xref: /linux/fs/ceph/mds_client.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 #include "ceph_debug.h"
2 
3 #include <linux/wait.h>
4 #include <linux/slab.h>
5 #include <linux/sched.h>
6 #include <linux/smp_lock.h>
7 
8 #include "mds_client.h"
9 #include "mon_client.h"
10 #include "super.h"
11 #include "messenger.h"
12 #include "decode.h"
13 #include "auth.h"
14 #include "pagelist.h"
15 
16 /*
17  * A cluster of MDS (metadata server) daemons is responsible for
18  * managing the file system namespace (the directory hierarchy and
19  * inodes) and for coordinating shared access to storage.  Metadata is
20  * partitioning hierarchically across a number of servers, and that
21  * partition varies over time as the cluster adjusts the distribution
22  * in order to balance load.
23  *
24  * The MDS client is primarily responsible to managing synchronous
25  * metadata requests for operations like open, unlink, and so forth.
26  * If there is a MDS failure, we find out about it when we (possibly
27  * request and) receive a new MDS map, and can resubmit affected
28  * requests.
29  *
30  * For the most part, though, we take advantage of a lossless
31  * communications channel to the MDS, and do not need to worry about
32  * timing out or resubmitting requests.
33  *
34  * We maintain a stateful "session" with each MDS we interact with.
35  * Within each session, we sent periodic heartbeat messages to ensure
36  * any capabilities or leases we have been issues remain valid.  If
37  * the session times out and goes stale, our leases and capabilities
38  * are no longer valid.
39  */
40 
41 struct ceph_reconnect_state {
42 	struct ceph_pagelist *pagelist;
43 	bool flock;
44 };
45 
46 static void __wake_requests(struct ceph_mds_client *mdsc,
47 			    struct list_head *head);
48 
49 static const struct ceph_connection_operations mds_con_ops;
50 
51 
52 /*
53  * mds reply parsing
54  */
55 
56 /*
57  * parse individual inode info
58  */
59 static int parse_reply_info_in(void **p, void *end,
60 			       struct ceph_mds_reply_info_in *info)
61 {
62 	int err = -EIO;
63 
64 	info->in = *p;
65 	*p += sizeof(struct ceph_mds_reply_inode) +
66 		sizeof(*info->in->fragtree.splits) *
67 		le32_to_cpu(info->in->fragtree.nsplits);
68 
69 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
70 	ceph_decode_need(p, end, info->symlink_len, bad);
71 	info->symlink = *p;
72 	*p += info->symlink_len;
73 
74 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
75 	ceph_decode_need(p, end, info->xattr_len, bad);
76 	info->xattr_data = *p;
77 	*p += info->xattr_len;
78 	return 0;
79 bad:
80 	return err;
81 }
82 
83 /*
84  * parse a normal reply, which may contain a (dir+)dentry and/or a
85  * target inode.
86  */
87 static int parse_reply_info_trace(void **p, void *end,
88 				  struct ceph_mds_reply_info_parsed *info)
89 {
90 	int err;
91 
92 	if (info->head->is_dentry) {
93 		err = parse_reply_info_in(p, end, &info->diri);
94 		if (err < 0)
95 			goto out_bad;
96 
97 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
98 			goto bad;
99 		info->dirfrag = *p;
100 		*p += sizeof(*info->dirfrag) +
101 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
102 		if (unlikely(*p > end))
103 			goto bad;
104 
105 		ceph_decode_32_safe(p, end, info->dname_len, bad);
106 		ceph_decode_need(p, end, info->dname_len, bad);
107 		info->dname = *p;
108 		*p += info->dname_len;
109 		info->dlease = *p;
110 		*p += sizeof(*info->dlease);
111 	}
112 
113 	if (info->head->is_target) {
114 		err = parse_reply_info_in(p, end, &info->targeti);
115 		if (err < 0)
116 			goto out_bad;
117 	}
118 
119 	if (unlikely(*p != end))
120 		goto bad;
121 	return 0;
122 
123 bad:
124 	err = -EIO;
125 out_bad:
126 	pr_err("problem parsing mds trace %d\n", err);
127 	return err;
128 }
129 
130 /*
131  * parse readdir results
132  */
133 static int parse_reply_info_dir(void **p, void *end,
134 				struct ceph_mds_reply_info_parsed *info)
135 {
136 	u32 num, i = 0;
137 	int err;
138 
139 	info->dir_dir = *p;
140 	if (*p + sizeof(*info->dir_dir) > end)
141 		goto bad;
142 	*p += sizeof(*info->dir_dir) +
143 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
144 	if (*p > end)
145 		goto bad;
146 
147 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
148 	num = ceph_decode_32(p);
149 	info->dir_end = ceph_decode_8(p);
150 	info->dir_complete = ceph_decode_8(p);
151 	if (num == 0)
152 		goto done;
153 
154 	/* alloc large array */
155 	info->dir_nr = num;
156 	info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
157 			       sizeof(*info->dir_dname) +
158 			       sizeof(*info->dir_dname_len) +
159 			       sizeof(*info->dir_dlease),
160 			       GFP_NOFS);
161 	if (info->dir_in == NULL) {
162 		err = -ENOMEM;
163 		goto out_bad;
164 	}
165 	info->dir_dname = (void *)(info->dir_in + num);
166 	info->dir_dname_len = (void *)(info->dir_dname + num);
167 	info->dir_dlease = (void *)(info->dir_dname_len + num);
168 
169 	while (num) {
170 		/* dentry */
171 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
172 		info->dir_dname_len[i] = ceph_decode_32(p);
173 		ceph_decode_need(p, end, info->dir_dname_len[i], bad);
174 		info->dir_dname[i] = *p;
175 		*p += info->dir_dname_len[i];
176 		dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
177 		     info->dir_dname[i]);
178 		info->dir_dlease[i] = *p;
179 		*p += sizeof(struct ceph_mds_reply_lease);
180 
181 		/* inode */
182 		err = parse_reply_info_in(p, end, &info->dir_in[i]);
183 		if (err < 0)
184 			goto out_bad;
185 		i++;
186 		num--;
187 	}
188 
189 done:
190 	if (*p != end)
191 		goto bad;
192 	return 0;
193 
194 bad:
195 	err = -EIO;
196 out_bad:
197 	pr_err("problem parsing dir contents %d\n", err);
198 	return err;
199 }
200 
201 /*
202  * parse entire mds reply
203  */
204 static int parse_reply_info(struct ceph_msg *msg,
205 			    struct ceph_mds_reply_info_parsed *info)
206 {
207 	void *p, *end;
208 	u32 len;
209 	int err;
210 
211 	info->head = msg->front.iov_base;
212 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
213 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
214 
215 	/* trace */
216 	ceph_decode_32_safe(&p, end, len, bad);
217 	if (len > 0) {
218 		err = parse_reply_info_trace(&p, p+len, info);
219 		if (err < 0)
220 			goto out_bad;
221 	}
222 
223 	/* dir content */
224 	ceph_decode_32_safe(&p, end, len, bad);
225 	if (len > 0) {
226 		err = parse_reply_info_dir(&p, p+len, info);
227 		if (err < 0)
228 			goto out_bad;
229 	}
230 
231 	/* snap blob */
232 	ceph_decode_32_safe(&p, end, len, bad);
233 	info->snapblob_len = len;
234 	info->snapblob = p;
235 	p += len;
236 
237 	if (p != end)
238 		goto bad;
239 	return 0;
240 
241 bad:
242 	err = -EIO;
243 out_bad:
244 	pr_err("mds parse_reply err %d\n", err);
245 	return err;
246 }
247 
248 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
249 {
250 	kfree(info->dir_in);
251 }
252 
253 
254 /*
255  * sessions
256  */
257 static const char *session_state_name(int s)
258 {
259 	switch (s) {
260 	case CEPH_MDS_SESSION_NEW: return "new";
261 	case CEPH_MDS_SESSION_OPENING: return "opening";
262 	case CEPH_MDS_SESSION_OPEN: return "open";
263 	case CEPH_MDS_SESSION_HUNG: return "hung";
264 	case CEPH_MDS_SESSION_CLOSING: return "closing";
265 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
266 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
267 	default: return "???";
268 	}
269 }
270 
271 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
272 {
273 	if (atomic_inc_not_zero(&s->s_ref)) {
274 		dout("mdsc get_session %p %d -> %d\n", s,
275 		     atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
276 		return s;
277 	} else {
278 		dout("mdsc get_session %p 0 -- FAIL", s);
279 		return NULL;
280 	}
281 }
282 
283 void ceph_put_mds_session(struct ceph_mds_session *s)
284 {
285 	dout("mdsc put_session %p %d -> %d\n", s,
286 	     atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
287 	if (atomic_dec_and_test(&s->s_ref)) {
288 		if (s->s_authorizer)
289 			s->s_mdsc->client->monc.auth->ops->destroy_authorizer(
290 				s->s_mdsc->client->monc.auth, s->s_authorizer);
291 		kfree(s);
292 	}
293 }
294 
295 /*
296  * called under mdsc->mutex
297  */
298 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
299 						   int mds)
300 {
301 	struct ceph_mds_session *session;
302 
303 	if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
304 		return NULL;
305 	session = mdsc->sessions[mds];
306 	dout("lookup_mds_session %p %d\n", session,
307 	     atomic_read(&session->s_ref));
308 	get_session(session);
309 	return session;
310 }
311 
312 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
313 {
314 	if (mds >= mdsc->max_sessions)
315 		return false;
316 	return mdsc->sessions[mds];
317 }
318 
319 static int __verify_registered_session(struct ceph_mds_client *mdsc,
320 				       struct ceph_mds_session *s)
321 {
322 	if (s->s_mds >= mdsc->max_sessions ||
323 	    mdsc->sessions[s->s_mds] != s)
324 		return -ENOENT;
325 	return 0;
326 }
327 
328 /*
329  * create+register a new session for given mds.
330  * called under mdsc->mutex.
331  */
332 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
333 						 int mds)
334 {
335 	struct ceph_mds_session *s;
336 
337 	s = kzalloc(sizeof(*s), GFP_NOFS);
338 	if (!s)
339 		return ERR_PTR(-ENOMEM);
340 	s->s_mdsc = mdsc;
341 	s->s_mds = mds;
342 	s->s_state = CEPH_MDS_SESSION_NEW;
343 	s->s_ttl = 0;
344 	s->s_seq = 0;
345 	mutex_init(&s->s_mutex);
346 
347 	ceph_con_init(mdsc->client->msgr, &s->s_con);
348 	s->s_con.private = s;
349 	s->s_con.ops = &mds_con_ops;
350 	s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS;
351 	s->s_con.peer_name.num = cpu_to_le64(mds);
352 
353 	spin_lock_init(&s->s_cap_lock);
354 	s->s_cap_gen = 0;
355 	s->s_cap_ttl = 0;
356 	s->s_renew_requested = 0;
357 	s->s_renew_seq = 0;
358 	INIT_LIST_HEAD(&s->s_caps);
359 	s->s_nr_caps = 0;
360 	s->s_trim_caps = 0;
361 	atomic_set(&s->s_ref, 1);
362 	INIT_LIST_HEAD(&s->s_waiting);
363 	INIT_LIST_HEAD(&s->s_unsafe);
364 	s->s_num_cap_releases = 0;
365 	s->s_cap_iterator = NULL;
366 	INIT_LIST_HEAD(&s->s_cap_releases);
367 	INIT_LIST_HEAD(&s->s_cap_releases_done);
368 	INIT_LIST_HEAD(&s->s_cap_flushing);
369 	INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
370 
371 	dout("register_session mds%d\n", mds);
372 	if (mds >= mdsc->max_sessions) {
373 		int newmax = 1 << get_count_order(mds+1);
374 		struct ceph_mds_session **sa;
375 
376 		dout("register_session realloc to %d\n", newmax);
377 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
378 		if (sa == NULL)
379 			goto fail_realloc;
380 		if (mdsc->sessions) {
381 			memcpy(sa, mdsc->sessions,
382 			       mdsc->max_sessions * sizeof(void *));
383 			kfree(mdsc->sessions);
384 		}
385 		mdsc->sessions = sa;
386 		mdsc->max_sessions = newmax;
387 	}
388 	mdsc->sessions[mds] = s;
389 	atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
390 
391 	ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
392 
393 	return s;
394 
395 fail_realloc:
396 	kfree(s);
397 	return ERR_PTR(-ENOMEM);
398 }
399 
400 /*
401  * called under mdsc->mutex
402  */
403 static void __unregister_session(struct ceph_mds_client *mdsc,
404 			       struct ceph_mds_session *s)
405 {
406 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
407 	BUG_ON(mdsc->sessions[s->s_mds] != s);
408 	mdsc->sessions[s->s_mds] = NULL;
409 	ceph_con_close(&s->s_con);
410 	ceph_put_mds_session(s);
411 }
412 
413 /*
414  * drop session refs in request.
415  *
416  * should be last request ref, or hold mdsc->mutex
417  */
418 static void put_request_session(struct ceph_mds_request *req)
419 {
420 	if (req->r_session) {
421 		ceph_put_mds_session(req->r_session);
422 		req->r_session = NULL;
423 	}
424 }
425 
426 void ceph_mdsc_release_request(struct kref *kref)
427 {
428 	struct ceph_mds_request *req = container_of(kref,
429 						    struct ceph_mds_request,
430 						    r_kref);
431 	if (req->r_request)
432 		ceph_msg_put(req->r_request);
433 	if (req->r_reply) {
434 		ceph_msg_put(req->r_reply);
435 		destroy_reply_info(&req->r_reply_info);
436 	}
437 	if (req->r_inode) {
438 		ceph_put_cap_refs(ceph_inode(req->r_inode),
439 				  CEPH_CAP_PIN);
440 		iput(req->r_inode);
441 	}
442 	if (req->r_locked_dir)
443 		ceph_put_cap_refs(ceph_inode(req->r_locked_dir),
444 				  CEPH_CAP_PIN);
445 	if (req->r_target_inode)
446 		iput(req->r_target_inode);
447 	if (req->r_dentry)
448 		dput(req->r_dentry);
449 	if (req->r_old_dentry) {
450 		ceph_put_cap_refs(
451 			ceph_inode(req->r_old_dentry->d_parent->d_inode),
452 			CEPH_CAP_PIN);
453 		dput(req->r_old_dentry);
454 	}
455 	kfree(req->r_path1);
456 	kfree(req->r_path2);
457 	put_request_session(req);
458 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
459 	kfree(req);
460 }
461 
462 /*
463  * lookup session, bump ref if found.
