 20 * partition varies over time as the cluster adjusts the distribution 21 * in order to balance load. 22 * 23 * The MDS client is primarily responsible to managing synchronous 24 * metadata requests for operations like open, unlink, and so forth. 25 * If there is a MDS failure, we find out about it when we (possibly 26 * request and) receive a new MDS map, and can resubmit affected 27 * requests. 28 * 29 * For the most part, though, we take advantage of a lossless 30 * communications channel to the MDS, and do not need to worry about 31 * timing out or resubmitting requests. 32 * 33 * We maintain a stateful "session" with each MDS we interact with. 34 * Within each session, we sent periodic heartbeat messages to ensure 35 * any capabilities or leases we have been issues remain valid. If 36 * the session times out and goes stale, our leases and capabilities 37 * are no longer valid. 38 */ 39 40 static void __wake_requests(struct ceph_mds_client *mdsc, 41 struct list_head *head); 42 43 static const struct ceph_connection_operations mds_con_ops; 44 45 46 /* 47 * mds reply parsing 48 */ 49 50 /* 51 * parse individual inode info 52 */ 53 static int parse_reply_info_in(void **p, void *end, 54 struct ceph_mds_reply_info_in *info) 55 { 56 int err = -EIO; 57 58 info->in = *p; 59 *p += sizeof(struct ceph_mds_reply_inode) + 60 sizeof(*info->in->fragtree.splits) * 61 le32_to_cpu(info->in->fragtree.nsplits); 62 63 ceph_decode_32_safe(p, end, info->symlink_len, bad); 64 ceph_decode_need(p, end, info->symlink_len, bad); 65 info->symlink = *p; 66 *p += info->symlink_len; 67 68 ceph_decode_32_safe(p, end, info->xattr_len, bad); 69 ceph_decode_need(p, end, info->xattr_len, bad); 70 info->xattr_data = *p; 71 *p += info->xattr_len; 72 return 0; 73 bad: 74 return err; 75 } 76 77 /* 78 * parse a normal reply, which may contain a (dir+)dentry and/or a 79 * target inode. 80 */ 81 static int parse_reply_info_trace(void **p, void *end, 82 struct ceph_mds_reply_info_parsed *info) 83 { 84 int err; 85 86 if (info->head->is_dentry) { 87 err = parse_reply_info_in(p, end, &info->diri); 88 if (err < 0) 89 goto out_bad; 90 91 if (unlikely(*p + sizeof(*info->dirfrag) > end)) 92 goto bad; 93 info->dirfrag = *p; 94 *p += sizeof(*info->dirfrag) + 95 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist); 96 if (unlikely(*p > end)) 97 goto bad; 98 99 ceph_decode_32_safe(p, end, info->dname_len, bad); 100 ceph_decode_need(p, end, info->dname_len, bad); 101 info->dname = *p; 102 *p += info->dname_len; 103 info->dlease = *p; 104 *p += sizeof(*info->dlease); 105 } 106 107 if (info->head->is_target) { 108 err = parse_reply_info_in(p, end, &info->targeti); 109 if (err < 0) 110 goto out_bad; 111 } 112 113 if (unlikely(*p != end)) 114 goto bad; 115 return 0; 116 117 bad: 118 err = -EIO; 119 out_bad: 120 pr_err("problem parsing mds trace %d\n", err); 121 return err; 122 } 123 124 /* 125 * parse readdir results 126 */ 127 static int parse_reply_info_dir(void **p, void *end, 128 struct ceph_mds_reply_info_parsed *info) 129 { 130 u32 num, i = 0; 131 int err; 132 133 info->dir_dir = *p; 134 if (*p + sizeof(*info->dir_dir) > end) 135 goto bad; 136 *p += sizeof(*info->dir_dir) + 137 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist); 138 if (*p > end) 139 goto bad; 140 141 ceph_decode_need(p, end, sizeof(num) + 2, bad); 142 num = ceph_decode_32(p); 143 info->dir_end = ceph_decode_8(p); 144 info->dir_complete = ceph_decode_8(p); 145 if (num == 0) 146 goto done; 147 148 /* alloc large array */ 149 info->dir_nr = num; 150 info->dir_in = kcalloc(num, sizeof(*info->dir_in) + 151 sizeof(*info->dir_dname) + 152 sizeof(*info->dir_dname_len) + 153 sizeof(*info->dir_dlease), 154 GFP_NOFS); 155 if (info->dir_in == NULL) { 156 err = -ENOMEM; 157 goto out_bad; 158 } 159 info->dir_dname = (void *)(info->dir_in + num); 160 info->dir_dname_len = (void *)(info->dir_dname + num); 161 info->dir_dlease = (void *)(info->dir_dname_len + num); 162 163 while (num) { 164 /* dentry */ 165 ceph_decode_need(p, end, sizeof(u32)*2, bad); 166 info->dir_dname_len[i] = ceph_decode_32(p); 167 ceph_decode_need(p, end, info->dir_dname_len[i], bad); 168 info->dir_dname[i] = *p; 169 *p += info->dir_dname_len[i]; 170 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i], 171 info->dir_dname[i]); 172 info->dir_dlease[i] = *p; 173 *p += sizeof(struct ceph_mds_reply_lease); 174 175 /* inode */ 176 err = parse_reply_info_in(p, end, &info->dir_in[i]); 177 if (err < 0) 178 goto out_bad; 179 i++; 180 num--; 181 } 182 183 done: 184 if (*p != end) 185 goto bad; 186 return 0; 187 188 bad: 189 err = -EIO; 190 out_bad: 191 pr_err("problem parsing dir contents %d\n", err); 192 return err; 193 } 194 195 /* 196 * parse entire mds reply 197 */ 198 static int parse_reply_info(struct ceph_msg *msg, 199 struct ceph_mds_reply_info_parsed *info) 200 { 201 void *p, *end; 202 u32 len; 203 int err; 204 205 info->head = msg->front.iov_base; 206 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 207 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 208 209 /* trace */ 210 ceph_decode_32_safe(&p, end, len, bad); 211 if (len > 0) { 212 err = parse_reply_info_trace(&p, p+len, info); 213 if (err < 0) 214 goto out_bad; 215 } 216 217 /* dir content */ 218 ceph_decode_32_safe(&p, end, len, bad); 219 if (len > 0) { 220 err = parse_reply_info_dir(&p, p+len, info); 221 if (err < 0) 222 goto out_bad; 223 } 224 225 /* snap blob */ 226 ceph_decode_32_safe(&p, end, len, bad); 227 info->snapblob_len = len; 228 info->snapblob = p; 229 p += len; 230 231 if (p != end) 232 goto bad; 233 return 0; 234 235 bad: 236 err = -EIO; 237 out_bad: 238 pr_err("mds parse_reply err %d\n", err); 239 return err; 240 } 241 242 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 243 { 244 kfree(info->dir_in); 245 } 246 247 248 /* 249 * sessions 250 */ 251 static const char *session_state_name(int s) 252 { 253 switch (s) { 254 case CEPH_MDS_SESSION_NEW: return "new"; 255 case CEPH_MDS_SESSION_OPENING: return "opening"; 256 case CEPH_MDS_SESSION_OPEN: return "open"; 257 case CEPH_MDS_SESSION_HUNG: return "hung"; 258 case CEPH_MDS_SESSION_CLOSING: return "closing"; 259 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 260 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 261 default: return "???"; 262 } 263 } 264 265 static struct ceph_mds_session *get_session(struct ceph_mds_session *s) 266 { 267 if (atomic_inc_not_zero(&s->s_ref)) { 268 dout("mdsc get_session %p %d -> %d\n", s, 269 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref)); 270 return s; 271 } else { 272 dout("mdsc get_session %p 0 -- FAIL", s); 273 return NULL; 274 } 275 } 276 277 void ceph_put_mds_session(struct ceph_mds_session *s) 278 { 279 dout("mdsc put_session %p %d -> %d\n", s, 280 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1); 281 if (atomic_dec_and_test(&s->s_ref)) { 282 if (s->s_authorizer) 283 s->s_mdsc->client->monc.auth->ops->destroy_authorizer( 284 s->s_mdsc->client->monc.auth, s->s_authorizer); 285 kfree(s); 286 } 287 } 288 289 /* 290 * called under mdsc->mutex 291 */ 292 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 293 int mds) 294 { 295 struct ceph_mds_session *session; 296 297 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL) 298 return NULL; 299 session = mdsc->sessions[mds]; 300 dout("lookup_mds_session %p %d\n", session, 301 atomic_read(&session->s_ref)); 302 get_session(session); 303 return session; 304 } 305 306 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 307 { 308 if (mds >= mdsc->max_sessions) 309 return false; 310 return mdsc->sessions[mds]; 311 } 312 313 static int __verify_registered_session(struct ceph_mds_client *mdsc, 314 struct ceph_mds_session *s) 315 { 316 if (s->s_mds >= mdsc->max_sessions || 317 mdsc->sessions[s->s_mds] != s) 318 return -ENOENT; 319 return 0; 320 } 321 322 /* 323 * create+register a new session for given mds. 324 * called under mdsc->mutex. 325 */ 326 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 327 int mds) 328 { 329 struct ceph_mds_session *s; 330 331 s = kzalloc(sizeof(*s), GFP_NOFS); 332 if (!s) 333 return ERR_PTR(-ENOMEM); 334 s->s_mdsc = mdsc; 335 s->s_mds = mds; 336 s->s_state = CEPH_MDS_SESSION_NEW; 337 s->s_ttl = 0; 338 s->s_seq = 0; 339 mutex_init(&s->s_mutex); 340 341 ceph_con_init(mdsc->client->msgr, &s->s_con); 342 s->s_con.private = s; 343 s->s_con.ops = &mds_con_ops; 344 s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS; 345 s->s_con.peer_name.num = cpu_to_le64(mds); 346 347 spin_lock_init(&s->s_cap_lock); 348 s->s_cap_gen = 0; 349 s->s_cap_ttl = 0; 350 s->s_renew_requested = 0; 351 s->s_renew_seq = 0; 352 INIT_LIST_HEAD(&s->s_caps); 353 s->s_nr_caps = 0; 354 s->s_trim_caps = 0; 355 atomic_set(&s->s_ref, 1); 356 INIT_LIST_HEAD(&s->s_waiting); 357 INIT_LIST_HEAD(&s->s_unsafe); 358 s->s_num_cap_releases = 0; 359 s->s_cap_iterator = NULL; 360 INIT_LIST_HEAD(&s->s_cap_releases); 361 INIT_LIST_HEAD(&s->s_cap_releases_done); 362 INIT_LIST_HEAD(&s->s_cap_flushing); 363 INIT_LIST_HEAD(&s->s_cap_snaps_flushing); 364 365 dout("register_session mds%d\n", mds); 366 if (mds >= mdsc->max_sessions) { 367 int newmax = 1 << get_count_order(mds+1); 368 struct ceph_mds_session **sa; 369 370 dout("register_session realloc to %d\n", newmax); 371 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 372 if (sa == NULL) 373 goto fail_realloc; 374 if (mdsc->sessions) { 375 memcpy(sa, mdsc->sessions, 376 mdsc->max_sessions * sizeof(void *)); 377 kfree(mdsc->sessions); 378 } 379 mdsc->sessions = sa; 380 mdsc->max_sessions = newmax; 381 } 382 mdsc->sessions[mds] = s; 383 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 384 385 ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 386 387 return s; 388 389 fail_realloc: 390 kfree(s); 391 return ERR_PTR(-ENOMEM); 392 } 393 394 /* 395 * called under mdsc->mutex 396 */ 397 static void __unregister_session(struct ceph_mds_client *mdsc, 398 struct ceph_mds_session *s) 399 { 400 dout("__unregister_session mds%d %p\n", s->s_mds, s); 401 BUG_ON(mdsc->sessions[s->s_mds] != s); 402 mdsc->sessions[s->s_mds] = NULL; 403 ceph_con_close(&s->s_con); 404 ceph_put_mds_session(s); 405 } 406 407 /* 408 * drop session refs in request. 409 * 410 * should be last request ref, or hold mdsc->mutex 411 */ 412 static void put_request_session(struct ceph_mds_request *req) 413 { 414 if (req->r_session) { 415 ceph_put_mds_session(req->r_session); 416 req->r_session = NULL; 417 } 418 } 419 420 void ceph_mdsc_release_request(struct kref *kref) 421 { 422 struct ceph_mds_request *req = container_of(kref, 423 struct ceph_mds_request, 424 r_kref); 425 if (req->r_request) 426 ceph_msg_put(req->r_request); 427 if (req->r_reply) { 428 ceph_msg_put(req->r_reply); 429 destroy_reply_info(&req->r_reply_info); 430 } 431 if (req->r_inode) { 432 ceph_put_cap_refs(ceph_inode(req->r_inode), 433 CEPH_CAP_PIN); 434 iput(req->r_inode); 435 } 436 if (req->r_locked_dir) 437 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), 438 CEPH_CAP_PIN); 439 if (req->r_target_inode) 440 iput(req->r_target_inode); 441 if (req->r_dentry) 442 dput(req->r_dentry); 443 if (req->r_old_dentry) { 444 ceph_put_cap_refs( 445 ceph_inode(req->r_old_dentry->d_parent->d_inode), 446 CEPH_CAP_PIN); 447 dput(req->r_old_dentry); 448 } 449 kfree(req->r_path1); 450 kfree(req->r_path2); 451 put_request_session(req); 452 ceph_unreserve_caps(&req->r_caps_reservation); 453 kfree(req); 454 } 455 456 /* 457 * lookup session, bump ref if found. 