1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/fs.h> 5 #include <linux/wait.h> 6 #include <linux/slab.h> 7 #include <linux/gfp.h> 8 #include <linux/sched.h> 9 #include <linux/debugfs.h> 10 #include <linux/seq_file.h> 11 #include <linux/ratelimit.h> 12 #include <linux/bits.h> 13 #include <linux/ktime.h> 14 #include <linux/bitmap.h> 15 16 #include "super.h" 17 #include "mds_client.h" 18 19 #include <linux/ceph/ceph_features.h> 20 #include <linux/ceph/messenger.h> 21 #include <linux/ceph/decode.h> 22 #include <linux/ceph/pagelist.h> 23 #include <linux/ceph/auth.h> 24 #include <linux/ceph/debugfs.h> 25 26 #define RECONNECT_MAX_SIZE (INT_MAX - PAGE_SIZE) 27 28 /* 29 * A cluster of MDS (metadata server) daemons is responsible for 30 * managing the file system namespace (the directory hierarchy and 31 * inodes) and for coordinating shared access to storage. Metadata is 32 * partitioning hierarchically across a number of servers, and that 33 * partition varies over time as the cluster adjusts the distribution 34 * in order to balance load. 35 * 36 * The MDS client is primarily responsible to managing synchronous 37 * metadata requests for operations like open, unlink, and so forth. 38 * If there is a MDS failure, we find out about it when we (possibly 39 * request and) receive a new MDS map, and can resubmit affected 40 * requests. 41 * 42 * For the most part, though, we take advantage of a lossless 43 * communications channel to the MDS, and do not need to worry about 44 * timing out or resubmitting requests. 45 * 46 * We maintain a stateful "session" with each MDS we interact with. 47 * Within each session, we sent periodic heartbeat messages to ensure 48 * any capabilities or leases we have been issues remain valid. If 49 * the session times out and goes stale, our leases and capabilities 50 * are no longer valid. 51 */ 52 53 struct ceph_reconnect_state { 54 struct ceph_mds_session *session; 55 int nr_caps, nr_realms; 56 struct ceph_pagelist *pagelist; 57 unsigned msg_version; 58 bool allow_multi; 59 }; 60 61 static void __wake_requests(struct ceph_mds_client *mdsc, 62 struct list_head *head); 63 static void ceph_cap_release_work(struct work_struct *work); 64 static void ceph_cap_reclaim_work(struct work_struct *work); 65 66 static const struct ceph_connection_operations mds_con_ops; 67 68 69 /* 70 * mds reply parsing 71 */ 72 73 static int parse_reply_info_quota(void **p, void *end, 74 struct ceph_mds_reply_info_in *info) 75 { 76 u8 struct_v, struct_compat; 77 u32 struct_len; 78 79 ceph_decode_8_safe(p, end, struct_v, bad); 80 ceph_decode_8_safe(p, end, struct_compat, bad); 81 /* struct_v is expected to be >= 1. we only 82 * understand encoding with struct_compat == 1. */ 83 if (!struct_v || struct_compat != 1) 84 goto bad; 85 ceph_decode_32_safe(p, end, struct_len, bad); 86 ceph_decode_need(p, end, struct_len, bad); 87 end = *p + struct_len; 88 ceph_decode_64_safe(p, end, info->max_bytes, bad); 89 ceph_decode_64_safe(p, end, info->max_files, bad); 90 *p = end; 91 return 0; 92 bad: 93 return -EIO; 94 } 95 96 /* 97 * parse individual inode info 98 */ 99 static int parse_reply_info_in(void **p, void *end, 100 struct ceph_mds_reply_info_in *info, 101 u64 features) 102 { 103 int err = 0; 104 u8 struct_v = 0; 105 106 if (features == (u64)-1) { 107 u32 struct_len; 108 u8 struct_compat; 109 ceph_decode_8_safe(p, end, struct_v, bad); 110 ceph_decode_8_safe(p, end, struct_compat, bad); 111 /* struct_v is expected to be >= 1. we only understand 112 * encoding with struct_compat == 1. */ 113 if (!struct_v || struct_compat != 1) 114 goto bad; 115 ceph_decode_32_safe(p, end, struct_len, bad); 116 ceph_decode_need(p, end, struct_len, bad); 117 end = *p + struct_len; 118 } 119 120 ceph_decode_need(p, end, sizeof(struct ceph_mds_reply_inode), bad); 121 info->in = *p; 122 *p += sizeof(struct ceph_mds_reply_inode) + 123 sizeof(*info->in->fragtree.splits) * 124 le32_to_cpu(info->in->fragtree.nsplits); 125 126 ceph_decode_32_safe(p, end, info->symlink_len, bad); 127 ceph_decode_need(p, end, info->symlink_len, bad); 128 info->symlink = *p; 129 *p += info->symlink_len; 130 131 ceph_decode_copy_safe(p, end, &info->dir_layout, 132 sizeof(info->dir_layout), bad); 133 ceph_decode_32_safe(p, end, info->xattr_len, bad); 134 ceph_decode_need(p, end, info->xattr_len, bad); 135 info->xattr_data = *p; 136 *p += info->xattr_len; 137 138 if (features == (u64)-1) { 139 /* inline data */ 140 ceph_decode_64_safe(p, end, info->inline_version, bad); 141 ceph_decode_32_safe(p, end, info->inline_len, bad); 142 ceph_decode_need(p, end, info->inline_len, bad); 143 info->inline_data = *p; 144 *p += info->inline_len; 145 /* quota */ 146 err = parse_reply_info_quota(p, end, info); 147 if (err < 0) 148 goto out_bad; 149 /* pool namespace */ 150 ceph_decode_32_safe(p, end, info->pool_ns_len, bad); 151 if (info->pool_ns_len > 0) { 152 ceph_decode_need(p, end, info->pool_ns_len, bad); 153 info->pool_ns_data = *p; 154 *p += info->pool_ns_len; 155 } 156 157 /* btime */ 158 ceph_decode_need(p, end, sizeof(info->btime), bad); 159 ceph_decode_copy(p, &info->btime, sizeof(info->btime)); 160 161 /* change attribute */ 162 ceph_decode_64_safe(p, end, info->change_attr, bad); 163 164 /* dir pin */ 165 if (struct_v >= 2) { 166 ceph_decode_32_safe(p, end, info->dir_pin, bad); 167 } else { 168 info->dir_pin = -ENODATA; 169 } 170 171 /* snapshot birth time, remains zero for v<=2 */ 172 if (struct_v >= 3) { 173 ceph_decode_need(p, end, sizeof(info->snap_btime), bad); 174 ceph_decode_copy(p, &info->snap_btime, 175 sizeof(info->snap_btime)); 176 } else { 177 memset(&info->snap_btime, 0, sizeof(info->snap_btime)); 178 } 179 180 /* snapshot count, remains zero for v<=3 */ 181 if (struct_v >= 4) { 182 ceph_decode_64_safe(p, end, info->rsnaps, bad); 183 } else { 184 info->rsnaps = 0; 185 } 186 187 *p = end; 188 } else { 189 if (features & CEPH_FEATURE_MDS_INLINE_DATA) { 190 ceph_decode_64_safe(p, end, info->inline_version, bad); 191 ceph_decode_32_safe(p, end, info->inline_len, bad); 192 ceph_decode_need(p, end, info->inline_len, bad); 193 info->inline_data = *p; 194 *p += info->inline_len; 195 } else 196 info->inline_version = CEPH_INLINE_NONE; 197 198 if (features & CEPH_FEATURE_MDS_QUOTA) { 199 err = parse_reply_info_quota(p, end, info); 200 if (err < 0) 201 goto out_bad; 202 } else { 203 info->max_bytes = 0; 204 info->max_files = 0; 205 } 206 207 info->pool_ns_len = 0; 208 info->pool_ns_data = NULL; 209 if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) { 210 ceph_decode_32_safe(p, end, info->pool_ns_len, bad); 211 if (info->pool_ns_len > 0) { 212 ceph_decode_need(p, end, info->pool_ns_len, bad); 213 info->pool_ns_data = *p; 214 *p += info->pool_ns_len; 