464  *
465  * called under mdsc->mutex.
466  */
467 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
468 					     u64 tid)
469 {
470 	struct ceph_mds_request *req;
471 	struct rb_node *n = mdsc->request_tree.rb_node;
472 
473 	while (n) {
474 		req = rb_entry(n, struct ceph_mds_request, r_node);
475 		if (tid < req->r_tid)
476 			n = n->rb_left;
477 		else if (tid > req->r_tid)
478 			n = n->rb_right;
479 		else {
480 			ceph_mdsc_get_request(req);
481 			return req;
482 		}
483 	}
484 	return NULL;
485 }
486 
487 static void __insert_request(struct ceph_mds_client *mdsc,
488 			     struct ceph_mds_request *new)
489 {
490 	struct rb_node **p = &mdsc->request_tree.rb_node;
491 	struct rb_node *parent = NULL;
492 	struct ceph_mds_request *req = NULL;
493 
494 	while (*p) {
495 		parent = *p;
496 		req = rb_entry(parent, struct ceph_mds_request, r_node);
497 		if (new->r_tid < req->r_tid)
498 			p = &(*p)->rb_left;
499 		else if (new->r_tid > req->r_tid)
500 			p = &(*p)->rb_right;
501 		else
502 			BUG();
503 	}
504 
505 	rb_link_node(&new->r_node, parent, p);
506 	rb_insert_color(&new->r_node, &mdsc->request_tree);
507 }
508 
509 /*
510  * Register an in-flight request, and assign a tid.  Link to directory
511  * are modifying (if any).
512  *
513  * Called under mdsc->mutex.
514  */
515 static void __register_request(struct ceph_mds_client *mdsc,
516 			       struct ceph_mds_request *req,
517 			       struct inode *dir)
518 {
519 	req->r_tid = ++mdsc->last_tid;
520 	if (req->r_num_caps)
521 		ceph_reserve_caps(mdsc, &req->r_caps_reservation,
522 				  req->r_num_caps);
523 	dout("__register_request %p tid %lld\n", req, req->r_tid);
524 	ceph_mdsc_get_request(req);
525 	__insert_request(mdsc, req);
526 
527 	if (dir) {
528 		struct ceph_inode_info *ci = ceph_inode(dir);
529 
530 		spin_lock(&ci->i_unsafe_lock);
531 		req->r_unsafe_dir = dir;
532 		list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
533 		spin_unlock(&ci->i_unsafe_lock);
534 	}
535 }
536 
537 static void __unregister_request(struct ceph_mds_client *mdsc,
538 				 struct ceph_mds_request *req)
539 {
540 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
541 	rb_erase(&req->r_node, &mdsc->request_tree);
542 	RB_CLEAR_NODE(&req->r_node);
543 
544 	if (req->r_unsafe_dir) {
545 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
546 
547 		spin_lock(&ci->i_unsafe_lock);
548 		list_del_init(&req->r_unsafe_dir_item);
549 		spin_unlock(&ci->i_unsafe_lock);
550 	}
551 
552 	ceph_mdsc_put_request(req);
553 }
554 
555 /*
556  * Choose mds to send request to next.  If there is a hint set in the
557  * request (e.g., due to a prior forward hint from the mds), use that.
558  * Otherwise, consult frag tree and/or caps to identify the
559  * appropriate mds.  If all else fails, choose randomly.
560  *
561  * Called under mdsc->mutex.
562  */
563 static int __choose_mds(struct ceph_mds_client *mdsc,
564 			struct ceph_mds_request *req)
565 {
566 	struct inode *inode;
567 	struct ceph_inode_info *ci;
568 	struct ceph_cap *cap;
569 	int mode = req->r_direct_mode;
570 	int mds = -1;
571 	u32 hash = req->r_direct_hash;
572 	bool is_hash = req->r_direct_is_hash;
573 
574 	/*
575 	 * is there a specific mds we should try?  ignore hint if we have
576 	 * no session and the mds is not up (active or recovering).
577 	 */
578 	if (req->r_resend_mds >= 0 &&
579 	    (__have_session(mdsc, req->r_resend_mds) ||
580 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
581 		dout("choose_mds using resend_mds mds%d\n",
582 		     req->r_resend_mds);
583 		return req->r_resend_mds;
584 	}
585 
586 	if (mode == USE_RANDOM_MDS)
587 		goto random;
588 
589 	inode = NULL;
590 	if (req->r_inode) {
591 		inode = req->r_inode;
592 	} else if (req->r_dentry) {
593 		if (req->r_dentry->d_inode) {
594 			inode = req->r_dentry->d_inode;
595 		} else {
596 			inode = req->r_dentry->d_parent->d_inode;
597 			hash = req->r_dentry->d_name.hash;
598 			is_hash = true;
599 		}
600 	}
601 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
602 	     (int)hash, mode);
603 	if (!inode)
604 		goto random;
605 	ci = ceph_inode(inode);
606 
607 	if (is_hash && S_ISDIR(inode->i_mode)) {
608 		struct ceph_inode_frag frag;
609 		int found;
610 
611 		ceph_choose_frag(ci, hash, &frag, &found);
612 		if (found) {
613 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
614 				u8 r;
615 
616 				/* choose a random replica */
617 				get_random_bytes(&r, 1);
618 				r %= frag.ndist;
619 				mds = frag.dist[r];
620 				dout("choose_mds %p %llx.%llx "
621 				     "frag %u mds%d (%d/%d)\n",
622 				     inode, ceph_vinop(inode),
623 				     frag.frag, frag.mds,
624 				     (int)r, frag.ndist);
625 				return mds;
626 			}
627 
628 			/* since this file/dir wasn't known to be
629 			 * replicated, then we want to look for the
630 			 * authoritative mds. */
631 			mode = USE_AUTH_MDS;
632 			if (frag.mds >= 0) {
633 				/* choose auth mds */
634 				mds = frag.mds;
635 				dout("choose_mds %p %llx.%llx "
636 				     "frag %u mds%d (auth)\n",
637 				     inode, ceph_vinop(inode), frag.frag, mds);
638 				return mds;
639 			}
640 		}
641 	}
642 
643 	spin_lock(&inode->i_lock);
644 	cap = NULL;
645 	if (mode == USE_AUTH_MDS)
646 		cap = ci->i_auth_cap;
647 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
648 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
649 	if (!cap) {
650 		spin_unlock(&inode->i_lock);
651 		goto random;
652 	}
653 	mds = cap->session->s_mds;
654 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
655 	     inode, ceph_vinop(inode), mds,
656 	     cap == ci->i_auth_cap ? "auth " : "", cap);
657 	spin_unlock(&inode->i_lock);
658 	return mds;
659 
660 random:
661 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
662 	dout("choose_mds chose random mds%d\n", mds);
663 	return mds;
664 }
665 
666 
667 /*
668  * session messages
669  */
670 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
671 {
672 	struct ceph_msg *msg;
673 	struct ceph_mds_session_head *h;
674 
675 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS);
676 	if (!msg) {
677 		pr_err("create_session_msg ENOMEM creating msg\n");
678 		return NULL;
679 	}
680 	h = msg->front.iov_base;
681 	h->op = cpu_to_le32(op);
682 	h->seq = cpu_to_le64(seq);
683 	return msg;
684 }
685 
686 /*
687  * send session open request.
688  *
689  * called under mdsc->mutex
690  */
691 static int __open_session(struct ceph_mds_client *mdsc,
692 			  struct ceph_mds_session *session)
693 {
694 	struct ceph_msg *msg;
695 	int mstate;
696 	int mds = session->s_mds;
697 
698 	/* wait for mds to go active? */
699 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
700 	dout("open_session to mds%d (%s)\n", mds,
701 	     ceph_mds_state_name(mstate));
702 	session->s_state = CEPH_MDS_SESSION_OPENING;
703 	session->s_renew_requested = jiffies;
704 
705 	/* send connect message */
706 	msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
707 	if (!msg)
708 		return -ENOMEM;
709 	ceph_con_send(&session->s_con, msg);
710 	return 0;
711 }
712 
713 /*
714  * open sessions for any export targets for the given mds
715  *
716  * called under mdsc->mutex
717  */
718 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
719 					  struct ceph_mds_session *session)
720 {
721 	struct ceph_mds_info *mi;
722 	struct ceph_mds_session *ts;
723 	int i, mds = session->s_mds;
724 	int target;
725 
726 	if (mds >= mdsc->mdsmap->m_max_mds)
727 		return;
728 	mi = &mdsc->mdsmap->m_info[mds];
729 	dout("open_export_target_sessions for mds%d (%d targets)\n",
730 	     session->s_mds, mi->num_export_targets);
731 
732 	for (i = 0; i < mi->num_export_targets; i++) {
733 		target = mi->export_targets[i];
734 		ts = __ceph_lookup_mds_session(mdsc, target);
735 		if (!ts) {
736 			ts = register_session(mdsc, target);
737 			if (IS_ERR(ts))
738 				return;
739 		}
740 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
741 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
742 			__open_session(mdsc, session);
743 		else
744 			dout(" mds%d target mds%d %p is %s\n", session->s_mds,
745 			     i, ts, session_state_name(ts->s_state));
746 		ceph_put_mds_session(ts);
747 	}
748 }
749 
750 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
751 					   struct ceph_mds_session *session)
752 {
753 	mutex_lock(&mdsc->mutex);
754 	__open_export_target_sessions(mdsc, session);
755 	mutex_unlock(&mdsc->mutex);
756 }
757 
758 /*
759  * session caps
760  */
761 
762 /*
763  * Free preallocated cap messages assigned to this session
764  */
765 static void cleanup_cap_releases(struct ceph_mds_session *session)
766 {
767 	struct ceph_msg *msg;
768 
769 	spin_lock(&session->s_cap_lock);
770 	while (!list_empty(&session->s_cap_releases)) {
771 		msg = list_first_entry(&session->s_cap_releases,
772 				       struct ceph_msg, list_head);
773 		list_del_init(&msg->list_head);
774 		ceph_msg_put(msg);
775 	}
776 	while (!list_empty(&session->s_cap_releases_done)) {
777 		msg = list_first_entry(&session->s_cap_releases_done,
778 				       struct ceph_msg, list_head);
779 		list_del_init(&msg->list_head);
780 		ceph_msg_put(msg);
781 	}
782 	spin_unlock(&session->s_cap_lock);
783 }
784 
785 /*
786  * Helper to safely iterate over all caps associated with a session, with
787  * special care taken to handle a racing __ceph_remove_cap().
788  *
789  * Caller must hold session s_mutex.
790  */
791 static int iterate_session_caps(struct ceph_mds_session *session,
792 				 int (*cb)(struct inode *, struct ceph_cap *,
793 					    void *), void *arg)
794 {
795 	struct list_head *p;
796 	struct ceph_cap *cap;
797 	struct inode *inode, *last_inode = NULL;
798 	struct ceph_cap *old_cap = NULL;
799 	int ret;
800 
801 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
802 	spin_lock(&session->s_cap_lock);
803 	p = session->s_caps.next;
804 	while (p != &session->s_caps) {
805 		cap = list_entry(p, struct ceph_cap, session_caps);
806 		inode = igrab(&cap->ci->vfs_inode);
807 		if (!inode) {
808 			p = p->next;
809 			continue;
810 		}
811 		session->s_cap_iterator = cap;
812 		spin_unlock(&session->s_cap_lock);
813 
814 		if (last_inode) {
815 			iput(last_inode);
816 			last_inode = NULL;
817 		}
818 		if (old_cap) {
819 			ceph_put_cap(session->s_mdsc, old_cap);
820 			old_cap = NULL;
821 		}
822 
823 		ret = cb(inode, cap, arg);
824 		last_inode = inode;
825 
826 		spin_lock(&session->s_cap_lock);
827 		p = p->next;
828 		if (cap->ci == NULL) {
829 			dout("iterate_session_caps  finishing cap %p removal\n",
830 			     cap);
831 			BUG_ON(cap->session != session);
832 			list_del_init(&cap->session_caps);
833 			session->s_nr_caps--;
834 			cap->session = NULL;
835 			old_cap = cap;  /* put_cap it w/o locks held */
836 		}
837 		if (ret < 0)
838 			goto out;
839 	}
840 	ret = 0;
841 out:
842 	session->s_cap_iterator = NULL;
843 	spin_unlock(&session->s_cap_lock);
844 
845 	if (last_inode)
846 		iput(last_inode);
847 	if (old_cap)
848 		ceph_put_cap(session->s_mdsc, old_cap);
849 
850 	return ret;
851 }
852 
853 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
854 				  void *arg)
855 {
856 	struct ceph_inode_info *ci = ceph_inode(inode);
857 	int drop = 0;
858 
859 	dout("removing cap %p, ci is %p, inode is %p\n",
860 	     cap, ci, &ci->vfs_inode);
861 	spin_lock(&inode->i_lock);
862 	__ceph_remove_cap(cap);
863 	if (!__ceph_is_any_real_caps(ci)) {
864 		struct ceph_mds_client *mdsc =
865 			&ceph_sb_to_client(inode->i_sb)->mdsc;
866 
867 		spin_lock(&mdsc->cap_dirty_lock);
868 		if (!list_empty(&ci->i_dirty_item)) {
869 			pr_info(" dropping dirty %s state for %p %lld\n",
870 				ceph_cap_string(ci->i_dirty_caps),
871 				inode, ceph_ino(inode));
872 			ci->i_dirty_caps = 0;
873 			list_del_init(&ci->i_dirty_item);
874 			drop = 1;
875 		}
876 		if (!list_empty(&ci->i_flushing_item)) {
877 			pr_info(" dropping dirty+flushing %s state for %p %lld\n",
878 				ceph_cap_string(ci->i_flushing_caps),
879 				inode, ceph_ino(inode));
880 			ci->i_flushing_caps = 0;
881 			list_del_init(&ci->i_flushing_item);
882 			mdsc->num_cap_flushing--;
883 			drop = 1;
884 		}
885 		if (drop && ci->i_wrbuffer_ref) {
886 			pr_info(" dropping dirty data for %p %lld\n",
887 				inode, ceph_ino(inode));
888 			ci->i_wrbuffer_ref = 0;
889 			ci->i_wrbuffer_ref_head = 0;
890 			drop++;
891 		}
892 		spin_unlock(&mdsc->cap_dirty_lock);
893 	}
894 	spin_unlock(&inode->i_lock);
895 	while (drop--)
896 		iput(inode);
897 	return 0;
898 }
899 
900 /*
901  * caller must hold session s_mutex
902  */
903 static void remove_session_caps(struct ceph_mds_session *session)
904 {
905 	dout("remove_session_caps on %p\n", session);
906 	iterate_session_caps(session, remove_session_caps_cb, NULL);
907 	BUG_ON(session->s_nr_caps > 0);
908 	BUG_ON(!list_empty(&session->s_cap_flushing));
909 	cleanup_cap_releases(session);
910 }
911 
912 /*
913  * wake up any threads waiting on this session's caps.  if the cap is
914  * old (didn't get renewed on the client reconnect), remove it now.