458 * 459 * called under mdsc->mutex. 460 */ 461 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc, 462 u64 tid) 463 { 464 struct ceph_mds_request *req; 465 struct rb_node *n = mdsc->request_tree.rb_node; 466 467 while (n) { 468 req = rb_entry(n, struct ceph_mds_request, r_node); 469 if (tid < req->r_tid) 470 n = n->rb_left; 471 else if (tid > req->r_tid) 472 n = n->rb_right; 473 else { 474 ceph_mdsc_get_request(req); 475 return req; 476 } 477 } 478 return NULL; 479 } 480 481 static void __insert_request(struct ceph_mds_client *mdsc, 482 struct ceph_mds_request *new) 483 { 484 struct rb_node **p = &mdsc->request_tree.rb_node; 485 struct rb_node *parent = NULL; 486 struct ceph_mds_request *req = NULL; 487 488 while (*p) { 489 parent = *p; 490 req = rb_entry(parent, struct ceph_mds_request, r_node); 491 if (new->r_tid < req->r_tid) 492 p = &(*p)->rb_left; 493 else if (new->r_tid > req->r_tid) 494 p = &(*p)->rb_right; 495 else 496 BUG(); 497 } 498 499 rb_link_node(&new->r_node, parent, p); 500 rb_insert_color(&new->r_node, &mdsc->request_tree); 501 } 502 503 /* 504 * Register an in-flight request, and assign a tid. Link to directory 505 * are modifying (if any). 506 * 507 * Called under mdsc->mutex. 508 */ 509 static void __register_request(struct ceph_mds_client *mdsc, 510 struct ceph_mds_request *req, 511 struct inode *dir) 512 { 513 req->r_tid = ++mdsc->last_tid; 514 if (req->r_num_caps) 515 ceph_reserve_caps(&req->r_caps_reservation, req->r_num_caps); 516 dout("__register_request %p tid %lld\n", req, req->r_tid); 517 ceph_mdsc_get_request(req); 518 __insert_request(mdsc, req); 519 520 if (dir) { 521 struct ceph_inode_info *ci = ceph_inode(dir); 522 523 spin_lock(&ci->i_unsafe_lock); 524 req->r_unsafe_dir = dir; 525 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 526 spin_unlock(&ci->i_unsafe_lock); 527 } 528 } 529 530 static void __unregister_request(struct ceph_mds_client *mdsc, 531 struct ceph_mds_request *req) 532 { 533 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 534 rb_erase(&req->r_node, &mdsc->request_tree); 535 RB_CLEAR_NODE(&req->r_node); 536 537 if (req->r_unsafe_dir) { 538 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 539 540 spin_lock(&ci->i_unsafe_lock); 541 list_del_init(&req->r_unsafe_dir_item); 542 spin_unlock(&ci->i_unsafe_lock); 543 } 544 545 ceph_mdsc_put_request(req); 546 } 547 548 /* 549 * Choose mds to send request to next. If there is a hint set in the 550 * request (e.g., due to a prior forward hint from the mds), use that. 551 * Otherwise, consult frag tree and/or caps to identify the 552 * appropriate mds. If all else fails, choose randomly. 553 * 554 * Called under mdsc->mutex. 555 */ 556 static int __choose_mds(struct ceph_mds_client *mdsc, 557 struct ceph_mds_request *req) 558 { 559 struct inode *inode; 560 struct ceph_inode_info *ci; 561 struct ceph_cap *cap; 562 int mode = req->r_direct_mode; 563 int mds = -1; 564 u32 hash = req->r_direct_hash; 565 bool is_hash = req->r_direct_is_hash; 566 567 /* 568 * is there a specific mds we should try? ignore hint if we have 569 * no session and the mds is not up (active or recovering). 570 */ 571 if (req->r_resend_mds >= 0 && 572 (__have_session(mdsc, req->r_resend_mds) || 573 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 574 dout("choose_mds using resend_mds mds%d\n", 575 req->r_resend_mds); 576 return req->r_resend_mds; 577 } 578 579 if (mode == USE_RANDOM_MDS) 580 goto random; 581 582 inode = NULL; 583 if (req->r_inode) { 584 inode = req->r_inode; 585 } else if (req->r_dentry) { 586 if (req->r_dentry->d_inode) { 587 inode = req->r_dentry->d_inode; 588 } else { 589 inode = req->r_dentry->d_parent->d_inode; 590 hash = req->r_dentry->d_name.hash; 591 is_hash = true; 592 } 593 } 594 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash, 595 (int)hash, mode); 596 if (!inode) 597 goto random; 598 ci = ceph_inode(inode); 599 600 if (is_hash && S_ISDIR(inode->i_mode)) { 601 struct ceph_inode_frag frag; 602 int found; 603 604 ceph_choose_frag(ci, hash, &frag, &found); 605 if (found) { 606 if (mode == USE_ANY_MDS && frag.ndist > 0) { 607 u8 r; 608 609 /* choose a random replica */ 610 get_random_bytes(&r, 1); 611 r %= frag.ndist; 612 mds = frag.dist[r]; 613 dout("choose_mds %p %llx.%llx " 614 "frag %u mds%d (%d/%d)\n", 615 inode, ceph_vinop(inode), 616 frag.frag, frag.mds, 617 (int)r, frag.ndist); 618 return mds; 619 } 620 621 /* since this file/dir wasn't known to be 622 * replicated, then we want to look for the 623 * authoritative mds. */ 624 mode = USE_AUTH_MDS; 625 if (frag.mds >= 0) { 626 /* choose auth mds */ 627 mds = frag.mds; 628 dout("choose_mds %p %llx.%llx " 629 "frag %u mds%d (auth)\n", 630 inode, ceph_vinop(inode), frag.frag, mds); 631 return mds; 632 } 633 } 634 } 635 636 spin_lock(&inode->i_lock); 637 cap = NULL; 638 if (mode == USE_AUTH_MDS) 639 cap = ci->i_auth_cap; 640 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 641 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 642 if (!cap) { 643 spin_unlock(&inode->i_lock); 644 goto random; 645 } 646 mds = cap->session->s_mds; 647 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n", 648 inode, ceph_vinop(inode), mds, 649 cap == ci->i_auth_cap ? "auth " : "", cap); 650 spin_unlock(&inode->i_lock); 651 return mds; 652 653 random: 654 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 655 dout("choose_mds chose random mds%d\n", mds); 656 return mds; 657 } 658 659 660 /* 661 * session messages 662 */ 663 static struct ceph_msg *create_session_msg(u32 op, u64 seq) 664 { 665 struct ceph_msg *msg; 666 struct ceph_mds_session_head *h; 667 668 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS); 669 if (!msg) { 670 pr_err("create_session_msg ENOMEM creating msg\n"); 671 return NULL; 672 } 673 h = msg->front.iov_base; 674 h->op = cpu_to_le32(op); 675 h->seq = cpu_to_le64(seq); 676 return msg; 677 } 678 679 /* 680 * send session open request. 681 * 682 * called under mdsc->mutex 683 */ 684 static int __open_session(struct ceph_mds_client *mdsc, 685 struct ceph_mds_session *session) 686 { 687 struct ceph_msg *msg; 688 int mstate; 689 int mds = session->s_mds; 690 691 /* wait for mds to go active? */ 692 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 693 dout("open_session to mds%d (%s)\n", mds, 694 ceph_mds_state_name(mstate)); 695 session->s_state = CEPH_MDS_SESSION_OPENING; 696 session->s_renew_requested = jiffies; 697 698 /* send connect message */ 699 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq); 700 if (!msg) 701 return -ENOMEM; 702 ceph_con_send(&session->s_con, msg); 703 return 0; 704 } 705 706 /* 707 * session caps 708 */ 709 710 /* 711 * Free preallocated cap messages assigned to this session 712 */ 713 static void cleanup_cap_releases(struct ceph_mds_session *session) 714 { 715 struct ceph_msg *msg; 716 717 spin_lock(&session->s_cap_lock); 718 while (!list_empty(&session->s_cap_releases)) { 719 msg = list_first_entry(&session->s_cap_releases, 720 struct ceph_msg, list_head); 721 list_del_init(&msg->list_head); 722 ceph_msg_put(msg); 723 } 724 while (!list_empty(&session->s_cap_releases_done)) { 725 msg = list_first_entry(&session->s_cap_releases_done, 726 struct ceph_msg, list_head); 727 list_del_init(&msg->list_head); 728 ceph_msg_put(msg); 729 } 730 spin_unlock(&session->s_cap_lock); 731 } 732 733 /* 734 * Helper to safely iterate over all caps associated with a session, with 735 * special care taken to handle a racing __ceph_remove_cap(). 736 * 737 * Caller must hold session s_mutex. 738 */ 739 static int iterate_session_caps(struct ceph_mds_session *session, 740 int (*cb)(struct inode *, struct ceph_cap *, 741 void *), void *arg) 742 { 743 struct list_head *p; 744 struct ceph_cap *cap; 745 struct inode *inode, *last_inode = NULL; 746 struct ceph_cap *old_cap = NULL; 747 int ret; 748 749 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 750 spin_lock(&session->s_cap_lock); 751 p = session->s_caps.next; 752 while (p != &session->s_caps) { 753 cap = list_entry(p, struct ceph_cap, session_caps); 754 inode = igrab(&cap->ci->vfs_inode); 755 if (!inode) { 756 p = p->next; 757 continue; 758 } 759 session->s_cap_iterator = cap; 760 spin_unlock(&session->s_cap_lock); 761 762 if (last_inode) { 763 iput(last_inode); 764 last_inode = NULL; 765 } 766 if (old_cap) { 767 ceph_put_cap(old_cap); 768 old_cap = NULL; 769 } 770 771 ret = cb(inode, cap, arg); 772 last_inode = inode; 773 774 spin_lock(&session->s_cap_lock); 775 p = p->next; 776 if (cap->ci == NULL) { 777 dout("iterate_session_caps finishing cap %p removal\n", 778 cap); 779 BUG_ON(cap->session != session); 780 list_del_init(&cap->session_caps); 781 session->s_nr_caps--; 782 cap->session = NULL; 783 old_cap = cap; /* put_cap it w/o locks held */ 784 } 785 if (ret < 0) 786 goto out; 787 } 788 ret = 0; 789 out: 790 session->s_cap_iterator = NULL; 791 spin_unlock(&session->s_cap_lock); 792 793 if (last_inode) 794 iput(last_inode); 795 if (old_cap) 796 ceph_put_cap(old_cap); 797 798 return ret; 799 } 800 801 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 802 void *arg) 803 { 804 struct ceph_inode_info *ci = ceph_inode(inode); 805 int drop = 0; 806 807 dout("removing cap %p, ci is %p, inode is %p\n", 808 cap, ci, &ci->vfs_inode); 809 spin_lock(&inode->i_lock); 810 __ceph_remove_cap(cap); 811 if (!__ceph_is_any_real_caps(ci)) { 812 struct ceph_mds_client *mdsc = 813 &ceph_sb_to_client(inode->i_sb)->mdsc; 814 815 spin_lock(&mdsc->cap_dirty_lock); 816 if (!list_empty(&ci->i_dirty_item)) { 817 pr_info(" dropping dirty %s state for %p %lld\n", 818 ceph_cap_string(ci->i_dirty_caps), 819 inode, ceph_ino(inode)); 820 ci->i_dirty_caps = 0; 821 list_del_init(&ci->i_dirty_item); 822 drop = 1; 823 } 824 if (!list_empty(&ci->i_flushing_item)) { 825 pr_info(" dropping dirty+flushing %s state for %p %lld\n", 826 ceph_cap_string(ci->i_flushing_caps), 827 inode, ceph_ino(inode)); 828 ci->i_flushing_caps = 0; 829 list_del_init(&ci->i_flushing_item); 830 mdsc->num_cap_flushing--; 831 drop = 1; 832 } 833 if (drop && ci->i_wrbuffer_ref) { 834 pr_info(" dropping dirty data for %p %lld\n", 835 inode, ceph_ino(inode)); 836 ci->i_wrbuffer_ref = 0; 837 ci->i_wrbuffer_ref_head = 0; 838 drop++; 839 } 840 spin_unlock(&mdsc->cap_dirty_lock); 841 } 842 spin_unlock(&inode->i_lock); 843 while (drop--) 844 iput(inode); 845 return 0; 846 } 847 848 /* 849 * caller must hold session s_mutex 850 */ 851 static void remove_session_caps(struct ceph_mds_session *session) 852 { 853 dout("remove_session_caps on %p\n", session); 854 iterate_session_caps(session, remove_session_caps_cb, NULL); 855 BUG_ON(session->s_nr_caps > 0); 856 BUG_ON(!list_empty(&session->s_cap_flushing)); 857 cleanup_cap_releases(session); 858 } 859 860 /* 861 * wake up any threads waiting on this session's caps. if the cap is 862 * old (didn't get renewed on the client reconnect), remove it now. 863 * 864 * caller must hold s_mutex. 