1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/wait.h> 5 #include <linux/slab.h> 6 #include <linux/gfp.h> 7 #include <linux/sched.h> 8 #include <linux/debugfs.h> 9 #include <linux/seq_file.h> 10 #include <linux/utsname.h> 11 #include <linux/ratelimit.h> 12 13 #include "super.h" 14 #include "mds_client.h" 15 16 #include <linux/ceph/ceph_features.h> 17 #include <linux/ceph/messenger.h> 18 #include <linux/ceph/decode.h> 19 #include <linux/ceph/pagelist.h> 20 #include <linux/ceph/auth.h> 21 #include <linux/ceph/debugfs.h> 22 23 /* 24 * A cluster of MDS (metadata server) daemons is responsible for 25 * managing the file system namespace (the directory hierarchy and 26 * inodes) and for coordinating shared access to storage. Metadata is 27 * partitioning hierarchically across a number of servers, and that 28 * partition varies over time as the cluster adjusts the distribution 29 * in order to balance load. 30 * 31 * The MDS client is primarily responsible to managing synchronous 32 * metadata requests for operations like open, unlink, and so forth. 33 * If there is a MDS failure, we find out about it when we (possibly 34 * request and) receive a new MDS map, and can resubmit affected 35 * requests. 36 * 37 * For the most part, though, we take advantage of a lossless 38 * communications channel to the MDS, and do not need to worry about 39 * timing out or resubmitting requests. 40 * 41 * We maintain a stateful "session" with each MDS we interact with. 42 * Within each session, we sent periodic heartbeat messages to ensure 43 * any capabilities or leases we have been issues remain valid. If 44 * the session times out and goes stale, our leases and capabilities 45 * are no longer valid. 46 */ 47 48 struct ceph_reconnect_state { 49 int nr_caps; 50 struct ceph_pagelist *pagelist; 51 bool flock; 52 }; 53 54 static void __wake_requests(struct ceph_mds_client *mdsc, 55 struct list_head *head); 56 57 static const struct ceph_connection_operations mds_con_ops; 58 59 60 /* 61 * mds reply parsing 62 */ 63 64 /* 65 * parse individual inode info 66 */ 67 static int parse_reply_info_in(void **p, void *end, 68 struct ceph_mds_reply_info_in *info, 69 u64 features) 70 { 71 int err = -EIO; 72 73 info->in = *p; 74 *p += sizeof(struct ceph_mds_reply_inode) + 75 sizeof(*info->in->fragtree.splits) * 76 le32_to_cpu(info->in->fragtree.nsplits); 77 78 ceph_decode_32_safe(p, end, info->symlink_len, bad); 79 ceph_decode_need(p, end, info->symlink_len, bad); 80 info->symlink = *p; 81 *p += info->symlink_len; 82 83 if (features & CEPH_FEATURE_DIRLAYOUTHASH) 84 ceph_decode_copy_safe(p, end, &info->dir_layout, 85 sizeof(info->dir_layout), bad); 86 else 87 memset(&info->dir_layout, 0, sizeof(info->dir_layout)); 88 89 ceph_decode_32_safe(p, end, info->xattr_len, bad); 90 ceph_decode_need(p, end, info->xattr_len, bad); 91 info->xattr_data = *p; 92 *p += info->xattr_len; 93 94 if (features & CEPH_FEATURE_MDS_INLINE_DATA) { 95 ceph_decode_64_safe(p, end, info->inline_version, bad); 96 ceph_decode_32_safe(p, end, info->inline_len, bad); 97 ceph_decode_need(p, end, info->inline_len, bad); 98 info->inline_data = *p; 99 *p += info->inline_len; 100 } else 101 info->inline_version = CEPH_INLINE_NONE; 102 103 return 0; 104 bad: 105 return err; 106 } 107 108 /* 109 * parse a normal reply, which may contain a (dir+)dentry and/or a 110 * target inode. 111 */ 112 static int parse_reply_info_trace(void **p, void *end, 113 struct ceph_mds_reply_info_parsed *info, 114 u64 features) 115 { 116 int err; 117 118 if (info->head->is_dentry) { 119 err = parse_reply_info_in(p, end, &info->diri, features); 120 if (err < 0) 121 goto out_bad; 122 123 if (unlikely(*p + sizeof(*info->dirfrag) > end)) 124 goto bad; 125 info->dirfrag = *p; 126 *p += sizeof(*info->dirfrag) + 127 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist); 128 if (unlikely(*p > end)) 129 goto bad; 130 131 ceph_decode_32_safe(p, end, info->dname_len, bad); 132 ceph_decode_need(p, end, info->dname_len, bad); 133 info->dname = *p; 134 *p += info->dname_len; 135 info->dlease = *p; 136 *p += sizeof(*info->dlease); 137 } 138 139 if (info->head->is_target) { 140 err = parse_reply_info_in(p, end, &info->targeti, features); 141 if (err < 0) 142 goto out_bad; 143 } 144 145 if (unlikely(*p != end)) 146 goto bad; 147 return 0; 148 149 bad: 150 err = -EIO; 151 out_bad: 152 pr_err("problem parsing mds trace %d\n", err); 153 return err; 154 } 155 156 /* 157 * parse readdir results 158 */ 159 static int parse_reply_info_dir(void **p, void *end, 160 struct ceph_mds_reply_info_parsed *info, 161 u64 features) 162 { 163 u32 num, i = 0; 164 int err; 165 166 info->dir_dir = *p; 167 if (*p + sizeof(*info->dir_dir) > end) 168 goto bad; 169 *p += sizeof(*info->dir_dir) + 170 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist); 171 if (*p > end) 172 goto bad; 173 174 ceph_decode_need(p, end, sizeof(num) + 2, bad); 175 num = ceph_decode_32(p); 176 info->dir_end = ceph_decode_8(p); 177 info->dir_complete = ceph_decode_8(p); 178 if (num == 0) 179 goto done; 180 181 BUG_ON(!info->dir_in); 182 info->dir_dname = (void *)(info->dir_in + num); 183 info->dir_dname_len = (void *)(info->dir_dname + num); 184 info->dir_dlease = (void *)(info->dir_dname_len + num); 185 if ((unsigned long)(info->dir_dlease + num) > 186 (unsigned long)info->dir_in + info->dir_buf_size) { 187 pr_err("dir contents are larger than expected\n"); 188 WARN_ON(1); 189 goto bad; 190 } 191 192 info->dir_nr = num; 193 while (num) { 194 /* dentry */ 195 ceph_decode_need(p, end, sizeof(u32)*2, bad); 196 info->dir_dname_len[i] = ceph_decode_32(p); 197 ceph_decode_need(p, end, info->dir_dname_len[i], bad); 198 info->dir_dname[i] = *p; 199 *p += info->dir_dname_len[i]; 200 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i], 201 info->dir_dname[i]); 202 info->dir_dlease[i] = *p; 203 *p += sizeof(struct ceph_mds_reply_lease); 204 205 /* inode */ 206 err = parse_reply_info_in(p, end, &info->dir_in[i], features); 207 if (err < 0) 208 goto out_bad; 209 i++; 210 num--; 211 } 212 213 done: 214 if (*p != end) 215 goto bad; 216 return 0; 217 218 bad: 219 err = -EIO; 220 out_bad: 221 pr_err("problem parsing dir contents %d\n", err); 222 return err; 223 } 224 225 /* 226 * parse fcntl F_GETLK results 227 */ 228 static int parse_reply_info_filelock(void **p, void *end, 229 struct ceph_mds_reply_info_parsed *info, 230 u64 features) 231 { 232 if (*p + sizeof(*info->filelock_reply) > end) 233 goto bad; 234 235 info->filelock_reply = *p; 236 *p += sizeof(*info->filelock_reply); 237 238 if (unlikely(*p != end)) 239 goto bad; 240 return 0; 241 242 bad: 243 return -EIO; 244 } 245 246 /* 247 * parse create results 248 */ 249 static int parse_reply_info_create(void **p, void *end, 250 struct ceph_mds_reply_info_parsed *info, 251 u64 features) 252 { 253 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) { 254 if (*p == end) { 255 info->has_create_ino = false; 256 } else { 257 info->has_create_ino = true; 258 info->ino = ceph_decode_64(p); 259 } 260 } 261 262 if (unlikely(*p != end)) 263 goto bad; 264 return 0; 265 266 bad: 267 return -EIO; 268 } 269 270 /* 271 * parse extra results 272 */ 273 static int parse_reply_info_extra(void **p, void *end, 274 struct ceph_mds_reply_info_parsed *info, 275 u64 features) 276 { 277 if (info->head->op == CEPH_MDS_OP_GETFILELOCK) 278 return parse_reply_info_filelock(p, end, info, features); 279 else if (info->head->op == CEPH_MDS_OP_READDIR || 280 info->head->op == CEPH_MDS_OP_LSSNAP) 281 return parse_reply_info_dir(p, end, info, features); 282 else if (info->head->op == CEPH_MDS_OP_CREATE) 283 return parse_reply_info_create(p, end, info, features); 284 else 285 return -EIO; 286 } 287 288 /* 289 * parse entire mds reply 290 */ 291 static int parse_reply_info(struct ceph_msg *msg, 292 struct ceph_mds_reply_info_parsed *info, 293 u64 features) 294 { 295 void *p, *end; 296 u32 len; 297 int err; 298 299 info->head = msg->front.iov_base; 300 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 301 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 302 303 /* trace */ 304 ceph_decode_32_safe(&p, end, len, bad); 305 if (len > 0) { 306 ceph_decode_need(&p, end, len, bad); 307 err = parse_reply_info_trace(&p, p+len, info, features); 308 if (err < 0) 309 goto out_bad; 310 } 311 312 /* extra */ 313 ceph_decode_32_safe(&p, end, len, bad); 314 if (len > 0) { 315 ceph_decode_need(&p, end, len, bad); 316 err = parse_reply_info_extra(&p, p+len, info, features); 317 if (err < 0) 318 goto out_bad; 319 } 320 321 /* snap blob */ 322 ceph_decode_32_safe(&p, end, len, bad); 323 info->snapblob_len = len; 324 info->snapblob = p; 325 p += len; 326 327 if (p != end) 328 goto bad; 329 return 0; 330 331 bad: 332 err = -EIO; 333 out_bad: 334 pr_err("mds parse_reply err %d\n", err); 335 return err; 336 } 337 338 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 339 { 340 if (!info->dir_in) 341 return; 342 free_pages((unsigned long)info->dir_in, get_order(info->dir_buf_size)); 343 } 344 345 346 /* 347 * sessions 348 */ 349 const char *ceph_session_state_name(int s) 350 { 351 switch (s) { 352 case CEPH_MDS_SESSION_NEW: return "new"; 353 case CEPH_MDS_SESSION_OPENING: return "opening"; 354 case CEPH_MDS_SESSION_OPEN: return "open"; 355 case CEPH_MDS_SESSION_HUNG: return "hung"; 356 case CEPH_MDS_SESSION_CLOSING: return "closing"; 357 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 358 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 359 default: return "???"; 360 } 361 } 362 363 static struct ceph_mds_session *get_session(struct ceph_mds_session *s) 364 { 365 if (atomic_inc_not_zero(&s->s_ref)) { 366 dout("mdsc get_session %p %d -> %d\n", s, 367 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref)); 368 return s; 369 } else { 370 dout("mdsc get_session %p 0 -- FAIL", s); 371 return NULL; 372 } 373 } 374 375 void ceph_put_mds_session(struct ceph_mds_session *s) 376 { 377 dout("mdsc put_session %p %d -> %d\n", s, 378 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1); 379 if (atomic_dec_and_test(&s->s_ref)) { 380 if (s->s_auth.authorizer) 381 ceph_auth_destroy_authorizer( 382 s->s_mdsc->fsc->client->monc.auth, 383 s->s_auth.authorizer); 384 kfree(s); 385 } 386 } 387 388 /* 389 * called under mdsc->mutex 390 */ 391 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 392 int mds) 393 { 394 struct ceph_mds_session *session; 395 396 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL) 397 return NULL; 398 session = mdsc->sessions[mds]; 399 dout("lookup_mds_session %p %d\n", session, 400 atomic_read(&session->s_ref)); 401 get_session(session); 402 return session; 403 } 404 405 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 406 { 407 if (mds >= mdsc->max_sessions) 408 return false; 409 return mdsc->sessions[mds]; 410 } 411 412 static int __verify_registered_session(struct ceph_mds_client *mdsc, 413 struct ceph_mds_session *s) 414 { 415 if (s->s_mds >= mdsc->max_sessions || 416 mdsc->sessions[s->s_mds] != s) 417 return -ENOENT; 418 return 0; 419 } 420 421 /* 422 * create+register a new session for given mds. 423 * called under mdsc->mutex. 424 */ 425 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 426 int mds) 427 { 428 struct ceph_mds_session *s; 429 430 if (mds >= mdsc->mdsmap->m_max_mds) 431 return ERR_PTR(-EINVAL); 432 433 s = kzalloc(sizeof(*s), GFP_NOFS); 434 if (!s) 435 return ERR_PTR(-ENOMEM); 436 s->s_mdsc = mdsc; 437 s->s_mds = mds; 438 s->s_state = CEPH_MDS_SESSION_NEW; 439 s->s_ttl = 0; 440 s->s_seq = 0; 441 mutex_init(&s->s_mutex); 442 443 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 444 445 spin_lock_init(&s->s_gen_ttl_lock); 446 s->s_cap_gen = 0; 447 s->s_cap_ttl = jiffies - 1; 448 449 spin_lock_init(&s->s_cap_lock); 450 s->s_renew_requested = 0; 451 s->s_renew_seq = 0; 452 INIT_LIST_HEAD(&s->s_caps); 453 s->s_nr_caps = 0; 454 s->s_trim_caps = 0; 455 atomic_set(&s->s_ref, 1); 456 INIT_LIST_HEAD(&s->s_waiting); 457 INIT_LIST_HEAD(&s->s_unsafe); 458 s->s_num_cap_releases = 0; 459 s->s_cap_reconnect = 0; 460 s->s_cap_iterator = NULL; 461 INIT_LIST_HEAD(&s->s_cap_releases); 462 INIT_LIST_HEAD(&s->s_cap_flushing); 463 INIT_LIST_HEAD(&s->s_cap_snaps_flushing); 464 465 dout("register_session mds%d\n", mds); 466 if (mds >= mdsc->max_sessions) { 467 int newmax = 1 << get_count_order(mds+1); 468 struct ceph_mds_session **sa; 469 470 dout("register_session realloc to %d\n", newmax); 471 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 472 if (sa == NULL) 473 goto fail_realloc; 474 if (mdsc->sessions) { 475 memcpy(sa, mdsc->sessions, 476 mdsc->max_sessions * sizeof(void *)); 477 kfree(mdsc->sessions); 478 } 479 mdsc->sessions = sa; 480 mdsc->max_sessions = newmax; 481 } 482 mdsc->sessions[mds] = s; 483 atomic_inc(&mdsc->num_sessions); 484 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 485 486 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 487 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 488 489 return s; 490 491 fail_realloc: 492 kfree(s); 493 return ERR_PTR(-ENOMEM); 494 } 495 496 /* 497 * called under mdsc->mutex 498 */ 499 static void __unregister_session(struct ceph_mds_client *mdsc, 500 struct ceph_mds_session *s) 501 { 502 dout("__unregister_session mds%d %p\n", s->s_mds, s); 503 BUG_ON(mdsc->sessions[s->s_mds] != s); 504 mdsc->sessions[s->s_mds] = NULL; 505 ceph_con_close(&s->s_con); 506 ceph_put_mds_session(s); 507 atomic_dec(&mdsc->num_sessions); 508 } 509 510 /* 511 * drop session refs in request. 512 * 513 * should be last request ref, or hold mdsc->mutex 514 */ 515 static void put_request_session(struct ceph_mds_request *req) 516 { 517 if (req->r_session) { 518 ceph_put_mds_session(req->r_session); 519 req->r_session = NULL; 520 } 521 } 522 523 void ceph_mdsc_release_request(struct kref *kref) 524 { 525 struct ceph_mds_request *req = container_of(kref, 526 struct ceph_mds_request, 527 r_kref); 528 destroy_reply_info(&req->r_reply_info); 529 if (req->r_request) 530 ceph_msg_put(req->r_request); 531 if (req->r_reply) 532 ceph_msg_put(req->r_reply); 533 if (req->r_inode) { 534 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 535 iput(req->r_inode); 536 } 537 if (req->r_locked_dir) 538 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 539 iput(req->r_target_inode); 540 if (req->r_dentry) 541 dput(req->r_dentry); 542 if (req->r_old_dentry) 543 dput(req->r_old_dentry); 544 if (req->r_old_dentry_dir) { 545 /* 546 * track (and drop pins for) r_old_dentry_dir 547 * separately, since r_old_dentry's d_parent may have 548 * changed between the dir mutex being dropped and 549 * this request being freed. 