1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/wait.h> 5 #include <linux/slab.h> 6 #include <linux/sched.h> 7 #include <linux/debugfs.h> 8 #include <linux/seq_file.h> 9 10 #include "super.h" 11 #include "mds_client.h" 12 13 #include <linux/ceph/messenger.h> 14 #include <linux/ceph/decode.h> 15 #include <linux/ceph/pagelist.h> 16 #include <linux/ceph/auth.h> 17 #include <linux/ceph/debugfs.h> 18 19 /* 20 * A cluster of MDS (metadata server) daemons is responsible for 21 * managing the file system namespace (the directory hierarchy and 22 * inodes) and for coordinating shared access to storage. Metadata is 23 * partitioning hierarchically across a number of servers, and that 24 * partition varies over time as the cluster adjusts the distribution 25 * in order to balance load. 26 * 27 * The MDS client is primarily responsible to managing synchronous 28 * metadata requests for operations like open, unlink, and so forth. 29 * If there is a MDS failure, we find out about it when we (possibly 30 * request and) receive a new MDS map, and can resubmit affected 31 * requests. 32 * 33 * For the most part, though, we take advantage of a lossless 34 * communications channel to the MDS, and do not need to worry about 35 * timing out or resubmitting requests. 36 * 37 * We maintain a stateful "session" with each MDS we interact with. 38 * Within each session, we sent periodic heartbeat messages to ensure 39 * any capabilities or leases we have been issues remain valid. If 40 * the session times out and goes stale, our leases and capabilities 41 * are no longer valid. 42 */ 43 44 struct ceph_reconnect_state { 45 struct ceph_pagelist *pagelist; 46 bool flock; 47 }; 48 49 static void __wake_requests(struct ceph_mds_client *mdsc, 50 struct list_head *head); 51 52 static const struct ceph_connection_operations mds_con_ops; 53 54 55 /* 56 * mds reply parsing 57 */ 58 59 /* 60 * parse individual inode info 61 */ 62 static int parse_reply_info_in(void **p, void *end, 63 struct ceph_mds_reply_info_in *info, 64 int features) 65 { 66 int err = -EIO; 67 68 info->in = *p; 69 *p += sizeof(struct ceph_mds_reply_inode) + 70 sizeof(*info->in->fragtree.splits) * 71 le32_to_cpu(info->in->fragtree.nsplits); 72 73 ceph_decode_32_safe(p, end, info->symlink_len, bad); 74 ceph_decode_need(p, end, info->symlink_len, bad); 75 info->symlink = *p; 76 *p += info->symlink_len; 77 78 if (features & CEPH_FEATURE_DIRLAYOUTHASH) 79 ceph_decode_copy_safe(p, end, &info->dir_layout, 80 sizeof(info->dir_layout), bad); 81 else 82 memset(&info->dir_layout, 0, sizeof(info->dir_layout)); 83 84 ceph_decode_32_safe(p, end, info->xattr_len, bad); 85 ceph_decode_need(p, end, info->xattr_len, bad); 86 info->xattr_data = *p; 87 *p += info->xattr_len; 88 return 0; 89 bad: 90 return err; 91 } 92 93 /* 94 * parse a normal reply, which may contain a (dir+)dentry and/or a 95 * target inode. 96 */ 97 static int parse_reply_info_trace(void **p, void *end, 98 struct ceph_mds_reply_info_parsed *info, 99 int features) 100 { 101 int err; 102 103 if (info->head->is_dentry) { 104 err = parse_reply_info_in(p, end, &info->diri, features); 105 if (err < 0) 106 goto out_bad; 107 108 if (unlikely(*p + sizeof(*info->dirfrag) > end)) 109 goto bad; 110 info->dirfrag = *p; 111 *p += sizeof(*info->dirfrag) + 112 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist); 113 if (unlikely(*p > end)) 114 goto bad; 115 116 ceph_decode_32_safe(p, end, info->dname_len, bad); 117 ceph_decode_need(p, end, info->dname_len, bad); 118 info->dname = *p; 119 *p += info->dname_len; 120 info->dlease = *p; 121 *p += sizeof(*info->dlease); 122 } 123 124 if (info->head->is_target) { 125 err = parse_reply_info_in(p, end, &info->targeti, features); 126 if (err < 0) 127 goto out_bad; 128 } 129 130 if (unlikely(*p != end)) 131 goto bad; 132 return 0; 133 134 bad: 135 err = -EIO; 136 out_bad: 137 pr_err("problem parsing mds trace %d\n", err); 138 return err; 139 } 140 141 /* 142 * parse readdir results 143 */ 144 static int parse_reply_info_dir(void **p, void *end, 145 struct ceph_mds_reply_info_parsed *info, 146 int features) 147 { 148 u32 num, i = 0; 149 int err; 150 151 info->dir_dir = *p; 152 if (*p + sizeof(*info->dir_dir) > end) 153 goto bad; 154 *p += sizeof(*info->dir_dir) + 155 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist); 156 if (*p > end) 157 goto bad; 158 159 ceph_decode_need(p, end, sizeof(num) + 2, bad); 160 num = ceph_decode_32(p); 161 info->dir_end = ceph_decode_8(p); 162 info->dir_complete = ceph_decode_8(p); 163 if (num == 0) 164 goto done; 165 166 /* alloc large array */ 167 info->dir_nr = num; 168 info->dir_in = kcalloc(num, sizeof(*info->dir_in) + 169 sizeof(*info->dir_dname) + 170 sizeof(*info->dir_dname_len) + 171 sizeof(*info->dir_dlease), 172 GFP_NOFS); 173 if (info->dir_in == NULL) { 174 err = -ENOMEM; 175 goto out_bad; 176 } 177 info->dir_dname = (void *)(info->dir_in + num); 178 info->dir_dname_len = (void *)(info->dir_dname + num); 179 info->dir_dlease = (void *)(info->dir_dname_len + num); 180 181 while (num) { 182 /* dentry */ 183 ceph_decode_need(p, end, sizeof(u32)*2, bad); 184 info->dir_dname_len[i] = ceph_decode_32(p); 185 ceph_decode_need(p, end, info->dir_dname_len[i], bad); 186 info->dir_dname[i] = *p; 187 *p += info->dir_dname_len[i]; 188 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i], 189 info->dir_dname[i]); 190 info->dir_dlease[i] = *p; 191 *p += sizeof(struct ceph_mds_reply_lease); 192 193 /* inode */ 194 err = parse_reply_info_in(p, end, &info->dir_in[i], features); 195 if (err < 0) 196 goto out_bad; 197 i++; 198 num--; 199 } 200 201 done: 202 if (*p != end) 203 goto bad; 204 return 0; 205 206 bad: 207 err = -EIO; 208 out_bad: 209 pr_err("problem parsing dir contents %d\n", err); 210 return err; 211 } 212 213 /* 214 * parse fcntl F_GETLK results 215 */ 216 static int parse_reply_info_filelock(void **p, void *end, 217 struct ceph_mds_reply_info_parsed *info, 218 int features) 219 { 220 if (*p + sizeof(*info->filelock_reply) > end) 221 goto bad; 222 223 info->filelock_reply = *p; 224 *p += sizeof(*info->filelock_reply); 225 226 if (unlikely(*p != end)) 227 goto bad; 228 return 0; 229 230 bad: 231 return -EIO; 232 } 233 234 /* 235 * parse extra results 236 */ 237 static int parse_reply_info_extra(void **p, void *end, 238 struct ceph_mds_reply_info_parsed *info, 239 int features) 240 { 241 if (info->head->op == CEPH_MDS_OP_GETFILELOCK) 242 return parse_reply_info_filelock(p, end, info, features); 243 else 244 return parse_reply_info_dir(p, end, info, features); 245 } 246 247 /* 248 * parse entire mds reply 249 */ 250 static int parse_reply_info(struct ceph_msg *msg, 251 struct ceph_mds_reply_info_parsed *info, 252 int features) 253 { 254 void *p, *end; 255 u32 len; 256 int err; 257 258 info->head = msg->front.iov_base; 259 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 260 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 261 262 /* trace */ 263 ceph_decode_32_safe(&p, end, len, bad); 264 if (len > 0) { 265 err = parse_reply_info_trace(&p, p+len, info, features); 266 if (err < 0) 267 goto out_bad; 268 } 269 270 /* extra */ 271 ceph_decode_32_safe(&p, end, len, bad); 272 if (len > 0) { 273 err = parse_reply_info_extra(&p, p+len, info, features); 274 if (err < 0) 275 goto out_bad; 276 } 277 278 /* snap blob */ 279 ceph_decode_32_safe(&p, end, len, bad); 280 info->snapblob_len = len; 281 info->snapblob = p; 282 p += len; 283 284 if (p != end) 285 goto bad; 286 return 0; 287 288 bad: 289 err = -EIO; 290 out_bad: 291 pr_err("mds parse_reply err %d\n", err); 292 return err; 293 } 294 295 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 296 { 297 kfree(info->dir_in); 298 } 299 300 301 /* 302 * sessions 303 */ 304 static const char *session_state_name(int s) 305 { 306 switch (s) { 307 case CEPH_MDS_SESSION_NEW: return "new"; 308 case CEPH_MDS_SESSION_OPENING: return "opening"; 309 case CEPH_MDS_SESSION_OPEN: return "open"; 310 case CEPH_MDS_SESSION_HUNG: return "hung"; 311 case CEPH_MDS_SESSION_CLOSING: return "closing"; 312 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 313 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 314 default: return "???"; 315 } 316 } 317 318 static struct ceph_mds_session *get_session(struct ceph_mds_session *s) 319 { 320 if (atomic_inc_not_zero(&s->s_ref)) { 321 dout("mdsc get_session %p %d -> %d\n", s, 322 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref)); 323 return s; 324 } else { 325 dout("mdsc get_session %p 0 -- FAIL", s); 326 return NULL; 327 } 328 } 329 330 void ceph_put_mds_session(struct ceph_mds_session *s) 331 { 332 dout("mdsc put_session %p %d -> %d\n", s, 333 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1); 334 if (atomic_dec_and_test(&s->s_ref)) { 335 if (s->s_authorizer) 336 s->s_mdsc->fsc->client->monc.auth->ops->destroy_authorizer( 337 s->s_mdsc->fsc->client->monc.auth, 338 s->s_authorizer); 339 kfree(s); 340 } 341 } 342 343 /* 344 * called under mdsc->mutex 345 */ 346 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 347 int mds) 348 { 349 struct ceph_mds_session *session; 350 351 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL) 352 return NULL; 353 session = mdsc->sessions[mds]; 354 dout("lookup_mds_session %p %d\n", session, 355 atomic_read(&session->s_ref)); 356 get_session(session); 357 return session; 358 } 359 360 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 361 { 362 if (mds >= mdsc->max_sessions) 363 return false; 364 return mdsc->sessions[mds]; 365 } 366 367 static int __verify_registered_session(struct ceph_mds_client *mdsc, 368 struct ceph_mds_session *s) 369 { 370 if (s->s_mds >= mdsc->max_sessions || 371 mdsc->sessions[s->s_mds] != s) 372 return -ENOENT; 373 return 0; 374 } 375 376 /* 377 * create+register a new session for given mds. 378 * called under mdsc->mutex. 379 */ 380 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 381 int mds) 382 { 383 struct ceph_mds_session *s; 384 385 s = kzalloc(sizeof(*s), GFP_NOFS); 386 if (!s) 387 return ERR_PTR(-ENOMEM); 388 s->s_mdsc = mdsc; 389 s->s_mds = mds; 390 s->s_state = CEPH_MDS_SESSION_NEW; 391 s->s_ttl = 0; 392 s->s_seq = 0; 393 mutex_init(&s->s_mutex); 394 395 ceph_con_init(mdsc->fsc->client->msgr, &s->s_con); 396 s->s_con.private = s; 397 s->s_con.ops = &mds_con_ops; 398 s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS; 399 s->s_con.peer_name.num = cpu_to_le64(mds); 400 401 spin_lock_init(&s->s_cap_lock); 402 s->s_cap_gen = 0; 403 s->s_cap_ttl = 0; 404 s->s_renew_requested = 0; 405 s->s_renew_seq = 0; 406 INIT_LIST_HEAD(&s->s_caps); 407 s->s_nr_caps = 0; 408 s->s_trim_caps = 0; 409 atomic_set(&s->s_ref, 1); 410 INIT_LIST_HEAD(&s->s_waiting); 411 INIT_LIST_HEAD(&s->s_unsafe); 412 s->s_num_cap_releases = 0; 413 s->s_cap_iterator = NULL; 414 INIT_LIST_HEAD(&s->s_cap_releases); 415 INIT_LIST_HEAD(&s->s_cap_releases_done); 416 INIT_LIST_HEAD(&s->s_cap_flushing); 417 INIT_LIST_HEAD(&s->s_cap_snaps_flushing); 418 419 dout("register_session mds%d\n", mds); 420 if (mds >= mdsc->max_sessions) { 421 int newmax = 1 << get_count_order(mds+1); 422 struct ceph_mds_session **sa; 423 424 dout("register_session realloc to %d\n", newmax); 425 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 426 if (sa == NULL) 427 goto fail_realloc; 428 if (mdsc->sessions) { 429 memcpy(sa, mdsc->sessions, 430 mdsc->max_sessions * sizeof(void *)); 431 kfree(mdsc->sessions); 432 } 433 mdsc->sessions = sa; 434 mdsc->max_sessions = newmax; 435 } 436 mdsc->sessions[mds] = s; 437 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 438 439 ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 440 441 return s; 442 443 fail_realloc: 444 kfree(s); 445 return ERR_PTR(-ENOMEM); 446 } 447 448 /* 449 * called under mdsc->mutex 450 */ 451 static void __unregister_session(struct ceph_mds_client *mdsc, 452 struct ceph_mds_session *s) 453 { 454 dout("__unregister_session mds%d %p\n", s->s_mds, s); 455 BUG_ON(mdsc->sessions[s->s_mds] != s); 456 mdsc->sessions[s->s_mds] = NULL; 457 ceph_con_close(&s->s_con); 458 ceph_put_mds_session(s); 459 } 460 461 /* 462 * drop session refs in request. 