865 */ 866 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 867 void *arg) 868 { 869 struct ceph_inode_info *ci = ceph_inode(inode); 870 871 wake_up(&ci->i_cap_wq); 872 if (arg) { 873 spin_lock(&inode->i_lock); 874 ci->i_wanted_max_size = 0; 875 ci->i_requested_max_size = 0; 876 spin_unlock(&inode->i_lock); 877 } 878 return 0; 879 } 880 881 static void wake_up_session_caps(struct ceph_mds_session *session, 882 int reconnect) 883 { 884 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 885 iterate_session_caps(session, wake_up_session_cb, 886 (void *)(unsigned long)reconnect); 887 } 888 889 /* 890 * Send periodic message to MDS renewing all currently held caps. The 891 * ack will reset the expiration for all caps from this session. 892 * 893 * caller holds s_mutex 894 */ 895 static int send_renew_caps(struct ceph_mds_client *mdsc, 896 struct ceph_mds_session *session) 897 { 898 struct ceph_msg *msg; 899 int state; 900 901 if (time_after_eq(jiffies, session->s_cap_ttl) && 902 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 903 pr_info("mds%d caps stale\n", session->s_mds); 904 session->s_renew_requested = jiffies; 905 906 /* do not try to renew caps until a recovering mds has reconnected 907 * with its clients. */ 908 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 909 if (state < CEPH_MDS_STATE_RECONNECT) { 910 dout("send_renew_caps ignoring mds%d (%s)\n", 911 session->s_mds, ceph_mds_state_name(state)); 912 return 0; 913 } 914 915 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 916 ceph_mds_state_name(state)); 917 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 918 ++session->s_renew_seq); 919 if (!msg) 920 return -ENOMEM; 921 ceph_con_send(&session->s_con, msg); 922 return 0; 923 } 924 925 /* 926 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 927 * 928 * Called under session->s_mutex 929 */ 930 static void renewed_caps(struct ceph_mds_client *mdsc, 931 struct ceph_mds_session *session, int is_renew) 932 { 933 int was_stale; 934 int wake = 0; 935 936 spin_lock(&session->s_cap_lock); 937 was_stale = is_renew && (session->s_cap_ttl == 0 || 938 time_after_eq(jiffies, session->s_cap_ttl)); 939 940 session->s_cap_ttl = session->s_renew_requested + 941 mdsc->mdsmap->m_session_timeout*HZ; 942 943 if (was_stale) { 944 if (time_before(jiffies, session->s_cap_ttl)) { 945 pr_info("mds%d caps renewed\n", session->s_mds); 946 wake = 1; 947 } else { 948 pr_info("mds%d caps still stale\n", session->s_mds); 949 } 950 } 951 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 952 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 953 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 954 spin_unlock(&session->s_cap_lock); 955 956 if (wake) 957 wake_up_session_caps(session, 0); 958 } 959 960 /* 961 * send a session close request 962 */ 963 static int request_close_session(struct ceph_mds_client *mdsc, 964 struct ceph_mds_session *session) 965 { 966 struct ceph_msg *msg; 967 968 dout("request_close_session mds%d state %s seq %lld\n", 969 session->s_mds, session_state_name(session->s_state), 970 session->s_seq); 971 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); 972 if (!msg) 973 return -ENOMEM; 974 ceph_con_send(&session->s_con, msg); 975 return 0; 976 } 977 978 /* 979 * Called with s_mutex held. 980 */ 981 static int __close_session(struct ceph_mds_client *mdsc, 982 struct ceph_mds_session *session) 983 { 984 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 985 return 0; 986 session->s_state = CEPH_MDS_SESSION_CLOSING; 987 return request_close_session(mdsc, session); 988 } 989 990 /* 991 * Trim old(er) caps. 992 * 993 * Because we can't cache an inode without one or more caps, we do 994 * this indirectly: if a cap is unused, we prune its aliases, at which 995 * point the inode will hopefully get dropped to. 996 * 997 * Yes, this is a bit sloppy. Our only real goal here is to respond to 998 * memory pressure from the MDS, though, so it needn't be perfect. 999 */ 1000 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1001 { 1002 struct ceph_mds_session *session = arg; 1003 struct ceph_inode_info *ci = ceph_inode(inode); 1004 int used, oissued, mine; 1005 1006 if (session->s_trim_caps <= 0) 1007 return -1; 1008 1009 spin_lock(&inode->i_lock); 1010 mine = cap->issued | cap->implemented; 1011 used = __ceph_caps_used(ci); 1012 oissued = __ceph_caps_issued_other(ci, cap); 1013 1014 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n", 1015 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1016 ceph_cap_string(used)); 1017 if (ci->i_dirty_caps) 1018 goto out; /* dirty caps */ 1019 if ((used & ~oissued) & mine) 1020 goto out; /* we need these caps */ 1021 1022 session->s_trim_caps--; 1023 if (oissued) { 1024 /* we aren't the only cap.. just remove us */ 1025 __ceph_remove_cap(cap); 1026 } else { 1027 /* try to drop referring dentries */ 1028 spin_unlock(&inode->i_lock); 1029 d_prune_aliases(inode); 1030 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 1031 inode, cap, atomic_read(&inode->i_count)); 1032 return 0; 1033 } 1034 1035 out: 1036 spin_unlock(&inode->i_lock); 1037 return 0; 1038 } 1039 1040 /* 1041 * Trim session cap count down to some max number. 1042 */ 1043 static int trim_caps(struct ceph_mds_client *mdsc, 1044 struct ceph_mds_session *session, 1045 int max_caps) 1046 { 1047 int trim_caps = session->s_nr_caps - max_caps; 1048 1049 dout("trim_caps mds%d start: %d / %d, trim %d\n", 1050 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 1051 if (trim_caps > 0) { 1052 session->s_trim_caps = trim_caps; 1053 iterate_session_caps(session, trim_caps_cb, session); 1054 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 1055 session->s_mds, session->s_nr_caps, max_caps, 1056 trim_caps - session->s_trim_caps); 1057 session->s_trim_caps = 0; 1058 } 1059 return 0; 1060 } 1061 1062 /* 1063 * Allocate cap_release messages. If there is a partially full message 1064 * in the queue, try to allocate enough to cover it's remainder, so that 1065 * we can send it immediately. 1066 * 1067 * Called under s_mutex. 1068 */ 1069 int ceph_add_cap_releases(struct ceph_mds_client *mdsc, 1070 struct ceph_mds_session *session, 1071 int extra) 1072 { 1073 struct ceph_msg *msg; 1074 struct ceph_mds_cap_release *head; 1075 int err = -ENOMEM; 1076 1077 if (extra < 0) 1078 extra = mdsc->client->mount_args->cap_release_safety; 1079 1080 spin_lock(&session->s_cap_lock); 1081 1082 if (!list_empty(&session->s_cap_releases)) { 1083 msg = list_first_entry(&session->s_cap_releases, 1084 struct ceph_msg, 1085 list_head); 1086 head = msg->front.iov_base; 1087 extra += CEPH_CAPS_PER_RELEASE - le32_to_cpu(head->num); 1088 } 1089 1090 while (session->s_num_cap_releases < session->s_nr_caps + extra) { 1091 spin_unlock(&session->s_cap_lock); 1092 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE, 1093 GFP_NOFS); 1094 if (!msg) 1095 goto out_unlocked; 1096 dout("add_cap_releases %p msg %p now %d\n", session, msg, 1097 (int)msg->front.iov_len); 1098 head = msg->front.iov_base; 1099 head->num = cpu_to_le32(0); 1100 msg->front.iov_len = sizeof(*head); 1101 spin_lock(&session->s_cap_lock); 1102 list_add(&msg->list_head, &session->s_cap_releases); 1103 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE; 1104 } 1105 1106 if (!list_empty(&session->s_cap_releases)) { 1107 msg = list_first_entry(&session->s_cap_releases, 1108 struct ceph_msg, 1109 list_head); 1110 head = msg->front.iov_base; 1111 if (head->num) { 1112 dout(" queueing non-full %p (%d)\n", msg, 1113 le32_to_cpu(head->num)); 1114 list_move_tail(&msg->list_head, 1115 &session->s_cap_releases_done); 1116 session->s_num_cap_releases -= 1117 CEPH_CAPS_PER_RELEASE - le32_to_cpu(head->num); 1118 } 1119 } 1120 err = 0; 1121 spin_unlock(&session->s_cap_lock); 1122 out_unlocked: 1123 return err; 1124 } 1125 1126 /* 1127 * flush all dirty inode data to disk. 1128 * 1129 * returns true if we've flushed through want_flush_seq 1130 */ 1131 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq) 1132 { 1133 int mds, ret = 1; 1134 1135 dout("check_cap_flush want %lld\n", want_flush_seq); 1136 mutex_lock(&mdsc->mutex); 1137 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) { 1138 struct ceph_mds_session *session = mdsc->sessions[mds]; 1139 1140 if (!session) 1141 continue; 1142 get_session(session); 1143 mutex_unlock(&mdsc->mutex); 1144 1145 mutex_lock(&session->s_mutex); 1146 if (!list_empty(&session->s_cap_flushing)) { 1147 struct ceph_inode_info *ci = 1148 list_entry(session->s_cap_flushing.next, 1149 struct ceph_inode_info, 1150 i_flushing_item); 1151 struct inode *inode = &ci->vfs_inode; 1152 1153 spin_lock(&inode->i_lock); 1154 if (ci->i_cap_flush_seq <= want_flush_seq) { 1155 dout("check_cap_flush still flushing %p " 1156 "seq %lld <= %lld to mds%d\n", inode, 1157 ci->i_cap_flush_seq, want_flush_seq, 1158 session->s_mds); 1159 ret = 0; 1160 } 1161 spin_unlock(&inode->i_lock); 1162 } 1163 mutex_unlock(&session->s_mutex); 1164 ceph_put_mds_session(session); 1165 1166 if (!ret) 1167 return ret; 1168 mutex_lock(&mdsc->mutex); 1169 } 1170 1171 mutex_unlock(&mdsc->mutex); 1172 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq); 1173 return ret; 1174 } 1175 1176 /* 1177 * called under s_mutex 1178 */ 1179 void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 1180 struct ceph_mds_session *session) 1181 { 1182 struct ceph_msg *msg; 1183 1184 dout("send_cap_releases mds%d\n", session->s_mds); 1185 spin_lock(&session->s_cap_lock); 1186 while (!list_empty(&session->s_cap_releases_done)) { 1187 msg = list_first_entry(&session->s_cap_releases_done, 1188 struct ceph_msg, list_head); 1189 list_del_init(&msg->list_head); 1190 spin_unlock(&session->s_cap_lock); 1191 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1192 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1193 ceph_con_send(&session->s_con, msg); 1194 spin_lock(&session->s_cap_lock); 1195 } 1196 spin_unlock(&session->s_cap_lock); 1197 } 1198 1199 static void discard_cap_releases(struct ceph_mds_client *mdsc, 1200 struct ceph_mds_session *session) 1201 { 1202 struct ceph_msg *msg; 1203 struct ceph_mds_cap_release *head; 1204 unsigned num; 1205 1206 dout("discard_cap_releases mds%d\n", session->s_mds); 1207 spin_lock(&session->s_cap_lock); 1208 1209 /* zero out the in-progress message */ 1210 msg = list_first_entry(&session->s_cap_releases, 1211 struct ceph_msg, list_head); 1212 head = msg->front.iov_base; 1213 num = le32_to_cpu(head->num); 1214 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num); 1215 head->num = cpu_to_le32(0); 1216 session->s_num_cap_releases += num; 1217 1218 /* requeue completed messages */ 1219 while (!list_empty(&session->s_cap_releases_done)) { 1220 msg = list_first_entry(&session->s_cap_releases_done, 1221 struct ceph_msg, list_head); 1222 list_del_init(&msg->list_head); 1223 1224 head = msg->front.iov_base; 1225 num = le32_to_cpu(head->num); 1226 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, 1227 num); 1228 session->s_num_cap_releases += num; 1229 head->num = cpu_to_le32(0); 1230 msg->front.iov_len = sizeof(*head); 1231 list_add(&msg->list_head, &session->s_cap_releases); 1232 } 1233 1234 spin_unlock(&session->s_cap_lock); 1235 } 1236 1237 /* 1238 * requests 1239 */ 1240 1241 /* 1242 * Create an mds request. 