550 */ 551 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 552 CEPH_CAP_PIN); 553 iput(req->r_old_dentry_dir); 554 } 555 kfree(req->r_path1); 556 kfree(req->r_path2); 557 if (req->r_pagelist) 558 ceph_pagelist_release(req->r_pagelist); 559 put_request_session(req); 560 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 561 kfree(req); 562 } 563 564 /* 565 * lookup session, bump ref if found. 566 * 567 * called under mdsc->mutex. 568 */ 569 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc, 570 u64 tid) 571 { 572 struct ceph_mds_request *req; 573 struct rb_node *n = mdsc->request_tree.rb_node; 574 575 while (n) { 576 req = rb_entry(n, struct ceph_mds_request, r_node); 577 if (tid < req->r_tid) 578 n = n->rb_left; 579 else if (tid > req->r_tid) 580 n = n->rb_right; 581 else { 582 ceph_mdsc_get_request(req); 583 return req; 584 } 585 } 586 return NULL; 587 } 588 589 static void __insert_request(struct ceph_mds_client *mdsc, 590 struct ceph_mds_request *new) 591 { 592 struct rb_node **p = &mdsc->request_tree.rb_node; 593 struct rb_node *parent = NULL; 594 struct ceph_mds_request *req = NULL; 595 596 while (*p) { 597 parent = *p; 598 req = rb_entry(parent, struct ceph_mds_request, r_node); 599 if (new->r_tid < req->r_tid) 600 p = &(*p)->rb_left; 601 else if (new->r_tid > req->r_tid) 602 p = &(*p)->rb_right; 603 else 604 BUG(); 605 } 606 607 rb_link_node(&new->r_node, parent, p); 608 rb_insert_color(&new->r_node, &mdsc->request_tree); 609 } 610 611 /* 612 * Register an in-flight request, and assign a tid. Link to directory 613 * are modifying (if any). 614 * 615 * Called under mdsc->mutex. 616 */ 617 static void __register_request(struct ceph_mds_client *mdsc, 618 struct ceph_mds_request *req, 619 struct inode *dir) 620 { 621 req->r_tid = ++mdsc->last_tid; 622 if (req->r_num_caps) 623 ceph_reserve_caps(mdsc, &req->r_caps_reservation, 624 req->r_num_caps); 625 dout("__register_request %p tid %lld\n", req, req->r_tid); 626 ceph_mdsc_get_request(req); 627 __insert_request(mdsc, req); 628 629 req->r_uid = current_fsuid(); 630 req->r_gid = current_fsgid(); 631 632 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK) 633 mdsc->oldest_tid = req->r_tid; 634 635 if (dir) { 636 struct ceph_inode_info *ci = ceph_inode(dir); 637 638 ihold(dir); 639 spin_lock(&ci->i_unsafe_lock); 640 req->r_unsafe_dir = dir; 641 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 642 spin_unlock(&ci->i_unsafe_lock); 643 } 644 } 645 646 static void __unregister_request(struct ceph_mds_client *mdsc, 647 struct ceph_mds_request *req) 648 { 649 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 650 651 if (req->r_tid == mdsc->oldest_tid) { 652 struct rb_node *p = rb_next(&req->r_node); 653 mdsc->oldest_tid = 0; 654 while (p) { 655 struct ceph_mds_request *next_req = 656 rb_entry(p, struct ceph_mds_request, r_node); 657 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) { 658 mdsc->oldest_tid = next_req->r_tid; 659 break; 660 } 661 p = rb_next(p); 662 } 663 } 664 665 rb_erase(&req->r_node, &mdsc->request_tree); 666 RB_CLEAR_NODE(&req->r_node); 667 668 if (req->r_unsafe_dir) { 669 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 670 671 spin_lock(&ci->i_unsafe_lock); 672 list_del_init(&req->r_unsafe_dir_item); 673 spin_unlock(&ci->i_unsafe_lock); 674 675 iput(req->r_unsafe_dir); 676 req->r_unsafe_dir = NULL; 677 } 678 679 complete_all(&req->r_safe_completion); 680 681 ceph_mdsc_put_request(req); 682 } 683 684 /* 685 * Choose mds to send request to next. If there is a hint set in the 686 * request (e.g., due to a prior forward hint from the mds), use that. 687 * Otherwise, consult frag tree and/or caps to identify the 688 * appropriate mds. If all else fails, choose randomly. 689 * 690 * Called under mdsc->mutex. 691 */ 692 static struct dentry *get_nonsnap_parent(struct dentry *dentry) 693 { 694 /* 695 * we don't need to worry about protecting the d_parent access 696 * here because we never renaming inside the snapped namespace 697 * except to resplice to another snapdir, and either the old or new 698 * result is a valid result. 699 */ 700 while (!IS_ROOT(dentry) && ceph_snap(d_inode(dentry)) != CEPH_NOSNAP) 701 dentry = dentry->d_parent; 702 return dentry; 703 } 704 705 static int __choose_mds(struct ceph_mds_client *mdsc, 706 struct ceph_mds_request *req) 707 { 708 struct inode *inode; 709 struct ceph_inode_info *ci; 710 struct ceph_cap *cap; 711 int mode = req->r_direct_mode; 712 int mds = -1; 713 u32 hash = req->r_direct_hash; 714 bool is_hash = req->r_direct_is_hash; 715 716 /* 717 * is there a specific mds we should try? ignore hint if we have 718 * no session and the mds is not up (active or recovering). 719 */ 720 if (req->r_resend_mds >= 0 && 721 (__have_session(mdsc, req->r_resend_mds) || 722 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 723 dout("choose_mds using resend_mds mds%d\n", 724 req->r_resend_mds); 725 return req->r_resend_mds; 726 } 727 728 if (mode == USE_RANDOM_MDS) 729 goto random; 730 731 inode = NULL; 732 if (req->r_inode) { 733 inode = req->r_inode; 734 } else if (req->r_dentry) { 735 /* ignore race with rename; old or new d_parent is okay */ 736 struct dentry *parent = req->r_dentry->d_parent; 737 struct inode *dir = d_inode(parent); 738 739 if (dir->i_sb != mdsc->fsc->sb) { 740 /* not this fs! */ 741 inode = d_inode(req->r_dentry); 742 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 743 /* direct snapped/virtual snapdir requests 744 * based on parent dir inode */ 745 struct dentry *dn = get_nonsnap_parent(parent); 746 inode = d_inode(dn); 747 dout("__choose_mds using nonsnap parent %p\n", inode); 748 } else { 749 /* dentry target */ 750 inode = d_inode(req->r_dentry); 751 if (!inode || mode == USE_AUTH_MDS) { 752 /* dir + name */ 753 inode = dir; 754 hash = ceph_dentry_hash(dir, req->r_dentry); 755 is_hash = true; 756 } 757 } 758 } 759 760 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash, 761 (int)hash, mode); 762 if (!inode) 763 goto random; 764 ci = ceph_inode(inode); 765 766 if (is_hash && S_ISDIR(inode->i_mode)) { 767 struct ceph_inode_frag frag; 768 int found; 769 770 ceph_choose_frag(ci, hash, &frag, &found); 771 if (found) { 772 if (mode == USE_ANY_MDS && frag.ndist > 0) { 773 u8 r; 774 775 /* choose a random replica */ 776 get_random_bytes(&r, 1); 777 r %= frag.ndist; 778 mds = frag.dist[r]; 779 dout("choose_mds %p %llx.%llx " 780 "frag %u mds%d (%d/%d)\n", 781 inode, ceph_vinop(inode), 782 frag.frag, mds, 783 (int)r, frag.ndist); 784 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 785 CEPH_MDS_STATE_ACTIVE) 786 return mds; 787 } 788 789 /* since this file/dir wasn't known to be 790 * replicated, then we want to look for the 791 * authoritative mds. */ 792 mode = USE_AUTH_MDS; 793 if (frag.mds >= 0) { 794 /* choose auth mds */ 795 mds = frag.mds; 796 dout("choose_mds %p %llx.%llx " 797 "frag %u mds%d (auth)\n", 798 inode, ceph_vinop(inode), frag.frag, mds); 799 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 800 CEPH_MDS_STATE_ACTIVE) 801 return mds; 802 } 803 } 804 } 805 806 spin_lock(&ci->i_ceph_lock); 807 cap = NULL; 808 if (mode == USE_AUTH_MDS) 809 cap = ci->i_auth_cap; 810 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 811 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 812 if (!cap) { 813 spin_unlock(&ci->i_ceph_lock); 814 goto random; 815 } 816 mds = cap->session->s_mds; 817 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n", 818 inode, ceph_vinop(inode), mds, 819 cap == ci->i_auth_cap ? "auth " : "", cap); 820 spin_unlock(&ci->i_ceph_lock); 821 return mds; 822 823 random: 824 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 825 dout("choose_mds chose random mds%d\n", mds); 826 return mds; 827 } 828 829 830 /* 831 * session messages 832 */ 833 static struct ceph_msg *create_session_msg(u32 op, u64 seq) 834 { 835 struct ceph_msg *msg; 836 struct ceph_mds_session_head *h; 837 838 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 839 false); 840 if (!msg) { 841 pr_err("create_session_msg ENOMEM creating msg\n"); 842 return NULL; 843 } 844 h = msg->front.iov_base; 845 h->op = cpu_to_le32(op); 846 h->seq = cpu_to_le64(seq); 847 848 return msg; 849 } 850 851 /* 852 * session message, specialization for CEPH_SESSION_REQUEST_OPEN 853 * to include additional client metadata fields. 854 */ 855 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq) 856 { 857 struct ceph_msg *msg; 858 struct ceph_mds_session_head *h; 859 int i = -1; 860 int metadata_bytes = 0; 861 int metadata_key_count = 0; 862 struct ceph_options *opt = mdsc->fsc->client->options; 863 void *p; 864 865 const char* metadata[][2] = { 866 {"hostname", utsname()->nodename}, 867 {"kernel_version", utsname()->release}, 868 {"entity_id", opt->name ? opt->name : ""}, 869 {NULL, NULL} 870 }; 871 872 /* Calculate serialized length of metadata */ 873 metadata_bytes = 4; /* map length */ 874 for (i = 0; metadata[i][0] != NULL; ++i) { 875 metadata_bytes += 8 + strlen(metadata[i][0]) + 876 strlen(metadata[i][1]); 877 metadata_key_count++; 878 } 879 880 /* Allocate the message */ 881 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes, 882 GFP_NOFS, false); 883 if (!msg) { 884 pr_err("create_session_msg ENOMEM creating msg\n"); 885 return NULL; 886 } 887 h = msg->front.iov_base; 888 h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN); 889 h->seq = cpu_to_le64(seq); 890 891 /* 892 * Serialize client metadata into waiting buffer space, using 893 * the format that userspace expects for map<string, string> 894 * 895 * ClientSession messages with metadata are v2 896 */ 897 msg->hdr.version = cpu_to_le16(2); 898 msg->hdr.compat_version = cpu_to_le16(1); 899 900 /* The write pointer, following the session_head structure */ 901 p = msg->front.iov_base + sizeof(*h); 902 903 /* Number of entries in the map */ 904 ceph_encode_32(&p, metadata_key_count); 905 906 /* Two length-prefixed strings for each entry in the map */ 907 for (i = 0; metadata[i][0] != NULL; ++i) { 908 size_t const key_len = strlen(metadata[i][0]); 909 size_t const val_len = strlen(metadata[i][1]); 910 911 ceph_encode_32(&p, key_len); 912 memcpy(p, metadata[i][0], key_len); 913 p += key_len; 914 ceph_encode_32(&p, val_len); 915 memcpy(p, metadata[i][1], val_len); 916 p += val_len; 917 } 918 919 return msg; 920 } 921 922 /* 923 * send session open request. 924 * 925 * called under mdsc->mutex 926 */ 927 static int __open_session(struct ceph_mds_client *mdsc, 928 struct ceph_mds_session *session) 929 { 930 struct ceph_msg *msg; 931 int mstate; 932 int mds = session->s_mds; 933 934 /* wait for mds to go active? */ 935 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 936 dout("open_session to mds%d (%s)\n", mds, 937 ceph_mds_state_name(mstate)); 938 session->s_state = CEPH_MDS_SESSION_OPENING; 939 session->s_renew_requested = jiffies; 940 941 /* send connect message */ 942 msg = create_session_open_msg(mdsc, session->s_seq); 943 if (!msg) 944 return -ENOMEM; 945 ceph_con_send(&session->s_con, msg); 946 return 0; 947 } 948 949 /* 950 * open sessions for any export targets for the given mds 951 * 952 * called under mdsc->mutex 953 */ 954 static struct ceph_mds_session * 955 __open_export_target_session(struct ceph_mds_client *mdsc, int target) 956 { 957 struct ceph_mds_session *session; 958 959 session = __ceph_lookup_mds_session(mdsc, target); 960 if (!session) { 961 session = register_session(mdsc, target); 962 if (IS_ERR(session)) 963 return session; 964 } 965 if (session->s_state == CEPH_MDS_SESSION_NEW || 966 session->s_state == CEPH_MDS_SESSION_CLOSING) 967 __open_session(mdsc, session); 968 969 return session; 970 } 971 972 struct ceph_mds_session * 973 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target) 974 { 975 struct ceph_mds_session *session; 976 977 dout("open_export_target_session to mds%d\n", target); 978 979 mutex_lock(&mdsc->mutex); 980 session = __open_export_target_session(mdsc, target); 981 mutex_unlock(&mdsc->mutex); 982 983 return session; 984 } 985 986 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 987 struct ceph_mds_session *session) 988 { 989 struct ceph_mds_info *mi; 990 struct ceph_mds_session *ts; 991 int i, mds = session->s_mds; 992 993 if (mds >= mdsc->mdsmap->m_max_mds) 994 return; 995 996 mi = &mdsc->mdsmap->m_info[mds]; 997 dout("open_export_target_sessions for mds%d (%d targets)\n", 998 session->s_mds, mi->num_export_targets); 999 1000 for (i = 0; i < mi->num_export_targets; i++) { 1001 ts = __open_export_target_session(mdsc, mi->export_targets[i]); 1002 if (!IS_ERR(ts)) 1003 ceph_put_mds_session(ts); 1004 } 1005 } 1006 1007 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 1008 struct ceph_mds_session *session) 1009 { 1010 mutex_lock(&mdsc->mutex); 1011 __open_export_target_sessions(mdsc, session); 1012 mutex_unlock(&mdsc->mutex); 1013 } 1014 1015 /* 1016 * session caps 1017 */ 1018 1019 /* caller holds s_cap_lock, we drop it */ 1020 static void cleanup_cap_releases(struct ceph_mds_client *mdsc, 1021 struct ceph_mds_session *session) 1022 __releases(session->s_cap_lock) 1023 { 1024 LIST_HEAD(tmp_list); 1025 list_splice_init(&session->s_cap_releases, &tmp_list); 1026 session->s_num_cap_releases = 0; 1027 spin_unlock(&session->s_cap_lock); 1028 1029 dout("cleanup_cap_releases mds%d\n", session->s_mds); 1030 while (!list_empty(&tmp_list)) { 1031 struct ceph_cap *cap; 1032 /* zero out the in-progress message */ 1033 cap = list_first_entry(&tmp_list, 1034 struct ceph_cap, session_caps); 1035 list_del(&cap->session_caps); 1036 ceph_put_cap(mdsc, cap); 1037 } 1038 } 1039 1040 static void cleanup_session_requests(struct ceph_mds_client *mdsc, 1041 struct ceph_mds_session *session) 1042 { 1043 struct ceph_mds_request *req; 1044 struct rb_node *p; 1045 1046 dout("cleanup_session_requests mds%d\n", session->s_mds); 1047 mutex_lock(&mdsc->mutex); 1048 while (!list_empty(&session->s_unsafe)) { 1049 req = list_first_entry(&session->s_unsafe, 1050 struct ceph_mds_request, r_unsafe_item); 1051 list_del_init(&req->r_unsafe_item); 1052 pr_warn_ratelimited(" dropping unsafe request %llu\n", 1053 req->r_tid); 1054 __unregister_request(mdsc, req); 1055 } 1056 /* zero r_attempts, so kick_requests() will re-send requests */ 1057 p = rb_first(&mdsc->request_tree); 1058 while (p) { 1059 req = rb_entry(p, struct ceph_mds_request, r_node); 1060 p = rb_next(p); 1061 if (req->r_session && 1062 req->r_session->s_mds == session->s_mds) 1063 req->r_attempts = 0; 1064 } 1065 mutex_unlock(&mdsc->mutex); 1066 } 1067 1068 /* 1069 * Helper to safely iterate over all caps associated with a session, with 1070 * special care taken to handle a racing __ceph_remove_cap(). 