xref: /linux/fs/ceph/mds_client.c (revision f8324e20f8289dffc646d64366332e05eaacab25)
1 #include "ceph_debug.h"
2 
3 #include <linux/wait.h>
4 #include <linux/slab.h>
5 #include <linux/sched.h>
6 
7 #include "mds_client.h"
8 #include "mon_client.h"
9 #include "super.h"
10 #include "messenger.h"
11 #include "decode.h"
12 #include "auth.h"
13 #include "pagelist.h"
14 
15 /*
16  * A cluster of MDS (metadata server) daemons is responsible for
17  * managing the file system namespace (the directory hierarchy and
18  * inodes) and for coordinating shared access to storage.  Metadata is
19  * partitioning hierarchically across a number of servers, and that
20  * partition varies over time as the cluster adjusts the distribution
21  * in order to balance load.
22  *
23  * The MDS client is primarily responsible to managing synchronous
24  * metadata requests for operations like open, unlink, and so forth.
25  * If there is a MDS failure, we find out about it when we (possibly
26  * request and) receive a new MDS map, and can resubmit affected
27  * requests.
28  *
29  * For the most part, though, we take advantage of a lossless
30  * communications channel to the MDS, and do not need to worry about
31  * timing out or resubmitting requests.
32  *
33  * We maintain a stateful "session" with each MDS we interact with.
34  * Within each session, we sent periodic heartbeat messages to ensure
35  * any capabilities or leases we have been issues remain valid.  If
36  * the session times out and goes stale, our leases and capabilities
37  * are no longer valid.
38  */
39 
40 static void __wake_requests(struct ceph_mds_client *mdsc,
41 			    struct list_head *head);
42 
43 static const struct ceph_connection_operations mds_con_ops;
44 
45 
46 /*
47  * mds reply parsing
48  */
49 
50 /*
51  * parse individual inode info
52  */
53 static int parse_reply_info_in(void **p, void *end,
54 			       struct ceph_mds_reply_info_in *info)
55 {
56 	int err = -EIO;
57 
58 	info->in = *p;
59 	*p += sizeof(struct ceph_mds_reply_inode) +
60 		sizeof(*info->in->fragtree.splits) *
61 		le32_to_cpu(info->in->fragtree.nsplits);
62 
63 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
64 	ceph_decode_need(p, end, info->symlink_len, bad);
65 	info->symlink = *p;
66 	*p += info->symlink_len;
67 
68 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
69 	ceph_decode_need(p, end, info->xattr_len, bad);
70 	info->xattr_data = *p;
71 	*p += info->xattr_len;
72 	return 0;
73 bad:
74 	return err;
75 }
76 
77 /*
78  * parse a normal reply, which may contain a (dir+)dentry and/or a
79  * target inode.
80  */
81 static int parse_reply_info_trace(void **p, void *end,
82 				  struct ceph_mds_reply_info_parsed *info)
83 {
84 	int err;
85 
86 	if (info->head->is_dentry) {
87 		err = parse_reply_info_in(p, end, &info->diri);
88 		if (err < 0)
89 			goto out_bad;
90 
91 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
92 			goto bad;
93 		info->dirfrag = *p;
94 		*p += sizeof(*info->dirfrag) +
95 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
96 		if (unlikely(*p > end))
97 			goto bad;
98 
99 		ceph_decode_32_safe(p, end, info->dname_len, bad);
100 		ceph_decode_need(p, end, info->dname_len, bad);
101 		info->dname = *p;
102 		*p += info->dname_len;
103 		info->dlease = *p;
104 		*p += sizeof(*info->dlease);
105 	}
106 
107 	if (info->head->is_target) {
108 		err = parse_reply_info_in(p, end, &info->targeti);
109 		if (err < 0)
110 			goto out_bad;
111 	}
112 
113 	if (unlikely(*p != end))
114 		goto bad;
115 	return 0;
116 
117 bad:
118 	err = -EIO;
119 out_bad:
120 	pr_err("problem parsing mds trace %d\n", err);
121 	return err;
122 }
123 
124 /*
125  * parse readdir results
126  */
127 static int parse_reply_info_dir(void **p, void *end,
128 				struct ceph_mds_reply_info_parsed *info)
129 {
130 	u32 num, i = 0;
131 	int err;
132 
133 	info->dir_dir = *p;
134 	if (*p + sizeof(*info->dir_dir) > end)
135 		goto bad;
136 	*p += sizeof(*info->dir_dir) +
137 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
138 	if (*p > end)
139 		goto bad;
140 
141 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
142 	num = ceph_decode_32(p);
143 	info->dir_end = ceph_decode_8(p);
144 	info->dir_complete = ceph_decode_8(p);
145 	if (num == 0)
146 		goto done;
147 
148 	/* alloc large array */
149 	info->dir_nr = num;
150 	info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
151 			       sizeof(*info->dir_dname) +
152 			       sizeof(*info->dir_dname_len) +
153 			       sizeof(*info->dir_dlease),
154 			       GFP_NOFS);
155 	if (info->dir_in == NULL) {
156 		err = -ENOMEM;
157 		goto out_bad;
158 	}
159 	info->dir_dname = (void *)(info->dir_in + num);
160 	info->dir_dname_len = (void *)(info->dir_dname + num);
161 	info->dir_dlease = (void *)(info->dir_dname_len + num);
162 
163 	while (num) {
164 		/* dentry */
165 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
166 		info->dir_dname_len[i] = ceph_decode_32(p);
167 		ceph_decode_need(p, end, info->dir_dname_len[i], bad);
168 		info->dir_dname[i] = *p;
169 		*p += info->dir_dname_len[i];
170 		dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
171 		     info->dir_dname[i]);
172 		info->dir_dlease[i] = *p;
173 		*p += sizeof(struct ceph_mds_reply_lease);
174 
175 		/* inode */
176 		err = parse_reply_info_in(p, end, &info->dir_in[i]);
177 		if (err < 0)
178 			goto out_bad;
179 		i++;
180 		num--;
181 	}
182 
183 done:
184 	if (*p != end)
185 		goto bad;
186 	return 0;
187 
188 bad:
189 	err = -EIO;
190 out_bad:
191 	pr_err("problem parsing dir contents %d\n", err);
192 	return err;
193 }
194 
195 /*
196  * parse entire mds reply
197  */
198 static int parse_reply_info(struct ceph_msg *msg,
199 			    struct ceph_mds_reply_info_parsed *info)
200 {
201 	void *p, *end;
202 	u32 len;
203 	int err;
204 
205 	info->head = msg->front.iov_base;
206 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
207 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
208 
209 	/* trace */
210 	ceph_decode_32_safe(&p, end, len, bad);
211 	if (len > 0) {
212 		err = parse_reply_info_trace(&p, p+len, info);
213 		if (err < 0)
214 			goto out_bad;
215 	}
216 
217 	/* dir content */
218 	ceph_decode_32_safe(&p, end, len, bad);
219 	if (len > 0) {
220 		err = parse_reply_info_dir(&p, p+len, info);
221 		if (err < 0)
222 			goto out_bad;
223 	}
224 
225 	/* snap blob */
226 	ceph_decode_32_safe(&p, end, len, bad);
227 	info->snapblob_len = len;
228 	info->snapblob = p;
229 	p += len;
230 
231 	if (p != end)
232 		goto bad;
233 	return 0;
234 
235 bad:
236 	err = -EIO;
237 out_bad:
238 	pr_err("mds parse_reply err %d\n", err);
239 	return err;
240 }
241 
242 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
243 {
244 	kfree(info->dir_in);
245 }
246 
247 
248 /*
249  * sessions
250  */
251 static const char *session_state_name(int s)
252 {
253 	switch (s) {
254 	case CEPH_MDS_SESSION_NEW: return "new";
255 	case CEPH_MDS_SESSION_OPENING: return "opening";
256 	case CEPH_MDS_SESSION_OPEN: return "open";
257 	case CEPH_MDS_SESSION_HUNG: return "hung";
258 	case CEPH_MDS_SESSION_CLOSING: return "closing";
259 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
260 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
261 	default: return "???";
262 	}
263 }
264 
265 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
266 {
267 	if (atomic_inc_not_zero(&s->s_ref)) {
268 		dout("mdsc get_session %p %d -> %d\n", s,
269 		     atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
270 		return s;
271 	} else {
272 		dout("mdsc get_session %p 0 -- FAIL", s);
273 		return NULL;
274 	}
275 }
276 
277 void ceph_put_mds_session(struct ceph_mds_session *s)
278 {
279 	dout("mdsc put_session %p %d -> %d\n", s,
280 	     atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
281 	if (atomic_dec_and_test(&s->s_ref)) {
282 		if (s->s_authorizer)
283 			s->s_mdsc->client->monc.auth->ops->destroy_authorizer(
284 				s->s_mdsc->client->monc.auth, s->s_authorizer);
285 		kfree(s);
286 	}
287 }
288 
289 /*
290  * called under mdsc->mutex
291  */
292 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
293 						   int mds)
294 {
295 	struct ceph_mds_session *session;
296 
297 	if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
298 		return NULL;
299 	session = mdsc->sessions[mds];
300 	dout("lookup_mds_session %p %d\n", session,
301 	     atomic_read(&session->s_ref));
302 	get_session(session);
303 	return session;
304 }
305 
306 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
307 {
308 	if (mds >= mdsc->max_sessions)
309 		return false;
310 	return mdsc->sessions[mds];
311 }
312 
313 static int __verify_registered_session(struct ceph_mds_client *mdsc,
314 				       struct ceph_mds_session *s)
315 {
316 	if (s->s_mds >= mdsc->max_sessions ||
317 	    mdsc->sessions[s->s_mds] != s)
318 		return -ENOENT;
319 	return 0;
320 }
321 
322 /*
323  * create+register a new session for given mds.
324  * called under mdsc->mutex.
325  */
326 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
327 						 int mds)
328 {
329 	struct ceph_mds_session *s;
330 
331 	s = kzalloc(sizeof(*s), GFP_NOFS);
332 	if (!s)
333 		return ERR_PTR(-ENOMEM);
334 	s->s_mdsc = mdsc;
335 	s->s_mds = mds;
336 	s->s_state = CEPH_MDS_SESSION_NEW;
337 	s->s_ttl = 0;
338 	s->s_seq = 0;
339 	mutex_init(&s->s_mutex);
340 
341 	ceph_con_init(mdsc->client->msgr, &s->s_con);
342 	s->s_con.private = s;
343 	s->s_con.ops = &mds_con_ops;
344 	s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS;
345 	s->s_con.peer_name.num = cpu_to_le64(mds);
346 
347 	spin_lock_init(&s->s_cap_lock);
348 	s->s_cap_gen = 0;
349 	s->s_cap_ttl = 0;
350 	s->s_renew_requested = 0;
351 	s->s_renew_seq = 0;
352 	INIT_LIST_HEAD(&s->s_caps);
353 	s->s_nr_caps = 0;
354 	s->s_trim_caps = 0;
355 	atomic_set(&s->s_ref, 1);
356 	INIT_LIST_HEAD(&s->s_waiting);
357 	INIT_LIST_HEAD(&s->s_unsafe);
358 	s->s_num_cap_releases = 0;
359 	s->s_cap_iterator = NULL;
360 	INIT_LIST_HEAD(&s->s_cap_releases);
361 	INIT_LIST_HEAD(&s->s_cap_releases_done);
362 	INIT_LIST_HEAD(&s->s_cap_flushing);
363 	INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
364 
365 	dout("register_session mds%d\n", mds);
366 	if (mds >= mdsc->max_sessions) {
367 		int newmax = 1 << get_count_order(mds+1);
368 		struct ceph_mds_session **sa;
369 
370 		dout("register_session realloc to %d\n", newmax);
371 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
372 		if (sa == NULL)
373 			goto fail_realloc;
374 		if (mdsc->sessions) {
375 			memcpy(sa, mdsc->sessions,
376 			       mdsc->max_sessions * sizeof(void *));
377 			kfree(mdsc->sessions);
378 		}
379 		mdsc->sessions = sa;
380 		mdsc->max_sessions = newmax;
381 	}
382 	mdsc->sessions[mds] = s;
383 	atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
384 
385 	ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
386 
387 	return s;
388 
389 fail_realloc:
390 	kfree(s);
391 	return ERR_PTR(-ENOMEM);
392 }
393 
394 /*
395  * called under mdsc->mutex
396  */
397 static void __unregister_session(struct ceph_mds_client *mdsc,
398 			       struct ceph_mds_session *s)
399 {
400 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
401 	BUG_ON(mdsc->sessions[s->s_mds] != s);
402 	mdsc->sessions[s->s_mds] = NULL;
403 	ceph_con_close(&s->s_con);
404 	ceph_put_mds_session(s);
405 }
406 
407 /*
408  * drop session refs in request.