1243 */ 1244 struct ceph_mds_request * 1245 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 1246 { 1247 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS); 1248 1249 if (!req) 1250 return ERR_PTR(-ENOMEM); 1251 1252 mutex_init(&req->r_fill_mutex); 1253 req->r_started = jiffies; 1254 req->r_resend_mds = -1; 1255 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 1256 req->r_fmode = -1; 1257 kref_init(&req->r_kref); 1258 INIT_LIST_HEAD(&req->r_wait); 1259 init_completion(&req->r_completion); 1260 init_completion(&req->r_safe_completion); 1261 INIT_LIST_HEAD(&req->r_unsafe_item); 1262 1263 req->r_op = op; 1264 req->r_direct_mode = mode; 1265 return req; 1266 } 1267 1268 /* 1269 * return oldest (lowest) request, tid in request tree, 0 if none. 1270 * 1271 * called under mdsc->mutex. 1272 */ 1273 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 1274 { 1275 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 1276 return NULL; 1277 return rb_entry(rb_first(&mdsc->request_tree), 1278 struct ceph_mds_request, r_node); 1279 } 1280 1281 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 1282 { 1283 struct ceph_mds_request *req = __get_oldest_req(mdsc); 1284 1285 if (req) 1286 return req->r_tid; 1287 return 0; 1288 } 1289 1290 /* 1291 * Build a dentry's path. Allocate on heap; caller must kfree. Based 1292 * on build_path_from_dentry in fs/cifs/dir.c. 1293 * 1294 * If @stop_on_nosnap, generate path relative to the first non-snapped 1295 * inode. 1296 * 1297 * Encode hidden .snap dirs as a double /, i.e. 1298 * foo/.snap/bar -> foo//bar 1299 */ 1300 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base, 1301 int stop_on_nosnap) 1302 { 1303 struct dentry *temp; 1304 char *path; 1305 int len, pos; 1306 1307 if (dentry == NULL) 1308 return ERR_PTR(-EINVAL); 1309 1310 retry: 1311 len = 0; 1312 for (temp = dentry; !IS_ROOT(temp);) { 1313 struct inode *inode = temp->d_inode; 1314 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) 1315 len++; /* slash only */ 1316 else if (stop_on_nosnap && inode && 1317 ceph_snap(inode) == CEPH_NOSNAP) 1318 break; 1319 else 1320 len += 1 + temp->d_name.len; 1321 temp = temp->d_parent; 1322 if (temp == NULL) { 1323 pr_err("build_path corrupt dentry %p\n", dentry); 1324 return ERR_PTR(-EINVAL); 1325 } 1326 } 1327 if (len) 1328 len--; /* no leading '/' */ 1329 1330 path = kmalloc(len+1, GFP_NOFS); 1331 if (path == NULL) 1332 return ERR_PTR(-ENOMEM); 1333 pos = len; 1334 path[pos] = 0; /* trailing null */ 1335 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) { 1336 struct inode *inode = temp->d_inode; 1337 1338 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 1339 dout("build_path path+%d: %p SNAPDIR\n", 1340 pos, temp); 1341 } else if (stop_on_nosnap && inode && 1342 ceph_snap(inode) == CEPH_NOSNAP) { 1343 break; 1344 } else { 1345 pos -= temp->d_name.len; 1346 if (pos < 0) 1347 break; 1348 strncpy(path + pos, temp->d_name.name, 1349 temp->d_name.len); 1350 } 1351 if (pos) 1352 path[--pos] = '/'; 1353 temp = temp->d_parent; 1354 if (temp == NULL) { 1355 pr_err("build_path corrupt dentry\n"); 1356 kfree(path); 1357 return ERR_PTR(-EINVAL); 1358 } 1359 } 1360 if (pos != 0) { 1361 pr_err("build_path did not end path lookup where " 1362 "expected, namelen is %d, pos is %d\n", len, pos); 1363 /* presumably this is only possible if racing with a 1364 rename of one of the parent directories (we can not 1365 lock the dentries above us to prevent this, but 1366 retrying should be harmless) */ 1367 kfree(path); 1368 goto retry; 1369 } 1370 1371 *base = ceph_ino(temp->d_inode); 1372 *plen = len; 1373 dout("build_path on %p %d built %llx '%.*s'\n", 1374 dentry, atomic_read(&dentry->d_count), *base, len, path); 1375 return path; 1376 } 1377 1378 static int build_dentry_path(struct dentry *dentry, 1379 const char **ppath, int *ppathlen, u64 *pino, 1380 int *pfreepath) 1381 { 1382 char *path; 1383 1384 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) { 1385 *pino = ceph_ino(dentry->d_parent->d_inode); 1386 *ppath = dentry->d_name.name; 1387 *ppathlen = dentry->d_name.len; 1388 return 0; 1389 } 1390 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1391 if (IS_ERR(path)) 1392 return PTR_ERR(path); 1393 *ppath = path; 1394 *pfreepath = 1; 1395 return 0; 1396 } 1397 1398 static int build_inode_path(struct inode *inode, 1399 const char **ppath, int *ppathlen, u64 *pino, 1400 int *pfreepath) 1401 { 1402 struct dentry *dentry; 1403 char *path; 1404 1405 if (ceph_snap(inode) == CEPH_NOSNAP) { 1406 *pino = ceph_ino(inode); 1407 *ppathlen = 0; 1408 return 0; 1409 } 1410 dentry = d_find_alias(inode); 1411 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1412 dput(dentry); 1413 if (IS_ERR(path)) 1414 return PTR_ERR(path); 1415 *ppath = path; 1416 *pfreepath = 1; 1417 return 0; 1418 } 1419 1420 /* 1421 * request arguments may be specified via an inode *, a dentry *, or 1422 * an explicit ino+path. 1423 */ 1424 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 1425 const char *rpath, u64 rino, 1426 const char **ppath, int *pathlen, 1427 u64 *ino, int *freepath) 1428 { 1429 int r = 0; 1430 1431 if (rinode) { 1432 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 1433 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 1434 ceph_snap(rinode)); 1435 } else if (rdentry) { 1436 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath); 1437 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 1438 *ppath); 1439 } else if (rpath) { 1440 *ino = rino; 1441 *ppath = rpath; 1442 *pathlen = strlen(rpath); 1443 dout(" path %.*s\n", *pathlen, rpath); 1444 } 1445 1446 return r; 1447 } 1448 1449 /* 1450 * called under mdsc->mutex 1451 */ 1452 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc, 1453 struct ceph_mds_request *req, 1454 int mds) 1455 { 1456 struct ceph_msg *msg; 1457 struct ceph_mds_request_head *head; 1458 const char *path1 = NULL; 1459 const char *path2 = NULL; 1460 u64 ino1 = 0, ino2 = 0; 1461 int pathlen1 = 0, pathlen2 = 0; 1462 int freepath1 = 0, freepath2 = 0; 1463 int len; 1464 u16 releases; 1465 void *p, *end; 1466 int ret; 1467 1468 ret = set_request_path_attr(req->r_inode, req->r_dentry, 1469 req->r_path1, req->r_ino1.ino, 1470 &path1, &pathlen1, &ino1, &freepath1); 1471 if (ret < 0) { 1472 msg = ERR_PTR(ret); 1473 goto out; 1474 } 1475 1476 ret = set_request_path_attr(NULL, req->r_old_dentry, 1477 req->r_path2, req->r_ino2.ino, 1478 &path2, &pathlen2, &ino2, &freepath2); 1479 if (ret < 0) { 1480 msg = ERR_PTR(ret); 1481 goto out_free1; 1482 } 1483 1484 len = sizeof(*head) + 1485 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)); 1486 1487 /* calculate (max) length for cap releases */ 1488 len += sizeof(struct ceph_mds_request_release) * 1489 (!!req->r_inode_drop + !!req->r_dentry_drop + 1490 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 1491 if (req->r_dentry_drop) 1492 len += req->r_dentry->d_name.len; 1493 if (req->r_old_dentry_drop) 1494 len += req->r_old_dentry->d_name.len; 1495 1496 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS); 1497 if (!msg) { 1498 msg = ERR_PTR(-ENOMEM); 1499 goto out_free2; 1500 } 1501 1502 msg->hdr.tid = cpu_to_le64(req->r_tid); 1503 1504 head = msg->front.iov_base; 1505 p = msg->front.iov_base + sizeof(*head); 1506 end = msg->front.iov_base + msg->front.iov_len; 1507 1508 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 1509 head->op = cpu_to_le32(req->r_op); 1510 head->caller_uid = cpu_to_le32(current_fsuid()); 1511 head->caller_gid = cpu_to_le32(current_fsgid()); 1512 head->args = req->r_args; 1513 1514 ceph_encode_filepath(&p, end, ino1, path1); 1515 ceph_encode_filepath(&p, end, ino2, path2); 1516 1517 /* cap releases */ 1518 releases = 0; 1519 if (req->r_inode_drop) 1520 releases += ceph_encode_inode_release(&p, 1521 req->r_inode ? req->r_inode : req->r_dentry->d_inode, 1522 mds, req->r_inode_drop, req->r_inode_unless, 0); 1523 if (req->r_dentry_drop) 1524 releases += ceph_encode_dentry_release(&p, req->r_dentry, 1525 mds, req->r_dentry_drop, req->r_dentry_unless); 1526 if (req->r_old_dentry_drop) 1527 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 1528 mds, req->r_old_dentry_drop, req->r_old_dentry_unless); 1529 if (req->r_old_inode_drop) 1530 releases += ceph_encode_inode_release(&p, 1531 req->r_old_dentry->d_inode, 1532 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 1533 head->num_releases = cpu_to_le16(releases); 1534 1535 BUG_ON(p > end); 1536 msg->front.iov_len = p - msg->front.iov_base; 1537 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1538 1539 msg->pages = req->r_pages; 1540 msg->nr_pages = req->r_num_pages; 1541 msg->hdr.data_len = cpu_to_le32(req->r_data_len); 1542 msg->hdr.data_off = cpu_to_le16(0); 1543 1544 out_free2: 1545 if (freepath2) 1546 kfree((char *)path2); 1547 out_free1: 1548 if (freepath1) 1549 kfree((char *)path1); 1550 out: 1551 return msg; 1552 } 1553 1554 /* 1555 * called under mdsc->mutex if error, under no mutex if 1556 * success. 