915  *
916  * caller must hold s_mutex.
917  */
918 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
919 			      void *arg)
920 {
921 	struct ceph_inode_info *ci = ceph_inode(inode);
922 
923 	wake_up_all(&ci->i_cap_wq);
924 	if (arg) {
925 		spin_lock(&inode->i_lock);
926 		ci->i_wanted_max_size = 0;
927 		ci->i_requested_max_size = 0;
928 		spin_unlock(&inode->i_lock);
929 	}
930 	return 0;
931 }
932 
933 static void wake_up_session_caps(struct ceph_mds_session *session,
934 				 int reconnect)
935 {
936 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
937 	iterate_session_caps(session, wake_up_session_cb,
938 			     (void *)(unsigned long)reconnect);
939 }
940 
941 /*
942  * Send periodic message to MDS renewing all currently held caps.  The
943  * ack will reset the expiration for all caps from this session.
944  *
945  * caller holds s_mutex
946  */
947 static int send_renew_caps(struct ceph_mds_client *mdsc,
948 			   struct ceph_mds_session *session)
949 {
950 	struct ceph_msg *msg;
951 	int state;
952 
953 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
954 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
955 		pr_info("mds%d caps stale\n", session->s_mds);
956 	session->s_renew_requested = jiffies;
957 
958 	/* do not try to renew caps until a recovering mds has reconnected
959 	 * with its clients. */
960 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
961 	if (state < CEPH_MDS_STATE_RECONNECT) {
962 		dout("send_renew_caps ignoring mds%d (%s)\n",
963 		     session->s_mds, ceph_mds_state_name(state));
964 		return 0;
965 	}
966 
967 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
968 		ceph_mds_state_name(state));
969 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
970 				 ++session->s_renew_seq);
971 	if (!msg)
972 		return -ENOMEM;
973 	ceph_con_send(&session->s_con, msg);
974 	return 0;
975 }
976 
977 /*
978  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
979  *
980  * Called under session->s_mutex
981  */
982 static void renewed_caps(struct ceph_mds_client *mdsc,
983 			 struct ceph_mds_session *session, int is_renew)
984 {
985 	int was_stale;
986 	int wake = 0;
987 
988 	spin_lock(&session->s_cap_lock);
989 	was_stale = is_renew && (session->s_cap_ttl == 0 ||
990 				 time_after_eq(jiffies, session->s_cap_ttl));
991 
992 	session->s_cap_ttl = session->s_renew_requested +
993 		mdsc->mdsmap->m_session_timeout*HZ;
994 
995 	if (was_stale) {
996 		if (time_before(jiffies, session->s_cap_ttl)) {
997 			pr_info("mds%d caps renewed\n", session->s_mds);
998 			wake = 1;
999 		} else {
1000 			pr_info("mds%d caps still stale\n", session->s_mds);
1001 		}
1002 	}
1003 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1004 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1005 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1006 	spin_unlock(&session->s_cap_lock);
1007 
1008 	if (wake)
1009 		wake_up_session_caps(session, 0);
1010 }
1011 
1012 /*
1013  * send a session close request
1014  */
1015 static int request_close_session(struct ceph_mds_client *mdsc,
1016 				 struct ceph_mds_session *session)
1017 {
1018 	struct ceph_msg *msg;
1019 
1020 	dout("request_close_session mds%d state %s seq %lld\n",
1021 	     session->s_mds, session_state_name(session->s_state),
1022 	     session->s_seq);
1023 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1024 	if (!msg)
1025 		return -ENOMEM;
1026 	ceph_con_send(&session->s_con, msg);
1027 	return 0;
1028 }
1029 
1030 /*
1031  * Called with s_mutex held.
1032  */
1033 static int __close_session(struct ceph_mds_client *mdsc,
1034 			 struct ceph_mds_session *session)
1035 {
1036 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1037 		return 0;
1038 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1039 	return request_close_session(mdsc, session);
1040 }
1041 
1042 /*
1043  * Trim old(er) caps.
1044  *
1045  * Because we can't cache an inode without one or more caps, we do
1046  * this indirectly: if a cap is unused, we prune its aliases, at which
1047  * point the inode will hopefully get dropped to.
1048  *
1049  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1050  * memory pressure from the MDS, though, so it needn't be perfect.
1051  */
1052 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1053 {
1054 	struct ceph_mds_session *session = arg;
1055 	struct ceph_inode_info *ci = ceph_inode(inode);
1056 	int used, oissued, mine;
1057 
1058 	if (session->s_trim_caps <= 0)
1059 		return -1;
1060 
1061 	spin_lock(&inode->i_lock);
1062 	mine = cap->issued | cap->implemented;
1063 	used = __ceph_caps_used(ci);
1064 	oissued = __ceph_caps_issued_other(ci, cap);
1065 
1066 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1067 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1068 	     ceph_cap_string(used));
1069 	if (ci->i_dirty_caps)
1070 		goto out;   /* dirty caps */
1071 	if ((used & ~oissued) & mine)
1072 		goto out;   /* we need these caps */
1073 
1074 	session->s_trim_caps--;
1075 	if (oissued) {
1076 		/* we aren't the only cap.. just remove us */
1077 		__ceph_remove_cap(cap);
1078 	} else {
1079 		/* try to drop referring dentries */
1080 		spin_unlock(&inode->i_lock);
1081 		d_prune_aliases(inode);
1082 		dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1083 		     inode, cap, atomic_read(&inode->i_count));
1084 		return 0;
1085 	}
1086 
1087 out:
1088 	spin_unlock(&inode->i_lock);
1089 	return 0;
1090 }
1091 
1092 /*
1093  * Trim session cap count down to some max number.
1094  */
1095 static int trim_caps(struct ceph_mds_client *mdsc,
1096 		     struct ceph_mds_session *session,
1097 		     int max_caps)
1098 {
1099 	int trim_caps = session->s_nr_caps - max_caps;
1100 
1101 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1102 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1103 	if (trim_caps > 0) {
1104 		session->s_trim_caps = trim_caps;
1105 		iterate_session_caps(session, trim_caps_cb, session);
1106 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1107 		     session->s_mds, session->s_nr_caps, max_caps,
1108 			trim_caps - session->s_trim_caps);
1109 		session->s_trim_caps = 0;
1110 	}
1111 	return 0;
1112 }
1113 
1114 /*
1115  * Allocate cap_release messages.  If there is a partially full message
1116  * in the queue, try to allocate enough to cover it's remainder, so that
1117  * we can send it immediately.
1118  *
1119  * Called under s_mutex.
1120  */
1121 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1122 			  struct ceph_mds_session *session)
1123 {
1124 	struct ceph_msg *msg, *partial = NULL;
1125 	struct ceph_mds_cap_release *head;
1126 	int err = -ENOMEM;
1127 	int extra = mdsc->client->mount_args->cap_release_safety;
1128 	int num;
1129 
1130 	dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1131 	     extra);
1132 
1133 	spin_lock(&session->s_cap_lock);
1134 
1135 	if (!list_empty(&session->s_cap_releases)) {
1136 		msg = list_first_entry(&session->s_cap_releases,
1137 				       struct ceph_msg,
1138 				 list_head);
1139 		head = msg->front.iov_base;
1140 		num = le32_to_cpu(head->num);
1141 		if (num) {
1142 			dout(" partial %p with (%d/%d)\n", msg, num,
1143 			     (int)CEPH_CAPS_PER_RELEASE);
1144 			extra += CEPH_CAPS_PER_RELEASE - num;
1145 			partial = msg;
1146 		}
1147 	}
1148 	while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1149 		spin_unlock(&session->s_cap_lock);
1150 		msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1151 				   GFP_NOFS);
1152 		if (!msg)
1153 			goto out_unlocked;
1154 		dout("add_cap_releases %p msg %p now %d\n", session, msg,
1155 		     (int)msg->front.iov_len);
1156 		head = msg->front.iov_base;
1157 		head->num = cpu_to_le32(0);
1158 		msg->front.iov_len = sizeof(*head);
1159 		spin_lock(&session->s_cap_lock);
1160 		list_add(&msg->list_head, &session->s_cap_releases);
1161 		session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1162 	}
1163 
1164 	if (partial) {
1165 		head = partial->front.iov_base;
1166 		num = le32_to_cpu(head->num);
1167 		dout(" queueing partial %p with %d/%d\n", partial, num,
1168 		     (int)CEPH_CAPS_PER_RELEASE);
1169 		list_move_tail(&partial->list_head,
1170 			       &session->s_cap_releases_done);
1171 		session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1172 	}
1173 	err = 0;
1174 	spin_unlock(&session->s_cap_lock);
1175 out_unlocked:
1176 	return err;
1177 }
1178 
1179 /*
1180  * flush all dirty inode data to disk.
1181  *
1182  * returns true if we've flushed through want_flush_seq
1183  */
1184 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1185 {
1186 	int mds, ret = 1;
1187 
1188 	dout("check_cap_flush want %lld\n", want_flush_seq);
1189 	mutex_lock(&mdsc->mutex);
1190 	for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1191 		struct ceph_mds_session *session = mdsc->sessions[mds];
1192 
1193 		if (!session)
1194 			continue;
1195 		get_session(session);
1196 		mutex_unlock(&mdsc->mutex);
1197 
1198 		mutex_lock(&session->s_mutex);
1199 		if (!list_empty(&session->s_cap_flushing)) {
1200 			struct ceph_inode_info *ci =
1201 				list_entry(session->s_cap_flushing.next,
1202 					   struct ceph_inode_info,
1203 					   i_flushing_item);
1204 			struct inode *inode = &ci->vfs_inode;
1205 
1206 			spin_lock(&inode->i_lock);
1207 			if (ci->i_cap_flush_seq <= want_flush_seq) {
1208 				dout("check_cap_flush still flushing %p "
1209 				     "seq %lld <= %lld to mds%d\n", inode,
1210 				     ci->i_cap_flush_seq, want_flush_seq,
1211 				     session->s_mds);
1212 				ret = 0;
1213 			}
1214 			spin_unlock(&inode->i_lock);
1215 		}
1216 		mutex_unlock(&session->s_mutex);
1217 		ceph_put_mds_session(session);
1218 
1219 		if (!ret)
1220 			return ret;
1221 		mutex_lock(&mdsc->mutex);
1222 	}
1223 
1224 	mutex_unlock(&mdsc->mutex);
1225 	dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1226 	return ret;
1227 }
1228 
1229 /*
1230  * called under s_mutex
1231  */
1232 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1233 			    struct ceph_mds_session *session)
1234 {
1235 	struct ceph_msg *msg;
1236 
1237 	dout("send_cap_releases mds%d\n", session->s_mds);
1238 	spin_lock(&session->s_cap_lock);
1239 	while (!list_empty(&session->s_cap_releases_done)) {
1240 		msg = list_first_entry(&session->s_cap_releases_done,
1241 				 struct ceph_msg, list_head);
1242 		list_del_init(&msg->list_head);
1243 		spin_unlock(&session->s_cap_lock);
1244 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1245 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1246 		ceph_con_send(&session->s_con, msg);
1247 		spin_lock(&session->s_cap_lock);
1248 	}
1249 	spin_unlock(&session->s_cap_lock);
1250 }
1251 
1252 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1253 				 struct ceph_mds_session *session)
1254 {
1255 	struct ceph_msg *msg;
1256 	struct ceph_mds_cap_release *head;
1257 	unsigned num;
1258 
1259 	dout("discard_cap_releases mds%d\n", session->s_mds);
1260 	spin_lock(&session->s_cap_lock);
1261 
1262 	/* zero out the in-progress message */
1263 	msg = list_first_entry(&session->s_cap_releases,
1264 			       struct ceph_msg, list_head);
1265 	head = msg->front.iov_base;
1266 	num = le32_to_cpu(head->num);
1267 	dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1268 	head->num = cpu_to_le32(0);
1269 	session->s_num_cap_releases += num;
1270 
1271 	/* requeue completed messages */
1272 	while (!list_empty(&session->s_cap_releases_done)) {
1273 		msg = list_first_entry(&session->s_cap_releases_done,
1274 				 struct ceph_msg, list_head);
1275 		list_del_init(&msg->list_head);
1276 
1277 		head = msg->front.iov_base;
1278 		num = le32_to_cpu(head->num);
1279 		dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1280 		     num);
1281 		session->s_num_cap_releases += num;
1282 		head->num = cpu_to_le32(0);
1283 		msg->front.iov_len = sizeof(*head);
1284 		list_add(&msg->list_head, &session->s_cap_releases);
1285 	}
1286 
1287 	spin_unlock(&session->s_cap_lock);
1288 }
1289 
1290 /*
1291  * requests
1292  */
1293 
1294 /*
1295  * Create an mds request.