463 * 464 * should be last request ref, or hold mdsc->mutex 465 */ 466 static void put_request_session(struct ceph_mds_request *req) 467 { 468 if (req->r_session) { 469 ceph_put_mds_session(req->r_session); 470 req->r_session = NULL; 471 } 472 } 473 474 void ceph_mdsc_release_request(struct kref *kref) 475 { 476 struct ceph_mds_request *req = container_of(kref, 477 struct ceph_mds_request, 478 r_kref); 479 if (req->r_request) 480 ceph_msg_put(req->r_request); 481 if (req->r_reply) { 482 ceph_msg_put(req->r_reply); 483 destroy_reply_info(&req->r_reply_info); 484 } 485 if (req->r_inode) { 486 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 487 iput(req->r_inode); 488 } 489 if (req->r_locked_dir) 490 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 491 if (req->r_target_inode) 492 iput(req->r_target_inode); 493 if (req->r_dentry) 494 dput(req->r_dentry); 495 if (req->r_old_dentry) { 496 /* 497 * track (and drop pins for) r_old_dentry_dir 498 * separately, since r_old_dentry's d_parent may have 499 * changed between the dir mutex being dropped and 500 * this request being freed. 501 */ 502 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 503 CEPH_CAP_PIN); 504 dput(req->r_old_dentry); 505 iput(req->r_old_dentry_dir); 506 } 507 kfree(req->r_path1); 508 kfree(req->r_path2); 509 put_request_session(req); 510 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 511 kfree(req); 512 } 513 514 /* 515 * lookup session, bump ref if found. 516 * 517 * called under mdsc->mutex. 518 */ 519 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc, 520 u64 tid) 521 { 522 struct ceph_mds_request *req; 523 struct rb_node *n = mdsc->request_tree.rb_node; 524 525 while (n) { 526 req = rb_entry(n, struct ceph_mds_request, r_node); 527 if (tid < req->r_tid) 528 n = n->rb_left; 529 else if (tid > req->r_tid) 530 n = n->rb_right; 531 else { 532 ceph_mdsc_get_request(req); 533 return req; 534 } 535 } 536 return NULL; 537 } 538 539 static void __insert_request(struct ceph_mds_client *mdsc, 540 struct ceph_mds_request *new) 541 { 542 struct rb_node **p = &mdsc->request_tree.rb_node; 543 struct rb_node *parent = NULL; 544 struct ceph_mds_request *req = NULL; 545 546 while (*p) { 547 parent = *p; 548 req = rb_entry(parent, struct ceph_mds_request, r_node); 549 if (new->r_tid < req->r_tid) 550 p = &(*p)->rb_left; 551 else if (new->r_tid > req->r_tid) 552 p = &(*p)->rb_right; 553 else 554 BUG(); 555 } 556 557 rb_link_node(&new->r_node, parent, p); 558 rb_insert_color(&new->r_node, &mdsc->request_tree); 559 } 560 561 /* 562 * Register an in-flight request, and assign a tid. Link to directory 563 * are modifying (if any). 564 * 565 * Called under mdsc->mutex. 566 */ 567 static void __register_request(struct ceph_mds_client *mdsc, 568 struct ceph_mds_request *req, 569 struct inode *dir) 570 { 571 req->r_tid = ++mdsc->last_tid; 572 if (req->r_num_caps) 573 ceph_reserve_caps(mdsc, &req->r_caps_reservation, 574 req->r_num_caps); 575 dout("__register_request %p tid %lld\n", req, req->r_tid); 576 ceph_mdsc_get_request(req); 577 __insert_request(mdsc, req); 578 579 req->r_uid = current_fsuid(); 580 req->r_gid = current_fsgid(); 581 582 if (dir) { 583 struct ceph_inode_info *ci = ceph_inode(dir); 584 585 ihold(dir); 586 spin_lock(&ci->i_unsafe_lock); 587 req->r_unsafe_dir = dir; 588 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 589 spin_unlock(&ci->i_unsafe_lock); 590 } 591 } 592 593 static void __unregister_request(struct ceph_mds_client *mdsc, 594 struct ceph_mds_request *req) 595 { 596 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 597 rb_erase(&req->r_node, &mdsc->request_tree); 598 RB_CLEAR_NODE(&req->r_node); 599 600 if (req->r_unsafe_dir) { 601 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 602 603 spin_lock(&ci->i_unsafe_lock); 604 list_del_init(&req->r_unsafe_dir_item); 605 spin_unlock(&ci->i_unsafe_lock); 606 607 iput(req->r_unsafe_dir); 608 req->r_unsafe_dir = NULL; 609 } 610 611 ceph_mdsc_put_request(req); 612 } 613 614 /* 615 * Choose mds to send request to next. If there is a hint set in the 616 * request (e.g., due to a prior forward hint from the mds), use that. 617 * Otherwise, consult frag tree and/or caps to identify the 618 * appropriate mds. If all else fails, choose randomly. 619 * 620 * Called under mdsc->mutex. 621 */ 622 static struct dentry *get_nonsnap_parent(struct dentry *dentry) 623 { 624 /* 625 * we don't need to worry about protecting the d_parent access 626 * here because we never renaming inside the snapped namespace 627 * except to resplice to another snapdir, and either the old or new 628 * result is a valid result. 629 */ 630 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP) 631 dentry = dentry->d_parent; 632 return dentry; 633 } 634 635 static int __choose_mds(struct ceph_mds_client *mdsc, 636 struct ceph_mds_request *req) 637 { 638 struct inode *inode; 639 struct ceph_inode_info *ci; 640 struct ceph_cap *cap; 641 int mode = req->r_direct_mode; 642 int mds = -1; 643 u32 hash = req->r_direct_hash; 644 bool is_hash = req->r_direct_is_hash; 645 646 /* 647 * is there a specific mds we should try? ignore hint if we have 648 * no session and the mds is not up (active or recovering). 649 */ 650 if (req->r_resend_mds >= 0 && 651 (__have_session(mdsc, req->r_resend_mds) || 652 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 653 dout("choose_mds using resend_mds mds%d\n", 654 req->r_resend_mds); 655 return req->r_resend_mds; 656 } 657 658 if (mode == USE_RANDOM_MDS) 659 goto random; 660 661 inode = NULL; 662 if (req->r_inode) { 663 inode = req->r_inode; 664 } else if (req->r_dentry) { 665 /* ignore race with rename; old or new d_parent is okay */ 666 struct dentry *parent = req->r_dentry->d_parent; 667 struct inode *dir = parent->d_inode; 668 669 if (dir->i_sb != mdsc->fsc->sb) { 670 /* not this fs! */ 671 inode = req->r_dentry->d_inode; 672 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 673 /* direct snapped/virtual snapdir requests 674 * based on parent dir inode */ 675 struct dentry *dn = get_nonsnap_parent(parent); 676 inode = dn->d_inode; 677 dout("__choose_mds using nonsnap parent %p\n", inode); 678 } else if (req->r_dentry->d_inode) { 679 /* dentry target */ 680 inode = req->r_dentry->d_inode; 681 } else { 682 /* dir + name */ 683 inode = dir; 684 hash = ceph_dentry_hash(dir, req->r_dentry); 685 is_hash = true; 686 } 687 } 688 689 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash, 690 (int)hash, mode); 691 if (!inode) 692 goto random; 693 ci = ceph_inode(inode); 694 695 if (is_hash && S_ISDIR(inode->i_mode)) { 696 struct ceph_inode_frag frag; 697 int found; 698 699 ceph_choose_frag(ci, hash, &frag, &found); 700 if (found) { 701 if (mode == USE_ANY_MDS && frag.ndist > 0) { 702 u8 r; 703 704 /* choose a random replica */ 705 get_random_bytes(&r, 1); 706 r %= frag.ndist; 707 mds = frag.dist[r]; 708 dout("choose_mds %p %llx.%llx " 709 "frag %u mds%d (%d/%d)\n", 710 inode, ceph_vinop(inode), 711 frag.frag, mds, 712 (int)r, frag.ndist); 713 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 714 CEPH_MDS_STATE_ACTIVE) 715 return mds; 716 } 717 718 /* since this file/dir wasn't known to be 719 * replicated, then we want to look for the 720 * authoritative mds. */ 721 mode = USE_AUTH_MDS; 722 if (frag.mds >= 0) { 723 /* choose auth mds */ 724 mds = frag.mds; 725 dout("choose_mds %p %llx.%llx " 726 "frag %u mds%d (auth)\n", 727 inode, ceph_vinop(inode), frag.frag, mds); 728 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 729 CEPH_MDS_STATE_ACTIVE) 730 return mds; 731 } 732 } 733 } 734 735 spin_lock(&ci->i_ceph_lock); 736 cap = NULL; 737 if (mode == USE_AUTH_MDS) 738 cap = ci->i_auth_cap; 739 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 740 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 741 if (!cap) { 742 spin_unlock(&ci->i_ceph_lock); 743 goto random; 744 } 745 mds = cap->session->s_mds; 746 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n", 747 inode, ceph_vinop(inode), mds, 748 cap == ci->i_auth_cap ? "auth " : "", cap); 749 spin_unlock(&ci->i_ceph_lock); 750 return mds; 751 752 random: 753 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 754 dout("choose_mds chose random mds%d\n", mds); 755 return mds; 756 } 757 758 759 /* 760 * session messages 761 */ 762 static struct ceph_msg *create_session_msg(u32 op, u64 seq) 763 { 764 struct ceph_msg *msg; 765 struct ceph_mds_session_head *h; 766 767 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 768 false); 769 if (!msg) { 770 pr_err("create_session_msg ENOMEM creating msg\n"); 771 return NULL; 772 } 773 h = msg->front.iov_base; 774 h->op = cpu_to_le32(op); 775 h->seq = cpu_to_le64(seq); 776 return msg; 777 } 778 779 /* 780 * send session open request. 781 * 782 * called under mdsc->mutex 783 */ 784 static int __open_session(struct ceph_mds_client *mdsc, 785 struct ceph_mds_session *session) 786 { 787 struct ceph_msg *msg; 788 int mstate; 789 int mds = session->s_mds; 790 791 /* wait for mds to go active? */ 792 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 793 dout("open_session to mds%d (%s)\n", mds, 794 ceph_mds_state_name(mstate)); 795 session->s_state = CEPH_MDS_SESSION_OPENING; 796 session->s_renew_requested = jiffies; 797 798 /* send connect message */ 799 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq); 800 if (!msg) 801 return -ENOMEM; 802 ceph_con_send(&session->s_con, msg); 803 return 0; 804 } 805 806 /* 807 * open sessions for any export targets for the given mds 808 * 809 * called under mdsc->mutex 810 */ 811 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 812 struct ceph_mds_session *session) 813 { 814 struct ceph_mds_info *mi; 815 struct ceph_mds_session *ts; 816 int i, mds = session->s_mds; 817 int target; 818 819 if (mds >= mdsc->mdsmap->m_max_mds) 820 return; 821 mi = &mdsc->mdsmap->m_info[mds]; 822 dout("open_export_target_sessions for mds%d (%d targets)\n", 823 session->s_mds, mi->num_export_targets); 824 825 for (i = 0; i < mi->num_export_targets; i++) { 826 target = mi->export_targets[i]; 827 ts = __ceph_lookup_mds_session(mdsc, target); 828 if (!ts) { 829 ts = register_session(mdsc, target); 830 if (IS_ERR(ts)) 831 return; 832 } 833 if (session->s_state == CEPH_MDS_SESSION_NEW || 834 session->s_state == CEPH_MDS_SESSION_CLOSING) 835 __open_session(mdsc, session); 836 else 837 dout(" mds%d target mds%d %p is %s\n", session->s_mds, 838 i, ts, session_state_name(ts->s_state)); 839 ceph_put_mds_session(ts); 840 } 841 } 842 843 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 844 struct ceph_mds_session *session) 845 { 846 mutex_lock(&mdsc->mutex); 847 __open_export_target_sessions(mdsc, session); 848 mutex_unlock(&mdsc->mutex); 849 } 850 851 /* 852 * session caps 853 */ 854 855 /* 856 * Free preallocated cap messages assigned to this session 857 */ 858 static void cleanup_cap_releases(struct ceph_mds_session *session) 859 { 860 struct ceph_msg *msg; 861 862 spin_lock(&session->s_cap_lock); 863 while (!list_empty(&session->s_cap_releases)) { 864 msg = list_first_entry(&session->s_cap_releases, 865 struct ceph_msg, list_head); 866 list_del_init(&msg->list_head); 867 ceph_msg_put(msg); 868 } 869 while (!list_empty(&session->s_cap_releases_done)) { 870 msg = list_first_entry(&session->s_cap_releases_done, 871 struct ceph_msg, list_head); 872 list_del_init(&msg->list_head); 873 ceph_msg_put(msg); 874 } 875 spin_unlock(&session->s_cap_lock); 876 } 877 878 /* 879 * Helper to safely iterate over all caps associated with a session, with 880 * special care taken to handle a racing __ceph_remove_cap(). 881 * 882 * Caller must hold session s_mutex. 883 */ 884 static int iterate_session_caps(struct ceph_mds_session *session, 885 int (*cb)(struct inode *, struct ceph_cap *, 886 void *), void *arg) 887 { 888 struct list_head *p; 889 struct ceph_cap *cap; 890 struct inode *inode, *last_inode = NULL; 891 struct ceph_cap *old_cap = NULL; 892 int ret; 893 894 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 895 spin_lock(&session->s_cap_lock); 896 p = session->s_caps.next; 897 while (p != &session->s_caps) { 898 cap = list_entry(p, struct ceph_cap, session_caps); 899 inode = igrab(&cap->ci->vfs_inode); 900 if (!inode) { 901 p = p->next; 902 continue; 903 } 904 session->s_cap_iterator = cap; 905 spin_unlock(&session->s_cap_lock); 906 907 if (last_inode) { 908 iput(last_inode); 909 last_inode = NULL; 910 } 911 if (old_cap) { 912 ceph_put_cap(session->s_mdsc, old_cap); 913 old_cap = NULL; 914 } 915 916 ret = cb(inode, cap, arg); 917 last_inode = inode; 918 919 spin_lock(&session->s_cap_lock); 920 p = p->next; 921 if (cap->ci == NULL) { 922 dout("iterate_session_caps finishing cap %p removal\n", 923 cap); 924 BUG_ON(cap->session != session); 925 list_del_init(&cap->session_caps); 926 session->s_nr_caps--; 927 cap->session = NULL; 928 old_cap = cap; /* put_cap it w/o locks held */ 929 } 930 if (ret < 0) 931 goto out; 932 } 933 ret = 0; 934 out: 935 session->s_cap_iterator = NULL; 936 spin_unlock(&session->s_cap_lock); 937 938 if (last_inode) 939 iput(last_inode); 940 if (old_cap) 941 ceph_put_cap(session->s_mdsc, old_cap); 942 943 return ret; 944 } 945 946 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 947 void *arg) 948 { 949 struct ceph_inode_info *ci = ceph_inode(inode); 950 int drop = 0; 951 952 dout("removing cap %p, ci is %p, inode is %p\n", 953 cap, ci, &ci->vfs_inode); 954 spin_lock(&ci->i_ceph_lock); 955 __ceph_remove_cap(cap); 956 if (!