215 } 216 } 217 218 if (features & CEPH_FEATURE_FS_BTIME) { 219 ceph_decode_need(p, end, sizeof(info->btime), bad); 220 ceph_decode_copy(p, &info->btime, sizeof(info->btime)); 221 ceph_decode_64_safe(p, end, info->change_attr, bad); 222 } 223 224 info->dir_pin = -ENODATA; 225 /* info->snap_btime and info->rsnaps remain zero */ 226 } 227 return 0; 228 bad: 229 err = -EIO; 230 out_bad: 231 return err; 232 } 233 234 static int parse_reply_info_dir(void **p, void *end, 235 struct ceph_mds_reply_dirfrag **dirfrag, 236 u64 features) 237 { 238 if (features == (u64)-1) { 239 u8 struct_v, struct_compat; 240 u32 struct_len; 241 ceph_decode_8_safe(p, end, struct_v, bad); 242 ceph_decode_8_safe(p, end, struct_compat, bad); 243 /* struct_v is expected to be >= 1. we only understand 244 * encoding whose struct_compat == 1. */ 245 if (!struct_v || struct_compat != 1) 246 goto bad; 247 ceph_decode_32_safe(p, end, struct_len, bad); 248 ceph_decode_need(p, end, struct_len, bad); 249 end = *p + struct_len; 250 } 251 252 ceph_decode_need(p, end, sizeof(**dirfrag), bad); 253 *dirfrag = *p; 254 *p += sizeof(**dirfrag) + sizeof(u32) * le32_to_cpu((*dirfrag)->ndist); 255 if (unlikely(*p > end)) 256 goto bad; 257 if (features == (u64)-1) 258 *p = end; 259 return 0; 260 bad: 261 return -EIO; 262 } 263 264 static int parse_reply_info_lease(void **p, void *end, 265 struct ceph_mds_reply_lease **lease, 266 u64 features) 267 { 268 if (features == (u64)-1) { 269 u8 struct_v, struct_compat; 270 u32 struct_len; 271 ceph_decode_8_safe(p, end, struct_v, bad); 272 ceph_decode_8_safe(p, end, struct_compat, bad); 273 /* struct_v is expected to be >= 1. we only understand 274 * encoding whose struct_compat == 1. */ 275 if (!struct_v || struct_compat != 1) 276 goto bad; 277 ceph_decode_32_safe(p, end, struct_len, bad); 278 ceph_decode_need(p, end, struct_len, bad); 279 end = *p + struct_len; 280 } 281 282 ceph_decode_need(p, end, sizeof(**lease), bad); 283 *lease = *p; 284 *p += sizeof(**lease); 285 if (features == (u64)-1) 286 *p = end; 287 return 0; 288 bad: 289 return -EIO; 290 } 291 292 /* 293 * parse a normal reply, which may contain a (dir+)dentry and/or a 294 * target inode. 295 */ 296 static int parse_reply_info_trace(void **p, void *end, 297 struct ceph_mds_reply_info_parsed *info, 298 u64 features) 299 { 300 int err; 301 302 if (info->head->is_dentry) { 303 err = parse_reply_info_in(p, end, &info->diri, features); 304 if (err < 0) 305 goto out_bad; 306 307 err = parse_reply_info_dir(p, end, &info->dirfrag, features); 308 if (err < 0) 309 goto out_bad; 310 311 ceph_decode_32_safe(p, end, info->dname_len, bad); 312 ceph_decode_need(p, end, info->dname_len, bad); 313 info->dname = *p; 314 *p += info->dname_len; 315 316 err = parse_reply_info_lease(p, end, &info->dlease, features); 317 if (err < 0) 318 goto out_bad; 319 } 320 321 if (info->head->is_target) { 322 err = parse_reply_info_in(p, end, &info->targeti, features); 323 if (err < 0) 324 goto out_bad; 325 } 326 327 if (unlikely(*p != end)) 328 goto bad; 329 return 0; 330 331 bad: 332 err = -EIO; 333 out_bad: 334 pr_err("problem parsing mds trace %d\n", err); 335 return err; 336 } 337 338 /* 339 * parse readdir results 340 */ 341 static int parse_reply_info_readdir(void **p, void *end, 342 struct ceph_mds_reply_info_parsed *info, 343 u64 features) 344 { 345 u32 num, i = 0; 346 int err; 347 348 err = parse_reply_info_dir(p, end, &info->dir_dir, features); 349 if (err < 0) 350 goto out_bad; 351 352 ceph_decode_need(p, end, sizeof(num) + 2, bad); 353 num = ceph_decode_32(p); 354 { 355 u16 flags = ceph_decode_16(p); 356 info->dir_end = !!(flags & CEPH_READDIR_FRAG_END); 357 info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE); 358 info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER); 359 info->offset_hash = !!(flags & CEPH_READDIR_OFFSET_HASH); 360 } 361 if (num == 0) 362 goto done; 363 364 BUG_ON(!info->dir_entries); 365 if ((unsigned long)(info->dir_entries + num) > 366 (unsigned long)info->dir_entries + info->dir_buf_size) { 367 pr_err("dir contents are larger than expected\n"); 368 WARN_ON(1); 369 goto bad; 370 } 371 372 info->dir_nr = num; 373 while (num) { 374 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i; 375 /* dentry */ 376 ceph_decode_32_safe(p, end, rde->name_len, bad); 377 ceph_decode_need(p, end, rde->name_len, bad); 378 rde->name = *p; 379 *p += rde->name_len; 380 dout("parsed dir dname '%.*s'\n", rde->name_len, rde->name); 381 382 /* dentry lease */ 383 err = parse_reply_info_lease(p, end, &rde->lease, features); 384 if (err) 385 goto out_bad; 386 /* inode */ 387 err = parse_reply_info_in(p, end, &rde->inode, features); 388 if (err < 0) 389 goto out_bad; 390 /* ceph_readdir_prepopulate() will update it */ 391 rde->offset = 0; 392 i++; 393 num--; 394 } 395 396 done: 397 /* Skip over any unrecognized fields */ 398 *p = end; 399 return 0; 400 401 bad: 402 err = -EIO; 403 out_bad: 404 pr_err("problem parsing dir contents %d\n", err); 405 return err; 406 } 407 408 /* 409 * parse fcntl F_GETLK results 410 */ 411 static int parse_reply_info_filelock(void **p, void *end, 412 struct ceph_mds_reply_info_parsed *info, 413 u64 features) 414 { 415 if (*p + sizeof(*info->filelock_reply) > end) 416 goto bad; 417 418 info->filelock_reply = *p; 419 420 /* Skip over any unrecognized fields */ 421 *p = end; 422 return 0; 423 bad: 424 return -EIO; 425 } 426 427 428 #if BITS_PER_LONG == 64 429 430 #define DELEGATED_INO_AVAILABLE xa_mk_value(1) 431 432 static int ceph_parse_deleg_inos(void **p, void *end, 433 struct ceph_mds_session *s) 434 { 435 u32 sets; 436 437 ceph_decode_32_safe(p, end, sets, bad); 438 dout("got %u sets of delegated inodes\n", sets); 439 while (sets--) { 440 u64 start, len; 441 442 ceph_decode_64_safe(p, end, start, bad); 443 ceph_decode_64_safe(p, end, len, bad); 444 445 /* Don't accept a delegation of system inodes */ 446 if (start < CEPH_INO_SYSTEM_BASE) { 447 pr_warn_ratelimited("ceph: ignoring reserved inode range delegation (start=0x%llx len=0x%llx)\n", 448 start, len); 449 continue; 450 } 451 while (len--) { 452 int err = xa_insert(&s->s_delegated_inos, start++, 453 DELEGATED_INO_AVAILABLE, 454 GFP_KERNEL); 455 if (!err) { 456 dout("added delegated inode 0x%llx\n", 457 start - 1); 458 } else if (err == -EBUSY) { 459 pr_warn("MDS delegated inode 0x%llx more than once.