1296  */
1297 struct ceph_mds_request *
1298 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1299 {
1300 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1301 
1302 	if (!req)
1303 		return ERR_PTR(-ENOMEM);
1304 
1305 	mutex_init(&req->r_fill_mutex);
1306 	req->r_mdsc = mdsc;
1307 	req->r_started = jiffies;
1308 	req->r_resend_mds = -1;
1309 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1310 	req->r_fmode = -1;
1311 	kref_init(&req->r_kref);
1312 	INIT_LIST_HEAD(&req->r_wait);
1313 	init_completion(&req->r_completion);
1314 	init_completion(&req->r_safe_completion);
1315 	INIT_LIST_HEAD(&req->r_unsafe_item);
1316 
1317 	req->r_op = op;
1318 	req->r_direct_mode = mode;
1319 	return req;
1320 }
1321 
1322 /*
1323  * return oldest (lowest) request, tid in request tree, 0 if none.
1324  *
1325  * called under mdsc->mutex.
1326  */
1327 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1328 {
1329 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1330 		return NULL;
1331 	return rb_entry(rb_first(&mdsc->request_tree),
1332 			struct ceph_mds_request, r_node);
1333 }
1334 
1335 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1336 {
1337 	struct ceph_mds_request *req = __get_oldest_req(mdsc);
1338 
1339 	if (req)
1340 		return req->r_tid;
1341 	return 0;
1342 }
1343 
1344 /*
1345  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1346  * on build_path_from_dentry in fs/cifs/dir.c.
1347  *
1348  * If @stop_on_nosnap, generate path relative to the first non-snapped
1349  * inode.
1350  *
1351  * Encode hidden .snap dirs as a double /, i.e.
1352  *   foo/.snap/bar -> foo//bar
1353  */
1354 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1355 			   int stop_on_nosnap)
1356 {
1357 	struct dentry *temp;
1358 	char *path;
1359 	int len, pos;
1360 
1361 	if (dentry == NULL)
1362 		return ERR_PTR(-EINVAL);
1363 
1364 retry:
1365 	len = 0;
1366 	for (temp = dentry; !IS_ROOT(temp);) {
1367 		struct inode *inode = temp->d_inode;
1368 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1369 			len++;  /* slash only */
1370 		else if (stop_on_nosnap && inode &&
1371 			 ceph_snap(inode) == CEPH_NOSNAP)
1372 			break;
1373 		else
1374 			len += 1 + temp->d_name.len;
1375 		temp = temp->d_parent;
1376 		if (temp == NULL) {
1377 			pr_err("build_path corrupt dentry %p\n", dentry);
1378 			return ERR_PTR(-EINVAL);
1379 		}
1380 	}
1381 	if (len)
1382 		len--;  /* no leading '/' */
1383 
1384 	path = kmalloc(len+1, GFP_NOFS);
1385 	if (path == NULL)
1386 		return ERR_PTR(-ENOMEM);
1387 	pos = len;
1388 	path[pos] = 0;	/* trailing null */
1389 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1390 		struct inode *inode = temp->d_inode;
1391 
1392 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1393 			dout("build_path path+%d: %p SNAPDIR\n",
1394 			     pos, temp);
1395 		} else if (stop_on_nosnap && inode &&
1396 			   ceph_snap(inode) == CEPH_NOSNAP) {
1397 			break;
1398 		} else {
1399 			pos -= temp->d_name.len;
1400 			if (pos < 0)
1401 				break;
1402 			strncpy(path + pos, temp->d_name.name,
1403 				temp->d_name.len);
1404 		}
1405 		if (pos)
1406 			path[--pos] = '/';
1407 		temp = temp->d_parent;
1408 		if (temp == NULL) {
1409 			pr_err("build_path corrupt dentry\n");
1410 			kfree(path);
1411 			return ERR_PTR(-EINVAL);
1412 		}
1413 	}
1414 	if (pos != 0) {
1415 		pr_err("build_path did not end path lookup where "
1416 		       "expected, namelen is %d, pos is %d\n", len, pos);
1417 		/* presumably this is only possible if racing with a
1418 		   rename of one of the parent directories (we can not
1419 		   lock the dentries above us to prevent this, but
1420 		   retrying should be harmless) */
1421 		kfree(path);
1422 		goto retry;
1423 	}
1424 
1425 	*base = ceph_ino(temp->d_inode);
1426 	*plen = len;
1427 	dout("build_path on %p %d built %llx '%.*s'\n",
1428 	     dentry, atomic_read(&dentry->d_count), *base, len, path);
1429 	return path;
1430 }
1431 
1432 static int build_dentry_path(struct dentry *dentry,
1433 			     const char **ppath, int *ppathlen, u64 *pino,
1434 			     int *pfreepath)
1435 {
1436 	char *path;
1437 
1438 	if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1439 		*pino = ceph_ino(dentry->d_parent->d_inode);
1440 		*ppath = dentry->d_name.name;
1441 		*ppathlen = dentry->d_name.len;
1442 		return 0;
1443 	}
1444 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1445 	if (IS_ERR(path))
1446 		return PTR_ERR(path);
1447 	*ppath = path;
1448 	*pfreepath = 1;
1449 	return 0;
1450 }
1451 
1452 static int build_inode_path(struct inode *inode,
1453 			    const char **ppath, int *ppathlen, u64 *pino,
1454 			    int *pfreepath)
1455 {
1456 	struct dentry *dentry;
1457 	char *path;
1458 
1459 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1460 		*pino = ceph_ino(inode);
1461 		*ppathlen = 0;
1462 		return 0;
1463 	}
1464 	dentry = d_find_alias(inode);
1465 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1466 	dput(dentry);
1467 	if (IS_ERR(path))
1468 		return PTR_ERR(path);
1469 	*ppath = path;
1470 	*pfreepath = 1;
1471 	return 0;
1472 }
1473 
1474 /*
1475  * request arguments may be specified via an inode *, a dentry *, or
1476  * an explicit ino+path.
1477  */
1478 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1479 				  const char *rpath, u64 rino,
1480 				  const char **ppath, int *pathlen,
1481 				  u64 *ino, int *freepath)
1482 {
1483 	int r = 0;
1484 
1485 	if (rinode) {
1486 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1487 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1488 		     ceph_snap(rinode));
1489 	} else if (rdentry) {
1490 		r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1491 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1492 		     *ppath);
1493 	} else if (rpath) {
1494 		*ino = rino;
1495 		*ppath = rpath;
1496 		*pathlen = strlen(rpath);
1497 		dout(" path %.*s\n", *pathlen, rpath);
1498 	}
1499 
1500 	return r;
1501 }
1502 
1503 /*
1504  * called under mdsc->mutex
1505  */
1506 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1507 					       struct ceph_mds_request *req,
1508 					       int mds)
1509 {
1510 	struct ceph_msg *msg;
1511 	struct ceph_mds_request_head *head;
1512 	const char *path1 = NULL;
1513 	const char *path2 = NULL;
1514 	u64 ino1 = 0, ino2 = 0;
1515 	int pathlen1 = 0, pathlen2 = 0;
1516 	int freepath1 = 0, freepath2 = 0;
1517 	int len;
1518 	u16 releases;
1519 	void *p, *end;
1520 	int ret;
1521 
1522 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
1523 			      req->r_path1, req->r_ino1.ino,
1524 			      &path1, &pathlen1, &ino1, &freepath1);
1525 	if (ret < 0) {
1526 		msg = ERR_PTR(ret);
1527 		goto out;
1528 	}
1529 
1530 	ret = set_request_path_attr(NULL, req->r_old_dentry,
1531 			      req->r_path2, req->r_ino2.ino,
1532 			      &path2, &pathlen2, &ino2, &freepath2);
1533 	if (ret < 0) {
1534 		msg = ERR_PTR(ret);
1535 		goto out_free1;
1536 	}
1537 
1538 	len = sizeof(*head) +
1539 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1540 
1541 	/* calculate (max) length for cap releases */
1542 	len += sizeof(struct ceph_mds_request_release) *
1543 		(!!req->r_inode_drop + !!req->r_dentry_drop +
1544 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1545 	if (req->r_dentry_drop)
1546 		len += req->r_dentry->d_name.len;
1547 	if (req->r_old_dentry_drop)
1548 		len += req->r_old_dentry->d_name.len;
1549 
1550 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS);
1551 	if (!msg) {
1552 		msg = ERR_PTR(-ENOMEM);
1553 		goto out_free2;
1554 	}
1555 
1556 	msg->hdr.tid = cpu_to_le64(req->r_tid);
1557 
1558 	head = msg->front.iov_base;
1559 	p = msg->front.iov_base + sizeof(*head);
1560 	end = msg->front.iov_base + msg->front.iov_len;
1561 
1562 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1563 	head->op = cpu_to_le32(req->r_op);
1564 	head->caller_uid = cpu_to_le32(current_fsuid());
1565 	head->caller_gid = cpu_to_le32(current_fsgid());
1566 	head->args = req->r_args;
1567 
1568 	ceph_encode_filepath(&p, end, ino1, path1);
1569 	ceph_encode_filepath(&p, end, ino2, path2);
1570 
1571 	/* make note of release offset, in case we need to replay */
1572 	req->r_request_release_offset = p - msg->front.iov_base;
1573 
1574 	/* cap releases */
1575 	releases = 0;
1576 	if (req->r_inode_drop)
1577 		releases += ceph_encode_inode_release(&p,
1578 		      req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1579 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
1580 	if (req->r_dentry_drop)
1581 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
1582 		       mds, req->r_dentry_drop, req->r_dentry_unless);
1583 	if (req->r_old_dentry_drop)
1584 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1585 		       mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1586 	if (req->r_old_inode_drop)
1587 		releases += ceph_encode_inode_release(&p,
1588 		      req->r_old_dentry->d_inode,
1589 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1590 	head->num_releases = cpu_to_le16(releases);
1591 
1592 	BUG_ON(p > end);
1593 	msg->front.iov_len = p - msg->front.iov_base;
1594 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1595 
1596 	msg->pages = req->r_pages;
1597 	msg->nr_pages = req->r_num_pages;
1598 	msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1599 	msg->hdr.data_off = cpu_to_le16(0);
1600 
1601 out_free2:
1602 	if (freepath2)
1603 		kfree((char *)path2);
1604 out_free1:
1605 	if (freepath1)
1606 		kfree((char *)path1);
1607 out:
1608 	return msg;
1609 }
1610 
1611 /*
1612  * called under mdsc->mutex if error, under no mutex if
1613  * success.
1614  */
1615 static void complete_request(struct ceph_mds_client *mdsc,
1616 			     struct ceph_mds_request *req)
1617 {
1618 	if (req->r_callback)
1619 		req->r_callback(mdsc, req);
1620 	else
1621 		complete_all(&req->r_completion);
1622 }
1623 
1624 /*
1625  * called under mdsc->mutex
1626  */
1627 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1628 				  struct ceph_mds_request *req,
1629 				  int mds)
1630 {
1631 	struct ceph_mds_request_head *rhead;
1632 	struct ceph_msg *msg;
1633 	int flags = 0;
1634 
1635 	req->r_mds = mds;
1636 	req->r_attempts++;
1637 	if (req->r_inode) {
1638 		struct ceph_cap *cap =
1639 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1640 
1641 		if (cap)
1642 			req->r_sent_on_mseq = cap->mseq;
1643 		else
1644 			req->r_sent_on_mseq = -1;
1645 	}
1646 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1647 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1648 
1649 	if (req->r_got_unsafe) {
1650 		/*
1651 		 * Replay.  Do not regenerate message (and rebuild
1652 		 * paths, etc.); just use the original message.
1653 		 * Rebuilding paths will break for renames because
1654 		 * d_move mangles the src name.
1655 		 */
1656 		msg = req->r_request;
1657 		rhead = msg->front.iov_base;
1658 
1659 		flags = le32_to_cpu(rhead->flags);
1660 		flags |= CEPH_MDS_FLAG_REPLAY;
1661 		rhead->flags = cpu_to_le32(flags);
1662 
1663 		if (req->r_target_inode)
1664 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1665 
1666 		rhead->num_retry = req->r_attempts - 1;
1667 
1668 		/* remove cap/dentry releases from message */
1669 		rhead->num_releases = 0;
1670 		msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1671 		msg->front.iov_len = req->r_request_release_offset;
1672 		return 0;
1673 	}
1674 
1675 	if (req->r_request) {
1676 		ceph_msg_put(req->r_request);
1677 		req->r_request = NULL;
1678 	}
1679 	msg = create_request_message(mdsc, req, mds);
1680 	if (IS_ERR(msg)) {
1681 		req->r_err = PTR_ERR(msg);
1682 		complete_request(mdsc, req);
1683 		return PTR_ERR(msg);
1684 	}
1685 	req->r_request = msg;
1686 
1687 	rhead = msg->front.iov_base;
1688 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1689 	if (req->r_got_unsafe)
1690 		flags |= CEPH_MDS_FLAG_REPLAY;
1691 	if (req->r_locked_dir)
1692 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1693 	rhead->flags = cpu_to_le32(flags);
1694 	rhead->num_fwd = req->r_num_fwd;
1695 	rhead->num_retry = req->r_attempts - 1;
1696 	rhead->ino = 0;
1697 
1698 	dout(" r_locked_dir = %p\n", req->r_locked_dir);
1699 	return 0;
1700 }
1701 
1702 /*
1703  * send request, or put it on the appropriate wait list.