1557 */ 1558 static void complete_request(struct ceph_mds_client *mdsc, 1559 struct ceph_mds_request *req) 1560 { 1561 if (req->r_callback) 1562 req->r_callback(mdsc, req); 1563 else 1564 complete(&req->r_completion); 1565 } 1566 1567 /* 1568 * called under mdsc->mutex 1569 */ 1570 static int __prepare_send_request(struct ceph_mds_client *mdsc, 1571 struct ceph_mds_request *req, 1572 int mds) 1573 { 1574 struct ceph_mds_request_head *rhead; 1575 struct ceph_msg *msg; 1576 int flags = 0; 1577 1578 req->r_mds = mds; 1579 req->r_attempts++; 1580 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, 1581 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 1582 1583 if (req->r_request) { 1584 ceph_msg_put(req->r_request); 1585 req->r_request = NULL; 1586 } 1587 msg = create_request_message(mdsc, req, mds); 1588 if (IS_ERR(msg)) { 1589 req->r_err = PTR_ERR(msg); 1590 complete_request(mdsc, req); 1591 return PTR_ERR(msg); 1592 } 1593 req->r_request = msg; 1594 1595 rhead = msg->front.iov_base; 1596 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 1597 if (req->r_got_unsafe) 1598 flags |= CEPH_MDS_FLAG_REPLAY; 1599 if (req->r_locked_dir) 1600 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 1601 rhead->flags = cpu_to_le32(flags); 1602 rhead->num_fwd = req->r_num_fwd; 1603 rhead->num_retry = req->r_attempts - 1; 1604 1605 dout(" r_locked_dir = %p\n", req->r_locked_dir); 1606 1607 if (req->r_target_inode && req->r_got_unsafe) 1608 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 1609 else 1610 rhead->ino = 0; 1611 return 0; 1612 } 1613 1614 /* 1615 * send request, or put it on the appropriate wait list. 1616 */ 1617 static int __do_request(struct ceph_mds_client *mdsc, 1618 struct ceph_mds_request *req) 1619 { 1620 struct ceph_mds_session *session = NULL; 1621 int mds = -1; 1622 int err = -EAGAIN; 1623 1624 if (req->r_err || req->r_got_result) 1625 goto out; 1626 1627 if (req->r_timeout && 1628 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 1629 dout("do_request timed out\n"); 1630 err = -EIO; 1631 goto finish; 1632 } 1633 1634 mds = __choose_mds(mdsc, req); 1635 if (mds < 0 || 1636 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 1637 dout("do_request no mds or not active, waiting for map\n"); 1638 list_add(&req->r_wait, &mdsc->waiting_for_map); 1639 goto out; 1640 } 1641 1642 /* get, open session */ 1643 session = __ceph_lookup_mds_session(mdsc, mds); 1644 if (!session) { 1645 session = register_session(mdsc, mds); 1646 if (IS_ERR(session)) { 1647 err = PTR_ERR(session); 1648 goto finish; 1649 } 1650 } 1651 dout("do_request mds%d session %p state %s\n", mds, session, 1652 session_state_name(session->s_state)); 1653 if (session->s_state != CEPH_MDS_SESSION_OPEN && 1654 session->s_state != CEPH_MDS_SESSION_HUNG) { 1655 if (session->s_state == CEPH_MDS_SESSION_NEW || 1656 session->s_state == CEPH_MDS_SESSION_CLOSING) 1657 __open_session(mdsc, session); 1658 list_add(&req->r_wait, &session->s_waiting); 1659 goto out_session; 1660 } 1661 1662 /* send request */ 1663 req->r_session = get_session(session); 1664 req->r_resend_mds = -1; /* forget any previous mds hint */ 1665 1666 if (req->r_request_started == 0) /* note request start time */ 1667 req->r_request_started = jiffies; 1668 1669 err = __prepare_send_request(mdsc, req, mds); 1670 if (!err) { 1671 ceph_msg_get(req->r_request); 1672 ceph_con_send(&session->s_con, req->r_request); 1673 } 1674 1675 out_session: 1676 ceph_put_mds_session(session); 1677 out: 1678 return err; 1679 1680 finish: 1681 req->r_err = err; 1682 complete_request(mdsc, req); 1683 goto out; 1684 } 1685 1686 /* 1687 * called under mdsc->mutex 1688 */ 1689 static void __wake_requests(struct ceph_mds_client *mdsc, 1690 struct list_head *head) 1691 { 1692 struct ceph_mds_request *req, *nreq; 1693 1694 list_for_each_entry_safe(req, nreq, head, r_wait) { 1695 list_del_init(&req->r_wait); 1696 __do_request(mdsc, req); 1697 } 1698 } 1699 1700 /* 1701 * Wake up threads with requests pending for @mds, so that they can 1702 * resubmit their requests to a possibly different mds. 1703 */ 1704 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 1705 { 1706 struct ceph_mds_request *req; 1707 struct rb_node *p; 1708 1709 dout("kick_requests mds%d\n", mds); 1710 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) { 1711 req = rb_entry(p, struct ceph_mds_request, r_node); 1712 if (req->r_got_unsafe) 1713 continue; 1714 if (req->r_session && 1715 req->r_session->s_mds == mds) { 1716 dout(" kicking tid %llu\n", req->r_tid); 1717 put_request_session(req); 1718 __do_request(mdsc, req); 1719 } 1720 } 1721 } 1722 1723 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, 1724 struct ceph_mds_request *req) 1725 { 1726 dout("submit_request on %p\n", req); 1727 mutex_lock(&mdsc->mutex); 1728 __register_request(mdsc, req, NULL); 1729 __do_request(mdsc, req); 1730 mutex_unlock(&mdsc->mutex); 1731 } 1732 1733 /* 1734 * Synchrously perform an mds request. Take care of all of the 1735 * session setup, forwarding, retry details. 1736 */ 1737 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 1738 struct inode *dir, 1739 struct ceph_mds_request *req) 1740 { 1741 int err; 1742 1743 dout("do_request on %p\n", req); 1744 1745 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */ 1746 if (req->r_inode) 1747 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 1748 if (req->r_locked_dir) 1749 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 1750 if (req->r_old_dentry) 1751 ceph_get_cap_refs( 1752 ceph_inode(req->r_old_dentry->d_parent->d_inode), 1753 CEPH_CAP_PIN); 1754 1755 /* issue */ 1756 mutex_lock(&mdsc->mutex); 1757 __register_request(mdsc, req, dir); 1758 __do_request(mdsc, req); 1759 1760 if (req->r_err) { 1761 err = req->r_err; 1762 __unregister_request(mdsc, req); 1763 dout("do_request early error %d\n", err); 1764 goto out; 1765 } 1766 1767 /* wait */ 1768 mutex_unlock(&mdsc->mutex); 1769 dout("do_request waiting\n"); 1770 if (req->r_timeout) { 1771 err = (long)wait_for_completion_killable_timeout( 1772 &req->r_completion, req->r_timeout); 1773 if (err == 0) 1774 err = -EIO; 1775 } else { 1776 err = wait_for_completion_killable(&req->r_completion); 1777 } 1778 dout("do_request waited, got %d\n", err); 1779 mutex_lock(&mdsc->mutex); 1780 1781 /* only abort if we didn't race with a real reply */ 1782 if (req->r_got_result) { 1783 err = le32_to_cpu(req->r_reply_info.head->result); 1784 } else if (err < 0) { 1785 dout("aborted request %lld with %d\n", req->r_tid, err); 1786 1787 /* 1788 * ensure we aren't running concurrently with 1789 * ceph_fill_trace or ceph_readdir_prepopulate, which 1790 * rely on locks (dir mutex) held by our caller. 1791 */ 1792 mutex_lock(&req->r_fill_mutex); 1793 req->r_err = err; 1794 req->r_aborted = true; 1795 mutex_unlock(&req->r_fill_mutex); 1796 1797 if (req->r_locked_dir && 1798 (req->r_op & CEPH_MDS_OP_WRITE)) 1799 ceph_invalidate_dir_request(req); 1800 } else { 1801 err = req->r_err; 1802 } 1803 1804 out: 1805 mutex_unlock(&mdsc->mutex); 1806 dout("do_request %p done, result %d\n", req, err); 1807 return err; 1808 } 1809 1810 /* 1811 * Invalidate dir I_COMPLETE, dentry lease state on an aborted MDS 1812 * namespace request. 1813 */ 1814 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 1815 { 1816 struct inode *inode = req->r_locked_dir; 1817 struct ceph_inode_info *ci = ceph_inode(inode); 1818 1819 dout("invalidate_dir_request %p (I_COMPLETE, lease(s))\n", inode); 1820 spin_lock(&inode->i_lock); 1821 ci->i_ceph_flags &= ~CEPH_I_COMPLETE; 1822 ci->i_release_count++; 1823 spin_unlock(&inode->i_lock); 1824 1825 if (req->r_dentry) 1826 ceph_invalidate_dentry_lease(req->r_dentry); 1827 if (req->r_old_dentry) 1828 ceph_invalidate_dentry_lease(req->r_old_dentry); 1829 } 1830 1831 /* 1832 * Handle mds reply. 1833 * 1834 * We take the session mutex and parse and process the reply immediately. 1835 * This preserves the logical ordering of replies, capabilities, etc., sent 1836 * by the MDS as they are applied to our local cache. 1837 */ 1838 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 1839 { 1840 struct ceph_mds_client *mdsc = session->s_mdsc; 1841 struct ceph_mds_request *req; 1842 struct ceph_mds_reply_head *head = msg->front.iov_base; 1843 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 1844 u64 tid; 1845 int err, result; 1846 int mds = session->s_mds; 1847 1848 if (msg->front.iov_len < sizeof(*head)) { 1849 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 1850 ceph_msg_dump(msg); 1851 return; 1852 } 1853 1854 /* get request, session */ 1855 tid = le64_to_cpu(msg->hdr.tid); 1856 mutex_lock(&mdsc->mutex); 1857 req = __lookup_request(mdsc, tid); 1858 if (!req) { 1859 dout("handle_reply on unknown tid %llu\n", tid); 1860 mutex_unlock(&mdsc->mutex); 1861 return; 1862 } 1863 dout("handle_reply %p\n", req); 1864 1865 /* correct session? */ 1866 if (req->r_session != session) { 1867 pr_err("mdsc_handle_reply got %llu on session mds%d" 1868 " not mds%d\n", tid, session->s_mds, 1869 req->r_session ? req->r_session->s_mds : -1); 1870 mutex_unlock(&mdsc->mutex); 1871 goto out; 1872 } 1873 1874 /* dup? */ 1875 if ((req->r_got_unsafe && !head->safe) || 1876 (req->r_got_safe && head->safe)) { 1877 pr_warning("got a dup %s reply on %llu from mds%d\n", 1878 head->safe ? "safe" : "unsafe", tid, mds); 1879 mutex_unlock(&mdsc->mutex); 1880 goto out; 1881 } 1882 if (req->r_got_safe && !head->safe) { 1883 pr_warning("got unsafe after safe on %llu from mds%d\n", 1884 tid, mds); 1885 mutex_unlock(&mdsc->mutex); 1886 goto out; 1887 } 1888 1889 result = le32_to_cpu(head->result); 1890 1891 /* 1892 * Tolerate 2 consecutive ESTALEs from the same mds. 1893 * FIXME: we should be looking at the cap migrate_seq. 1894 */ 1895 if (result == -ESTALE) { 1896 req->r_direct_mode = USE_AUTH_MDS; 1897 req->r_num_stale++; 1898 if (req->r_num_stale <= 2) { 1899 __do_request(mdsc, req); 1900 mutex_unlock(&mdsc->mutex); 1901 goto out; 1902 } 1903 } else { 1904 req->r_num_stale = 0; 1905 } 1906 1907 if (head->safe) { 1908 req->r_got_safe = true; 1909 __unregister_request(mdsc, req); 1910 complete(&req->r_safe_completion); 1911 1912 if (req->r_got_unsafe) { 1913 /* 1914 * We already handled the unsafe response, now do the 1915 * cleanup. No need to examine the response; the MDS 1916 * doesn't include any result info in the safe 1917 * response. And even if it did, there is nothing 1918 * useful we could do with a revised return value. 1919 */ 1920 dout("got safe reply %llu, mds%d\n", tid, mds); 1921 list_del_init(&req->r_unsafe_item); 1922 1923 /* last unsafe request during umount? */ 1924 if (mdsc->stopping && !__get_oldest_req(mdsc)) 1925 complete(&mdsc->safe_umount_waiters); 1926 mutex_unlock(&mdsc->mutex); 1927 goto out; 1928 } 1929 } else { 1930 req->r_got_unsafe = true; 1931 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 1932 } 1933 1934 dout("handle_reply tid %lld result %d\n", tid, result); 1935 rinfo = &req->r_reply_info; 1936 err = parse_reply_info(msg, rinfo); 1937 mutex_unlock(&mdsc->mutex); 1938 1939 mutex_lock(&session->s_mutex); 1940 if (err < 0) { 1941 pr_err("mdsc_handle_reply got corrupt reply mds%d\n", mds); 1942 ceph_msg_dump(msg); 1943 goto out_err; 1944 } 1945 1946 /* snap trace */ 1947 if (rinfo->snapblob_len) { 1948 down_write(&mdsc->snap_rwsem); 1949 ceph_update_snap_trace(mdsc, rinfo->snapblob, 1950 rinfo->snapblob + rinfo->snapblob_len, 1951 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP); 1952 downgrade_write(&mdsc->snap_rwsem); 1953 } else { 1954 down_read(&mdsc->snap_rwsem); 1955 } 1956 1957 /* insert trace into our cache */ 1958 mutex_lock(&req->r_fill_mutex); 1959 err = ceph_fill_trace(mdsc->client->sb, req, req->r_session); 1960 if (err == 0) { 1961 if (result == 0 && rinfo->dir_nr) 1962 ceph_readdir_prepopulate(req, req->r_session); 1963 ceph_unreserve_caps(&req->r_caps_reservation); 1964 } 1965 mutex_unlock(&req->r_fill_mutex); 1966 1967 up_read(&mdsc->snap_rwsem); 1968 out_err: 1969 mutex_lock(&mdsc->mutex); 1970 if (!req->r_aborted) { 1971 if (err) { 1972 req->r_err = err; 1973 } else { 1974 req->r_reply = msg; 1975 ceph_msg_get(msg); 1976 req->r_got_result = true; 1977 } 1978 } else { 1979 dout("reply arrived after request %lld was aborted\n", tid); 1980 } 1981 mutex_unlock(&mdsc->mutex); 1982 1983 ceph_add_cap_releases(mdsc, req->r_session, -1); 1984 mutex_unlock(&session->s_mutex); 1985 1986 /* kick calling process */ 1987 complete_request(mdsc, req); 1988 out: 1989 ceph_mdsc_put_request(req); 1990 return; 1991 } 1992 1993 1994 1995 /* 1996 * handle mds notification that our request has been forwarded. 