409  *
410  * should be last request ref, or hold mdsc->mutex
411  */
412 static void put_request_session(struct ceph_mds_request *req)
413 {
414 	if (req->r_session) {
415 		ceph_put_mds_session(req->r_session);
416 		req->r_session = NULL;
417 	}
418 }
419 
420 void ceph_mdsc_release_request(struct kref *kref)
421 {
422 	struct ceph_mds_request *req = container_of(kref,
423 						    struct ceph_mds_request,
424 						    r_kref);
425 	if (req->r_request)
426 		ceph_msg_put(req->r_request);
427 	if (req->r_reply) {
428 		ceph_msg_put(req->r_reply);
429 		destroy_reply_info(&req->r_reply_info);
430 	}
431 	if (req->r_inode) {
432 		ceph_put_cap_refs(ceph_inode(req->r_inode),
433 				  CEPH_CAP_PIN);
434 		iput(req->r_inode);
435 	}
436 	if (req->r_locked_dir)
437 		ceph_put_cap_refs(ceph_inode(req->r_locked_dir),
438 				  CEPH_CAP_PIN);
439 	if (req->r_target_inode)
440 		iput(req->r_target_inode);
441 	if (req->r_dentry)
442 		dput(req->r_dentry);
443 	if (req->r_old_dentry) {
444 		ceph_put_cap_refs(
445 			ceph_inode(req->r_old_dentry->d_parent->d_inode),
446 			CEPH_CAP_PIN);
447 		dput(req->r_old_dentry);
448 	}
449 	kfree(req->r_path1);
450 	kfree(req->r_path2);
451 	put_request_session(req);
452 	ceph_unreserve_caps(&req->r_caps_reservation);
453 	kfree(req);
454 }
455 
456 /*
457  * lookup session, bump ref if found.
458  *
459  * called under mdsc->mutex.
460  */
461 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
462 					     u64 tid)
463 {
464 	struct ceph_mds_request *req;
465 	struct rb_node *n = mdsc->request_tree.rb_node;
466 
467 	while (n) {
468 		req = rb_entry(n, struct ceph_mds_request, r_node);
469 		if (tid < req->r_tid)
470 			n = n->rb_left;
471 		else if (tid > req->r_tid)
472 			n = n->rb_right;
473 		else {
474 			ceph_mdsc_get_request(req);
475 			return req;
476 		}
477 	}
478 	return NULL;
479 }
480 
481 static void __insert_request(struct ceph_mds_client *mdsc,
482 			     struct ceph_mds_request *new)
483 {
484 	struct rb_node **p = &mdsc->request_tree.rb_node;
485 	struct rb_node *parent = NULL;
486 	struct ceph_mds_request *req = NULL;
487 
488 	while (*p) {
489 		parent = *p;
490 		req = rb_entry(parent, struct ceph_mds_request, r_node);
491 		if (new->r_tid < req->r_tid)
492 			p = &(*p)->rb_left;
493 		else if (new->r_tid > req->r_tid)
494 			p = &(*p)->rb_right;
495 		else
496 			BUG();
497 	}
498 
499 	rb_link_node(&new->r_node, parent, p);
500 	rb_insert_color(&new->r_node, &mdsc->request_tree);
501 }
502 
503 /*
504  * Register an in-flight request, and assign a tid.  Link to directory
505  * are modifying (if any).
506  *
507  * Called under mdsc->mutex.
508  */
509 static void __register_request(struct ceph_mds_client *mdsc,
510 			       struct ceph_mds_request *req,
511 			       struct inode *dir)
512 {
513 	req->r_tid = ++mdsc->last_tid;
514 	if (req->r_num_caps)
515 		ceph_reserve_caps(&req->r_caps_reservation, req->r_num_caps);
516 	dout("__register_request %p tid %lld\n", req, req->r_tid);
517 	ceph_mdsc_get_request(req);
518 	__insert_request(mdsc, req);
519 
520 	if (dir) {
521 		struct ceph_inode_info *ci = ceph_inode(dir);
522 
523 		spin_lock(&ci->i_unsafe_lock);
524 		req->r_unsafe_dir = dir;
525 		list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
526 		spin_unlock(&ci->i_unsafe_lock);
527 	}
528 }
529 
530 static void __unregister_request(struct ceph_mds_client *mdsc,
531 				 struct ceph_mds_request *req)
532 {
533 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
534 	rb_erase(&req->r_node, &mdsc->request_tree);
535 	RB_CLEAR_NODE(&req->r_node);
536 
537 	if (req->r_unsafe_dir) {
538 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
539 
540 		spin_lock(&ci->i_unsafe_lock);
541 		list_del_init(&req->r_unsafe_dir_item);
542 		spin_unlock(&ci->i_unsafe_lock);
543 	}
544 
545 	ceph_mdsc_put_request(req);
546 }
547 
548 /*
549  * Choose mds to send request to next.  If there is a hint set in the
550  * request (e.g., due to a prior forward hint from the mds), use that.
551  * Otherwise, consult frag tree and/or caps to identify the
552  * appropriate mds.  If all else fails, choose randomly.
553  *
554  * Called under mdsc->mutex.
555  */
556 static int __choose_mds(struct ceph_mds_client *mdsc,
557 			struct ceph_mds_request *req)
558 {
559 	struct inode *inode;
560 	struct ceph_inode_info *ci;
561 	struct ceph_cap *cap;
562 	int mode = req->r_direct_mode;
563 	int mds = -1;
564 	u32 hash = req->r_direct_hash;
565 	bool is_hash = req->r_direct_is_hash;
566 
567 	/*
568 	 * is there a specific mds we should try?  ignore hint if we have
569 	 * no session and the mds is not up (active or recovering).
570 	 */
571 	if (req->r_resend_mds >= 0 &&
572 	    (__have_session(mdsc, req->r_resend_mds) ||
573 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
574 		dout("choose_mds using resend_mds mds%d\n",
575 		     req->r_resend_mds);
576 		return req->r_resend_mds;
577 	}
578 
579 	if (mode == USE_RANDOM_MDS)
580 		goto random;
581 
582 	inode = NULL;
583 	if (req->r_inode) {
584 		inode = req->r_inode;
585 	} else if (req->r_dentry) {
586 		if (req->r_dentry->d_inode) {
587 			inode = req->r_dentry->d_inode;
588 		} else {
589 			inode = req->r_dentry->d_parent->d_inode;
590 			hash = req->r_dentry->d_name.hash;
591 			is_hash = true;
592 		}
593 	}
594 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
595 	     (int)hash, mode);
596 	if (!inode)
597 		goto random;
598 	ci = ceph_inode(inode);
599 
600 	if (is_hash && S_ISDIR(inode->i_mode)) {
601 		struct ceph_inode_frag frag;
602 		int found;
603 
604 		ceph_choose_frag(ci, hash, &frag, &found);
605 		if (found) {
606 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
607 				u8 r;
608 
609 				/* choose a random replica */
610 				get_random_bytes(&r, 1);
611 				r %= frag.ndist;
612 				mds = frag.dist[r];
613 				dout("choose_mds %p %llx.%llx "
614 				     "frag %u mds%d (%d/%d)\n",
615 				     inode, ceph_vinop(inode),
616 				     frag.frag, frag.mds,
617 				     (int)r, frag.ndist);
618 				return mds;
619 			}
620 
621 			/* since this file/dir wasn't known to be
622 			 * replicated, then we want to look for the
623 			 * authoritative mds. */
624 			mode = USE_AUTH_MDS;
625 			if (frag.mds >= 0) {
626 				/* choose auth mds */
627 				mds = frag.mds;
628 				dout("choose_mds %p %llx.%llx "
629 				     "frag %u mds%d (auth)\n",
630 				     inode, ceph_vinop(inode), frag.frag, mds);
631 				return mds;
632 			}
633 		}
634 	}
635 
636 	spin_lock(&inode->i_lock);
637 	cap = NULL;
638 	if (mode == USE_AUTH_MDS)
639 		cap = ci->i_auth_cap;
640 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
641 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
642 	if (!cap) {
643 		spin_unlock(&inode->i_lock);
644 		goto random;
645 	}
646 	mds = cap->session->s_mds;
647 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
648 	     inode, ceph_vinop(inode), mds,
649 	     cap == ci->i_auth_cap ? "auth " : "", cap);
650 	spin_unlock(&inode->i_lock);
651 	return mds;
652 
653 random:
654 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
655 	dout("choose_mds chose random mds%d\n", mds);
656 	return mds;
657 }
658 
659 
660 /*
661  * session messages
662  */
663 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
664 {
665 	struct ceph_msg *msg;
666 	struct ceph_mds_session_head *h;
667 
668 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS);
669 	if (!msg) {
670 		pr_err("create_session_msg ENOMEM creating msg\n");
671 		return NULL;
672 	}
673 	h = msg->front.iov_base;
674 	h->op = cpu_to_le32(op);
675 	h->seq = cpu_to_le64(seq);
676 	return msg;
677 }
678 
679 /*
680  * send session open request.
681  *
682  * called under mdsc->mutex
683  */
684 static int __open_session(struct ceph_mds_client *mdsc,
685 			  struct ceph_mds_session *session)
686 {
687 	struct ceph_msg *msg;
688 	int mstate;
689 	int mds = session->s_mds;
690 
691 	/* wait for mds to go active? */
692 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
693 	dout("open_session to mds%d (%s)\n", mds,
694 	     ceph_mds_state_name(mstate));
695 	session->s_state = CEPH_MDS_SESSION_OPENING;
696 	session->s_renew_requested = jiffies;
697 
698 	/* send connect message */
699 	msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
700 	if (!msg)
701 		return -ENOMEM;
702 	ceph_con_send(&session->s_con, msg);
703 	return 0;
704 }
705 
706 /*
707  * session caps
708  */
709 
710 /*
711  * Free preallocated cap messages assigned to this session
712  */
713 static void cleanup_cap_releases(struct ceph_mds_session *session)
714 {
715 	struct ceph_msg *msg;
716 
717 	spin_lock(&session->s_cap_lock);
718 	while (!list_empty(&session->s_cap_releases)) {
719 		msg = list_first_entry(&session->s_cap_releases,
720 				       struct ceph_msg, list_head);
721 		list_del_init(&msg->list_head);
722 		ceph_msg_put(msg);
723 	}
724 	while (!list_empty(&session->s_cap_releases_done)) {
725 		msg = list_first_entry(&session->s_cap_releases_done,
726 				       struct ceph_msg, list_head);
727 		list_del_init(&msg->list_head);
728 		ceph_msg_put(msg);
729 	}
730 	spin_unlock(&session->s_cap_lock);
731 }
732 
733 /*
734  * Helper to safely iterate over all caps associated with a session, with
735  * special care taken to handle a racing __ceph_remove_cap().
736  *
737  * Caller must hold session s_mutex.
738  */
739 static int iterate_session_caps(struct ceph_mds_session *session,
740 				 int (*cb)(struct inode *, struct ceph_cap *,
741 					    void *), void *arg)
742 {
743 	struct list_head *p;
744 	struct ceph_cap *cap;
745 	struct inode *inode, *last_inode = NULL;
746 	struct ceph_cap *old_cap = NULL;
747 	int ret;
748 
749 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
750 	spin_lock(&session->s_cap_lock);
751 	p = session->s_caps.next;
752 	while (p != &session->s_caps) {
753 		cap = list_entry(p, struct ceph_cap, session_caps);
754 		inode = igrab(&cap->ci->vfs_inode);
755 		if (!inode) {
756 			p = p->next;
757 			continue;
758 		}
759 		session->s_cap_iterator = cap;
760 		spin_unlock(&session->s_cap_lock);
761 
762 		if (last_inode) {
763 			iput(last_inode);
764 			last_inode = NULL;
765 		}
766 		if (old_cap) {
767 			ceph_put_cap(old_cap);
768 			old_cap = NULL;
769 		}
770 
771 		ret = cb(inode, cap, arg);
772 		last_inode = inode;
773 
774 		spin_lock(&session->s_cap_lock);
775 		p = p->next;
776 		if (cap->ci == NULL) {
777 			dout("iterate_session_caps  finishing cap %p removal\n",
778 			     cap);
779 			BUG_ON(cap->session != session);
780 			list_del_init(&cap->session_caps);
781 			session->s_nr_caps--;
782 			cap->session = NULL;
783 			old_cap = cap;  /* put_cap it w/o locks held */
784 		}
785 		if (ret < 0)
786 			goto out;
787 	}
788 	ret = 0;
789 out:
790 	session->s_cap_iterator = NULL;
791 	spin_unlock(&session->s_cap_lock);
792 
793 	if (last_inode)
794 		iput(last_inode);
795 	if (old_cap)
796 		ceph_put_cap(old_cap);
797 
798 	return ret;
799 }
800 
801 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
802 				  void *arg)
803 {
804 	struct ceph_inode_info *ci = ceph_inode(inode);
805 	int drop = 0;
806 
807 	dout("removing cap %p, ci is %p, inode is %p\n",
808 	     cap, ci, &ci->vfs_inode);
809 	spin_lock(&inode->i_lock);
810 	__ceph_remove_cap(cap);
811 	if (!__ceph_is_any_real_caps(ci)) {
812 		struct ceph_mds_client *mdsc =
813 			&ceph_sb_to_client(inode->i_sb)->mdsc;
814 
815 		spin_lock(&mdsc->cap_dirty_lock);
816 		if (!list_empty(&ci->i_dirty_item)) {
817 			pr_info(" dropping dirty %s state for %p %lld\n",
818 				ceph_cap_string(ci->i_dirty_caps),
819 				inode, ceph_ino(inode));
820 			ci->i_dirty_caps = 0;
821 			list_del_init(&ci->i_dirty_item);
822 			drop = 1;
823 		}
824 		if (!list_empty(&ci->i_flushing_item)) {
825 			pr_info(" dropping dirty+flushing %s state for %p %lld\n",
826 				ceph_cap_string(ci->i_flushing_caps),
827 				inode, ceph_ino(inode));
828 			ci->i_flushing_caps = 0;
829 			list_del_init(&ci->i_flushing_item);
830 			mdsc->num_cap_flushing--;
831 			drop = 1;
832 		}
833 		if (drop && ci->i_wrbuffer_ref) {
834 			pr_info(" dropping dirty data for %p %lld\n",
835 				inode, ceph_ino(inode));
836 			ci->i_wrbuffer_ref = 0;
837 			ci->i_wrbuffer_ref_head = 0;
838 			drop++;
839 		}
840 		spin_unlock(&mdsc->cap_dirty_lock);
841 	}
842 	spin_unlock(&inode->i_lock);
843 	while (drop--)
844 		iput(inode);
845 	return 0;
846 }
847 
848 /*
849  * caller must hold session s_mutex
850  */
851 static void remove_session_caps(struct ceph_mds_session *session)
852 {
853 	dout("remove_session_caps on %p\n", session);
854 	iterate_session_caps(session, remove_session_caps_cb, NULL);
855 	BUG_ON(session->s_nr_caps > 0);
856 	BUG_ON(!list_empty(&session->s_cap_flushing));
857 	cleanup_cap_releases(session);
858 }
859 
860 /*
861  * wake up any threads waiting on this session's caps.  if the cap is
862  * old (didn't get renewed on the client reconnect), remove it now.
