1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/wait.h> 5 #include <linux/slab.h> 6 #include <linux/sched.h> 7 #include <linux/debugfs.h> 8 #include <linux/seq_file.h> 9 10 #include "super.h" 11 #include "mds_client.h" 12 13 #include <linux/ceph/messenger.h> 14 #include <linux/ceph/decode.h> 15 #include <linux/ceph/pagelist.h> 16 #include <linux/ceph/auth.h> 17 #include <linux/ceph/debugfs.h> 18 19 /* 20 * A cluster of MDS (metadata server) daemons is responsible for 21 * managing the file system namespace (the directory hierarchy and 22 * inodes) and for coordinating shared access to storage. Metadata is 23 * partitioning hierarchically across a number of servers, and that 24 * partition varies over time as the cluster adjusts the distribution 25 * in order to balance load. 26 * 27 * The MDS client is primarily responsible to managing synchronous 28 * metadata requests for operations like open, unlink, and so forth. 29 * If there is a MDS failure, we find out about it when we (possibly 30 * request and) receive a new MDS map, and can resubmit affected 31 * requests. 32 * 33 * For the most part, though, we take advantage of a lossless 34 * communications channel to the MDS, and do not need to worry about 35 * timing out or resubmitting requests. 36 * 37 * We maintain a stateful "session" with each MDS we interact with. 38 * Within each session, we sent periodic heartbeat messages to ensure 39 * any capabilities or leases we have been issues remain valid. If 40 * the session times out and goes stale, our leases and capabilities 41 * are no longer valid. 42 */ 43 44 struct ceph_reconnect_state { 45 struct ceph_pagelist *pagelist; 46 bool flock; 47 }; 48 49 static void __wake_requests(struct ceph_mds_client *mdsc, 50 struct list_head *head); 51 52 static const struct ceph_connection_operations mds_con_ops; 53 54 55 /* 56 * mds reply parsing 57 */ 58 59 /* 60 * parse individual inode info 61 */ 62 static int parse_reply_info_in(void **p, void *end, 63 struct ceph_mds_reply_info_in *info, 64 int features) 65 { 66 int err = -EIO; 67 68 info->in = *p; 69 *p += sizeof(struct ceph_mds_reply_inode) + 70 sizeof(*info->in->fragtree.splits) * 71 le32_to_cpu(info->in->fragtree.nsplits); 72 73 ceph_decode_32_safe(p, end, info->symlink_len, bad); 74 ceph_decode_need(p, end, info->symlink_len, bad); 75 info->symlink = *p; 76 *p += info->symlink_len; 77 78 if (features & CEPH_FEATURE_DIRLAYOUTHASH) 79 ceph_decode_copy_safe(p, end, &info->dir_layout, 80 sizeof(info->dir_layout), bad); 81 else 82 memset(&info->dir_layout, 0, sizeof(info->dir_layout)); 83 84 ceph_decode_32_safe(p, end, info->xattr_len, bad); 85 ceph_decode_need(p, end, info->xattr_len, bad); 86 info->xattr_data = *p; 87 *p += info->xattr_len; 88 return 0; 89 bad: 90 return err; 91 } 92 93 /* 94 * parse a normal reply, which may contain a (dir+)dentry and/or a 95 * target inode. 96 */ 97 static int parse_reply_info_trace(void **p, void *end, 98 struct ceph_mds_reply_info_parsed *info, 99 int features) 100 { 101 int err; 102 103 if (info->head->is_dentry) { 104 err = parse_reply_info_in(p, end, &info->diri, features); 105 if (err < 0) 106 goto out_bad; 107 108 if (unlikely(*p + sizeof(*info->dirfrag) > end)) 109 goto bad; 110 info->dirfrag = *p; 111 *p += sizeof(*info->dirfrag) + 112 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist); 113 if (unlikely(*p > end)) 114 goto bad; 115 116 ceph_decode_32_safe(p, end, info->dname_len, bad); 117 ceph_decode_need(p, end, info->dname_len, bad); 118 info->dname = *p; 119 *p += info->dname_len; 120 info->dlease = *p; 121 *p += sizeof(*info->dlease); 122 } 123 124 if (info->head->is_target) { 125 err = parse_reply_info_in(p, end, &info->targeti, features); 126 if (err < 0) 127 goto out_bad; 128 } 129 130 if (unlikely(*p != end)) 131 goto bad; 132 return 0; 133 134 bad: 135 err = -EIO; 136 out_bad: 137 pr_err("problem parsing mds trace %d\n", err); 138 return err; 139 } 140 141 /* 142 * parse readdir results 143 */ 144 static int parse_reply_info_dir(void **p, void *end, 145 struct ceph_mds_reply_info_parsed *info, 146 int features) 147 { 148 u32 num, i = 0; 149 int err; 150 151 info->dir_dir = *p; 152 if (*p + sizeof(*info->dir_dir) > end) 153 goto bad; 154 *p += sizeof(*info->dir_dir) + 155 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist); 156 if (*p > end) 157 goto bad; 158 159 ceph_decode_need(p, end, sizeof(num) + 2, bad); 160 num = ceph_decode_32(p); 161 info->dir_end = ceph_decode_8(p); 162 info->dir_complete = ceph_decode_8(p); 163 if (num == 0) 164 goto done; 165 166 /* alloc large array */ 167 info->dir_nr = num; 168 info->dir_in = kcalloc(num, sizeof(*info->dir_in) + 169 sizeof(*info->dir_dname) + 170 sizeof(*info->dir_dname_len) + 171 sizeof(*info->dir_dlease), 172 GFP_NOFS); 173 if (info->dir_in == NULL) { 174 err = -ENOMEM; 175 goto out_bad; 176 } 177 info->dir_dname = (void *)(info->dir_in + num); 178 info->dir_dname_len = (void *)(info->dir_dname + num); 179 info->dir_dlease = (void *)(info->dir_dname_len + num); 180 181 while (num) { 182 /* dentry */ 183 ceph_decode_need(p, end, sizeof(u32)*2, bad); 184 info->dir_dname_len[i] = ceph_decode_32(p); 185 ceph_decode_need(p, end, info->dir_dname_len[i], bad); 186 info->dir_dname[i] = *p; 187 *p += info->dir_dname_len[i]; 188 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i], 189 info->dir_dname[i]); 190 info->dir_dlease[i] = *p; 191 *p += sizeof(struct ceph_mds_reply_lease); 192 193 /* inode */ 194 err = parse_reply_info_in(p, end, &info->dir_in[i], features); 195 if (err < 0) 196 goto out_bad; 197 i++; 198 num--; 199 } 200 201 done: 202 if (*p != end) 203 goto bad; 204 return 0; 205 206 bad: 207 err = -EIO; 208 out_bad: 209 pr_err("problem parsing dir contents %d\n", err); 210 return err; 211 } 212 213 /* 214 * parse fcntl F_GETLK results 215 */ 216 static int parse_reply_info_filelock(void **p, void *end, 217 struct ceph_mds_reply_info_parsed *info, 218 int features) 219 { 220 if (*p + sizeof(*info->filelock_reply) > end) 221 goto bad; 222 223 info->filelock_reply = *p; 224 *p += sizeof(*info->filelock_reply); 225 226 if (unlikely(*p != end)) 227 goto bad; 228 return 0; 229 230 bad: 231 return -EIO; 232 } 233 234 /* 235 * parse extra results 236 */ 237 static int parse_reply_info_extra(void **p, void *end, 238 struct ceph_mds_reply_info_parsed *info, 239 int features) 240 { 241 if (info->head->op == CEPH_MDS_OP_GETFILELOCK) 242 return parse_reply_info_filelock(p, end, info, features); 243 else 244 return parse_reply_info_dir(p, end, info, features); 245 } 246 247 /* 248 * parse entire mds reply 249 */ 250 static int parse_reply_info(struct ceph_msg *msg, 251 struct ceph_mds_reply_info_parsed *info, 252 int features) 253 { 254 void *p, *end; 255 u32 len; 256 int err; 257 258 info->head = msg->front.iov_base; 259 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 260 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 261 262 /* trace */ 263 ceph_decode_32_safe(&p, end, len, bad); 264 if (len > 0) { 265 err = parse_reply_info_trace(&p, p+len, info, features); 266 if (err < 0) 267 goto out_bad; 268 } 269 270 /* extra */ 271 ceph_decode_32_safe(&p, end, len, bad); 272 if (len > 0) { 273 err = parse_reply_info_extra(&p, p+len, info, features); 274 if (err < 0) 275 goto out_bad; 276 } 277 278 /* snap blob */ 279 ceph_decode_32_safe(&p, end, len, bad); 280 info->snapblob_len = len; 281 info->snapblob = p; 282 p += len; 283 284 if (p != end) 285 goto bad; 286 return 0; 287 288 bad: 289 err = -EIO; 290 out_bad: 291 pr_err("mds parse_reply err %d\n", err); 292 return err; 293 } 294 295 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 296 { 297 kfree(info->dir_in); 298 } 299 300 301 /* 302 * sessions 303 */ 304 static const char *session_state_name(int s) 305 { 306 switch (s) { 307 case CEPH_MDS_SESSION_NEW: return "new"; 308 case CEPH_MDS_SESSION_OPENING: return "opening"; 309 case CEPH_MDS_SESSION_OPEN: return "open"; 310 case CEPH_MDS_SESSION_HUNG: return "hung"; 311 case CEPH_MDS_SESSION_CLOSING: return "closing"; 312 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 313 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 314 default: return "???"; 315 } 316 } 317 318 static struct ceph_mds_session *get_session(struct ceph_mds_session *s) 319 { 320 if (atomic_inc_not_zero(&s->s_ref)) { 321 dout("mdsc get_session %p %d -> %d\n", s, 322 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref)); 323 return s; 324 } else { 325 dout("mdsc get_session %p 0 -- FAIL", s); 326 return NULL; 327 } 328 } 329 330 void ceph_put_mds_session(struct ceph_mds_session *s) 331 { 332 dout("mdsc put_session %p %d -> %d\n", s, 333 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1); 334 if (atomic_dec_and_test(&s->s_ref)) { 335 if (s->s_authorizer) 336 s->s_mdsc->fsc->client->monc.auth->ops->destroy_authorizer( 337 s->s_mdsc->fsc->client->monc.auth, 338 s->s_authorizer); 339 kfree(s); 340 } 341 } 342 343 /* 344 * called under mdsc->mutex 345 */ 346 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 347 int mds) 348 { 349 struct ceph_mds_session *session; 350 351 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL) 352 return NULL; 353 session = mdsc->sessions[mds]; 354 dout("lookup_mds_session %p %d\n", session, 355 atomic_read(&session->s_ref)); 356 get_session(session); 357 return session; 358 } 359 360 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 361 { 362 if (mds >= mdsc->max_sessions) 363 return false; 364 return mdsc->sessions[mds]; 365 } 366 367 static int __verify_registered_session(struct ceph_mds_client *mdsc, 368 struct ceph_mds_session *s) 369 { 370 if (s->s_mds >= mdsc->max_sessions || 371 mdsc->sessions[s->s_mds] != s) 372 return -ENOENT; 373 return 0; 374 } 375 376 /* 377 * create+register a new session for given mds. 378 * called under mdsc->mutex. 379 */ 380 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 381 int mds) 382 { 383 struct ceph_mds_session *s; 384 385 s = kzalloc(sizeof(*s), GFP_NOFS); 386 if (!s) 387 return ERR_PTR(-ENOMEM); 388 s->s_mdsc = mdsc; 389 s->s_mds = mds; 390 s->s_state = CEPH_MDS_SESSION_NEW; 391 s->s_ttl = 0; 392 s->s_seq = 0; 393 mutex_init(&s->s_mutex); 394 395 ceph_con_init(mdsc->fsc->client->msgr, &s->s_con); 396 s->s_con.private = s; 397 s->s_con.ops = &mds_con_ops; 398 s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS; 399 s->s_con.peer_name.num = cpu_to_le64(mds); 400 401 spin_lock_init(&s->s_cap_lock); 402 s->s_cap_gen = 0; 403 s->s_cap_ttl = 0; 404 s->s_renew_requested = 0; 405 s->s_renew_seq = 0; 406 INIT_LIST_HEAD(&s->s_caps); 407 s->s_nr_caps = 0; 408 s->s_trim_caps = 0; 409 atomic_set(&s->s_ref, 1); 410 INIT_LIST_HEAD(&s->s_waiting); 411 INIT_LIST_HEAD(&s->s_unsafe); 412 s->s_num_cap_releases = 0; 413 s->s_cap_iterator = NULL; 414 INIT_LIST_HEAD(&s->s_cap_releases); 415 INIT_LIST_HEAD(&s->s_cap_releases_done); 416 INIT_LIST_HEAD(&s->s_cap_flushing); 417 INIT_LIST_HEAD(&s->s_cap_snaps_flushing); 418 419 dout("register_session mds%d\n", mds); 420 if (mds >= mdsc->max_sessions) { 421 int newmax = 1 << get_count_order(mds+1); 422 struct ceph_mds_session **sa; 423 424 dout("register_session realloc to %d\n", newmax); 425 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 426 if (sa == NULL) 427 goto fail_realloc; 428 if (mdsc->sessions) { 429 memcpy(sa, mdsc->sessions, 430 mdsc->max_sessions * sizeof(void *)); 431 kfree(mdsc->sessions); 432 } 433 mdsc->sessions = sa; 434 mdsc->max_sessions = newmax; 435 } 436 mdsc->sessions[mds] = s; 437 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 438 439 ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 440 441 return s; 442 443 fail_realloc: 444 kfree(s); 445 return ERR_PTR(-ENOMEM); 446 } 447 448 /* 449 * called under mdsc->mutex 450 */ 451 static void __unregister_session(struct ceph_mds_client *mdsc, 452 struct ceph_mds_session *s) 453 { 454 dout("__unregister_session mds%d %p\n", s->s_mds, s); 455 BUG_ON(mdsc->sessions[s->s_mds] != s); 456 mdsc->sessions[s->s_mds] = NULL; 457 ceph_con_close(&s->s_con); 458 ceph_put_mds_session(s); 459 } 460 461 /* 462 * drop session refs in request. 