1071 * 1072 * Caller must hold session s_mutex. 1073 */ 1074 static int iterate_session_caps(struct ceph_mds_session *session, 1075 int (*cb)(struct inode *, struct ceph_cap *, 1076 void *), void *arg) 1077 { 1078 struct list_head *p; 1079 struct ceph_cap *cap; 1080 struct inode *inode, *last_inode = NULL; 1081 struct ceph_cap *old_cap = NULL; 1082 int ret; 1083 1084 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 1085 spin_lock(&session->s_cap_lock); 1086 p = session->s_caps.next; 1087 while (p != &session->s_caps) { 1088 cap = list_entry(p, struct ceph_cap, session_caps); 1089 inode = igrab(&cap->ci->vfs_inode); 1090 if (!inode) { 1091 p = p->next; 1092 continue; 1093 } 1094 session->s_cap_iterator = cap; 1095 spin_unlock(&session->s_cap_lock); 1096 1097 if (last_inode) { 1098 iput(last_inode); 1099 last_inode = NULL; 1100 } 1101 if (old_cap) { 1102 ceph_put_cap(session->s_mdsc, old_cap); 1103 old_cap = NULL; 1104 } 1105 1106 ret = cb(inode, cap, arg); 1107 last_inode = inode; 1108 1109 spin_lock(&session->s_cap_lock); 1110 p = p->next; 1111 if (cap->ci == NULL) { 1112 dout("iterate_session_caps finishing cap %p removal\n", 1113 cap); 1114 BUG_ON(cap->session != session); 1115 cap->session = NULL; 1116 list_del_init(&cap->session_caps); 1117 session->s_nr_caps--; 1118 if (cap->queue_release) { 1119 list_add_tail(&cap->session_caps, 1120 &session->s_cap_releases); 1121 session->s_num_cap_releases++; 1122 } else { 1123 old_cap = cap; /* put_cap it w/o locks held */ 1124 } 1125 } 1126 if (ret < 0) 1127 goto out; 1128 } 1129 ret = 0; 1130 out: 1131 session->s_cap_iterator = NULL; 1132 spin_unlock(&session->s_cap_lock); 1133 1134 iput(last_inode); 1135 if (old_cap) 1136 ceph_put_cap(session->s_mdsc, old_cap); 1137 1138 return ret; 1139 } 1140 1141 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 1142 void *arg) 1143 { 1144 struct ceph_inode_info *ci = ceph_inode(inode); 1145 LIST_HEAD(to_remove); 1146 int drop = 0; 1147 1148 dout("removing cap %p, ci is %p, inode is %p\n", 1149 cap, ci, &ci->vfs_inode); 1150 spin_lock(&ci->i_ceph_lock); 1151 __ceph_remove_cap(cap, false); 1152 if (!ci->i_auth_cap) { 1153 struct ceph_cap_flush *cf; 1154 struct ceph_mds_client *mdsc = 1155 ceph_sb_to_client(inode->i_sb)->mdsc; 1156 1157 while (true) { 1158 struct rb_node *n = rb_first(&ci->i_cap_flush_tree); 1159 if (!n) 1160 break; 1161 cf = rb_entry(n, struct ceph_cap_flush, i_node); 1162 rb_erase(&cf->i_node, &ci->i_cap_flush_tree); 1163 list_add(&cf->list, &to_remove); 1164 } 1165 1166 spin_lock(&mdsc->cap_dirty_lock); 1167 1168 list_for_each_entry(cf, &to_remove, list) 1169 rb_erase(&cf->g_node, &mdsc->cap_flush_tree); 1170 1171 if (!list_empty(&ci->i_dirty_item)) { 1172 pr_warn_ratelimited( 1173 " dropping dirty %s state for %p %lld\n", 1174 ceph_cap_string(ci->i_dirty_caps), 1175 inode, ceph_ino(inode)); 1176 ci->i_dirty_caps = 0; 1177 list_del_init(&ci->i_dirty_item); 1178 drop = 1; 1179 } 1180 if (!list_empty(&ci->i_flushing_item)) { 1181 pr_warn_ratelimited( 1182 " dropping dirty+flushing %s state for %p %lld\n", 1183 ceph_cap_string(ci->i_flushing_caps), 1184 inode, ceph_ino(inode)); 1185 ci->i_flushing_caps = 0; 1186 list_del_init(&ci->i_flushing_item); 1187 mdsc->num_cap_flushing--; 1188 drop = 1; 1189 } 1190 spin_unlock(&mdsc->cap_dirty_lock); 1191 1192 if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) { 1193 list_add(&ci->i_prealloc_cap_flush->list, &to_remove); 1194 ci->i_prealloc_cap_flush = NULL; 1195 } 1196 } 1197 spin_unlock(&ci->i_ceph_lock); 1198 while (!list_empty(&to_remove)) { 1199 struct ceph_cap_flush *cf; 1200 cf = list_first_entry(&to_remove, 1201 struct ceph_cap_flush, list); 1202 list_del(&cf->list); 1203 ceph_free_cap_flush(cf); 1204 } 1205 while (drop--) 1206 iput(inode); 1207 return 0; 1208 } 1209 1210 /* 1211 * caller must hold session s_mutex 1212 */ 1213 static void remove_session_caps(struct ceph_mds_session *session) 1214 { 1215 dout("remove_session_caps on %p\n", session); 1216 iterate_session_caps(session, remove_session_caps_cb, NULL); 1217 1218 spin_lock(&session->s_cap_lock); 1219 if (session->s_nr_caps > 0) { 1220 struct super_block *sb = session->s_mdsc->fsc->sb; 1221 struct inode *inode; 1222 struct ceph_cap *cap, *prev = NULL; 1223 struct ceph_vino vino; 1224 /* 1225 * iterate_session_caps() skips inodes that are being 1226 * deleted, we need to wait until deletions are complete. 1227 * __wait_on_freeing_inode() is designed for the job, 1228 * but it is not exported, so use lookup inode function 1229 * to access it. 1230 */ 1231 while (!list_empty(&session->s_caps)) { 1232 cap = list_entry(session->s_caps.next, 1233 struct ceph_cap, session_caps); 1234 if (cap == prev) 1235 break; 1236 prev = cap; 1237 vino = cap->ci->i_vino; 1238 spin_unlock(&session->s_cap_lock); 1239 1240 inode = ceph_find_inode(sb, vino); 1241 iput(inode); 1242 1243 spin_lock(&session->s_cap_lock); 1244 } 1245 } 1246 1247 // drop cap expires and unlock s_cap_lock 1248 cleanup_cap_releases(session->s_mdsc, session); 1249 1250 BUG_ON(session->s_nr_caps > 0); 1251 BUG_ON(!list_empty(&session->s_cap_flushing)); 1252 } 1253 1254 /* 1255 * wake up any threads waiting on this session's caps. if the cap is 1256 * old (didn't get renewed on the client reconnect), remove it now. 1257 * 1258 * caller must hold s_mutex. 1259 */ 1260 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 1261 void *arg) 1262 { 1263 struct ceph_inode_info *ci = ceph_inode(inode); 1264 1265 wake_up_all(&ci->i_cap_wq); 1266 if (arg) { 1267 spin_lock(&ci->i_ceph_lock); 1268 ci->i_wanted_max_size = 0; 1269 ci->i_requested_max_size = 0; 1270 spin_unlock(&ci->i_ceph_lock); 1271 } 1272 return 0; 1273 } 1274 1275 static void wake_up_session_caps(struct ceph_mds_session *session, 1276 int reconnect) 1277 { 1278 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1279 iterate_session_caps(session, wake_up_session_cb, 1280 (void *)(unsigned long)reconnect); 1281 } 1282 1283 /* 1284 * Send periodic message to MDS renewing all currently held caps. The 1285 * ack will reset the expiration for all caps from this session. 1286 * 1287 * caller holds s_mutex 1288 */ 1289 static int send_renew_caps(struct ceph_mds_client *mdsc, 1290 struct ceph_mds_session *session) 1291 { 1292 struct ceph_msg *msg; 1293 int state; 1294 1295 if (time_after_eq(jiffies, session->s_cap_ttl) && 1296 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1297 pr_info("mds%d caps stale\n", session->s_mds); 1298 session->s_renew_requested = jiffies; 1299 1300 /* do not try to renew caps until a recovering mds has reconnected 1301 * with its clients. */ 1302 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1303 if (state < CEPH_MDS_STATE_RECONNECT) { 1304 dout("send_renew_caps ignoring mds%d (%s)\n", 1305 session->s_mds, ceph_mds_state_name(state)); 1306 return 0; 1307 } 1308 1309 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 1310 ceph_mds_state_name(state)); 1311 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 1312 ++session->s_renew_seq); 1313 if (!msg) 1314 return -ENOMEM; 1315 ceph_con_send(&session->s_con, msg); 1316 return 0; 1317 } 1318 1319 static int send_flushmsg_ack(struct ceph_mds_client *mdsc, 1320 struct ceph_mds_session *session, u64 seq) 1321 { 1322 struct ceph_msg *msg; 1323 1324 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n", 1325 session->s_mds, ceph_session_state_name(session->s_state), seq); 1326 msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq); 1327 if (!msg) 1328 return -ENOMEM; 1329 ceph_con_send(&session->s_con, msg); 1330 return 0; 1331 } 1332 1333 1334 /* 1335 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 1336 * 1337 * Called under session->s_mutex 1338 */ 1339 static void renewed_caps(struct ceph_mds_client *mdsc, 1340 struct ceph_mds_session *session, int is_renew) 1341 { 1342 int was_stale; 1343 int wake = 0; 1344 1345 spin_lock(&session->s_cap_lock); 1346 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 1347 1348 session->s_cap_ttl = session->s_renew_requested + 1349 mdsc->mdsmap->m_session_timeout*HZ; 1350 1351 if (was_stale) { 1352 if (time_before(jiffies, session->s_cap_ttl)) { 1353 pr_info("mds%d caps renewed\n", session->s_mds); 1354 wake = 1; 1355 } else { 1356 pr_info("mds%d caps still stale\n", session->s_mds); 1357 } 1358 } 1359 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 1360 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 1361 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 1362 spin_unlock(&session->s_cap_lock); 1363 1364 if (wake) 1365 wake_up_session_caps(session, 0); 1366 } 1367 1368 /* 1369 * send a session close request 1370 */ 1371 static int request_close_session(struct ceph_mds_client *mdsc, 1372 struct ceph_mds_session *session) 1373 { 1374 struct ceph_msg *msg; 1375 1376 dout("request_close_session mds%d state %s seq %lld\n", 1377 session->s_mds, ceph_session_state_name(session->s_state), 1378 session->s_seq); 1379 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); 1380 if (!msg) 1381 return -ENOMEM; 1382 ceph_con_send(&session->s_con, msg); 1383 return 0; 1384 } 1385 1386 /* 1387 * Called with s_mutex held. 1388 */ 1389 static int __close_session(struct ceph_mds_client *mdsc, 1390 struct ceph_mds_session *session) 1391 { 1392 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 1393 return 0; 1394 session->s_state = CEPH_MDS_SESSION_CLOSING; 1395 return request_close_session(mdsc, session); 1396 } 1397 1398 /* 1399 * Trim old(er) caps. 1400 * 1401 * Because we can't cache an inode without one or more caps, we do 1402 * this indirectly: if a cap is unused, we prune its aliases, at which 1403 * point the inode will hopefully get dropped to. 1404 * 1405 * Yes, this is a bit sloppy. Our only real goal here is to respond to 1406 * memory pressure from the MDS, though, so it needn't be perfect. 1407 */ 1408 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1409 { 1410 struct ceph_mds_session *session = arg; 1411 struct ceph_inode_info *ci = ceph_inode(inode); 1412 int used, wanted, oissued, mine; 1413 1414 if (session->s_trim_caps <= 0) 1415 return -1; 1416 1417 spin_lock(&ci->i_ceph_lock); 1418 mine = cap->issued | cap->implemented; 1419 used = __ceph_caps_used(ci); 1420 wanted = __ceph_caps_file_wanted(ci); 1421 oissued = __ceph_caps_issued_other(ci, cap); 1422 1423 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n", 1424 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1425 ceph_cap_string(used), ceph_cap_string(wanted)); 1426 if (cap == ci->i_auth_cap) { 1427 if (ci->i_dirty_caps || ci->i_flushing_caps || 1428 !list_empty(&ci->i_cap_snaps)) 1429 goto out; 1430 if ((used | wanted) & CEPH_CAP_ANY_WR) 1431 goto out; 1432 } 1433 if ((used | wanted) & ~oissued & mine) 1434 goto out; /* we need these caps */ 1435 1436 session->s_trim_caps--; 1437 if (oissued) { 1438 /* we aren't the only cap.. just remove us */ 1439 __ceph_remove_cap(cap, true); 1440 } else { 1441 /* try to drop referring dentries */ 1442 spin_unlock(&ci->i_ceph_lock); 1443 d_prune_aliases(inode); 1444 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 1445 inode, cap, atomic_read(&inode->i_count)); 1446 return 0; 1447 } 1448 1449 out: 1450 spin_unlock(&ci->i_ceph_lock); 1451 return 0; 1452 } 1453 1454 /* 1455 * Trim session cap count down to some max number. 