863  *
864  * caller must hold s_mutex.
865  */
866 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
867 			      void *arg)
868 {
869 	struct ceph_inode_info *ci = ceph_inode(inode);
870 
871 	wake_up(&ci->i_cap_wq);
872 	if (arg) {
873 		spin_lock(&inode->i_lock);
874 		ci->i_wanted_max_size = 0;
875 		ci->i_requested_max_size = 0;
876 		spin_unlock(&inode->i_lock);
877 	}
878 	return 0;
879 }
880 
881 static void wake_up_session_caps(struct ceph_mds_session *session,
882 				 int reconnect)
883 {
884 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
885 	iterate_session_caps(session, wake_up_session_cb,
886 			     (void *)(unsigned long)reconnect);
887 }
888 
889 /*
890  * Send periodic message to MDS renewing all currently held caps.  The
891  * ack will reset the expiration for all caps from this session.
892  *
893  * caller holds s_mutex
894  */
895 static int send_renew_caps(struct ceph_mds_client *mdsc,
896 			   struct ceph_mds_session *session)
897 {
898 	struct ceph_msg *msg;
899 	int state;
900 
901 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
902 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
903 		pr_info("mds%d caps stale\n", session->s_mds);
904 	session->s_renew_requested = jiffies;
905 
906 	/* do not try to renew caps until a recovering mds has reconnected
907 	 * with its clients. */
908 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
909 	if (state < CEPH_MDS_STATE_RECONNECT) {
910 		dout("send_renew_caps ignoring mds%d (%s)\n",
911 		     session->s_mds, ceph_mds_state_name(state));
912 		return 0;
913 	}
914 
915 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
916 		ceph_mds_state_name(state));
917 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
918 				 ++session->s_renew_seq);
919 	if (!msg)
920 		return -ENOMEM;
921 	ceph_con_send(&session->s_con, msg);
922 	return 0;
923 }
924 
925 /*
926  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
927  *
928  * Called under session->s_mutex
929  */
930 static void renewed_caps(struct ceph_mds_client *mdsc,
931 			 struct ceph_mds_session *session, int is_renew)
932 {
933 	int was_stale;
934 	int wake = 0;
935 
936 	spin_lock(&session->s_cap_lock);
937 	was_stale = is_renew && (session->s_cap_ttl == 0 ||
938 				 time_after_eq(jiffies, session->s_cap_ttl));
939 
940 	session->s_cap_ttl = session->s_renew_requested +
941 		mdsc->mdsmap->m_session_timeout*HZ;
942 
943 	if (was_stale) {
944 		if (time_before(jiffies, session->s_cap_ttl)) {
945 			pr_info("mds%d caps renewed\n", session->s_mds);
946 			wake = 1;
947 		} else {
948 			pr_info("mds%d caps still stale\n", session->s_mds);
949 		}
950 	}
951 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
952 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
953 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
954 	spin_unlock(&session->s_cap_lock);
955 
956 	if (wake)
957 		wake_up_session_caps(session, 0);
958 }
959 
960 /*
961  * send a session close request
962  */
963 static int request_close_session(struct ceph_mds_client *mdsc,
964 				 struct ceph_mds_session *session)
965 {
966 	struct ceph_msg *msg;
967 
968 	dout("request_close_session mds%d state %s seq %lld\n",
969 	     session->s_mds, session_state_name(session->s_state),
970 	     session->s_seq);
971 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
972 	if (!msg)
973 		return -ENOMEM;
974 	ceph_con_send(&session->s_con, msg);
975 	return 0;
976 }
977 
978 /*
979  * Called with s_mutex held.
980  */
981 static int __close_session(struct ceph_mds_client *mdsc,
982 			 struct ceph_mds_session *session)
983 {
984 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
985 		return 0;
986 	session->s_state = CEPH_MDS_SESSION_CLOSING;
987 	return request_close_session(mdsc, session);
988 }
989 
990 /*
991  * Trim old(er) caps.
992  *
993  * Because we can't cache an inode without one or more caps, we do
994  * this indirectly: if a cap is unused, we prune its aliases, at which
995  * point the inode will hopefully get dropped to.
996  *
997  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
998  * memory pressure from the MDS, though, so it needn't be perfect.
999  */
1000 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1001 {
1002 	struct ceph_mds_session *session = arg;
1003 	struct ceph_inode_info *ci = ceph_inode(inode);
1004 	int used, oissued, mine;
1005 
1006 	if (session->s_trim_caps <= 0)
1007 		return -1;
1008 
1009 	spin_lock(&inode->i_lock);
1010 	mine = cap->issued | cap->implemented;
1011 	used = __ceph_caps_used(ci);
1012 	oissued = __ceph_caps_issued_other(ci, cap);
1013 
1014 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1015 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1016 	     ceph_cap_string(used));
1017 	if (ci->i_dirty_caps)
1018 		goto out;   /* dirty caps */
1019 	if ((used & ~oissued) & mine)
1020 		goto out;   /* we need these caps */
1021 
1022 	session->s_trim_caps--;
1023 	if (oissued) {
1024 		/* we aren't the only cap.. just remove us */
1025 		__ceph_remove_cap(cap);
1026 	} else {
1027 		/* try to drop referring dentries */
1028 		spin_unlock(&inode->i_lock);
1029 		d_prune_aliases(inode);
1030 		dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1031 		     inode, cap, atomic_read(&inode->i_count));
1032 		return 0;
1033 	}
1034 
1035 out:
1036 	spin_unlock(&inode->i_lock);
1037 	return 0;
1038 }
1039 
1040 /*
1041  * Trim session cap count down to some max number.
1042  */
1043 static int trim_caps(struct ceph_mds_client *mdsc,
1044 		     struct ceph_mds_session *session,
1045 		     int max_caps)
1046 {
1047 	int trim_caps = session->s_nr_caps - max_caps;
1048 
1049 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1050 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1051 	if (trim_caps > 0) {
1052 		session->s_trim_caps = trim_caps;
1053 		iterate_session_caps(session, trim_caps_cb, session);
1054 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1055 		     session->s_mds, session->s_nr_caps, max_caps,
1056 			trim_caps - session->s_trim_caps);
1057 		session->s_trim_caps = 0;
1058 	}
1059 	return 0;
1060 }
1061 
1062 /*
1063  * Allocate cap_release messages.  If there is a partially full message
1064  * in the queue, try to allocate enough to cover it's remainder, so that
1065  * we can send it immediately.
1066  *
1067  * Called under s_mutex.
1068  */
1069 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1070 			  struct ceph_mds_session *session,
1071 			  int extra)
1072 {
1073 	struct ceph_msg *msg;
1074 	struct ceph_mds_cap_release *head;
1075 	int err = -ENOMEM;
1076 
1077 	if (extra < 0)
1078 		extra = mdsc->client->mount_args->cap_release_safety;
1079 
1080 	spin_lock(&session->s_cap_lock);
1081 
1082 	if (!list_empty(&session->s_cap_releases)) {
1083 		msg = list_first_entry(&session->s_cap_releases,
1084 				       struct ceph_msg,
1085 				 list_head);
1086 		head = msg->front.iov_base;
1087 		extra += CEPH_CAPS_PER_RELEASE - le32_to_cpu(head->num);
1088 	}
1089 
1090 	while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1091 		spin_unlock(&session->s_cap_lock);
1092 		msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1093 				   GFP_NOFS);
1094 		if (!msg)
1095 			goto out_unlocked;
1096 		dout("add_cap_releases %p msg %p now %d\n", session, msg,
1097 		     (int)msg->front.iov_len);
1098 		head = msg->front.iov_base;
1099 		head->num = cpu_to_le32(0);
1100 		msg->front.iov_len = sizeof(*head);
1101 		spin_lock(&session->s_cap_lock);
1102 		list_add(&msg->list_head, &session->s_cap_releases);
1103 		session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1104 	}
1105 
1106 	if (!list_empty(&session->s_cap_releases)) {
1107 		msg = list_first_entry(&session->s_cap_releases,
1108 				       struct ceph_msg,
1109 				       list_head);
1110 		head = msg->front.iov_base;
1111 		if (head->num) {
1112 			dout(" queueing non-full %p (%d)\n", msg,
1113 			     le32_to_cpu(head->num));
1114 			list_move_tail(&msg->list_head,
1115 				      &session->s_cap_releases_done);
1116 			session->s_num_cap_releases -=
1117 				CEPH_CAPS_PER_RELEASE - le32_to_cpu(head->num);
1118 		}
1119 	}
1120 	err = 0;
1121 	spin_unlock(&session->s_cap_lock);
1122 out_unlocked:
1123 	return err;
1124 }
1125 
1126 /*
1127  * flush all dirty inode data to disk.
1128  *
1129  * returns true if we've flushed through want_flush_seq
1130  */
1131 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1132 {
1133 	int mds, ret = 1;
1134 
1135 	dout("check_cap_flush want %lld\n", want_flush_seq);
1136 	mutex_lock(&mdsc->mutex);
1137 	for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1138 		struct ceph_mds_session *session = mdsc->sessions[mds];
1139 
1140 		if (!session)
1141 			continue;
1142 		get_session(session);
1143 		mutex_unlock(&mdsc->mutex);
1144 
1145 		mutex_lock(&session->s_mutex);
1146 		if (!list_empty(&session->s_cap_flushing)) {
1147 			struct ceph_inode_info *ci =
1148 				list_entry(session->s_cap_flushing.next,
1149 					   struct ceph_inode_info,
1150 					   i_flushing_item);
1151 			struct inode *inode = &ci->vfs_inode;
1152 
1153 			spin_lock(&inode->i_lock);
1154 			if (ci->i_cap_flush_seq <= want_flush_seq) {
1155 				dout("check_cap_flush still flushing %p "
1156 				     "seq %lld <= %lld to mds%d\n", inode,
1157 				     ci->i_cap_flush_seq, want_flush_seq,
1158 				     session->s_mds);
1159 				ret = 0;
1160 			}
1161 			spin_unlock(&inode->i_lock);
1162 		}
1163 		mutex_unlock(&session->s_mutex);
1164 		ceph_put_mds_session(session);
1165 
1166 		if (!ret)
1167 			return ret;
1168 		mutex_lock(&mdsc->mutex);
1169 	}
1170 
1171 	mutex_unlock(&mdsc->mutex);
1172 	dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1173 	return ret;
1174 }
1175 
1176 /*
1177  * called under s_mutex
1178  */
1179 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1180 			    struct ceph_mds_session *session)
1181 {
1182 	struct ceph_msg *msg;
1183 
1184 	dout("send_cap_releases mds%d\n", session->s_mds);
1185 	spin_lock(&session->s_cap_lock);
1186 	while (!list_empty(&session->s_cap_releases_done)) {
1187 		msg = list_first_entry(&session->s_cap_releases_done,
1188 				 struct ceph_msg, list_head);
1189 		list_del_init(&msg->list_head);
1190 		spin_unlock(&session->s_cap_lock);
1191 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1192 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1193 		ceph_con_send(&session->s_con, msg);
1194 		spin_lock(&session->s_cap_lock);
1195 	}
1196 	spin_unlock(&session->s_cap_lock);
1197 }
1198 
1199 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1200 				 struct ceph_mds_session *session)
1201 {
1202 	struct ceph_msg *msg;
1203 	struct ceph_mds_cap_release *head;
1204 	unsigned num;
1205 
1206 	dout("discard_cap_releases mds%d\n", session->s_mds);
1207 	spin_lock(&session->s_cap_lock);
1208 
1209 	/* zero out the in-progress message */
1210 	msg = list_first_entry(&session->s_cap_releases,
1211 			       struct ceph_msg, list_head);
1212 	head = msg->front.iov_base;
1213 	num = le32_to_cpu(head->num);
1214 	dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1215 	head->num = cpu_to_le32(0);
1216 	session->s_num_cap_releases += num;
1217 
1218 	/* requeue completed messages */
1219 	while (!list_empty(&session->s_cap_releases_done)) {
1220 		msg = list_first_entry(&session->s_cap_releases_done,
1221 				 struct ceph_msg, list_head);
1222 		list_del_init(&msg->list_head);
1223 
1224 		head = msg->front.iov_base;
1225 		num = le32_to_cpu(head->num);
1226 		dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1227 		     num);
1228 		session->s_num_cap_releases += num;
1229 		head->num = cpu_to_le32(0);
1230 		msg->front.iov_len = sizeof(*head);
1231 		list_add(&msg->list_head, &session->s_cap_releases);
1232 	}
1233 
1234 	spin_unlock(&session->s_cap_lock);
1235 }
1236 
1237 /*
1238  * requests
1239  */
1240 
1241 /*
1242  * Create an mds request.