463 * 464 * should be last request ref, or hold mdsc->mutex 465 */ 466 static void put_request_session(struct ceph_mds_request *req) 467 { 468 if (req->r_session) { 469 ceph_put_mds_session(req->r_session); 470 req->r_session = NULL; 471 } 472 } 473 474 void ceph_mdsc_release_request(struct kref *kref) 475 { 476 struct ceph_mds_request *req = container_of(kref, 477 struct ceph_mds_request, 478 r_kref); 479 if (req->r_request) 480 ceph_msg_put(req->r_request); 481 if (req->r_reply) { 482 ceph_msg_put(req->r_reply); 483 destroy_reply_info(&req->r_reply_info); 484 } 485 if (req->r_inode) { 486 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 487 iput(req->r_inode); 488 } 489 if (req->r_locked_dir) 490 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 491 if (req->r_target_inode) 492 iput(req->r_target_inode); 493 if (req->r_dentry) 494 dput(req->r_dentry); 495 if (req->r_old_dentry) { 496 /* 497 * track (and drop pins for) r_old_dentry_dir 498 * separately, since r_old_dentry's d_parent may have 499 * changed between the dir mutex being dropped and 500 * this request being freed. 501 */ 502 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 503 CEPH_CAP_PIN); 504 dput(req->r_old_dentry); 505 iput(req->r_old_dentry_dir); 506 } 507 kfree(req->r_path1); 508 kfree(req->r_path2); 509 put_request_session(req); 510 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 511 kfree(req); 512 } 513 514 /* 515 * lookup session, bump ref if found. 516 * 517 * called under mdsc->mutex. 518 */ 519 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc, 520 u64 tid) 521 { 522 struct ceph_mds_request *req; 523 struct rb_node *n = mdsc->request_tree.rb_node; 524 525 while (n) { 526 req = rb_entry(n, struct ceph_mds_request, r_node); 527 if (tid < req->r_tid) 528 n = n->rb_left; 529 else if (tid > req->r_tid) 530 n = n->rb_right; 531 else { 532 ceph_mdsc_get_request(req); 533 return req; 534 } 535 } 536 return NULL; 537 } 538 539 static void __insert_request(struct ceph_mds_client *mdsc, 540 struct ceph_mds_request *new) 541 { 542 struct rb_node **p = &mdsc->request_tree.rb_node; 543 struct rb_node *parent = NULL; 544 struct ceph_mds_request *req = NULL; 545 546 while (*p) { 547 parent = *p; 548 req = rb_entry(parent, struct ceph_mds_request, r_node); 549 if (new->r_tid < req->r_tid) 550 p = &(*p)->rb_left; 551 else if (new->r_tid > req->r_tid) 552 p = &(*p)->rb_right; 553 else 554 BUG(); 555 } 556 557 rb_link_node(&new->r_node, parent, p); 558 rb_insert_color(&new->r_node, &mdsc->request_tree); 559 } 560 561 /* 562 * Register an in-flight request, and assign a tid. Link to directory 563 * are modifying (if any). 564 * 565 * Called under mdsc->mutex. 566 */ 567 static void __register_request(struct ceph_mds_client *mdsc, 568 struct ceph_mds_request *req, 569 struct inode *dir) 570 { 571 req->r_tid = ++mdsc->last_tid; 572 if (req->r_num_caps) 573 ceph_reserve_caps(mdsc, &req->r_caps_reservation, 574 req->r_num_caps); 575 dout("__register_request %p tid %lld\n", req, req->r_tid); 576 ceph_mdsc_get_request(req); 577 __insert_request(mdsc, req); 578 579 req->r_uid = current_fsuid(); 580 req->r_gid = current_fsgid(); 581 582 if (dir) { 583 struct ceph_inode_info *ci = ceph_inode(dir); 584 585 ihold(dir); 586 spin_lock(&ci->i_unsafe_lock); 587 req->r_unsafe_dir = dir; 588 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 589 spin_unlock(&ci->i_unsafe_lock); 590 } 591 } 592 593 static void __unregister_request(struct ceph_mds_client *mdsc, 594 struct ceph_mds_request *req) 595 { 596 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 597 rb_erase(&req->r_node, &mdsc->request_tree); 598 RB_CLEAR_NODE(&req->r_node); 599 600 if (req->r_unsafe_dir) { 601 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 602 603 spin_lock(&ci->i_unsafe_lock); 604 list_del_init(&req->r_unsafe_dir_item); 605 spin_unlock(&ci->i_unsafe_lock); 606 607 iput(req->r_unsafe_dir); 608 req->r_unsafe_dir = NULL; 609 } 610 611 ceph_mdsc_put_request(req); 612 } 613 614 /* 615 * Choose mds to send request to next. If there is a hint set in the 616 * request (e.g., due to a prior forward hint from the mds), use that. 617 * Otherwise, consult frag tree and/or caps to identify the 618 * appropriate mds. If all else fails, choose randomly. 619 * 620 * Called under mdsc->mutex. 621 */ 622 static struct dentry *get_nonsnap_parent(struct dentry *dentry) 623 { 624 /* 625 * we don't need to worry about protecting the d_parent access 626 * here because we never renaming inside the snapped namespace 627 * except to resplice to another snapdir, and either the old or new 628 * result is a valid result. 629 */ 630 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP) 631 dentry = dentry->d_parent; 632 return dentry; 633 } 634 635 static int __choose_mds(struct ceph_mds_client *mdsc, 636 struct ceph_mds_request *req) 637 { 638 struct inode *inode; 639 struct ceph_inode_info *ci; 640 struct ceph_cap *cap; 641 int mode = req->r_direct_mode; 642 int mds = -1; 643 u32 hash = req->r_direct_hash; 644 bool is_hash = req->r_direct_is_hash; 645 646 /* 647 * is there a specific mds we should try? ignore hint if we have 648 * no session and the mds is not up (active or recovering). 649 */ 650 if (req->r_resend_mds >= 0 && 651 (__have_session(mdsc, req->r_resend_mds) || 652 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 653 dout("choose_mds using resend_mds mds%d\n", 654 req->r_resend_mds); 655 return req->r_resend_mds; 656 } 657 658 if (mode == USE_RANDOM_MDS) 659 goto random; 660 661 inode = NULL; 662 if (req->r_inode) { 663 inode = req->r_inode; 664 } else if (req->r_dentry) { 665 /* ignore race with rename; old or new d_parent is okay */ 666 struct dentry *parent = req->r_dentry->d_parent; 667 struct inode *dir = parent->d_inode; 668 669 if (dir->i_sb != mdsc->fsc->sb) { 670 /* not this fs! */ 671 inode = req->r_dentry->d_inode; 672 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 673 /* direct snapped/virtual snapdir requests 674 * based on parent dir inode */ 675 struct dentry *dn = get_nonsnap_parent(parent); 676 inode = dn->d_inode; 677 dout("__choose_mds using nonsnap parent %p\n", inode); 678 } else if (req->r_dentry->d_inode) { 679 /* dentry target */ 680 inode = req->r_dentry->d_inode; 681 } else { 682 /* dir + name */ 683 inode = dir; 684 hash = ceph_dentry_hash(dir, req->r_dentry); 685 is_hash = true; 686 } 687 } 688 689 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash, 690 (int)hash, mode); 691 if (!inode) 692 goto random; 693 ci = ceph_inode(inode); 694 695 if (is_hash && S_ISDIR(inode->i_mode)) { 696 struct ceph_inode_frag frag; 697 int found; 698 699 ceph_choose_frag(ci, hash, &frag, &found); 700 if (found) { 701 if (mode == USE_ANY_MDS && frag.ndist > 0) { 702 u8 r; 703 704 /* choose a random replica */ 705 get_random_bytes(&r, 1); 706 r %= frag.ndist; 707 mds = frag.dist[r]; 708 dout("choose_mds %p %llx.%llx " 709 "frag %u mds%d (%d/%d)\n", 710 inode, ceph_vinop(inode), 711 frag.frag, mds, 712 (int)r, frag.ndist); 713 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 714 CEPH_MDS_STATE_ACTIVE) 715 return mds; 716 } 717 718 /* since this file/dir wasn't known to be 719 * replicated, then we want to look for the 720 * authoritative mds. */ 721 mode = USE_AUTH_MDS; 722 if (frag.mds >= 0) { 723 /* choose auth mds */ 724 mds = frag.mds; 725 dout("choose_mds %p %llx.%llx " 726 "frag %u mds%d (auth)\n", 727 inode, ceph_vinop(inode), frag.frag, mds); 728 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 729 CEPH_MDS_STATE_ACTIVE) 730 return mds; 731 } 732 } 733 } 734 735 spin_lock(&inode->i_lock); 736 cap = NULL; 737 if (mode == USE_AUTH_MDS) 738 cap = ci->i_auth_cap; 739 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 740 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 741 if (!cap) { 742 spin_unlock(&inode->i_lock); 743 goto random; 744 } 745 mds = cap->session->s_mds; 746 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n", 747 inode, ceph_vinop(inode), mds, 748 cap == ci->i_auth_cap ? "auth " : "", cap); 749 spin_unlock(&inode->i_lock); 750 return mds; 751 752 random: 753 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 754 dout("choose_mds chose random mds%d\n", mds); 755 return mds; 756 } 757 758 759 /* 760 * session messages 761 */ 762 static struct ceph_msg *create_session_msg(u32 op, u64 seq) 763 { 764 struct ceph_msg *msg; 765 struct ceph_mds_session_head *h; 766 767 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 768 false); 769 if (!msg) { 770 pr_err("create_session_msg ENOMEM creating msg\n"); 771 return NULL; 772 } 773 h = msg->front.iov_base; 774 h->op = cpu_to_le32(op); 775 h->seq = cpu_to_le64(seq); 776 return msg; 777 } 778 779 /* 780 * send session open request. 781 * 782 * called under mdsc->mutex 783 */ 784 static int __open_session(struct ceph_mds_client *mdsc, 785 struct ceph_mds_session *session) 786 { 787 struct ceph_msg *msg; 788 int mstate; 789 int mds = session->s_mds; 790 791 /* wait for mds to go active? */ 792 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 793 dout("open_session to mds%d (%s)\n", mds, 794 ceph_mds_state_name(mstate)); 795 session->s_state = CEPH_MDS_SESSION_OPENING; 796 session->s_renew_requested = jiffies; 797 798 /* send connect message */ 799 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq); 800 if (!msg) 801 return -ENOMEM; 802 ceph_con_send(&session->s_con, msg); 803 return 0; 804 } 805 806 /* 807 * open sessions for any export targets for the given mds 808 * 809 * called under mdsc->mutex 810 */ 811 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 812 struct ceph_mds_session *session) 813 { 814 struct ceph_mds_info *mi; 815 struct ceph_mds_session *ts; 816 int i, mds = session->s_mds; 817 int target; 818 819 if (mds >= mdsc->mdsmap->m_max_mds) 820 return; 821 mi = &mdsc->mdsmap->m_info[mds]; 822 dout("open_export_target_sessions for mds%d (%d targets)\n", 823 session->s_mds, mi->num_export_targets); 824 825 for (i = 0; i < mi->num_export_targets; i++) { 826 target = mi->export_targets[i]; 827 ts = __ceph_lookup_mds_session(mdsc, target); 828 if (!ts) { 829 ts = register_session(mdsc, target); 830 if (IS_ERR(ts)) 831 return; 832 } 833 if (session->s_state == CEPH_MDS_SESSION_NEW || 834 session->s_state == CEPH_MDS_SESSION_CLOSING) 835 __open_session(mdsc, session); 836 else 837 dout(" mds%d target mds%d %p is %s\n", session->s_mds, 838 i, ts, session_state_name(ts->s_state)); 839 ceph_put_mds_session(ts); 840 } 841 } 842 843 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 844 struct ceph_mds_session *session) 845 { 846 mutex_lock(&mdsc->mutex); 847 __open_export_target_sessions(mdsc, session); 848 mutex_unlock(&mdsc->mutex); 849 } 850 851 /* 852 * session caps 853 */ 854 855 /* 856 * Free preallocated cap messages assigned to this session 857 */ 858 static void cleanup_cap_releases(struct ceph_mds_session *session) 859 { 860 struct ceph_msg *msg; 861 862 spin_lock(&session->s_cap_lock); 863 while (!list_empty(&session->s_cap_releases)) { 864 msg = list_first_entry(&session->s_cap_releases, 865 struct ceph_msg, list_head); 866 list_del_init(&msg->list_head); 867 ceph_msg_put(msg); 868 } 869 while (!list_empty(&session->s_cap_releases_done)) { 870 msg = list_first_entry(&session->s_cap_releases_done, 871 struct ceph_msg, list_head); 872 list_del_init(&msg->list_head); 873 ceph_msg_put(msg); 874 } 875 spin_unlock(&session->s_cap_lock); 876 } 877 878 /* 879 * Helper to safely iterate over all caps associated with a session, with 880 * special care taken to handle a racing __ceph_remove_cap(). 881 * 882 * Caller must hold session s_mutex. 883 */ 884 static int iterate_session_caps(struct ceph_mds_session *session, 885 int (*cb)(struct inode *, struct ceph_cap *, 886 void *), void *arg) 887 { 888 struct list_head *p; 889 struct ceph_cap *cap; 890 struct inode *inode, *last_inode = NULL; 891 struct ceph_cap *old_cap = NULL; 892 int ret; 893 894 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 895 spin_lock(&session->s_cap_lock); 896 p = session->s_caps.next; 897 while (p != &session->s_caps) { 898 cap = list_entry(p, struct ceph_cap, session_caps); 899 inode = igrab(&cap->ci->vfs_inode); 900 if (!inode) { 901 p = p->next; 902 continue; 903 } 904 session->s_cap_iterator = cap; 905 spin_unlock(&session->s_cap_lock); 906 907 if (last_inode) { 908 iput(last_inode); 909 last_inode = NULL; 910 } 911 if (old_cap) { 912 ceph_put_cap(session->s_mdsc, old_cap); 913 old_cap = NULL; 914 } 915 916 ret = cb(inode, cap, arg); 917 last_inode = inode; 918 919 spin_lock(&session->s_cap_lock); 920 p = p->next; 921 if (cap->ci == NULL) { 922 dout("iterate_session_caps finishing cap %p removal\n", 923 cap); 924 BUG_ON(cap->session != session); 925 list_del_init(&cap->session_caps); 926 session->s_nr_caps--; 927 cap->session = NULL; 928 old_cap = cap; /* put_cap it w/o locks held */ 929 } 930 if (ret < 0) 931 goto out; 932 } 933 ret = 0; 934 out: 935 session->s_cap_iterator = NULL; 936 spin_unlock(&session->s_cap_lock); 937 938 if (last_inode) 939 iput(last_inode); 940 if (old_cap) 941 ceph_put_cap(session->s_mdsc, old_cap); 942 943 return ret; 944 } 945 946 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 947 void *arg) 948 { 949 struct ceph_inode_info *ci = ceph_inode(inode); 950 int drop = 0; 951 952 dout("removing cap %p, ci is %p, inode is %p\n", 953 cap, ci, &ci->vfs_inode); 954 spin_lock(&inode->i_lock); 955 __ceph_remove_cap(cap); 956 if (!