1704  */
1705 static int __do_request(struct ceph_mds_client *mdsc,
1706 			struct ceph_mds_request *req)
1707 {
1708 	struct ceph_mds_session *session = NULL;
1709 	int mds = -1;
1710 	int err = -EAGAIN;
1711 
1712 	if (req->r_err || req->r_got_result)
1713 		goto out;
1714 
1715 	if (req->r_timeout &&
1716 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1717 		dout("do_request timed out\n");
1718 		err = -EIO;
1719 		goto finish;
1720 	}
1721 
1722 	mds = __choose_mds(mdsc, req);
1723 	if (mds < 0 ||
1724 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1725 		dout("do_request no mds or not active, waiting for map\n");
1726 		list_add(&req->r_wait, &mdsc->waiting_for_map);
1727 		goto out;
1728 	}
1729 
1730 	/* get, open session */
1731 	session = __ceph_lookup_mds_session(mdsc, mds);
1732 	if (!session) {
1733 		session = register_session(mdsc, mds);
1734 		if (IS_ERR(session)) {
1735 			err = PTR_ERR(session);
1736 			goto finish;
1737 		}
1738 	}
1739 	dout("do_request mds%d session %p state %s\n", mds, session,
1740 	     session_state_name(session->s_state));
1741 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1742 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
1743 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
1744 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
1745 			__open_session(mdsc, session);
1746 		list_add(&req->r_wait, &session->s_waiting);
1747 		goto out_session;
1748 	}
1749 
1750 	/* send request */
1751 	req->r_session = get_session(session);
1752 	req->r_resend_mds = -1;   /* forget any previous mds hint */
1753 
1754 	if (req->r_request_started == 0)   /* note request start time */
1755 		req->r_request_started = jiffies;
1756 
1757 	err = __prepare_send_request(mdsc, req, mds);
1758 	if (!err) {
1759 		ceph_msg_get(req->r_request);
1760 		ceph_con_send(&session->s_con, req->r_request);
1761 	}
1762 
1763 out_session:
1764 	ceph_put_mds_session(session);
1765 out:
1766 	return err;
1767 
1768 finish:
1769 	req->r_err = err;
1770 	complete_request(mdsc, req);
1771 	goto out;
1772 }
1773 
1774 /*
1775  * called under mdsc->mutex
1776  */
1777 static void __wake_requests(struct ceph_mds_client *mdsc,
1778 			    struct list_head *head)
1779 {
1780 	struct ceph_mds_request *req, *nreq;
1781 
1782 	list_for_each_entry_safe(req, nreq, head, r_wait) {
1783 		list_del_init(&req->r_wait);
1784 		__do_request(mdsc, req);
1785 	}
1786 }
1787 
1788 /*
1789  * Wake up threads with requests pending for @mds, so that they can
1790  * resubmit their requests to a possibly different mds.
1791  */
1792 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1793 {
1794 	struct ceph_mds_request *req;
1795 	struct rb_node *p;
1796 
1797 	dout("kick_requests mds%d\n", mds);
1798 	for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1799 		req = rb_entry(p, struct ceph_mds_request, r_node);
1800 		if (req->r_got_unsafe)
1801 			continue;
1802 		if (req->r_session &&
1803 		    req->r_session->s_mds == mds) {
1804 			dout(" kicking tid %llu\n", req->r_tid);
1805 			put_request_session(req);
1806 			__do_request(mdsc, req);
1807 		}
1808 	}
1809 }
1810 
1811 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1812 			      struct ceph_mds_request *req)
1813 {
1814 	dout("submit_request on %p\n", req);
1815 	mutex_lock(&mdsc->mutex);
1816 	__register_request(mdsc, req, NULL);
1817 	__do_request(mdsc, req);
1818 	mutex_unlock(&mdsc->mutex);
1819 }
1820 
1821 /*
1822  * Synchrously perform an mds request.  Take care of all of the
1823  * session setup, forwarding, retry details.
1824  */
1825 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1826 			 struct inode *dir,
1827 			 struct ceph_mds_request *req)
1828 {
1829 	int err;
1830 
1831 	dout("do_request on %p\n", req);
1832 
1833 	/* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1834 	if (req->r_inode)
1835 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1836 	if (req->r_locked_dir)
1837 		ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1838 	if (req->r_old_dentry)
1839 		ceph_get_cap_refs(
1840 			ceph_inode(req->r_old_dentry->d_parent->d_inode),
1841 			CEPH_CAP_PIN);
1842 
1843 	/* issue */
1844 	mutex_lock(&mdsc->mutex);
1845 	__register_request(mdsc, req, dir);
1846 	__do_request(mdsc, req);
1847 
1848 	if (req->r_err) {
1849 		err = req->r_err;
1850 		__unregister_request(mdsc, req);
1851 		dout("do_request early error %d\n", err);
1852 		goto out;
1853 	}
1854 
1855 	/* wait */
1856 	mutex_unlock(&mdsc->mutex);
1857 	dout("do_request waiting\n");
1858 	if (req->r_timeout) {
1859 		err = (long)wait_for_completion_killable_timeout(
1860 			&req->r_completion, req->r_timeout);
1861 		if (err == 0)
1862 			err = -EIO;
1863 	} else {
1864 		err = wait_for_completion_killable(&req->r_completion);
1865 	}
1866 	dout("do_request waited, got %d\n", err);
1867 	mutex_lock(&mdsc->mutex);
1868 
1869 	/* only abort if we didn't race with a real reply */
1870 	if (req->r_got_result) {
1871 		err = le32_to_cpu(req->r_reply_info.head->result);
1872 	} else if (err < 0) {
1873 		dout("aborted request %lld with %d\n", req->r_tid, err);
1874 
1875 		/*
1876 		 * ensure we aren't running concurrently with
1877 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
1878 		 * rely on locks (dir mutex) held by our caller.
1879 		 */
1880 		mutex_lock(&req->r_fill_mutex);
1881 		req->r_err = err;
1882 		req->r_aborted = true;
1883 		mutex_unlock(&req->r_fill_mutex);
1884 
1885 		if (req->r_locked_dir &&
1886 		    (req->r_op & CEPH_MDS_OP_WRITE))
1887 			ceph_invalidate_dir_request(req);
1888 	} else {
1889 		err = req->r_err;
1890 	}
1891 
1892 out:
1893 	mutex_unlock(&mdsc->mutex);
1894 	dout("do_request %p done, result %d\n", req, err);
1895 	return err;
1896 }
1897 
1898 /*
1899  * Invalidate dir I_COMPLETE, dentry lease state on an aborted MDS
1900  * namespace request.
1901  */
1902 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
1903 {
1904 	struct inode *inode = req->r_locked_dir;
1905 	struct ceph_inode_info *ci = ceph_inode(inode);
1906 
1907 	dout("invalidate_dir_request %p (I_COMPLETE, lease(s))\n", inode);
1908 	spin_lock(&inode->i_lock);
1909 	ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
1910 	ci->i_release_count++;
1911 	spin_unlock(&inode->i_lock);
1912 
1913 	if (req->r_dentry)
1914 		ceph_invalidate_dentry_lease(req->r_dentry);
1915 	if (req->r_old_dentry)
1916 		ceph_invalidate_dentry_lease(req->r_old_dentry);
1917 }
1918 
1919 /*
1920  * Handle mds reply.
1921  *
1922  * We take the session mutex and parse and process the reply immediately.
1923  * This preserves the logical ordering of replies, capabilities, etc., sent
1924  * by the MDS as they are applied to our local cache.
1925  */
1926 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
1927 {
1928 	struct ceph_mds_client *mdsc = session->s_mdsc;
1929 	struct ceph_mds_request *req;
1930 	struct ceph_mds_reply_head *head = msg->front.iov_base;
1931 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
1932 	u64 tid;
1933 	int err, result;
1934 	int mds = session->s_mds;
1935 
1936 	if (msg->front.iov_len < sizeof(*head)) {
1937 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
1938 		ceph_msg_dump(msg);
1939 		return;
1940 	}
1941 
1942 	/* get request, session */
1943 	tid = le64_to_cpu(msg->hdr.tid);
1944 	mutex_lock(&mdsc->mutex);
1945 	req = __lookup_request(mdsc, tid);
1946 	if (!req) {
1947 		dout("handle_reply on unknown tid %llu\n", tid);
1948 		mutex_unlock(&mdsc->mutex);
1949 		return;
1950 	}
1951 	dout("handle_reply %p\n", req);
1952 
1953 	/* correct session? */
1954 	if (req->r_session != session) {
1955 		pr_err("mdsc_handle_reply got %llu on session mds%d"
1956 		       " not mds%d\n", tid, session->s_mds,
1957 		       req->r_session ? req->r_session->s_mds : -1);
1958 		mutex_unlock(&mdsc->mutex);
1959 		goto out;
1960 	}
1961 
1962 	/* dup? */
1963 	if ((req->r_got_unsafe && !head->safe) ||
1964 	    (req->r_got_safe && head->safe)) {
1965 		pr_warning("got a dup %s reply on %llu from mds%d\n",
1966 			   head->safe ? "safe" : "unsafe", tid, mds);
1967 		mutex_unlock(&mdsc->mutex);
1968 		goto out;
1969 	}
1970 	if (req->r_got_safe && !head->safe) {
1971 		pr_warning("got unsafe after safe on %llu from mds%d\n",
1972 			   tid, mds);
1973 		mutex_unlock(&mdsc->mutex);
1974 		goto out;
1975 	}
1976 
1977 	result = le32_to_cpu(head->result);
1978 
1979 	/*
1980 	 * Handle an ESTALE
1981 	 * if we're not talking to the authority, send to them
1982 	 * if the authority has changed while we weren't looking,
1983 	 * send to new authority
1984 	 * Otherwise we just have to return an ESTALE
1985 	 */
1986 	if (result == -ESTALE) {
1987 		dout("got ESTALE on request %llu", req->r_tid);
1988 		if (!req->r_inode) {
1989 			/* do nothing; not an authority problem */
1990 		} else if (req->r_direct_mode != USE_AUTH_MDS) {
1991 			dout("not using auth, setting for that now");
1992 			req->r_direct_mode = USE_AUTH_MDS;
1993 			__do_request(mdsc, req);
1994 			mutex_unlock(&mdsc->mutex);
1995 			goto out;
1996 		} else  {
1997 			struct ceph_inode_info *ci = ceph_inode(req->r_inode);
1998 			struct ceph_cap *cap =
1999 				ceph_get_cap_for_mds(ci, req->r_mds);;
2000 
2001 			dout("already using auth");
2002 			if ((!cap || cap != ci->i_auth_cap) ||
2003 			    (cap->mseq != req->r_sent_on_mseq)) {
2004 				dout("but cap changed, so resending");
2005 				__do_request(mdsc, req);
2006 				mutex_unlock(&mdsc->mutex);
2007 				goto out;
2008 			}
2009 		}
2010 		dout("have to return ESTALE on request %llu", req->r_tid);
2011 	}
2012 
2013 
2014 	if (head->safe) {
2015 		req->r_got_safe = true;
2016 		__unregister_request(mdsc, req);
2017 		complete_all(&req->r_safe_completion);
2018 
2019 		if (req->r_got_unsafe) {
2020 			/*
2021 			 * We already handled the unsafe response, now do the
2022 			 * cleanup.  No need to examine the response; the MDS
2023 			 * doesn't include any result info in the safe
2024 			 * response.  And even if it did, there is nothing
2025 			 * useful we could do with a revised return value.
2026 			 */
2027 			dout("got safe reply %llu, mds%d\n", tid, mds);
2028 			list_del_init(&req->r_unsafe_item);
2029 
2030 			/* last unsafe request during umount? */
2031 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2032 				complete_all(&mdsc->safe_umount_waiters);
2033 			mutex_unlock(&mdsc->mutex);
2034 			goto out;
2035 		}
2036 	} else {
2037 		req->r_got_unsafe = true;
2038 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2039 	}
2040 
2041 	dout("handle_reply tid %lld result %d\n", tid, result);
2042 	rinfo = &req->r_reply_info;
2043 	err = parse_reply_info(msg, rinfo);
2044 	mutex_unlock(&mdsc->mutex);
2045 
2046 	mutex_lock(&session->s_mutex);
2047 	if (err < 0) {
2048 		pr_err("mdsc_handle_reply got corrupt reply mds%d\n", mds);
2049 		ceph_msg_dump(msg);
2050 		goto out_err;
2051 	}
2052 
2053 	/* snap trace */
2054 	if (rinfo->snapblob_len) {
2055 		down_write(&mdsc->snap_rwsem);
2056 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2057 			       rinfo->snapblob + rinfo->snapblob_len,
2058 			       le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2059 		downgrade_write(&mdsc->snap_rwsem);
2060 	} else {
2061 		down_read(&mdsc->snap_rwsem);
2062 	}
2063 
2064 	/* insert trace into our cache */
2065 	mutex_lock(&req->r_fill_mutex);
2066 	err = ceph_fill_trace(mdsc->client->sb, req, req->r_session);
2067 	if (err == 0) {
2068 		if (result == 0 && rinfo->dir_nr)
2069 			ceph_readdir_prepopulate(req, req->r_session);
2070 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2071 	}
2072 	mutex_unlock(&req->r_fill_mutex);
2073 
2074 	up_read(&mdsc->snap_rwsem);
2075 out_err:
2076 	mutex_lock(&mdsc->mutex);
2077 	if (!req->r_aborted) {
2078 		if (err) {
2079 			req->r_err = err;
2080 		} else {
2081 			req->r_reply = msg;
2082 			ceph_msg_get(msg);
2083 			req->r_got_result = true;
2084 		}
2085 	} else {
2086 		dout("reply arrived after request %lld was aborted\n", tid);
2087 	}
2088 	mutex_unlock(&mdsc->mutex);
2089 
2090 	ceph_add_cap_releases(mdsc, req->r_session);
2091 	mutex_unlock(&session->s_mutex);
2092 
2093 	/* kick calling process */
2094 	complete_request(mdsc, req);
2095 out:
2096 	ceph_mdsc_put_request(req);
2097 	return;
2098 }
2099 
2100 
2101 
2102 /*
2103  * handle mds notification that our request has been forwarded.