1997 */ 1998 static void handle_forward(struct ceph_mds_client *mdsc, 1999 struct ceph_mds_session *session, 2000 struct ceph_msg *msg) 2001 { 2002 struct ceph_mds_request *req; 2003 u64 tid = le64_to_cpu(msg->hdr.tid); 2004 u32 next_mds; 2005 u32 fwd_seq; 2006 int err = -EINVAL; 2007 void *p = msg->front.iov_base; 2008 void *end = p + msg->front.iov_len; 2009 2010 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 2011 next_mds = ceph_decode_32(&p); 2012 fwd_seq = ceph_decode_32(&p); 2013 2014 mutex_lock(&mdsc->mutex); 2015 req = __lookup_request(mdsc, tid); 2016 if (!req) { 2017 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 2018 goto out; /* dup reply? */ 2019 } 2020 2021 if (req->r_aborted) { 2022 dout("forward tid %llu aborted, unregistering\n", tid); 2023 __unregister_request(mdsc, req); 2024 } else if (fwd_seq <= req->r_num_fwd) { 2025 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 2026 tid, next_mds, req->r_num_fwd, fwd_seq); 2027 } else { 2028 /* resend. forward race not possible; mds would drop */ 2029 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 2030 BUG_ON(req->r_err); 2031 BUG_ON(req->r_got_result); 2032 req->r_num_fwd = fwd_seq; 2033 req->r_resend_mds = next_mds; 2034 put_request_session(req); 2035 __do_request(mdsc, req); 2036 } 2037 ceph_mdsc_put_request(req); 2038 out: 2039 mutex_unlock(&mdsc->mutex); 2040 return; 2041 2042 bad: 2043 pr_err("mdsc_handle_forward decode error err=%d\n", err); 2044 } 2045 2046 /* 2047 * handle a mds session control message 2048 */ 2049 static void handle_session(struct ceph_mds_session *session, 2050 struct ceph_msg *msg) 2051 { 2052 struct ceph_mds_client *mdsc = session->s_mdsc; 2053 u32 op; 2054 u64 seq; 2055 int mds = session->s_mds; 2056 struct ceph_mds_session_head *h = msg->front.iov_base; 2057 int wake = 0; 2058 2059 /* decode */ 2060 if (msg->front.iov_len != sizeof(*h)) 2061 goto bad; 2062 op = le32_to_cpu(h->op); 2063 seq = le64_to_cpu(h->seq); 2064 2065 mutex_lock(&mdsc->mutex); 2066 if (op == CEPH_SESSION_CLOSE) 2067 __unregister_session(mdsc, session); 2068 /* FIXME: this ttl calculation is generous */ 2069 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 2070 mutex_unlock(&mdsc->mutex); 2071 2072 mutex_lock(&session->s_mutex); 2073 2074 dout("handle_session mds%d %s %p state %s seq %llu\n", 2075 mds, ceph_session_op_name(op), session, 2076 session_state_name(session->s_state), seq); 2077 2078 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 2079 session->s_state = CEPH_MDS_SESSION_OPEN; 2080 pr_info("mds%d came back\n", session->s_mds); 2081 } 2082 2083 switch (op) { 2084 case CEPH_SESSION_OPEN: 2085 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2086 pr_info("mds%d reconnect success\n", session->s_mds); 2087 session->s_state = CEPH_MDS_SESSION_OPEN; 2088 renewed_caps(mdsc, session, 0); 2089 wake = 1; 2090 if (mdsc->stopping) 2091 __close_session(mdsc, session); 2092 break; 2093 2094 case CEPH_SESSION_RENEWCAPS: 2095 if (session->s_renew_seq == seq) 2096 renewed_caps(mdsc, session, 1); 2097 break; 2098 2099 case CEPH_SESSION_CLOSE: 2100 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2101 pr_info("mds%d reconnect denied\n", session->s_mds); 2102 remove_session_caps(session); 2103 wake = 1; /* for good measure */ 2104 complete(&mdsc->session_close_waiters); 2105 kick_requests(mdsc, mds); 2106 break; 2107 2108 case CEPH_SESSION_STALE: 2109 pr_info("mds%d caps went stale, renewing\n", 2110 session->s_mds); 2111 spin_lock(&session->s_cap_lock); 2112 session->s_cap_gen++; 2113 session->s_cap_ttl = 0; 2114 spin_unlock(&session->s_cap_lock); 2115 send_renew_caps(mdsc, session); 2116 break; 2117 2118 case CEPH_SESSION_RECALL_STATE: 2119 trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 2120 break; 2121 2122 default: 2123 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 2124 WARN_ON(1); 2125 } 2126 2127 mutex_unlock(&session->s_mutex); 2128 if (wake) { 2129 mutex_lock(&mdsc->mutex); 2130 __wake_requests(mdsc, &session->s_waiting); 2131 mutex_unlock(&mdsc->mutex); 2132 } 2133 return; 2134 2135 bad: 2136 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 2137 (int)msg->front.iov_len); 2138 ceph_msg_dump(msg); 2139 return; 2140 } 2141 2142 2143 /* 2144 * called under session->mutex. 2145 */ 2146 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 2147 struct ceph_mds_session *session) 2148 { 2149 struct ceph_mds_request *req, *nreq; 2150 int err; 2151 2152 dout("replay_unsafe_requests mds%d\n", session->s_mds); 2153 2154 mutex_lock(&mdsc->mutex); 2155 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) { 2156 err = __prepare_send_request(mdsc, req, session->s_mds); 2157 if (!err) { 2158 ceph_msg_get(req->r_request); 2159 ceph_con_send(&session->s_con, req->r_request); 2160 } 2161 } 2162 mutex_unlock(&mdsc->mutex); 2163 } 2164 2165 /* 2166 * Encode information about a cap for a reconnect with the MDS. 2167 */ 2168 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap, 2169 void *arg) 2170 { 2171 struct ceph_mds_cap_reconnect rec; 2172 struct ceph_inode_info *ci; 2173 struct ceph_pagelist *pagelist = arg; 2174 char *path; 2175 int pathlen, err; 2176 u64 pathbase; 2177 struct dentry *dentry; 2178 2179 ci = cap->ci; 2180 2181 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 2182 inode, ceph_vinop(inode), cap, cap->cap_id, 2183 ceph_cap_string(cap->issued)); 2184 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 2185 if (err) 2186 return err; 2187 2188 dentry = d_find_alias(inode); 2189 if (dentry) { 2190 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0); 2191 if (IS_ERR(path)) { 2192 err = PTR_ERR(path); 2193 BUG_ON(err); 2194 } 2195 } else { 2196 path = NULL; 2197 pathlen = 0; 2198 } 2199 err = ceph_pagelist_encode_string(pagelist, path, pathlen); 2200 if (err) 2201 goto out; 2202 2203 spin_lock(&inode->i_lock); 2204 cap->seq = 0; /* reset cap seq */ 2205 cap->issue_seq = 0; /* and issue_seq */ 2206 rec.cap_id = cpu_to_le64(cap->cap_id); 2207 rec.pathbase = cpu_to_le64(pathbase); 2208 rec.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2209 rec.issued = cpu_to_le32(cap->issued); 2210 rec.size = cpu_to_le64(inode->i_size); 2211 ceph_encode_timespec(&rec.mtime, &inode->i_mtime); 2212 ceph_encode_timespec(&rec.atime, &inode->i_atime); 2213 rec.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2214 spin_unlock(&inode->i_lock); 2215 2216 err = ceph_pagelist_append(pagelist, &rec, sizeof(rec)); 2217 2218 out: 2219 kfree(path); 2220 dput(dentry); 2221 return err; 2222 } 2223 2224 2225 /* 2226 * If an MDS fails and recovers, clients need to reconnect in order to 2227 * reestablish shared state. This includes all caps issued through 2228 * this session _and_ the snap_realm hierarchy. Because it's not 2229 * clear which snap realms the mds cares about, we send everything we 2230 * know about.. that ensures we'll then get any new info the 2231 * recovering MDS might have. 2232 * 2233 * This is a relatively heavyweight operation, but it's rare. 2234 * 2235 * called with mdsc->mutex held. 2236 */ 2237 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 2238 struct ceph_mds_session *session) 2239 { 2240 struct ceph_msg *reply; 2241 struct rb_node *p; 2242 int mds = session->s_mds; 2243 int err = -ENOMEM; 2244 struct ceph_pagelist *pagelist; 2245 2246 pr_info("mds%d reconnect start\n", mds); 2247 2248 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS); 2249 if (!pagelist) 2250 goto fail_nopagelist; 2251 ceph_pagelist_init(pagelist); 2252 2253 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS); 2254 if (!reply) 2255 goto fail_nomsg; 2256 2257 mutex_lock(&session->s_mutex); 2258 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 2259 session->s_seq = 0; 2260 2261 ceph_con_open(&session->s_con, 2262 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 2263 2264 /* replay unsafe requests */ 2265 replay_unsafe_requests(mdsc, session); 2266 2267 down_read(&mdsc->snap_rwsem); 2268 2269 dout("session %p state %s\n", session, 2270 session_state_name(session->s_state)); 2271 2272 /* drop old cap expires; we're about to reestablish that state */ 2273 discard_cap_releases(mdsc, session); 2274 2275 /* traverse this session's caps */ 2276 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps); 2277 if (err) 2278 goto fail; 2279 err = iterate_session_caps(session, encode_caps_cb, pagelist); 2280 if (err < 0) 2281 goto fail; 2282 2283 /* 2284 * snaprealms. we provide mds with the ino, seq (version), and 2285 * parent for all of our realms. If the mds has any newer info, 2286 * it will tell us. 2287 */ 2288 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 2289 struct ceph_snap_realm *realm = 2290 rb_entry(p, struct ceph_snap_realm, node); 2291 struct ceph_mds_snaprealm_reconnect sr_rec; 2292 2293 dout(" adding snap realm %llx seq %lld parent %llx\n", 2294 realm->ino, realm->seq, realm->parent_ino); 2295 sr_rec.ino = cpu_to_le64(realm->ino); 2296 sr_rec.seq = cpu_to_le64(realm->seq); 2297 sr_rec.parent = cpu_to_le64(realm->parent_ino); 2298 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 2299 if (err) 2300 goto fail; 2301 } 2302 2303 reply->pagelist = pagelist; 2304 reply->hdr.data_len = cpu_to_le32(pagelist->length); 2305 reply->nr_pages = calc_pages_for(0, pagelist->length); 2306 ceph_con_send(&session->s_con, reply); 2307 2308 mutex_unlock(&session->s_mutex); 2309 2310 mutex_lock(&mdsc->mutex); 2311 __wake_requests(mdsc, &session->s_waiting); 2312 mutex_unlock(&mdsc->mutex); 2313 2314 up_read(&mdsc->snap_rwsem); 2315 return; 2316 2317 fail: 2318 ceph_msg_put(reply); 2319 up_read(&mdsc->snap_rwsem); 2320 mutex_unlock(&session->s_mutex); 2321 fail_nomsg: 2322 ceph_pagelist_release(pagelist); 2323 kfree(pagelist); 2324 fail_nopagelist: 2325 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 2326 return; 2327 } 2328 2329 2330 /* 2331 * compare old and new mdsmaps, kicking requests 2332 * and closing out old connections as necessary 2333 * 2334 * called under mdsc->mutex. 2335 */ 2336 static void check_new_map(struct ceph_mds_client *mdsc, 2337 struct ceph_mdsmap *newmap, 2338 struct ceph_mdsmap *oldmap) 2339 { 2340 int i; 2341 int oldstate, newstate; 2342 struct ceph_mds_session *s; 2343 2344 dout("check_new_map new %u old %u\n", 2345 newmap->m_epoch, oldmap->m_epoch); 2346 2347 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) { 2348 if (mdsc->sessions[i] == NULL) 2349 continue; 2350 s = mdsc->sessions[i]; 2351 oldstate = ceph_mdsmap_get_state(oldmap, i); 2352 newstate = ceph_mdsmap_get_state(newmap, i); 2353 2354 dout("check_new_map mds%d state %s -> %s (session %s)\n", 2355 i, ceph_mds_state_name(oldstate), 2356 ceph_mds_state_name(newstate), 2357 session_state_name(s->s_state)); 2358 2359 if (memcmp(ceph_mdsmap_get_addr(oldmap, i), 2360 ceph_mdsmap_get_addr(newmap, i), 2361 sizeof(struct ceph_entity_addr))) { 2362 if (s->s_state == CEPH_MDS_SESSION_OPENING) { 2363 /* the session never opened, just close it 2364 * out now */ 2365 __wake_requests(mdsc, &s->s_waiting); 2366 __unregister_session(mdsc, s); 2367 } else { 2368 /* just close it */ 2369 mutex_unlock(&mdsc->mutex); 2370 mutex_lock(&s->s_mutex); 2371 mutex_lock(&mdsc->mutex); 2372 ceph_con_close(&s->s_con); 2373 mutex_unlock(&s->s_mutex); 2374 s->s_state = CEPH_MDS_SESSION_RESTARTING; 2375 } 2376 2377 /* kick any requests waiting on the recovering mds */ 2378 kick_requests(mdsc, i); 2379 } else if (oldstate == newstate) { 2380 continue; /* nothing new with this mds */ 2381 } 2382 2383 /* 2384 * send reconnect? 