__ceph_is_any_real_caps(ci)) { 957 struct ceph_mds_client *mdsc = 958 ceph_sb_to_client(inode->i_sb)->mdsc; 959 960 spin_lock(&mdsc->cap_dirty_lock); 961 if (!list_empty(&ci->i_dirty_item)) { 962 pr_info(" dropping dirty %s state for %p %lld\n", 963 ceph_cap_string(ci->i_dirty_caps), 964 inode, ceph_ino(inode)); 965 ci->i_dirty_caps = 0; 966 list_del_init(&ci->i_dirty_item); 967 drop = 1; 968 } 969 if (!list_empty(&ci->i_flushing_item)) { 970 pr_info(" dropping dirty+flushing %s state for %p %lld\n", 971 ceph_cap_string(ci->i_flushing_caps), 972 inode, ceph_ino(inode)); 973 ci->i_flushing_caps = 0; 974 list_del_init(&ci->i_flushing_item); 975 mdsc->num_cap_flushing--; 976 drop = 1; 977 } 978 if (drop && ci->i_wrbuffer_ref) { 979 pr_info(" dropping dirty data for %p %lld\n", 980 inode, ceph_ino(inode)); 981 ci->i_wrbuffer_ref = 0; 982 ci->i_wrbuffer_ref_head = 0; 983 drop++; 984 } 985 spin_unlock(&mdsc->cap_dirty_lock); 986 } 987 spin_unlock(&inode->i_lock); 988 while (drop--) 989 iput(inode); 990 return 0; 991 } 992 993 /* 994 * caller must hold session s_mutex 995 */ 996 static void remove_session_caps(struct ceph_mds_session *session) 997 { 998 dout("remove_session_caps on %p\n", session); 999 iterate_session_caps(session, remove_session_caps_cb, NULL); 1000 BUG_ON(session->s_nr_caps > 0); 1001 BUG_ON(!list_empty(&session->s_cap_flushing)); 1002 cleanup_cap_releases(session); 1003 } 1004 1005 /* 1006 * wake up any threads waiting on this session's caps. if the cap is 1007 * old (didn't get renewed on the client reconnect), remove it now. 1008 * 1009 * caller must hold s_mutex. 1010 */ 1011 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 1012 void *arg) 1013 { 1014 struct ceph_inode_info *ci = ceph_inode(inode); 1015 1016 wake_up_all(&ci->i_cap_wq); 1017 if (arg) { 1018 spin_lock(&inode->i_lock); 1019 ci->i_wanted_max_size = 0; 1020 ci->i_requested_max_size = 0; 1021 spin_unlock(&inode->i_lock); 1022 } 1023 return 0; 1024 } 1025 1026 static void wake_up_session_caps(struct ceph_mds_session *session, 1027 int reconnect) 1028 { 1029 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1030 iterate_session_caps(session, wake_up_session_cb, 1031 (void *)(unsigned long)reconnect); 1032 } 1033 1034 /* 1035 * Send periodic message to MDS renewing all currently held caps. The 1036 * ack will reset the expiration for all caps from this session. 1037 * 1038 * caller holds s_mutex 1039 */ 1040 static int send_renew_caps(struct ceph_mds_client *mdsc, 1041 struct ceph_mds_session *session) 1042 { 1043 struct ceph_msg *msg; 1044 int state; 1045 1046 if (time_after_eq(jiffies, session->s_cap_ttl) && 1047 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1048 pr_info("mds%d caps stale\n", session->s_mds); 1049 session->s_renew_requested = jiffies; 1050 1051 /* do not try to renew caps until a recovering mds has reconnected 1052 * with its clients. */ 1053 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1054 if (state < CEPH_MDS_STATE_RECONNECT) { 1055 dout("send_renew_caps ignoring mds%d (%s)\n", 1056 session->s_mds, ceph_mds_state_name(state)); 1057 return 0; 1058 } 1059 1060 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 1061 ceph_mds_state_name(state)); 1062 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 1063 ++session->s_renew_seq); 1064 if (!msg) 1065 return -ENOMEM; 1066 ceph_con_send(&session->s_con, msg); 1067 return 0; 1068 } 1069 1070 /* 1071 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 1072 * 1073 * Called under session->s_mutex 1074 */ 1075 static void renewed_caps(struct ceph_mds_client *mdsc, 1076 struct ceph_mds_session *session, int is_renew) 1077 { 1078 int was_stale; 1079 int wake = 0; 1080 1081 spin_lock(&session->s_cap_lock); 1082 was_stale = is_renew && (session->s_cap_ttl == 0 || 1083 time_after_eq(jiffies, session->s_cap_ttl)); 1084 1085 session->s_cap_ttl = session->s_renew_requested + 1086 mdsc->mdsmap->m_session_timeout*HZ; 1087 1088 if (was_stale) { 1089 if (time_before(jiffies, session->s_cap_ttl)) { 1090 pr_info("mds%d caps renewed\n", session->s_mds); 1091 wake = 1; 1092 } else { 1093 pr_info("mds%d caps still stale\n", session->s_mds); 1094 } 1095 } 1096 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 1097 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 1098 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 1099 spin_unlock(&session->s_cap_lock); 1100 1101 if (wake) 1102 wake_up_session_caps(session, 0); 1103 } 1104 1105 /* 1106 * send a session close request 1107 */ 1108 static int request_close_session(struct ceph_mds_client *mdsc, 1109 struct ceph_mds_session *session) 1110 { 1111 struct ceph_msg *msg; 1112 1113 dout("request_close_session mds%d state %s seq %lld\n", 1114 session->s_mds, session_state_name(session->s_state), 1115 session->s_seq); 1116 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); 1117 if (!msg) 1118 return -ENOMEM; 1119 ceph_con_send(&session->s_con, msg); 1120 return 0; 1121 } 1122 1123 /* 1124 * Called with s_mutex held. 1125 */ 1126 static int __close_session(struct ceph_mds_client *mdsc, 1127 struct ceph_mds_session *session) 1128 { 1129 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 1130 return 0; 1131 session->s_state = CEPH_MDS_SESSION_CLOSING; 1132 return request_close_session(mdsc, session); 1133 } 1134 1135 /* 1136 * Trim old(er) caps. 1137 * 1138 * Because we can't cache an inode without one or more caps, we do 1139 * this indirectly: if a cap is unused, we prune its aliases, at which 1140 * point the inode will hopefully get dropped to. 1141 * 1142 * Yes, this is a bit sloppy. Our only real goal here is to respond to 1143 * memory pressure from the MDS, though, so it needn't be perfect. 1144 */ 1145 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1146 { 1147 struct ceph_mds_session *session = arg; 1148 struct ceph_inode_info *ci = ceph_inode(inode); 1149 int used, oissued, mine; 1150 1151 if (session->s_trim_caps <= 0) 1152 return -1; 1153 1154 spin_lock(&inode->i_lock); 1155 mine = cap->issued | cap->implemented; 1156 used = __ceph_caps_used(ci); 1157 oissued = __ceph_caps_issued_other(ci, cap); 1158 1159 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n", 1160 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1161 ceph_cap_string(used)); 1162 if (ci->i_dirty_caps) 1163 goto out; /* dirty caps */ 1164 if ((used & ~oissued) & mine) 1165 goto out; /* we need these caps */ 1166 1167 session->s_trim_caps--; 1168 if (oissued) { 1169 /* we aren't the only cap.. just remove us */ 1170 __ceph_remove_cap(cap); 1171 } else { 1172 /* try to drop referring dentries */ 1173 spin_unlock(&inode->i_lock); 1174 d_prune_aliases(inode); 1175 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 1176 inode, cap, atomic_read(&inode->i_count)); 1177 return 0; 1178 } 1179 1180 out: 1181 spin_unlock(&inode->i_lock); 1182 return 0; 1183 } 1184 1185 /* 1186 * Trim session cap count down to some max number. 1187 */ 1188 static int trim_caps(struct ceph_mds_client *mdsc, 1189 struct ceph_mds_session *session, 1190 int max_caps) 1191 { 1192 int trim_caps = session->s_nr_caps - max_caps; 1193 1194 dout("trim_caps mds%d start: %d / %d, trim %d\n", 1195 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 1196 if (trim_caps > 0) { 1197 session->s_trim_caps = trim_caps; 1198 iterate_session_caps(session, trim_caps_cb, session); 1199 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 1200 session->s_mds, session->s_nr_caps, max_caps, 1201 trim_caps - session->s_trim_caps); 1202 session->s_trim_caps = 0; 1203 } 1204 return 0; 1205 } 1206 1207 /* 1208 * Allocate cap_release messages. If there is a partially full message 1209 * in the queue, try to allocate enough to cover it's remainder, so that 1210 * we can send it immediately. 1211 * 1212 * Called under s_mutex. 1213 */ 1214 int ceph_add_cap_releases(struct ceph_mds_client *mdsc, 1215 struct ceph_mds_session *session) 1216 { 1217 struct ceph_msg *msg, *partial = NULL; 1218 struct ceph_mds_cap_release *head; 1219 int err = -ENOMEM; 1220 int extra = mdsc->fsc->mount_options->cap_release_safety; 1221 int num; 1222 1223 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds, 1224 extra); 1225 1226 spin_lock(&session->s_cap_lock); 1227 1228 if (!list_empty(&session->s_cap_releases)) { 1229 msg = list_first_entry(&session->s_cap_releases, 1230 struct ceph_msg, 1231 list_head); 1232 head = msg->front.iov_base; 1233 num = le32_to_cpu(head->num); 1234 if (num) { 1235 dout(" partial %p with (%d/%d)\n", msg, num, 1236 (int)CEPH_CAPS_PER_RELEASE); 1237 extra += CEPH_CAPS_PER_RELEASE - num; 1238 partial = msg; 1239 } 1240 } 1241 while (session->s_num_cap_releases < session->s_nr_caps + extra) { 1242 spin_unlock(&session->s_cap_lock); 1243 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE, 1244 GFP_NOFS, false); 1245 if (!msg) 1246 goto out_unlocked; 1247 dout("add_cap_releases %p msg %p now %d\n", session, msg, 1248 (int)msg->front.iov_len); 1249 head = msg->front.iov_base; 1250 head->num = cpu_to_le32(0); 1251 msg->front.iov_len = sizeof(*head); 1252 spin_lock(&session->s_cap_lock); 1253 list_add(&msg->list_head, &session->s_cap_releases); 1254 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE; 1255 } 1256 1257 if (partial) { 1258 head = partial->front.iov_base; 1259 num = le32_to_cpu(head->num); 1260 dout(" queueing partial %p with %d/%d\n", partial, num, 1261 (int)CEPH_CAPS_PER_RELEASE); 1262 list_move_tail(&partial->list_head, 1263 &session->s_cap_releases_done); 1264 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num; 1265 } 1266 err = 0; 1267 spin_unlock(&session->s_cap_lock); 1268 out_unlocked: 1269 return err; 1270 } 1271 1272 /* 1273 * flush all dirty inode data to disk. 1274 * 1275 * returns true if we've flushed through want_flush_seq 1276 */ 1277 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq) 1278 { 1279 int mds, ret = 1; 1280 1281 dout("check_cap_flush want %lld\n", want_flush_seq); 1282 mutex_lock(&mdsc->mutex); 1283 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) { 1284 struct ceph_mds_session *session = mdsc->sessions[mds]; 1285 1286 if (!session) 1287 continue; 1288 get_session(session); 1289 mutex_unlock(&mdsc->mutex); 1290 1291 mutex_lock(&session->s_mutex); 1292 if (!list_empty(&session->s_cap_flushing)) { 1293 struct ceph_inode_info *ci = 1294 list_entry(session->s_cap_flushing.next, 1295 struct ceph_inode_info, 1296 i_flushing_item); 1297 struct inode *inode = &ci->vfs_inode; 1298 1299 spin_lock(&inode->i_lock); 1300 if (ci->i_cap_flush_seq <= want_flush_seq) { 1301 dout("check_cap_flush still flushing %p " 1302 "seq %lld <= %lld to mds%d\n", inode, 1303 ci->i_cap_flush_seq, want_flush_seq, 1304 session->s_mds); 1305 ret = 0; 1306 } 1307 spin_unlock(&inode->i_lock); 1308 } 1309 mutex_unlock(&session->s_mutex); 1310 ceph_put_mds_session(session); 1311 1312 if (!ret) 1313 return ret; 1314 mutex_lock(&mdsc->mutex); 1315 } 1316 1317 mutex_unlock(&mdsc->mutex); 1318 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq); 1319 return ret; 1320 } 1321 1322 /* 1323 * called under s_mutex 1324 */ 1325 void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 1326 struct ceph_mds_session *session) 1327 { 1328 struct ceph_msg *msg; 1329 1330 dout("send_cap_releases mds%d\n", session->s_mds); 1331 spin_lock(&session->s_cap_lock); 1332 while (!list_empty(&session->s_cap_releases_done)) { 1333 msg = list_first_entry(&session->s_cap_releases_done, 1334 struct ceph_msg, list_head); 1335 list_del_init(&msg->list_head); 1336 spin_unlock(&session->s_cap_lock); 1337 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1338 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1339 ceph_con_send(&session->s_con, msg); 1340 spin_lock(&session->s_cap_lock); 1341 } 1342 spin_unlock(&session->s_cap_lock); 1343 } 1344 1345 static void discard_cap_releases(struct ceph_mds_client *mdsc, 1346 struct ceph_mds_session *session) 1347 { 1348 struct ceph_msg *msg; 1349 struct ceph_mds_cap_release *head; 1350 unsigned num; 1351 1352 dout("discard_cap_releases mds%d\n", session->s_mds); 1353 spin_lock(&session->s_cap_lock); 1354 1355 /* zero out the in-progress message */ 1356 msg = list_first_entry(&session->s_cap_releases, 1357 struct ceph_msg, list_head); 1358 head = msg->front.iov_base; 1359 num = le32_to_cpu(head->num); 1360 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num); 1361 head->num = cpu_to_le32(0); 1362 session->s_num_cap_releases += num; 1363 1364 /* requeue completed messages */ 1365 while (!list_empty(&session->s_cap_releases_done)) { 1366 msg = list_first_entry(&session->s_cap_releases_done, 1367 struct ceph_msg, list_head); 1368 list_del_init(&msg->list_head); 1369 1370 head = msg->front.iov_base; 1371 num = le32_to_cpu(head->num); 1372 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, 1373 num); 1374 session->s_num_cap_releases += num; 1375 head->num = cpu_to_le32(0); 1376 msg->front.iov_len = sizeof(*head); 1377 list_add(&msg->list_head, &session->s_cap_releases); 1378 } 1379 1380 spin_unlock(&session->s_cap_lock); 1381 } 1382 1383 /* 1384 * requests 1385 */ 1386 1387 /* 1388 * Create an mds request. 