2104  */
2105 static void handle_forward(struct ceph_mds_client *mdsc,
2106 			   struct ceph_mds_session *session,
2107 			   struct ceph_msg *msg)
2108 {
2109 	struct ceph_mds_request *req;
2110 	u64 tid = le64_to_cpu(msg->hdr.tid);
2111 	u32 next_mds;
2112 	u32 fwd_seq;
2113 	int err = -EINVAL;
2114 	void *p = msg->front.iov_base;
2115 	void *end = p + msg->front.iov_len;
2116 
2117 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2118 	next_mds = ceph_decode_32(&p);
2119 	fwd_seq = ceph_decode_32(&p);
2120 
2121 	mutex_lock(&mdsc->mutex);
2122 	req = __lookup_request(mdsc, tid);
2123 	if (!req) {
2124 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2125 		goto out;  /* dup reply? */
2126 	}
2127 
2128 	if (req->r_aborted) {
2129 		dout("forward tid %llu aborted, unregistering\n", tid);
2130 		__unregister_request(mdsc, req);
2131 	} else if (fwd_seq <= req->r_num_fwd) {
2132 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2133 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2134 	} else {
2135 		/* resend. forward race not possible; mds would drop */
2136 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2137 		BUG_ON(req->r_err);
2138 		BUG_ON(req->r_got_result);
2139 		req->r_num_fwd = fwd_seq;
2140 		req->r_resend_mds = next_mds;
2141 		put_request_session(req);
2142 		__do_request(mdsc, req);
2143 	}
2144 	ceph_mdsc_put_request(req);
2145 out:
2146 	mutex_unlock(&mdsc->mutex);
2147 	return;
2148 
2149 bad:
2150 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2151 }
2152 
2153 /*
2154  * handle a mds session control message
2155  */
2156 static void handle_session(struct ceph_mds_session *session,
2157 			   struct ceph_msg *msg)
2158 {
2159 	struct ceph_mds_client *mdsc = session->s_mdsc;
2160 	u32 op;
2161 	u64 seq;
2162 	int mds = session->s_mds;
2163 	struct ceph_mds_session_head *h = msg->front.iov_base;
2164 	int wake = 0;
2165 
2166 	/* decode */
2167 	if (msg->front.iov_len != sizeof(*h))
2168 		goto bad;
2169 	op = le32_to_cpu(h->op);
2170 	seq = le64_to_cpu(h->seq);
2171 
2172 	mutex_lock(&mdsc->mutex);
2173 	if (op == CEPH_SESSION_CLOSE)
2174 		__unregister_session(mdsc, session);
2175 	/* FIXME: this ttl calculation is generous */
2176 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2177 	mutex_unlock(&mdsc->mutex);
2178 
2179 	mutex_lock(&session->s_mutex);
2180 
2181 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2182 	     mds, ceph_session_op_name(op), session,
2183 	     session_state_name(session->s_state), seq);
2184 
2185 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2186 		session->s_state = CEPH_MDS_SESSION_OPEN;
2187 		pr_info("mds%d came back\n", session->s_mds);
2188 	}
2189 
2190 	switch (op) {
2191 	case CEPH_SESSION_OPEN:
2192 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2193 			pr_info("mds%d reconnect success\n", session->s_mds);
2194 		session->s_state = CEPH_MDS_SESSION_OPEN;
2195 		renewed_caps(mdsc, session, 0);
2196 		wake = 1;
2197 		if (mdsc->stopping)
2198 			__close_session(mdsc, session);
2199 		break;
2200 
2201 	case CEPH_SESSION_RENEWCAPS:
2202 		if (session->s_renew_seq == seq)
2203 			renewed_caps(mdsc, session, 1);
2204 		break;
2205 
2206 	case CEPH_SESSION_CLOSE:
2207 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2208 			pr_info("mds%d reconnect denied\n", session->s_mds);
2209 		remove_session_caps(session);
2210 		wake = 1; /* for good measure */
2211 		complete_all(&mdsc->session_close_waiters);
2212 		kick_requests(mdsc, mds);
2213 		break;
2214 
2215 	case CEPH_SESSION_STALE:
2216 		pr_info("mds%d caps went stale, renewing\n",
2217 			session->s_mds);
2218 		spin_lock(&session->s_cap_lock);
2219 		session->s_cap_gen++;
2220 		session->s_cap_ttl = 0;
2221 		spin_unlock(&session->s_cap_lock);
2222 		send_renew_caps(mdsc, session);
2223 		break;
2224 
2225 	case CEPH_SESSION_RECALL_STATE:
2226 		trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2227 		break;
2228 
2229 	default:
2230 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2231 		WARN_ON(1);
2232 	}
2233 
2234 	mutex_unlock(&session->s_mutex);
2235 	if (wake) {
2236 		mutex_lock(&mdsc->mutex);
2237 		__wake_requests(mdsc, &session->s_waiting);
2238 		mutex_unlock(&mdsc->mutex);
2239 	}
2240 	return;
2241 
2242 bad:
2243 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2244 	       (int)msg->front.iov_len);
2245 	ceph_msg_dump(msg);
2246 	return;
2247 }
2248 
2249 
2250 /*
2251  * called under session->mutex.
2252  */
2253 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2254 				   struct ceph_mds_session *session)
2255 {
2256 	struct ceph_mds_request *req, *nreq;
2257 	int err;
2258 
2259 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2260 
2261 	mutex_lock(&mdsc->mutex);
2262 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2263 		err = __prepare_send_request(mdsc, req, session->s_mds);
2264 		if (!err) {
2265 			ceph_msg_get(req->r_request);
2266 			ceph_con_send(&session->s_con, req->r_request);
2267 		}
2268 	}
2269 	mutex_unlock(&mdsc->mutex);
2270 }
2271 
2272 /*
2273  * Encode information about a cap for a reconnect with the MDS.
2274  */
2275 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2276 			  void *arg)
2277 {
2278 	union {
2279 		struct ceph_mds_cap_reconnect v2;
2280 		struct ceph_mds_cap_reconnect_v1 v1;
2281 	} rec;
2282 	size_t reclen;
2283 	struct ceph_inode_info *ci;
2284 	struct ceph_reconnect_state *recon_state = arg;
2285 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2286 	char *path;
2287 	int pathlen, err;
2288 	u64 pathbase;
2289 	struct dentry *dentry;
2290 
2291 	ci = cap->ci;
2292 
2293 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2294 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2295 	     ceph_cap_string(cap->issued));
2296 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2297 	if (err)
2298 		return err;
2299 
2300 	dentry = d_find_alias(inode);
2301 	if (dentry) {
2302 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2303 		if (IS_ERR(path)) {
2304 			err = PTR_ERR(path);
2305 			BUG_ON(err);
2306 		}
2307 	} else {
2308 		path = NULL;
2309 		pathlen = 0;
2310 	}
2311 	err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2312 	if (err)
2313 		goto out;
2314 
2315 	spin_lock(&inode->i_lock);
2316 	cap->seq = 0;        /* reset cap seq */
2317 	cap->issue_seq = 0;  /* and issue_seq */
2318 
2319 	if (recon_state->flock) {
2320 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2321 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2322 		rec.v2.issued = cpu_to_le32(cap->issued);
2323 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2324 		rec.v2.pathbase = cpu_to_le64(pathbase);
2325 		rec.v2.flock_len = 0;
2326 		reclen = sizeof(rec.v2);
2327 	} else {
2328 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2329 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2330 		rec.v1.issued = cpu_to_le32(cap->issued);
2331 		rec.v1.size = cpu_to_le64(inode->i_size);
2332 		ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2333 		ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2334 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2335 		rec.v1.pathbase = cpu_to_le64(pathbase);
2336 		reclen = sizeof(rec.v1);
2337 	}
2338 	spin_unlock(&inode->i_lock);
2339 
2340 	if (recon_state->flock) {
2341 		int num_fcntl_locks, num_flock_locks;
2342 
2343 		lock_kernel();
2344 		ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2345 		rec.v2.flock_len = (2*sizeof(u32) +
2346 				    (num_fcntl_locks+num_flock_locks) *
2347 				    sizeof(struct ceph_filelock));
2348 
2349 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2350 		if (!err)
2351 			err = ceph_encode_locks(inode, pagelist,
2352 						num_fcntl_locks,
2353 						num_flock_locks);
2354 		unlock_kernel();
2355 	}
2356 
2357 out:
2358 	kfree(path);
2359 	dput(dentry);
2360 	return err;
2361 }
2362 
2363 
2364 /*
2365  * If an MDS fails and recovers, clients need to reconnect in order to
2366  * reestablish shared state.  This includes all caps issued through
2367  * this session _and_ the snap_realm hierarchy.  Because it's not
2368  * clear which snap realms the mds cares about, we send everything we
2369  * know about.. that ensures we'll then get any new info the
2370  * recovering MDS might have.
2371  *
2372  * This is a relatively heavyweight operation, but it's rare.
2373  *
2374  * called with mdsc->mutex held.
2375  */
2376 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2377 			       struct ceph_mds_session *session)
2378 {
2379 	struct ceph_msg *reply;
2380 	struct rb_node *p;
2381 	int mds = session->s_mds;
2382 	int err = -ENOMEM;
2383 	struct ceph_pagelist *pagelist;
2384 	struct ceph_reconnect_state recon_state;
2385 
2386 	pr_info("mds%d reconnect start\n", mds);
2387 
2388 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2389 	if (!pagelist)
2390 		goto fail_nopagelist;
2391 	ceph_pagelist_init(pagelist);
2392 
2393 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS);
2394 	if (!reply)
2395 		goto fail_nomsg;
2396 
2397 	mutex_lock(&session->s_mutex);
2398 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2399 	session->s_seq = 0;
2400 
2401 	ceph_con_open(&session->s_con,
2402 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2403 
2404 	/* replay unsafe requests */
2405 	replay_unsafe_requests(mdsc, session);
2406 
2407 	down_read(&mdsc->snap_rwsem);
2408 
2409 	dout("session %p state %s\n", session,
2410 	     session_state_name(session->s_state));
2411 
2412 	/* drop old cap expires; we're about to reestablish that state */
2413 	discard_cap_releases(mdsc, session);
2414 
2415 	/* traverse this session's caps */
2416 	err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2417 	if (err)
2418 		goto fail;
2419 
2420 	recon_state.pagelist = pagelist;
2421 	recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2422 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2423 	if (err < 0)
2424 		goto fail;
2425 
2426 	/*
2427 	 * snaprealms.  we provide mds with the ino, seq (version), and
2428 	 * parent for all of our realms.  If the mds has any newer info,
2429 	 * it will tell us.
2430 	 */
2431 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2432 		struct ceph_snap_realm *realm =
2433 			rb_entry(p, struct ceph_snap_realm, node);
2434 		struct ceph_mds_snaprealm_reconnect sr_rec;
2435 
2436 		dout(" adding snap realm %llx seq %lld parent %llx\n",
2437 		     realm->ino, realm->seq, realm->parent_ino);
2438 		sr_rec.ino = cpu_to_le64(realm->ino);
2439 		sr_rec.seq = cpu_to_le64(realm->seq);
2440 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
2441 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2442 		if (err)
2443 			goto fail;
2444 	}
2445 
2446 	reply->pagelist = pagelist;
2447 	if (recon_state.flock)
2448 		reply->hdr.version = cpu_to_le16(2);
2449 	reply->hdr.data_len = cpu_to_le32(pagelist->length);
2450 	reply->nr_pages = calc_pages_for(0, pagelist->length);
2451 	ceph_con_send(&session->s_con, reply);
2452 
2453 	mutex_unlock(&session->s_mutex);
2454 
2455 	mutex_lock(&mdsc->mutex);
2456 	__wake_requests(mdsc, &session->s_waiting);
2457 	mutex_unlock(&mdsc->mutex);
2458 
2459 	up_read(&mdsc->snap_rwsem);
2460 	return;
2461 
2462 fail:
2463 	ceph_msg_put(reply);
2464 	up_read(&mdsc->snap_rwsem);
2465 	mutex_unlock(&session->s_mutex);
2466 fail_nomsg:
2467 	ceph_pagelist_release(pagelist);
2468 	kfree(pagelist);
2469 fail_nopagelist:
2470 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2471 	return;
2472 }
2473 
2474 
2475 /*
2476  * compare old and new mdsmaps, kicking requests
2477  * and closing out old connections as necessary
2478  *
2479  * called under mdsc->mutex.
2480  */
2481 static void check_new_map(struct ceph_mds_client *mdsc,
2482 			  struct ceph_mdsmap *newmap,
2483 			  struct ceph_mdsmap *oldmap)
2484 {
2485 	int i;
2486 	int oldstate, newstate;
2487 	struct ceph_mds_session *s;
2488 
2489 	dout("check_new_map new %u old %u\n",
2490 	     newmap->m_epoch, oldmap->m_epoch);
2491 
2492 	for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2493 		if (mdsc->sessions[i] == NULL)
2494 			continue;
2495 		s = mdsc->sessions[i];
2496 		oldstate = ceph_mdsmap_get_state(oldmap, i);
2497 		newstate = ceph_mdsmap_get_state(newmap, i);
2498 
2499 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2500 		     i, ceph_mds_state_name(oldstate),
2501 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2502 		     ceph_mds_state_name(newstate),
2503 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2504 		     session_state_name(s->s_state));
2505 
2506 		if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
2507 			   ceph_mdsmap_get_addr(newmap, i),
2508 			   sizeof(struct ceph_entity_addr))) {
2509 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2510 				/* the session never opened, just close it
2511 				 * out now */
2512 				__wake_requests(mdsc, &s->s_waiting);
2513 				__unregister_session(mdsc, s);
2514 			} else {
2515 				/* just close it */
2516 				mutex_unlock(&mdsc->mutex);
2517 				mutex_lock(&s->s_mutex);
2518 				mutex_lock(&mdsc->mutex);
2519 				ceph_con_close(&s->s_con);
2520 				mutex_unlock(&s->s_mutex);
2521 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
2522 			}
2523 
2524 			/* kick any requests waiting on the recovering mds */
2525 			kick_requests(mdsc, i);
2526 		} else if (oldstate == newstate) {
2527 			continue;  /* nothing new with this mds */
2528 		}
2529 
2530 		/*
2531 		 * send reconnect?