\n", 460 start - 1); 461 } else { 462 return err; 463 } 464 } 465 } 466 return 0; 467 bad: 468 return -EIO; 469 } 470 471 u64 ceph_get_deleg_ino(struct ceph_mds_session *s) 472 { 473 unsigned long ino; 474 void *val; 475 476 xa_for_each(&s->s_delegated_inos, ino, val) { 477 val = xa_erase(&s->s_delegated_inos, ino); 478 if (val == DELEGATED_INO_AVAILABLE) 479 return ino; 480 } 481 return 0; 482 } 483 484 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino) 485 { 486 return xa_insert(&s->s_delegated_inos, ino, DELEGATED_INO_AVAILABLE, 487 GFP_KERNEL); 488 } 489 #else /* BITS_PER_LONG == 64 */ 490 /* 491 * FIXME: xarrays can't handle 64-bit indexes on a 32-bit arch. For now, just 492 * ignore delegated_inos on 32 bit arch. Maybe eventually add xarrays for top 493 * and bottom words? 494 */ 495 static int ceph_parse_deleg_inos(void **p, void *end, 496 struct ceph_mds_session *s) 497 { 498 u32 sets; 499 500 ceph_decode_32_safe(p, end, sets, bad); 501 if (sets) 502 ceph_decode_skip_n(p, end, sets * 2 * sizeof(__le64), bad); 503 return 0; 504 bad: 505 return -EIO; 506 } 507 508 u64 ceph_get_deleg_ino(struct ceph_mds_session *s) 509 { 510 return 0; 511 } 512 513 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino) 514 { 515 return 0; 516 } 517 #endif /* BITS_PER_LONG == 64 */ 518 519 /* 520 * parse create results 521 */ 522 static int parse_reply_info_create(void **p, void *end, 523 struct ceph_mds_reply_info_parsed *info, 524 u64 features, struct ceph_mds_session *s) 525 { 526 int ret; 527 528 if (features == (u64)-1 || 529 (features & CEPH_FEATURE_REPLY_CREATE_INODE)) { 530 if (*p == end) { 531 /* Malformed reply? */ 532 info->has_create_ino = false; 533 } else if (test_bit(CEPHFS_FEATURE_DELEG_INO, &s->s_features)) { 534 info->has_create_ino = true; 535 /* struct_v, struct_compat, and len */ 536 ceph_decode_skip_n(p, end, 2 + sizeof(u32), bad); 537 ceph_decode_64_safe(p, end, info->ino, bad); 538 ret = ceph_parse_deleg_inos(p, end, s); 539 if (ret) 540 return ret; 541 } else { 542 /* legacy */ 543 ceph_decode_64_safe(p, end, info->ino, bad); 544 info->has_create_ino = true; 545 } 546 } else { 547 if (*p != end) 548 goto bad; 549 } 550 551 /* Skip over any unrecognized fields */ 552 *p = end; 553 return 0; 554 bad: 555 return -EIO; 556 } 557 558 static int parse_reply_info_getvxattr(void **p, void *end, 559 struct ceph_mds_reply_info_parsed *info, 560 u64 features) 561 { 562 u32 value_len; 563 564 ceph_decode_skip_8(p, end, bad); /* skip current version: 1 */ 565 ceph_decode_skip_8(p, end, bad); /* skip first version: 1 */ 566 ceph_decode_skip_32(p, end, bad); /* skip payload length */ 567 568 ceph_decode_32_safe(p, end, value_len, bad); 569 570 if (value_len == end - *p) { 571 info->xattr_info.xattr_value = *p; 572 info->xattr_info.xattr_value_len = value_len; 573 *p = end; 574 return value_len; 575 } 576 bad: 577 return -EIO; 578 } 579 580 /* 581 * parse extra results 582 */ 583 static int parse_reply_info_extra(void **p, void *end, 584 struct ceph_mds_reply_info_parsed *info, 585 u64 features, struct ceph_mds_session *s) 586 { 587 u32 op = le32_to_cpu(info->head->op); 588 589 if (op == CEPH_MDS_OP_GETFILELOCK) 590 return parse_reply_info_filelock(p, end, info, features); 591 else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP) 592 return parse_reply_info_readdir(p, end, info, features); 593 else if (op == CEPH_MDS_OP_CREATE) 594 return parse_reply_info_create(p, end, info, features, s); 595 else if (op == CEPH_MDS_OP_GETVXATTR) 596 return parse_reply_info_getvxattr(p, end, info, features); 597 else 598 return -EIO; 599 } 600 601 /* 602 * parse entire mds reply 603 */ 604 static int parse_reply_info(struct ceph_mds_session *s, struct ceph_msg *msg, 605 struct ceph_mds_reply_info_parsed *info, 606 u64 features) 607 { 608 void *p, *end; 609 u32 len; 610 int err; 611 612 info->head = msg->front.iov_base; 613 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 614 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 615 616 /* trace */ 617 ceph_decode_32_safe(&p, end, len, bad); 618 if (len > 0) { 619 ceph_decode_need(&p, end, len, bad); 620 err = parse_reply_info_trace(&p, p+len, info, features); 621 if (err < 0) 622 goto out_bad; 623 } 624 625 /* extra */ 626 ceph_decode_32_safe(&p, end, len, bad); 627 if (len > 0) { 628 ceph_decode_need(&p, end, len, bad); 629 err = parse_reply_info_extra(&p, p+len, info, features, s); 630 if (err < 0) 631 goto out_bad; 632 } 633 634 /* snap blob */ 635 ceph_decode_32_safe(&p, end, len, bad); 636 info->snapblob_len = len; 637 info->snapblob = p; 638 p += len; 639 640 if (p != end) 641 goto bad; 642 return 0; 643 644 bad: 645 err = -EIO; 646 out_bad: 647 pr_err("mds parse_reply err %d\n", err); 648 return err; 649 } 650 651 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 652 { 653 if (!info->dir_entries) 654 return; 655 free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size)); 656 } 657 658 /* 659 * In async unlink case the kclient won't wait for the first reply 660 * from MDS and just drop all the links and unhash the dentry and then 661 * succeeds immediately. 662 * 663 * For any new create/link/rename,etc requests followed by using the 664 * same file names we must wait for the first reply of the inflight 665 * unlink request, or the MDS possibly will fail these following 666 * requests with -EEXIST if the inflight async unlink request was 667 * delayed for some reasons. 668 * 669 * And the worst case is that for the none async openc request it will 670 * successfully open the file if the CDentry hasn't been unlinked yet, 671 * but later the previous delayed async unlink request will remove the 672 * CDenty. That means the just created file is possiblly deleted later 673 * by accident. 674 * 675 * We need to wait for the inflight async unlink requests to finish 676 * when creating new files/directories by using the same file names. 677 */ 678 int ceph_wait_on_conflict_unlink(struct dentry *dentry) 679 { 680 struct ceph_fs_client *fsc = ceph_sb_to_client(dentry->d_sb); 681 struct dentry *pdentry = dentry->d_parent; 682 struct dentry *udentry, *found = NULL; 683 struct ceph_dentry_info *di; 684 struct qstr dname; 685 u32 hash = dentry->d_name.hash; 686 int err; 687 688 dname.name = dentry->d_name.name; 689 dname.len = dentry->d_name.len; 690 691 rcu_read_lock(); 692 hash_for_each_possible_rcu(fsc->async_unlink_conflict, di, 693 hnode, hash) { 694 udentry = di->dentry; 695 696 spin_lock(&udentry->d_lock); 697 if (udentry->d_name.hash != hash) 698 goto next; 699 if (unlikely(udentry->d_parent != pdentry)) 700 goto next; 701 if (!hash_hashed(&di->hnode)) 702 goto next; 703 704 if (!test_bit(CEPH_DENTRY_ASYNC_UNLINK_BIT, &di->flags)) 705 pr_warn("%s dentry %p:%pd async unlink bit is not set\n", 706 __func__, dentry, dentry); 707 708 if (!d_same_name(udentry, pdentry, &dname)) 709 goto next; 710 711 spin_unlock(&udentry->d_lock); 712 found = dget(udentry); 713 break; 714 next: 715 spin_unlock(&udentry->d_lock); 716 } 717 rcu_read_unlock(); 718 719 if (likely(!found)) 720 return 0; 721 722 dout("%s