__ceph_is_any_real_caps(ci)) { 957 struct ceph_mds_client *mdsc = 958 ceph_sb_to_client(inode->i_sb)->mdsc; 959 960 spin_lock(&mdsc->cap_dirty_lock); 961 if (!list_empty(&ci->i_dirty_item)) { 962 pr_info(" dropping dirty %s state for %p %lld\n", 963 ceph_cap_string(ci->i_dirty_caps), 964 inode, ceph_ino(inode)); 965 ci->i_dirty_caps = 0; 966 list_del_init(&ci->i_dirty_item); 967 drop = 1; 968 } 969 if (!list_empty(&ci->i_flushing_item)) { 970 pr_info(" dropping dirty+flushing %s state for %p %lld\n", 971 ceph_cap_string(ci->i_flushing_caps), 972 inode, ceph_ino(inode)); 973 ci->i_flushing_caps = 0; 974 list_del_init(&ci->i_flushing_item); 975 mdsc->num_cap_flushing--; 976 drop = 1; 977 } 978 if (drop && ci->i_wrbuffer_ref) { 979 pr_info(" dropping dirty data for %p %lld\n", 980 inode, ceph_ino(inode)); 981 ci->i_wrbuffer_ref = 0; 982 ci->i_wrbuffer_ref_head = 0; 983 drop++; 984 } 985 spin_unlock(&mdsc->cap_dirty_lock); 986 } 987 spin_unlock(&ci->i_ceph_lock); 988 while (drop--) 989 iput(inode); 990 return 0; 991 } 992 993 /* 994 * caller must hold session s_mutex 995 */ 996 static void remove_session_caps(struct ceph_mds_session *session) 997 { 998 dout("remove_session_caps on %p\n", session); 999 iterate_session_caps(session, remove_session_caps_cb, NULL); 1000 BUG_ON(session->s_nr_caps > 0); 1001 BUG_ON(!list_empty(&session->s_cap_flushing)); 1002 cleanup_cap_releases(session); 1003 } 1004 1005 /* 1006 * wake up any threads waiting on this session's caps. if the cap is 1007 * old (didn't get renewed on the client reconnect), remove it now. 1008 * 1009 * caller must hold s_mutex. 1010 */ 1011 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 1012 void *arg) 1013 { 1014 struct ceph_inode_info *ci = ceph_inode(inode); 1015 1016 wake_up_all(&ci->i_cap_wq); 1017 if (arg) { 1018 spin_lock(&ci->i_ceph_lock); 1019 ci->i_wanted_max_size = 0; 1020 ci->i_requested_max_size = 0; 1021 spin_unlock(&ci->i_ceph_lock); 1022 } 1023 return 0; 1024 } 1025 1026 static void wake_up_session_caps(struct ceph_mds_session *session, 1027 int reconnect) 1028 { 1029 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1030 iterate_session_caps(session, wake_up_session_cb, 1031 (void *)(unsigned long)reconnect); 1032 } 1033 1034 /* 1035 * Send periodic message to MDS renewing all currently held caps. The 1036 * ack will reset the expiration for all caps from this session. 1037 * 1038 * caller holds s_mutex 1039 */ 1040 static int send_renew_caps(struct ceph_mds_client *mdsc, 1041 struct ceph_mds_session *session) 1042 { 1043 struct ceph_msg *msg; 1044 int state; 1045 1046 if (time_after_eq(jiffies, session->s_cap_ttl) && 1047 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1048 pr_info("mds%d caps stale\n", session->s_mds); 1049 session->s_renew_requested = jiffies; 1050 1051 /* do not try to renew caps until a recovering mds has reconnected 1052 * with its clients. */ 1053 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1054 if (state < CEPH_MDS_STATE_RECONNECT) { 1055 dout("send_renew_caps ignoring mds%d (%s)\n", 1056 session->s_mds, ceph_mds_state_name(state)); 1057 return 0; 1058 } 1059 1060 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 1061 ceph_mds_state_name(state)); 1062 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 1063 ++session->s_renew_seq); 1064 if (!msg) 1065 return -ENOMEM; 1066 ceph_con_send(&session->s_con, msg); 1067 return 0; 1068 } 1069 1070 /* 1071 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 1072 * 1073 * Called under session->s_mutex 1074 */ 1075 static void renewed_caps(struct ceph_mds_client *mdsc, 1076 struct ceph_mds_session *session, int is_renew) 1077 { 1078 int was_stale; 1079 int wake = 0; 1080 1081 spin_lock(&session->s_cap_lock); 1082 was_stale = is_renew && (session->s_cap_ttl == 0 || 1083 time_after_eq(jiffies, session->s_cap_ttl)); 1084 1085 session->s_cap_ttl = session->s_renew_requested + 1086 mdsc->mdsmap->m_session_timeout*HZ; 1087 1088 if (was_stale) { 1089 if (time_before(jiffies, session->s_cap_ttl)) { 1090 pr_info("mds%d caps renewed\n", session->s_mds); 1091 wake = 1; 1092 } else { 1093 pr_info("mds%d caps still stale\n", session->s_mds); 1094 } 1095 } 1096 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 1097 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 1098 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 1099 spin_unlock(&session->s_cap_lock); 1100 1101 if (wake) 1102 wake_up_session_caps(session, 0); 1103 } 1104 1105 /* 1106 * send a session close request 1107 */ 1108 static int request_close_session(struct ceph_mds_client *mdsc, 1109 struct ceph_mds_session *session) 1110 { 1111 struct ceph_msg *msg; 1112 1113 dout("request_close_session mds%d state %s seq %lld\n", 1114 session->s_mds, session_state_name(session->s_state), 1115 session->s_seq); 1116 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); 1117 if (!msg) 1118 return -ENOMEM; 1119 ceph_con_send(&session->s_con, msg); 1120 return 0; 1121 } 1122 1123 /* 1124 * Called with s_mutex held. 1125 */ 1126 static int __close_session(struct ceph_mds_client *mdsc, 1127 struct ceph_mds_session *session) 1128 { 1129 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 1130 return 0; 1131 session->s_state = CEPH_MDS_SESSION_CLOSING; 1132 return request_close_session(mdsc, session); 1133 } 1134 1135 /* 1136 * Trim old(er) caps. 1137 * 1138 * Because we can't cache an inode without one or more caps, we do 1139 * this indirectly: if a cap is unused, we prune its aliases, at which 1140 * point the inode will hopefully get dropped to. 1141 * 1142 * Yes, this is a bit sloppy. Our only real goal here is to respond to 1143 * memory pressure from the MDS, though, so it needn't be perfect. 1144 */ 1145 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1146 { 1147 struct ceph_mds_session *session = arg; 1148 struct ceph_inode_info *ci = ceph_inode(inode); 1149 int used, oissued, mine; 1150 1151 if (session->s_trim_caps <= 0) 1152 return -1; 1153 1154 spin_lock(&ci->i_ceph_lock); 1155 mine = cap->issued | cap->implemented; 1156 used = __ceph_caps_used(ci); 1157 oissued = __ceph_caps_issued_other(ci, cap); 1158 1159 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n", 1160 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1161 ceph_cap_string(used)); 1162 if (ci->i_dirty_caps) 1163 goto out; /* dirty caps */ 1164 if ((used & ~oissued) & mine) 1165 goto out; /* we need these caps */ 1166 1167 session->s_trim_caps--; 1168 if (oissued) { 1169 /* we aren't the only cap.. just remove us */ 1170 __ceph_remove_cap(cap); 1171 } else { 1172 /* try to drop referring dentries */ 1173 spin_unlock(&ci->i_ceph_lock); 1174 d_prune_aliases(inode); 1175 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 1176 inode, cap, atomic_read(&inode->i_count)); 1177 return 0; 1178 } 1179 1180 out: 1181 spin_unlock(&ci->i_ceph_lock); 1182 return 0; 1183 } 1184 1185 /* 1186 * Trim session cap count down to some max number. 1187 */ 1188 static int trim_caps(struct ceph_mds_client *mdsc, 1189 struct ceph_mds_session *session, 1190 int max_caps) 1191 { 1192 int trim_caps = session->s_nr_caps - max_caps; 1193 1194 dout("trim_caps mds%d start: %d / %d, trim %d\n", 1195 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 1196 if (trim_caps > 0) { 1197 session->s_trim_caps = trim_caps; 1198 iterate_session_caps(session, trim_caps_cb, session); 1199 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 1200 session->s_mds, session->s_nr_caps, max_caps, 1201 trim_caps - session->s_trim_caps); 1202 session->s_trim_caps = 0; 1203 } 1204 return 0; 1205 } 1206 1207 /* 1208 * Allocate cap_release messages. If there is a partially full message 1209 * in the queue, try to allocate enough to cover it's remainder, so that 1210 * we can send it immediately. 1211 * 1212 * Called under s_mutex. 1213 */ 1214 int ceph_add_cap_releases(struct ceph_mds_client *mdsc, 1215 struct ceph_mds_session *session) 1216 { 1217 struct ceph_msg *msg, *partial = NULL; 1218 struct ceph_mds_cap_release *head; 1219 int err = -ENOMEM; 1220 int extra = mdsc->fsc->mount_options->cap_release_safety; 1221 int num; 1222 1223 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds, 1224 extra); 1225 1226 spin_lock(&session->s_cap_lock); 1227 1228 if (!list_empty(&session->s_cap_releases)) { 1229 msg = list_first_entry(&session->s_cap_releases, 1230 struct ceph_msg, 1231 list_head); 1232 head = msg->front.iov_base; 1233 num = le32_to_cpu(head->num); 1234 if (num) { 1235 dout(" partial %p with (%d/%d)\n", msg, num, 1236 (int)CEPH_CAPS_PER_RELEASE); 1237 extra += CEPH_CAPS_PER_RELEASE - num; 1238 partial = msg; 1239 } 1240 } 1241 while (session->s_num_cap_releases < session->s_nr_caps + extra) { 1242 spin_unlock(&session->s_cap_lock); 1243 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE, 1244 GFP_NOFS, false); 1245 if (!msg) 1246 goto out_unlocked; 1247 dout("add_cap_releases %p msg %p now %d\n", session, msg, 1248 (int)msg->front.iov_len); 1249 head = msg->front.iov_base; 1250 head->num = cpu_to_le32(0); 1251 msg->front.iov_len = sizeof(*head); 1252 spin_lock(&session->s_cap_lock); 1253 list_add(&msg->list_head, &session->s_cap_releases); 1254 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE; 1255 } 1256 1257 if (partial) { 1258 head = partial->front.iov_base; 1259 num = le32_to_cpu(head->num); 1260 dout(" queueing partial %p with %d/%d\n", partial, num, 1261 (int)CEPH_CAPS_PER_RELEASE); 1262 list_move_tail(&partial->list_head, 1263 &session->s_cap_releases_done); 1264 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num; 1265 } 1266 err = 0; 1267 spin_unlock(&session->s_cap_lock); 1268 out_unlocked: 1269 return err; 1270 } 1271 1272 /* 1273 * flush all dirty inode data to disk. 1274 * 1275 * returns true if we've flushed through want_flush_seq 1276 */ 1277 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq) 1278 { 1279 int mds, ret = 1; 1280 1281 dout("check_cap_flush want %lld\n", want_flush_seq); 1282 mutex_lock(&mdsc->mutex); 1283 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) { 1284 struct ceph_mds_session *session = mdsc->sessions[mds]; 1285 1286 if (!session) 1287 continue; 1288 get_session(session); 1289 mutex_unlock(&mdsc->mutex); 1290 1291 mutex_lock(&session->s_mutex); 1292 if (!list_empty(&session->s_cap_flushing)) { 1293 struct ceph_inode_info *ci = 1294 list_entry(session->s_cap_flushing.next, 1295 struct ceph_inode_info, 1296 i_flushing_item); 1297 struct inode *inode = &ci->vfs_inode; 1298 1299 spin_lock(&ci->i_ceph_lock); 1300 if (ci->i_cap_flush_seq <= want_flush_seq) { 1301 dout("check_cap_flush still flushing %p " 1302 "seq %lld <= %lld to mds%d\n", inode, 1303 ci->i_cap_flush_seq, want_flush_seq, 1304 session->s_mds); 1305 ret = 0; 1306 } 1307 spin_unlock(&ci->i_ceph_lock); 1308 } 1309 mutex_unlock(&session->s_mutex); 1310 ceph_put_mds_session(session); 1311 1312 if (!ret) 1313 return ret; 1314 mutex_lock(&mdsc->mutex); 1315 } 1316 1317 mutex_unlock(&mdsc->mutex); 1318 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq); 1319 return ret; 1320 } 1321 1322 /* 1323 * called under s_mutex 1324 */ 1325 void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 1326 struct ceph_mds_session *session) 1327 { 1328 struct ceph_msg *msg; 1329 1330 dout("send_cap_releases mds%d\n", session->s_mds); 1331 spin_lock(&session->s_cap_lock); 1332 while (!list_empty(&session->s_cap_releases_done)) { 1333 msg = list_first_entry(&session->s_cap_releases_done, 1334 struct ceph_msg, list_head); 1335 list_del_init(&msg->list_head); 1336 spin_unlock(&session->s_cap_lock); 1337 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1338 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1339 ceph_con_send(&session->s_con, msg); 1340 spin_lock(&session->s_cap_lock); 1341 } 1342 spin_unlock(&session->s_cap_lock); 1343 } 1344 1345 static void discard_cap_releases(struct ceph_mds_client *mdsc, 1346 struct ceph_mds_session *session) 1347 { 1348 struct ceph_msg *msg; 1349 struct ceph_mds_cap_release *head; 1350 unsigned num; 1351 1352 dout("discard_cap_releases mds%d\n", session->s_mds); 1353 spin_lock(&session->s_cap_lock); 1354 1355 /* zero out the in-progress message */ 1356 msg = list_first_entry(&session->s_cap_releases, 1357 struct ceph_msg, list_head); 1358 head = msg->front.iov_base; 1359 num = le32_to_cpu(head->num); 1360 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num); 1361 head->num = cpu_to_le32(0); 1362 session->s_num_cap_releases += num; 1363 1364 /* requeue completed messages */ 1365 while (!list_empty(&session->s_cap_releases_done)) { 1366 msg = list_first_entry(&session->s_cap_releases_done, 1367 struct ceph_msg, list_head); 1368 list_del_init(&msg->list_head); 1369 1370 head = msg->front.iov_base; 1371 num = le32_to_cpu(head->num); 1372 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, 1373 num); 1374 session->s_num_cap_releases += num; 1375 head->num = cpu_to_le32(0); 1376 msg->front.iov_len = sizeof(*head); 1377 list_add(&msg->list_head, &session->s_cap_releases); 1378 } 1379 1380 spin_unlock(&session->s_cap_lock); 1381 } 1382 1383 /* 1384 * requests 1385 */ 1386 1387 /* 1388 * Create an mds request. 