1456 */ 1457 static int trim_caps(struct ceph_mds_client *mdsc, 1458 struct ceph_mds_session *session, 1459 int max_caps) 1460 { 1461 int trim_caps = session->s_nr_caps - max_caps; 1462 1463 dout("trim_caps mds%d start: %d / %d, trim %d\n", 1464 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 1465 if (trim_caps > 0) { 1466 session->s_trim_caps = trim_caps; 1467 iterate_session_caps(session, trim_caps_cb, session); 1468 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 1469 session->s_mds, session->s_nr_caps, max_caps, 1470 trim_caps - session->s_trim_caps); 1471 session->s_trim_caps = 0; 1472 } 1473 1474 ceph_send_cap_releases(mdsc, session); 1475 return 0; 1476 } 1477 1478 static int check_capsnap_flush(struct ceph_inode_info *ci, 1479 u64 want_snap_seq) 1480 { 1481 int ret = 1; 1482 spin_lock(&ci->i_ceph_lock); 1483 if (want_snap_seq > 0 && !list_empty(&ci->i_cap_snaps)) { 1484 struct ceph_cap_snap *capsnap = 1485 list_first_entry(&ci->i_cap_snaps, 1486 struct ceph_cap_snap, ci_item); 1487 ret = capsnap->follows >= want_snap_seq; 1488 } 1489 spin_unlock(&ci->i_ceph_lock); 1490 return ret; 1491 } 1492 1493 static int check_caps_flush(struct ceph_mds_client *mdsc, 1494 u64 want_flush_tid) 1495 { 1496 struct rb_node *n; 1497 struct ceph_cap_flush *cf; 1498 int ret = 1; 1499 1500 spin_lock(&mdsc->cap_dirty_lock); 1501 n = rb_first(&mdsc->cap_flush_tree); 1502 cf = n ? rb_entry(n, struct ceph_cap_flush, g_node) : NULL; 1503 if (cf && cf->tid <= want_flush_tid) { 1504 dout("check_caps_flush still flushing tid %llu <= %llu\n", 1505 cf->tid, want_flush_tid); 1506 ret = 0; 1507 } 1508 spin_unlock(&mdsc->cap_dirty_lock); 1509 return ret; 1510 } 1511 1512 /* 1513 * flush all dirty inode data to disk. 1514 * 1515 * returns true if we've flushed through want_flush_tid 1516 */ 1517 static void wait_caps_flush(struct ceph_mds_client *mdsc, 1518 u64 want_flush_tid, u64 want_snap_seq) 1519 { 1520 int mds; 1521 1522 dout("check_caps_flush want %llu snap want %llu\n", 1523 want_flush_tid, want_snap_seq); 1524 mutex_lock(&mdsc->mutex); 1525 for (mds = 0; mds < mdsc->max_sessions; ) { 1526 struct ceph_mds_session *session = mdsc->sessions[mds]; 1527 struct inode *inode = NULL; 1528 1529 if (!session) { 1530 mds++; 1531 continue; 1532 } 1533 get_session(session); 1534 mutex_unlock(&mdsc->mutex); 1535 1536 mutex_lock(&session->s_mutex); 1537 if (!list_empty(&session->s_cap_snaps_flushing)) { 1538 struct ceph_cap_snap *capsnap = 1539 list_first_entry(&session->s_cap_snaps_flushing, 1540 struct ceph_cap_snap, 1541 flushing_item); 1542 struct ceph_inode_info *ci = capsnap->ci; 1543 if (!check_capsnap_flush(ci, want_snap_seq)) { 1544 dout("check_cap_flush still flushing snap %p " 1545 "follows %lld <= %lld to mds%d\n", 1546 &ci->vfs_inode, capsnap->follows, 1547 want_snap_seq, mds); 1548 inode = igrab(&ci->vfs_inode); 1549 } 1550 } 1551 mutex_unlock(&session->s_mutex); 1552 ceph_put_mds_session(session); 1553 1554 if (inode) { 1555 wait_event(mdsc->cap_flushing_wq, 1556 check_capsnap_flush(ceph_inode(inode), 1557 want_snap_seq)); 1558 iput(inode); 1559 } else { 1560 mds++; 1561 } 1562 1563 mutex_lock(&mdsc->mutex); 1564 } 1565 mutex_unlock(&mdsc->mutex); 1566 1567 wait_event(mdsc->cap_flushing_wq, 1568 check_caps_flush(mdsc, want_flush_tid)); 1569 1570 dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid); 1571 } 1572 1573 /* 1574 * called under s_mutex 1575 */ 1576 void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 1577 struct ceph_mds_session *session) 1578 { 1579 struct ceph_msg *msg = NULL; 1580 struct ceph_mds_cap_release *head; 1581 struct ceph_mds_cap_item *item; 1582 struct ceph_cap *cap; 1583 LIST_HEAD(tmp_list); 1584 int num_cap_releases; 1585 1586 spin_lock(&session->s_cap_lock); 1587 again: 1588 list_splice_init(&session->s_cap_releases, &tmp_list); 1589 num_cap_releases = session->s_num_cap_releases; 1590 session->s_num_cap_releases = 0; 1591 spin_unlock(&session->s_cap_lock); 1592 1593 while (!list_empty(&tmp_list)) { 1594 if (!msg) { 1595 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, 1596 PAGE_CACHE_SIZE, GFP_NOFS, false); 1597 if (!msg) 1598 goto out_err; 1599 head = msg->front.iov_base; 1600 head->num = cpu_to_le32(0); 1601 msg->front.iov_len = sizeof(*head); 1602 } 1603 cap = list_first_entry(&tmp_list, struct ceph_cap, 1604 session_caps); 1605 list_del(&cap->session_caps); 1606 num_cap_releases--; 1607 1608 head = msg->front.iov_base; 1609 le32_add_cpu(&head->num, 1); 1610 item = msg->front.iov_base + msg->front.iov_len; 1611 item->ino = cpu_to_le64(cap->cap_ino); 1612 item->cap_id = cpu_to_le64(cap->cap_id); 1613 item->migrate_seq = cpu_to_le32(cap->mseq); 1614 item->seq = cpu_to_le32(cap->issue_seq); 1615 msg->front.iov_len += sizeof(*item); 1616 1617 ceph_put_cap(mdsc, cap); 1618 1619 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1620 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1621 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1622 ceph_con_send(&session->s_con, msg); 1623 msg = NULL; 1624 } 1625 } 1626 1627 BUG_ON(num_cap_releases != 0); 1628 1629 spin_lock(&session->s_cap_lock); 1630 if (!list_empty(&session->s_cap_releases)) 1631 goto again; 1632 spin_unlock(&session->s_cap_lock); 1633 1634 if (msg) { 1635 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1636 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1637 ceph_con_send(&session->s_con, msg); 1638 } 1639 return; 1640 out_err: 1641 pr_err("send_cap_releases mds%d, failed to allocate message\n", 1642 session->s_mds); 1643 spin_lock(&session->s_cap_lock); 1644 list_splice(&tmp_list, &session->s_cap_releases); 1645 session->s_num_cap_releases += num_cap_releases; 1646 spin_unlock(&session->s_cap_lock); 1647 } 1648 1649 /* 1650 * requests 1651 */ 1652 1653 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req, 1654 struct inode *dir) 1655 { 1656 struct ceph_inode_info *ci = ceph_inode(dir); 1657 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; 1658 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options; 1659 size_t size = sizeof(*rinfo->dir_in) + sizeof(*rinfo->dir_dname_len) + 1660 sizeof(*rinfo->dir_dname) + sizeof(*rinfo->dir_dlease); 1661 int order, num_entries; 1662 1663 spin_lock(&ci->i_ceph_lock); 1664 num_entries = ci->i_files + ci->i_subdirs; 1665 spin_unlock(&ci->i_ceph_lock); 1666 num_entries = max(num_entries, 1); 1667 num_entries = min(num_entries, opt->max_readdir); 1668 1669 order = get_order(size * num_entries); 1670 while (order >= 0) { 1671 rinfo->dir_in = (void*)__get_free_pages(GFP_KERNEL | 1672 __GFP_NOWARN, 1673 order); 1674 if (rinfo->dir_in) 1675 break; 1676 order--; 1677 } 1678 if (!rinfo->dir_in) 1679 return -ENOMEM; 1680 1681 num_entries = (PAGE_SIZE << order) / size; 1682 num_entries = min(num_entries, opt->max_readdir); 1683 1684 rinfo->dir_buf_size = PAGE_SIZE << order; 1685 req->r_num_caps = num_entries + 1; 1686 req->r_args.readdir.max_entries = cpu_to_le32(num_entries); 1687 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes); 1688 return 0; 1689 } 1690 1691 /* 1692 * Create an mds request. 1693 */ 1694 struct ceph_mds_request * 1695 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 1696 { 1697 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS); 1698 1699 if (!req) 1700 return ERR_PTR(-ENOMEM); 1701 1702 mutex_init(&req->r_fill_mutex); 1703 req->r_mdsc = mdsc; 1704 req->r_started = jiffies; 1705 req->r_resend_mds = -1; 1706 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 1707 req->r_fmode = -1; 1708 kref_init(&req->r_kref); 1709 INIT_LIST_HEAD(&req->r_wait); 1710 init_completion(&req->r_completion); 1711 init_completion(&req->r_safe_completion); 1712 INIT_LIST_HEAD(&req->r_unsafe_item); 1713 1714 req->r_stamp = CURRENT_TIME; 1715 1716 req->r_op = op; 1717 req->r_direct_mode = mode; 1718 return req; 1719 } 1720 1721 /* 1722 * return oldest (lowest) request, tid in request tree, 0 if none. 1723 * 1724 * called under mdsc->mutex. 1725 */ 1726 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 1727 { 1728 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 1729 return NULL; 1730 return rb_entry(rb_first(&mdsc->request_tree), 1731 struct ceph_mds_request, r_node); 1732 } 1733 1734 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 1735 { 1736 return mdsc->oldest_tid; 1737 } 1738 1739 /* 1740 * Build a dentry's path. Allocate on heap; caller must kfree. Based 1741 * on build_path_from_dentry in fs/cifs/dir.c. 1742 * 1743 * If @stop_on_nosnap, generate path relative to the first non-snapped 1744 * inode. 1745 * 1746 * Encode hidden .snap dirs as a double /, i.e. 1747 * foo/.snap/bar -> foo//bar 1748 */ 1749 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base, 1750 int stop_on_nosnap) 1751 { 1752 struct dentry *temp; 1753 char *path; 1754 int len, pos; 1755 unsigned seq; 1756 1757 if (dentry == NULL) 1758 return ERR_PTR(-EINVAL); 1759 1760 retry: 1761 len = 0; 1762 seq = read_seqbegin(&rename_lock); 1763 rcu_read_lock(); 1764 for (temp = dentry; !IS_ROOT(temp);) { 1765 struct inode *inode = d_inode(temp); 1766 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) 1767 len++; /* slash only */ 1768 else if (stop_on_nosnap && inode && 1769 ceph_snap(inode) == CEPH_NOSNAP) 1770 break; 1771 else 1772 len += 1 + temp->d_name.len; 1773 temp = temp->d_parent; 1774 } 1775 rcu_read_unlock(); 1776 if (len) 1777 len--; /* no leading '/' */ 1778 1779 path = kmalloc(len+1, GFP_NOFS); 1780 if (path == NULL) 1781 return ERR_PTR(-ENOMEM); 1782 pos = len; 1783 path[pos] = 0; /* trailing null */ 1784 rcu_read_lock(); 1785 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) { 1786 struct inode *inode; 1787 1788 spin_lock(&temp->d_lock); 1789 inode = d_inode(temp); 1790 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 1791 dout("build_path path+%d: %p SNAPDIR\n", 1792 pos, temp); 1793 } else if (stop_on_nosnap && inode && 1794 ceph_snap(inode) == CEPH_NOSNAP) { 1795 spin_unlock(&temp->d_lock); 1796 break; 1797 } else { 1798 pos -= temp->d_name.len; 1799 if (pos < 0) { 1800 spin_unlock(&temp->d_lock); 1801 break; 1802 } 1803 strncpy(path + pos, temp->d_name.name, 1804 temp->d_name.len); 1805 } 1806 spin_unlock(&temp->d_lock); 1807 if (pos) 1808 path[--pos] = '/'; 1809 temp = temp->d_parent; 1810 } 1811 rcu_read_unlock(); 1812 if (pos != 0 || read_seqretry(&rename_lock, seq)) { 1813 pr_err("build_path did not end path lookup where " 1814 "expected, namelen is %d, pos is %d\n", len, pos); 1815 /* presumably this is only possible if racing with a 1816 rename of one of the parent directories (we can not 1817 lock the dentries above us to prevent this, but 1818 retrying should be harmless) */ 1819 kfree(path); 1820 goto retry; 1821 } 1822 1823 *base = ceph_ino(d_inode(temp)); 1824 *plen = len; 1825 dout("build_path on %p %d built %llx '%.*s'\n", 1826 dentry, d_count(dentry), *base, len, path); 1827 return path; 1828 } 1829 1830 static int build_dentry_path(struct dentry *dentry, 1831 const char **ppath, int *ppathlen, u64 *pino, 1832 int *pfreepath) 1833 { 1834 char *path; 1835 1836 if (ceph_snap(d_inode(dentry->d_parent)) == CEPH_NOSNAP) { 1837 *pino = ceph_ino(d_inode(dentry->d_parent)); 1838 *ppath = dentry->d_name.name; 1839 *ppathlen = dentry->d_name.len; 1840 return 0; 1841 } 1842 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1843 if (IS_ERR(path)) 1844 return PTR_ERR(path); 1845 *ppath = path; 1846 *pfreepath = 1; 1847 return 0; 1848 } 1849 1850 static int build_inode_path(struct inode *inode, 1851 const char **ppath, int *ppathlen, u64 *pino, 1852 int *pfreepath) 1853 { 1854 struct dentry *dentry; 1855 char *path; 1856 1857 if (ceph_snap(inode) == CEPH_NOSNAP) { 1858 *pino = ceph_ino(inode); 1859 *ppathlen = 0; 1860 return 0; 1861 } 1862 dentry = d_find_alias(inode); 1863 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1864 dput(dentry); 1865 if (IS_ERR(path)) 1866 return PTR_ERR(path); 1867 *ppath = path; 1868 *pfreepath = 1; 1869 return 0; 1870 } 1871 1872 /* 1873 * request arguments may be specified via an inode *, a dentry *, or 1874 * an explicit ino+path. 1875 */ 1876 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 1877 const char *rpath, u64 rino, 1878 const char **ppath, int *pathlen, 1879 u64 *ino, int *freepath) 1880 { 1881 int r = 0; 1882 1883 if (rinode) { 1884 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 1885 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 1886 ceph_snap(rinode)); 1887 } else if (rdentry) { 1888 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath); 1889 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 1890 *ppath); 1891 } else if (rpath || rino) { 1892 *ino = rino; 1893 *ppath = rpath; 1894 *pathlen = rpath ? strlen(rpath) : 0; 1895 dout(" path %.*s\n", *pathlen, rpath); 1896 } 1897 1898 return r; 1899 } 1900 1901 /* 1902 * called under mdsc->mutex 1903 */ 1904 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc, 1905 struct ceph_mds_request *req, 1906 int mds, bool drop_cap_releases) 1907 { 1908 struct ceph_msg *msg; 1909 struct ceph_mds_request_head *head; 1910 const char *path1 = NULL; 1911 const char *path2 = NULL; 1912 u64 ino1 = 0, ino2 = 0; 1913 int pathlen1 = 0, pathlen2 = 0; 1914 int freepath1 = 0, freepath2 = 0; 1915 int len; 1916 u16 releases; 1917 void *p, *end; 1918 int ret; 1919 1920 ret = set_request_path_attr(req->r_inode, req->r_dentry, 1921 req->r_path1, req->r_ino1.ino, 1922 &path1, &pathlen1, &ino1, &freepath1); 1923 if (ret < 0) { 1924 msg = ERR_PTR(ret); 1925 goto out; 1926 } 1927 1928 ret = set_request_path_attr(NULL, req->r_old_dentry, 1929 req->r_path2, req->r_ino2.ino, 1930 &path2, &pathlen2, &ino2, &freepath2); 1931 if (ret < 0) { 1932 msg = ERR_PTR(ret); 1933 goto out_free1; 1934 } 1935 1936 len = sizeof(*head) + 1937 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) + 1938 sizeof(struct timespec); 1939 1940 /* calculate (max) length for cap releases */ 1941 len += sizeof(struct ceph_mds_request_release) * 1942 (!!req->r_inode_drop + !!req->r_dentry_drop + 1943 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 1944 if (req->r_dentry_drop) 1945 len += req->r_dentry->d_name.len; 1946 if (req->r_old_dentry_drop) 1947 len += req->r_old_dentry->d_name.len; 1948 1949 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false); 1950 if (!msg) { 1951 msg = ERR_PTR(-ENOMEM); 1952 goto out_free2; 1953 } 1954 1955 msg->hdr.version = cpu_to_le16(2); 1956 msg->hdr.tid = cpu_to_le64(req->r_tid); 1957 1958 head = msg->front.iov_base; 1959 p = msg->front.iov_base + sizeof(*head); 1960 end = msg->front.iov_base + msg->front.iov_len; 1961 1962 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 1963 head->op = cpu_to_le32(req->r_op); 1964 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid)); 1965 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid)); 1966 head->args = req->r_args; 1967 1968 ceph_encode_filepath(&p, end, ino1, path1); 1969 ceph_encode_filepath(&p, end, ino2, path2); 1970 1971 /* make note of release offset, in case we need to replay */ 1972 req->r_request_release_offset = p - msg->front.iov_base; 1973 1974 /* cap releases */ 1975 releases = 0; 1976 if (req->r_inode_drop) 1977 releases += ceph_encode_inode_release(&p, 1978 req->r_inode ? req->r_inode : d_inode(req->r_dentry), 1979 mds, req->r_inode_drop, req->r_inode_unless, 0); 1980 if (req->r_dentry_drop) 1981 releases += ceph_encode_dentry_release(&p, req->r_dentry, 1982 mds, req->r_dentry_drop, req->r_dentry_unless); 1983 if (req->r_old_dentry_drop) 1984 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 1985 mds, req->r_old_dentry_drop, req->r_old_dentry_unless); 1986 if (req->r_old_inode_drop) 1987 releases += ceph_encode_inode_release(&p, 1988 d_inode(req->r_old_dentry), 1989 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 1990 1991 if (drop_cap_releases) { 1992 releases = 0; 1993 p = msg->front.iov_base + req->r_request_release_offset; 1994 } 1995 1996 head->num_releases = cpu_to_le16(releases); 1997 1998 /* time stamp */ 1999 { 2000 struct ceph_timespec ts; 2001 ceph_encode_timespec(&ts, &req->r_stamp); 2002 ceph_encode_copy(&p, &ts, sizeof(ts)); 2003 } 2004 2005 BUG_ON(p > end); 2006 msg->front.iov_len = p - msg->front.iov_base; 2007 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2008 2009 if (req->r_pagelist) { 2010 struct ceph_pagelist *pagelist = req->r_pagelist; 2011 atomic_inc(&pagelist->refcnt); 2012 ceph_msg_data_add_pagelist(msg, pagelist); 2013 msg->hdr.data_len = cpu_to_le32(pagelist->length); 2014 } else { 2015 msg->hdr.data_len = 0; 2016 } 2017 2018 msg->hdr.data_off = cpu_to_le16(0); 2019 2020 out_free2: 2021 if (freepath2) 2022 kfree((char *)path2); 2023 out_free1: 2024 if (freepath1) 2025 kfree((char *)path1); 2026 out: 2027 return msg; 2028 } 2029 2030 /* 2031 * called under mdsc->mutex if error, under no mutex if 2032 * success. 