dentry %p:%pd conflict with old %p:%pd\n", __func__, 723 dentry, dentry, found, found); 724 725 err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_UNLINK_BIT, 726 TASK_KILLABLE); 727 dput(found); 728 return err; 729 } 730 731 732 /* 733 * sessions 734 */ 735 const char *ceph_session_state_name(int s) 736 { 737 switch (s) { 738 case CEPH_MDS_SESSION_NEW: return "new"; 739 case CEPH_MDS_SESSION_OPENING: return "opening"; 740 case CEPH_MDS_SESSION_OPEN: return "open"; 741 case CEPH_MDS_SESSION_HUNG: return "hung"; 742 case CEPH_MDS_SESSION_CLOSING: return "closing"; 743 case CEPH_MDS_SESSION_CLOSED: return "closed"; 744 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 745 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 746 case CEPH_MDS_SESSION_REJECTED: return "rejected"; 747 default: return "???"; 748 } 749 } 750 751 struct ceph_mds_session *ceph_get_mds_session(struct ceph_mds_session *s) 752 { 753 if (refcount_inc_not_zero(&s->s_ref)) 754 return s; 755 return NULL; 756 } 757 758 void ceph_put_mds_session(struct ceph_mds_session *s) 759 { 760 if (IS_ERR_OR_NULL(s)) 761 return; 762 763 if (refcount_dec_and_test(&s->s_ref)) { 764 if (s->s_auth.authorizer) 765 ceph_auth_destroy_authorizer(s->s_auth.authorizer); 766 WARN_ON(mutex_is_locked(&s->s_mutex)); 767 xa_destroy(&s->s_delegated_inos); 768 kfree(s); 769 } 770 } 771 772 /* 773 * called under mdsc->mutex 774 */ 775 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 776 int mds) 777 { 778 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds]) 779 return NULL; 780 return ceph_get_mds_session(mdsc->sessions[mds]); 781 } 782 783 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 784 { 785 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds]) 786 return false; 787 else 788 return true; 789 } 790 791 static int __verify_registered_session(struct ceph_mds_client *mdsc, 792 struct ceph_mds_session *s) 793 { 794 if (s->s_mds >= mdsc->max_sessions || 795 mdsc->sessions[s->s_mds] != s) 796 return -ENOENT; 797 return 0; 798 } 799 800 /* 801 * create+register a new session for given mds. 802 * called under mdsc->mutex. 803 */ 804 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 805 int mds) 806 { 807 struct ceph_mds_session *s; 808 809 if (mds >= mdsc->mdsmap->possible_max_rank) 810 return ERR_PTR(-EINVAL); 811 812 s = kzalloc(sizeof(*s), GFP_NOFS); 813 if (!s) 814 return ERR_PTR(-ENOMEM); 815 816 if (mds >= mdsc->max_sessions) { 817 int newmax = 1 << get_count_order(mds + 1); 818 struct ceph_mds_session **sa; 819 820 dout("%s: realloc to %d\n", __func__, newmax); 821 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 822 if (!sa) 823 goto fail_realloc; 824 if (mdsc->sessions) { 825 memcpy(sa, mdsc->sessions, 826 mdsc->max_sessions * sizeof(void *)); 827 kfree(mdsc->sessions); 828 } 829 mdsc->sessions = sa; 830 mdsc->max_sessions = newmax; 831 } 832 833 dout("%s: mds%d\n", __func__, mds); 834 s->s_mdsc = mdsc; 835 s->s_mds = mds; 836 s->s_state = CEPH_MDS_SESSION_NEW; 837 mutex_init(&s->s_mutex); 838 839 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 840 841 atomic_set(&s->s_cap_gen, 1); 842 s->s_cap_ttl = jiffies - 1; 843 844 spin_lock_init(&s->s_cap_lock); 845 INIT_LIST_HEAD(&s->s_caps); 846 refcount_set(&s->s_ref, 1); 847 INIT_LIST_HEAD(&s->s_waiting); 848 INIT_LIST_HEAD(&s->s_unsafe); 849 xa_init(&s->s_delegated_inos); 850 INIT_LIST_HEAD(&s->s_cap_releases); 851 INIT_WORK(&s->s_cap_release_work, ceph_cap_release_work); 852 853 INIT_LIST_HEAD(&s->s_cap_dirty); 854 INIT_LIST_HEAD(&s->s_cap_flushing); 855 856 mdsc->sessions[mds] = s; 857 atomic_inc(&mdsc->num_sessions); 858 refcount_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 859 860 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 861 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 862 863 return s; 864 865 fail_realloc: 866 kfree(s); 867 return ERR_PTR(-ENOMEM); 868 } 869 870 /* 871 * called under mdsc->mutex 872 */ 873 static void __unregister_session(struct ceph_mds_client *mdsc, 874 struct ceph_mds_session *s) 875 { 876 dout("__unregister_session mds%d %p\n", s->s_mds, s); 877 BUG_ON(mdsc->sessions[s->s_mds] != s); 878 mdsc->sessions[s->s_mds] = NULL; 879 ceph_con_close(&s->s_con); 880 ceph_put_mds_session(s); 881 atomic_dec(&mdsc->num_sessions); 882 } 883 884 /* 885 * drop session refs in request. 886 * 887 * should be last request ref, or hold mdsc->mutex 888 */ 889 static void put_request_session(struct ceph_mds_request *req) 890 { 891 if (req->r_session) { 892 ceph_put_mds_session(req->r_session); 893 req->r_session = NULL; 894 } 895 } 896 897 void ceph_mdsc_iterate_sessions(struct ceph_mds_client *mdsc, 898 void (*cb)(struct ceph_mds_session *), 899 bool check_state) 900 { 901 int mds; 902 903 mutex_lock(&mdsc->mutex); 904 for (mds = 0; mds < mdsc->max_sessions; ++mds) { 905 struct ceph_mds_session *s; 906 907 s = __ceph_lookup_mds_session(mdsc, mds); 908 if (!s) 909 continue; 910 911 if (check_state && !check_session_state(s)) { 912 ceph_put_mds_session(s); 913 continue; 914 } 915 916 mutex_unlock(&mdsc->mutex); 917 cb(s); 918 ceph_put_mds_session(s); 919 mutex_lock(&mdsc->mutex); 920 } 921 mutex_unlock(&mdsc->mutex); 922 } 923 924 void ceph_mdsc_release_request(struct kref *kref) 925 { 926 struct ceph_mds_request *req = container_of(kref, 927 struct ceph_mds_request, 928 r_kref); 929 ceph_mdsc_release_dir_caps_no_check(req); 930 destroy_reply_info(&req->r_reply_info); 931 if (req->r_request) 932 ceph_msg_put(req->r_request); 933 if (req->r_reply) 934 ceph_msg_put(req->r_reply); 935 if (req->r_inode) { 936 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 937 iput(req->r_inode); 938 } 939 if (req->r_parent) { 940 ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN); 941 iput(req->r_parent); 942 } 943 iput(req->r_target_inode); 944 if (req->r_dentry) 945 dput(req->r_dentry); 946 if (req->r_old_dentry) 947 dput(req->r_old_dentry); 948 if (req->r_old_dentry_dir) { 949 /* 950 * track (and drop pins for) r_old_dentry_dir 951 * separately, since r_old_dentry's d_parent may have 952 * changed between the dir mutex being dropped and 953 * this request being freed. 954 */ 955 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 956 CEPH_CAP_PIN); 957 iput(req->r_old_dentry_dir); 958 } 959 kfree(req->r_path1); 960 kfree(req->r_path2); 961 put_cred(req->r_cred); 962 if (req->r_pagelist) 963 ceph_pagelist_release(req->r_pagelist); 964 put_request_session(req); 965 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 966 WARN_ON_ONCE(!list_empty(&req->r_wait)); 967 kmem_cache_free(ceph_mds_request_cachep, req); 968 } 969 970 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node) 971 972 /* 973 * lookup session, bump ref if found. 