1389 */ 1390 struct ceph_mds_request * 1391 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 1392 { 1393 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS); 1394 1395 if (!req) 1396 return ERR_PTR(-ENOMEM); 1397 1398 mutex_init(&req->r_fill_mutex); 1399 req->r_mdsc = mdsc; 1400 req->r_started = jiffies; 1401 req->r_resend_mds = -1; 1402 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 1403 req->r_fmode = -1; 1404 kref_init(&req->r_kref); 1405 INIT_LIST_HEAD(&req->r_wait); 1406 init_completion(&req->r_completion); 1407 init_completion(&req->r_safe_completion); 1408 INIT_LIST_HEAD(&req->r_unsafe_item); 1409 1410 req->r_op = op; 1411 req->r_direct_mode = mode; 1412 return req; 1413 } 1414 1415 /* 1416 * return oldest (lowest) request, tid in request tree, 0 if none. 1417 * 1418 * called under mdsc->mutex. 1419 */ 1420 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 1421 { 1422 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 1423 return NULL; 1424 return rb_entry(rb_first(&mdsc->request_tree), 1425 struct ceph_mds_request, r_node); 1426 } 1427 1428 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 1429 { 1430 struct ceph_mds_request *req = __get_oldest_req(mdsc); 1431 1432 if (req) 1433 return req->r_tid; 1434 return 0; 1435 } 1436 1437 /* 1438 * Build a dentry's path. Allocate on heap; caller must kfree. Based 1439 * on build_path_from_dentry in fs/cifs/dir.c. 1440 * 1441 * If @stop_on_nosnap, generate path relative to the first non-snapped 1442 * inode. 1443 * 1444 * Encode hidden .snap dirs as a double /, i.e. 1445 * foo/.snap/bar -> foo//bar 1446 */ 1447 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base, 1448 int stop_on_nosnap) 1449 { 1450 struct dentry *temp; 1451 char *path; 1452 int len, pos; 1453 unsigned seq; 1454 1455 if (dentry == NULL) 1456 return ERR_PTR(-EINVAL); 1457 1458 retry: 1459 len = 0; 1460 seq = read_seqbegin(&rename_lock); 1461 rcu_read_lock(); 1462 for (temp = dentry; !IS_ROOT(temp);) { 1463 struct inode *inode = temp->d_inode; 1464 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) 1465 len++; /* slash only */ 1466 else if (stop_on_nosnap && inode && 1467 ceph_snap(inode) == CEPH_NOSNAP) 1468 break; 1469 else 1470 len += 1 + temp->d_name.len; 1471 temp = temp->d_parent; 1472 if (temp == NULL) { 1473 rcu_read_unlock(); 1474 pr_err("build_path corrupt dentry %p\n", dentry); 1475 return ERR_PTR(-EINVAL); 1476 } 1477 } 1478 rcu_read_unlock(); 1479 if (len) 1480 len--; /* no leading '/' */ 1481 1482 path = kmalloc(len+1, GFP_NOFS); 1483 if (path == NULL) 1484 return ERR_PTR(-ENOMEM); 1485 pos = len; 1486 path[pos] = 0; /* trailing null */ 1487 rcu_read_lock(); 1488 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) { 1489 struct inode *inode; 1490 1491 spin_lock(&temp->d_lock); 1492 inode = temp->d_inode; 1493 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 1494 dout("build_path path+%d: %p SNAPDIR\n", 1495 pos, temp); 1496 } else if (stop_on_nosnap && inode && 1497 ceph_snap(inode) == CEPH_NOSNAP) { 1498 break; 1499 } else { 1500 pos -= temp->d_name.len; 1501 if (pos < 0) { 1502 spin_unlock(&temp->d_lock); 1503 break; 1504 } 1505 strncpy(path + pos, temp->d_name.name, 1506 temp->d_name.len); 1507 } 1508 spin_unlock(&temp->d_lock); 1509 if (pos) 1510 path[--pos] = '/'; 1511 temp = temp->d_parent; 1512 if (temp == NULL) { 1513 rcu_read_unlock(); 1514 pr_err("build_path corrupt dentry\n"); 1515 kfree(path); 1516 return ERR_PTR(-EINVAL); 1517 } 1518 } 1519 rcu_read_unlock(); 1520 if (pos != 0 || read_seqretry(&rename_lock, seq)) { 1521 pr_err("build_path did not end path lookup where " 1522 "expected, namelen is %d, pos is %d\n", len, pos); 1523 /* presumably this is only possible if racing with a 1524 rename of one of the parent directories (we can not 1525 lock the dentries above us to prevent this, but 1526 retrying should be harmless) */ 1527 kfree(path); 1528 goto retry; 1529 } 1530 1531 *base = ceph_ino(temp->d_inode); 1532 *plen = len; 1533 dout("build_path on %p %d built %llx '%.*s'\n", 1534 dentry, dentry->d_count, *base, len, path); 1535 return path; 1536 } 1537 1538 static int build_dentry_path(struct dentry *dentry, 1539 const char **ppath, int *ppathlen, u64 *pino, 1540 int *pfreepath) 1541 { 1542 char *path; 1543 1544 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) { 1545 *pino = ceph_ino(dentry->d_parent->d_inode); 1546 *ppath = dentry->d_name.name; 1547 *ppathlen = dentry->d_name.len; 1548 return 0; 1549 } 1550 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1551 if (IS_ERR(path)) 1552 return PTR_ERR(path); 1553 *ppath = path; 1554 *pfreepath = 1; 1555 return 0; 1556 } 1557 1558 static int build_inode_path(struct inode *inode, 1559 const char **ppath, int *ppathlen, u64 *pino, 1560 int *pfreepath) 1561 { 1562 struct dentry *dentry; 1563 char *path; 1564 1565 if (ceph_snap(inode) == CEPH_NOSNAP) { 1566 *pino = ceph_ino(inode); 1567 *ppathlen = 0; 1568 return 0; 1569 } 1570 dentry = d_find_alias(inode); 1571 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1572 dput(dentry); 1573 if (IS_ERR(path)) 1574 return PTR_ERR(path); 1575 *ppath = path; 1576 *pfreepath = 1; 1577 return 0; 1578 } 1579 1580 /* 1581 * request arguments may be specified via an inode *, a dentry *, or 1582 * an explicit ino+path. 1583 */ 1584 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 1585 const char *rpath, u64 rino, 1586 const char **ppath, int *pathlen, 1587 u64 *ino, int *freepath) 1588 { 1589 int r = 0; 1590 1591 if (rinode) { 1592 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 1593 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 1594 ceph_snap(rinode)); 1595 } else if (rdentry) { 1596 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath); 1597 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 1598 *ppath); 1599 } else if (rpath || rino) { 1600 *ino = rino; 1601 *ppath = rpath; 1602 *pathlen = strlen(rpath); 1603 dout(" path %.*s\n", *pathlen, rpath); 1604 } 1605 1606 return r; 1607 } 1608 1609 /* 1610 * called under mdsc->mutex 1611 */ 1612 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc, 1613 struct ceph_mds_request *req, 1614 int mds) 1615 { 1616 struct ceph_msg *msg; 1617 struct ceph_mds_request_head *head; 1618 const char *path1 = NULL; 1619 const char *path2 = NULL; 1620 u64 ino1 = 0, ino2 = 0; 1621 int pathlen1 = 0, pathlen2 = 0; 1622 int freepath1 = 0, freepath2 = 0; 1623 int len; 1624 u16 releases; 1625 void *p, *end; 1626 int ret; 1627 1628 ret = set_request_path_attr(req->r_inode, req->r_dentry, 1629 req->r_path1, req->r_ino1.ino, 1630 &path1, &pathlen1, &ino1, &freepath1); 1631 if (ret < 0) { 1632 msg = ERR_PTR(ret); 1633 goto out; 1634 } 1635 1636 ret = set_request_path_attr(NULL, req->r_old_dentry, 1637 req->r_path2, req->r_ino2.ino, 1638 &path2, &pathlen2, &ino2, &freepath2); 1639 if (ret < 0) { 1640 msg = ERR_PTR(ret); 1641 goto out_free1; 1642 } 1643 1644 len = sizeof(*head) + 1645 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)); 1646 1647 /* calculate (max) length for cap releases */ 1648 len += sizeof(struct ceph_mds_request_release) * 1649 (!!req->r_inode_drop + !!req->r_dentry_drop + 1650 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 1651 if (req->r_dentry_drop) 1652 len += req->r_dentry->d_name.len; 1653 if (req->r_old_dentry_drop) 1654 len += req->r_old_dentry->d_name.len; 1655 1656 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false); 1657 if (!msg) { 1658 msg = ERR_PTR(-ENOMEM); 1659 goto out_free2; 1660 } 1661 1662 msg->hdr.tid = cpu_to_le64(req->r_tid); 1663 1664 head = msg->front.iov_base; 1665 p = msg->front.iov_base + sizeof(*head); 1666 end = msg->front.iov_base + msg->front.iov_len; 1667 1668 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 1669 head->op = cpu_to_le32(req->r_op); 1670 head->caller_uid = cpu_to_le32(req->r_uid); 1671 head->caller_gid = cpu_to_le32(req->r_gid); 1672 head->args = req->r_args; 1673 1674 ceph_encode_filepath(&p, end, ino1, path1); 1675 ceph_encode_filepath(&p, end, ino2, path2); 1676 1677 /* make note of release offset, in case we need to replay */ 1678 req->r_request_release_offset = p - msg->front.iov_base; 1679 1680 /* cap releases */ 1681 releases = 0; 1682 if (req->r_inode_drop) 1683 releases += ceph_encode_inode_release(&p, 1684 req->r_inode ? req->r_inode : req->r_dentry->d_inode, 1685 mds, req->r_inode_drop, req->r_inode_unless, 0); 1686 if (req->r_dentry_drop) 1687 releases += ceph_encode_dentry_release(&p, req->r_dentry, 1688 mds, req->r_dentry_drop, req->r_dentry_unless); 1689 if (req->r_old_dentry_drop) 1690 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 1691 mds, req->r_old_dentry_drop, req->r_old_dentry_unless); 1692 if (req->r_old_inode_drop) 1693 releases += ceph_encode_inode_release(&p, 1694 req->r_old_dentry->d_inode, 1695 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 1696 head->num_releases = cpu_to_le16(releases); 1697 1698 BUG_ON(p > end); 1699 msg->front.iov_len = p - msg->front.iov_base; 1700 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1701 1702 msg->pages = req->r_pages; 1703 msg->nr_pages = req->r_num_pages; 1704 msg->hdr.data_len = cpu_to_le32(req->r_data_len); 1705 msg->hdr.data_off = cpu_to_le16(0); 1706 1707 out_free2: 1708 if (freepath2) 1709 kfree((char *)path2); 1710 out_free1: 1711 if (freepath1) 1712 kfree((char *)path1); 1713 out: 1714 return msg; 1715 } 1716 1717 /* 1718 * called under mdsc->mutex if error, under no mutex if 1719 * success. 1720 */ 1721 static void complete_request(struct ceph_mds_client *mdsc, 1722 struct ceph_mds_request *req) 1723 { 1724 if (req->r_callback) 1725 req->r_callback(mdsc, req); 1726 else 1727 complete_all(&req->r_completion); 1728 } 1729 1730 /* 1731 * called under mdsc->mutex 1732 */ 1733 static int __prepare_send_request(struct ceph_mds_client *mdsc, 1734 struct ceph_mds_request *req, 1735 int mds) 1736 { 1737 struct ceph_mds_request_head *rhead; 1738 struct ceph_msg *msg; 1739 int flags = 0; 1740 1741 req->r_attempts++; 1742 if (req->r_inode) { 1743 struct ceph_cap *cap = 1744 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 1745 1746 if (cap) 1747 req->r_sent_on_mseq = cap->mseq; 1748 else 1749 req->r_sent_on_mseq = -1; 1750 } 1751 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, 1752 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 1753 1754 if (req->r_got_unsafe) { 1755 /* 1756 * Replay. Do not regenerate message (and rebuild 1757 * paths, etc.); just use the original message. 