2033 */ 2034 static void complete_request(struct ceph_mds_client *mdsc, 2035 struct ceph_mds_request *req) 2036 { 2037 if (req->r_callback) 2038 req->r_callback(mdsc, req); 2039 else 2040 complete_all(&req->r_completion); 2041 } 2042 2043 /* 2044 * called under mdsc->mutex 2045 */ 2046 static int __prepare_send_request(struct ceph_mds_client *mdsc, 2047 struct ceph_mds_request *req, 2048 int mds, bool drop_cap_releases) 2049 { 2050 struct ceph_mds_request_head *rhead; 2051 struct ceph_msg *msg; 2052 int flags = 0; 2053 2054 req->r_attempts++; 2055 if (req->r_inode) { 2056 struct ceph_cap *cap = 2057 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 2058 2059 if (cap) 2060 req->r_sent_on_mseq = cap->mseq; 2061 else 2062 req->r_sent_on_mseq = -1; 2063 } 2064 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, 2065 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 2066 2067 if (req->r_got_unsafe) { 2068 void *p; 2069 /* 2070 * Replay. Do not regenerate message (and rebuild 2071 * paths, etc.); just use the original message. 2072 * Rebuilding paths will break for renames because 2073 * d_move mangles the src name. 2074 */ 2075 msg = req->r_request; 2076 rhead = msg->front.iov_base; 2077 2078 flags = le32_to_cpu(rhead->flags); 2079 flags |= CEPH_MDS_FLAG_REPLAY; 2080 rhead->flags = cpu_to_le32(flags); 2081 2082 if (req->r_target_inode) 2083 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 2084 2085 rhead->num_retry = req->r_attempts - 1; 2086 2087 /* remove cap/dentry releases from message */ 2088 rhead->num_releases = 0; 2089 2090 /* time stamp */ 2091 p = msg->front.iov_base + req->r_request_release_offset; 2092 { 2093 struct ceph_timespec ts; 2094 ceph_encode_timespec(&ts, &req->r_stamp); 2095 ceph_encode_copy(&p, &ts, sizeof(ts)); 2096 } 2097 2098 msg->front.iov_len = p - msg->front.iov_base; 2099 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2100 return 0; 2101 } 2102 2103 if (req->r_request) { 2104 ceph_msg_put(req->r_request); 2105 req->r_request = NULL; 2106 } 2107 msg = create_request_message(mdsc, req, mds, drop_cap_releases); 2108 if (IS_ERR(msg)) { 2109 req->r_err = PTR_ERR(msg); 2110 return PTR_ERR(msg); 2111 } 2112 req->r_request = msg; 2113 2114 rhead = msg->front.iov_base; 2115 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 2116 if (req->r_got_unsafe) 2117 flags |= CEPH_MDS_FLAG_REPLAY; 2118 if (req->r_locked_dir) 2119 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 2120 rhead->flags = cpu_to_le32(flags); 2121 rhead->num_fwd = req->r_num_fwd; 2122 rhead->num_retry = req->r_attempts - 1; 2123 rhead->ino = 0; 2124 2125 dout(" r_locked_dir = %p\n", req->r_locked_dir); 2126 return 0; 2127 } 2128 2129 /* 2130 * send request, or put it on the appropriate wait list. 2131 */ 2132 static int __do_request(struct ceph_mds_client *mdsc, 2133 struct ceph_mds_request *req) 2134 { 2135 struct ceph_mds_session *session = NULL; 2136 int mds = -1; 2137 int err = 0; 2138 2139 if (req->r_err || req->r_got_result) { 2140 if (req->r_aborted) 2141 __unregister_request(mdsc, req); 2142 goto out; 2143 } 2144 2145 if (req->r_timeout && 2146 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 2147 dout("do_request timed out\n"); 2148 err = -EIO; 2149 goto finish; 2150 } 2151 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) { 2152 dout("do_request forced umount\n"); 2153 err = -EIO; 2154 goto finish; 2155 } 2156 2157 put_request_session(req); 2158 2159 mds = __choose_mds(mdsc, req); 2160 if (mds < 0 || 2161 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 2162 dout("do_request no mds or not active, waiting for map\n"); 2163 list_add(&req->r_wait, &mdsc->waiting_for_map); 2164 goto out; 2165 } 2166 2167 /* get, open session */ 2168 session = __ceph_lookup_mds_session(mdsc, mds); 2169 if (!session) { 2170 session = register_session(mdsc, mds); 2171 if (IS_ERR(session)) { 2172 err = PTR_ERR(session); 2173 goto finish; 2174 } 2175 } 2176 req->r_session = get_session(session); 2177 2178 dout("do_request mds%d session %p state %s\n", mds, session, 2179 ceph_session_state_name(session->s_state)); 2180 if (session->s_state != CEPH_MDS_SESSION_OPEN && 2181 session->s_state != CEPH_MDS_SESSION_HUNG) { 2182 if (session->s_state == CEPH_MDS_SESSION_NEW || 2183 session->s_state == CEPH_MDS_SESSION_CLOSING) 2184 __open_session(mdsc, session); 2185 list_add(&req->r_wait, &session->s_waiting); 2186 goto out_session; 2187 } 2188 2189 /* send request */ 2190 req->r_resend_mds = -1; /* forget any previous mds hint */ 2191 2192 if (req->r_request_started == 0) /* note request start time */ 2193 req->r_request_started = jiffies; 2194 2195 err = __prepare_send_request(mdsc, req, mds, false); 2196 if (!err) { 2197 ceph_msg_get(req->r_request); 2198 ceph_con_send(&session->s_con, req->r_request); 2199 } 2200 2201 out_session: 2202 ceph_put_mds_session(session); 2203 finish: 2204 if (err) { 2205 dout("__do_request early error %d\n", err); 2206 req->r_err = err; 2207 complete_request(mdsc, req); 2208 __unregister_request(mdsc, req); 2209 } 2210 out: 2211 return err; 2212 } 2213 2214 /* 2215 * called under mdsc->mutex 2216 */ 2217 static void __wake_requests(struct ceph_mds_client *mdsc, 2218 struct list_head *head) 2219 { 2220 struct ceph_mds_request *req; 2221 LIST_HEAD(tmp_list); 2222 2223 list_splice_init(head, &tmp_list); 2224 2225 while (!list_empty(&tmp_list)) { 2226 req = list_entry(tmp_list.next, 2227 struct ceph_mds_request, r_wait); 2228 list_del_init(&req->r_wait); 2229 dout(" wake request %p tid %llu\n", req, req->r_tid); 2230 __do_request(mdsc, req); 2231 } 2232 } 2233 2234 /* 2235 * Wake up threads with requests pending for @mds, so that they can 2236 * resubmit their requests to a possibly different mds. 2237 */ 2238 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 2239 { 2240 struct ceph_mds_request *req; 2241 struct rb_node *p = rb_first(&mdsc->request_tree); 2242 2243 dout("kick_requests mds%d\n", mds); 2244 while (p) { 2245 req = rb_entry(p, struct ceph_mds_request, r_node); 2246 p = rb_next(p); 2247 if (req->r_got_unsafe) 2248 continue; 2249 if (req->r_attempts > 0) 2250 continue; /* only new requests */ 2251 if (req->r_session && 2252 req->r_session->s_mds == mds) { 2253 dout(" kicking tid %llu\n", req->r_tid); 2254 list_del_init(&req->r_wait); 2255 __do_request(mdsc, req); 2256 } 2257 } 2258 } 2259 2260 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, 2261 struct ceph_mds_request *req) 2262 { 2263 dout("submit_request on %p\n", req); 2264 mutex_lock(&mdsc->mutex); 2265 __register_request(mdsc, req, NULL); 2266 __do_request(mdsc, req); 2267 mutex_unlock(&mdsc->mutex); 2268 } 2269 2270 /* 2271 * Synchrously perform an mds request. Take care of all of the 2272 * session setup, forwarding, retry details. 2273 */ 2274 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 2275 struct inode *dir, 2276 struct ceph_mds_request *req) 2277 { 2278 int err; 2279 2280 dout("do_request on %p\n", req); 2281 2282 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */ 2283 if (req->r_inode) 2284 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 2285 if (req->r_locked_dir) 2286 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 2287 if (req->r_old_dentry_dir) 2288 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 2289 CEPH_CAP_PIN); 2290 2291 /* issue */ 2292 mutex_lock(&mdsc->mutex); 2293 __register_request(mdsc, req, dir); 2294 __do_request(mdsc, req); 2295 2296 if (req->r_err) { 2297 err = req->r_err; 2298 goto out; 2299 } 2300 2301 /* wait */ 2302 mutex_unlock(&mdsc->mutex); 2303 dout("do_request waiting\n"); 2304 if (!req->r_timeout && req->r_wait_for_completion) { 2305 err = req->r_wait_for_completion(mdsc, req); 2306 } else { 2307 long timeleft = wait_for_completion_killable_timeout( 2308 &req->r_completion, 2309 ceph_timeout_jiffies(req->r_timeout)); 2310 if (timeleft > 0) 2311 err = 0; 2312 else if (!timeleft) 2313 err = -EIO; /* timed out */ 2314 else 2315 err = timeleft; /* killed */ 2316 } 2317 dout("do_request waited, got %d\n", err); 2318 mutex_lock(&mdsc->mutex); 2319 2320 /* only abort if we didn't race with a real reply */ 2321 if (req->r_got_result) { 2322 err = le32_to_cpu(req->r_reply_info.head->result); 2323 } else if (err < 0) { 2324 dout("aborted request %lld with %d\n", req->r_tid, err); 2325 2326 /* 2327 * ensure we aren't running concurrently with 2328 * ceph_fill_trace or ceph_readdir_prepopulate, which 2329 * rely on locks (dir mutex) held by our caller. 2330 */ 2331 mutex_lock(&req->r_fill_mutex); 2332 req->r_err = err; 2333 req->r_aborted = true; 2334 mutex_unlock(&req->r_fill_mutex); 2335 2336 if (req->r_locked_dir && 2337 (req->r_op & CEPH_MDS_OP_WRITE)) 2338 ceph_invalidate_dir_request(req); 2339 } else { 2340 err = req->r_err; 2341 } 2342 2343 out: 2344 mutex_unlock(&mdsc->mutex); 2345 dout("do_request %p done, result %d\n", req, err); 2346 return err; 2347 } 2348 2349 /* 2350 * Invalidate dir's completeness, dentry lease state on an aborted MDS 2351 * namespace request. 2352 */ 2353 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 2354 { 2355 struct inode *inode = req->r_locked_dir; 2356 2357 dout("invalidate_dir_request %p (complete, lease(s))\n", inode); 2358 2359 ceph_dir_clear_complete(inode); 2360 if (req->r_dentry) 2361 ceph_invalidate_dentry_lease(req->r_dentry); 2362 if (req->r_old_dentry) 2363 ceph_invalidate_dentry_lease(req->r_old_dentry); 2364 } 2365 2366 /* 2367 * Handle mds reply. 2368 * 2369 * We take the session mutex and parse and process the reply immediately. 2370 * This preserves the logical ordering of replies, capabilities, etc., sent 2371 * by the MDS as they are applied to our local cache. 2372 */ 2373 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 2374 { 2375 struct ceph_mds_client *mdsc = session->s_mdsc; 2376 struct ceph_mds_request *req; 2377 struct ceph_mds_reply_head *head = msg->front.iov_base; 2378 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 2379 struct ceph_snap_realm *realm; 2380 u64 tid; 2381 int err, result; 2382 int mds = session->s_mds; 2383 2384 if (msg->front.iov_len < sizeof(*head)) { 2385 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 2386 ceph_msg_dump(msg); 2387 return; 2388 } 2389 2390 /* get request, session */ 2391 tid = le64_to_cpu(msg->hdr.tid); 2392 mutex_lock(&mdsc->mutex); 2393 req = __lookup_request(mdsc, tid); 2394 if (!req) { 2395 dout("handle_reply on unknown tid %llu\n", tid); 2396 mutex_unlock(&mdsc->mutex); 2397 return; 2398 } 2399 dout("handle_reply %p\n", req); 2400 2401 /* correct session? */ 2402 if (req->r_session != session) { 2403 pr_err("mdsc_handle_reply got %llu on session mds%d" 2404 " not mds%d\n", tid, session->s_mds, 2405 req->r_session ? req->r_session->s_mds : -1); 2406 mutex_unlock(&mdsc->mutex); 2407 goto out; 2408 } 2409 2410 /* dup? */ 2411 if ((req->r_got_unsafe && !head->safe) || 2412 (req->r_got_safe && head->safe)) { 2413 pr_warn("got a dup %s reply on %llu from mds%d\n", 2414 head->safe ? "safe" : "unsafe", tid, mds); 2415 mutex_unlock(&mdsc->mutex); 2416 goto out; 2417 } 2418 if (req->r_got_safe) { 2419 pr_warn("got unsafe after safe on %llu from mds%d\n", 2420 tid, mds); 2421 mutex_unlock(&mdsc->mutex); 2422 goto out; 2423 } 2424 2425 result = le32_to_cpu(head->result); 2426 2427 /* 2428 * Handle an ESTALE 2429 * if we're not talking to the authority, send to them 2430 * if the authority has changed while we weren't looking, 2431 * send to new authority 2432 * Otherwise we just have to return an ESTALE 2433 */ 2434 if (result == -ESTALE) { 2435 dout("got ESTALE on request %llu", req->r_tid); 2436 req->r_resend_mds = -1; 2437 if (req->r_direct_mode != USE_AUTH_MDS) { 2438 dout("not using auth, setting for that now"); 2439 req->r_direct_mode = USE_AUTH_MDS; 2440 __do_request(mdsc, req); 2441 mutex_unlock(&mdsc->mutex); 2442 goto out; 2443 } else { 2444 int mds = __choose_mds(mdsc, req); 2445 if (mds >= 0 && mds != req->r_session->s_mds) { 2446 dout("but auth changed, so resending"); 2447 __do_request(mdsc, req); 2448 mutex_unlock(&mdsc->mutex); 2449 goto out; 2450 } 2451 } 2452 dout("have to return ESTALE on request %llu", req->r_tid); 2453 } 2454 2455 2456 if (head->safe) { 2457 req->r_got_safe = true; 2458 __unregister_request(mdsc, req); 2459 2460 if (req->r_got_unsafe) { 2461 /* 2462 * We already handled the unsafe response, now do the 2463 * cleanup. No need to examine the response; the MDS 2464 * doesn't include any result info in the safe 2465 * response. And even if it did, there is nothing 2466 * useful we could do with a revised return value. 2467 */ 2468 dout("got safe reply %llu, mds%d\n", tid, mds); 2469 list_del_init(&req->r_unsafe_item); 2470 2471 /* last unsafe request during umount? */ 2472 if (mdsc->stopping && !