974 * 975 * called under mdsc->mutex. 976 */ 977 static struct ceph_mds_request * 978 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid) 979 { 980 struct ceph_mds_request *req; 981 982 req = lookup_request(&mdsc->request_tree, tid); 983 if (req) 984 ceph_mdsc_get_request(req); 985 986 return req; 987 } 988 989 /* 990 * Register an in-flight request, and assign a tid. Link to directory 991 * are modifying (if any). 992 * 993 * Called under mdsc->mutex. 994 */ 995 static void __register_request(struct ceph_mds_client *mdsc, 996 struct ceph_mds_request *req, 997 struct inode *dir) 998 { 999 int ret = 0; 1000 1001 req->r_tid = ++mdsc->last_tid; 1002 if (req->r_num_caps) { 1003 ret = ceph_reserve_caps(mdsc, &req->r_caps_reservation, 1004 req->r_num_caps); 1005 if (ret < 0) { 1006 pr_err("__register_request %p " 1007 "failed to reserve caps: %d\n", req, ret); 1008 /* set req->r_err to fail early from __do_request */ 1009 req->r_err = ret; 1010 return; 1011 } 1012 } 1013 dout("__register_request %p tid %lld\n", req, req->r_tid); 1014 ceph_mdsc_get_request(req); 1015 insert_request(&mdsc->request_tree, req); 1016 1017 req->r_cred = get_current_cred(); 1018 1019 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK) 1020 mdsc->oldest_tid = req->r_tid; 1021 1022 if (dir) { 1023 struct ceph_inode_info *ci = ceph_inode(dir); 1024 1025 ihold(dir); 1026 req->r_unsafe_dir = dir; 1027 spin_lock(&ci->i_unsafe_lock); 1028 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 1029 spin_unlock(&ci->i_unsafe_lock); 1030 } 1031 } 1032 1033 static void __unregister_request(struct ceph_mds_client *mdsc, 1034 struct ceph_mds_request *req) 1035 { 1036 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 1037 1038 /* Never leave an unregistered request on an unsafe list! */ 1039 list_del_init(&req->r_unsafe_item); 1040 1041 if (req->r_tid == mdsc->oldest_tid) { 1042 struct rb_node *p = rb_next(&req->r_node); 1043 mdsc->oldest_tid = 0; 1044 while (p) { 1045 struct ceph_mds_request *next_req = 1046 rb_entry(p, struct ceph_mds_request, r_node); 1047 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) { 1048 mdsc->oldest_tid = next_req->r_tid; 1049 break; 1050 } 1051 p = rb_next(p); 1052 } 1053 } 1054 1055 erase_request(&mdsc->request_tree, req); 1056 1057 if (req->r_unsafe_dir) { 1058 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 1059 spin_lock(&ci->i_unsafe_lock); 1060 list_del_init(&req->r_unsafe_dir_item); 1061 spin_unlock(&ci->i_unsafe_lock); 1062 } 1063 if (req->r_target_inode && 1064 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 1065 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode); 1066 spin_lock(&ci->i_unsafe_lock); 1067 list_del_init(&req->r_unsafe_target_item); 1068 spin_unlock(&ci->i_unsafe_lock); 1069 } 1070 1071 if (req->r_unsafe_dir) { 1072 iput(req->r_unsafe_dir); 1073 req->r_unsafe_dir = NULL; 1074 } 1075 1076 complete_all(&req->r_safe_completion); 1077 1078 ceph_mdsc_put_request(req); 1079 } 1080 1081 /* 1082 * Walk back up the dentry tree until we hit a dentry representing a 1083 * non-snapshot inode. We do this using the rcu_read_lock (which must be held 1084 * when calling this) to ensure that the objects won't disappear while we're 1085 * working with them. Once we hit a candidate dentry, we attempt to take a 1086 * reference to it, and return that as the result. 1087 */ 1088 static struct inode *get_nonsnap_parent(struct dentry *dentry) 1089 { 1090 struct inode *inode = NULL; 1091 1092 while (dentry && !IS_ROOT(dentry)) { 1093 inode = d_inode_rcu(dentry); 1094 if (!inode || ceph_snap(inode) == CEPH_NOSNAP) 1095 break; 1096 dentry = dentry->d_parent; 1097 } 1098 if (inode) 1099 inode = igrab(inode); 1100 return inode; 1101 } 1102 1103 /* 1104 * Choose mds to send request to next. If there is a hint set in the 1105 * request (e.g., due to a prior forward hint from the mds), use that. 1106 * Otherwise, consult frag tree and/or caps to identify the 1107 * appropriate mds. If all else fails, choose randomly. 1108 * 1109 * Called under mdsc->mutex. 1110 */ 1111 static int __choose_mds(struct ceph_mds_client *mdsc, 1112 struct ceph_mds_request *req, 1113 bool *random) 1114 { 1115 struct inode *inode; 1116 struct ceph_inode_info *ci; 1117 struct ceph_cap *cap; 1118 int mode = req->r_direct_mode; 1119 int mds = -1; 1120 u32 hash = req->r_direct_hash; 1121 bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags); 1122 1123 if (random) 1124 *random = false; 1125 1126 /* 1127 * is there a specific mds we should try? ignore hint if we have 1128 * no session and the mds is not up (active or recovering). 1129 */ 1130 if (req->r_resend_mds >= 0 && 1131 (__have_session(mdsc, req->r_resend_mds) || 1132 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 1133 dout("%s using resend_mds mds%d\n", __func__, 1134 req->r_resend_mds); 1135 return req->r_resend_mds; 1136 } 1137 1138 if (mode == USE_RANDOM_MDS) 1139 goto random; 1140 1141 inode = NULL; 1142 if (req->r_inode) { 1143 if (ceph_snap(req->r_inode) != CEPH_SNAPDIR) { 1144 inode = req->r_inode; 1145 ihold(inode); 1146 } else { 1147 /* req->r_dentry is non-null for LSSNAP request */ 1148 rcu_read_lock(); 1149 inode = get_nonsnap_parent(req->r_dentry); 1150 rcu_read_unlock(); 1151 dout("%s using snapdir's parent %p\n", __func__, inode); 1152 } 1153 } else if (req->r_dentry) { 1154 /* ignore race with rename; old or new d_parent is okay */ 1155 struct dentry *parent; 1156 struct inode *dir; 1157 1158 rcu_read_lock(); 1159 parent = READ_ONCE(req->r_dentry->d_parent); 1160 dir = req->r_parent ? : d_inode_rcu(parent); 1161 1162 if (!dir || dir->i_sb != mdsc->fsc->sb) { 1163 /* not this fs or parent went negative */ 1164 inode = d_inode(req->r_dentry); 1165 if (inode) 1166 ihold(inode); 1167 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 1168 /* direct snapped/virtual snapdir requests 1169 * based on parent dir inode */ 1170 inode = get_nonsnap_parent(parent); 1171 dout("%s using nonsnap parent %p\n", __func__, inode); 1172 } else { 1173 /* dentry target */ 1174 inode = d_inode(req->r_dentry); 1175 if (!inode || mode == USE_AUTH_MDS) { 1176 /* dir + name */ 1177 inode = igrab(dir); 1178 hash = ceph_dentry_hash(dir, req->r_dentry); 1179 is_hash = true; 1180 } else { 1181 ihold(inode); 1182 } 1183 } 1184 rcu_read_unlock(); 1185 } 1186 1187 dout("%s %p is_hash=%d (0x%x) mode %d\n", __func__, inode, (int)is_hash, 1188 hash, mode); 1189 if (!inode) 1190 goto random; 1191 ci = ceph_inode(inode); 1192 1193 if (is_hash && S_ISDIR(inode->i_mode)) { 1194 struct ceph_inode_frag frag; 1195 int found; 1196 1197 ceph_choose_frag(ci, hash, &frag, &found); 1198 if (found) { 1199 if (mode == USE_ANY_MDS && frag.ndist > 0) { 1200 u8 r; 1201 1202 /* choose a random replica */ 1203 get_random_bytes(&r, 1); 1204 r %= frag.ndist; 1205 mds = frag.dist[r]; 1206 dout("%s %p %llx.