1243  */
1244 struct ceph_mds_request *
1245 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1246 {
1247 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1248 
1249 	if (!req)
1250 		return ERR_PTR(-ENOMEM);
1251 
1252 	mutex_init(&req->r_fill_mutex);
1253 	req->r_started = jiffies;
1254 	req->r_resend_mds = -1;
1255 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1256 	req->r_fmode = -1;
1257 	kref_init(&req->r_kref);
1258 	INIT_LIST_HEAD(&req->r_wait);
1259 	init_completion(&req->r_completion);
1260 	init_completion(&req->r_safe_completion);
1261 	INIT_LIST_HEAD(&req->r_unsafe_item);
1262 
1263 	req->r_op = op;
1264 	req->r_direct_mode = mode;
1265 	return req;
1266 }
1267 
1268 /*
1269  * return oldest (lowest) request, tid in request tree, 0 if none.
1270  *
1271  * called under mdsc->mutex.
1272  */
1273 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1274 {
1275 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1276 		return NULL;
1277 	return rb_entry(rb_first(&mdsc->request_tree),
1278 			struct ceph_mds_request, r_node);
1279 }
1280 
1281 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1282 {
1283 	struct ceph_mds_request *req = __get_oldest_req(mdsc);
1284 
1285 	if (req)
1286 		return req->r_tid;
1287 	return 0;
1288 }
1289 
1290 /*
1291  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1292  * on build_path_from_dentry in fs/cifs/dir.c.
1293  *
1294  * If @stop_on_nosnap, generate path relative to the first non-snapped
1295  * inode.
1296  *
1297  * Encode hidden .snap dirs as a double /, i.e.
1298  *   foo/.snap/bar -> foo//bar
1299  */
1300 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1301 			   int stop_on_nosnap)
1302 {
1303 	struct dentry *temp;
1304 	char *path;
1305 	int len, pos;
1306 
1307 	if (dentry == NULL)
1308 		return ERR_PTR(-EINVAL);
1309 
1310 retry:
1311 	len = 0;
1312 	for (temp = dentry; !IS_ROOT(temp);) {
1313 		struct inode *inode = temp->d_inode;
1314 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1315 			len++;  /* slash only */
1316 		else if (stop_on_nosnap && inode &&
1317 			 ceph_snap(inode) == CEPH_NOSNAP)
1318 			break;
1319 		else
1320 			len += 1 + temp->d_name.len;
1321 		temp = temp->d_parent;
1322 		if (temp == NULL) {
1323 			pr_err("build_path corrupt dentry %p\n", dentry);
1324 			return ERR_PTR(-EINVAL);
1325 		}
1326 	}
1327 	if (len)
1328 		len--;  /* no leading '/' */
1329 
1330 	path = kmalloc(len+1, GFP_NOFS);
1331 	if (path == NULL)
1332 		return ERR_PTR(-ENOMEM);
1333 	pos = len;
1334 	path[pos] = 0;	/* trailing null */
1335 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1336 		struct inode *inode = temp->d_inode;
1337 
1338 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1339 			dout("build_path path+%d: %p SNAPDIR\n",
1340 			     pos, temp);
1341 		} else if (stop_on_nosnap && inode &&
1342 			   ceph_snap(inode) == CEPH_NOSNAP) {
1343 			break;
1344 		} else {
1345 			pos -= temp->d_name.len;
1346 			if (pos < 0)
1347 				break;
1348 			strncpy(path + pos, temp->d_name.name,
1349 				temp->d_name.len);
1350 		}
1351 		if (pos)
1352 			path[--pos] = '/';
1353 		temp = temp->d_parent;
1354 		if (temp == NULL) {
1355 			pr_err("build_path corrupt dentry\n");
1356 			kfree(path);
1357 			return ERR_PTR(-EINVAL);
1358 		}
1359 	}
1360 	if (pos != 0) {
1361 		pr_err("build_path did not end path lookup where "
1362 		       "expected, namelen is %d, pos is %d\n", len, pos);
1363 		/* presumably this is only possible if racing with a
1364 		   rename of one of the parent directories (we can not
1365 		   lock the dentries above us to prevent this, but
1366 		   retrying should be harmless) */
1367 		kfree(path);
1368 		goto retry;
1369 	}
1370 
1371 	*base = ceph_ino(temp->d_inode);
1372 	*plen = len;
1373 	dout("build_path on %p %d built %llx '%.*s'\n",
1374 	     dentry, atomic_read(&dentry->d_count), *base, len, path);
1375 	return path;
1376 }
1377 
1378 static int build_dentry_path(struct dentry *dentry,
1379 			     const char **ppath, int *ppathlen, u64 *pino,
1380 			     int *pfreepath)
1381 {
1382 	char *path;
1383 
1384 	if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1385 		*pino = ceph_ino(dentry->d_parent->d_inode);
1386 		*ppath = dentry->d_name.name;
1387 		*ppathlen = dentry->d_name.len;
1388 		return 0;
1389 	}
1390 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1391 	if (IS_ERR(path))
1392 		return PTR_ERR(path);
1393 	*ppath = path;
1394 	*pfreepath = 1;
1395 	return 0;
1396 }
1397 
1398 static int build_inode_path(struct inode *inode,
1399 			    const char **ppath, int *ppathlen, u64 *pino,
1400 			    int *pfreepath)
1401 {
1402 	struct dentry *dentry;
1403 	char *path;
1404 
1405 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1406 		*pino = ceph_ino(inode);
1407 		*ppathlen = 0;
1408 		return 0;
1409 	}
1410 	dentry = d_find_alias(inode);
1411 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1412 	dput(dentry);
1413 	if (IS_ERR(path))
1414 		return PTR_ERR(path);
1415 	*ppath = path;
1416 	*pfreepath = 1;
1417 	return 0;
1418 }
1419 
1420 /*
1421  * request arguments may be specified via an inode *, a dentry *, or
1422  * an explicit ino+path.
1423  */
1424 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1425 				  const char *rpath, u64 rino,
1426 				  const char **ppath, int *pathlen,
1427 				  u64 *ino, int *freepath)
1428 {
1429 	int r = 0;
1430 
1431 	if (rinode) {
1432 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1433 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1434 		     ceph_snap(rinode));
1435 	} else if (rdentry) {
1436 		r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1437 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1438 		     *ppath);
1439 	} else if (rpath) {
1440 		*ino = rino;
1441 		*ppath = rpath;
1442 		*pathlen = strlen(rpath);
1443 		dout(" path %.*s\n", *pathlen, rpath);
1444 	}
1445 
1446 	return r;
1447 }
1448 
1449 /*
1450  * called under mdsc->mutex
1451  */
1452 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1453 					       struct ceph_mds_request *req,
1454 					       int mds)
1455 {
1456 	struct ceph_msg *msg;
1457 	struct ceph_mds_request_head *head;
1458 	const char *path1 = NULL;
1459 	const char *path2 = NULL;
1460 	u64 ino1 = 0, ino2 = 0;
1461 	int pathlen1 = 0, pathlen2 = 0;
1462 	int freepath1 = 0, freepath2 = 0;
1463 	int len;
1464 	u16 releases;
1465 	void *p, *end;
1466 	int ret;
1467 
1468 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
1469 			      req->r_path1, req->r_ino1.ino,
1470 			      &path1, &pathlen1, &ino1, &freepath1);
1471 	if (ret < 0) {
1472 		msg = ERR_PTR(ret);
1473 		goto out;
1474 	}
1475 
1476 	ret = set_request_path_attr(NULL, req->r_old_dentry,
1477 			      req->r_path2, req->r_ino2.ino,
1478 			      &path2, &pathlen2, &ino2, &freepath2);
1479 	if (ret < 0) {
1480 		msg = ERR_PTR(ret);
1481 		goto out_free1;
1482 	}
1483 
1484 	len = sizeof(*head) +
1485 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1486 
1487 	/* calculate (max) length for cap releases */
1488 	len += sizeof(struct ceph_mds_request_release) *
1489 		(!!req->r_inode_drop + !!req->r_dentry_drop +
1490 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1491 	if (req->r_dentry_drop)
1492 		len += req->r_dentry->d_name.len;
1493 	if (req->r_old_dentry_drop)
1494 		len += req->r_old_dentry->d_name.len;
1495 
1496 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS);
1497 	if (!msg) {
1498 		msg = ERR_PTR(-ENOMEM);
1499 		goto out_free2;
1500 	}
1501 
1502 	msg->hdr.tid = cpu_to_le64(req->r_tid);
1503 
1504 	head = msg->front.iov_base;
1505 	p = msg->front.iov_base + sizeof(*head);
1506 	end = msg->front.iov_base + msg->front.iov_len;
1507 
1508 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1509 	head->op = cpu_to_le32(req->r_op);
1510 	head->caller_uid = cpu_to_le32(current_fsuid());
1511 	head->caller_gid = cpu_to_le32(current_fsgid());
1512 	head->args = req->r_args;
1513 
1514 	ceph_encode_filepath(&p, end, ino1, path1);
1515 	ceph_encode_filepath(&p, end, ino2, path2);
1516 
1517 	/* cap releases */
1518 	releases = 0;
1519 	if (req->r_inode_drop)
1520 		releases += ceph_encode_inode_release(&p,
1521 		      req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1522 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
1523 	if (req->r_dentry_drop)
1524 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
1525 		       mds, req->r_dentry_drop, req->r_dentry_unless);
1526 	if (req->r_old_dentry_drop)
1527 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1528 		       mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1529 	if (req->r_old_inode_drop)
1530 		releases += ceph_encode_inode_release(&p,
1531 		      req->r_old_dentry->d_inode,
1532 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1533 	head->num_releases = cpu_to_le16(releases);
1534 
1535 	BUG_ON(p > end);
1536 	msg->front.iov_len = p - msg->front.iov_base;
1537 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1538 
1539 	msg->pages = req->r_pages;
1540 	msg->nr_pages = req->r_num_pages;
1541 	msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1542 	msg->hdr.data_off = cpu_to_le16(0);
1543 
1544 out_free2:
1545 	if (freepath2)
1546 		kfree((char *)path2);
1547 out_free1:
1548 	if (freepath1)
1549 		kfree((char *)path1);
1550 out:
1551 	return msg;
1552 }
1553 
1554 /*
1555  * called under mdsc->mutex if error, under no mutex if
1556  * success.
1557  */
1558 static void complete_request(struct ceph_mds_client *mdsc,
1559 			     struct ceph_mds_request *req)
1560 {
1561 	if (req->r_callback)
1562 		req->r_callback(mdsc, req);
1563 	else
1564 		complete(&req->r_completion);
1565 }
1566 
1567 /*
1568  * called under mdsc->mutex
1569  */
1570 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1571 				  struct ceph_mds_request *req,
1572 				  int mds)
1573 {
1574 	struct ceph_mds_request_head *rhead;
1575 	struct ceph_msg *msg;
1576 	int flags = 0;
1577 
1578 	req->r_mds = mds;
1579 	req->r_attempts++;
1580 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1581 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1582 
1583 	if (req->r_request) {
1584 		ceph_msg_put(req->r_request);
1585 		req->r_request = NULL;
1586 	}
1587 	msg = create_request_message(mdsc, req, mds);
1588 	if (IS_ERR(msg)) {
1589 		req->r_err = PTR_ERR(msg);
1590 		complete_request(mdsc, req);
1591 		return PTR_ERR(msg);
1592 	}
1593 	req->r_request = msg;
1594 
1595 	rhead = msg->front.iov_base;
1596 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1597 	if (req->r_got_unsafe)
1598 		flags |= CEPH_MDS_FLAG_REPLAY;
1599 	if (req->r_locked_dir)
1600 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1601 	rhead->flags = cpu_to_le32(flags);
1602 	rhead->num_fwd = req->r_num_fwd;
1603 	rhead->num_retry = req->r_attempts - 1;
1604 
1605 	dout(" r_locked_dir = %p\n", req->r_locked_dir);
1606 
1607 	if (req->r_target_inode && req->r_got_unsafe)
1608 		rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1609 	else
1610 		rhead->ino = 0;
1611 	return 0;
1612 }
1613 
1614 /*
1615  * send request, or put it on the appropriate wait list.