1389 */ 1390 struct ceph_mds_request * 1391 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 1392 { 1393 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS); 1394 1395 if (!req) 1396 return ERR_PTR(-ENOMEM); 1397 1398 mutex_init(&req->r_fill_mutex); 1399 req->r_mdsc = mdsc; 1400 req->r_started = jiffies; 1401 req->r_resend_mds = -1; 1402 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 1403 req->r_fmode = -1; 1404 kref_init(&req->r_kref); 1405 INIT_LIST_HEAD(&req->r_wait); 1406 init_completion(&req->r_completion); 1407 init_completion(&req->r_safe_completion); 1408 INIT_LIST_HEAD(&req->r_unsafe_item); 1409 1410 req->r_op = op; 1411 req->r_direct_mode = mode; 1412 return req; 1413 } 1414 1415 /* 1416 * return oldest (lowest) request, tid in request tree, 0 if none. 1417 * 1418 * called under mdsc->mutex. 1419 */ 1420 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 1421 { 1422 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 1423 return NULL; 1424 return rb_entry(rb_first(&mdsc->request_tree), 1425 struct ceph_mds_request, r_node); 1426 } 1427 1428 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 1429 { 1430 struct ceph_mds_request *req = __get_oldest_req(mdsc); 1431 1432 if (req) 1433 return req->r_tid; 1434 return 0; 1435 } 1436 1437 /* 1438 * Build a dentry's path. Allocate on heap; caller must kfree. Based 1439 * on build_path_from_dentry in fs/cifs/dir.c. 1440 * 1441 * If @stop_on_nosnap, generate path relative to the first non-snapped 1442 * inode. 1443 * 1444 * Encode hidden .snap dirs as a double /, i.e. 1445 * foo/.snap/bar -> foo//bar 1446 */ 1447 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base, 1448 int stop_on_nosnap) 1449 { 1450 struct dentry *temp; 1451 char *path; 1452 int len, pos; 1453 unsigned seq; 1454 1455 if (dentry == NULL) 1456 return ERR_PTR(-EINVAL); 1457 1458 retry: 1459 len = 0; 1460 seq = read_seqbegin(&rename_lock); 1461 rcu_read_lock(); 1462 for (temp = dentry; !IS_ROOT(temp);) { 1463 struct inode *inode = temp->d_inode; 1464 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) 1465 len++; /* slash only */ 1466 else if (stop_on_nosnap && inode && 1467 ceph_snap(inode) == CEPH_NOSNAP) 1468 break; 1469 else 1470 len += 1 + temp->d_name.len; 1471 temp = temp->d_parent; 1472 if (temp == NULL) { 1473 rcu_read_unlock(); 1474 pr_err("build_path corrupt dentry %p\n", dentry); 1475 return ERR_PTR(-EINVAL); 1476 } 1477 } 1478 rcu_read_unlock(); 1479 if (len) 1480 len--; /* no leading '/' */ 1481 1482 path = kmalloc(len+1, GFP_NOFS); 1483 if (path == NULL) 1484 return ERR_PTR(-ENOMEM); 1485 pos = len; 1486 path[pos] = 0; /* trailing null */ 1487 rcu_read_lock(); 1488 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) { 1489 struct inode *inode; 1490 1491 spin_lock(&temp->d_lock); 1492 inode = temp->d_inode; 1493 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 1494 dout("build_path path+%d: %p SNAPDIR\n", 1495 pos, temp); 1496 } else if (stop_on_nosnap && inode && 1497 ceph_snap(inode) == CEPH_NOSNAP) { 1498 spin_unlock(&temp->d_lock); 1499 break; 1500 } else { 1501 pos -= temp->d_name.len; 1502 if (pos < 0) { 1503 spin_unlock(&temp->d_lock); 1504 break; 1505 } 1506 strncpy(path + pos, temp->d_name.name, 1507 temp->d_name.len); 1508 } 1509 spin_unlock(&temp->d_lock); 1510 if (pos) 1511 path[--pos] = '/'; 1512 temp = temp->d_parent; 1513 if (temp == NULL) { 1514 rcu_read_unlock(); 1515 pr_err("build_path corrupt dentry\n"); 1516 kfree(path); 1517 return ERR_PTR(-EINVAL); 1518 } 1519 } 1520 rcu_read_unlock(); 1521 if (pos != 0 || read_seqretry(&rename_lock, seq)) { 1522 pr_err("build_path did not end path lookup where " 1523 "expected, namelen is %d, pos is %d\n", len, pos); 1524 /* presumably this is only possible if racing with a 1525 rename of one of the parent directories (we can not 1526 lock the dentries above us to prevent this, but 1527 retrying should be harmless) */ 1528 kfree(path); 1529 goto retry; 1530 } 1531 1532 *base = ceph_ino(temp->d_inode); 1533 *plen = len; 1534 dout("build_path on %p %d built %llx '%.*s'\n", 1535 dentry, dentry->d_count, *base, len, path); 1536 return path; 1537 } 1538 1539 static int build_dentry_path(struct dentry *dentry, 1540 const char **ppath, int *ppathlen, u64 *pino, 1541 int *pfreepath) 1542 { 1543 char *path; 1544 1545 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) { 1546 *pino = ceph_ino(dentry->d_parent->d_inode); 1547 *ppath = dentry->d_name.name; 1548 *ppathlen = dentry->d_name.len; 1549 return 0; 1550 } 1551 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1552 if (IS_ERR(path)) 1553 return PTR_ERR(path); 1554 *ppath = path; 1555 *pfreepath = 1; 1556 return 0; 1557 } 1558 1559 static int build_inode_path(struct inode *inode, 1560 const char **ppath, int *ppathlen, u64 *pino, 1561 int *pfreepath) 1562 { 1563 struct dentry *dentry; 1564 char *path; 1565 1566 if (ceph_snap(inode) == CEPH_NOSNAP) { 1567 *pino = ceph_ino(inode); 1568 *ppathlen = 0; 1569 return 0; 1570 } 1571 dentry = d_find_alias(inode); 1572 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1573 dput(dentry); 1574 if (IS_ERR(path)) 1575 return PTR_ERR(path); 1576 *ppath = path; 1577 *pfreepath = 1; 1578 return 0; 1579 } 1580 1581 /* 1582 * request arguments may be specified via an inode *, a dentry *, or 1583 * an explicit ino+path. 1584 */ 1585 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 1586 const char *rpath, u64 rino, 1587 const char **ppath, int *pathlen, 1588 u64 *ino, int *freepath) 1589 { 1590 int r = 0; 1591 1592 if (rinode) { 1593 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 1594 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 1595 ceph_snap(rinode)); 1596 } else if (rdentry) { 1597 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath); 1598 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 1599 *ppath); 1600 } else if (rpath || rino) { 1601 *ino = rino; 1602 *ppath = rpath; 1603 *pathlen = strlen(rpath); 1604 dout(" path %.*s\n", *pathlen, rpath); 1605 } 1606 1607 return r; 1608 } 1609 1610 /* 1611 * called under mdsc->mutex 1612 */ 1613 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc, 1614 struct ceph_mds_request *req, 1615 int mds) 1616 { 1617 struct ceph_msg *msg; 1618 struct ceph_mds_request_head *head; 1619 const char *path1 = NULL; 1620 const char *path2 = NULL; 1621 u64 ino1 = 0, ino2 = 0; 1622 int pathlen1 = 0, pathlen2 = 0; 1623 int freepath1 = 0, freepath2 = 0; 1624 int len; 1625 u16 releases; 1626 void *p, *end; 1627 int ret; 1628 1629 ret = set_request_path_attr(req->r_inode, req->r_dentry, 1630 req->r_path1, req->r_ino1.ino, 1631 &path1, &pathlen1, &ino1, &freepath1); 1632 if (ret < 0) { 1633 msg = ERR_PTR(ret); 1634 goto out; 1635 } 1636 1637 ret = set_request_path_attr(NULL, req->r_old_dentry, 1638 req->r_path2, req->r_ino2.ino, 1639 &path2, &pathlen2, &ino2, &freepath2); 1640 if (ret < 0) { 1641 msg = ERR_PTR(ret); 1642 goto out_free1; 1643 } 1644 1645 len = sizeof(*head) + 1646 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)); 1647 1648 /* calculate (max) length for cap releases */ 1649 len += sizeof(struct ceph_mds_request_release) * 1650 (!!req->r_inode_drop + !!req->r_dentry_drop + 1651 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 1652 if (req->r_dentry_drop) 1653 len += req->r_dentry->d_name.len; 1654 if (req->r_old_dentry_drop) 1655 len += req->r_old_dentry->d_name.len; 1656 1657 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false); 1658 if (!msg) { 1659 msg = ERR_PTR(-ENOMEM); 1660 goto out_free2; 1661 } 1662 1663 msg->hdr.tid = cpu_to_le64(req->r_tid); 1664 1665 head = msg->front.iov_base; 1666 p = msg->front.iov_base + sizeof(*head); 1667 end = msg->front.iov_base + msg->front.iov_len; 1668 1669 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 1670 head->op = cpu_to_le32(req->r_op); 1671 head->caller_uid = cpu_to_le32(req->r_uid); 1672 head->caller_gid = cpu_to_le32(req->r_gid); 1673 head->args = req->r_args; 1674 1675 ceph_encode_filepath(&p, end, ino1, path1); 1676 ceph_encode_filepath(&p, end, ino2, path2); 1677 1678 /* make note of release offset, in case we need to replay */ 1679 req->r_request_release_offset = p - msg->front.iov_base; 1680 1681 /* cap releases */ 1682 releases = 0; 1683 if (req->r_inode_drop) 1684 releases += ceph_encode_inode_release(&p, 1685 req->r_inode ? req->r_inode : req->r_dentry->d_inode, 1686 mds, req->r_inode_drop, req->r_inode_unless, 0); 1687 if (req->r_dentry_drop) 1688 releases += ceph_encode_dentry_release(&p, req->r_dentry, 1689 mds, req->r_dentry_drop, req->r_dentry_unless); 1690 if (req->r_old_dentry_drop) 1691 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 1692 mds, req->r_old_dentry_drop, req->r_old_dentry_unless); 1693 if (req->r_old_inode_drop) 1694 releases += ceph_encode_inode_release(&p, 1695 req->r_old_dentry->d_inode, 1696 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 1697 head->num_releases = cpu_to_le16(releases); 1698 1699 BUG_ON(p > end); 1700 msg->front.iov_len = p - msg->front.iov_base; 1701 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1702 1703 msg->pages = req->r_pages; 1704 msg->nr_pages = req->r_num_pages; 1705 msg->hdr.data_len = cpu_to_le32(req->r_data_len); 1706 msg->hdr.data_off = cpu_to_le16(0); 1707 1708 out_free2: 1709 if (freepath2) 1710 kfree((char *)path2); 1711 out_free1: 1712 if (freepath1) 1713 kfree((char *)path1); 1714 out: 1715 return msg; 1716 } 1717 1718 /* 1719 * called under mdsc->mutex if error, under no mutex if 1720 * success. 1721 */ 1722 static void complete_request(struct ceph_mds_client *mdsc, 1723 struct ceph_mds_request *req) 1724 { 1725 if (req->r_callback) 1726 req->r_callback(mdsc, req); 1727 else 1728 complete_all(&req->r_completion); 1729 } 1730 1731 /* 1732 * called under mdsc->mutex 1733 */ 1734 static int __prepare_send_request(struct ceph_mds_client *mdsc, 1735 struct ceph_mds_request *req, 1736 int mds) 1737 { 1738 struct ceph_mds_request_head *rhead; 1739 struct ceph_msg *msg; 1740 int flags = 0; 1741 1742 req->r_attempts++; 1743 if (req->r_inode) { 1744 struct ceph_cap *cap = 1745 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 1746 1747 if (cap) 1748 req->r_sent_on_mseq = cap->mseq; 1749 else 1750 req->r_sent_on_mseq = -1; 1751 } 1752 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, 1753 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 1754 1755 if (req->r_got_unsafe) { 1756 /* 1757 * Replay. Do not regenerate message (and rebuild 1758 * paths, etc.); just use the original message. 