__get_oldest_req(mdsc)) 2473 complete_all(&mdsc->safe_umount_waiters); 2474 mutex_unlock(&mdsc->mutex); 2475 goto out; 2476 } 2477 } else { 2478 req->r_got_unsafe = true; 2479 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 2480 } 2481 2482 dout("handle_reply tid %lld result %d\n", tid, result); 2483 rinfo = &req->r_reply_info; 2484 err = parse_reply_info(msg, rinfo, session->s_con.peer_features); 2485 mutex_unlock(&mdsc->mutex); 2486 2487 mutex_lock(&session->s_mutex); 2488 if (err < 0) { 2489 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 2490 ceph_msg_dump(msg); 2491 goto out_err; 2492 } 2493 2494 /* snap trace */ 2495 realm = NULL; 2496 if (rinfo->snapblob_len) { 2497 down_write(&mdsc->snap_rwsem); 2498 ceph_update_snap_trace(mdsc, rinfo->snapblob, 2499 rinfo->snapblob + rinfo->snapblob_len, 2500 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP, 2501 &realm); 2502 downgrade_write(&mdsc->snap_rwsem); 2503 } else { 2504 down_read(&mdsc->snap_rwsem); 2505 } 2506 2507 /* insert trace into our cache */ 2508 mutex_lock(&req->r_fill_mutex); 2509 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session); 2510 if (err == 0) { 2511 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || 2512 req->r_op == CEPH_MDS_OP_LSSNAP)) 2513 ceph_readdir_prepopulate(req, req->r_session); 2514 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 2515 } 2516 mutex_unlock(&req->r_fill_mutex); 2517 2518 up_read(&mdsc->snap_rwsem); 2519 if (realm) 2520 ceph_put_snap_realm(mdsc, realm); 2521 out_err: 2522 mutex_lock(&mdsc->mutex); 2523 if (!req->r_aborted) { 2524 if (err) { 2525 req->r_err = err; 2526 } else { 2527 req->r_reply = ceph_msg_get(msg); 2528 req->r_got_result = true; 2529 } 2530 } else { 2531 dout("reply arrived after request %lld was aborted\n", tid); 2532 } 2533 mutex_unlock(&mdsc->mutex); 2534 2535 mutex_unlock(&session->s_mutex); 2536 2537 /* kick calling process */ 2538 complete_request(mdsc, req); 2539 out: 2540 ceph_mdsc_put_request(req); 2541 return; 2542 } 2543 2544 2545 2546 /* 2547 * handle mds notification that our request has been forwarded. 2548 */ 2549 static void handle_forward(struct ceph_mds_client *mdsc, 2550 struct ceph_mds_session *session, 2551 struct ceph_msg *msg) 2552 { 2553 struct ceph_mds_request *req; 2554 u64 tid = le64_to_cpu(msg->hdr.tid); 2555 u32 next_mds; 2556 u32 fwd_seq; 2557 int err = -EINVAL; 2558 void *p = msg->front.iov_base; 2559 void *end = p + msg->front.iov_len; 2560 2561 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 2562 next_mds = ceph_decode_32(&p); 2563 fwd_seq = ceph_decode_32(&p); 2564 2565 mutex_lock(&mdsc->mutex); 2566 req = __lookup_request(mdsc, tid); 2567 if (!req) { 2568 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 2569 goto out; /* dup reply? */ 2570 } 2571 2572 if (req->r_aborted) { 2573 dout("forward tid %llu aborted, unregistering\n", tid); 2574 __unregister_request(mdsc, req); 2575 } else if (fwd_seq <= req->r_num_fwd) { 2576 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 2577 tid, next_mds, req->r_num_fwd, fwd_seq); 2578 } else { 2579 /* resend. forward race not possible; mds would drop */ 2580 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 2581 BUG_ON(req->r_err); 2582 BUG_ON(req->r_got_result); 2583 req->r_attempts = 0; 2584 req->r_num_fwd = fwd_seq; 2585 req->r_resend_mds = next_mds; 2586 put_request_session(req); 2587 __do_request(mdsc, req); 2588 } 2589 ceph_mdsc_put_request(req); 2590 out: 2591 mutex_unlock(&mdsc->mutex); 2592 return; 2593 2594 bad: 2595 pr_err("mdsc_handle_forward decode error err=%d\n", err); 2596 } 2597 2598 /* 2599 * handle a mds session control message 2600 */ 2601 static void handle_session(struct ceph_mds_session *session, 2602 struct ceph_msg *msg) 2603 { 2604 struct ceph_mds_client *mdsc = session->s_mdsc; 2605 u32 op; 2606 u64 seq; 2607 int mds = session->s_mds; 2608 struct ceph_mds_session_head *h = msg->front.iov_base; 2609 int wake = 0; 2610 2611 /* decode */ 2612 if (msg->front.iov_len != sizeof(*h)) 2613 goto bad; 2614 op = le32_to_cpu(h->op); 2615 seq = le64_to_cpu(h->seq); 2616 2617 mutex_lock(&mdsc->mutex); 2618 if (op == CEPH_SESSION_CLOSE) 2619 __unregister_session(mdsc, session); 2620 /* FIXME: this ttl calculation is generous */ 2621 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 2622 mutex_unlock(&mdsc->mutex); 2623 2624 mutex_lock(&session->s_mutex); 2625 2626 dout("handle_session mds%d %s %p state %s seq %llu\n", 2627 mds, ceph_session_op_name(op), session, 2628 ceph_session_state_name(session->s_state), seq); 2629 2630 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 2631 session->s_state = CEPH_MDS_SESSION_OPEN; 2632 pr_info("mds%d came back\n", session->s_mds); 2633 } 2634 2635 switch (op) { 2636 case CEPH_SESSION_OPEN: 2637 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2638 pr_info("mds%d reconnect success\n", session->s_mds); 2639 session->s_state = CEPH_MDS_SESSION_OPEN; 2640 renewed_caps(mdsc, session, 0); 2641 wake = 1; 2642 if (mdsc->stopping) 2643 __close_session(mdsc, session); 2644 break; 2645 2646 case CEPH_SESSION_RENEWCAPS: 2647 if (session->s_renew_seq == seq) 2648 renewed_caps(mdsc, session, 1); 2649 break; 2650 2651 case CEPH_SESSION_CLOSE: 2652 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2653 pr_info("mds%d reconnect denied\n", session->s_mds); 2654 cleanup_session_requests(mdsc, session); 2655 remove_session_caps(session); 2656 wake = 2; /* for good measure */ 2657 wake_up_all(&mdsc->session_close_wq); 2658 break; 2659 2660 case CEPH_SESSION_STALE: 2661 pr_info("mds%d caps went stale, renewing\n", 2662 session->s_mds); 2663 spin_lock(&session->s_gen_ttl_lock); 2664 session->s_cap_gen++; 2665 session->s_cap_ttl = jiffies - 1; 2666 spin_unlock(&session->s_gen_ttl_lock); 2667 send_renew_caps(mdsc, session); 2668 break; 2669 2670 case CEPH_SESSION_RECALL_STATE: 2671 trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 2672 break; 2673 2674 case CEPH_SESSION_FLUSHMSG: 2675 send_flushmsg_ack(mdsc, session, seq); 2676 break; 2677 2678 case CEPH_SESSION_FORCE_RO: 2679 dout("force_session_readonly %p\n", session); 2680 spin_lock(&session->s_cap_lock); 2681 session->s_readonly = true; 2682 spin_unlock(&session->s_cap_lock); 2683 wake_up_session_caps(session, 0); 2684 break; 2685 2686 default: 2687 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 2688 WARN_ON(1); 2689 } 2690 2691 mutex_unlock(&session->s_mutex); 2692 if (wake) { 2693 mutex_lock(&mdsc->mutex); 2694 __wake_requests(mdsc, &session->s_waiting); 2695 if (wake == 2) 2696 kick_requests(mdsc, mds); 2697 mutex_unlock(&mdsc->mutex); 2698 } 2699 return; 2700 2701 bad: 2702 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 2703 (int)msg->front.iov_len); 2704 ceph_msg_dump(msg); 2705 return; 2706 } 2707 2708 2709 /* 2710 * called under session->mutex. 2711 */ 2712 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 2713 struct ceph_mds_session *session) 2714 { 2715 struct ceph_mds_request *req, *nreq; 2716 struct rb_node *p; 2717 int err; 2718 2719 dout("replay_unsafe_requests mds%d\n", session->s_mds); 2720 2721 mutex_lock(&mdsc->mutex); 2722 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) { 2723 err = __prepare_send_request(mdsc, req, session->s_mds, true); 2724 if (!err) { 2725 ceph_msg_get(req->r_request); 2726 ceph_con_send(&session->s_con, req->r_request); 2727 } 2728 } 2729 2730 /* 2731 * also re-send old requests when MDS enters reconnect stage. So that MDS 2732 * can process completed request in clientreplay stage. 2733 */ 2734 p = rb_first(&mdsc->request_tree); 2735 while (p) { 2736 req = rb_entry(p, struct ceph_mds_request, r_node); 2737 p = rb_next(p); 2738 if (req->r_got_unsafe) 2739 continue; 2740 if (req->r_attempts == 0) 2741 continue; /* only old requests */ 2742 if (req->r_session && 2743 req->r_session->s_mds == session->s_mds) { 2744 err = __prepare_send_request(mdsc, req, 2745 session->s_mds, true); 2746 if (!err) { 2747 ceph_msg_get(req->r_request); 2748 ceph_con_send(&session->s_con, req->r_request); 2749 } 2750 } 2751 } 2752 mutex_unlock(&mdsc->mutex); 2753 } 2754 2755 /* 2756 * Encode information about a cap for a reconnect with the MDS. 2757 */ 2758 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap, 2759 void *arg) 2760 { 2761 union { 2762 struct ceph_mds_cap_reconnect v2; 2763 struct ceph_mds_cap_reconnect_v1 v1; 2764 } rec; 2765 size_t reclen; 2766 struct ceph_inode_info *ci; 2767 struct ceph_reconnect_state *recon_state = arg; 2768 struct ceph_pagelist *pagelist = recon_state->pagelist; 2769 char *path; 2770 int pathlen, err; 2771 u64 pathbase; 2772 struct dentry *dentry; 2773 2774 ci = cap->ci; 2775 2776 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 2777 inode, ceph_vinop(inode), cap, cap->cap_id, 2778 ceph_cap_string(cap->issued)); 2779 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 2780 if (err) 2781 return err; 2782 2783 dentry = d_find_alias(inode); 2784 if (dentry) { 2785 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0); 2786 if (IS_ERR(path)) { 2787 err = PTR_ERR(path); 2788 goto out_dput; 2789 } 2790 } else { 2791 path = NULL; 2792 pathlen = 0; 2793 } 2794 err = ceph_pagelist_encode_string(pagelist, path, pathlen); 2795 if (err) 2796 goto out_free; 2797 2798 spin_lock(&ci->i_ceph_lock); 2799 cap->seq = 0; /* reset cap seq */ 2800 cap->issue_seq = 0; /* and issue_seq */ 2801 cap->mseq = 0; /* and migrate_seq */ 2802 cap->cap_gen = cap->session->s_cap_gen; 2803 2804 if (recon_state->flock) { 2805 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 2806 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2807 rec.v2.issued = cpu_to_le32(cap->issued); 2808 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2809 rec.v2.pathbase = cpu_to_le64(pathbase); 2810 rec.v2.flock_len = 0; 2811 reclen = sizeof(rec.v2); 2812 } else { 2813 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 2814 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2815 rec.v1.issued = cpu_to_le32(cap->issued); 2816 rec.v1.size = cpu_to_le64(inode->i_size); 2817 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime); 2818 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime); 2819 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2820 rec.v1.pathbase = cpu_to_le64(pathbase); 2821 reclen = sizeof(rec.v1); 2822 } 2823 spin_unlock(&ci->i_ceph_lock); 2824 2825 if (recon_state->flock) { 2826 int num_fcntl_locks, num_flock_locks; 2827 struct ceph_filelock *flocks; 2828 2829 encode_again: 2830 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); 2831 flocks = kmalloc((num_fcntl_locks+num_flock_locks) * 2832 sizeof(struct ceph_filelock), GFP_NOFS); 2833 if (!flocks) { 2834 err = -ENOMEM; 2835 goto out_free; 2836 } 2837 err = ceph_encode_locks_to_buffer(inode, flocks, 2838 num_fcntl_locks, 2839 num_flock_locks); 2840 if (err) { 2841 kfree(flocks); 2842 if (err == -ENOSPC) 2843 goto encode_again; 2844 goto out_free; 2845 } 2846 /* 2847 * number of encoded locks is stable, so copy to pagelist 2848 */ 2849 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) + 2850 (num_fcntl_locks+num_flock_locks) * 2851 sizeof(struct ceph_filelock)); 2852 err = ceph_pagelist_append(pagelist, &rec, reclen); 2853 if (!err) 2854 err = ceph_locks_to_pagelist(flocks, pagelist, 2855 num_fcntl_locks, 2856 num_flock_locks); 2857 kfree(flocks); 2858 } else { 2859 err = ceph_pagelist_append(pagelist, &rec, reclen); 2860 } 2861 2862 recon_state->nr_caps++; 2863 out_free: 2864 kfree(path); 2865 out_dput: 2866 dput(dentry); 2867 return err; 2868 } 2869 2870 2871 /* 2872 * If an MDS fails and recovers, clients need to reconnect in order to 2873 * reestablish shared state. This includes all caps issued through 2874 * this session _and_ the snap_realm hierarchy. Because it's not 2875 * clear which snap realms the mds cares about, we send everything we 2876 * know about.. that ensures we'll then get any new info the 2877 * recovering MDS might have. 2878 * 2879 * This is a relatively heavyweight operation, but it's rare. 2880 * 2881 * called with mdsc->mutex held. 2882 */ 2883 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 2884 struct ceph_mds_session *session) 2885 { 2886 struct ceph_msg *reply; 2887 struct rb_node *p; 2888 int mds = session->s_mds; 2889 int err = -ENOMEM; 2890 int s_nr_caps; 2891 struct ceph_pagelist *pagelist; 2892 struct ceph_reconnect_state recon_state; 2893 2894 pr_info("mds%d reconnect start\n", mds); 2895 2896 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS); 2897 if (!pagelist) 2898 goto fail_nopagelist; 2899 ceph_pagelist_init(pagelist); 2900 2901 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false); 2902 if (!reply) 2903 goto fail_nomsg; 2904 2905 mutex_lock(&session->s_mutex); 2906 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 2907 session->s_seq = 0; 2908 2909 dout("session %p state %s\n", session, 2910 ceph_session_state_name(session->s_state)); 2911 2912 spin_lock(&session->s_gen_ttl_lock); 2913 session->s_cap_gen++; 2914 spin_unlock(&session->s_gen_ttl_lock); 2915 2916 spin_lock(&session->s_cap_lock); 2917 /* don't know if session is readonly */ 2918 session->s_readonly = 0; 2919 /* 2920 * notify __ceph_remove_cap() that we are composing cap reconnect. 2921 * If a cap get released before being added to the cap reconnect, 2922 * __ceph_remove_cap() should skip queuing cap release. 