1616  */
1617 static int __do_request(struct ceph_mds_client *mdsc,
1618 			struct ceph_mds_request *req)
1619 {
1620 	struct ceph_mds_session *session = NULL;
1621 	int mds = -1;
1622 	int err = -EAGAIN;
1623 
1624 	if (req->r_err || req->r_got_result)
1625 		goto out;
1626 
1627 	if (req->r_timeout &&
1628 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1629 		dout("do_request timed out\n");
1630 		err = -EIO;
1631 		goto finish;
1632 	}
1633 
1634 	mds = __choose_mds(mdsc, req);
1635 	if (mds < 0 ||
1636 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1637 		dout("do_request no mds or not active, waiting for map\n");
1638 		list_add(&req->r_wait, &mdsc->waiting_for_map);
1639 		goto out;
1640 	}
1641 
1642 	/* get, open session */
1643 	session = __ceph_lookup_mds_session(mdsc, mds);
1644 	if (!session) {
1645 		session = register_session(mdsc, mds);
1646 		if (IS_ERR(session)) {
1647 			err = PTR_ERR(session);
1648 			goto finish;
1649 		}
1650 	}
1651 	dout("do_request mds%d session %p state %s\n", mds, session,
1652 	     session_state_name(session->s_state));
1653 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1654 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
1655 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
1656 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
1657 			__open_session(mdsc, session);
1658 		list_add(&req->r_wait, &session->s_waiting);
1659 		goto out_session;
1660 	}
1661 
1662 	/* send request */
1663 	req->r_session = get_session(session);
1664 	req->r_resend_mds = -1;   /* forget any previous mds hint */
1665 
1666 	if (req->r_request_started == 0)   /* note request start time */
1667 		req->r_request_started = jiffies;
1668 
1669 	err = __prepare_send_request(mdsc, req, mds);
1670 	if (!err) {
1671 		ceph_msg_get(req->r_request);
1672 		ceph_con_send(&session->s_con, req->r_request);
1673 	}
1674 
1675 out_session:
1676 	ceph_put_mds_session(session);
1677 out:
1678 	return err;
1679 
1680 finish:
1681 	req->r_err = err;
1682 	complete_request(mdsc, req);
1683 	goto out;
1684 }
1685 
1686 /*
1687  * called under mdsc->mutex
1688  */
1689 static void __wake_requests(struct ceph_mds_client *mdsc,
1690 			    struct list_head *head)
1691 {
1692 	struct ceph_mds_request *req, *nreq;
1693 
1694 	list_for_each_entry_safe(req, nreq, head, r_wait) {
1695 		list_del_init(&req->r_wait);
1696 		__do_request(mdsc, req);
1697 	}
1698 }
1699 
1700 /*
1701  * Wake up threads with requests pending for @mds, so that they can
1702  * resubmit their requests to a possibly different mds.
1703  */
1704 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1705 {
1706 	struct ceph_mds_request *req;
1707 	struct rb_node *p;
1708 
1709 	dout("kick_requests mds%d\n", mds);
1710 	for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1711 		req = rb_entry(p, struct ceph_mds_request, r_node);
1712 		if (req->r_got_unsafe)
1713 			continue;
1714 		if (req->r_session &&
1715 		    req->r_session->s_mds == mds) {
1716 			dout(" kicking tid %llu\n", req->r_tid);
1717 			put_request_session(req);
1718 			__do_request(mdsc, req);
1719 		}
1720 	}
1721 }
1722 
1723 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1724 			      struct ceph_mds_request *req)
1725 {
1726 	dout("submit_request on %p\n", req);
1727 	mutex_lock(&mdsc->mutex);
1728 	__register_request(mdsc, req, NULL);
1729 	__do_request(mdsc, req);
1730 	mutex_unlock(&mdsc->mutex);
1731 }
1732 
1733 /*
1734  * Synchrously perform an mds request.  Take care of all of the
1735  * session setup, forwarding, retry details.
1736  */
1737 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1738 			 struct inode *dir,
1739 			 struct ceph_mds_request *req)
1740 {
1741 	int err;
1742 
1743 	dout("do_request on %p\n", req);
1744 
1745 	/* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1746 	if (req->r_inode)
1747 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1748 	if (req->r_locked_dir)
1749 		ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1750 	if (req->r_old_dentry)
1751 		ceph_get_cap_refs(
1752 			ceph_inode(req->r_old_dentry->d_parent->d_inode),
1753 			CEPH_CAP_PIN);
1754 
1755 	/* issue */
1756 	mutex_lock(&mdsc->mutex);
1757 	__register_request(mdsc, req, dir);
1758 	__do_request(mdsc, req);
1759 
1760 	if (req->r_err) {
1761 		err = req->r_err;
1762 		__unregister_request(mdsc, req);
1763 		dout("do_request early error %d\n", err);
1764 		goto out;
1765 	}
1766 
1767 	/* wait */
1768 	mutex_unlock(&mdsc->mutex);
1769 	dout("do_request waiting\n");
1770 	if (req->r_timeout) {
1771 		err = (long)wait_for_completion_killable_timeout(
1772 			&req->r_completion, req->r_timeout);
1773 		if (err == 0)
1774 			err = -EIO;
1775 	} else {
1776 		err = wait_for_completion_killable(&req->r_completion);
1777 	}
1778 	dout("do_request waited, got %d\n", err);
1779 	mutex_lock(&mdsc->mutex);
1780 
1781 	/* only abort if we didn't race with a real reply */
1782 	if (req->r_got_result) {
1783 		err = le32_to_cpu(req->r_reply_info.head->result);
1784 	} else if (err < 0) {
1785 		dout("aborted request %lld with %d\n", req->r_tid, err);
1786 
1787 		/*
1788 		 * ensure we aren't running concurrently with
1789 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
1790 		 * rely on locks (dir mutex) held by our caller.
1791 		 */
1792 		mutex_lock(&req->r_fill_mutex);
1793 		req->r_err = err;
1794 		req->r_aborted = true;
1795 		mutex_unlock(&req->r_fill_mutex);
1796 
1797 		if (req->r_locked_dir &&
1798 		    (req->r_op & CEPH_MDS_OP_WRITE))
1799 			ceph_invalidate_dir_request(req);
1800 	} else {
1801 		err = req->r_err;
1802 	}
1803 
1804 out:
1805 	mutex_unlock(&mdsc->mutex);
1806 	dout("do_request %p done, result %d\n", req, err);
1807 	return err;
1808 }
1809 
1810 /*
1811  * Invalidate dir I_COMPLETE, dentry lease state on an aborted MDS
1812  * namespace request.
1813  */
1814 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
1815 {
1816 	struct inode *inode = req->r_locked_dir;
1817 	struct ceph_inode_info *ci = ceph_inode(inode);
1818 
1819 	dout("invalidate_dir_request %p (I_COMPLETE, lease(s))\n", inode);
1820 	spin_lock(&inode->i_lock);
1821 	ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
1822 	ci->i_release_count++;
1823 	spin_unlock(&inode->i_lock);
1824 
1825 	if (req->r_dentry)
1826 		ceph_invalidate_dentry_lease(req->r_dentry);
1827 	if (req->r_old_dentry)
1828 		ceph_invalidate_dentry_lease(req->r_old_dentry);
1829 }
1830 
1831 /*
1832  * Handle mds reply.
1833  *
1834  * We take the session mutex and parse and process the reply immediately.
1835  * This preserves the logical ordering of replies, capabilities, etc., sent
1836  * by the MDS as they are applied to our local cache.
1837  */
1838 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
1839 {
1840 	struct ceph_mds_client *mdsc = session->s_mdsc;
1841 	struct ceph_mds_request *req;
1842 	struct ceph_mds_reply_head *head = msg->front.iov_base;
1843 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
1844 	u64 tid;
1845 	int err, result;
1846 	int mds = session->s_mds;
1847 
1848 	if (msg->front.iov_len < sizeof(*head)) {
1849 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
1850 		ceph_msg_dump(msg);
1851 		return;
1852 	}
1853 
1854 	/* get request, session */
1855 	tid = le64_to_cpu(msg->hdr.tid);
1856 	mutex_lock(&mdsc->mutex);
1857 	req = __lookup_request(mdsc, tid);
1858 	if (!req) {
1859 		dout("handle_reply on unknown tid %llu\n", tid);
1860 		mutex_unlock(&mdsc->mutex);
1861 		return;
1862 	}
1863 	dout("handle_reply %p\n", req);
1864 
1865 	/* correct session? */
1866 	if (req->r_session != session) {
1867 		pr_err("mdsc_handle_reply got %llu on session mds%d"
1868 		       " not mds%d\n", tid, session->s_mds,
1869 		       req->r_session ? req->r_session->s_mds : -1);
1870 		mutex_unlock(&mdsc->mutex);
1871 		goto out;
1872 	}
1873 
1874 	/* dup? */
1875 	if ((req->r_got_unsafe && !head->safe) ||
1876 	    (req->r_got_safe && head->safe)) {
1877 		pr_warning("got a dup %s reply on %llu from mds%d\n",
1878 			   head->safe ? "safe" : "unsafe", tid, mds);
1879 		mutex_unlock(&mdsc->mutex);
1880 		goto out;
1881 	}
1882 	if (req->r_got_safe && !head->safe) {
1883 		pr_warning("got unsafe after safe on %llu from mds%d\n",
1884 			   tid, mds);
1885 		mutex_unlock(&mdsc->mutex);
1886 		goto out;
1887 	}
1888 
1889 	result = le32_to_cpu(head->result);
1890 
1891 	/*
1892 	 * Tolerate 2 consecutive ESTALEs from the same mds.
1893 	 * FIXME: we should be looking at the cap migrate_seq.
1894 	 */
1895 	if (result == -ESTALE) {
1896 		req->r_direct_mode = USE_AUTH_MDS;
1897 		req->r_num_stale++;
1898 		if (req->r_num_stale <= 2) {
1899 			__do_request(mdsc, req);
1900 			mutex_unlock(&mdsc->mutex);
1901 			goto out;
1902 		}
1903 	} else {
1904 		req->r_num_stale = 0;
1905 	}
1906 
1907 	if (head->safe) {
1908 		req->r_got_safe = true;
1909 		__unregister_request(mdsc, req);
1910 		complete(&req->r_safe_completion);
1911 
1912 		if (req->r_got_unsafe) {
1913 			/*
1914 			 * We already handled the unsafe response, now do the
1915 			 * cleanup.  No need to examine the response; the MDS
1916 			 * doesn't include any result info in the safe
1917 			 * response.  And even if it did, there is nothing
1918 			 * useful we could do with a revised return value.
1919 			 */
1920 			dout("got safe reply %llu, mds%d\n", tid, mds);
1921 			list_del_init(&req->r_unsafe_item);
1922 
1923 			/* last unsafe request during umount? */
1924 			if (mdsc->stopping && !__get_oldest_req(mdsc))
1925 				complete(&mdsc->safe_umount_waiters);
1926 			mutex_unlock(&mdsc->mutex);
1927 			goto out;
1928 		}
1929 	} else {
1930 		req->r_got_unsafe = true;
1931 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
1932 	}
1933 
1934 	dout("handle_reply tid %lld result %d\n", tid, result);
1935 	rinfo = &req->r_reply_info;
1936 	err = parse_reply_info(msg, rinfo);
1937 	mutex_unlock(&mdsc->mutex);
1938 
1939 	mutex_lock(&session->s_mutex);
1940 	if (err < 0) {
1941 		pr_err("mdsc_handle_reply got corrupt reply mds%d\n", mds);
1942 		ceph_msg_dump(msg);
1943 		goto out_err;
1944 	}
1945 
1946 	/* snap trace */
1947 	if (rinfo->snapblob_len) {
1948 		down_write(&mdsc->snap_rwsem);
1949 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
1950 			       rinfo->snapblob + rinfo->snapblob_len,
1951 			       le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
1952 		downgrade_write(&mdsc->snap_rwsem);
1953 	} else {
1954 		down_read(&mdsc->snap_rwsem);
1955 	}
1956 
1957 	/* insert trace into our cache */
1958 	mutex_lock(&req->r_fill_mutex);
1959 	err = ceph_fill_trace(mdsc->client->sb, req, req->r_session);
1960 	if (err == 0) {
1961 		if (result == 0 && rinfo->dir_nr)
1962 			ceph_readdir_prepopulate(req, req->r_session);
1963 		ceph_unreserve_caps(&req->r_caps_reservation);
1964 	}
1965 	mutex_unlock(&req->r_fill_mutex);
1966 
1967 	up_read(&mdsc->snap_rwsem);
1968 out_err:
1969 	mutex_lock(&mdsc->mutex);
1970 	if (!req->r_aborted) {
1971 		if (err) {
1972 			req->r_err = err;
1973 		} else {
1974 			req->r_reply = msg;
1975 			ceph_msg_get(msg);
1976 			req->r_got_result = true;
1977 		}
1978 	} else {
1979 		dout("reply arrived after request %lld was aborted\n", tid);
1980 	}
1981 	mutex_unlock(&mdsc->mutex);
1982 
1983 	ceph_add_cap_releases(mdsc, req->r_session, -1);
1984 	mutex_unlock(&session->s_mutex);
1985 
1986 	/* kick calling process */
1987 	complete_request(mdsc, req);
1988 out:
1989 	ceph_mdsc_put_request(req);
1990 	return;
1991 }
1992 
1993 
1994 
1995 /*
1996  * handle mds notification that our request has been forwarded.