2385 */ 2386 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 2387 newstate >= CEPH_MDS_STATE_RECONNECT) { 2388 mutex_unlock(&mdsc->mutex); 2389 send_mds_reconnect(mdsc, s); 2390 mutex_lock(&mdsc->mutex); 2391 } 2392 2393 /* 2394 * kick request on any mds that has gone active. 2395 */ 2396 if (oldstate < CEPH_MDS_STATE_ACTIVE && 2397 newstate >= CEPH_MDS_STATE_ACTIVE) { 2398 if (oldstate != CEPH_MDS_STATE_CREATING && 2399 oldstate != CEPH_MDS_STATE_STARTING) 2400 pr_info("mds%d recovery completed\n", s->s_mds); 2401 kick_requests(mdsc, i); 2402 ceph_kick_flushing_caps(mdsc, s); 2403 wake_up_session_caps(s, 1); 2404 } 2405 } 2406 } 2407 2408 2409 2410 /* 2411 * leases 2412 */ 2413 2414 /* 2415 * caller must hold session s_mutex, dentry->d_lock 2416 */ 2417 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 2418 { 2419 struct ceph_dentry_info *di = ceph_dentry(dentry); 2420 2421 ceph_put_mds_session(di->lease_session); 2422 di->lease_session = NULL; 2423 } 2424 2425 static void handle_lease(struct ceph_mds_client *mdsc, 2426 struct ceph_mds_session *session, 2427 struct ceph_msg *msg) 2428 { 2429 struct super_block *sb = mdsc->client->sb; 2430 struct inode *inode; 2431 struct ceph_inode_info *ci; 2432 struct dentry *parent, *dentry; 2433 struct ceph_dentry_info *di; 2434 int mds = session->s_mds; 2435 struct ceph_mds_lease *h = msg->front.iov_base; 2436 u32 seq; 2437 struct ceph_vino vino; 2438 int mask; 2439 struct qstr dname; 2440 int release = 0; 2441 2442 dout("handle_lease from mds%d\n", mds); 2443 2444 /* decode */ 2445 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 2446 goto bad; 2447 vino.ino = le64_to_cpu(h->ino); 2448 vino.snap = CEPH_NOSNAP; 2449 mask = le16_to_cpu(h->mask); 2450 seq = le32_to_cpu(h->seq); 2451 dname.name = (void *)h + sizeof(*h) + sizeof(u32); 2452 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32); 2453 if (dname.len != get_unaligned_le32(h+1)) 2454 goto bad; 2455 2456 mutex_lock(&session->s_mutex); 2457 session->s_seq++; 2458 2459 /* lookup inode */ 2460 inode = ceph_find_inode(sb, vino); 2461 dout("handle_lease %s, mask %d, ino %llx %p %.*s\n", 2462 ceph_lease_op_name(h->action), mask, vino.ino, inode, 2463 dname.len, dname.name); 2464 if (inode == NULL) { 2465 dout("handle_lease no inode %llx\n", vino.ino); 2466 goto release; 2467 } 2468 ci = ceph_inode(inode); 2469 2470 /* dentry */ 2471 parent = d_find_alias(inode); 2472 if (!parent) { 2473 dout("no parent dentry on inode %p\n", inode); 2474 WARN_ON(1); 2475 goto release; /* hrm... */ 2476 } 2477 dname.hash = full_name_hash(dname.name, dname.len); 2478 dentry = d_lookup(parent, &dname); 2479 dput(parent); 2480 if (!dentry) 2481 goto release; 2482 2483 spin_lock(&dentry->d_lock); 2484 di = ceph_dentry(dentry); 2485 switch (h->action) { 2486 case CEPH_MDS_LEASE_REVOKE: 2487 if (di && di->lease_session == session) { 2488 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 2489 h->seq = cpu_to_le32(di->lease_seq); 2490 __ceph_mdsc_drop_dentry_lease(dentry); 2491 } 2492 release = 1; 2493 break; 2494 2495 case CEPH_MDS_LEASE_RENEW: 2496 if (di && di->lease_session == session && 2497 di->lease_gen == session->s_cap_gen && 2498 di->lease_renew_from && 2499 di->lease_renew_after == 0) { 2500 unsigned long duration = 2501 le32_to_cpu(h->duration_ms) * HZ / 1000; 2502 2503 di->lease_seq = seq; 2504 dentry->d_time = di->lease_renew_from + duration; 2505 di->lease_renew_after = di->lease_renew_from + 2506 (duration >> 1); 2507 di->lease_renew_from = 0; 2508 } 2509 break; 2510 } 2511 spin_unlock(&dentry->d_lock); 2512 dput(dentry); 2513 2514 if (!release) 2515 goto out; 2516 2517 release: 2518 /* let's just reuse the same message */ 2519 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 2520 ceph_msg_get(msg); 2521 ceph_con_send(&session->s_con, msg); 2522 2523 out: 2524 iput(inode); 2525 mutex_unlock(&session->s_mutex); 2526 return; 2527 2528 bad: 2529 pr_err("corrupt lease message\n"); 2530 ceph_msg_dump(msg); 2531 } 2532 2533 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 2534 struct inode *inode, 2535 struct dentry *dentry, char action, 2536 u32 seq) 2537 { 2538 struct ceph_msg *msg; 2539 struct ceph_mds_lease *lease; 2540 int len = sizeof(*lease) + sizeof(u32); 2541 int dnamelen = 0; 2542 2543 dout("lease_send_msg inode %p dentry %p %s to mds%d\n", 2544 inode, dentry, ceph_lease_op_name(action), session->s_mds); 2545 dnamelen = dentry->d_name.len; 2546 len += dnamelen; 2547 2548 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS); 2549 if (!msg) 2550 return; 2551 lease = msg->front.iov_base; 2552 lease->action = action; 2553 lease->mask = cpu_to_le16(1); 2554 lease->ino = cpu_to_le64(ceph_vino(inode).ino); 2555 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap); 2556 lease->seq = cpu_to_le32(seq); 2557 put_unaligned_le32(dnamelen, lease + 1); 2558 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen); 2559 2560 /* 2561 * if this is a preemptive lease RELEASE, no need to 2562 * flush request stream, since the actual request will 2563 * soon follow. 2564 */ 2565 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); 2566 2567 ceph_con_send(&session->s_con, msg); 2568 } 2569 2570 /* 2571 * Preemptively release a lease we expect to invalidate anyway. 2572 * Pass @inode always, @dentry is optional. 2573 */ 2574 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode, 2575 struct dentry *dentry, int mask) 2576 { 2577 struct ceph_dentry_info *di; 2578 struct ceph_mds_session *session; 2579 u32 seq; 2580 2581 BUG_ON(inode == NULL); 2582 BUG_ON(dentry == NULL); 2583 BUG_ON(mask == 0); 2584 2585 /* is dentry lease valid? */ 2586 spin_lock(&dentry->d_lock); 2587 di = ceph_dentry(dentry); 2588 if (!di || !di->lease_session || 2589 di->lease_session->s_mds < 0 || 2590 di->lease_gen != di->lease_session->s_cap_gen || 2591 !time_before(jiffies, dentry->d_time)) { 2592 dout("lease_release inode %p dentry %p -- " 2593 "no lease on %d\n", 2594 inode, dentry, mask); 2595 spin_unlock(&dentry->d_lock); 2596 return; 2597 } 2598 2599 /* we do have a lease on this dentry; note mds and seq */ 2600 session = ceph_get_mds_session(di->lease_session); 2601 seq = di->lease_seq; 2602 __ceph_mdsc_drop_dentry_lease(dentry); 2603 spin_unlock(&dentry->d_lock); 2604 2605 dout("lease_release inode %p dentry %p mask %d to mds%d\n", 2606 inode, dentry, mask, session->s_mds); 2607 ceph_mdsc_lease_send_msg(session, inode, dentry, 2608 CEPH_MDS_LEASE_RELEASE, seq); 2609 ceph_put_mds_session(session); 2610 } 2611 2612 /* 2613 * drop all leases (and dentry refs) in preparation for umount 2614 */ 2615 static void drop_leases(struct ceph_mds_client *mdsc) 2616 { 2617 int i; 2618 2619 dout("drop_leases\n"); 2620 mutex_lock(&mdsc->mutex); 2621 for (i = 0; i < mdsc->max_sessions; i++) { 2622 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 2623 if (!s) 2624 continue; 2625 mutex_unlock(&mdsc->mutex); 2626 mutex_lock(&s->s_mutex); 2627 mutex_unlock(&s->s_mutex); 2628 ceph_put_mds_session(s); 2629 mutex_lock(&mdsc->mutex); 2630 } 2631 mutex_unlock(&mdsc->mutex); 2632 } 2633 2634 2635 2636 /* 2637 * delayed work -- periodically trim expired leases, renew caps with mds 2638 */ 2639 static void schedule_delayed(struct ceph_mds_client *mdsc) 2640 { 2641 int delay = 5; 2642 unsigned hz = round_jiffies_relative(HZ * delay); 2643 schedule_delayed_work(&mdsc->delayed_work, hz); 2644 } 2645 2646 static void delayed_work(struct work_struct *work) 2647 { 2648 int i; 2649 struct ceph_mds_client *mdsc = 2650 container_of(work, struct ceph_mds_client, delayed_work.work); 2651 int renew_interval; 2652 int renew_caps; 2653 2654 dout("mdsc delayed_work\n"); 2655 ceph_check_delayed_caps(mdsc); 2656 2657 mutex_lock(&mdsc->mutex); 2658 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 2659 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 2660 mdsc->last_renew_caps); 2661 if (renew_caps) 2662 mdsc->last_renew_caps = jiffies; 2663 2664 for (i = 0; i < mdsc->max_sessions; i++) { 2665 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 2666 if (s == NULL) 2667 continue; 2668 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 2669 dout("resending session close request for mds%d\n", 2670 s->s_mds); 2671 request_close_session(mdsc, s); 2672 ceph_put_mds_session(s); 2673 continue; 2674 } 2675 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 2676 if (s->s_state == CEPH_MDS_SESSION_OPEN) { 2677 s->s_state = CEPH_MDS_SESSION_HUNG; 2678 pr_info("mds%d hung\n", s->s_mds); 2679 } 2680 } 2681 if (s->s_state < CEPH_MDS_SESSION_OPEN) { 2682 /* this mds is failed or recovering, just wait */ 2683 ceph_put_mds_session(s); 2684 continue; 2685 } 2686 mutex_unlock(&mdsc->mutex); 2687 2688 mutex_lock(&s->s_mutex); 2689 if (renew_caps) 2690 send_renew_caps(mdsc, s); 2691 else 2692 ceph_con_keepalive(&s->s_con); 2693 ceph_add_cap_releases(mdsc, s, -1); 2694 if (s->s_state == CEPH_MDS_SESSION_OPEN || 2695 s->s_state == CEPH_MDS_SESSION_HUNG) 2696 ceph_send_cap_releases(mdsc, s); 2697 mutex_unlock(&s->s_mutex); 2698 ceph_put_mds_session(s); 2699 2700 mutex_lock(&mdsc->mutex); 2701 } 2702 mutex_unlock(&mdsc->mutex); 2703 2704 schedule_delayed(mdsc); 2705 } 2706 2707 2708 int ceph_mdsc_init(struct ceph_mds_client *mdsc, struct ceph_client *client) 2709 { 2710 mdsc->client = client; 2711 mutex_init(&mdsc->mutex); 2712 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 2713 if (mdsc->mdsmap == NULL) 2714 return -ENOMEM; 2715 2716 init_completion(&mdsc->safe_umount_waiters); 2717 init_completion(&mdsc->session_close_waiters); 2718 INIT_LIST_HEAD(&mdsc->waiting_for_map); 2719 mdsc->sessions = NULL; 2720 mdsc->max_sessions = 0; 2721 mdsc->stopping = 0; 2722 init_rwsem(&mdsc->snap_rwsem); 2723 mdsc->snap_realms = RB_ROOT; 2724 INIT_LIST_HEAD(&mdsc->snap_empty); 2725 spin_lock_init(&mdsc->snap_empty_lock); 2726 mdsc->last_tid = 0; 2727 mdsc->request_tree = RB_ROOT; 2728 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 2729 mdsc->last_renew_caps = jiffies; 2730 INIT_LIST_HEAD(&mdsc->cap_delay_list); 2731 spin_lock_init(&mdsc->cap_delay_lock); 2732 INIT_LIST_HEAD(&mdsc->snap_flush_list); 2733 spin_lock_init(&mdsc->snap_flush_lock); 2734 mdsc->cap_flush_seq = 0; 2735 INIT_LIST_HEAD(&mdsc->cap_dirty); 2736 mdsc->num_cap_flushing = 0; 2737 spin_lock_init(&mdsc->cap_dirty_lock); 2738 init_waitqueue_head(&mdsc->cap_flushing_wq); 2739 spin_lock_init(&mdsc->dentry_lru_lock); 2740 INIT_LIST_HEAD(&mdsc->dentry_lru); 2741 2742 return 0; 2743 } 2744 2745 /* 2746 * Wait for safe replies on open mds requests. If we time out, drop 2747 * all requests from the tree to avoid dangling dentry refs. 2748 */ 2749 static void wait_requests(struct ceph_mds_client *mdsc) 2750 { 2751 struct ceph_mds_request *req; 2752 struct ceph_client *client = mdsc->client; 2753 2754 mutex_lock(&mdsc->mutex); 2755 if (__get_oldest_req(mdsc)) { 2756 mutex_unlock(&mdsc->mutex); 2757 2758 dout("wait_requests waiting for requests\n"); 2759 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 2760 client->mount_args->mount_timeout * HZ); 2761 2762 /* tear down remaining requests */ 2763 mutex_lock(&mdsc->mutex); 2764 while ((req = __get_oldest_req(mdsc))) { 2765 dout("wait_requests timed out on tid %llu\n", 2766 req->r_tid); 2767 __unregister_request(mdsc, req); 2768 } 2769 } 2770 mutex_unlock(&mdsc->mutex); 2771 dout("wait_requests done\n"); 2772 } 2773 2774 /* 2775 * called before mount is ro, and before dentries are torn down. 2776 * (hmm, does this still race with new lookups?) 