%llx frag %u mds%d (%d/%d)\n", 1207 __func__, inode, ceph_vinop(inode), 1208 frag.frag, mds, (int)r, frag.ndist); 1209 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 1210 CEPH_MDS_STATE_ACTIVE && 1211 !ceph_mdsmap_is_laggy(mdsc->mdsmap, mds)) 1212 goto out; 1213 } 1214 1215 /* since this file/dir wasn't known to be 1216 * replicated, then we want to look for the 1217 * authoritative mds. */ 1218 if (frag.mds >= 0) { 1219 /* choose auth mds */ 1220 mds = frag.mds; 1221 dout("%s %p %llx.%llx frag %u mds%d (auth)\n", 1222 __func__, inode, ceph_vinop(inode), 1223 frag.frag, mds); 1224 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 1225 CEPH_MDS_STATE_ACTIVE) { 1226 if (!ceph_mdsmap_is_laggy(mdsc->mdsmap, 1227 mds)) 1228 goto out; 1229 } 1230 } 1231 mode = USE_AUTH_MDS; 1232 } 1233 } 1234 1235 spin_lock(&ci->i_ceph_lock); 1236 cap = NULL; 1237 if (mode == USE_AUTH_MDS) 1238 cap = ci->i_auth_cap; 1239 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 1240 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 1241 if (!cap) { 1242 spin_unlock(&ci->i_ceph_lock); 1243 iput(inode); 1244 goto random; 1245 } 1246 mds = cap->session->s_mds; 1247 dout("%s %p %llx.%llx mds%d (%scap %p)\n", __func__, 1248 inode, ceph_vinop(inode), mds, 1249 cap == ci->i_auth_cap ? "auth " : "", cap); 1250 spin_unlock(&ci->i_ceph_lock); 1251 out: 1252 iput(inode); 1253 return mds; 1254 1255 random: 1256 if (random) 1257 *random = true; 1258 1259 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 1260 dout("%s chose random mds%d\n", __func__, mds); 1261 return mds; 1262 } 1263 1264 1265 /* 1266 * session messages 1267 */ 1268 struct ceph_msg *ceph_create_session_msg(u32 op, u64 seq) 1269 { 1270 struct ceph_msg *msg; 1271 struct ceph_mds_session_head *h; 1272 1273 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 1274 false); 1275 if (!msg) { 1276 pr_err("ENOMEM creating session %s msg\n", 1277 ceph_session_op_name(op)); 1278 return NULL; 1279 } 1280 h = msg->front.iov_base; 1281 h->op = cpu_to_le32(op); 1282 h->seq = cpu_to_le64(seq); 1283 1284 return msg; 1285 } 1286 1287 static const unsigned char feature_bits[] = CEPHFS_FEATURES_CLIENT_SUPPORTED; 1288 #define FEATURE_BYTES(c) (DIV_ROUND_UP((size_t)feature_bits[c - 1] + 1, 64) * 8) 1289 static int encode_supported_features(void **p, void *end) 1290 { 1291 static const size_t count = ARRAY_SIZE(feature_bits); 1292 1293 if (count > 0) { 1294 size_t i; 1295 size_t size = FEATURE_BYTES(count); 1296 unsigned long bit; 1297 1298 if (WARN_ON_ONCE(*p + 4 + size > end)) 1299 return -ERANGE; 1300 1301 ceph_encode_32(p, size); 1302 memset(*p, 0, size); 1303 for (i = 0; i < count; i++) { 1304 bit = feature_bits[i]; 1305 ((unsigned char *)(*p))[bit / 8] |= BIT(bit % 8); 1306 } 1307 *p += size; 1308 } else { 1309 if (WARN_ON_ONCE(*p + 4 > end)) 1310 return -ERANGE; 1311 1312 ceph_encode_32(p, 0); 1313 } 1314 1315 return 0; 1316 } 1317 1318 static const unsigned char metric_bits[] = CEPHFS_METRIC_SPEC_CLIENT_SUPPORTED; 1319 #define METRIC_BYTES(cnt) (DIV_ROUND_UP((size_t)metric_bits[cnt - 1] + 1, 64) * 8) 1320 static int encode_metric_spec(void **p, void *end) 1321 { 1322 static const size_t count = ARRAY_SIZE(metric_bits); 1323 1324 /* header */ 1325 if (WARN_ON_ONCE(*p + 2 > end)) 1326 return -ERANGE; 1327 1328 ceph_encode_8(p, 1); /* version */ 1329 ceph_encode_8(p, 1); /* compat */ 1330 1331 if (count > 0) { 1332 size_t i; 1333 size_t size = METRIC_BYTES(count); 1334 1335 if (WARN_ON_ONCE(*p + 4 + 4 + size > end)) 1336 return -ERANGE; 1337 1338 /* metric spec info length */ 1339 ceph_encode_32(p, 4 + size); 1340 1341 /* metric spec */ 1342 ceph_encode_32(p, size); 1343 memset(*p, 0, size); 1344 for (i = 0; i < count; i++) 1345 ((unsigned char *)(*p))[i / 8] |= BIT(metric_bits[i] % 8); 1346 *p += size; 1347 } else { 1348 if (WARN_ON_ONCE(*p + 4 + 4 > end)) 1349 return -ERANGE; 1350 1351 /* metric spec info length */ 1352 ceph_encode_32(p, 4); 1353 /* metric spec */ 1354 ceph_encode_32(p, 0); 1355 } 1356 1357 return 0; 1358 } 1359 1360 /* 1361 * session message, specialization for CEPH_SESSION_REQUEST_OPEN 1362 * to include additional client metadata fields. 1363 */ 1364 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq) 1365 { 1366 struct ceph_msg *msg; 1367 struct ceph_mds_session_head *h; 1368 int i; 1369 int extra_bytes = 0; 1370 int metadata_key_count = 0; 1371 struct ceph_options *opt = mdsc->fsc->client->options; 1372 struct ceph_mount_options *fsopt = mdsc->fsc->mount_options; 1373 size_t size, count; 1374 void *p, *end; 1375 int ret; 1376 1377 const char* metadata[][2] = { 1378 {"hostname", mdsc->nodename}, 1379 {"kernel_version", init_utsname()->release}, 1380 {"entity_id", opt->name ? : ""}, 1381 {"root", fsopt->server_path ? : "/"}, 1382 {NULL, NULL} 1383 }; 1384 1385 /* Calculate serialized length of metadata */ 1386 extra_bytes = 4; /* map length */ 1387 for (i = 0; metadata[i][0]; ++i) { 1388 extra_bytes += 8 + strlen(metadata[i][0]) + 1389 strlen(metadata[i][1]); 1390 metadata_key_count++; 1391 } 1392 1393 /* supported feature */ 1394 size = 0; 1395 count = ARRAY_SIZE(feature_bits); 1396 if (count > 0) 1397 size = FEATURE_BYTES(count); 1398 extra_bytes += 4 + size; 1399 1400 /* metric spec */ 1401 size = 0; 1402 count = ARRAY_SIZE(metric_bits); 1403 if (count > 0) 1404 size = METRIC_BYTES(count); 1405 extra_bytes += 2 + 4 + 4 + size; 1406 1407 /* Allocate the message */ 1408 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + extra_bytes, 1409 GFP_NOFS, false); 1410 if (!msg) { 1411 pr_err("ENOMEM creating session open msg\n"); 1412 return ERR_PTR(-ENOMEM); 1413 } 1414 p = msg->front.iov_base; 1415 end = p + msg->front.iov_len; 1416 1417 h = p; 1418 h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN); 1419 h->seq = cpu_to_le64(seq); 1420 1421 /* 1422 * Serialize client metadata into waiting buffer space, using 1423 * the format that userspace expects for map<string, string> 1424 * 1425 * ClientSession messages with metadata are v4 1426 */ 1427 msg->hdr.version = cpu_to_le16(4); 1428 msg->hdr.compat_version = cpu_to_le16(1); 1429 1430 /* The write pointer, following the session_head structure */ 1431 p += sizeof(*h); 1432 1433 /* Number of entries in the map */ 1434 ceph_encode_32(&p, metadata_key_count); 1435 1436 /* Two length-prefixed strings for each entry in the map */ 1437 for (i = 0; metadata[i][0]; ++i) { 1438 size_t const key_len = strlen(metadata[i][0]); 1439 size_t const val_len = strlen(metadata[i][1]); 1440 1441 ceph_encode_32(&p, key_len); 1442 memcpy(p, metadata[i][0], key_len); 1443 p += key_len; 1444 ceph_encode_32(&p, val_len); 1445 memcpy(p, metadata[i][1], val_len); 1446 p += val_len; 1447 } 1448 1449 ret = encode_supported_features(&p, end); 1450 if (ret) { 1451 pr_err("encode_supported_features failed!