1997  */
1998 static void handle_forward(struct ceph_mds_client *mdsc,
1999 			   struct ceph_mds_session *session,
2000 			   struct ceph_msg *msg)
2001 {
2002 	struct ceph_mds_request *req;
2003 	u64 tid = le64_to_cpu(msg->hdr.tid);
2004 	u32 next_mds;
2005 	u32 fwd_seq;
2006 	int err = -EINVAL;
2007 	void *p = msg->front.iov_base;
2008 	void *end = p + msg->front.iov_len;
2009 
2010 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2011 	next_mds = ceph_decode_32(&p);
2012 	fwd_seq = ceph_decode_32(&p);
2013 
2014 	mutex_lock(&mdsc->mutex);
2015 	req = __lookup_request(mdsc, tid);
2016 	if (!req) {
2017 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2018 		goto out;  /* dup reply? */
2019 	}
2020 
2021 	if (req->r_aborted) {
2022 		dout("forward tid %llu aborted, unregistering\n", tid);
2023 		__unregister_request(mdsc, req);
2024 	} else if (fwd_seq <= req->r_num_fwd) {
2025 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2026 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2027 	} else {
2028 		/* resend. forward race not possible; mds would drop */
2029 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2030 		BUG_ON(req->r_err);
2031 		BUG_ON(req->r_got_result);
2032 		req->r_num_fwd = fwd_seq;
2033 		req->r_resend_mds = next_mds;
2034 		put_request_session(req);
2035 		__do_request(mdsc, req);
2036 	}
2037 	ceph_mdsc_put_request(req);
2038 out:
2039 	mutex_unlock(&mdsc->mutex);
2040 	return;
2041 
2042 bad:
2043 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2044 }
2045 
2046 /*
2047  * handle a mds session control message
2048  */
2049 static void handle_session(struct ceph_mds_session *session,
2050 			   struct ceph_msg *msg)
2051 {
2052 	struct ceph_mds_client *mdsc = session->s_mdsc;
2053 	u32 op;
2054 	u64 seq;
2055 	int mds = session->s_mds;
2056 	struct ceph_mds_session_head *h = msg->front.iov_base;
2057 	int wake = 0;
2058 
2059 	/* decode */
2060 	if (msg->front.iov_len != sizeof(*h))
2061 		goto bad;
2062 	op = le32_to_cpu(h->op);
2063 	seq = le64_to_cpu(h->seq);
2064 
2065 	mutex_lock(&mdsc->mutex);
2066 	if (op == CEPH_SESSION_CLOSE)
2067 		__unregister_session(mdsc, session);
2068 	/* FIXME: this ttl calculation is generous */
2069 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2070 	mutex_unlock(&mdsc->mutex);
2071 
2072 	mutex_lock(&session->s_mutex);
2073 
2074 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2075 	     mds, ceph_session_op_name(op), session,
2076 	     session_state_name(session->s_state), seq);
2077 
2078 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2079 		session->s_state = CEPH_MDS_SESSION_OPEN;
2080 		pr_info("mds%d came back\n", session->s_mds);
2081 	}
2082 
2083 	switch (op) {
2084 	case CEPH_SESSION_OPEN:
2085 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2086 			pr_info("mds%d reconnect success\n", session->s_mds);
2087 		session->s_state = CEPH_MDS_SESSION_OPEN;
2088 		renewed_caps(mdsc, session, 0);
2089 		wake = 1;
2090 		if (mdsc->stopping)
2091 			__close_session(mdsc, session);
2092 		break;
2093 
2094 	case CEPH_SESSION_RENEWCAPS:
2095 		if (session->s_renew_seq == seq)
2096 			renewed_caps(mdsc, session, 1);
2097 		break;
2098 
2099 	case CEPH_SESSION_CLOSE:
2100 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2101 			pr_info("mds%d reconnect denied\n", session->s_mds);
2102 		remove_session_caps(session);
2103 		wake = 1; /* for good measure */
2104 		complete(&mdsc->session_close_waiters);
2105 		kick_requests(mdsc, mds);
2106 		break;
2107 
2108 	case CEPH_SESSION_STALE:
2109 		pr_info("mds%d caps went stale, renewing\n",
2110 			session->s_mds);
2111 		spin_lock(&session->s_cap_lock);
2112 		session->s_cap_gen++;
2113 		session->s_cap_ttl = 0;
2114 		spin_unlock(&session->s_cap_lock);
2115 		send_renew_caps(mdsc, session);
2116 		break;
2117 
2118 	case CEPH_SESSION_RECALL_STATE:
2119 		trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2120 		break;
2121 
2122 	default:
2123 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2124 		WARN_ON(1);
2125 	}
2126 
2127 	mutex_unlock(&session->s_mutex);
2128 	if (wake) {
2129 		mutex_lock(&mdsc->mutex);
2130 		__wake_requests(mdsc, &session->s_waiting);
2131 		mutex_unlock(&mdsc->mutex);
2132 	}
2133 	return;
2134 
2135 bad:
2136 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2137 	       (int)msg->front.iov_len);
2138 	ceph_msg_dump(msg);
2139 	return;
2140 }
2141 
2142 
2143 /*
2144  * called under session->mutex.
2145  */
2146 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2147 				   struct ceph_mds_session *session)
2148 {
2149 	struct ceph_mds_request *req, *nreq;
2150 	int err;
2151 
2152 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2153 
2154 	mutex_lock(&mdsc->mutex);
2155 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2156 		err = __prepare_send_request(mdsc, req, session->s_mds);
2157 		if (!err) {
2158 			ceph_msg_get(req->r_request);
2159 			ceph_con_send(&session->s_con, req->r_request);
2160 		}
2161 	}
2162 	mutex_unlock(&mdsc->mutex);
2163 }
2164 
2165 /*
2166  * Encode information about a cap for a reconnect with the MDS.
2167  */
2168 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2169 			  void *arg)
2170 {
2171 	struct ceph_mds_cap_reconnect rec;
2172 	struct ceph_inode_info *ci;
2173 	struct ceph_pagelist *pagelist = arg;
2174 	char *path;
2175 	int pathlen, err;
2176 	u64 pathbase;
2177 	struct dentry *dentry;
2178 
2179 	ci = cap->ci;
2180 
2181 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2182 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2183 	     ceph_cap_string(cap->issued));
2184 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2185 	if (err)
2186 		return err;
2187 
2188 	dentry = d_find_alias(inode);
2189 	if (dentry) {
2190 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2191 		if (IS_ERR(path)) {
2192 			err = PTR_ERR(path);
2193 			BUG_ON(err);
2194 		}
2195 	} else {
2196 		path = NULL;
2197 		pathlen = 0;
2198 	}
2199 	err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2200 	if (err)
2201 		goto out;
2202 
2203 	spin_lock(&inode->i_lock);
2204 	cap->seq = 0;        /* reset cap seq */
2205 	cap->issue_seq = 0;  /* and issue_seq */
2206 	rec.cap_id = cpu_to_le64(cap->cap_id);
2207 	rec.pathbase = cpu_to_le64(pathbase);
2208 	rec.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2209 	rec.issued = cpu_to_le32(cap->issued);
2210 	rec.size = cpu_to_le64(inode->i_size);
2211 	ceph_encode_timespec(&rec.mtime, &inode->i_mtime);
2212 	ceph_encode_timespec(&rec.atime, &inode->i_atime);
2213 	rec.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2214 	spin_unlock(&inode->i_lock);
2215 
2216 	err = ceph_pagelist_append(pagelist, &rec, sizeof(rec));
2217 
2218 out:
2219 	kfree(path);
2220 	dput(dentry);
2221 	return err;
2222 }
2223 
2224 
2225 /*
2226  * If an MDS fails and recovers, clients need to reconnect in order to
2227  * reestablish shared state.  This includes all caps issued through
2228  * this session _and_ the snap_realm hierarchy.  Because it's not
2229  * clear which snap realms the mds cares about, we send everything we
2230  * know about.. that ensures we'll then get any new info the
2231  * recovering MDS might have.
2232  *
2233  * This is a relatively heavyweight operation, but it's rare.
2234  *
2235  * called with mdsc->mutex held.
2236  */
2237 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2238 			       struct ceph_mds_session *session)
2239 {
2240 	struct ceph_msg *reply;
2241 	struct rb_node *p;
2242 	int mds = session->s_mds;
2243 	int err = -ENOMEM;
2244 	struct ceph_pagelist *pagelist;
2245 
2246 	pr_info("mds%d reconnect start\n", mds);
2247 
2248 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2249 	if (!pagelist)
2250 		goto fail_nopagelist;
2251 	ceph_pagelist_init(pagelist);
2252 
2253 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS);
2254 	if (!reply)
2255 		goto fail_nomsg;
2256 
2257 	mutex_lock(&session->s_mutex);
2258 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2259 	session->s_seq = 0;
2260 
2261 	ceph_con_open(&session->s_con,
2262 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2263 
2264 	/* replay unsafe requests */
2265 	replay_unsafe_requests(mdsc, session);
2266 
2267 	down_read(&mdsc->snap_rwsem);
2268 
2269 	dout("session %p state %s\n", session,
2270 	     session_state_name(session->s_state));
2271 
2272 	/* drop old cap expires; we're about to reestablish that state */
2273 	discard_cap_releases(mdsc, session);
2274 
2275 	/* traverse this session's caps */
2276 	err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2277 	if (err)
2278 		goto fail;
2279 	err = iterate_session_caps(session, encode_caps_cb, pagelist);
2280 	if (err < 0)
2281 		goto fail;
2282 
2283 	/*
2284 	 * snaprealms.  we provide mds with the ino, seq (version), and
2285 	 * parent for all of our realms.  If the mds has any newer info,
2286 	 * it will tell us.
2287 	 */
2288 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2289 		struct ceph_snap_realm *realm =
2290 			rb_entry(p, struct ceph_snap_realm, node);
2291 		struct ceph_mds_snaprealm_reconnect sr_rec;
2292 
2293 		dout(" adding snap realm %llx seq %lld parent %llx\n",
2294 		     realm->ino, realm->seq, realm->parent_ino);
2295 		sr_rec.ino = cpu_to_le64(realm->ino);
2296 		sr_rec.seq = cpu_to_le64(realm->seq);
2297 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
2298 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2299 		if (err)
2300 			goto fail;
2301 	}
2302 
2303 	reply->pagelist = pagelist;
2304 	reply->hdr.data_len = cpu_to_le32(pagelist->length);
2305 	reply->nr_pages = calc_pages_for(0, pagelist->length);
2306 	ceph_con_send(&session->s_con, reply);
2307 
2308 	mutex_unlock(&session->s_mutex);
2309 
2310 	mutex_lock(&mdsc->mutex);
2311 	__wake_requests(mdsc, &session->s_waiting);
2312 	mutex_unlock(&mdsc->mutex);
2313 
2314 	up_read(&mdsc->snap_rwsem);
2315 	return;
2316 
2317 fail:
2318 	ceph_msg_put(reply);
2319 	up_read(&mdsc->snap_rwsem);
2320 	mutex_unlock(&session->s_mutex);
2321 fail_nomsg:
2322 	ceph_pagelist_release(pagelist);
2323 	kfree(pagelist);
2324 fail_nopagelist:
2325 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2326 	return;
2327 }
2328 
2329 
2330 /*
2331  * compare old and new mdsmaps, kicking requests
2332  * and closing out old connections as necessary
2333  *
2334  * called under mdsc->mutex.
2335  */
2336 static void check_new_map(struct ceph_mds_client *mdsc,
2337 			  struct ceph_mdsmap *newmap,
2338 			  struct ceph_mdsmap *oldmap)
2339 {
2340 	int i;
2341 	int oldstate, newstate;
2342 	struct ceph_mds_session *s;
2343 
2344 	dout("check_new_map new %u old %u\n",
2345 	     newmap->m_epoch, oldmap->m_epoch);
2346 
2347 	for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2348 		if (mdsc->sessions[i] == NULL)
2349 			continue;
2350 		s = mdsc->sessions[i];
2351 		oldstate = ceph_mdsmap_get_state(oldmap, i);
2352 		newstate = ceph_mdsmap_get_state(newmap, i);
2353 
2354 		dout("check_new_map mds%d state %s -> %s (session %s)\n",
2355 		     i, ceph_mds_state_name(oldstate),
2356 		     ceph_mds_state_name(newstate),
2357 		     session_state_name(s->s_state));
2358 
2359 		if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
2360 			   ceph_mdsmap_get_addr(newmap, i),
2361 			   sizeof(struct ceph_entity_addr))) {
2362 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2363 				/* the session never opened, just close it
2364 				 * out now */
2365 				__wake_requests(mdsc, &s->s_waiting);
2366 				__unregister_session(mdsc, s);
2367 			} else {
2368 				/* just close it */
2369 				mutex_unlock(&mdsc->mutex);
2370 				mutex_lock(&s->s_mutex);
2371 				mutex_lock(&mdsc->mutex);
2372 				ceph_con_close(&s->s_con);
2373 				mutex_unlock(&s->s_mutex);
2374 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
2375 			}
2376 
2377 			/* kick any requests waiting on the recovering mds */
2378 			kick_requests(mdsc, i);
2379 		} else if (oldstate == newstate) {
2380 			continue;  /* nothing new with this mds */
2381 		}
2382 
2383 		/*
2384 		 * send reconnect?
2385 		 */
2386 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2387 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
2388 			mutex_unlock(&mdsc->mutex);
2389 			send_mds_reconnect(mdsc, s);
2390 			mutex_lock(&mdsc->mutex);
2391 		}
2392 
2393 		/*
2394 		 * kick request on any mds that has gone active.