2777 */ 2778 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 2779 { 2780 dout("pre_umount\n"); 2781 mdsc->stopping = 1; 2782 2783 drop_leases(mdsc); 2784 ceph_flush_dirty_caps(mdsc); 2785 wait_requests(mdsc); 2786 } 2787 2788 /* 2789 * wait for all write mds requests to flush. 2790 */ 2791 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) 2792 { 2793 struct ceph_mds_request *req = NULL, *nextreq; 2794 struct rb_node *n; 2795 2796 mutex_lock(&mdsc->mutex); 2797 dout("wait_unsafe_requests want %lld\n", want_tid); 2798 restart: 2799 req = __get_oldest_req(mdsc); 2800 while (req && req->r_tid <= want_tid) { 2801 /* find next request */ 2802 n = rb_next(&req->r_node); 2803 if (n) 2804 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 2805 else 2806 nextreq = NULL; 2807 if ((req->r_op & CEPH_MDS_OP_WRITE)) { 2808 /* write op */ 2809 ceph_mdsc_get_request(req); 2810 if (nextreq) 2811 ceph_mdsc_get_request(nextreq); 2812 mutex_unlock(&mdsc->mutex); 2813 dout("wait_unsafe_requests wait on %llu (want %llu)\n", 2814 req->r_tid, want_tid); 2815 wait_for_completion(&req->r_safe_completion); 2816 mutex_lock(&mdsc->mutex); 2817 ceph_mdsc_put_request(req); 2818 if (!nextreq) 2819 break; /* next dne before, so we're done! */ 2820 if (RB_EMPTY_NODE(&nextreq->r_node)) { 2821 /* next request was removed from tree */ 2822 ceph_mdsc_put_request(nextreq); 2823 goto restart; 2824 } 2825 ceph_mdsc_put_request(nextreq); /* won't go away */ 2826 } 2827 req = nextreq; 2828 } 2829 mutex_unlock(&mdsc->mutex); 2830 dout("wait_unsafe_requests done\n"); 2831 } 2832 2833 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 2834 { 2835 u64 want_tid, want_flush; 2836 2837 if (mdsc->client->mount_state == CEPH_MOUNT_SHUTDOWN) 2838 return; 2839 2840 dout("sync\n"); 2841 mutex_lock(&mdsc->mutex); 2842 want_tid = mdsc->last_tid; 2843 want_flush = mdsc->cap_flush_seq; 2844 mutex_unlock(&mdsc->mutex); 2845 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush); 2846 2847 ceph_flush_dirty_caps(mdsc); 2848 2849 wait_unsafe_requests(mdsc, want_tid); 2850 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush)); 2851 } 2852 2853 2854 /* 2855 * called after sb is ro. 2856 */ 2857 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 2858 { 2859 struct ceph_mds_session *session; 2860 int i; 2861 int n; 2862 struct ceph_client *client = mdsc->client; 2863 unsigned long started, timeout = client->mount_args->mount_timeout * HZ; 2864 2865 dout("close_sessions\n"); 2866 2867 mutex_lock(&mdsc->mutex); 2868 2869 /* close sessions */ 2870 started = jiffies; 2871 while (time_before(jiffies, started + timeout)) { 2872 dout("closing sessions\n"); 2873 n = 0; 2874 for (i = 0; i < mdsc->max_sessions; i++) { 2875 session = __ceph_lookup_mds_session(mdsc, i); 2876 if (!session) 2877 continue; 2878 mutex_unlock(&mdsc->mutex); 2879 mutex_lock(&session->s_mutex); 2880 __close_session(mdsc, session); 2881 mutex_unlock(&session->s_mutex); 2882 ceph_put_mds_session(session); 2883 mutex_lock(&mdsc->mutex); 2884 n++; 2885 } 2886 if (n == 0) 2887 break; 2888 2889 if (client->mount_state == CEPH_MOUNT_SHUTDOWN) 2890 break; 2891 2892 dout("waiting for sessions to close\n"); 2893 mutex_unlock(&mdsc->mutex); 2894 wait_for_completion_timeout(&mdsc->session_close_waiters, 2895 timeout); 2896 mutex_lock(&mdsc->mutex); 2897 } 2898 2899 /* tear down remaining sessions */ 2900 for (i = 0; i < mdsc->max_sessions; i++) { 2901 if (mdsc->sessions[i]) { 2902 session = get_session(mdsc->sessions[i]); 2903 __unregister_session(mdsc, session); 2904 mutex_unlock(&mdsc->mutex); 2905 mutex_lock(&session->s_mutex); 2906 remove_session_caps(session); 2907 mutex_unlock(&session->s_mutex); 2908 ceph_put_mds_session(session); 2909 mutex_lock(&mdsc->mutex); 2910 } 2911 } 2912 2913 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 2914 2915 mutex_unlock(&mdsc->mutex); 2916 2917 ceph_cleanup_empty_realms(mdsc); 2918 2919 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 2920 2921 dout("stopped\n"); 2922 } 2923 2924 void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 2925 { 2926 dout("stop\n"); 2927 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 2928 if (mdsc->mdsmap) 2929 ceph_mdsmap_destroy(mdsc->mdsmap); 2930 kfree(mdsc->sessions); 2931 } 2932 2933 2934 /* 2935 * handle mds map update. 2936 */ 2937 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 2938 { 2939 u32 epoch; 2940 u32 maplen; 2941 void *p = msg->front.iov_base; 2942 void *end = p + msg->front.iov_len; 2943 struct ceph_mdsmap *newmap, *oldmap; 2944 struct ceph_fsid fsid; 2945 int err = -EINVAL; 2946 2947 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 2948 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 2949 if (ceph_check_fsid(mdsc->client, &fsid) < 0) 2950 return; 2951 epoch = ceph_decode_32(&p); 2952 maplen = ceph_decode_32(&p); 2953 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 2954 2955 /* do we need it? */ 2956 ceph_monc_got_mdsmap(&mdsc->client->monc, epoch); 2957 mutex_lock(&mdsc->mutex); 2958 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 2959 dout("handle_map epoch %u <= our %u\n", 2960 epoch, mdsc->mdsmap->m_epoch); 2961 mutex_unlock(&mdsc->mutex); 2962 return; 2963 } 2964 2965 newmap = ceph_mdsmap_decode(&p, end); 2966 if (IS_ERR(newmap)) { 2967 err = PTR_ERR(newmap); 2968 goto bad_unlock; 2969 } 2970 2971 /* swap into place */ 2972 if (mdsc->mdsmap) { 2973 oldmap = mdsc->mdsmap; 2974 mdsc->mdsmap = newmap; 2975 check_new_map(mdsc, newmap, oldmap); 2976 ceph_mdsmap_destroy(oldmap); 2977 } else { 2978 mdsc->mdsmap = newmap; /* first mds map */ 2979 } 2980 mdsc->client->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size; 2981 2982 __wake_requests(mdsc, &mdsc->waiting_for_map); 2983 2984 mutex_unlock(&mdsc->mutex); 2985 schedule_delayed(mdsc); 2986 return; 2987 2988 bad_unlock: 2989 mutex_unlock(&mdsc->mutex); 2990 bad: 2991 pr_err("error decoding mdsmap %d\n", err); 2992 return; 2993 } 2994 2995 static struct ceph_connection *con_get(struct ceph_connection *con) 2996 { 2997 struct ceph_mds_session *s = con->private; 2998 2999 if (get_session(s)) { 3000 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref)); 3001 return con; 3002 } 3003 dout("mdsc con_get %p FAIL\n", s); 3004 return NULL; 3005 } 3006 3007 static void con_put(struct ceph_connection *con) 3008 { 3009 struct ceph_mds_session *s = con->private; 3010 3011 ceph_put_mds_session(s); 3012 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref)); 3013 } 3014 3015 /* 3016 * if the client is unresponsive for long enough, the mds will kill 3017 * the session entirely. 3018 */ 3019 static void peer_reset(struct ceph_connection *con) 3020 { 3021 struct ceph_mds_session *s = con->private; 3022 struct ceph_mds_client *mdsc = s->s_mdsc; 3023 3024 pr_warning("mds%d closed our session\n", s->s_mds); 3025 send_mds_reconnect(mdsc, s); 3026 } 3027 3028 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg) 3029 { 3030 struct ceph_mds_session *s = con->private; 3031 struct ceph_mds_client *mdsc = s->s_mdsc; 3032 int type = le16_to_cpu(msg->hdr.type); 3033 3034 mutex_lock(&mdsc->mutex); 3035 if (__verify_registered_session(mdsc, s) < 0) { 3036 mutex_unlock(&mdsc->mutex); 3037 goto out; 3038 } 3039 mutex_unlock(&mdsc->mutex); 3040 3041 switch (type) { 3042 case CEPH_MSG_MDS_MAP: 3043 ceph_mdsc_handle_map(mdsc, msg); 3044 break; 3045 case CEPH_MSG_CLIENT_SESSION: 3046 handle_session(s, msg); 3047 break; 3048 case CEPH_MSG_CLIENT_REPLY: 3049 handle_reply(s, msg); 3050 break; 3051 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 3052 handle_forward(mdsc, s, msg); 3053 break; 3054 case CEPH_MSG_CLIENT_CAPS: 3055 ceph_handle_caps(s, msg); 3056 break; 3057 case CEPH_MSG_CLIENT_SNAP: 3058 ceph_handle_snap(mdsc, s, msg); 3059 break; 3060 case CEPH_MSG_CLIENT_LEASE: 3061 handle_lease(mdsc, s, msg); 3062 break; 3063 3064 default: 3065 pr_err("received unknown message type %d %s\n", type, 3066 ceph_msg_type_name(type)); 3067 } 3068 out: 3069 ceph_msg_put(msg); 3070 } 3071 3072 /* 3073 * authentication 3074 */ 3075 static int get_authorizer(struct ceph_connection *con, 3076 void **buf, int *len, int *proto, 3077 void **reply_buf, int *reply_len, int force_new) 3078 { 3079 struct ceph_mds_session *s = con->private; 3080 struct ceph_mds_client *mdsc = s->s_mdsc; 3081 struct ceph_auth_client *ac = mdsc->client->monc.auth; 3082 int ret = 0; 3083 3084 if (force_new && s->s_authorizer) { 3085 ac->ops->destroy_authorizer(ac, s->s_authorizer); 3086 s->s_authorizer = NULL; 3087 } 3088 if (s->s_authorizer == NULL) { 3089 if (ac->ops->create_authorizer) { 3090 ret = ac->ops->create_authorizer( 3091 ac, CEPH_ENTITY_TYPE_MDS, 3092 &s->s_authorizer, 3093 &s->s_authorizer_buf, 3094 &s->s_authorizer_buf_len, 3095 &s->s_authorizer_reply_buf, 3096 &s->s_authorizer_reply_buf_len); 3097 if (ret) 3098 return ret; 3099 } 3100 } 3101 3102 *proto = ac->protocol; 3103 *buf = s->s_authorizer_buf; 3104 *len = s->s_authorizer_buf_len; 3105 *reply_buf = s->s_authorizer_reply_buf; 3106 *reply_len = s->s_authorizer_reply_buf_len; 3107 return 0; 3108 } 3109 3110 3111 static int verify_authorizer_reply(struct ceph_connection *con, int len) 3112 { 3113 struct ceph_mds_session *s = con->private; 3114 struct ceph_mds_client *mdsc = s->s_mdsc; 3115 struct ceph_auth_client *ac = mdsc->client->monc.auth; 3116 3117 return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len); 3118 } 3119 3120 static int invalidate_authorizer(struct ceph_connection *con) 3121 { 3122 struct ceph_mds_session *s = con->private; 3123 struct ceph_mds_client *mdsc = s->s_mdsc; 3124 struct ceph_auth_client *ac = mdsc->client->monc.auth; 3125 3126 if (ac->ops->invalidate_authorizer) 3127 ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 3128 3129 return ceph_monc_validate_auth(&mdsc->client->monc); 3130 } 3131 3132 static const struct ceph_connection_operations mds_con_ops = { 3133 .get = con_get, 3134 .put = con_put, 3135 .dispatch = dispatch, 3136 .get_authorizer = get_authorizer, 3137 .verify_authorizer_reply = verify_authorizer_reply, 3138 .invalidate_authorizer = invalidate_authorizer, 3139 .peer_reset = peer_reset, 3140 }; 3141 3142 3143 3144 3145 /* eof */ 3146