2923 */ 2924 session->s_cap_reconnect = 1; 2925 /* drop old cap expires; we're about to reestablish that state */ 2926 cleanup_cap_releases(mdsc, session); 2927 2928 /* trim unused caps to reduce MDS's cache rejoin time */ 2929 if (mdsc->fsc->sb->s_root) 2930 shrink_dcache_parent(mdsc->fsc->sb->s_root); 2931 2932 ceph_con_close(&session->s_con); 2933 ceph_con_open(&session->s_con, 2934 CEPH_ENTITY_TYPE_MDS, mds, 2935 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 2936 2937 /* replay unsafe requests */ 2938 replay_unsafe_requests(mdsc, session); 2939 2940 down_read(&mdsc->snap_rwsem); 2941 2942 /* traverse this session's caps */ 2943 s_nr_caps = session->s_nr_caps; 2944 err = ceph_pagelist_encode_32(pagelist, s_nr_caps); 2945 if (err) 2946 goto fail; 2947 2948 recon_state.nr_caps = 0; 2949 recon_state.pagelist = pagelist; 2950 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK; 2951 err = iterate_session_caps(session, encode_caps_cb, &recon_state); 2952 if (err < 0) 2953 goto fail; 2954 2955 spin_lock(&session->s_cap_lock); 2956 session->s_cap_reconnect = 0; 2957 spin_unlock(&session->s_cap_lock); 2958 2959 /* 2960 * snaprealms. we provide mds with the ino, seq (version), and 2961 * parent for all of our realms. If the mds has any newer info, 2962 * it will tell us. 2963 */ 2964 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 2965 struct ceph_snap_realm *realm = 2966 rb_entry(p, struct ceph_snap_realm, node); 2967 struct ceph_mds_snaprealm_reconnect sr_rec; 2968 2969 dout(" adding snap realm %llx seq %lld parent %llx\n", 2970 realm->ino, realm->seq, realm->parent_ino); 2971 sr_rec.ino = cpu_to_le64(realm->ino); 2972 sr_rec.seq = cpu_to_le64(realm->seq); 2973 sr_rec.parent = cpu_to_le64(realm->parent_ino); 2974 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 2975 if (err) 2976 goto fail; 2977 } 2978 2979 if (recon_state.flock) 2980 reply->hdr.version = cpu_to_le16(2); 2981 2982 /* raced with cap release? */ 2983 if (s_nr_caps != recon_state.nr_caps) { 2984 struct page *page = list_first_entry(&pagelist->head, 2985 struct page, lru); 2986 __le32 *addr = kmap_atomic(page); 2987 *addr = cpu_to_le32(recon_state.nr_caps); 2988 kunmap_atomic(addr); 2989 } 2990 2991 reply->hdr.data_len = cpu_to_le32(pagelist->length); 2992 ceph_msg_data_add_pagelist(reply, pagelist); 2993 2994 ceph_early_kick_flushing_caps(mdsc, session); 2995 2996 ceph_con_send(&session->s_con, reply); 2997 2998 mutex_unlock(&session->s_mutex); 2999 3000 mutex_lock(&mdsc->mutex); 3001 __wake_requests(mdsc, &session->s_waiting); 3002 mutex_unlock(&mdsc->mutex); 3003 3004 up_read(&mdsc->snap_rwsem); 3005 return; 3006 3007 fail: 3008 ceph_msg_put(reply); 3009 up_read(&mdsc->snap_rwsem); 3010 mutex_unlock(&session->s_mutex); 3011 fail_nomsg: 3012 ceph_pagelist_release(pagelist); 3013 fail_nopagelist: 3014 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 3015 return; 3016 } 3017 3018 3019 /* 3020 * compare old and new mdsmaps, kicking requests 3021 * and closing out old connections as necessary 3022 * 3023 * called under mdsc->mutex. 3024 */ 3025 static void check_new_map(struct ceph_mds_client *mdsc, 3026 struct ceph_mdsmap *newmap, 3027 struct ceph_mdsmap *oldmap) 3028 { 3029 int i; 3030 int oldstate, newstate; 3031 struct ceph_mds_session *s; 3032 3033 dout("check_new_map new %u old %u\n", 3034 newmap->m_epoch, oldmap->m_epoch); 3035 3036 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) { 3037 if (mdsc->sessions[i] == NULL) 3038 continue; 3039 s = mdsc->sessions[i]; 3040 oldstate = ceph_mdsmap_get_state(oldmap, i); 3041 newstate = ceph_mdsmap_get_state(newmap, i); 3042 3043 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 3044 i, ceph_mds_state_name(oldstate), 3045 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 3046 ceph_mds_state_name(newstate), 3047 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 3048 ceph_session_state_name(s->s_state)); 3049 3050 if (i >= newmap->m_max_mds || 3051 memcmp(ceph_mdsmap_get_addr(oldmap, i), 3052 ceph_mdsmap_get_addr(newmap, i), 3053 sizeof(struct ceph_entity_addr))) { 3054 if (s->s_state == CEPH_MDS_SESSION_OPENING) { 3055 /* the session never opened, just close it 3056 * out now */ 3057 __wake_requests(mdsc, &s->s_waiting); 3058 __unregister_session(mdsc, s); 3059 } else { 3060 /* just close it */ 3061 mutex_unlock(&mdsc->mutex); 3062 mutex_lock(&s->s_mutex); 3063 mutex_lock(&mdsc->mutex); 3064 ceph_con_close(&s->s_con); 3065 mutex_unlock(&s->s_mutex); 3066 s->s_state = CEPH_MDS_SESSION_RESTARTING; 3067 } 3068 } else if (oldstate == newstate) { 3069 continue; /* nothing new with this mds */ 3070 } 3071 3072 /* 3073 * send reconnect? 3074 */ 3075 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 3076 newstate >= CEPH_MDS_STATE_RECONNECT) { 3077 mutex_unlock(&mdsc->mutex); 3078 send_mds_reconnect(mdsc, s); 3079 mutex_lock(&mdsc->mutex); 3080 } 3081 3082 /* 3083 * kick request on any mds that has gone active. 3084 */ 3085 if (oldstate < CEPH_MDS_STATE_ACTIVE && 3086 newstate >= CEPH_MDS_STATE_ACTIVE) { 3087 if (oldstate != CEPH_MDS_STATE_CREATING && 3088 oldstate != CEPH_MDS_STATE_STARTING) 3089 pr_info("mds%d recovery completed\n", s->s_mds); 3090 kick_requests(mdsc, i); 3091 ceph_kick_flushing_caps(mdsc, s); 3092 wake_up_session_caps(s, 1); 3093 } 3094 } 3095 3096 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) { 3097 s = mdsc->sessions[i]; 3098 if (!s) 3099 continue; 3100 if (!ceph_mdsmap_is_laggy(newmap, i)) 3101 continue; 3102 if (s->s_state == CEPH_MDS_SESSION_OPEN || 3103 s->s_state == CEPH_MDS_SESSION_HUNG || 3104 s->s_state == CEPH_MDS_SESSION_CLOSING) { 3105 dout(" connecting to export targets of laggy mds%d\n", 3106 i); 3107 __open_export_target_sessions(mdsc, s); 3108 } 3109 } 3110 } 3111 3112 3113 3114 /* 3115 * leases 3116 */ 3117 3118 /* 3119 * caller must hold session s_mutex, dentry->d_lock 3120 */ 3121 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 3122 { 3123 struct ceph_dentry_info *di = ceph_dentry(dentry); 3124 3125 ceph_put_mds_session(di->lease_session); 3126 di->lease_session = NULL; 3127 } 3128 3129 static void handle_lease(struct ceph_mds_client *mdsc, 3130 struct ceph_mds_session *session, 3131 struct ceph_msg *msg) 3132 { 3133 struct super_block *sb = mdsc->fsc->sb; 3134 struct inode *inode; 3135 struct dentry *parent, *dentry; 3136 struct ceph_dentry_info *di; 3137 int mds = session->s_mds; 3138 struct ceph_mds_lease *h = msg->front.iov_base; 3139 u32 seq; 3140 struct ceph_vino vino; 3141 struct qstr dname; 3142 int release = 0; 3143 3144 dout("handle_lease from mds%d\n", mds); 3145 3146 /* decode */ 3147 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 3148 goto bad; 3149 vino.ino = le64_to_cpu(h->ino); 3150 vino.snap = CEPH_NOSNAP; 3151 seq = le32_to_cpu(h->seq); 3152 dname.name = (void *)h + sizeof(*h) + sizeof(u32); 3153 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32); 3154 if (dname.len != get_unaligned_le32(h+1)) 3155 goto bad; 3156 3157 /* lookup inode */ 3158 inode = ceph_find_inode(sb, vino); 3159 dout("handle_lease %s, ino %llx %p %.*s\n", 3160 ceph_lease_op_name(h->action), vino.ino, inode, 3161 dname.len, dname.name); 3162 3163 mutex_lock(&session->s_mutex); 3164 session->s_seq++; 3165 3166 if (inode == NULL) { 3167 dout("handle_lease no inode %llx\n", vino.ino); 3168 goto release; 3169 } 3170 3171 /* dentry */ 3172 parent = d_find_alias(inode); 3173 if (!parent) { 3174 dout("no parent dentry on inode %p\n", inode); 3175 WARN_ON(1); 3176 goto release; /* hrm... */ 3177 } 3178 dname.hash = full_name_hash(dname.name, dname.len); 3179 dentry = d_lookup(parent, &dname); 3180 dput(parent); 3181 if (!dentry) 3182 goto release; 3183 3184 spin_lock(&dentry->d_lock); 3185 di = ceph_dentry(dentry); 3186 switch (h->action) { 3187 case CEPH_MDS_LEASE_REVOKE: 3188 if (di->lease_session == session) { 3189 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 3190 h->seq = cpu_to_le32(di->lease_seq); 3191 __ceph_mdsc_drop_dentry_lease(dentry); 3192 } 3193 release = 1; 3194 break; 3195 3196 case CEPH_MDS_LEASE_RENEW: 3197 if (di->lease_session == session && 3198 di->lease_gen == session->s_cap_gen && 3199 di->lease_renew_from && 3200 di->lease_renew_after == 0) { 3201 unsigned long duration = 3202 msecs_to_jiffies(le32_to_cpu(h->duration_ms)); 3203 3204 di->lease_seq = seq; 3205 dentry->d_time = di->lease_renew_from + duration; 3206 di->lease_renew_after = di->lease_renew_from + 3207 (duration >> 1); 3208 di->lease_renew_from = 0; 3209 } 3210 break; 3211 } 3212 spin_unlock(&dentry->d_lock); 3213 dput(dentry); 3214 3215 if (!release) 3216 goto out; 3217 3218 release: 3219 /* let's just reuse the same message */ 3220 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 3221 ceph_msg_get(msg); 3222 ceph_con_send(&session->s_con, msg); 3223 3224 out: 3225 iput(inode); 3226 mutex_unlock(&session->s_mutex); 3227 return; 3228 3229 bad: 3230 pr_err("corrupt lease message\n"); 3231 ceph_msg_dump(msg); 3232 } 3233 3234 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 3235 struct inode *inode, 3236 struct dentry *dentry, char action, 3237 u32 seq) 3238 { 3239 struct ceph_msg *msg; 3240 struct ceph_mds_lease *lease; 3241 int len = sizeof(*lease) + sizeof(u32); 3242 int dnamelen = 0; 3243 3244 dout("lease_send_msg inode %p dentry %p %s to mds%d\n", 3245 inode, dentry, ceph_lease_op_name(action), session->s_mds); 3246 dnamelen = dentry->d_name.len; 3247 len += dnamelen; 3248 3249 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 3250 if (!msg) 3251 return; 3252 lease = msg->front.iov_base; 3253 lease->action = action; 3254 lease->ino = cpu_to_le64(ceph_vino(inode).ino); 3255 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap); 3256 lease->seq = cpu_to_le32(seq); 3257 put_unaligned_le32(dnamelen, lease + 1); 3258 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen); 3259 3260 /* 3261 * if this is a preemptive lease RELEASE, no need to 3262 * flush request stream, since the actual request will 3263 * soon follow. 3264 */ 3265 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); 3266 3267 ceph_con_send(&session->s_con, msg); 3268 } 3269 3270 /* 3271 * Preemptively release a lease we expect to invalidate anyway. 3272 * Pass @inode always, @dentry is optional. 3273 */ 3274 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode, 3275 struct dentry *dentry) 3276 { 3277 struct ceph_dentry_info *di; 3278 struct ceph_mds_session *session; 3279 u32 seq; 3280 3281 BUG_ON(inode == NULL); 3282 BUG_ON(dentry == NULL); 3283 3284 /* is dentry lease valid? */ 3285 spin_lock(&dentry->d_lock); 3286 di = ceph_dentry(dentry); 3287 if (!di || !di->lease_session || 3288 di->lease_session->s_mds < 0 || 3289 di->lease_gen != di->lease_session->s_cap_gen || 3290 !time_before(jiffies, dentry->d_time)) { 3291 dout("lease_release inode %p dentry %p -- " 3292 "no lease\n", 3293 inode, dentry); 3294 spin_unlock(&dentry->d_lock); 3295 return; 3296 } 3297 3298 /* we do have a lease on this dentry; note mds and seq */ 3299 session = ceph_get_mds_session(di->lease_session); 3300 seq = di->lease_seq; 3301 __ceph_mdsc_drop_dentry_lease(dentry); 3302 spin_unlock(&dentry->d_lock); 3303 3304 dout("lease_release inode %p dentry %p to mds%d\n", 3305 inode, dentry, session->s_mds); 3306 ceph_mdsc_lease_send_msg(session, inode, dentry, 3307 CEPH_MDS_LEASE_RELEASE, seq); 3308 ceph_put_mds_session(session); 3309 } 3310 3311 /* 3312 * drop all leases (and dentry refs) in preparation for umount 3313 */ 3314 static void drop_leases(struct ceph_mds_client *mdsc) 3315 { 3316 int i; 3317 3318 dout("drop_leases\n"); 3319 mutex_lock(&mdsc->mutex); 3320 for (i = 0; i < mdsc->max_sessions; i++) { 3321 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 3322 if (!s) 3323 continue; 3324 mutex_unlock(&mdsc->mutex); 3325 mutex_lock(&s->s_mutex); 3326 mutex_unlock(&s->s_mutex); 3327 ceph_put_mds_session(s); 3328 mutex_lock(&mdsc->mutex); 3329 } 3330 mutex_unlock(&mdsc->mutex); 3331 } 3332 3333 3334 3335 /* 3336 * delayed work -- periodically trim expired leases, renew caps with mds 3337 */ 3338 static void schedule_delayed(struct ceph_mds_client *mdsc) 3339 { 3340 int delay = 5; 3341 unsigned hz = round_jiffies_relative(HZ * delay); 3342 schedule_delayed_work(&mdsc->delayed_work, hz); 3343 } 3344 3345 static void delayed_work(struct work_struct *work) 3346 { 3347 int i; 3348 struct ceph_mds_client *mdsc = 3349 container_of(work, struct ceph_mds_client, delayed_work.work); 3350 int renew_interval; 3351 int renew_caps; 3352 3353 dout("mdsc delayed_work\n"); 3354 ceph_check_delayed_caps(mdsc); 3355 3356 mutex_lock(&mdsc->mutex); 3357 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 3358 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 3359 mdsc->last_renew_caps); 3360 if (renew_caps) 3361 mdsc->last_renew_caps = jiffies; 3362 3363 for (i = 0; i < mdsc->max_sessions; i++) { 3364 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 3365 if (s == NULL) 3366 continue; 3367 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 3368 dout("resending session close request for mds%d\n", 3369 s->s_mds); 3370 request_close_session(mdsc, s); 3371 ceph_put_mds_session(s); 3372 continue; 3373 } 3374 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 3375 if (s->s_state == CEPH_MDS_SESSION_OPEN) { 3376 s->s_state = CEPH_MDS_SESSION_HUNG; 3377 pr_info("mds%d hung\n", s->s_mds); 3378 } 3379 } 3380 if (s->s_state < CEPH_MDS_SESSION_OPEN) { 3381 /* this mds is failed or recovering, just wait */ 3382 ceph_put_mds_session(s); 3383 continue; 3384 } 3385 mutex_unlock(&mdsc->mutex); 3386 3387 mutex_lock(&s->s_mutex); 3388 if (renew_caps) 3389 send_renew_caps(mdsc, s); 3390 else 3391 ceph_con_keepalive(&s->s_con); 3392 if (s->s_state == CEPH_MDS_SESSION_OPEN || 3393 s->s_state == CEPH_MDS_SESSION_HUNG) 3394 ceph_send_cap_releases(mdsc, s); 3395 mutex_unlock(&s->s_mutex); 3396 ceph_put_mds_session(s); 3397 3398 mutex_lock(&mdsc->mutex); 3399 } 3400 mutex_unlock(&mdsc->mutex); 3401 3402 schedule_delayed(mdsc); 3403 } 3404 3405 int ceph_mdsc_init(struct ceph_fs_client *fsc) 3406 3407 { 3408 struct ceph_mds_client *mdsc; 3409 3410 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 3411 if (!mdsc) 3412 return -ENOMEM; 3413 mdsc->fsc = fsc; 3414 fsc->mdsc = mdsc; 3415 mutex_init(&mdsc->mutex); 3416 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 3417 if (mdsc->mdsmap == NULL) { 3418 kfree(mdsc); 3419 return -ENOMEM; 3420 } 3421 3422 init_completion(&mdsc->safe_umount_waiters); 3423 init_waitqueue_head(&mdsc->session_close_wq); 3424 INIT_LIST_HEAD(&mdsc->waiting_for_map); 3425 mdsc->sessions = NULL; 3426 atomic_set(&mdsc->num_sessions, 0); 3427 mdsc->max_sessions = 0; 3428 mdsc->stopping = 0; 3429 mdsc->last_snap_seq = 0; 3430 init_rwsem(&mdsc->snap_rwsem); 3431 mdsc->snap_realms = RB_ROOT; 3432 INIT_LIST_HEAD(&mdsc->snap_empty); 3433 spin_lock_init(&mdsc->snap_empty_lock); 3434 mdsc->last_tid = 0; 3435 mdsc->oldest_tid = 0; 3436 mdsc->request_tree = RB_ROOT; 3437 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 3438 mdsc->last_renew_caps = jiffies; 3439 INIT_LIST_HEAD(&mdsc->cap_delay_list); 3440 spin_lock_init(&mdsc->cap_delay_lock); 3441 INIT_LIST_HEAD(&mdsc->snap_flush_list); 3442 spin_lock_init(&mdsc->snap_flush_lock); 3443 mdsc->last_cap_flush_tid = 1; 3444 mdsc->cap_flush_tree = RB_ROOT; 3445 INIT_LIST_HEAD(&mdsc->cap_dirty); 3446 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 3447 mdsc->num_cap_flushing = 0; 3448 spin_lock_init(&mdsc->cap_dirty_lock); 3449 init_waitqueue_head(&mdsc->cap_flushing_wq); 3450 spin_lock_init(&mdsc->dentry_lru_lock); 3451 INIT_LIST_HEAD(&mdsc->dentry_lru); 3452 3453 ceph_caps_init(mdsc); 3454 ceph_adjust_min_caps(mdsc, fsc->min_caps); 3455 3456 init_rwsem(&mdsc->pool_perm_rwsem); 3457 mdsc->pool_perm_tree = RB_ROOT; 3458 3459 return 0; 3460 } 3461 3462 /* 3463 * Wait for safe replies on open mds requests. If we time out, drop 3464 * all requests from the tree to avoid dangling dentry refs. 3465 */ 3466 static void wait_requests(struct ceph_mds_client *mdsc) 3467 { 3468 struct ceph_options *opts = mdsc->fsc->client->options; 3469 struct ceph_mds_request *req; 3470 3471 mutex_lock(&mdsc->mutex); 3472 if (__get_oldest_req(mdsc)) { 3473 mutex_unlock(&mdsc->mutex); 3474 3475 dout("wait_requests waiting for requests\n"); 3476 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 3477 ceph_timeout_jiffies(opts->mount_timeout)); 3478 3479 /* tear down remaining requests */ 3480 mutex_lock(&mdsc->mutex); 3481 while ((req = __get_oldest_req(mdsc))) { 3482 dout("wait_requests timed out on tid %llu\n", 3483 req->r_tid); 3484 __unregister_request(mdsc, req); 3485 } 3486 } 3487 mutex_unlock(&mdsc->mutex); 3488 dout("wait_requests done\n"); 3489 } 3490 3491 /* 3492 * called before mount is ro, and before dentries are torn down. 3493 * (hmm, does this still race with new lookups?) 