2395 		 */
2396 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2397 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
2398 			if (oldstate != CEPH_MDS_STATE_CREATING &&
2399 			    oldstate != CEPH_MDS_STATE_STARTING)
2400 				pr_info("mds%d recovery completed\n", s->s_mds);
2401 			kick_requests(mdsc, i);
2402 			ceph_kick_flushing_caps(mdsc, s);
2403 			wake_up_session_caps(s, 1);
2404 		}
2405 	}
2406 }
2407 
2408 
2409 
2410 /*
2411  * leases
2412  */
2413 
2414 /*
2415  * caller must hold session s_mutex, dentry->d_lock
2416  */
2417 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2418 {
2419 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2420 
2421 	ceph_put_mds_session(di->lease_session);
2422 	di->lease_session = NULL;
2423 }
2424 
2425 static void handle_lease(struct ceph_mds_client *mdsc,
2426 			 struct ceph_mds_session *session,
2427 			 struct ceph_msg *msg)
2428 {
2429 	struct super_block *sb = mdsc->client->sb;
2430 	struct inode *inode;
2431 	struct ceph_inode_info *ci;
2432 	struct dentry *parent, *dentry;
2433 	struct ceph_dentry_info *di;
2434 	int mds = session->s_mds;
2435 	struct ceph_mds_lease *h = msg->front.iov_base;
2436 	u32 seq;
2437 	struct ceph_vino vino;
2438 	int mask;
2439 	struct qstr dname;
2440 	int release = 0;
2441 
2442 	dout("handle_lease from mds%d\n", mds);
2443 
2444 	/* decode */
2445 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2446 		goto bad;
2447 	vino.ino = le64_to_cpu(h->ino);
2448 	vino.snap = CEPH_NOSNAP;
2449 	mask = le16_to_cpu(h->mask);
2450 	seq = le32_to_cpu(h->seq);
2451 	dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2452 	dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2453 	if (dname.len != get_unaligned_le32(h+1))
2454 		goto bad;
2455 
2456 	mutex_lock(&session->s_mutex);
2457 	session->s_seq++;
2458 
2459 	/* lookup inode */
2460 	inode = ceph_find_inode(sb, vino);
2461 	dout("handle_lease %s, mask %d, ino %llx %p %.*s\n",
2462 	     ceph_lease_op_name(h->action), mask, vino.ino, inode,
2463 	     dname.len, dname.name);
2464 	if (inode == NULL) {
2465 		dout("handle_lease no inode %llx\n", vino.ino);
2466 		goto release;
2467 	}
2468 	ci = ceph_inode(inode);
2469 
2470 	/* dentry */
2471 	parent = d_find_alias(inode);
2472 	if (!parent) {
2473 		dout("no parent dentry on inode %p\n", inode);
2474 		WARN_ON(1);
2475 		goto release;  /* hrm... */
2476 	}
2477 	dname.hash = full_name_hash(dname.name, dname.len);
2478 	dentry = d_lookup(parent, &dname);
2479 	dput(parent);
2480 	if (!dentry)
2481 		goto release;
2482 
2483 	spin_lock(&dentry->d_lock);
2484 	di = ceph_dentry(dentry);
2485 	switch (h->action) {
2486 	case CEPH_MDS_LEASE_REVOKE:
2487 		if (di && di->lease_session == session) {
2488 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2489 				h->seq = cpu_to_le32(di->lease_seq);
2490 			__ceph_mdsc_drop_dentry_lease(dentry);
2491 		}
2492 		release = 1;
2493 		break;
2494 
2495 	case CEPH_MDS_LEASE_RENEW:
2496 		if (di && di->lease_session == session &&
2497 		    di->lease_gen == session->s_cap_gen &&
2498 		    di->lease_renew_from &&
2499 		    di->lease_renew_after == 0) {
2500 			unsigned long duration =
2501 				le32_to_cpu(h->duration_ms) * HZ / 1000;
2502 
2503 			di->lease_seq = seq;
2504 			dentry->d_time = di->lease_renew_from + duration;
2505 			di->lease_renew_after = di->lease_renew_from +
2506 				(duration >> 1);
2507 			di->lease_renew_from = 0;
2508 		}
2509 		break;
2510 	}
2511 	spin_unlock(&dentry->d_lock);
2512 	dput(dentry);
2513 
2514 	if (!release)
2515 		goto out;
2516 
2517 release:
2518 	/* let's just reuse the same message */
2519 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2520 	ceph_msg_get(msg);
2521 	ceph_con_send(&session->s_con, msg);
2522 
2523 out:
2524 	iput(inode);
2525 	mutex_unlock(&session->s_mutex);
2526 	return;
2527 
2528 bad:
2529 	pr_err("corrupt lease message\n");
2530 	ceph_msg_dump(msg);
2531 }
2532 
2533 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2534 			      struct inode *inode,
2535 			      struct dentry *dentry, char action,
2536 			      u32 seq)
2537 {
2538 	struct ceph_msg *msg;
2539 	struct ceph_mds_lease *lease;
2540 	int len = sizeof(*lease) + sizeof(u32);
2541 	int dnamelen = 0;
2542 
2543 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2544 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
2545 	dnamelen = dentry->d_name.len;
2546 	len += dnamelen;
2547 
2548 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS);
2549 	if (!msg)
2550 		return;
2551 	lease = msg->front.iov_base;
2552 	lease->action = action;
2553 	lease->mask = cpu_to_le16(1);
2554 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2555 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2556 	lease->seq = cpu_to_le32(seq);
2557 	put_unaligned_le32(dnamelen, lease + 1);
2558 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2559 
2560 	/*
2561 	 * if this is a preemptive lease RELEASE, no need to
2562 	 * flush request stream, since the actual request will
2563 	 * soon follow.
2564 	 */
2565 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2566 
2567 	ceph_con_send(&session->s_con, msg);
2568 }
2569 
2570 /*
2571  * Preemptively release a lease we expect to invalidate anyway.
2572  * Pass @inode always, @dentry is optional.
2573  */
2574 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2575 			     struct dentry *dentry, int mask)
2576 {
2577 	struct ceph_dentry_info *di;
2578 	struct ceph_mds_session *session;
2579 	u32 seq;
2580 
2581 	BUG_ON(inode == NULL);
2582 	BUG_ON(dentry == NULL);
2583 	BUG_ON(mask == 0);
2584 
2585 	/* is dentry lease valid? */
2586 	spin_lock(&dentry->d_lock);
2587 	di = ceph_dentry(dentry);
2588 	if (!di || !di->lease_session ||
2589 	    di->lease_session->s_mds < 0 ||
2590 	    di->lease_gen != di->lease_session->s_cap_gen ||
2591 	    !time_before(jiffies, dentry->d_time)) {
2592 		dout("lease_release inode %p dentry %p -- "
2593 		     "no lease on %d\n",
2594 		     inode, dentry, mask);
2595 		spin_unlock(&dentry->d_lock);
2596 		return;
2597 	}
2598 
2599 	/* we do have a lease on this dentry; note mds and seq */
2600 	session = ceph_get_mds_session(di->lease_session);
2601 	seq = di->lease_seq;
2602 	__ceph_mdsc_drop_dentry_lease(dentry);
2603 	spin_unlock(&dentry->d_lock);
2604 
2605 	dout("lease_release inode %p dentry %p mask %d to mds%d\n",
2606 	     inode, dentry, mask, session->s_mds);
2607 	ceph_mdsc_lease_send_msg(session, inode, dentry,
2608 				 CEPH_MDS_LEASE_RELEASE, seq);
2609 	ceph_put_mds_session(session);
2610 }
2611 
2612 /*
2613  * drop all leases (and dentry refs) in preparation for umount
2614  */
2615 static void drop_leases(struct ceph_mds_client *mdsc)
2616 {
2617 	int i;
2618 
2619 	dout("drop_leases\n");
2620 	mutex_lock(&mdsc->mutex);
2621 	for (i = 0; i < mdsc->max_sessions; i++) {
2622 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2623 		if (!s)
2624 			continue;
2625 		mutex_unlock(&mdsc->mutex);
2626 		mutex_lock(&s->s_mutex);
2627 		mutex_unlock(&s->s_mutex);
2628 		ceph_put_mds_session(s);
2629 		mutex_lock(&mdsc->mutex);
2630 	}
2631 	mutex_unlock(&mdsc->mutex);
2632 }
2633 
2634 
2635 
2636 /*
2637  * delayed work -- periodically trim expired leases, renew caps with mds
2638  */
2639 static void schedule_delayed(struct ceph_mds_client *mdsc)
2640 {
2641 	int delay = 5;
2642 	unsigned hz = round_jiffies_relative(HZ * delay);
2643 	schedule_delayed_work(&mdsc->delayed_work, hz);
2644 }
2645 
2646 static void delayed_work(struct work_struct *work)
2647 {
2648 	int i;
2649 	struct ceph_mds_client *mdsc =
2650 		container_of(work, struct ceph_mds_client, delayed_work.work);
2651 	int renew_interval;
2652 	int renew_caps;
2653 
2654 	dout("mdsc delayed_work\n");
2655 	ceph_check_delayed_caps(mdsc);
2656 
2657 	mutex_lock(&mdsc->mutex);
2658 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2659 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2660 				   mdsc->last_renew_caps);
2661 	if (renew_caps)
2662 		mdsc->last_renew_caps = jiffies;
2663 
2664 	for (i = 0; i < mdsc->max_sessions; i++) {
2665 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2666 		if (s == NULL)
2667 			continue;
2668 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2669 			dout("resending session close request for mds%d\n",
2670 			     s->s_mds);
2671 			request_close_session(mdsc, s);
2672 			ceph_put_mds_session(s);
2673 			continue;
2674 		}
2675 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2676 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2677 				s->s_state = CEPH_MDS_SESSION_HUNG;
2678 				pr_info("mds%d hung\n", s->s_mds);
2679 			}
2680 		}
2681 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2682 			/* this mds is failed or recovering, just wait */
2683 			ceph_put_mds_session(s);
2684 			continue;
2685 		}
2686 		mutex_unlock(&mdsc->mutex);
2687 
2688 		mutex_lock(&s->s_mutex);
2689 		if (renew_caps)
2690 			send_renew_caps(mdsc, s);
2691 		else
2692 			ceph_con_keepalive(&s->s_con);
2693 		ceph_add_cap_releases(mdsc, s, -1);
2694 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2695 		    s->s_state == CEPH_MDS_SESSION_HUNG)
2696 			ceph_send_cap_releases(mdsc, s);
2697 		mutex_unlock(&s->s_mutex);
2698 		ceph_put_mds_session(s);
2699 
2700 		mutex_lock(&mdsc->mutex);
2701 	}
2702 	mutex_unlock(&mdsc->mutex);
2703 
2704 	schedule_delayed(mdsc);
2705 }
2706 
2707 
2708 int ceph_mdsc_init(struct ceph_mds_client *mdsc, struct ceph_client *client)
2709 {
2710 	mdsc->client = client;
2711 	mutex_init(&mdsc->mutex);
2712 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
2713 	if (mdsc->mdsmap == NULL)
2714 		return -ENOMEM;
2715 
2716 	init_completion(&mdsc->safe_umount_waiters);
2717 	init_completion(&mdsc->session_close_waiters);
2718 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
2719 	mdsc->sessions = NULL;
2720 	mdsc->max_sessions = 0;
2721 	mdsc->stopping = 0;
2722 	init_rwsem(&mdsc->snap_rwsem);
2723 	mdsc->snap_realms = RB_ROOT;
2724 	INIT_LIST_HEAD(&mdsc->snap_empty);
2725 	spin_lock_init(&mdsc->snap_empty_lock);
2726 	mdsc->last_tid = 0;
2727 	mdsc->request_tree = RB_ROOT;
2728 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
2729 	mdsc->last_renew_caps = jiffies;
2730 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
2731 	spin_lock_init(&mdsc->cap_delay_lock);
2732 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
2733 	spin_lock_init(&mdsc->snap_flush_lock);
2734 	mdsc->cap_flush_seq = 0;
2735 	INIT_LIST_HEAD(&mdsc->cap_dirty);
2736 	mdsc->num_cap_flushing = 0;
2737 	spin_lock_init(&mdsc->cap_dirty_lock);
2738 	init_waitqueue_head(&mdsc->cap_flushing_wq);
2739 	spin_lock_init(&mdsc->dentry_lru_lock);
2740 	INIT_LIST_HEAD(&mdsc->dentry_lru);
2741 
2742 	return 0;
2743 }
2744 
2745 /*
2746  * Wait for safe replies on open mds requests.  If we time out, drop
2747  * all requests from the tree to avoid dangling dentry refs.
2748  */
2749 static void wait_requests(struct ceph_mds_client *mdsc)
2750 {
2751 	struct ceph_mds_request *req;
2752 	struct ceph_client *client = mdsc->client;
2753 
2754 	mutex_lock(&mdsc->mutex);
2755 	if (__get_oldest_req(mdsc)) {
2756 		mutex_unlock(&mdsc->mutex);
2757 
2758 		dout("wait_requests waiting for requests\n");
2759 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
2760 				    client->mount_args->mount_timeout * HZ);
2761 
2762 		/* tear down remaining requests */
2763 		mutex_lock(&mdsc->mutex);
2764 		while ((req = __get_oldest_req(mdsc))) {
2765 			dout("wait_requests timed out on tid %llu\n",
2766 			     req->r_tid);
2767 			__unregister_request(mdsc, req);
2768 		}
2769 	}
2770 	mutex_unlock(&mdsc->mutex);
2771 	dout("wait_requests done\n");
2772 }
2773 
2774 /*
2775  * called before mount is ro, and before dentries are torn down.