1758 * Rebuilding paths will break for renames because 1759 * d_move mangles the src name. 1760 */ 1761 msg = req->r_request; 1762 rhead = msg->front.iov_base; 1763 1764 flags = le32_to_cpu(rhead->flags); 1765 flags |= CEPH_MDS_FLAG_REPLAY; 1766 rhead->flags = cpu_to_le32(flags); 1767 1768 if (req->r_target_inode) 1769 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 1770 1771 rhead->num_retry = req->r_attempts - 1; 1772 1773 /* remove cap/dentry releases from message */ 1774 rhead->num_releases = 0; 1775 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset); 1776 msg->front.iov_len = req->r_request_release_offset; 1777 return 0; 1778 } 1779 1780 if (req->r_request) { 1781 ceph_msg_put(req->r_request); 1782 req->r_request = NULL; 1783 } 1784 msg = create_request_message(mdsc, req, mds); 1785 if (IS_ERR(msg)) { 1786 req->r_err = PTR_ERR(msg); 1787 complete_request(mdsc, req); 1788 return PTR_ERR(msg); 1789 } 1790 req->r_request = msg; 1791 1792 rhead = msg->front.iov_base; 1793 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 1794 if (req->r_got_unsafe) 1795 flags |= CEPH_MDS_FLAG_REPLAY; 1796 if (req->r_locked_dir) 1797 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 1798 rhead->flags = cpu_to_le32(flags); 1799 rhead->num_fwd = req->r_num_fwd; 1800 rhead->num_retry = req->r_attempts - 1; 1801 rhead->ino = 0; 1802 1803 dout(" r_locked_dir = %p\n", req->r_locked_dir); 1804 return 0; 1805 } 1806 1807 /* 1808 * send request, or put it on the appropriate wait list. 1809 */ 1810 static int __do_request(struct ceph_mds_client *mdsc, 1811 struct ceph_mds_request *req) 1812 { 1813 struct ceph_mds_session *session = NULL; 1814 int mds = -1; 1815 int err = -EAGAIN; 1816 1817 if (req->r_err || req->r_got_result) 1818 goto out; 1819 1820 if (req->r_timeout && 1821 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 1822 dout("do_request timed out\n"); 1823 err = -EIO; 1824 goto finish; 1825 } 1826 1827 put_request_session(req); 1828 1829 mds = __choose_mds(mdsc, req); 1830 if (mds < 0 || 1831 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 1832 dout("do_request no mds or not active, waiting for map\n"); 1833 list_add(&req->r_wait, &mdsc->waiting_for_map); 1834 goto out; 1835 } 1836 1837 /* get, open session */ 1838 session = __ceph_lookup_mds_session(mdsc, mds); 1839 if (!session) { 1840 session = register_session(mdsc, mds); 1841 if (IS_ERR(session)) { 1842 err = PTR_ERR(session); 1843 goto finish; 1844 } 1845 } 1846 req->r_session = get_session(session); 1847 1848 dout("do_request mds%d session %p state %s\n", mds, session, 1849 session_state_name(session->s_state)); 1850 if (session->s_state != CEPH_MDS_SESSION_OPEN && 1851 session->s_state != CEPH_MDS_SESSION_HUNG) { 1852 if (session->s_state == CEPH_MDS_SESSION_NEW || 1853 session->s_state == CEPH_MDS_SESSION_CLOSING) 1854 __open_session(mdsc, session); 1855 list_add(&req->r_wait, &session->s_waiting); 1856 goto out_session; 1857 } 1858 1859 /* send request */ 1860 req->r_resend_mds = -1; /* forget any previous mds hint */ 1861 1862 if (req->r_request_started == 0) /* note request start time */ 1863 req->r_request_started = jiffies; 1864 1865 err = __prepare_send_request(mdsc, req, mds); 1866 if (!err) { 1867 ceph_msg_get(req->r_request); 1868 ceph_con_send(&session->s_con, req->r_request); 1869 } 1870 1871 out_session: 1872 ceph_put_mds_session(session); 1873 out: 1874 return err; 1875 1876 finish: 1877 req->r_err = err; 1878 complete_request(mdsc, req); 1879 goto out; 1880 } 1881 1882 /* 1883 * called under mdsc->mutex 1884 */ 1885 static void __wake_requests(struct ceph_mds_client *mdsc, 1886 struct list_head *head) 1887 { 1888 struct ceph_mds_request *req, *nreq; 1889 1890 list_for_each_entry_safe(req, nreq, head, r_wait) { 1891 list_del_init(&req->r_wait); 1892 __do_request(mdsc, req); 1893 } 1894 } 1895 1896 /* 1897 * Wake up threads with requests pending for @mds, so that they can 1898 * resubmit their requests to a possibly different mds. 1899 */ 1900 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 1901 { 1902 struct ceph_mds_request *req; 1903 struct rb_node *p; 1904 1905 dout("kick_requests mds%d\n", mds); 1906 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) { 1907 req = rb_entry(p, struct ceph_mds_request, r_node); 1908 if (req->r_got_unsafe) 1909 continue; 1910 if (req->r_session && 1911 req->r_session->s_mds == mds) { 1912 dout(" kicking tid %llu\n", req->r_tid); 1913 __do_request(mdsc, req); 1914 } 1915 } 1916 } 1917 1918 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, 1919 struct ceph_mds_request *req) 1920 { 1921 dout("submit_request on %p\n", req); 1922 mutex_lock(&mdsc->mutex); 1923 __register_request(mdsc, req, NULL); 1924 __do_request(mdsc, req); 1925 mutex_unlock(&mdsc->mutex); 1926 } 1927 1928 /* 1929 * Synchrously perform an mds request. Take care of all of the 1930 * session setup, forwarding, retry details. 1931 */ 1932 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 1933 struct inode *dir, 1934 struct ceph_mds_request *req) 1935 { 1936 int err; 1937 1938 dout("do_request on %p\n", req); 1939 1940 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */ 1941 if (req->r_inode) 1942 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 1943 if (req->r_locked_dir) 1944 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 1945 if (req->r_old_dentry) 1946 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 1947 CEPH_CAP_PIN); 1948 1949 /* issue */ 1950 mutex_lock(&mdsc->mutex); 1951 __register_request(mdsc, req, dir); 1952 __do_request(mdsc, req); 1953 1954 if (req->r_err) { 1955 err = req->r_err; 1956 __unregister_request(mdsc, req); 1957 dout("do_request early error %d\n", err); 1958 goto out; 1959 } 1960 1961 /* wait */ 1962 mutex_unlock(&mdsc->mutex); 1963 dout("do_request waiting\n"); 1964 if (req->r_timeout) { 1965 err = (long)wait_for_completion_killable_timeout( 1966 &req->r_completion, req->r_timeout); 1967 if (err == 0) 1968 err = -EIO; 1969 } else { 1970 err = wait_for_completion_killable(&req->r_completion); 1971 } 1972 dout("do_request waited, got %d\n", err); 1973 mutex_lock(&mdsc->mutex); 1974 1975 /* only abort if we didn't race with a real reply */ 1976 if (req->r_got_result) { 1977 err = le32_to_cpu(req->r_reply_info.head->result); 1978 } else if (err < 0) { 1979 dout("aborted request %lld with %d\n", req->r_tid, err); 1980 1981 /* 1982 * ensure we aren't running concurrently with 1983 * ceph_fill_trace or ceph_readdir_prepopulate, which 1984 * rely on locks (dir mutex) held by our caller. 1985 */ 1986 mutex_lock(&req->r_fill_mutex); 1987 req->r_err = err; 1988 req->r_aborted = true; 1989 mutex_unlock(&req->r_fill_mutex); 1990 1991 if (req->r_locked_dir && 1992 (req->r_op & CEPH_MDS_OP_WRITE)) 1993 ceph_invalidate_dir_request(req); 1994 } else { 1995 err = req->r_err; 1996 } 1997 1998 out: 1999 mutex_unlock(&mdsc->mutex); 2000 dout("do_request %p done, result %d\n", req, err); 2001 return err; 2002 } 2003 2004 /* 2005 * Invalidate dir D_COMPLETE, dentry lease state on an aborted MDS 2006 * namespace request. 2007 */ 2008 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 2009 { 2010 struct inode *inode = req->r_locked_dir; 2011 struct ceph_inode_info *ci = ceph_inode(inode); 2012 2013 dout("invalidate_dir_request %p (D_COMPLETE, lease(s))\n", inode); 2014 spin_lock(&inode->i_lock); 2015 ceph_dir_clear_complete(inode); 2016 ci->i_release_count++; 2017 spin_unlock(&inode->i_lock); 2018 2019 if (req->r_dentry) 2020 ceph_invalidate_dentry_lease(req->r_dentry); 2021 if (req->r_old_dentry) 2022 ceph_invalidate_dentry_lease(req->r_old_dentry); 2023 } 2024 2025 /* 2026 * Handle mds reply. 2027 * 2028 * We take the session mutex and parse and process the reply immediately. 2029 * This preserves the logical ordering of replies, capabilities, etc., sent 2030 * by the MDS as they are applied to our local cache. 2031 */ 2032 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 2033 { 2034 struct ceph_mds_client *mdsc = session->s_mdsc; 2035 struct ceph_mds_request *req; 2036 struct ceph_mds_reply_head *head = msg->front.iov_base; 2037 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 2038 u64 tid; 2039 int err, result; 2040 int mds = session->s_mds; 2041 2042 if (msg->front.iov_len < sizeof(*head)) { 2043 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 2044 ceph_msg_dump(msg); 2045 return; 2046 } 2047 2048 /* get request, session */ 2049 tid = le64_to_cpu(msg->hdr.tid); 2050 mutex_lock(&mdsc->mutex); 2051 req = __lookup_request(mdsc, tid); 2052 if (!req) { 2053 dout("handle_reply on unknown tid %llu\n", tid); 2054 mutex_unlock(&mdsc->mutex); 2055 return; 2056 } 2057 dout("handle_reply %p\n", req); 2058 2059 /* correct session? */ 2060 if (req->r_session != session) { 2061 pr_err("mdsc_handle_reply got %llu on session mds%d" 2062 " not mds%d\n", tid, session->s_mds, 2063 req->r_session ? req->r_session->s_mds : -1); 2064 mutex_unlock(&mdsc->mutex); 2065 goto out; 2066 } 2067 2068 /* dup? */ 2069 if ((req->r_got_unsafe && !head->safe) || 2070 (req->r_got_safe && head->safe)) { 2071 pr_warning("got a dup %s reply on %llu from mds%d\n", 2072 head->safe ? "safe" : "unsafe", tid, mds); 2073 mutex_unlock(&mdsc->mutex); 2074 goto out; 2075 } 2076 if (req->r_got_safe && !head->safe) { 2077 pr_warning("got unsafe after safe on %llu from mds%d\n", 2078 tid, mds); 2079 mutex_unlock(&mdsc->mutex); 2080 goto out; 2081 } 2082 2083 result = le32_to_cpu(head->result); 2084 2085 /* 2086 * Handle an ESTALE 2087 * if we're not talking to the authority, send to them 2088 * if the authority has changed while we weren't looking, 2089 * send to new authority 2090 * Otherwise we just have to return an ESTALE 2091 */ 2092 if (result == -ESTALE) { 2093 dout("got ESTALE on request %llu", req->r_tid); 2094 if (!req->r_inode) { 2095 /* do nothing; not an authority problem */ 2096 } else if (req->r_direct_mode != USE_AUTH_MDS) { 2097 dout("not using auth, setting for that now"); 2098 req->r_direct_mode = USE_AUTH_MDS; 2099 __do_request(mdsc, req); 2100 mutex_unlock(&mdsc->mutex); 2101 goto out; 2102 } else { 2103 struct ceph_inode_info *ci = ceph_inode(req->r_inode); 2104 struct ceph_cap *cap = NULL; 2105 2106 if (req->r_session) 2107 cap = ceph_get_cap_for_mds(ci, 2108 req->r_session->s_mds); 2109 2110 dout("already using auth"); 2111 if ((!cap || cap != ci->i_auth_cap) || 2112 (cap->mseq != req->r_sent_on_mseq)) { 2113 dout("but cap changed, so resending"); 2114 __do_request(mdsc, req); 2115 mutex_unlock(&mdsc->mutex); 2116 goto out; 2117 } 2118 } 2119 dout("have to return ESTALE on request %llu", req->r_tid); 2120 } 2121 2122 2123 if (head->safe) { 2124 req->r_got_safe = true; 2125 __unregister_request(mdsc, req); 2126 complete_all(&req->r_safe_completion); 2127 2128 if (req->r_got_unsafe) { 2129 /* 2130 * We already handled the unsafe response, now do the 2131 * cleanup. No need to examine the response; the MDS 2132 * doesn't include any result info in the safe 2133 * response. And even if it did, there is nothing 2134 * useful we could do with a revised return value. 2135 */ 2136 dout("got safe reply %llu, mds%d\n", tid, mds); 2137 list_del_init(&req->r_unsafe_item); 2138 2139 /* last unsafe request during umount? */ 2140 if (mdsc->stopping && !__get_oldest_req(mdsc)) 2141 complete_all(&mdsc->safe_umount_waiters); 2142 mutex_unlock(&mdsc->mutex); 2143 goto out; 2144 } 2145 } else { 2146 req->r_got_unsafe = true; 2147 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 2148 } 2149 2150 dout("handle_reply tid %lld result %d\n", tid, result); 2151 rinfo = &req->r_reply_info; 2152 err = parse_reply_info(msg, rinfo, session->s_con.peer_features); 2153 mutex_unlock(&mdsc->mutex); 2154 2155 mutex_lock(&session->s_mutex); 2156 if (err < 0) { 2157 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 2158 ceph_msg_dump(msg); 2159 goto out_err; 2160 } 2161 2162 /* snap trace */ 2163 if (rinfo->snapblob_len) { 2164 down_write(&mdsc->snap_rwsem); 2165 ceph_update_snap_trace(mdsc, rinfo->snapblob, 2166 rinfo->snapblob + rinfo->snapblob_len, 2167 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP); 2168 downgrade_write(&mdsc->snap_rwsem); 2169 } else { 2170 down_read(&mdsc->snap_rwsem); 2171 } 2172 2173 /* insert trace into our cache */ 2174 mutex_lock(&req->r_fill_mutex); 2175 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session); 2176 if (err == 0) { 2177 if (result == 0 && req->r_op != CEPH_MDS_OP_GETFILELOCK && 2178 rinfo->dir_nr) 2179 ceph_readdir_prepopulate(req, req->r_session); 2180 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 2181 } 2182 mutex_unlock(&req->r_fill_mutex); 2183 2184 up_read(&mdsc->snap_rwsem); 2185 out_err: 2186 mutex_lock(&mdsc->mutex); 2187 if (!req->r_aborted) { 2188 if (err) { 2189 req->r_err = err; 2190 } else { 2191 req->r_reply = msg; 2192 ceph_msg_get(msg); 2193 req->r_got_result = true; 2194 } 2195 } else { 2196 dout("reply arrived after request %lld was aborted\n", tid); 2197 } 2198 mutex_unlock(&mdsc->mutex); 2199 2200 ceph_add_cap_releases(mdsc, req->r_session); 2201 mutex_unlock(&session->s_mutex); 2202 2203 /* kick calling process */ 2204 complete_request(mdsc, req); 2205 out: 2206 ceph_mdsc_put_request(req); 2207 return; 2208 } 2209 2210 2211 2212 /* 2213 * handle mds notification that our request has been forwarded. 