2532 		 */
2533 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2534 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
2535 			mutex_unlock(&mdsc->mutex);
2536 			send_mds_reconnect(mdsc, s);
2537 			mutex_lock(&mdsc->mutex);
2538 		}
2539 
2540 		/*
2541 		 * kick request on any mds that has gone active.
2542 		 */
2543 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2544 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
2545 			if (oldstate != CEPH_MDS_STATE_CREATING &&
2546 			    oldstate != CEPH_MDS_STATE_STARTING)
2547 				pr_info("mds%d recovery completed\n", s->s_mds);
2548 			kick_requests(mdsc, i);
2549 			ceph_kick_flushing_caps(mdsc, s);
2550 			wake_up_session_caps(s, 1);
2551 		}
2552 	}
2553 
2554 	for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2555 		s = mdsc->sessions[i];
2556 		if (!s)
2557 			continue;
2558 		if (!ceph_mdsmap_is_laggy(newmap, i))
2559 			continue;
2560 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2561 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
2562 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
2563 			dout(" connecting to export targets of laggy mds%d\n",
2564 			     i);
2565 			__open_export_target_sessions(mdsc, s);
2566 		}
2567 	}
2568 }
2569 
2570 
2571 
2572 /*
2573  * leases
2574  */
2575 
2576 /*
2577  * caller must hold session s_mutex, dentry->d_lock
2578  */
2579 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2580 {
2581 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2582 
2583 	ceph_put_mds_session(di->lease_session);
2584 	di->lease_session = NULL;
2585 }
2586 
2587 static void handle_lease(struct ceph_mds_client *mdsc,
2588 			 struct ceph_mds_session *session,
2589 			 struct ceph_msg *msg)
2590 {
2591 	struct super_block *sb = mdsc->client->sb;
2592 	struct inode *inode;
2593 	struct ceph_inode_info *ci;
2594 	struct dentry *parent, *dentry;
2595 	struct ceph_dentry_info *di;
2596 	int mds = session->s_mds;
2597 	struct ceph_mds_lease *h = msg->front.iov_base;
2598 	u32 seq;
2599 	struct ceph_vino vino;
2600 	int mask;
2601 	struct qstr dname;
2602 	int release = 0;
2603 
2604 	dout("handle_lease from mds%d\n", mds);
2605 
2606 	/* decode */
2607 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2608 		goto bad;
2609 	vino.ino = le64_to_cpu(h->ino);
2610 	vino.snap = CEPH_NOSNAP;
2611 	mask = le16_to_cpu(h->mask);
2612 	seq = le32_to_cpu(h->seq);
2613 	dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2614 	dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2615 	if (dname.len != get_unaligned_le32(h+1))
2616 		goto bad;
2617 
2618 	mutex_lock(&session->s_mutex);
2619 	session->s_seq++;
2620 
2621 	/* lookup inode */
2622 	inode = ceph_find_inode(sb, vino);
2623 	dout("handle_lease %s, mask %d, ino %llx %p %.*s\n",
2624 	     ceph_lease_op_name(h->action), mask, vino.ino, inode,
2625 	     dname.len, dname.name);
2626 	if (inode == NULL) {
2627 		dout("handle_lease no inode %llx\n", vino.ino);
2628 		goto release;
2629 	}
2630 	ci = ceph_inode(inode);
2631 
2632 	/* dentry */
2633 	parent = d_find_alias(inode);
2634 	if (!parent) {
2635 		dout("no parent dentry on inode %p\n", inode);
2636 		WARN_ON(1);
2637 		goto release;  /* hrm... */
2638 	}
2639 	dname.hash = full_name_hash(dname.name, dname.len);
2640 	dentry = d_lookup(parent, &dname);
2641 	dput(parent);
2642 	if (!dentry)
2643 		goto release;
2644 
2645 	spin_lock(&dentry->d_lock);
2646 	di = ceph_dentry(dentry);
2647 	switch (h->action) {
2648 	case CEPH_MDS_LEASE_REVOKE:
2649 		if (di && di->lease_session == session) {
2650 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2651 				h->seq = cpu_to_le32(di->lease_seq);
2652 			__ceph_mdsc_drop_dentry_lease(dentry);
2653 		}
2654 		release = 1;
2655 		break;
2656 
2657 	case CEPH_MDS_LEASE_RENEW:
2658 		if (di && di->lease_session == session &&
2659 		    di->lease_gen == session->s_cap_gen &&
2660 		    di->lease_renew_from &&
2661 		    di->lease_renew_after == 0) {
2662 			unsigned long duration =
2663 				le32_to_cpu(h->duration_ms) * HZ / 1000;
2664 
2665 			di->lease_seq = seq;
2666 			dentry->d_time = di->lease_renew_from + duration;
2667 			di->lease_renew_after = di->lease_renew_from +
2668 				(duration >> 1);
2669 			di->lease_renew_from = 0;
2670 		}
2671 		break;
2672 	}
2673 	spin_unlock(&dentry->d_lock);
2674 	dput(dentry);
2675 
2676 	if (!release)
2677 		goto out;
2678 
2679 release:
2680 	/* let's just reuse the same message */
2681 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2682 	ceph_msg_get(msg);
2683 	ceph_con_send(&session->s_con, msg);
2684 
2685 out:
2686 	iput(inode);
2687 	mutex_unlock(&session->s_mutex);
2688 	return;
2689 
2690 bad:
2691 	pr_err("corrupt lease message\n");
2692 	ceph_msg_dump(msg);
2693 }
2694 
2695 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2696 			      struct inode *inode,
2697 			      struct dentry *dentry, char action,
2698 			      u32 seq)
2699 {
2700 	struct ceph_msg *msg;
2701 	struct ceph_mds_lease *lease;
2702 	int len = sizeof(*lease) + sizeof(u32);
2703 	int dnamelen = 0;
2704 
2705 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2706 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
2707 	dnamelen = dentry->d_name.len;
2708 	len += dnamelen;
2709 
2710 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS);
2711 	if (!msg)
2712 		return;
2713 	lease = msg->front.iov_base;
2714 	lease->action = action;
2715 	lease->mask = cpu_to_le16(1);
2716 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2717 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2718 	lease->seq = cpu_to_le32(seq);
2719 	put_unaligned_le32(dnamelen, lease + 1);
2720 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2721 
2722 	/*
2723 	 * if this is a preemptive lease RELEASE, no need to
2724 	 * flush request stream, since the actual request will
2725 	 * soon follow.
2726 	 */
2727 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2728 
2729 	ceph_con_send(&session->s_con, msg);
2730 }
2731 
2732 /*
2733  * Preemptively release a lease we expect to invalidate anyway.
2734  * Pass @inode always, @dentry is optional.
2735  */
2736 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2737 			     struct dentry *dentry, int mask)
2738 {
2739 	struct ceph_dentry_info *di;
2740 	struct ceph_mds_session *session;
2741 	u32 seq;
2742 
2743 	BUG_ON(inode == NULL);
2744 	BUG_ON(dentry == NULL);
2745 	BUG_ON(mask == 0);
2746 
2747 	/* is dentry lease valid? */
2748 	spin_lock(&dentry->d_lock);
2749 	di = ceph_dentry(dentry);
2750 	if (!di || !di->lease_session ||
2751 	    di->lease_session->s_mds < 0 ||
2752 	    di->lease_gen != di->lease_session->s_cap_gen ||
2753 	    !time_before(jiffies, dentry->d_time)) {
2754 		dout("lease_release inode %p dentry %p -- "
2755 		     "no lease on %d\n",
2756 		     inode, dentry, mask);
2757 		spin_unlock(&dentry->d_lock);
2758 		return;
2759 	}
2760 
2761 	/* we do have a lease on this dentry; note mds and seq */
2762 	session = ceph_get_mds_session(di->lease_session);
2763 	seq = di->lease_seq;
2764 	__ceph_mdsc_drop_dentry_lease(dentry);
2765 	spin_unlock(&dentry->d_lock);
2766 
2767 	dout("lease_release inode %p dentry %p mask %d to mds%d\n",
2768 	     inode, dentry, mask, session->s_mds);
2769 	ceph_mdsc_lease_send_msg(session, inode, dentry,
2770 				 CEPH_MDS_LEASE_RELEASE, seq);
2771 	ceph_put_mds_session(session);
2772 }
2773 
2774 /*
2775  * drop all leases (and dentry refs) in preparation for umount
2776  */
2777 static void drop_leases(struct ceph_mds_client *mdsc)
2778 {
2779 	int i;
2780 
2781 	dout("drop_leases\n");
2782 	mutex_lock(&mdsc->mutex);
2783 	for (i = 0; i < mdsc->max_sessions; i++) {
2784 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2785 		if (!s)
2786 			continue;
2787 		mutex_unlock(&mdsc->mutex);
2788 		mutex_lock(&s->s_mutex);
2789 		mutex_unlock(&s->s_mutex);
2790 		ceph_put_mds_session(s);
2791 		mutex_lock(&mdsc->mutex);
2792 	}
2793 	mutex_unlock(&mdsc->mutex);
2794 }
2795 
2796 
2797 
2798 /*
2799  * delayed work -- periodically trim expired leases, renew caps with mds
2800  */
2801 static void schedule_delayed(struct ceph_mds_client *mdsc)
2802 {
2803 	int delay = 5;
2804 	unsigned hz = round_jiffies_relative(HZ * delay);
2805 	schedule_delayed_work(&mdsc->delayed_work, hz);
2806 }
2807 
2808 static void delayed_work(struct work_struct *work)
2809 {
2810 	int i;
2811 	struct ceph_mds_client *mdsc =
2812 		container_of(work, struct ceph_mds_client, delayed_work.work);
2813 	int renew_interval;
2814 	int renew_caps;
2815 
2816 	dout("mdsc delayed_work\n");
2817 	ceph_check_delayed_caps(mdsc);
2818 
2819 	mutex_lock(&mdsc->mutex);
2820 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2821 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2822 				   mdsc->last_renew_caps);
2823 	if (renew_caps)
2824 		mdsc->last_renew_caps = jiffies;
2825 
2826 	for (i = 0; i < mdsc->max_sessions; i++) {
2827 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2828 		if (s == NULL)
2829 			continue;
2830 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2831 			dout("resending session close request for mds%d\n",
2832 			     s->s_mds);
2833 			request_close_session(mdsc, s);
2834 			ceph_put_mds_session(s);
2835 			continue;
2836 		}
2837 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2838 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2839 				s->s_state = CEPH_MDS_SESSION_HUNG;
2840 				pr_info("mds%d hung\n", s->s_mds);
2841 			}
2842 		}
2843 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2844 			/* this mds is failed or recovering, just wait */
2845 			ceph_put_mds_session(s);
2846 			continue;
2847 		}
2848 		mutex_unlock(&mdsc->mutex);
2849 
2850 		mutex_lock(&s->s_mutex);
2851 		if (renew_caps)
2852 			send_renew_caps(mdsc, s);
2853 		else
2854 			ceph_con_keepalive(&s->s_con);
2855 		ceph_add_cap_releases(mdsc, s);
2856 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2857 		    s->s_state == CEPH_MDS_SESSION_HUNG)
2858 			ceph_send_cap_releases(mdsc, s);
2859 		mutex_unlock(&s->s_mutex);
2860 		ceph_put_mds_session(s);
2861 
2862 		mutex_lock(&mdsc->mutex);
2863 	}
2864 	mutex_unlock(&mdsc->mutex);
2865 
2866 	schedule_delayed(mdsc);
2867 }
2868 
2869 
2870 int ceph_mdsc_init(struct ceph_mds_client *mdsc, struct ceph_client *client)
2871 {
2872 	mdsc->client = client;
2873 	mutex_init(&mdsc->mutex);
2874 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
2875 	if (mdsc->mdsmap == NULL)
2876 		return -ENOMEM;
2877 
2878 	init_completion(&mdsc->safe_umount_waiters);
2879 	init_completion(&mdsc->session_close_waiters);
2880 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
2881 	mdsc->sessions = NULL;
2882 	mdsc->max_sessions = 0;
2883 	mdsc->stopping = 0;
2884 	init_rwsem(&mdsc->snap_rwsem);
2885 	mdsc->snap_realms = RB_ROOT;
2886 	INIT_LIST_HEAD(&mdsc->snap_empty);
2887 	spin_lock_init(&mdsc->snap_empty_lock);
2888 	mdsc->last_tid = 0;
2889 	mdsc->request_tree = RB_ROOT;
2890 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
2891 	mdsc->last_renew_caps = jiffies;
2892 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
2893 	spin_lock_init(&mdsc->cap_delay_lock);
2894 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
2895 	spin_lock_init(&mdsc->snap_flush_lock);
2896 	mdsc->cap_flush_seq = 0;
2897 	INIT_LIST_HEAD(&mdsc->cap_dirty);
2898 	mdsc->num_cap_flushing = 0;
2899 	spin_lock_init(&mdsc->cap_dirty_lock);
2900 	init_waitqueue_head(&mdsc->cap_flushing_wq);
2901 	spin_lock_init(&mdsc->dentry_lru_lock);
2902 	INIT_LIST_HEAD(&mdsc->dentry_lru);
2903 
2904 	ceph_caps_init(mdsc);
2905 	ceph_adjust_min_caps(mdsc, client->min_caps);
2906 
2907 	return 0;
2908 }
2909 
2910 /*
2911  * Wait for safe replies on open mds requests.  If we time out, drop
2912  * all requests from the tree to avoid dangling dentry refs.