3494 */ 3495 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 3496 { 3497 dout("pre_umount\n"); 3498 mdsc->stopping = 1; 3499 3500 drop_leases(mdsc); 3501 ceph_flush_dirty_caps(mdsc); 3502 wait_requests(mdsc); 3503 3504 /* 3505 * wait for reply handlers to drop their request refs and 3506 * their inode/dcache refs 3507 */ 3508 ceph_msgr_flush(); 3509 } 3510 3511 /* 3512 * wait for all write mds requests to flush. 3513 */ 3514 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) 3515 { 3516 struct ceph_mds_request *req = NULL, *nextreq; 3517 struct rb_node *n; 3518 3519 mutex_lock(&mdsc->mutex); 3520 dout("wait_unsafe_requests want %lld\n", want_tid); 3521 restart: 3522 req = __get_oldest_req(mdsc); 3523 while (req && req->r_tid <= want_tid) { 3524 /* find next request */ 3525 n = rb_next(&req->r_node); 3526 if (n) 3527 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 3528 else 3529 nextreq = NULL; 3530 if (req->r_op != CEPH_MDS_OP_SETFILELOCK && 3531 (req->r_op & CEPH_MDS_OP_WRITE)) { 3532 /* write op */ 3533 ceph_mdsc_get_request(req); 3534 if (nextreq) 3535 ceph_mdsc_get_request(nextreq); 3536 mutex_unlock(&mdsc->mutex); 3537 dout("wait_unsafe_requests wait on %llu (want %llu)\n", 3538 req->r_tid, want_tid); 3539 wait_for_completion(&req->r_safe_completion); 3540 mutex_lock(&mdsc->mutex); 3541 ceph_mdsc_put_request(req); 3542 if (!nextreq) 3543 break; /* next dne before, so we're done! */ 3544 if (RB_EMPTY_NODE(&nextreq->r_node)) { 3545 /* next request was removed from tree */ 3546 ceph_mdsc_put_request(nextreq); 3547 goto restart; 3548 } 3549 ceph_mdsc_put_request(nextreq); /* won't go away */ 3550 } 3551 req = nextreq; 3552 } 3553 mutex_unlock(&mdsc->mutex); 3554 dout("wait_unsafe_requests done\n"); 3555 } 3556 3557 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 3558 { 3559 u64 want_tid, want_flush, want_snap; 3560 3561 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) 3562 return; 3563 3564 dout("sync\n"); 3565 mutex_lock(&mdsc->mutex); 3566 want_tid = mdsc->last_tid; 3567 mutex_unlock(&mdsc->mutex); 3568 3569 ceph_flush_dirty_caps(mdsc); 3570 spin_lock(&mdsc->cap_dirty_lock); 3571 want_flush = mdsc->last_cap_flush_tid; 3572 spin_unlock(&mdsc->cap_dirty_lock); 3573 3574 down_read(&mdsc->snap_rwsem); 3575 want_snap = mdsc->last_snap_seq; 3576 up_read(&mdsc->snap_rwsem); 3577 3578 dout("sync want tid %lld flush_seq %lld snap_seq %lld\n", 3579 want_tid, want_flush, want_snap); 3580 3581 wait_unsafe_requests(mdsc, want_tid); 3582 wait_caps_flush(mdsc, want_flush, want_snap); 3583 } 3584 3585 /* 3586 * true if all sessions are closed, or we force unmount 3587 */ 3588 static bool done_closing_sessions(struct ceph_mds_client *mdsc) 3589 { 3590 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) 3591 return true; 3592 return atomic_read(&mdsc->num_sessions) == 0; 3593 } 3594 3595 /* 3596 * called after sb is ro. 3597 */ 3598 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 3599 { 3600 struct ceph_options *opts = mdsc->fsc->client->options; 3601 struct ceph_mds_session *session; 3602 int i; 3603 3604 dout("close_sessions\n"); 3605 3606 /* close sessions */ 3607 mutex_lock(&mdsc->mutex); 3608 for (i = 0; i < mdsc->max_sessions; i++) { 3609 session = __ceph_lookup_mds_session(mdsc, i); 3610 if (!session) 3611 continue; 3612 mutex_unlock(&mdsc->mutex); 3613 mutex_lock(&session->s_mutex); 3614 __close_session(mdsc, session); 3615 mutex_unlock(&session->s_mutex); 3616 ceph_put_mds_session(session); 3617 mutex_lock(&mdsc->mutex); 3618 } 3619 mutex_unlock(&mdsc->mutex); 3620 3621 dout("waiting for sessions to close\n"); 3622 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc), 3623 ceph_timeout_jiffies(opts->mount_timeout)); 3624 3625 /* tear down remaining sessions */ 3626 mutex_lock(&mdsc->mutex); 3627 for (i = 0; i < mdsc->max_sessions; i++) { 3628 if (mdsc->sessions[i]) { 3629 session = get_session(mdsc->sessions[i]); 3630 __unregister_session(mdsc, session); 3631 mutex_unlock(&mdsc->mutex); 3632 mutex_lock(&session->s_mutex); 3633 remove_session_caps(session); 3634 mutex_unlock(&session->s_mutex); 3635 ceph_put_mds_session(session); 3636 mutex_lock(&mdsc->mutex); 3637 } 3638 } 3639 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 3640 mutex_unlock(&mdsc->mutex); 3641 3642 ceph_cleanup_empty_realms(mdsc); 3643 3644 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3645 3646 dout("stopped\n"); 3647 } 3648 3649 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc) 3650 { 3651 struct ceph_mds_session *session; 3652 int mds; 3653 3654 dout("force umount\n"); 3655 3656 mutex_lock(&mdsc->mutex); 3657 for (mds = 0; mds < mdsc->max_sessions; mds++) { 3658 session = __ceph_lookup_mds_session(mdsc, mds); 3659 if (!session) 3660 continue; 3661 mutex_unlock(&mdsc->mutex); 3662 mutex_lock(&session->s_mutex); 3663 __close_session(mdsc, session); 3664 if (session->s_state == CEPH_MDS_SESSION_CLOSING) { 3665 cleanup_session_requests(mdsc, session); 3666 remove_session_caps(session); 3667 } 3668 mutex_unlock(&session->s_mutex); 3669 ceph_put_mds_session(session); 3670 mutex_lock(&mdsc->mutex); 3671 kick_requests(mdsc, mds); 3672 } 3673 __wake_requests(mdsc, &mdsc->waiting_for_map); 3674 mutex_unlock(&mdsc->mutex); 3675 } 3676 3677 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 3678 { 3679 dout("stop\n"); 3680 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3681 if (mdsc->mdsmap) 3682 ceph_mdsmap_destroy(mdsc->mdsmap); 3683 kfree(mdsc->sessions); 3684 ceph_caps_finalize(mdsc); 3685 ceph_pool_perm_destroy(mdsc); 3686 } 3687 3688 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 3689 { 3690 struct ceph_mds_client *mdsc = fsc->mdsc; 3691 3692 dout("mdsc_destroy %p\n", mdsc); 3693 ceph_mdsc_stop(mdsc); 3694 3695 /* flush out any connection work with references to us */ 3696 ceph_msgr_flush(); 3697 3698 fsc->mdsc = NULL; 3699 kfree(mdsc); 3700 dout("mdsc_destroy %p done\n", mdsc); 3701 } 3702 3703 3704 /* 3705 * handle mds map update. 3706 */ 3707 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 3708 { 3709 u32 epoch; 3710 u32 maplen; 3711 void *p = msg->front.iov_base; 3712 void *end = p + msg->front.iov_len; 3713 struct ceph_mdsmap *newmap, *oldmap; 3714 struct ceph_fsid fsid; 3715 int err = -EINVAL; 3716 3717 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 3718 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 3719 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 3720 return; 3721 epoch = ceph_decode_32(&p); 3722 maplen = ceph_decode_32(&p); 3723 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 3724 3725 /* do we need it? */ 3726 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch); 3727 mutex_lock(&mdsc->mutex); 3728 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 3729 dout("handle_map epoch %u <= our %u\n", 3730 epoch, mdsc->mdsmap->m_epoch); 3731 mutex_unlock(&mdsc->mutex); 3732 return; 3733 } 3734 3735 newmap = ceph_mdsmap_decode(&p, end); 3736 if (IS_ERR(newmap)) { 3737 err = PTR_ERR(newmap); 3738 goto bad_unlock; 3739 } 3740 3741 /* swap into place */ 3742 if (mdsc->mdsmap) { 3743 oldmap = mdsc->mdsmap; 3744 mdsc->mdsmap = newmap; 3745 check_new_map(mdsc, newmap, oldmap); 3746 ceph_mdsmap_destroy(oldmap); 3747 } else { 3748 mdsc->mdsmap = newmap; /* first mds map */ 3749 } 3750 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size; 3751 3752 __wake_requests(mdsc, &mdsc->waiting_for_map); 3753 3754 mutex_unlock(&mdsc->mutex); 3755 schedule_delayed(mdsc); 3756 return; 3757 3758 bad_unlock: 3759 mutex_unlock(&mdsc->mutex); 3760 bad: 3761 pr_err("error decoding mdsmap %d\n", err); 3762 return; 3763 } 3764 3765 static struct ceph_connection *con_get(struct ceph_connection *con) 3766 { 3767 struct ceph_mds_session *s = con->private; 3768 3769 if (get_session(s)) { 3770 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref)); 3771 return con; 3772 } 3773 dout("mdsc con_get %p FAIL\n", s); 3774 return NULL; 3775 } 3776 3777 static void con_put(struct ceph_connection *con) 3778 { 3779 struct ceph_mds_session *s = con->private; 3780 3781 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1); 3782 ceph_put_mds_session(s); 3783 } 3784 3785 /* 3786 * if the client is unresponsive for long enough, the mds will kill 3787 * the session entirely. 3788 */ 3789 static void peer_reset(struct ceph_connection *con) 3790 { 3791 struct ceph_mds_session *s = con->private; 3792 struct ceph_mds_client *mdsc = s->s_mdsc; 3793 3794 pr_warn("mds%d closed our session\n", s->s_mds); 3795 send_mds_reconnect(mdsc, s); 3796 } 3797 3798 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg) 3799 { 3800 struct ceph_mds_session *s = con->private; 3801 struct ceph_mds_client *mdsc = s->s_mdsc; 3802 int type = le16_to_cpu(msg->hdr.type); 3803 3804 mutex_lock(&mdsc->mutex); 3805 if (__verify_registered_session(mdsc, s) < 0) { 3806 mutex_unlock(&mdsc->mutex); 3807 goto out; 3808 } 3809 mutex_unlock(&mdsc->mutex); 3810 3811 switch (type) { 3812 case CEPH_MSG_MDS_MAP: 3813 ceph_mdsc_handle_map(mdsc, msg); 3814 break; 3815 case CEPH_MSG_CLIENT_SESSION: 3816 handle_session(s, msg); 3817 break; 3818 case CEPH_MSG_CLIENT_REPLY: 3819 handle_reply(s, msg); 3820 break; 3821 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 3822 handle_forward(mdsc, s, msg); 3823 break; 3824 case CEPH_MSG_CLIENT_CAPS: 3825 ceph_handle_caps(s, msg); 3826 break; 3827 case CEPH_MSG_CLIENT_SNAP: 3828 ceph_handle_snap(mdsc, s, msg); 3829 break; 3830 case CEPH_MSG_CLIENT_LEASE: 3831 handle_lease(mdsc, s, msg); 3832 break; 3833 3834 default: 3835 pr_err("received unknown message type %d %s\n", type, 3836 ceph_msg_type_name(type)); 3837 } 3838 out: 3839 ceph_msg_put(msg); 3840 } 3841 3842 /* 3843 * authentication 3844 */ 3845 3846 /* 3847 * Note: returned pointer is the address of a structure that's 3848 * managed separately. Caller must *not* attempt to free it. 3849 */ 3850 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con, 3851 int *proto, int force_new) 3852 { 3853 struct ceph_mds_session *s = con->private; 3854 struct ceph_mds_client *mdsc = s->s_mdsc; 3855 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3856 struct ceph_auth_handshake *auth = &s->s_auth; 3857 3858 if (force_new && auth->authorizer) { 3859 ceph_auth_destroy_authorizer(ac, auth->authorizer); 3860 auth->authorizer = NULL; 3861 } 3862 if (!auth->authorizer) { 3863 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3864 auth); 3865 if (ret) 3866 return ERR_PTR(ret); 3867 } else { 3868 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3869 auth); 3870 if (ret) 3871 return ERR_PTR(ret); 3872 } 3873 *proto = ac->protocol; 3874 3875 return auth; 3876 } 3877 3878 3879 static int verify_authorizer_reply(struct ceph_connection *con, int len) 3880 { 3881 struct ceph_mds_session *s = con->private; 3882 struct ceph_mds_client *mdsc = s->s_mdsc; 3883 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3884 3885 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len); 3886 } 3887 3888 static int invalidate_authorizer(struct ceph_connection *con) 3889 { 3890 struct ceph_mds_session *s = con->private; 3891 struct ceph_mds_client *mdsc = s->s_mdsc; 3892 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3893 3894 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 3895 3896 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 3897 } 3898 3899 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, 3900 struct ceph_msg_header *hdr, int *skip) 3901 { 3902 struct ceph_msg *msg; 3903 int type = (int) le16_to_cpu(hdr->type); 3904 int front_len = (int) le32_to_cpu(hdr->front_len); 3905 3906 if (con->in_msg) 3907 return con->in_msg; 3908 3909 *skip = 0; 3910 msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 3911 if (!msg) { 3912 pr_err("unable to allocate msg type %d len %d\n", 3913 type, front_len); 3914 return NULL; 3915 } 3916 3917 return msg; 3918 } 3919 3920 static int sign_message(struct ceph_connection *con, struct ceph_msg *msg) 3921 { 3922 struct ceph_mds_session *s = con->private; 3923 struct ceph_auth_handshake *auth = &s->s_auth; 3924 return ceph_auth_sign_message(auth, msg); 3925 } 3926 3927 static int check_message_signature(struct ceph_connection *con, struct ceph_msg *msg) 3928 { 3929 struct ceph_mds_session *s = con->private; 3930 struct ceph_auth_handshake *auth = &s->s_auth; 3931 return ceph_auth_check_message_signature(auth, msg); 3932 } 3933 3934 static const struct ceph_connection_operations mds_con_ops = { 3935 .get = con_get, 3936 .put = con_put, 3937 .dispatch = dispatch, 3938 .get_authorizer = get_authorizer, 3939 .verify_authorizer_reply = verify_authorizer_reply, 3940 .invalidate_authorizer = invalidate_authorizer, 3941 .peer_reset = peer_reset, 3942 .alloc_msg = mds_alloc_msg, 3943 .sign_message = sign_message, 3944 .check_message_signature = check_message_signature, 3945 }; 3946 3947 /* eof */ 3948