2214 */ 2215 static void handle_forward(struct ceph_mds_client *mdsc, 2216 struct ceph_mds_session *session, 2217 struct ceph_msg *msg) 2218 { 2219 struct ceph_mds_request *req; 2220 u64 tid = le64_to_cpu(msg->hdr.tid); 2221 u32 next_mds; 2222 u32 fwd_seq; 2223 int err = -EINVAL; 2224 void *p = msg->front.iov_base; 2225 void *end = p + msg->front.iov_len; 2226 2227 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 2228 next_mds = ceph_decode_32(&p); 2229 fwd_seq = ceph_decode_32(&p); 2230 2231 mutex_lock(&mdsc->mutex); 2232 req = __lookup_request(mdsc, tid); 2233 if (!req) { 2234 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 2235 goto out; /* dup reply? */ 2236 } 2237 2238 if (req->r_aborted) { 2239 dout("forward tid %llu aborted, unregistering\n", tid); 2240 __unregister_request(mdsc, req); 2241 } else if (fwd_seq <= req->r_num_fwd) { 2242 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 2243 tid, next_mds, req->r_num_fwd, fwd_seq); 2244 } else { 2245 /* resend. forward race not possible; mds would drop */ 2246 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 2247 BUG_ON(req->r_err); 2248 BUG_ON(req->r_got_result); 2249 req->r_num_fwd = fwd_seq; 2250 req->r_resend_mds = next_mds; 2251 put_request_session(req); 2252 __do_request(mdsc, req); 2253 } 2254 ceph_mdsc_put_request(req); 2255 out: 2256 mutex_unlock(&mdsc->mutex); 2257 return; 2258 2259 bad: 2260 pr_err("mdsc_handle_forward decode error err=%d\n", err); 2261 } 2262 2263 /* 2264 * handle a mds session control message 2265 */ 2266 static void handle_session(struct ceph_mds_session *session, 2267 struct ceph_msg *msg) 2268 { 2269 struct ceph_mds_client *mdsc = session->s_mdsc; 2270 u32 op; 2271 u64 seq; 2272 int mds = session->s_mds; 2273 struct ceph_mds_session_head *h = msg->front.iov_base; 2274 int wake = 0; 2275 2276 /* decode */ 2277 if (msg->front.iov_len != sizeof(*h)) 2278 goto bad; 2279 op = le32_to_cpu(h->op); 2280 seq = le64_to_cpu(h->seq); 2281 2282 mutex_lock(&mdsc->mutex); 2283 if (op == CEPH_SESSION_CLOSE) 2284 __unregister_session(mdsc, session); 2285 /* FIXME: this ttl calculation is generous */ 2286 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 2287 mutex_unlock(&mdsc->mutex); 2288 2289 mutex_lock(&session->s_mutex); 2290 2291 dout("handle_session mds%d %s %p state %s seq %llu\n", 2292 mds, ceph_session_op_name(op), session, 2293 session_state_name(session->s_state), seq); 2294 2295 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 2296 session->s_state = CEPH_MDS_SESSION_OPEN; 2297 pr_info("mds%d came back\n", session->s_mds); 2298 } 2299 2300 switch (op) { 2301 case CEPH_SESSION_OPEN: 2302 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2303 pr_info("mds%d reconnect success\n", session->s_mds); 2304 session->s_state = CEPH_MDS_SESSION_OPEN; 2305 renewed_caps(mdsc, session, 0); 2306 wake = 1; 2307 if (mdsc->stopping) 2308 __close_session(mdsc, session); 2309 break; 2310 2311 case CEPH_SESSION_RENEWCAPS: 2312 if (session->s_renew_seq == seq) 2313 renewed_caps(mdsc, session, 1); 2314 break; 2315 2316 case CEPH_SESSION_CLOSE: 2317 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2318 pr_info("mds%d reconnect denied\n", session->s_mds); 2319 remove_session_caps(session); 2320 wake = 1; /* for good measure */ 2321 wake_up_all(&mdsc->session_close_wq); 2322 kick_requests(mdsc, mds); 2323 break; 2324 2325 case CEPH_SESSION_STALE: 2326 pr_info("mds%d caps went stale, renewing\n", 2327 session->s_mds); 2328 spin_lock(&session->s_cap_lock); 2329 session->s_cap_gen++; 2330 session->s_cap_ttl = 0; 2331 spin_unlock(&session->s_cap_lock); 2332 send_renew_caps(mdsc, session); 2333 break; 2334 2335 case CEPH_SESSION_RECALL_STATE: 2336 trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 2337 break; 2338 2339 default: 2340 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 2341 WARN_ON(1); 2342 } 2343 2344 mutex_unlock(&session->s_mutex); 2345 if (wake) { 2346 mutex_lock(&mdsc->mutex); 2347 __wake_requests(mdsc, &session->s_waiting); 2348 mutex_unlock(&mdsc->mutex); 2349 } 2350 return; 2351 2352 bad: 2353 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 2354 (int)msg->front.iov_len); 2355 ceph_msg_dump(msg); 2356 return; 2357 } 2358 2359 2360 /* 2361 * called under session->mutex. 2362 */ 2363 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 2364 struct ceph_mds_session *session) 2365 { 2366 struct ceph_mds_request *req, *nreq; 2367 int err; 2368 2369 dout("replay_unsafe_requests mds%d\n", session->s_mds); 2370 2371 mutex_lock(&mdsc->mutex); 2372 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) { 2373 err = __prepare_send_request(mdsc, req, session->s_mds); 2374 if (!err) { 2375 ceph_msg_get(req->r_request); 2376 ceph_con_send(&session->s_con, req->r_request); 2377 } 2378 } 2379 mutex_unlock(&mdsc->mutex); 2380 } 2381 2382 /* 2383 * Encode information about a cap for a reconnect with the MDS. 2384 */ 2385 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap, 2386 void *arg) 2387 { 2388 union { 2389 struct ceph_mds_cap_reconnect v2; 2390 struct ceph_mds_cap_reconnect_v1 v1; 2391 } rec; 2392 size_t reclen; 2393 struct ceph_inode_info *ci; 2394 struct ceph_reconnect_state *recon_state = arg; 2395 struct ceph_pagelist *pagelist = recon_state->pagelist; 2396 char *path; 2397 int pathlen, err; 2398 u64 pathbase; 2399 struct dentry *dentry; 2400 2401 ci = cap->ci; 2402 2403 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 2404 inode, ceph_vinop(inode), cap, cap->cap_id, 2405 ceph_cap_string(cap->issued)); 2406 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 2407 if (err) 2408 return err; 2409 2410 dentry = d_find_alias(inode); 2411 if (dentry) { 2412 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0); 2413 if (IS_ERR(path)) { 2414 err = PTR_ERR(path); 2415 goto out_dput; 2416 } 2417 } else { 2418 path = NULL; 2419 pathlen = 0; 2420 } 2421 err = ceph_pagelist_encode_string(pagelist, path, pathlen); 2422 if (err) 2423 goto out_free; 2424 2425 spin_lock(&inode->i_lock); 2426 cap->seq = 0; /* reset cap seq */ 2427 cap->issue_seq = 0; /* and issue_seq */ 2428 2429 if (recon_state->flock) { 2430 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 2431 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2432 rec.v2.issued = cpu_to_le32(cap->issued); 2433 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2434 rec.v2.pathbase = cpu_to_le64(pathbase); 2435 rec.v2.flock_len = 0; 2436 reclen = sizeof(rec.v2); 2437 } else { 2438 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 2439 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2440 rec.v1.issued = cpu_to_le32(cap->issued); 2441 rec.v1.size = cpu_to_le64(inode->i_size); 2442 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime); 2443 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime); 2444 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2445 rec.v1.pathbase = cpu_to_le64(pathbase); 2446 reclen = sizeof(rec.v1); 2447 } 2448 spin_unlock(&inode->i_lock); 2449 2450 if (recon_state->flock) { 2451 int num_fcntl_locks, num_flock_locks; 2452 struct ceph_pagelist_cursor trunc_point; 2453 2454 ceph_pagelist_set_cursor(pagelist, &trunc_point); 2455 do { 2456 lock_flocks(); 2457 ceph_count_locks(inode, &num_fcntl_locks, 2458 &num_flock_locks); 2459 rec.v2.flock_len = (2*sizeof(u32) + 2460 (num_fcntl_locks+num_flock_locks) * 2461 sizeof(struct ceph_filelock)); 2462 unlock_flocks(); 2463 2464 /* pre-alloc pagelist */ 2465 ceph_pagelist_truncate(pagelist, &trunc_point); 2466 err = ceph_pagelist_append(pagelist, &rec, reclen); 2467 if (!err) 2468 err = ceph_pagelist_reserve(pagelist, 2469 rec.v2.flock_len); 2470 2471 /* encode locks */ 2472 if (!err) { 2473 lock_flocks(); 2474 err = ceph_encode_locks(inode, 2475 pagelist, 2476 num_fcntl_locks, 2477 num_flock_locks); 2478 unlock_flocks(); 2479 } 2480 } while (err == -ENOSPC); 2481 } else { 2482 err = ceph_pagelist_append(pagelist, &rec, reclen); 2483 } 2484 2485 out_free: 2486 kfree(path); 2487 out_dput: 2488 dput(dentry); 2489 return err; 2490 } 2491 2492 2493 /* 2494 * If an MDS fails and recovers, clients need to reconnect in order to 2495 * reestablish shared state. This includes all caps issued through 2496 * this session _and_ the snap_realm hierarchy. Because it's not 2497 * clear which snap realms the mds cares about, we send everything we 2498 * know about.. that ensures we'll then get any new info the 2499 * recovering MDS might have. 2500 * 2501 * This is a relatively heavyweight operation, but it's rare. 2502 * 2503 * called with mdsc->mutex held. 2504 */ 2505 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 2506 struct ceph_mds_session *session) 2507 { 2508 struct ceph_msg *reply; 2509 struct rb_node *p; 2510 int mds = session->s_mds; 2511 int err = -ENOMEM; 2512 struct ceph_pagelist *pagelist; 2513 struct ceph_reconnect_state recon_state; 2514 2515 pr_info("mds%d reconnect start\n", mds); 2516 2517 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS); 2518 if (!pagelist) 2519 goto fail_nopagelist; 2520 ceph_pagelist_init(pagelist); 2521 2522 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false); 2523 if (!reply) 2524 goto fail_nomsg; 2525 2526 mutex_lock(&session->s_mutex); 2527 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 2528 session->s_seq = 0; 2529 2530 ceph_con_open(&session->s_con, 2531 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 2532 2533 /* replay unsafe requests */ 2534 replay_unsafe_requests(mdsc, session); 2535 2536 down_read(&mdsc->snap_rwsem); 2537 2538 dout("session %p state %s\n", session, 2539 session_state_name(session->s_state)); 2540 2541 /* drop old cap expires; we're about to reestablish that state */ 2542 discard_cap_releases(mdsc, session); 2543 2544 /* traverse this session's caps */ 2545 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps); 2546 if (err) 2547 goto fail; 2548 2549 recon_state.pagelist = pagelist; 2550 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK; 2551 err = iterate_session_caps(session, encode_caps_cb, &recon_state); 2552 if (err < 0) 2553 goto fail; 2554 2555 /* 2556 * snaprealms. we provide mds with the ino, seq (version), and 2557 * parent for all of our realms. If the mds has any newer info, 2558 * it will tell us. 2559 */ 2560 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 2561 struct ceph_snap_realm *realm = 2562 rb_entry(p, struct ceph_snap_realm, node); 2563 struct ceph_mds_snaprealm_reconnect sr_rec; 2564 2565 dout(" adding snap realm %llx seq %lld parent %llx\n", 2566 realm->ino, realm->seq, realm->parent_ino); 2567 sr_rec.ino = cpu_to_le64(realm->ino); 2568 sr_rec.seq = cpu_to_le64(realm->seq); 2569 sr_rec.parent = cpu_to_le64(realm->parent_ino); 2570 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 2571 if (err) 2572 goto fail; 2573 } 2574 2575 reply->pagelist = pagelist; 2576 if (recon_state.flock) 2577 reply->hdr.version = cpu_to_le16(2); 2578 reply->hdr.data_len = cpu_to_le32(pagelist->length); 2579 reply->nr_pages = calc_pages_for(0, pagelist->length); 2580 ceph_con_send(&session->s_con, reply); 2581 2582 mutex_unlock(&session->s_mutex); 2583 2584 mutex_lock(&mdsc->mutex); 2585 __wake_requests(mdsc, &session->s_waiting); 2586 mutex_unlock(&mdsc->mutex); 2587 2588 up_read(&mdsc->snap_rwsem); 2589 return; 2590 2591 fail: 2592 ceph_msg_put(reply); 2593 up_read(&mdsc->snap_rwsem); 2594 mutex_unlock(&session->s_mutex); 2595 fail_nomsg: 2596 ceph_pagelist_release(pagelist); 2597 kfree(pagelist); 2598 fail_nopagelist: 2599 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 2600 return; 2601 } 2602 2603 2604 /* 2605 * compare old and new mdsmaps, kicking requests 2606 * and closing out old connections as necessary 2607 * 2608 * called under mdsc->mutex. 