1759 * Rebuilding paths will break for renames because 1760 * d_move mangles the src name. 1761 */ 1762 msg = req->r_request; 1763 rhead = msg->front.iov_base; 1764 1765 flags = le32_to_cpu(rhead->flags); 1766 flags |= CEPH_MDS_FLAG_REPLAY; 1767 rhead->flags = cpu_to_le32(flags); 1768 1769 if (req->r_target_inode) 1770 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 1771 1772 rhead->num_retry = req->r_attempts - 1; 1773 1774 /* remove cap/dentry releases from message */ 1775 rhead->num_releases = 0; 1776 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset); 1777 msg->front.iov_len = req->r_request_release_offset; 1778 return 0; 1779 } 1780 1781 if (req->r_request) { 1782 ceph_msg_put(req->r_request); 1783 req->r_request = NULL; 1784 } 1785 msg = create_request_message(mdsc, req, mds); 1786 if (IS_ERR(msg)) { 1787 req->r_err = PTR_ERR(msg); 1788 complete_request(mdsc, req); 1789 return PTR_ERR(msg); 1790 } 1791 req->r_request = msg; 1792 1793 rhead = msg->front.iov_base; 1794 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 1795 if (req->r_got_unsafe) 1796 flags |= CEPH_MDS_FLAG_REPLAY; 1797 if (req->r_locked_dir) 1798 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 1799 rhead->flags = cpu_to_le32(flags); 1800 rhead->num_fwd = req->r_num_fwd; 1801 rhead->num_retry = req->r_attempts - 1; 1802 rhead->ino = 0; 1803 1804 dout(" r_locked_dir = %p\n", req->r_locked_dir); 1805 return 0; 1806 } 1807 1808 /* 1809 * send request, or put it on the appropriate wait list. 1810 */ 1811 static int __do_request(struct ceph_mds_client *mdsc, 1812 struct ceph_mds_request *req) 1813 { 1814 struct ceph_mds_session *session = NULL; 1815 int mds = -1; 1816 int err = -EAGAIN; 1817 1818 if (req->r_err || req->r_got_result) 1819 goto out; 1820 1821 if (req->r_timeout && 1822 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 1823 dout("do_request timed out\n"); 1824 err = -EIO; 1825 goto finish; 1826 } 1827 1828 put_request_session(req); 1829 1830 mds = __choose_mds(mdsc, req); 1831 if (mds < 0 || 1832 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 1833 dout("do_request no mds or not active, waiting for map\n"); 1834 list_add(&req->r_wait, &mdsc->waiting_for_map); 1835 goto out; 1836 } 1837 1838 /* get, open session */ 1839 session = __ceph_lookup_mds_session(mdsc, mds); 1840 if (!session) { 1841 session = register_session(mdsc, mds); 1842 if (IS_ERR(session)) { 1843 err = PTR_ERR(session); 1844 goto finish; 1845 } 1846 } 1847 req->r_session = get_session(session); 1848 1849 dout("do_request mds%d session %p state %s\n", mds, session, 1850 session_state_name(session->s_state)); 1851 if (session->s_state != CEPH_MDS_SESSION_OPEN && 1852 session->s_state != CEPH_MDS_SESSION_HUNG) { 1853 if (session->s_state == CEPH_MDS_SESSION_NEW || 1854 session->s_state == CEPH_MDS_SESSION_CLOSING) 1855 __open_session(mdsc, session); 1856 list_add(&req->r_wait, &session->s_waiting); 1857 goto out_session; 1858 } 1859 1860 /* send request */ 1861 req->r_resend_mds = -1; /* forget any previous mds hint */ 1862 1863 if (req->r_request_started == 0) /* note request start time */ 1864 req->r_request_started = jiffies; 1865 1866 err = __prepare_send_request(mdsc, req, mds); 1867 if (!err) { 1868 ceph_msg_get(req->r_request); 1869 ceph_con_send(&session->s_con, req->r_request); 1870 } 1871 1872 out_session: 1873 ceph_put_mds_session(session); 1874 out: 1875 return err; 1876 1877 finish: 1878 req->r_err = err; 1879 complete_request(mdsc, req); 1880 goto out; 1881 } 1882 1883 /* 1884 * called under mdsc->mutex 1885 */ 1886 static void __wake_requests(struct ceph_mds_client *mdsc, 1887 struct list_head *head) 1888 { 1889 struct ceph_mds_request *req, *nreq; 1890 1891 list_for_each_entry_safe(req, nreq, head, r_wait) { 1892 list_del_init(&req->r_wait); 1893 __do_request(mdsc, req); 1894 } 1895 } 1896 1897 /* 1898 * Wake up threads with requests pending for @mds, so that they can 1899 * resubmit their requests to a possibly different mds. 1900 */ 1901 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 1902 { 1903 struct ceph_mds_request *req; 1904 struct rb_node *p; 1905 1906 dout("kick_requests mds%d\n", mds); 1907 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) { 1908 req = rb_entry(p, struct ceph_mds_request, r_node); 1909 if (req->r_got_unsafe) 1910 continue; 1911 if (req->r_session && 1912 req->r_session->s_mds == mds) { 1913 dout(" kicking tid %llu\n", req->r_tid); 1914 __do_request(mdsc, req); 1915 } 1916 } 1917 } 1918 1919 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, 1920 struct ceph_mds_request *req) 1921 { 1922 dout("submit_request on %p\n", req); 1923 mutex_lock(&mdsc->mutex); 1924 __register_request(mdsc, req, NULL); 1925 __do_request(mdsc, req); 1926 mutex_unlock(&mdsc->mutex); 1927 } 1928 1929 /* 1930 * Synchrously perform an mds request. Take care of all of the 1931 * session setup, forwarding, retry details. 1932 */ 1933 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 1934 struct inode *dir, 1935 struct ceph_mds_request *req) 1936 { 1937 int err; 1938 1939 dout("do_request on %p\n", req); 1940 1941 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */ 1942 if (req->r_inode) 1943 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 1944 if (req->r_locked_dir) 1945 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 1946 if (req->r_old_dentry) 1947 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 1948 CEPH_CAP_PIN); 1949 1950 /* issue */ 1951 mutex_lock(&mdsc->mutex); 1952 __register_request(mdsc, req, dir); 1953 __do_request(mdsc, req); 1954 1955 if (req->r_err) { 1956 err = req->r_err; 1957 __unregister_request(mdsc, req); 1958 dout("do_request early error %d\n", err); 1959 goto out; 1960 } 1961 1962 /* wait */ 1963 mutex_unlock(&mdsc->mutex); 1964 dout("do_request waiting\n"); 1965 if (req->r_timeout) { 1966 err = (long)wait_for_completion_killable_timeout( 1967 &req->r_completion, req->r_timeout); 1968 if (err == 0) 1969 err = -EIO; 1970 } else { 1971 err = wait_for_completion_killable(&req->r_completion); 1972 } 1973 dout("do_request waited, got %d\n", err); 1974 mutex_lock(&mdsc->mutex); 1975 1976 /* only abort if we didn't race with a real reply */ 1977 if (req->r_got_result) { 1978 err = le32_to_cpu(req->r_reply_info.head->result); 1979 } else if (err < 0) { 1980 dout("aborted request %lld with %d\n", req->r_tid, err); 1981 1982 /* 1983 * ensure we aren't running concurrently with 1984 * ceph_fill_trace or ceph_readdir_prepopulate, which 1985 * rely on locks (dir mutex) held by our caller. 1986 */ 1987 mutex_lock(&req->r_fill_mutex); 1988 req->r_err = err; 1989 req->r_aborted = true; 1990 mutex_unlock(&req->r_fill_mutex); 1991 1992 if (req->r_locked_dir && 1993 (req->r_op & CEPH_MDS_OP_WRITE)) 1994 ceph_invalidate_dir_request(req); 1995 } else { 1996 err = req->r_err; 1997 } 1998 1999 out: 2000 mutex_unlock(&mdsc->mutex); 2001 dout("do_request %p done, result %d\n", req, err); 2002 return err; 2003 } 2004 2005 /* 2006 * Invalidate dir D_COMPLETE, dentry lease state on an aborted MDS 2007 * namespace request. 2008 */ 2009 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 2010 { 2011 struct inode *inode = req->r_locked_dir; 2012 struct ceph_inode_info *ci = ceph_inode(inode); 2013 2014 dout("invalidate_dir_request %p (D_COMPLETE, lease(s))\n", inode); 2015 spin_lock(&ci->i_ceph_lock); 2016 ceph_dir_clear_complete(inode); 2017 ci->i_release_count++; 2018 spin_unlock(&ci->i_ceph_lock); 2019 2020 if (req->r_dentry) 2021 ceph_invalidate_dentry_lease(req->r_dentry); 2022 if (req->r_old_dentry) 2023 ceph_invalidate_dentry_lease(req->r_old_dentry); 2024 } 2025 2026 /* 2027 * Handle mds reply. 2028 * 2029 * We take the session mutex and parse and process the reply immediately. 2030 * This preserves the logical ordering of replies, capabilities, etc., sent 2031 * by the MDS as they are applied to our local cache. 2032 */ 2033 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 2034 { 2035 struct ceph_mds_client *mdsc = session->s_mdsc; 2036 struct ceph_mds_request *req; 2037 struct ceph_mds_reply_head *head = msg->front.iov_base; 2038 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 2039 u64 tid; 2040 int err, result; 2041 int mds = session->s_mds; 2042 2043 if (msg->front.iov_len < sizeof(*head)) { 2044 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 2045 ceph_msg_dump(msg); 2046 return; 2047 } 2048 2049 /* get request, session */ 2050 tid = le64_to_cpu(msg->hdr.tid); 2051 mutex_lock(&mdsc->mutex); 2052 req = __lookup_request(mdsc, tid); 2053 if (!req) { 2054 dout("handle_reply on unknown tid %llu\n", tid); 2055 mutex_unlock(&mdsc->mutex); 2056 return; 2057 } 2058 dout("handle_reply %p\n", req); 2059 2060 /* correct session? */ 2061 if (req->r_session != session) { 2062 pr_err("mdsc_handle_reply got %llu on session mds%d" 2063 " not mds%d\n", tid, session->s_mds, 2064 req->r_session ? req->r_session->s_mds : -1); 2065 mutex_unlock(&mdsc->mutex); 2066 goto out; 2067 } 2068 2069 /* dup? */ 2070 if ((req->r_got_unsafe && !head->safe) || 2071 (req->r_got_safe && head->safe)) { 2072 pr_warning("got a dup %s reply on %llu from mds%d\n", 2073 head->safe ? "safe" : "unsafe", tid, mds); 2074 mutex_unlock(&mdsc->mutex); 2075 goto out; 2076 } 2077 if (req->r_got_safe && !head->safe) { 2078 pr_warning("got unsafe after safe on %llu from mds%d\n", 2079 tid, mds); 2080 mutex_unlock(&mdsc->mutex); 2081 goto out; 2082 } 2083 2084 result = le32_to_cpu(head->result); 2085 2086 /* 2087 * Handle an ESTALE 2088 * if we're not talking to the authority, send to them 2089 * if the authority has changed while we weren't looking, 2090 * send to new authority 2091 * Otherwise we just have to return an ESTALE 2092 */ 2093 if (result == -ESTALE) { 2094 dout("got ESTALE on request %llu", req->r_tid); 2095 if (!req->r_inode) { 2096 /* do nothing; not an authority problem */ 2097 } else if (req->r_direct_mode != USE_AUTH_MDS) { 2098 dout("not using auth, setting for that now"); 2099 req->r_direct_mode = USE_AUTH_MDS; 2100 __do_request(mdsc, req); 2101 mutex_unlock(&mdsc->mutex); 2102 goto out; 2103 } else { 2104 struct ceph_inode_info *ci = ceph_inode(req->r_inode); 2105 struct ceph_cap *cap = NULL; 2106 2107 if (req->r_session) 2108 cap = ceph_get_cap_for_mds(ci, 2109 req->r_session->s_mds); 2110 2111 dout("already using auth"); 2112 if ((!cap || cap != ci->i_auth_cap) || 2113 (cap->mseq != req->r_sent_on_mseq)) { 2114 dout("but cap changed, so resending"); 2115 __do_request(mdsc, req); 2116 mutex_unlock(&mdsc->mutex); 2117 goto out; 2118 } 2119 } 2120 dout("have to return ESTALE on request %llu", req->r_tid); 2121 } 2122 2123 2124 if (head->safe) { 2125 req->r_got_safe = true; 2126 __unregister_request(mdsc, req); 2127 complete_all(&req->r_safe_completion); 2128 2129 if (req->r_got_unsafe) { 2130 /* 2131 * We already handled the unsafe response, now do the 2132 * cleanup. No need to examine the response; the MDS 2133 * doesn't include any result info in the safe 2134 * response. And even if it did, there is nothing 2135 * useful we could do with a revised return value. 2136 */ 2137 dout("got safe reply %llu, mds%d\n", tid, mds); 2138 list_del_init(&req->r_unsafe_item); 2139 2140 /* last unsafe request during umount? */ 2141 if (mdsc->stopping && !__get_oldest_req(mdsc)) 2142 complete_all(&mdsc->safe_umount_waiters); 2143 mutex_unlock(&mdsc->mutex); 2144 goto out; 2145 } 2146 } else { 2147 req->r_got_unsafe = true; 2148 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 2149 } 2150 2151 dout("handle_reply tid %lld result %d\n", tid, result); 2152 rinfo = &req->r_reply_info; 2153 err = parse_reply_info(msg, rinfo, session->s_con.peer_features); 2154 mutex_unlock(&mdsc->mutex); 2155 2156 mutex_lock(&session->s_mutex); 2157 if (err < 0) { 2158 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 2159 ceph_msg_dump(msg); 2160 goto out_err; 2161 } 2162 2163 /* snap trace */ 2164 if (rinfo->snapblob_len) { 2165 down_write(&mdsc->snap_rwsem); 2166 ceph_update_snap_trace(mdsc, rinfo->snapblob, 2167 rinfo->snapblob + rinfo->snapblob_len, 2168 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP); 2169 downgrade_write(&mdsc->snap_rwsem); 2170 } else { 2171 down_read(&mdsc->snap_rwsem); 2172 } 2173 2174 /* insert trace into our cache */ 2175 mutex_lock(&req->r_fill_mutex); 2176 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session); 2177 if (err == 0) { 2178 if (result == 0 && req->r_op != CEPH_MDS_OP_GETFILELOCK && 2179 rinfo->dir_nr) 2180 ceph_readdir_prepopulate(req, req->r_session); 2181 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 2182 } 2183 mutex_unlock(&req->r_fill_mutex); 2184 2185 up_read(&mdsc->snap_rwsem); 2186 out_err: 2187 mutex_lock(&mdsc->mutex); 2188 if (!req->r_aborted) { 2189 if (err) { 2190 req->r_err = err; 2191 } else { 2192 req->r_reply = msg; 2193 ceph_msg_get(msg); 2194 req->r_got_result = true; 2195 } 2196 } else { 2197 dout("reply arrived after request %lld was aborted\n", tid); 2198 } 2199 mutex_unlock(&mdsc->mutex); 2200 2201 ceph_add_cap_releases(mdsc, req->r_session); 2202 mutex_unlock(&session->s_mutex); 2203 2204 /* kick calling process */ 2205 complete_request(mdsc, req); 2206 out: 2207 ceph_mdsc_put_request(req); 2208 return; 2209 } 2210 2211 2212 2213 /* 2214 * handle mds notification that our request has been forwarded. 