2776  * (hmm, does this still race with new lookups?)
2777  */
2778 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
2779 {
2780 	dout("pre_umount\n");
2781 	mdsc->stopping = 1;
2782 
2783 	drop_leases(mdsc);
2784 	ceph_flush_dirty_caps(mdsc);
2785 	wait_requests(mdsc);
2786 }
2787 
2788 /*
2789  * wait for all write mds requests to flush.
2790  */
2791 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
2792 {
2793 	struct ceph_mds_request *req = NULL, *nextreq;
2794 	struct rb_node *n;
2795 
2796 	mutex_lock(&mdsc->mutex);
2797 	dout("wait_unsafe_requests want %lld\n", want_tid);
2798 restart:
2799 	req = __get_oldest_req(mdsc);
2800 	while (req && req->r_tid <= want_tid) {
2801 		/* find next request */
2802 		n = rb_next(&req->r_node);
2803 		if (n)
2804 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
2805 		else
2806 			nextreq = NULL;
2807 		if ((req->r_op & CEPH_MDS_OP_WRITE)) {
2808 			/* write op */
2809 			ceph_mdsc_get_request(req);
2810 			if (nextreq)
2811 				ceph_mdsc_get_request(nextreq);
2812 			mutex_unlock(&mdsc->mutex);
2813 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
2814 			     req->r_tid, want_tid);
2815 			wait_for_completion(&req->r_safe_completion);
2816 			mutex_lock(&mdsc->mutex);
2817 			ceph_mdsc_put_request(req);
2818 			if (!nextreq)
2819 				break;  /* next dne before, so we're done! */
2820 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
2821 				/* next request was removed from tree */
2822 				ceph_mdsc_put_request(nextreq);
2823 				goto restart;
2824 			}
2825 			ceph_mdsc_put_request(nextreq);  /* won't go away */
2826 		}
2827 		req = nextreq;
2828 	}
2829 	mutex_unlock(&mdsc->mutex);
2830 	dout("wait_unsafe_requests done\n");
2831 }
2832 
2833 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
2834 {
2835 	u64 want_tid, want_flush;
2836 
2837 	if (mdsc->client->mount_state == CEPH_MOUNT_SHUTDOWN)
2838 		return;
2839 
2840 	dout("sync\n");
2841 	mutex_lock(&mdsc->mutex);
2842 	want_tid = mdsc->last_tid;
2843 	want_flush = mdsc->cap_flush_seq;
2844 	mutex_unlock(&mdsc->mutex);
2845 	dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
2846 
2847 	ceph_flush_dirty_caps(mdsc);
2848 
2849 	wait_unsafe_requests(mdsc, want_tid);
2850 	wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
2851 }
2852 
2853 
2854 /*
2855  * called after sb is ro.
2856  */
2857 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
2858 {
2859 	struct ceph_mds_session *session;
2860 	int i;
2861 	int n;
2862 	struct ceph_client *client = mdsc->client;
2863 	unsigned long started, timeout = client->mount_args->mount_timeout * HZ;
2864 
2865 	dout("close_sessions\n");
2866 
2867 	mutex_lock(&mdsc->mutex);
2868 
2869 	/* close sessions */
2870 	started = jiffies;
2871 	while (time_before(jiffies, started + timeout)) {
2872 		dout("closing sessions\n");
2873 		n = 0;
2874 		for (i = 0; i < mdsc->max_sessions; i++) {
2875 			session = __ceph_lookup_mds_session(mdsc, i);
2876 			if (!session)
2877 				continue;
2878 			mutex_unlock(&mdsc->mutex);
2879 			mutex_lock(&session->s_mutex);
2880 			__close_session(mdsc, session);
2881 			mutex_unlock(&session->s_mutex);
2882 			ceph_put_mds_session(session);
2883 			mutex_lock(&mdsc->mutex);
2884 			n++;
2885 		}
2886 		if (n == 0)
2887 			break;
2888 
2889 		if (client->mount_state == CEPH_MOUNT_SHUTDOWN)
2890 			break;
2891 
2892 		dout("waiting for sessions to close\n");
2893 		mutex_unlock(&mdsc->mutex);
2894 		wait_for_completion_timeout(&mdsc->session_close_waiters,
2895 					    timeout);
2896 		mutex_lock(&mdsc->mutex);
2897 	}
2898 
2899 	/* tear down remaining sessions */
2900 	for (i = 0; i < mdsc->max_sessions; i++) {
2901 		if (mdsc->sessions[i]) {
2902 			session = get_session(mdsc->sessions[i]);
2903 			__unregister_session(mdsc, session);
2904 			mutex_unlock(&mdsc->mutex);
2905 			mutex_lock(&session->s_mutex);
2906 			remove_session_caps(session);
2907 			mutex_unlock(&session->s_mutex);
2908 			ceph_put_mds_session(session);
2909 			mutex_lock(&mdsc->mutex);
2910 		}
2911 	}
2912 
2913 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
2914 
2915 	mutex_unlock(&mdsc->mutex);
2916 
2917 	ceph_cleanup_empty_realms(mdsc);
2918 
2919 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
2920 
2921 	dout("stopped\n");
2922 }
2923 
2924 void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
2925 {
2926 	dout("stop\n");
2927 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
2928 	if (mdsc->mdsmap)
2929 		ceph_mdsmap_destroy(mdsc->mdsmap);
2930 	kfree(mdsc->sessions);
2931 }
2932 
2933 
2934 /*
2935  * handle mds map update.
2936  */
2937 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
2938 {
2939 	u32 epoch;
2940 	u32 maplen;
2941 	void *p = msg->front.iov_base;
2942 	void *end = p + msg->front.iov_len;
2943 	struct ceph_mdsmap *newmap, *oldmap;
2944 	struct ceph_fsid fsid;
2945 	int err = -EINVAL;
2946 
2947 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
2948 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
2949 	if (ceph_check_fsid(mdsc->client, &fsid) < 0)
2950 		return;
2951 	epoch = ceph_decode_32(&p);
2952 	maplen = ceph_decode_32(&p);
2953 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
2954 
2955 	/* do we need it? */
2956 	ceph_monc_got_mdsmap(&mdsc->client->monc, epoch);
2957 	mutex_lock(&mdsc->mutex);
2958 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
2959 		dout("handle_map epoch %u <= our %u\n",
2960 		     epoch, mdsc->mdsmap->m_epoch);
2961 		mutex_unlock(&mdsc->mutex);
2962 		return;
2963 	}
2964 
2965 	newmap = ceph_mdsmap_decode(&p, end);
2966 	if (IS_ERR(newmap)) {
2967 		err = PTR_ERR(newmap);
2968 		goto bad_unlock;
2969 	}
2970 
2971 	/* swap into place */
2972 	if (mdsc->mdsmap) {
2973 		oldmap = mdsc->mdsmap;
2974 		mdsc->mdsmap = newmap;
2975 		check_new_map(mdsc, newmap, oldmap);
2976 		ceph_mdsmap_destroy(oldmap);
2977 	} else {
2978 		mdsc->mdsmap = newmap;  /* first mds map */
2979 	}
2980 	mdsc->client->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
2981 
2982 	__wake_requests(mdsc, &mdsc->waiting_for_map);
2983 
2984 	mutex_unlock(&mdsc->mutex);
2985 	schedule_delayed(mdsc);
2986 	return;
2987 
2988 bad_unlock:
2989 	mutex_unlock(&mdsc->mutex);
2990 bad:
2991 	pr_err("error decoding mdsmap %d\n", err);
2992 	return;
2993 }
2994 
2995 static struct ceph_connection *con_get(struct ceph_connection *con)
2996 {
2997 	struct ceph_mds_session *s = con->private;
2998 
2999 	if (get_session(s)) {
3000 		dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3001 		return con;
3002 	}
3003 	dout("mdsc con_get %p FAIL\n", s);
3004 	return NULL;
3005 }
3006 
3007 static void con_put(struct ceph_connection *con)
3008 {
3009 	struct ceph_mds_session *s = con->private;
3010 
3011 	ceph_put_mds_session(s);
3012 	dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref));
3013 }
3014 
3015 /*
3016  * if the client is unresponsive for long enough, the mds will kill
3017  * the session entirely.
3018  */
3019 static void peer_reset(struct ceph_connection *con)
3020 {
3021 	struct ceph_mds_session *s = con->private;
3022 	struct ceph_mds_client *mdsc = s->s_mdsc;
3023 
3024 	pr_warning("mds%d closed our session\n", s->s_mds);
3025 	send_mds_reconnect(mdsc, s);
3026 }
3027 
3028 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3029 {
3030 	struct ceph_mds_session *s = con->private;
3031 	struct ceph_mds_client *mdsc = s->s_mdsc;
3032 	int type = le16_to_cpu(msg->hdr.type);
3033 
3034 	mutex_lock(&mdsc->mutex);
3035 	if (__verify_registered_session(mdsc, s) < 0) {
3036 		mutex_unlock(&mdsc->mutex);
3037 		goto out;
3038 	}
3039 	mutex_unlock(&mdsc->mutex);
3040 
3041 	switch (type) {
3042 	case CEPH_MSG_MDS_MAP:
3043 		ceph_mdsc_handle_map(mdsc, msg);
3044 		break;
3045 	case CEPH_MSG_CLIENT_SESSION:
3046 		handle_session(s, msg);
3047 		break;
3048 	case CEPH_MSG_CLIENT_REPLY:
3049 		handle_reply(s, msg);
3050 		break;
3051 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3052 		handle_forward(mdsc, s, msg);
3053 		break;
3054 	case CEPH_MSG_CLIENT_CAPS:
3055 		ceph_handle_caps(s, msg);
3056 		break;
3057 	case CEPH_MSG_CLIENT_SNAP:
3058 		ceph_handle_snap(mdsc, s, msg);
3059 		break;
3060 	case CEPH_MSG_CLIENT_LEASE:
3061 		handle_lease(mdsc, s, msg);
3062 		break;
3063 
3064 	default:
3065 		pr_err("received unknown message type %d %s\n", type,
3066 		       ceph_msg_type_name(type));
3067 	}
3068 out:
3069 	ceph_msg_put(msg);
3070 }
3071 
3072 /*
3073  * authentication
3074  */
3075 static int get_authorizer(struct ceph_connection *con,
3076 			  void **buf, int *len, int *proto,
3077 			  void **reply_buf, int *reply_len, int force_new)
3078 {
3079 	struct ceph_mds_session *s = con->private;
3080 	struct ceph_mds_client *mdsc = s->s_mdsc;
3081 	struct ceph_auth_client *ac = mdsc->client->monc.auth;
3082 	int ret = 0;
3083 
3084 	if (force_new && s->s_authorizer) {
3085 		ac->ops->destroy_authorizer(ac, s->s_authorizer);
3086 		s->s_authorizer = NULL;
3087 	}
3088 	if (s->s_authorizer == NULL) {
3089 		if (ac->ops->create_authorizer) {
3090 			ret = ac->ops->create_authorizer(
3091 				ac, CEPH_ENTITY_TYPE_MDS,
3092 				&s->s_authorizer,
3093 				&s->s_authorizer_buf,
3094 				&s->s_authorizer_buf_len,
3095 				&s->s_authorizer_reply_buf,
3096 				&s->s_authorizer_reply_buf_len);
3097 			if (ret)
3098 				return ret;
3099 		}
3100 	}
3101 
3102 	*proto = ac->protocol;
3103 	*buf = s->s_authorizer_buf;
3104 	*len = s->s_authorizer_buf_len;
3105 	*reply_buf = s->s_authorizer_reply_buf;
3106 	*reply_len = s->s_authorizer_reply_buf_len;
3107 	return 0;
3108 }
3109 
3110 
3111 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3112 {
3113 	struct ceph_mds_session *s = con->private;
3114 	struct ceph_mds_client *mdsc = s->s_mdsc;
3115 	struct ceph_auth_client *ac = mdsc->client->monc.auth;
3116 
3117 	return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len);
3118 }
3119 
3120 static int invalidate_authorizer(struct ceph_connection *con)
3121 {
3122 	struct ceph_mds_session *s = con->private;
3123 	struct ceph_mds_client *mdsc = s->s_mdsc;
3124 	struct ceph_auth_client *ac = mdsc->client->monc.auth;
3125 
3126 	if (ac->ops->invalidate_authorizer)
3127 		ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3128 
3129 	return ceph_monc_validate_auth(&mdsc->client->monc);
3130 }
3131 
3132 static const struct ceph_connection_operations mds_con_ops = {
3133 	.get = con_get,
3134 	.put = con_put,
3135 	.dispatch = dispatch,
3136 	.get_authorizer = get_authorizer,
3137 	.verify_authorizer_reply = verify_authorizer_reply,
3138 	.invalidate_authorizer = invalidate_authorizer,
3139 	.peer_reset = peer_reset,
3140 };
3141 
3142 
3143 
3144 
3145 /* eof */
3146