2609 */ 2610 static void check_new_map(struct ceph_mds_client *mdsc, 2611 struct ceph_mdsmap *newmap, 2612 struct ceph_mdsmap *oldmap) 2613 { 2614 int i; 2615 int oldstate, newstate; 2616 struct ceph_mds_session *s; 2617 2618 dout("check_new_map new %u old %u\n", 2619 newmap->m_epoch, oldmap->m_epoch); 2620 2621 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) { 2622 if (mdsc->sessions[i] == NULL) 2623 continue; 2624 s = mdsc->sessions[i]; 2625 oldstate = ceph_mdsmap_get_state(oldmap, i); 2626 newstate = ceph_mdsmap_get_state(newmap, i); 2627 2628 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 2629 i, ceph_mds_state_name(oldstate), 2630 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 2631 ceph_mds_state_name(newstate), 2632 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 2633 session_state_name(s->s_state)); 2634 2635 if (memcmp(ceph_mdsmap_get_addr(oldmap, i), 2636 ceph_mdsmap_get_addr(newmap, i), 2637 sizeof(struct ceph_entity_addr))) { 2638 if (s->s_state == CEPH_MDS_SESSION_OPENING) { 2639 /* the session never opened, just close it 2640 * out now */ 2641 __wake_requests(mdsc, &s->s_waiting); 2642 __unregister_session(mdsc, s); 2643 } else { 2644 /* just close it */ 2645 mutex_unlock(&mdsc->mutex); 2646 mutex_lock(&s->s_mutex); 2647 mutex_lock(&mdsc->mutex); 2648 ceph_con_close(&s->s_con); 2649 mutex_unlock(&s->s_mutex); 2650 s->s_state = CEPH_MDS_SESSION_RESTARTING; 2651 } 2652 2653 /* kick any requests waiting on the recovering mds */ 2654 kick_requests(mdsc, i); 2655 } else if (oldstate == newstate) { 2656 continue; /* nothing new with this mds */ 2657 } 2658 2659 /* 2660 * send reconnect? 2661 */ 2662 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 2663 newstate >= CEPH_MDS_STATE_RECONNECT) { 2664 mutex_unlock(&mdsc->mutex); 2665 send_mds_reconnect(mdsc, s); 2666 mutex_lock(&mdsc->mutex); 2667 } 2668 2669 /* 2670 * kick request on any mds that has gone active. 2671 */ 2672 if (oldstate < CEPH_MDS_STATE_ACTIVE && 2673 newstate >= CEPH_MDS_STATE_ACTIVE) { 2674 if (oldstate != CEPH_MDS_STATE_CREATING && 2675 oldstate != CEPH_MDS_STATE_STARTING) 2676 pr_info("mds%d recovery completed\n", s->s_mds); 2677 kick_requests(mdsc, i); 2678 ceph_kick_flushing_caps(mdsc, s); 2679 wake_up_session_caps(s, 1); 2680 } 2681 } 2682 2683 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) { 2684 s = mdsc->sessions[i]; 2685 if (!s) 2686 continue; 2687 if (!ceph_mdsmap_is_laggy(newmap, i)) 2688 continue; 2689 if (s->s_state == CEPH_MDS_SESSION_OPEN || 2690 s->s_state == CEPH_MDS_SESSION_HUNG || 2691 s->s_state == CEPH_MDS_SESSION_CLOSING) { 2692 dout(" connecting to export targets of laggy mds%d\n", 2693 i); 2694 __open_export_target_sessions(mdsc, s); 2695 } 2696 } 2697 } 2698 2699 2700 2701 /* 2702 * leases 2703 */ 2704 2705 /* 2706 * caller must hold session s_mutex, dentry->d_lock 2707 */ 2708 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 2709 { 2710 struct ceph_dentry_info *di = ceph_dentry(dentry); 2711 2712 ceph_put_mds_session(di->lease_session); 2713 di->lease_session = NULL; 2714 } 2715 2716 static void handle_lease(struct ceph_mds_client *mdsc, 2717 struct ceph_mds_session *session, 2718 struct ceph_msg *msg) 2719 { 2720 struct super_block *sb = mdsc->fsc->sb; 2721 struct inode *inode; 2722 struct dentry *parent, *dentry; 2723 struct ceph_dentry_info *di; 2724 int mds = session->s_mds; 2725 struct ceph_mds_lease *h = msg->front.iov_base; 2726 u32 seq; 2727 struct ceph_vino vino; 2728 struct qstr dname; 2729 int release = 0; 2730 2731 dout("handle_lease from mds%d\n", mds); 2732 2733 /* decode */ 2734 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 2735 goto bad; 2736 vino.ino = le64_to_cpu(h->ino); 2737 vino.snap = CEPH_NOSNAP; 2738 seq = le32_to_cpu(h->seq); 2739 dname.name = (void *)h + sizeof(*h) + sizeof(u32); 2740 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32); 2741 if (dname.len != get_unaligned_le32(h+1)) 2742 goto bad; 2743 2744 mutex_lock(&session->s_mutex); 2745 session->s_seq++; 2746 2747 /* lookup inode */ 2748 inode = ceph_find_inode(sb, vino); 2749 dout("handle_lease %s, ino %llx %p %.*s\n", 2750 ceph_lease_op_name(h->action), vino.ino, inode, 2751 dname.len, dname.name); 2752 if (inode == NULL) { 2753 dout("handle_lease no inode %llx\n", vino.ino); 2754 goto release; 2755 } 2756 2757 /* dentry */ 2758 parent = d_find_alias(inode); 2759 if (!parent) { 2760 dout("no parent dentry on inode %p\n", inode); 2761 WARN_ON(1); 2762 goto release; /* hrm... */ 2763 } 2764 dname.hash = full_name_hash(dname.name, dname.len); 2765 dentry = d_lookup(parent, &dname); 2766 dput(parent); 2767 if (!dentry) 2768 goto release; 2769 2770 spin_lock(&dentry->d_lock); 2771 di = ceph_dentry(dentry); 2772 switch (h->action) { 2773 case CEPH_MDS_LEASE_REVOKE: 2774 if (di && di->lease_session == session) { 2775 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 2776 h->seq = cpu_to_le32(di->lease_seq); 2777 __ceph_mdsc_drop_dentry_lease(dentry); 2778 } 2779 release = 1; 2780 break; 2781 2782 case CEPH_MDS_LEASE_RENEW: 2783 if (di && di->lease_session == session && 2784 di->lease_gen == session->s_cap_gen && 2785 di->lease_renew_from && 2786 di->lease_renew_after == 0) { 2787 unsigned long duration = 2788 le32_to_cpu(h->duration_ms) * HZ / 1000; 2789 2790 di->lease_seq = seq; 2791 dentry->d_time = di->lease_renew_from + duration; 2792 di->lease_renew_after = di->lease_renew_from + 2793 (duration >> 1); 2794 di->lease_renew_from = 0; 2795 } 2796 break; 2797 } 2798 spin_unlock(&dentry->d_lock); 2799 dput(dentry); 2800 2801 if (!release) 2802 goto out; 2803 2804 release: 2805 /* let's just reuse the same message */ 2806 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 2807 ceph_msg_get(msg); 2808 ceph_con_send(&session->s_con, msg); 2809 2810 out: 2811 iput(inode); 2812 mutex_unlock(&session->s_mutex); 2813 return; 2814 2815 bad: 2816 pr_err("corrupt lease message\n"); 2817 ceph_msg_dump(msg); 2818 } 2819 2820 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 2821 struct inode *inode, 2822 struct dentry *dentry, char action, 2823 u32 seq) 2824 { 2825 struct ceph_msg *msg; 2826 struct ceph_mds_lease *lease; 2827 int len = sizeof(*lease) + sizeof(u32); 2828 int dnamelen = 0; 2829 2830 dout("lease_send_msg inode %p dentry %p %s to mds%d\n", 2831 inode, dentry, ceph_lease_op_name(action), session->s_mds); 2832 dnamelen = dentry->d_name.len; 2833 len += dnamelen; 2834 2835 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 2836 if (!msg) 2837 return; 2838 lease = msg->front.iov_base; 2839 lease->action = action; 2840 lease->ino = cpu_to_le64(ceph_vino(inode).ino); 2841 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap); 2842 lease->seq = cpu_to_le32(seq); 2843 put_unaligned_le32(dnamelen, lease + 1); 2844 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen); 2845 2846 /* 2847 * if this is a preemptive lease RELEASE, no need to 2848 * flush request stream, since the actual request will 2849 * soon follow. 2850 */ 2851 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); 2852 2853 ceph_con_send(&session->s_con, msg); 2854 } 2855 2856 /* 2857 * Preemptively release a lease we expect to invalidate anyway. 2858 * Pass @inode always, @dentry is optional. 2859 */ 2860 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode, 2861 struct dentry *dentry) 2862 { 2863 struct ceph_dentry_info *di; 2864 struct ceph_mds_session *session; 2865 u32 seq; 2866 2867 BUG_ON(inode == NULL); 2868 BUG_ON(dentry == NULL); 2869 2870 /* is dentry lease valid? */ 2871 spin_lock(&dentry->d_lock); 2872 di = ceph_dentry(dentry); 2873 if (!di || !di->lease_session || 2874 di->lease_session->s_mds < 0 || 2875 di->lease_gen != di->lease_session->s_cap_gen || 2876 !time_before(jiffies, dentry->d_time)) { 2877 dout("lease_release inode %p dentry %p -- " 2878 "no lease\n", 2879 inode, dentry); 2880 spin_unlock(&dentry->d_lock); 2881 return; 2882 } 2883 2884 /* we do have a lease on this dentry; note mds and seq */ 2885 session = ceph_get_mds_session(di->lease_session); 2886 seq = di->lease_seq; 2887 __ceph_mdsc_drop_dentry_lease(dentry); 2888 spin_unlock(&dentry->d_lock); 2889 2890 dout("lease_release inode %p dentry %p to mds%d\n", 2891 inode, dentry, session->s_mds); 2892 ceph_mdsc_lease_send_msg(session, inode, dentry, 2893 CEPH_MDS_LEASE_RELEASE, seq); 2894 ceph_put_mds_session(session); 2895 } 2896 2897 /* 2898 * drop all leases (and dentry refs) in preparation for umount 2899 */ 2900 static void drop_leases(struct ceph_mds_client *mdsc) 2901 { 2902 int i; 2903 2904 dout("drop_leases\n"); 2905 mutex_lock(&mdsc->mutex); 2906 for (i = 0; i < mdsc->max_sessions; i++) { 2907 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 2908 if (!s) 2909 continue; 2910 mutex_unlock(&mdsc->mutex); 2911 mutex_lock(&s->s_mutex); 2912 mutex_unlock(&s->s_mutex); 2913 ceph_put_mds_session(s); 2914 mutex_lock(&mdsc->mutex); 2915 } 2916 mutex_unlock(&mdsc->mutex); 2917 } 2918 2919 2920 2921 /* 2922 * delayed work -- periodically trim expired leases, renew caps with mds 2923 */ 2924 static void schedule_delayed(struct ceph_mds_client *mdsc) 2925 { 2926 int delay = 5; 2927 unsigned hz = round_jiffies_relative(HZ * delay); 2928 schedule_delayed_work(&mdsc->delayed_work, hz); 2929 } 2930 2931 static void delayed_work(struct work_struct *work) 2932 { 2933 int i; 2934 struct ceph_mds_client *mdsc = 2935 container_of(work, struct ceph_mds_client, delayed_work.work); 2936 int renew_interval; 2937 int renew_caps; 2938 2939 dout("mdsc delayed_work\n"); 2940 ceph_check_delayed_caps(mdsc); 2941 2942 mutex_lock(&mdsc->mutex); 2943 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 2944 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 2945 mdsc->last_renew_caps); 2946 if (renew_caps) 2947 mdsc->last_renew_caps = jiffies; 2948 2949 for (i = 0; i < mdsc->max_sessions; i++) { 2950 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 2951 if (s == NULL) 2952 continue; 2953 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 2954 dout("resending session close request for mds%d\n", 2955 s->s_mds); 2956 request_close_session(mdsc, s); 2957 ceph_put_mds_session(s); 2958 continue; 2959 } 2960 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 2961 if (s->s_state == CEPH_MDS_SESSION_OPEN) { 2962 s->s_state = CEPH_MDS_SESSION_HUNG; 2963 pr_info("mds%d hung\n", s->s_mds); 2964 } 2965 } 2966 if (s->s_state < CEPH_MDS_SESSION_OPEN) { 2967 /* this mds is failed or recovering, just wait */ 2968 ceph_put_mds_session(s); 2969 continue; 2970 } 2971 mutex_unlock(&mdsc->mutex); 2972 2973 mutex_lock(&s->s_mutex); 2974 if (renew_caps) 2975 send_renew_caps(mdsc, s); 2976 else 2977 ceph_con_keepalive(&s->s_con); 2978 ceph_add_cap_releases(mdsc, s); 2979 if (s->s_state == CEPH_MDS_SESSION_OPEN || 2980 s->s_state == CEPH_MDS_SESSION_HUNG) 2981 ceph_send_cap_releases(mdsc, s); 2982 mutex_unlock(&s->s_mutex); 2983 ceph_put_mds_session(s); 2984 2985 mutex_lock(&mdsc->mutex); 2986 } 2987 mutex_unlock(&mdsc->mutex); 2988 2989 schedule_delayed(mdsc); 2990 } 2991 2992 int ceph_mdsc_init(struct ceph_fs_client *fsc) 2993 2994 { 2995 struct ceph_mds_client *mdsc; 2996 2997 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 2998 if (!mdsc) 2999 return -ENOMEM; 3000 mdsc->fsc = fsc; 3001 fsc->mdsc = mdsc; 3002 mutex_init(&mdsc->mutex); 3003 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 3004 if (mdsc->mdsmap == NULL) 3005 return -ENOMEM; 3006 3007 init_completion(&mdsc->safe_umount_waiters); 3008 init_waitqueue_head(&mdsc->session_close_wq); 3009 INIT_LIST_HEAD(&mdsc->waiting_for_map); 3010 mdsc->sessions = NULL; 3011 mdsc->max_sessions = 0; 3012 mdsc->stopping = 0; 3013 init_rwsem(&mdsc->snap_rwsem); 3014 mdsc->snap_realms = RB_ROOT; 3015 INIT_LIST_HEAD(&mdsc->snap_empty); 3016 spin_lock_init(&mdsc->snap_empty_lock); 3017 mdsc->last_tid = 0; 3018 mdsc->request_tree = RB_ROOT; 3019 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 3020 mdsc->last_renew_caps = jiffies; 3021 INIT_LIST_HEAD(&mdsc->cap_delay_list); 3022 spin_lock_init(&mdsc->cap_delay_lock); 3023 INIT_LIST_HEAD(&mdsc->snap_flush_list); 3024 spin_lock_init(&mdsc->snap_flush_lock); 3025 mdsc->cap_flush_seq = 0; 3026 INIT_LIST_HEAD(&mdsc->cap_dirty); 3027 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 3028 mdsc->num_cap_flushing = 0; 3029 spin_lock_init(&mdsc->cap_dirty_lock); 3030 init_waitqueue_head(&mdsc->cap_flushing_wq); 3031 spin_lock_init(&mdsc->dentry_lru_lock); 3032 INIT_LIST_HEAD(&mdsc->dentry_lru); 3033 3034 ceph_caps_init(mdsc); 3035 ceph_adjust_min_caps(mdsc, fsc->min_caps); 3036 3037 return 0; 3038 } 3039 3040 /* 3041 * Wait for safe replies on open mds requests. If we time out, drop 3042 * all requests from the tree to avoid dangling dentry refs. 3043 */ 3044 static void wait_requests(struct ceph_mds_client *mdsc) 3045 { 3046 struct ceph_mds_request *req; 3047 struct ceph_fs_client *fsc = mdsc->fsc; 3048 3049 mutex_lock(&mdsc->mutex); 3050 if (__get_oldest_req(mdsc)) { 3051 mutex_unlock(&mdsc->mutex); 3052 3053 dout("wait_requests waiting for requests\n"); 3054 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 3055 fsc->client->options->mount_timeout * HZ); 3056 3057 /* tear down remaining requests */ 3058 mutex_lock(&mdsc->mutex); 3059 while ((req = __get_oldest_req(mdsc))) { 3060 dout("wait_requests timed out on tid %llu\n", 3061 req->r_tid); 3062 __unregister_request(mdsc, req); 3063 } 3064 } 3065 mutex_unlock(&mdsc->mutex); 3066 dout("wait_requests done\n"); 3067 } 3068 3069 /* 3070 * called before mount is ro, and before dentries are torn down. 3071 * (hmm, does this still race with new lookups?) 