2913  */
2914 static void wait_requests(struct ceph_mds_client *mdsc)
2915 {
2916 	struct ceph_mds_request *req;
2917 	struct ceph_client *client = mdsc->client;
2918 
2919 	mutex_lock(&mdsc->mutex);
2920 	if (__get_oldest_req(mdsc)) {
2921 		mutex_unlock(&mdsc->mutex);
2922 
2923 		dout("wait_requests waiting for requests\n");
2924 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
2925 				    client->mount_args->mount_timeout * HZ);
2926 
2927 		/* tear down remaining requests */
2928 		mutex_lock(&mdsc->mutex);
2929 		while ((req = __get_oldest_req(mdsc))) {
2930 			dout("wait_requests timed out on tid %llu\n",
2931 			     req->r_tid);
2932 			__unregister_request(mdsc, req);
2933 		}
2934 	}
2935 	mutex_unlock(&mdsc->mutex);
2936 	dout("wait_requests done\n");
2937 }
2938 
2939 /*
2940  * called before mount is ro, and before dentries are torn down.
2941  * (hmm, does this still race with new lookups?)
2942  */
2943 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
2944 {
2945 	dout("pre_umount\n");
2946 	mdsc->stopping = 1;
2947 
2948 	drop_leases(mdsc);
2949 	ceph_flush_dirty_caps(mdsc);
2950 	wait_requests(mdsc);
2951 
2952 	/*
2953 	 * wait for reply handlers to drop their request refs and
2954 	 * their inode/dcache refs
2955 	 */
2956 	ceph_msgr_flush();
2957 }
2958 
2959 /*
2960  * wait for all write mds requests to flush.
2961  */
2962 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
2963 {
2964 	struct ceph_mds_request *req = NULL, *nextreq;
2965 	struct rb_node *n;
2966 
2967 	mutex_lock(&mdsc->mutex);
2968 	dout("wait_unsafe_requests want %lld\n", want_tid);
2969 restart:
2970 	req = __get_oldest_req(mdsc);
2971 	while (req && req->r_tid <= want_tid) {
2972 		/* find next request */
2973 		n = rb_next(&req->r_node);
2974 		if (n)
2975 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
2976 		else
2977 			nextreq = NULL;
2978 		if ((req->r_op & CEPH_MDS_OP_WRITE)) {
2979 			/* write op */
2980 			ceph_mdsc_get_request(req);
2981 			if (nextreq)
2982 				ceph_mdsc_get_request(nextreq);
2983 			mutex_unlock(&mdsc->mutex);
2984 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
2985 			     req->r_tid, want_tid);
2986 			wait_for_completion(&req->r_safe_completion);
2987 			mutex_lock(&mdsc->mutex);
2988 			ceph_mdsc_put_request(req);
2989 			if (!nextreq)
2990 				break;  /* next dne before, so we're done! */
2991 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
2992 				/* next request was removed from tree */
2993 				ceph_mdsc_put_request(nextreq);
2994 				goto restart;
2995 			}
2996 			ceph_mdsc_put_request(nextreq);  /* won't go away */
2997 		}
2998 		req = nextreq;
2999 	}
3000 	mutex_unlock(&mdsc->mutex);
3001 	dout("wait_unsafe_requests done\n");
3002 }
3003 
3004 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3005 {
3006 	u64 want_tid, want_flush;
3007 
3008 	if (mdsc->client->mount_state == CEPH_MOUNT_SHUTDOWN)
3009 		return;
3010 
3011 	dout("sync\n");
3012 	mutex_lock(&mdsc->mutex);
3013 	want_tid = mdsc->last_tid;
3014 	want_flush = mdsc->cap_flush_seq;
3015 	mutex_unlock(&mdsc->mutex);
3016 	dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3017 
3018 	ceph_flush_dirty_caps(mdsc);
3019 
3020 	wait_unsafe_requests(mdsc, want_tid);
3021 	wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3022 }
3023 
3024 
3025 /*
3026  * called after sb is ro.
3027  */
3028 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3029 {
3030 	struct ceph_mds_session *session;
3031 	int i;
3032 	int n;
3033 	struct ceph_client *client = mdsc->client;
3034 	unsigned long started, timeout = client->mount_args->mount_timeout * HZ;
3035 
3036 	dout("close_sessions\n");
3037 
3038 	mutex_lock(&mdsc->mutex);
3039 
3040 	/* close sessions */
3041 	started = jiffies;
3042 	while (time_before(jiffies, started + timeout)) {
3043 		dout("closing sessions\n");
3044 		n = 0;
3045 		for (i = 0; i < mdsc->max_sessions; i++) {
3046 			session = __ceph_lookup_mds_session(mdsc, i);
3047 			if (!session)
3048 				continue;
3049 			mutex_unlock(&mdsc->mutex);
3050 			mutex_lock(&session->s_mutex);
3051 			__close_session(mdsc, session);
3052 			mutex_unlock(&session->s_mutex);
3053 			ceph_put_mds_session(session);
3054 			mutex_lock(&mdsc->mutex);
3055 			n++;
3056 		}
3057 		if (n == 0)
3058 			break;
3059 
3060 		if (client->mount_state == CEPH_MOUNT_SHUTDOWN)
3061 			break;
3062 
3063 		dout("waiting for sessions to close\n");
3064 		mutex_unlock(&mdsc->mutex);
3065 		wait_for_completion_timeout(&mdsc->session_close_waiters,
3066 					    timeout);
3067 		mutex_lock(&mdsc->mutex);
3068 	}
3069 
3070 	/* tear down remaining sessions */
3071 	for (i = 0; i < mdsc->max_sessions; i++) {
3072 		if (mdsc->sessions[i]) {
3073 			session = get_session(mdsc->sessions[i]);
3074 			__unregister_session(mdsc, session);
3075 			mutex_unlock(&mdsc->mutex);
3076 			mutex_lock(&session->s_mutex);
3077 			remove_session_caps(session);
3078 			mutex_unlock(&session->s_mutex);
3079 			ceph_put_mds_session(session);
3080 			mutex_lock(&mdsc->mutex);
3081 		}
3082 	}
3083 
3084 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3085 
3086 	mutex_unlock(&mdsc->mutex);
3087 
3088 	ceph_cleanup_empty_realms(mdsc);
3089 
3090 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3091 
3092 	dout("stopped\n");
3093 }
3094 
3095 void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3096 {
3097 	dout("stop\n");
3098 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3099 	if (mdsc->mdsmap)
3100 		ceph_mdsmap_destroy(mdsc->mdsmap);
3101 	kfree(mdsc->sessions);
3102 	ceph_caps_finalize(mdsc);
3103 }
3104 
3105 
3106 /*
3107  * handle mds map update.
3108  */
3109 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3110 {
3111 	u32 epoch;
3112 	u32 maplen;
3113 	void *p = msg->front.iov_base;
3114 	void *end = p + msg->front.iov_len;
3115 	struct ceph_mdsmap *newmap, *oldmap;
3116 	struct ceph_fsid fsid;
3117 	int err = -EINVAL;
3118 
3119 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3120 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
3121 	if (ceph_check_fsid(mdsc->client, &fsid) < 0)
3122 		return;
3123 	epoch = ceph_decode_32(&p);
3124 	maplen = ceph_decode_32(&p);
3125 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3126 
3127 	/* do we need it? */
3128 	ceph_monc_got_mdsmap(&mdsc->client->monc, epoch);
3129 	mutex_lock(&mdsc->mutex);
3130 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3131 		dout("handle_map epoch %u <= our %u\n",
3132 		     epoch, mdsc->mdsmap->m_epoch);
3133 		mutex_unlock(&mdsc->mutex);
3134 		return;
3135 	}
3136 
3137 	newmap = ceph_mdsmap_decode(&p, end);
3138 	if (IS_ERR(newmap)) {
3139 		err = PTR_ERR(newmap);
3140 		goto bad_unlock;
3141 	}
3142 
3143 	/* swap into place */
3144 	if (mdsc->mdsmap) {
3145 		oldmap = mdsc->mdsmap;
3146 		mdsc->mdsmap = newmap;
3147 		check_new_map(mdsc, newmap, oldmap);
3148 		ceph_mdsmap_destroy(oldmap);
3149 	} else {
3150 		mdsc->mdsmap = newmap;  /* first mds map */
3151 	}
3152 	mdsc->client->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3153 
3154 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3155 
3156 	mutex_unlock(&mdsc->mutex);
3157 	schedule_delayed(mdsc);
3158 	return;
3159 
3160 bad_unlock:
3161 	mutex_unlock(&mdsc->mutex);
3162 bad:
3163 	pr_err("error decoding mdsmap %d\n", err);
3164 	return;
3165 }
3166 
3167 static struct ceph_connection *con_get(struct ceph_connection *con)
3168 {
3169 	struct ceph_mds_session *s = con->private;
3170 
3171 	if (get_session(s)) {
3172 		dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3173 		return con;
3174 	}
3175 	dout("mdsc con_get %p FAIL\n", s);
3176 	return NULL;
3177 }
3178 
3179 static void con_put(struct ceph_connection *con)
3180 {
3181 	struct ceph_mds_session *s = con->private;
3182 
3183 	ceph_put_mds_session(s);
3184 	dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref));
3185 }
3186 
3187 /*
3188  * if the client is unresponsive for long enough, the mds will kill
3189  * the session entirely.
3190  */
3191 static void peer_reset(struct ceph_connection *con)
3192 {
3193 	struct ceph_mds_session *s = con->private;
3194 	struct ceph_mds_client *mdsc = s->s_mdsc;
3195 
3196 	pr_warning("mds%d closed our session\n", s->s_mds);
3197 	send_mds_reconnect(mdsc, s);
3198 }
3199 
3200 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3201 {
3202 	struct ceph_mds_session *s = con->private;
3203 	struct ceph_mds_client *mdsc = s->s_mdsc;
3204 	int type = le16_to_cpu(msg->hdr.type);
3205 
3206 	mutex_lock(&mdsc->mutex);
3207 	if (__verify_registered_session(mdsc, s) < 0) {
3208 		mutex_unlock(&mdsc->mutex);
3209 		goto out;
3210 	}
3211 	mutex_unlock(&mdsc->mutex);
3212 
3213 	switch (type) {
3214 	case CEPH_MSG_MDS_MAP:
3215 		ceph_mdsc_handle_map(mdsc, msg);
3216 		break;
3217 	case CEPH_MSG_CLIENT_SESSION:
3218 		handle_session(s, msg);
3219 		break;
3220 	case CEPH_MSG_CLIENT_REPLY:
3221 		handle_reply(s, msg);
3222 		break;
3223 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3224 		handle_forward(mdsc, s, msg);
3225 		break;
3226 	case CEPH_MSG_CLIENT_CAPS:
3227 		ceph_handle_caps(s, msg);
3228 		break;
3229 	case CEPH_MSG_CLIENT_SNAP:
3230 		ceph_handle_snap(mdsc, s, msg);
3231 		break;
3232 	case CEPH_MSG_CLIENT_LEASE:
3233 		handle_lease(mdsc, s, msg);
3234 		break;
3235 
3236 	default:
3237 		pr_err("received unknown message type %d %s\n", type,
3238 		       ceph_msg_type_name(type));
3239 	}
3240 out:
3241 	ceph_msg_put(msg);
3242 }
3243 
3244 /*
3245  * authentication
3246  */
3247 static int get_authorizer(struct ceph_connection *con,
3248 			  void **buf, int *len, int *proto,
3249 			  void **reply_buf, int *reply_len, int force_new)
3250 {
3251 	struct ceph_mds_session *s = con->private;
3252 	struct ceph_mds_client *mdsc = s->s_mdsc;
3253 	struct ceph_auth_client *ac = mdsc->client->monc.auth;
3254 	int ret = 0;
3255 
3256 	if (force_new && s->s_authorizer) {
3257 		ac->ops->destroy_authorizer(ac, s->s_authorizer);
3258 		s->s_authorizer = NULL;
3259 	}
3260 	if (s->s_authorizer == NULL) {
3261 		if (ac->ops->create_authorizer) {
3262 			ret = ac->ops->create_authorizer(
3263 				ac, CEPH_ENTITY_TYPE_MDS,
3264 				&s->s_authorizer,
3265 				&s->s_authorizer_buf,
3266 				&s->s_authorizer_buf_len,
3267 				&s->s_authorizer_reply_buf,
3268 				&s->s_authorizer_reply_buf_len);
3269 			if (ret)
3270 				return ret;
3271 		}
3272 	}
3273 
3274 	*proto = ac->protocol;
3275 	*buf = s->s_authorizer_buf;
3276 	*len = s->s_authorizer_buf_len;
3277 	*reply_buf = s->s_authorizer_reply_buf;
3278 	*reply_len = s->s_authorizer_reply_buf_len;
3279 	return 0;
3280 }
3281 
3282 
3283 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3284 {
3285 	struct ceph_mds_session *s = con->private;
3286 	struct ceph_mds_client *mdsc = s->s_mdsc;
3287 	struct ceph_auth_client *ac = mdsc->client->monc.auth;
3288 
3289 	return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len);
3290 }
3291 
3292 static int invalidate_authorizer(struct ceph_connection *con)
3293 {
3294 	struct ceph_mds_session *s = con->private;
3295 	struct ceph_mds_client *mdsc = s->s_mdsc;
3296 	struct ceph_auth_client *ac = mdsc->client->monc.auth;
3297 
3298 	if (ac->ops->invalidate_authorizer)
3299 		ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3300 
3301 	return ceph_monc_validate_auth(&mdsc->client->monc);
3302 }
3303 
3304 static const struct ceph_connection_operations mds_con_ops = {
3305 	.get = con_get,
3306 	.put = con_put,
3307 	.dispatch = dispatch,
3308 	.get_authorizer = get_authorizer,
3309 	.verify_authorizer_reply = verify_authorizer_reply,
3310 	.invalidate_authorizer = invalidate_authorizer,
3311 	.peer_reset = peer_reset,
3312 };
3313 
3314 
3315 
3316 
3317 /* eof */
3318