2215 */ 2216 static void handle_forward(struct ceph_mds_client *mdsc, 2217 struct ceph_mds_session *session, 2218 struct ceph_msg *msg) 2219 { 2220 struct ceph_mds_request *req; 2221 u64 tid = le64_to_cpu(msg->hdr.tid); 2222 u32 next_mds; 2223 u32 fwd_seq; 2224 int err = -EINVAL; 2225 void *p = msg->front.iov_base; 2226 void *end = p + msg->front.iov_len; 2227 2228 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 2229 next_mds = ceph_decode_32(&p); 2230 fwd_seq = ceph_decode_32(&p); 2231 2232 mutex_lock(&mdsc->mutex); 2233 req = __lookup_request(mdsc, tid); 2234 if (!req) { 2235 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 2236 goto out; /* dup reply? */ 2237 } 2238 2239 if (req->r_aborted) { 2240 dout("forward tid %llu aborted, unregistering\n", tid); 2241 __unregister_request(mdsc, req); 2242 } else if (fwd_seq <= req->r_num_fwd) { 2243 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 2244 tid, next_mds, req->r_num_fwd, fwd_seq); 2245 } else { 2246 /* resend. forward race not possible; mds would drop */ 2247 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 2248 BUG_ON(req->r_err); 2249 BUG_ON(req->r_got_result); 2250 req->r_num_fwd = fwd_seq; 2251 req->r_resend_mds = next_mds; 2252 put_request_session(req); 2253 __do_request(mdsc, req); 2254 } 2255 ceph_mdsc_put_request(req); 2256 out: 2257 mutex_unlock(&mdsc->mutex); 2258 return; 2259 2260 bad: 2261 pr_err("mdsc_handle_forward decode error err=%d\n", err); 2262 } 2263 2264 /* 2265 * handle a mds session control message 2266 */ 2267 static void handle_session(struct ceph_mds_session *session, 2268 struct ceph_msg *msg) 2269 { 2270 struct ceph_mds_client *mdsc = session->s_mdsc; 2271 u32 op; 2272 u64 seq; 2273 int mds = session->s_mds; 2274 struct ceph_mds_session_head *h = msg->front.iov_base; 2275 int wake = 0; 2276 2277 /* decode */ 2278 if (msg->front.iov_len != sizeof(*h)) 2279 goto bad; 2280 op = le32_to_cpu(h->op); 2281 seq = le64_to_cpu(h->seq); 2282 2283 mutex_lock(&mdsc->mutex); 2284 if (op == CEPH_SESSION_CLOSE) 2285 __unregister_session(mdsc, session); 2286 /* FIXME: this ttl calculation is generous */ 2287 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 2288 mutex_unlock(&mdsc->mutex); 2289 2290 mutex_lock(&session->s_mutex); 2291 2292 dout("handle_session mds%d %s %p state %s seq %llu\n", 2293 mds, ceph_session_op_name(op), session, 2294 session_state_name(session->s_state), seq); 2295 2296 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 2297 session->s_state = CEPH_MDS_SESSION_OPEN; 2298 pr_info("mds%d came back\n", session->s_mds); 2299 } 2300 2301 switch (op) { 2302 case CEPH_SESSION_OPEN: 2303 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2304 pr_info("mds%d reconnect success\n", session->s_mds); 2305 session->s_state = CEPH_MDS_SESSION_OPEN; 2306 renewed_caps(mdsc, session, 0); 2307 wake = 1; 2308 if (mdsc->stopping) 2309 __close_session(mdsc, session); 2310 break; 2311 2312 case CEPH_SESSION_RENEWCAPS: 2313 if (session->s_renew_seq == seq) 2314 renewed_caps(mdsc, session, 1); 2315 break; 2316 2317 case CEPH_SESSION_CLOSE: 2318 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2319 pr_info("mds%d reconnect denied\n", session->s_mds); 2320 remove_session_caps(session); 2321 wake = 1; /* for good measure */ 2322 wake_up_all(&mdsc->session_close_wq); 2323 kick_requests(mdsc, mds); 2324 break; 2325 2326 case CEPH_SESSION_STALE: 2327 pr_info("mds%d caps went stale, renewing\n", 2328 session->s_mds); 2329 spin_lock(&session->s_cap_lock); 2330 session->s_cap_gen++; 2331 session->s_cap_ttl = 0; 2332 spin_unlock(&session->s_cap_lock); 2333 send_renew_caps(mdsc, session); 2334 break; 2335 2336 case CEPH_SESSION_RECALL_STATE: 2337 trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 2338 break; 2339 2340 default: 2341 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 2342 WARN_ON(1); 2343 } 2344 2345 mutex_unlock(&session->s_mutex); 2346 if (wake) { 2347 mutex_lock(&mdsc->mutex); 2348 __wake_requests(mdsc, &session->s_waiting); 2349 mutex_unlock(&mdsc->mutex); 2350 } 2351 return; 2352 2353 bad: 2354 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 2355 (int)msg->front.iov_len); 2356 ceph_msg_dump(msg); 2357 return; 2358 } 2359 2360 2361 /* 2362 * called under session->mutex. 2363 */ 2364 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 2365 struct ceph_mds_session *session) 2366 { 2367 struct ceph_mds_request *req, *nreq; 2368 int err; 2369 2370 dout("replay_unsafe_requests mds%d\n", session->s_mds); 2371 2372 mutex_lock(&mdsc->mutex); 2373 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) { 2374 err = __prepare_send_request(mdsc, req, session->s_mds); 2375 if (!err) { 2376 ceph_msg_get(req->r_request); 2377 ceph_con_send(&session->s_con, req->r_request); 2378 } 2379 } 2380 mutex_unlock(&mdsc->mutex); 2381 } 2382 2383 /* 2384 * Encode information about a cap for a reconnect with the MDS. 2385 */ 2386 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap, 2387 void *arg) 2388 { 2389 union { 2390 struct ceph_mds_cap_reconnect v2; 2391 struct ceph_mds_cap_reconnect_v1 v1; 2392 } rec; 2393 size_t reclen; 2394 struct ceph_inode_info *ci; 2395 struct ceph_reconnect_state *recon_state = arg; 2396 struct ceph_pagelist *pagelist = recon_state->pagelist; 2397 char *path; 2398 int pathlen, err; 2399 u64 pathbase; 2400 struct dentry *dentry; 2401 2402 ci = cap->ci; 2403 2404 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 2405 inode, ceph_vinop(inode), cap, cap->cap_id, 2406 ceph_cap_string(cap->issued)); 2407 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 2408 if (err) 2409 return err; 2410 2411 dentry = d_find_alias(inode); 2412 if (dentry) { 2413 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0); 2414 if (IS_ERR(path)) { 2415 err = PTR_ERR(path); 2416 goto out_dput; 2417 } 2418 } else { 2419 path = NULL; 2420 pathlen = 0; 2421 } 2422 err = ceph_pagelist_encode_string(pagelist, path, pathlen); 2423 if (err) 2424 goto out_free; 2425 2426 spin_lock(&ci->i_ceph_lock); 2427 cap->seq = 0; /* reset cap seq */ 2428 cap->issue_seq = 0; /* and issue_seq */ 2429 2430 if (recon_state->flock) { 2431 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 2432 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2433 rec.v2.issued = cpu_to_le32(cap->issued); 2434 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2435 rec.v2.pathbase = cpu_to_le64(pathbase); 2436 rec.v2.flock_len = 0; 2437 reclen = sizeof(rec.v2); 2438 } else { 2439 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 2440 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2441 rec.v1.issued = cpu_to_le32(cap->issued); 2442 rec.v1.size = cpu_to_le64(inode->i_size); 2443 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime); 2444 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime); 2445 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2446 rec.v1.pathbase = cpu_to_le64(pathbase); 2447 reclen = sizeof(rec.v1); 2448 } 2449 spin_unlock(&ci->i_ceph_lock); 2450 2451 if (recon_state->flock) { 2452 int num_fcntl_locks, num_flock_locks; 2453 struct ceph_pagelist_cursor trunc_point; 2454 2455 ceph_pagelist_set_cursor(pagelist, &trunc_point); 2456 do { 2457 lock_flocks(); 2458 ceph_count_locks(inode, &num_fcntl_locks, 2459 &num_flock_locks); 2460 rec.v2.flock_len = (2*sizeof(u32) + 2461 (num_fcntl_locks+num_flock_locks) * 2462 sizeof(struct ceph_filelock)); 2463 unlock_flocks(); 2464 2465 /* pre-alloc pagelist */ 2466 ceph_pagelist_truncate(pagelist, &trunc_point); 2467 err = ceph_pagelist_append(pagelist, &rec, reclen); 2468 if (!err) 2469 err = ceph_pagelist_reserve(pagelist, 2470 rec.v2.flock_len); 2471 2472 /* encode locks */ 2473 if (!err) { 2474 lock_flocks(); 2475 err = ceph_encode_locks(inode, 2476 pagelist, 2477 num_fcntl_locks, 2478 num_flock_locks); 2479 unlock_flocks(); 2480 } 2481 } while (err == -ENOSPC); 2482 } else { 2483 err = ceph_pagelist_append(pagelist, &rec, reclen); 2484 } 2485 2486 out_free: 2487 kfree(path); 2488 out_dput: 2489 dput(dentry); 2490 return err; 2491 } 2492 2493 2494 /* 2495 * If an MDS fails and recovers, clients need to reconnect in order to 2496 * reestablish shared state. This includes all caps issued through 2497 * this session _and_ the snap_realm hierarchy. Because it's not 2498 * clear which snap realms the mds cares about, we send everything we 2499 * know about.. that ensures we'll then get any new info the 2500 * recovering MDS might have. 2501 * 2502 * This is a relatively heavyweight operation, but it's rare. 2503 * 2504 * called with mdsc->mutex held. 2505 */ 2506 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 2507 struct ceph_mds_session *session) 2508 { 2509 struct ceph_msg *reply; 2510 struct rb_node *p; 2511 int mds = session->s_mds; 2512 int err = -ENOMEM; 2513 struct ceph_pagelist *pagelist; 2514 struct ceph_reconnect_state recon_state; 2515 2516 pr_info("mds%d reconnect start\n", mds); 2517 2518 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS); 2519 if (!pagelist) 2520 goto fail_nopagelist; 2521 ceph_pagelist_init(pagelist); 2522 2523 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false); 2524 if (!reply) 2525 goto fail_nomsg; 2526 2527 mutex_lock(&session->s_mutex); 2528 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 2529 session->s_seq = 0; 2530 2531 ceph_con_open(&session->s_con, 2532 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 2533 2534 /* replay unsafe requests */ 2535 replay_unsafe_requests(mdsc, session); 2536 2537 down_read(&mdsc->snap_rwsem); 2538 2539 dout("session %p state %s\n", session, 2540 session_state_name(session->s_state)); 2541 2542 /* drop old cap expires; we're about to reestablish that state */ 2543 discard_cap_releases(mdsc, session); 2544 2545 /* traverse this session's caps */ 2546 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps); 2547 if (err) 2548 goto fail; 2549 2550 recon_state.pagelist = pagelist; 2551 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK; 2552 err = iterate_session_caps(session, encode_caps_cb, &recon_state); 2553 if (err < 0) 2554 goto fail; 2555 2556 /* 2557 * snaprealms. we provide mds with the ino, seq (version), and 2558 * parent for all of our realms. If the mds has any newer info, 2559 * it will tell us. 2560 */ 2561 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 2562 struct ceph_snap_realm *realm = 2563 rb_entry(p, struct ceph_snap_realm, node); 2564 struct ceph_mds_snaprealm_reconnect sr_rec; 2565 2566 dout(" adding snap realm %llx seq %lld parent %llx\n", 2567 realm->ino, realm->seq, realm->parent_ino); 2568 sr_rec.ino = cpu_to_le64(realm->ino); 2569 sr_rec.seq = cpu_to_le64(realm->seq); 2570 sr_rec.parent = cpu_to_le64(realm->parent_ino); 2571 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 2572 if (err) 2573 goto fail; 2574 } 2575 2576 reply->pagelist = pagelist; 2577 if (recon_state.flock) 2578 reply->hdr.version = cpu_to_le16(2); 2579 reply->hdr.data_len = cpu_to_le32(pagelist->length); 2580 reply->nr_pages = calc_pages_for(0, pagelist->length); 2581 ceph_con_send(&session->s_con, reply); 2582 2583 mutex_unlock(&session->s_mutex); 2584 2585 mutex_lock(&mdsc->mutex); 2586 __wake_requests(mdsc, &session->s_waiting); 2587 mutex_unlock(&mdsc->mutex); 2588 2589 up_read(&mdsc->snap_rwsem); 2590 return; 2591 2592 fail: 2593 ceph_msg_put(reply); 2594 up_read(&mdsc->snap_rwsem); 2595 mutex_unlock(&session->s_mutex); 2596 fail_nomsg: 2597 ceph_pagelist_release(pagelist); 2598 kfree(pagelist); 2599 fail_nopagelist: 2600 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 2601 return; 2602 } 2603 2604 2605 /* 2606 * compare old and new mdsmaps, kicking requests 2607 * and closing out old connections as necessary 2608 * 2609 * called under mdsc->mutex. 