3072 */ 3073 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 3074 { 3075 dout("pre_umount\n"); 3076 mdsc->stopping = 1; 3077 3078 drop_leases(mdsc); 3079 ceph_flush_dirty_caps(mdsc); 3080 wait_requests(mdsc); 3081 3082 /* 3083 * wait for reply handlers to drop their request refs and 3084 * their inode/dcache refs 3085 */ 3086 ceph_msgr_flush(); 3087 } 3088 3089 /* 3090 * wait for all write mds requests to flush. 3091 */ 3092 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) 3093 { 3094 struct ceph_mds_request *req = NULL, *nextreq; 3095 struct rb_node *n; 3096 3097 mutex_lock(&mdsc->mutex); 3098 dout("wait_unsafe_requests want %lld\n", want_tid); 3099 restart: 3100 req = __get_oldest_req(mdsc); 3101 while (req && req->r_tid <= want_tid) { 3102 /* find next request */ 3103 n = rb_next(&req->r_node); 3104 if (n) 3105 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 3106 else 3107 nextreq = NULL; 3108 if ((req->r_op & CEPH_MDS_OP_WRITE)) { 3109 /* write op */ 3110 ceph_mdsc_get_request(req); 3111 if (nextreq) 3112 ceph_mdsc_get_request(nextreq); 3113 mutex_unlock(&mdsc->mutex); 3114 dout("wait_unsafe_requests wait on %llu (want %llu)\n", 3115 req->r_tid, want_tid); 3116 wait_for_completion(&req->r_safe_completion); 3117 mutex_lock(&mdsc->mutex); 3118 ceph_mdsc_put_request(req); 3119 if (!nextreq) 3120 break; /* next dne before, so we're done! */ 3121 if (RB_EMPTY_NODE(&nextreq->r_node)) { 3122 /* next request was removed from tree */ 3123 ceph_mdsc_put_request(nextreq); 3124 goto restart; 3125 } 3126 ceph_mdsc_put_request(nextreq); /* won't go away */ 3127 } 3128 req = nextreq; 3129 } 3130 mutex_unlock(&mdsc->mutex); 3131 dout("wait_unsafe_requests done\n"); 3132 } 3133 3134 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 3135 { 3136 u64 want_tid, want_flush; 3137 3138 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3139 return; 3140 3141 dout("sync\n"); 3142 mutex_lock(&mdsc->mutex); 3143 want_tid = mdsc->last_tid; 3144 want_flush = mdsc->cap_flush_seq; 3145 mutex_unlock(&mdsc->mutex); 3146 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush); 3147 3148 ceph_flush_dirty_caps(mdsc); 3149 3150 wait_unsafe_requests(mdsc, want_tid); 3151 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush)); 3152 } 3153 3154 /* 3155 * true if all sessions are closed, or we force unmount 3156 */ 3157 static bool done_closing_sessions(struct ceph_mds_client *mdsc) 3158 { 3159 int i, n = 0; 3160 3161 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3162 return true; 3163 3164 mutex_lock(&mdsc->mutex); 3165 for (i = 0; i < mdsc->max_sessions; i++) 3166 if (mdsc->sessions[i]) 3167 n++; 3168 mutex_unlock(&mdsc->mutex); 3169 return n == 0; 3170 } 3171 3172 /* 3173 * called after sb is ro. 3174 */ 3175 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 3176 { 3177 struct ceph_mds_session *session; 3178 int i; 3179 struct ceph_fs_client *fsc = mdsc->fsc; 3180 unsigned long timeout = fsc->client->options->mount_timeout * HZ; 3181 3182 dout("close_sessions\n"); 3183 3184 /* close sessions */ 3185 mutex_lock(&mdsc->mutex); 3186 for (i = 0; i < mdsc->max_sessions; i++) { 3187 session = __ceph_lookup_mds_session(mdsc, i); 3188 if (!session) 3189 continue; 3190 mutex_unlock(&mdsc->mutex); 3191 mutex_lock(&session->s_mutex); 3192 __close_session(mdsc, session); 3193 mutex_unlock(&session->s_mutex); 3194 ceph_put_mds_session(session); 3195 mutex_lock(&mdsc->mutex); 3196 } 3197 mutex_unlock(&mdsc->mutex); 3198 3199 dout("waiting for sessions to close\n"); 3200 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc), 3201 timeout); 3202 3203 /* tear down remaining sessions */ 3204 mutex_lock(&mdsc->mutex); 3205 for (i = 0; i < mdsc->max_sessions; i++) { 3206 if (mdsc->sessions[i]) { 3207 session = get_session(mdsc->sessions[i]); 3208 __unregister_session(mdsc, session); 3209 mutex_unlock(&mdsc->mutex); 3210 mutex_lock(&session->s_mutex); 3211 remove_session_caps(session); 3212 mutex_unlock(&session->s_mutex); 3213 ceph_put_mds_session(session); 3214 mutex_lock(&mdsc->mutex); 3215 } 3216 } 3217 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 3218 mutex_unlock(&mdsc->mutex); 3219 3220 ceph_cleanup_empty_realms(mdsc); 3221 3222 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3223 3224 dout("stopped\n"); 3225 } 3226 3227 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 3228 { 3229 dout("stop\n"); 3230 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3231 if (mdsc->mdsmap) 3232 ceph_mdsmap_destroy(mdsc->mdsmap); 3233 kfree(mdsc->sessions); 3234 ceph_caps_finalize(mdsc); 3235 } 3236 3237 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 3238 { 3239 struct ceph_mds_client *mdsc = fsc->mdsc; 3240 3241 dout("mdsc_destroy %p\n", mdsc); 3242 ceph_mdsc_stop(mdsc); 3243 3244 /* flush out any connection work with references to us */ 3245 ceph_msgr_flush(); 3246 3247 fsc->mdsc = NULL; 3248 kfree(mdsc); 3249 dout("mdsc_destroy %p done\n", mdsc); 3250 } 3251 3252 3253 /* 3254 * handle mds map update. 3255 */ 3256 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 3257 { 3258 u32 epoch; 3259 u32 maplen; 3260 void *p = msg->front.iov_base; 3261 void *end = p + msg->front.iov_len; 3262 struct ceph_mdsmap *newmap, *oldmap; 3263 struct ceph_fsid fsid; 3264 int err = -EINVAL; 3265 3266 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 3267 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 3268 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 3269 return; 3270 epoch = ceph_decode_32(&p); 3271 maplen = ceph_decode_32(&p); 3272 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 3273 3274 /* do we need it? */ 3275 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch); 3276 mutex_lock(&mdsc->mutex); 3277 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 3278 dout("handle_map epoch %u <= our %u\n", 3279 epoch, mdsc->mdsmap->m_epoch); 3280 mutex_unlock(&mdsc->mutex); 3281 return; 3282 } 3283 3284 newmap = ceph_mdsmap_decode(&p, end); 3285 if (IS_ERR(newmap)) { 3286 err = PTR_ERR(newmap); 3287 goto bad_unlock; 3288 } 3289 3290 /* swap into place */ 3291 if (mdsc->mdsmap) { 3292 oldmap = mdsc->mdsmap; 3293 mdsc->mdsmap = newmap; 3294 check_new_map(mdsc, newmap, oldmap); 3295 ceph_mdsmap_destroy(oldmap); 3296 } else { 3297 mdsc->mdsmap = newmap; /* first mds map */ 3298 } 3299 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size; 3300 3301 __wake_requests(mdsc, &mdsc->waiting_for_map); 3302 3303 mutex_unlock(&mdsc->mutex); 3304 schedule_delayed(mdsc); 3305 return; 3306 3307 bad_unlock: 3308 mutex_unlock(&mdsc->mutex); 3309 bad: 3310 pr_err("error decoding mdsmap %d\n", err); 3311 return; 3312 } 3313 3314 static struct ceph_connection *con_get(struct ceph_connection *con) 3315 { 3316 struct ceph_mds_session *s = con->private; 3317 3318 if (get_session(s)) { 3319 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref)); 3320 return con; 3321 } 3322 dout("mdsc con_get %p FAIL\n", s); 3323 return NULL; 3324 } 3325 3326 static void con_put(struct ceph_connection *con) 3327 { 3328 struct ceph_mds_session *s = con->private; 3329 3330 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1); 3331 ceph_put_mds_session(s); 3332 } 3333 3334 /* 3335 * if the client is unresponsive for long enough, the mds will kill 3336 * the session entirely. 3337 */ 3338 static void peer_reset(struct ceph_connection *con) 3339 { 3340 struct ceph_mds_session *s = con->private; 3341 struct ceph_mds_client *mdsc = s->s_mdsc; 3342 3343 pr_warning("mds%d closed our session\n", s->s_mds); 3344 send_mds_reconnect(mdsc, s); 3345 } 3346 3347 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg) 3348 { 3349 struct ceph_mds_session *s = con->private; 3350 struct ceph_mds_client *mdsc = s->s_mdsc; 3351 int type = le16_to_cpu(msg->hdr.type); 3352 3353 mutex_lock(&mdsc->mutex); 3354 if (__verify_registered_session(mdsc, s) < 0) { 3355 mutex_unlock(&mdsc->mutex); 3356 goto out; 3357 } 3358 mutex_unlock(&mdsc->mutex); 3359 3360 switch (type) { 3361 case CEPH_MSG_MDS_MAP: 3362 ceph_mdsc_handle_map(mdsc, msg); 3363 break; 3364 case CEPH_MSG_CLIENT_SESSION: 3365 handle_session(s, msg); 3366 break; 3367 case CEPH_MSG_CLIENT_REPLY: 3368 handle_reply(s, msg); 3369 break; 3370 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 3371 handle_forward(mdsc, s, msg); 3372 break; 3373 case CEPH_MSG_CLIENT_CAPS: 3374 ceph_handle_caps(s, msg); 3375 break; 3376 case CEPH_MSG_CLIENT_SNAP: 3377 ceph_handle_snap(mdsc, s, msg); 3378 break; 3379 case CEPH_MSG_CLIENT_LEASE: 3380 handle_lease(mdsc, s, msg); 3381 break; 3382 3383 default: 3384 pr_err("received unknown message type %d %s\n", type, 3385 ceph_msg_type_name(type)); 3386 } 3387 out: 3388 ceph_msg_put(msg); 3389 } 3390 3391 /* 3392 * authentication 3393 */ 3394 static int get_authorizer(struct ceph_connection *con, 3395 void **buf, int *len, int *proto, 3396 void **reply_buf, int *reply_len, int force_new) 3397 { 3398 struct ceph_mds_session *s = con->private; 3399 struct ceph_mds_client *mdsc = s->s_mdsc; 3400 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3401 int ret = 0; 3402 3403 if (force_new && s->s_authorizer) { 3404 ac->ops->destroy_authorizer(ac, s->s_authorizer); 3405 s->s_authorizer = NULL; 3406 } 3407 if (s->s_authorizer == NULL) { 3408 if (ac->ops->create_authorizer) { 3409 ret = ac->ops->create_authorizer( 3410 ac, CEPH_ENTITY_TYPE_MDS, 3411 &s->s_authorizer, 3412 &s->s_authorizer_buf, 3413 &s->s_authorizer_buf_len, 3414 &s->s_authorizer_reply_buf, 3415 &s->s_authorizer_reply_buf_len); 3416 if (ret) 3417 return ret; 3418 } 3419 } 3420 3421 *proto = ac->protocol; 3422 *buf = s->s_authorizer_buf; 3423 *len = s->s_authorizer_buf_len; 3424 *reply_buf = s->s_authorizer_reply_buf; 3425 *reply_len = s->s_authorizer_reply_buf_len; 3426 return 0; 3427 } 3428 3429 3430 static int verify_authorizer_reply(struct ceph_connection *con, int len) 3431 { 3432 struct ceph_mds_session *s = con->private; 3433 struct ceph_mds_client *mdsc = s->s_mdsc; 3434 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3435 3436 return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len); 3437 } 3438 3439 static int invalidate_authorizer(struct ceph_connection *con) 3440 { 3441 struct ceph_mds_session *s = con->private; 3442 struct ceph_mds_client *mdsc = s->s_mdsc; 3443 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3444 3445 if (ac->ops->invalidate_authorizer) 3446 ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 3447 3448 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 3449 } 3450 3451 static const struct ceph_connection_operations mds_con_ops = { 3452 .get = con_get, 3453 .put = con_put, 3454 .dispatch = dispatch, 3455 .get_authorizer = get_authorizer, 3456 .verify_authorizer_reply = verify_authorizer_reply, 3457 .invalidate_authorizer = invalidate_authorizer, 3458 .peer_reset = peer_reset, 3459 }; 3460 3461 /* eof */ 3462