2610 */ 2611 static void check_new_map(struct ceph_mds_client *mdsc, 2612 struct ceph_mdsmap *newmap, 2613 struct ceph_mdsmap *oldmap) 2614 { 2615 int i; 2616 int oldstate, newstate; 2617 struct ceph_mds_session *s; 2618 2619 dout("check_new_map new %u old %u\n", 2620 newmap->m_epoch, oldmap->m_epoch); 2621 2622 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) { 2623 if (mdsc->sessions[i] == NULL) 2624 continue; 2625 s = mdsc->sessions[i]; 2626 oldstate = ceph_mdsmap_get_state(oldmap, i); 2627 newstate = ceph_mdsmap_get_state(newmap, i); 2628 2629 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 2630 i, ceph_mds_state_name(oldstate), 2631 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 2632 ceph_mds_state_name(newstate), 2633 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 2634 session_state_name(s->s_state)); 2635 2636 if (memcmp(ceph_mdsmap_get_addr(oldmap, i), 2637 ceph_mdsmap_get_addr(newmap, i), 2638 sizeof(struct ceph_entity_addr))) { 2639 if (s->s_state == CEPH_MDS_SESSION_OPENING) { 2640 /* the session never opened, just close it 2641 * out now */ 2642 __wake_requests(mdsc, &s->s_waiting); 2643 __unregister_session(mdsc, s); 2644 } else { 2645 /* just close it */ 2646 mutex_unlock(&mdsc->mutex); 2647 mutex_lock(&s->s_mutex); 2648 mutex_lock(&mdsc->mutex); 2649 ceph_con_close(&s->s_con); 2650 mutex_unlock(&s->s_mutex); 2651 s->s_state = CEPH_MDS_SESSION_RESTARTING; 2652 } 2653 2654 /* kick any requests waiting on the recovering mds */ 2655 kick_requests(mdsc, i); 2656 } else if (oldstate == newstate) { 2657 continue; /* nothing new with this mds */ 2658 } 2659 2660 /* 2661 * send reconnect? 2662 */ 2663 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 2664 newstate >= CEPH_MDS_STATE_RECONNECT) { 2665 mutex_unlock(&mdsc->mutex); 2666 send_mds_reconnect(mdsc, s); 2667 mutex_lock(&mdsc->mutex); 2668 } 2669 2670 /* 2671 * kick request on any mds that has gone active. 2672 */ 2673 if (oldstate < CEPH_MDS_STATE_ACTIVE && 2674 newstate >= CEPH_MDS_STATE_ACTIVE) { 2675 if (oldstate != CEPH_MDS_STATE_CREATING && 2676 oldstate != CEPH_MDS_STATE_STARTING) 2677 pr_info("mds%d recovery completed\n", s->s_mds); 2678 kick_requests(mdsc, i); 2679 ceph_kick_flushing_caps(mdsc, s); 2680 wake_up_session_caps(s, 1); 2681 } 2682 } 2683 2684 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) { 2685 s = mdsc->sessions[i]; 2686 if (!s) 2687 continue; 2688 if (!ceph_mdsmap_is_laggy(newmap, i)) 2689 continue; 2690 if (s->s_state == CEPH_MDS_SESSION_OPEN || 2691 s->s_state == CEPH_MDS_SESSION_HUNG || 2692 s->s_state == CEPH_MDS_SESSION_CLOSING) { 2693 dout(" connecting to export targets of laggy mds%d\n", 2694 i); 2695 __open_export_target_sessions(mdsc, s); 2696 } 2697 } 2698 } 2699 2700 2701 2702 /* 2703 * leases 2704 */ 2705 2706 /* 2707 * caller must hold session s_mutex, dentry->d_lock 2708 */ 2709 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 2710 { 2711 struct ceph_dentry_info *di = ceph_dentry(dentry); 2712 2713 ceph_put_mds_session(di->lease_session); 2714 di->lease_session = NULL; 2715 } 2716 2717 static void handle_lease(struct ceph_mds_client *mdsc, 2718 struct ceph_mds_session *session, 2719 struct ceph_msg *msg) 2720 { 2721 struct super_block *sb = mdsc->fsc->sb; 2722 struct inode *inode; 2723 struct dentry *parent, *dentry; 2724 struct ceph_dentry_info *di; 2725 int mds = session->s_mds; 2726 struct ceph_mds_lease *h = msg->front.iov_base; 2727 u32 seq; 2728 struct ceph_vino vino; 2729 struct qstr dname; 2730 int release = 0; 2731 2732 dout("handle_lease from mds%d\n", mds); 2733 2734 /* decode */ 2735 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 2736 goto bad; 2737 vino.ino = le64_to_cpu(h->ino); 2738 vino.snap = CEPH_NOSNAP; 2739 seq = le32_to_cpu(h->seq); 2740 dname.name = (void *)h + sizeof(*h) + sizeof(u32); 2741 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32); 2742 if (dname.len != get_unaligned_le32(h+1)) 2743 goto bad; 2744 2745 mutex_lock(&session->s_mutex); 2746 session->s_seq++; 2747 2748 /* lookup inode */ 2749 inode = ceph_find_inode(sb, vino); 2750 dout("handle_lease %s, ino %llx %p %.*s\n", 2751 ceph_lease_op_name(h->action), vino.ino, inode, 2752 dname.len, dname.name); 2753 if (inode == NULL) { 2754 dout("handle_lease no inode %llx\n", vino.ino); 2755 goto release; 2756 } 2757 2758 /* dentry */ 2759 parent = d_find_alias(inode); 2760 if (!parent) { 2761 dout("no parent dentry on inode %p\n", inode); 2762 WARN_ON(1); 2763 goto release; /* hrm... */ 2764 } 2765 dname.hash = full_name_hash(dname.name, dname.len); 2766 dentry = d_lookup(parent, &dname); 2767 dput(parent); 2768 if (!dentry) 2769 goto release; 2770 2771 spin_lock(&dentry->d_lock); 2772 di = ceph_dentry(dentry); 2773 switch (h->action) { 2774 case CEPH_MDS_LEASE_REVOKE: 2775 if (di->lease_session == session) { 2776 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 2777 h->seq = cpu_to_le32(di->lease_seq); 2778 __ceph_mdsc_drop_dentry_lease(dentry); 2779 } 2780 release = 1; 2781 break; 2782 2783 case CEPH_MDS_LEASE_RENEW: 2784 if (di->lease_session == session && 2785 di->lease_gen == session->s_cap_gen && 2786 di->lease_renew_from && 2787 di->lease_renew_after == 0) { 2788 unsigned long duration = 2789 le32_to_cpu(h->duration_ms) * HZ / 1000; 2790 2791 di->lease_seq = seq; 2792 dentry->d_time = di->lease_renew_from + duration; 2793 di->lease_renew_after = di->lease_renew_from + 2794 (duration >> 1); 2795 di->lease_renew_from = 0; 2796 } 2797 break; 2798 } 2799 spin_unlock(&dentry->d_lock); 2800 dput(dentry); 2801 2802 if (!release) 2803 goto out; 2804 2805 release: 2806 /* let's just reuse the same message */ 2807 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 2808 ceph_msg_get(msg); 2809 ceph_con_send(&session->s_con, msg); 2810 2811 out: 2812 iput(inode); 2813 mutex_unlock(&session->s_mutex); 2814 return; 2815 2816 bad: 2817 pr_err("corrupt lease message\n"); 2818 ceph_msg_dump(msg); 2819 } 2820 2821 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 2822 struct inode *inode, 2823 struct dentry *dentry, char action, 2824 u32 seq) 2825 { 2826 struct ceph_msg *msg; 2827 struct ceph_mds_lease *lease; 2828 int len = sizeof(*lease) + sizeof(u32); 2829 int dnamelen = 0; 2830 2831 dout("lease_send_msg inode %p dentry %p %s to mds%d\n", 2832 inode, dentry, ceph_lease_op_name(action), session->s_mds); 2833 dnamelen = dentry->d_name.len; 2834 len += dnamelen; 2835 2836 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 2837 if (!msg) 2838 return; 2839 lease = msg->front.iov_base; 2840 lease->action = action; 2841 lease->ino = cpu_to_le64(ceph_vino(inode).ino); 2842 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap); 2843 lease->seq = cpu_to_le32(seq); 2844 put_unaligned_le32(dnamelen, lease + 1); 2845 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen); 2846 2847 /* 2848 * if this is a preemptive lease RELEASE, no need to 2849 * flush request stream, since the actual request will 2850 * soon follow. 2851 */ 2852 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); 2853 2854 ceph_con_send(&session->s_con, msg); 2855 } 2856 2857 /* 2858 * Preemptively release a lease we expect to invalidate anyway. 2859 * Pass @inode always, @dentry is optional. 2860 */ 2861 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode, 2862 struct dentry *dentry) 2863 { 2864 struct ceph_dentry_info *di; 2865 struct ceph_mds_session *session; 2866 u32 seq; 2867 2868 BUG_ON(inode == NULL); 2869 BUG_ON(dentry == NULL); 2870 2871 /* is dentry lease valid? */ 2872 spin_lock(&dentry->d_lock); 2873 di = ceph_dentry(dentry); 2874 if (!di || !di->lease_session || 2875 di->lease_session->s_mds < 0 || 2876 di->lease_gen != di->lease_session->s_cap_gen || 2877 !time_before(jiffies, dentry->d_time)) { 2878 dout("lease_release inode %p dentry %p -- " 2879 "no lease\n", 2880 inode, dentry); 2881 spin_unlock(&dentry->d_lock); 2882 return; 2883 } 2884 2885 /* we do have a lease on this dentry; note mds and seq */ 2886 session = ceph_get_mds_session(di->lease_session); 2887 seq = di->lease_seq; 2888 __ceph_mdsc_drop_dentry_lease(dentry); 2889 spin_unlock(&dentry->d_lock); 2890 2891 dout("lease_release inode %p dentry %p to mds%d\n", 2892 inode, dentry, session->s_mds); 2893 ceph_mdsc_lease_send_msg(session, inode, dentry, 2894 CEPH_MDS_LEASE_RELEASE, seq); 2895 ceph_put_mds_session(session); 2896 } 2897 2898 /* 2899 * drop all leases (and dentry refs) in preparation for umount 2900 */ 2901 static void drop_leases(struct ceph_mds_client *mdsc) 2902 { 2903 int i; 2904 2905 dout("drop_leases\n"); 2906 mutex_lock(&mdsc->mutex); 2907 for (i = 0; i < mdsc->max_sessions; i++) { 2908 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 2909 if (!s) 2910 continue; 2911 mutex_unlock(&mdsc->mutex); 2912 mutex_lock(&s->s_mutex); 2913 mutex_unlock(&s->s_mutex); 2914 ceph_put_mds_session(s); 2915 mutex_lock(&mdsc->mutex); 2916 } 2917 mutex_unlock(&mdsc->mutex); 2918 } 2919 2920 2921 2922 /* 2923 * delayed work -- periodically trim expired leases, renew caps with mds 2924 */ 2925 static void schedule_delayed(struct ceph_mds_client *mdsc) 2926 { 2927 int delay = 5; 2928 unsigned hz = round_jiffies_relative(HZ * delay); 2929 schedule_delayed_work(&mdsc->delayed_work, hz); 2930 } 2931 2932 static void delayed_work(struct work_struct *work) 2933 { 2934 int i; 2935 struct ceph_mds_client *mdsc = 2936 container_of(work, struct ceph_mds_client, delayed_work.work); 2937 int renew_interval; 2938 int renew_caps; 2939 2940 dout("mdsc delayed_work\n"); 2941 ceph_check_delayed_caps(mdsc); 2942 2943 mutex_lock(&mdsc->mutex); 2944 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 2945 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 2946 mdsc->last_renew_caps); 2947 if (renew_caps) 2948 mdsc->last_renew_caps = jiffies; 2949 2950 for (i = 0; i < mdsc->max_sessions; i++) { 2951 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 2952 if (s == NULL) 2953 continue; 2954 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 2955 dout("resending session close request for mds%d\n", 2956 s->s_mds); 2957 request_close_session(mdsc, s); 2958 ceph_put_mds_session(s); 2959 continue; 2960 } 2961 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 2962 if (s->s_state == CEPH_MDS_SESSION_OPEN) { 2963 s->s_state = CEPH_MDS_SESSION_HUNG; 2964 pr_info("mds%d hung\n", s->s_mds); 2965 } 2966 } 2967 if (s->s_state < CEPH_MDS_SESSION_OPEN) { 2968 /* this mds is failed or recovering, just wait */ 2969 ceph_put_mds_session(s); 2970 continue; 2971 } 2972 mutex_unlock(&mdsc->mutex); 2973 2974 mutex_lock(&s->s_mutex); 2975 if (renew_caps) 2976 send_renew_caps(mdsc, s); 2977 else 2978 ceph_con_keepalive(&s->s_con); 2979 ceph_add_cap_releases(mdsc, s); 2980 if (s->s_state == CEPH_MDS_SESSION_OPEN || 2981 s->s_state == CEPH_MDS_SESSION_HUNG) 2982 ceph_send_cap_releases(mdsc, s); 2983 mutex_unlock(&s->s_mutex); 2984 ceph_put_mds_session(s); 2985 2986 mutex_lock(&mdsc->mutex); 2987 } 2988 mutex_unlock(&mdsc->mutex); 2989 2990 schedule_delayed(mdsc); 2991 } 2992 2993 int ceph_mdsc_init(struct ceph_fs_client *fsc) 2994 2995 { 2996 struct ceph_mds_client *mdsc; 2997 2998 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 2999 if (!mdsc) 3000 return -ENOMEM; 3001 mdsc->fsc = fsc; 3002 fsc->mdsc = mdsc; 3003 mutex_init(&mdsc->mutex); 3004 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 3005 if (mdsc->mdsmap == NULL) 3006 return -ENOMEM; 3007 3008 init_completion(&mdsc->safe_umount_waiters); 3009 init_waitqueue_head(&mdsc->session_close_wq); 3010 INIT_LIST_HEAD(&mdsc->waiting_for_map); 3011 mdsc->sessions = NULL; 3012 mdsc->max_sessions = 0; 3013 mdsc->stopping = 0; 3014 init_rwsem(&mdsc->snap_rwsem); 3015 mdsc->snap_realms = RB_ROOT; 3016 INIT_LIST_HEAD(&mdsc->snap_empty); 3017 spin_lock_init(&mdsc->snap_empty_lock); 3018 mdsc->last_tid = 0; 3019 mdsc->request_tree = RB_ROOT; 3020 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 3021 mdsc->last_renew_caps = jiffies; 3022 INIT_LIST_HEAD(&mdsc->cap_delay_list); 3023 spin_lock_init(&mdsc->cap_delay_lock); 3024 INIT_LIST_HEAD(&mdsc->snap_flush_list); 3025 spin_lock_init(&mdsc->snap_flush_lock); 3026 mdsc->cap_flush_seq = 0; 3027 INIT_LIST_HEAD(&mdsc->cap_dirty); 3028 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 3029 mdsc->num_cap_flushing = 0; 3030 spin_lock_init(&mdsc->cap_dirty_lock); 3031 init_waitqueue_head(&mdsc->cap_flushing_wq); 3032 spin_lock_init(&mdsc->dentry_lru_lock); 3033 INIT_LIST_HEAD(&mdsc->dentry_lru); 3034 3035 ceph_caps_init(mdsc); 3036 ceph_adjust_min_caps(mdsc, fsc->min_caps); 3037 3038 return 0; 3039 } 3040 3041 /* 3042 * Wait for safe replies on open mds requests. If we time out, drop 3043 * all requests from the tree to avoid dangling dentry refs. 3044 */ 3045 static void wait_requests(struct ceph_mds_client *mdsc) 3046 { 3047 struct ceph_mds_request *req; 3048 struct ceph_fs_client *fsc = mdsc->fsc; 3049 3050 mutex_lock(&mdsc->mutex); 3051 if (__get_oldest_req(mdsc)) { 3052 mutex_unlock(&mdsc->mutex); 3053 3054 dout("wait_requests waiting for requests\n"); 3055 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 3056 fsc->client->options->mount_timeout * HZ); 3057 3058 /* tear down remaining requests */ 3059 mutex_lock(&mdsc->mutex); 3060 while ((req = __get_oldest_req(mdsc))) { 3061 dout("wait_requests timed out on tid %llu\n", 3062 req->r_tid); 3063 __unregister_request(mdsc, req); 3064 } 3065 } 3066 mutex_unlock(&mdsc->mutex); 3067 dout("wait_requests done\n"); 3068 } 3069 3070 /* 3071 * called before mount is ro, and before dentries are torn down. 3072 * (hmm, does this still race with new lookups?) 3073 */ 3074 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 3075 { 3076 dout("pre_umount\n"); 3077 mdsc->stopping = 1; 3078 3079 drop_leases(mdsc); 3080 ceph_flush_dirty_caps(mdsc); 3081 wait_requests(mdsc); 3082 3083 /* 3084 * wait for reply handlers to drop their request refs and 3085 * their inode/dcache refs 3086 */ 3087 ceph_msgr_flush(); 3088 } 3089 3090 /* 3091 * wait for all write mds requests to flush. 3092 */ 3093 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) 3094 { 3095 struct ceph_mds_request *req = NULL, *nextreq; 3096 struct rb_node *n; 3097 3098 mutex_lock(&mdsc->mutex); 3099 dout("wait_unsafe_requests want %lld\n", want_tid); 3100 restart: 3101 req = __get_oldest_req(mdsc); 3102 while (req && req->r_tid <= want_tid) { 3103 /* find next request */ 3104 n = rb_next(&req->r_node); 3105 if (n) 3106 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 3107 else 3108 nextreq = NULL; 3109 if ((req->r_op & CEPH_MDS_OP_WRITE)) { 3110 /* write op */ 3111 ceph_mdsc_get_request(req); 3112 if (nextreq) 3113 ceph_mdsc_get_request(nextreq); 3114 mutex_unlock(&mdsc->mutex); 3115 dout("wait_unsafe_requests wait on %llu (want %llu)\n", 3116 req->r_tid, want_tid); 3117 wait_for_completion(&req->r_safe_completion); 3118 mutex_lock(&mdsc->mutex); 3119 ceph_mdsc_put_request(req); 3120 if (!nextreq) 3121 break; /* next dne before, so we're done! */ 3122 if (RB_EMPTY_NODE(&nextreq->r_node)) { 3123 /* next request was removed from tree */ 3124 ceph_mdsc_put_request(nextreq); 3125 goto restart; 3126 } 3127 ceph_mdsc_put_request(nextreq); /* won't go away */ 3128 } 3129 req = nextreq; 3130 } 3131 mutex_unlock(&mdsc->mutex); 3132 dout("wait_unsafe_requests done\n"); 3133 } 3134 3135 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 3136 { 3137 u64 want_tid, want_flush; 3138 3139 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3140 return; 3141 3142 dout("sync\n"); 3143 mutex_lock(&mdsc->mutex); 3144 want_tid = mdsc->last_tid; 3145 want_flush = mdsc->cap_flush_seq; 3146 mutex_unlock(&mdsc->mutex); 3147 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush); 3148 3149 ceph_flush_dirty_caps(mdsc); 3150 3151 wait_unsafe_requests(mdsc, want_tid); 3152 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush)); 3153 } 3154 3155 /* 3156 * true if all sessions are closed, or we force unmount 3157 */ 3158 static bool done_closing_sessions(struct ceph_mds_client *mdsc) 3159 { 3160 int i, n = 0; 3161 3162 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3163 return true; 3164 3165 mutex_lock(&mdsc->mutex); 3166 for (i = 0; i < mdsc->max_sessions; i++) 3167 if (mdsc->sessions[i]) 3168 n++; 3169 mutex_unlock(&mdsc->mutex); 3170 return n == 0; 3171 } 3172 3173 /* 3174 * called after sb is ro. 3175 */ 3176 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 3177 { 3178 struct ceph_mds_session *session; 3179 int i; 3180 struct ceph_fs_client *fsc = mdsc->fsc; 3181 unsigned long timeout = fsc->client->options->mount_timeout * HZ; 3182 3183 dout("close_sessions\n"); 3184 3185 /* close sessions */ 3186 mutex_lock(&mdsc->mutex); 3187 for (i = 0; i < mdsc->max_sessions; i++) { 3188 session = __ceph_lookup_mds_session(mdsc, i); 3189 if (!session) 3190 continue; 3191 mutex_unlock(&mdsc->mutex); 3192 mutex_lock(&session->s_mutex); 3193 __close_session(mdsc, session); 3194 mutex_unlock(&session->s_mutex); 3195 ceph_put_mds_session(session); 3196 mutex_lock(&mdsc->mutex); 3197 } 3198 mutex_unlock(&mdsc->mutex); 3199 3200 dout("waiting for sessions to close\n"); 3201 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc), 3202 timeout); 3203 3204 /* tear down remaining sessions */ 3205 mutex_lock(&mdsc->mutex); 3206 for (i = 0; i < mdsc->max_sessions; i++) { 3207 if (mdsc->sessions[i]) { 3208 session = get_session(mdsc->sessions[i]); 3209 __unregister_session(mdsc, session); 3210 mutex_unlock(&mdsc->mutex); 3211 mutex_lock(&session->s_mutex); 3212 remove_session_caps(session); 3213 mutex_unlock(&session->s_mutex); 3214 ceph_put_mds_session(session); 3215 mutex_lock(&mdsc->mutex); 3216 } 3217 } 3218 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 3219 mutex_unlock(&mdsc->mutex); 3220 3221 ceph_cleanup_empty_realms(mdsc); 3222 3223 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3224 3225 dout("stopped\n"); 3226 } 3227 3228 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 3229 { 3230 dout("stop\n"); 3231 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3232 if (mdsc->mdsmap) 3233 ceph_mdsmap_destroy(mdsc->mdsmap); 3234 kfree(mdsc->sessions); 3235 ceph_caps_finalize(mdsc); 3236 } 3237 3238 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 3239 { 3240 struct ceph_mds_client *mdsc = fsc->mdsc; 3241 3242 dout("mdsc_destroy %p\n", mdsc); 3243 ceph_mdsc_stop(mdsc); 3244 3245 /* flush out any connection work with references to us */ 3246 ceph_msgr_flush(); 3247 3248 fsc->mdsc = NULL; 3249 kfree(mdsc); 3250 dout("mdsc_destroy %p done\n", mdsc); 3251 } 3252 3253 3254 /* 3255 * handle mds map update. 3256 */ 3257 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 3258 { 3259 u32 epoch; 3260 u32 maplen; 3261 void *p = msg->front.iov_base; 3262 void *end = p + msg->front.iov_len; 3263 struct ceph_mdsmap *newmap, *oldmap; 3264 struct ceph_fsid fsid; 3265 int err = -EINVAL; 3266 3267 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 3268 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 3269 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 3270 return; 3271 epoch = ceph_decode_32(&p); 3272 maplen = ceph_decode_32(&p); 3273 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 3274 3275 /* do we need it? */ 3276 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch); 3277 mutex_lock(&mdsc->mutex); 3278 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 3279 dout("handle_map epoch %u <= our %u\n", 3280 epoch, mdsc->mdsmap->m_epoch); 3281 mutex_unlock(&mdsc->mutex); 3282 return; 3283 } 3284 3285 newmap = ceph_mdsmap_decode(&p, end); 3286 if (IS_ERR(newmap)) { 3287 err = PTR_ERR(newmap); 3288 goto bad_unlock; 3289 } 3290 3291 /* swap into place */ 3292 if (mdsc->mdsmap) { 3293 oldmap = mdsc->mdsmap; 3294 mdsc->mdsmap = newmap; 3295 check_new_map(mdsc, newmap, oldmap); 3296 ceph_mdsmap_destroy(oldmap); 3297 } else { 3298 mdsc->mdsmap = newmap; /* first mds map */ 3299 } 3300 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size; 3301 3302 __wake_requests(mdsc, &mdsc->waiting_for_map); 3303 3304 mutex_unlock(&mdsc->mutex); 3305 schedule_delayed(mdsc); 3306 return; 3307 3308 bad_unlock: 3309 mutex_unlock(&mdsc->mutex); 3310 bad: 3311 pr_err("error decoding mdsmap %d\n", err); 3312 return; 3313 } 3314 3315 static struct ceph_connection *con_get(struct ceph_connection *con) 3316 { 3317 struct ceph_mds_session *s = con->private; 3318 3319 if (get_session(s)) { 3320 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref)); 3321 return con; 3322 } 3323 dout("mdsc con_get %p FAIL\n", s); 3324 return NULL; 3325 } 3326 3327 static void con_put(struct ceph_connection *con) 3328 { 3329 struct ceph_mds_session *s = con->private; 3330 3331 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1); 3332 ceph_put_mds_session(s); 3333 } 3334 3335 /* 3336 * if the client is unresponsive for long enough, the mds will kill 3337 * the session entirely. 3338 */ 3339 static void peer_reset(struct ceph_connection *con) 3340 { 3341 struct ceph_mds_session *s = con->private; 3342 struct ceph_mds_client *mdsc = s->s_mdsc; 3343 3344 pr_warning("mds%d closed our session\n", s->s_mds); 3345 send_mds_reconnect(mdsc, s); 3346 } 3347 3348 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg) 3349 { 3350 struct ceph_mds_session *s = con->private; 3351 struct ceph_mds_client *mdsc = s->s_mdsc; 3352 int type = le16_to_cpu(msg->hdr.type); 3353 3354 mutex_lock(&mdsc->mutex); 3355 if (__verify_registered_session(mdsc, s) < 0) { 3356 mutex_unlock(&mdsc->mutex); 3357 goto out; 3358 } 3359 mutex_unlock(&mdsc->mutex); 3360 3361 switch (type) { 3362 case CEPH_MSG_MDS_MAP: 3363 ceph_mdsc_handle_map(mdsc, msg); 3364 break; 3365 case CEPH_MSG_CLIENT_SESSION: 3366 handle_session(s, msg); 3367 break; 3368 case CEPH_MSG_CLIENT_REPLY: 3369 handle_reply(s, msg); 3370 break; 3371 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 3372 handle_forward(mdsc, s, msg); 3373 break; 3374 case CEPH_MSG_CLIENT_CAPS: 3375 ceph_handle_caps(s, msg); 3376 break; 3377 case CEPH_MSG_CLIENT_SNAP: 3378 ceph_handle_snap(mdsc, s, msg); 3379 break; 3380 case CEPH_MSG_CLIENT_LEASE: 3381 handle_lease(mdsc, s, msg); 3382 break; 3383 3384 default: 3385 pr_err("received unknown message type %d %s\n", type, 3386 ceph_msg_type_name(type)); 3387 } 3388 out: 3389 ceph_msg_put(msg); 3390 } 3391 3392 /* 3393 * authentication 3394 */ 3395 static int get_authorizer(struct ceph_connection *con, 3396 void **buf, int *len, int *proto, 3397 void **reply_buf, int *reply_len, int force_new) 3398 { 3399 struct ceph_mds_session *s = con->private; 3400 struct ceph_mds_client *mdsc = s->s_mdsc; 3401 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3402 int ret = 0; 3403 3404 if (force_new && s->s_authorizer) { 3405 ac->ops->destroy_authorizer(ac, s->s_authorizer); 3406 s->s_authorizer = NULL; 3407 } 3408 if (s->s_authorizer == NULL) { 3409 if (ac->ops->create_authorizer) { 3410 ret = ac->ops->create_authorizer( 3411 ac, CEPH_ENTITY_TYPE_MDS, 3412 &s->s_authorizer, 3413 &s->s_authorizer_buf, 3414 &s->s_authorizer_buf_len, 3415 &s->s_authorizer_reply_buf, 3416 &s->s_authorizer_reply_buf_len); 3417 if (ret) 3418 return ret; 3419 } 3420 } 3421 3422 *proto = ac->protocol; 3423 *buf = s->s_authorizer_buf; 3424 *len = s->s_authorizer_buf_len; 3425 *reply_buf = s->s_authorizer_reply_buf; 3426 *reply_len = s->s_authorizer_reply_buf_len; 3427 return 0; 3428 } 3429 3430 3431 static int verify_authorizer_reply(struct ceph_connection *con, int len) 3432 { 3433 struct ceph_mds_session *s = con->private; 3434 struct ceph_mds_client *mdsc = s->s_mdsc; 3435 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3436 3437 return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len); 3438 } 3439 3440 static int invalidate_authorizer(struct ceph_connection *con) 3441 { 3442 struct ceph_mds_session *s = con->private; 3443 struct ceph_mds_client *mdsc = s->s_mdsc; 3444 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3445 3446 if (ac->ops->invalidate_authorizer) 3447 ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 3448 3449 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 3450 } 3451 3452 static const struct ceph_connection_operations mds_con_ops = { 3453 .get = con_get, 3454 .put = con_put, 3455 .dispatch = dispatch, 3456 .get_authorizer = get_authorizer, 3457 .verify_authorizer_reply = verify_authorizer_reply, 3458 .invalidate_authorizer = invalidate_authorizer, 3459 .peer_reset = peer_reset, 3460 }; 3461 3462 /* eof */ 3463