\n"); 1452 ceph_msg_put(msg); 1453 return ERR_PTR(ret); 1454 } 1455 1456 ret = encode_metric_spec(&p, end); 1457 if (ret) { 1458 pr_err("encode_metric_spec failed!\n"); 1459 ceph_msg_put(msg); 1460 return ERR_PTR(ret); 1461 } 1462 1463 msg->front.iov_len = p - msg->front.iov_base; 1464 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1465 1466 return msg; 1467 } 1468 1469 /* 1470 * send session open request. 1471 * 1472 * called under mdsc->mutex 1473 */ 1474 static int __open_session(struct ceph_mds_client *mdsc, 1475 struct ceph_mds_session *session) 1476 { 1477 struct ceph_msg *msg; 1478 int mstate; 1479 int mds = session->s_mds; 1480 1481 /* wait for mds to go active? */ 1482 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 1483 dout("open_session to mds%d (%s)\n", mds, 1484 ceph_mds_state_name(mstate)); 1485 session->s_state = CEPH_MDS_SESSION_OPENING; 1486 session->s_renew_requested = jiffies; 1487 1488 /* send connect message */ 1489 msg = create_session_open_msg(mdsc, session->s_seq); 1490 if (IS_ERR(msg)) 1491 return PTR_ERR(msg); 1492 ceph_con_send(&session->s_con, msg); 1493 return 0; 1494 } 1495 1496 /* 1497 * open sessions for any export targets for the given mds 1498 * 1499 * called under mdsc->mutex 1500 */ 1501 static struct ceph_mds_session * 1502 __open_export_target_session(struct ceph_mds_client *mdsc, int target) 1503 { 1504 struct ceph_mds_session *session; 1505 int ret; 1506 1507 session = __ceph_lookup_mds_session(mdsc, target); 1508 if (!session) { 1509 session = register_session(mdsc, target); 1510 if (IS_ERR(session)) 1511 return session; 1512 } 1513 if (session->s_state == CEPH_MDS_SESSION_NEW || 1514 session->s_state == CEPH_MDS_SESSION_CLOSING) { 1515 ret = __open_session(mdsc, session); 1516 if (ret) 1517 return ERR_PTR(ret); 1518 } 1519 1520 return session; 1521 } 1522 1523 struct ceph_mds_session * 1524 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target) 1525 { 1526 struct ceph_mds_session *session; 1527 1528 dout("open_export_target_session to mds%d\n", target); 1529 1530 mutex_lock(&mdsc->mutex); 1531 session = __open_export_target_session(mdsc, target); 1532 mutex_unlock(&mdsc->mutex); 1533 1534 return session; 1535 } 1536 1537 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 1538 struct ceph_mds_session *session) 1539 { 1540 struct ceph_mds_info *mi; 1541 struct ceph_mds_session *ts; 1542 int i, mds = session->s_mds; 1543 1544 if (mds >= mdsc->mdsmap->possible_max_rank) 1545 return; 1546 1547 mi = &mdsc->mdsmap->m_info[mds]; 1548 dout("open_export_target_sessions for mds%d (%d targets)\n", 1549 session->s_mds, mi->num_export_targets); 1550 1551 for (i = 0; i < mi->num_export_targets; i++) { 1552 ts = __open_export_target_session(mdsc, mi->export_targets[i]); 1553 ceph_put_mds_session(ts); 1554 } 1555 } 1556 1557 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 1558 struct ceph_mds_session *session) 1559 { 1560 mutex_lock(&mdsc->mutex); 1561 __open_export_target_sessions(mdsc, session); 1562 mutex_unlock(&mdsc->mutex); 1563 } 1564 1565 /* 1566 * session caps 1567 */ 1568 1569 static void detach_cap_releases(struct ceph_mds_session *session, 1570 struct list_head *target) 1571 { 1572 lockdep_assert_held(&session->s_cap_lock); 1573 1574 list_splice_init(&session->s_cap_releases, target); 1575 session->s_num_cap_releases = 0; 1576 dout("dispose_cap_releases mds%d\n", session->s_mds); 1577 } 1578 1579 static void dispose_cap_releases(struct ceph_mds_client *mdsc, 1580 struct list_head *dispose) 1581 { 1582 while (!list_empty(dispose)) { 1583 struct ceph_cap *cap; 1584 /* zero out the in-progress message */ 1585 cap = list_first_entry(dispose, struct ceph_cap, session_caps); 1586 list_del(&cap->session_caps); 1587 ceph_put_cap(mdsc, cap); 1588 } 1589 } 1590 1591 static void cleanup_session_requests(struct ceph_mds_client *mdsc, 1592 struct ceph_mds_session *session) 1593 { 1594 struct ceph_mds_request *req; 1595 struct rb_node *p; 1596 1597 dout("cleanup_session_requests mds%d\n", session->s_mds); 1598 mutex_lock(&mdsc->mutex); 1599 while (!list_empty(&session->s_unsafe)) { 1600 req = list_first_entry(&session->s_unsafe, 1601 struct ceph_mds_request, r_unsafe_item); 1602 pr_warn_ratelimited(" dropping unsafe request %llu\n", 1603 req->r_tid); 1604 if (req->r_target_inode) 1605 mapping_set_error(req->r_target_inode->i_mapping, -EIO); 1606 if (req->r_unsafe_dir) 1607 mapping_set_error(req->r_unsafe_dir->i_mapping, -EIO); 1608 __unregister_request(mdsc, req); 1609 } 1610 /* zero r_attempts, so kick_requests() will re-send requests */ 1611 p = rb_first(&mdsc->request_tree); 1612 while (p) { 1613 req = rb_entry(p, struct ceph_mds_request, r_node); 1614 p = rb_next(p); 1615 if (req->r_session && 1616 req->r_session->s_mds == session->s_mds) 1617 req->r_attempts = 0; 1618 } 1619 mutex_unlock(&mdsc->mutex); 1620 } 1621 1622 /* 1623 * Helper to safely iterate over all caps associated with a session, with 1624 * special care taken to handle a racing __ceph_remove_cap(). 1625 * 1626 * Caller must hold session s_mutex. 1627 */ 1628 int ceph_iterate_session_caps(struct ceph_mds_session *session, 1629 int (*cb)(struct inode *, struct ceph_cap *, 1630 void *), void *arg) 1631 { 1632 struct list_head *p; 1633 struct ceph_cap *cap; 1634 struct inode *inode, *last_inode = NULL; 1635 struct ceph_cap *old_cap = NULL; 1636 int ret; 1637 1638 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 1639 spin_lock(&session->s_cap_lock); 1640 p = session->s_caps.next; 1641 while (p != &session->s_caps) { 1642 cap = list_entry(p, struct ceph_cap, session_caps); 1643 inode = igrab(&cap->ci->netfs.inode); 1644 if (!inode) { 1645 p = p->next; 1646 continue; 1647 } 1648 session->s_cap_iterator = cap; 1649 spin_unlock(&session->s_cap_lock); 1650 1651 if (last_inode) { 1652 iput(last_inode); 1653 last_inode = NULL; 1654 } 1655 if (old_cap) { 1656 ceph_put_cap(session->s_mdsc, old_cap); 1657 old_cap = NULL; 1658 } 1659 1660 ret = cb(inode, cap, arg); 1661 last_inode = inode; 1662 1663 spin_lock(&session->s_cap_lock); 1664 p = p->next; 1665 if (!cap->ci) { 1666 dout("iterate_session_caps finishing cap %p removal\n", 1667 cap); 1668 BUG_ON(cap->session != session); 1669 cap->session = NULL; 1670 list_del_init(&cap->session_caps); 1671 session->s_nr_caps--; 1672 atomic64_dec(&session->s_mdsc->metric.total_caps); 1673 if (cap->queue_release) 1674 __ceph_queue_cap_release(session, cap); 1675 else 1676 old_cap = cap; /* put_cap it w/o locks held */ 1677 } 1678 if (ret < 0) 1679 goto out; 1680 } 1681 ret = 0; 1682 out: 1683 session->s_cap_iterator = NULL; 1684 spin_unlock(&session->s_cap_lock); 1685 1686 iput(last_inode); 1687 if (old_cap) 1688 ceph_put_cap(session->s_mdsc, old_cap); 1689 1690 return ret; 1691 } 1692 1693 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 1694 void *arg) 1695 { 1696 struct ceph_inode_info *ci = ceph_inode(inode); 1697 bool invalidate = false; 1698 int iputs; 1699 1700 dout("removing cap %p, ci is %p, inode is %p\n", 1701 cap, ci, &ci->netfs.inode); 1702 spin_lock(&ci->i_ceph_lock); 1703 iputs = ceph_purge_inode_cap(inode, cap, &invalidate); 1704 spin_unlock(&ci->i_ceph_lock); 1705 1706 wake_up_all(&ci->i_cap_wq); 1707 if (invalidate) 1708 ceph_queue_invalidate(inode); 1709 while (iputs--) 1710 iput(inode); 1711 return 0; 1712 } 1713 1714 /* 1715 * caller must hold session s_mutex 1716 */ 1717 static void remove_session_caps(struct ceph_mds_session *session) 1718 { 1719 struct ceph_fs_client *fsc = session->s_mdsc->fsc; 1720 struct super_block *sb = fsc->sb; 1721 LIST_HEAD(dispose); 1722 1723 dout("remove_session_caps on %p\n", session); 1724 ceph_iterate_session_caps(session, remove_session_caps_cb, fsc); 1725 1726 wake_up_all(&fsc->mdsc->cap_flushing_wq); 1727 1728 spin_lock(&session->s_cap_lock); 1729 if (session->s_nr_caps > 0) { 1730 struct inode *inode; 1731 struct ceph_cap *cap, *prev = NULL; 1732 struct ceph_vino vino; 1733 /* 1734 * iterate_session_caps() skips inodes that are being 1735 * deleted, we need to wait until deletions are complete. 1736 * __wait_on_freeing_inode() is designed for the job, 1737 * but it is not exported, so use lookup inode function 1738 * to access it. 1739 */ 1740 while (!list_empty(&session->s_caps)) { 1741 cap = list_entry(session->s_caps.next, 1742 struct ceph_cap, session_caps); 1743 if (cap == prev) 1744 break; 1745 prev = cap; 1746 vino = cap->ci->i_vino; 1747 spin_unlock(&session->s_cap_lock); 1748 1749 inode = ceph_find_inode(sb, vino); 1750 iput(inode); 1751 1752 spin_lock(&session->s_cap_lock); 1753 } 1754 } 1755 1756 // drop cap expires and unlock s_cap_lock 1757 detach_cap_releases(session, &dispose); 1758 1759 BUG_ON(session->s_nr_caps > 0); 1760 BUG_ON(!list_empty(&session->s_cap_flushing)); 1761 spin_unlock(&session->s_cap_lock); 1762 dispose_cap_releases(session->s_mdsc, &dispose); 1763 } 1764 1765 enum { 1766 RECONNECT, 1767 RENEWCAPS, 1768 FORCE_RO, 1769 }; 1770 1771 /* 1772 * wake up any threads waiting on this session's caps. if the cap is 1773 * old (didn't get renewed on the client reconnect), remove it now. 1774 * 1775 * caller must hold s_mutex. 1776 */ 1777 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 1778 void *arg) 1779 { 1780 struct ceph_inode_info *ci = ceph_inode(inode); 1781 unsigned long ev = (unsigned long)arg; 1782 1783 if (ev == RECONNECT) { 1784 spin_lock(&ci->i_ceph_lock); 1785 ci->i_wanted_max_size = 0; 1786 ci->i_requested_max_size = 0; 1787 spin_unlock(&ci->i_ceph_lock); 1788 } else if (ev == RENEWCAPS) { 1789 if (cap->cap_gen < atomic_read(&cap->session->s_cap_gen)) { 1790 /* mds did not re-issue stale cap */ 1791 spin_lock(&ci->i_ceph_lock); 1792 cap->issued = cap->implemented = CEPH_CAP_PIN; 1793 spin_unlock(&ci->i_ceph_lock); 1794 } 1795 } else if (ev == FORCE_RO) { 1796 } 1797 wake_up_all(&ci->i_cap_wq); 1798 return 0; 1799 } 1800 1801 static void wake_up_session_caps(struct ceph_mds_session *session, int ev) 1802 { 1803 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1804 ceph_iterate_session_caps(session, wake_up_session_cb, 1805 (void *)(unsigned long)ev); 1806 } 1807 1808 /* 1809 * Send periodic message to MDS renewing all currently held caps. The 1810 * ack will reset the expiration for all caps from this session. 1811 * 1812 * caller holds s_mutex 1813 */ 1814 static int send_renew_caps(struct ceph_mds_client *mdsc, 1815 struct ceph_mds_session *session) 1816 { 1817 struct ceph_msg *msg; 1818 int state; 1819 1820 if (time_after_eq(jiffies, session->s_cap_ttl) && 1821 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1822 pr_info("mds%d caps stale\n", session->s_mds); 1823 session->s_renew_requested = jiffies; 1824 1825 /* do not try to renew caps until a recovering mds has reconnected 1826 * with its clients. */ 1827 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1828 if (state < CEPH_MDS_STATE_RECONNECT) { 1829 dout("send_renew_caps ignoring mds%d (%s)\n", 1830 session->s_mds, ceph_mds_state_name(state)); 1831 return 0; 1832 } 1833 1834 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 1835 ceph_mds_state_name(state)); 1836 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 1837 ++session->s_renew_seq); 1838 if (!msg) 1839 return -ENOMEM; 1840 ceph_con_send(&session->s_con, msg); 1841 return 0; 1842 } 1843 1844 static int send_flushmsg_ack(struct ceph_mds_client *mdsc, 1845 struct ceph_mds_session *session, u64 seq) 1846 { 1847 struct ceph_msg *msg; 1848 1849 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n", 1850 session->s_mds, ceph_session_state_name(session->s_state), seq); 1851 msg = ceph_create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq); 1852 if (!msg) 1853 return -ENOMEM; 1854 ceph_con_send(&session->s_con, msg); 1855 return 0; 1856 } 1857 1858 1859 /* 1860 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 1861 * 1862 * Called under session->s_mutex 1863 */ 1864 static void renewed_caps(struct ceph_mds_client *mdsc, 1865 struct ceph_mds_session *session, int is_renew) 1866 { 1867 int was_stale; 1868 int wake = 0; 1869 1870 spin_lock(&session->s_cap_lock); 1871 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 1872 1873 session->s_cap_ttl = session->s_renew_requested + 1874 mdsc->mdsmap->m_session_timeout*HZ; 1875 1876 if (was_stale) { 1877 if (time_before(jiffies, session->s_cap_ttl)) { 1878 pr_info("mds%d caps renewed\n", session->s_mds); 1879 wake = 1; 1880 } else { 1881 pr_info("mds%d caps still stale\n", session->s_mds); 1882 } 1883 } 1884 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 1885 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 1886 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 1887 spin_unlock(&session->s_cap_lock); 1888 1889 if (wake) 1890 wake_up_session_caps(session, RENEWCAPS); 1891 } 1892 1893 /* 1894 * send a session close request 1895 */ 1896 static int request_close_session(struct ceph_mds_session *session) 1897 { 1898 struct ceph_msg *msg; 1899 1900 dout("request_close_session mds%d state %s seq %lld\n", 1901 session->s_mds, ceph_session_state_name(session->s_state), 1902 session->s_seq); 1903 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_CLOSE, 1904 session->s_seq); 1905 if (!msg) 1906 return -ENOMEM; 1907 ceph_con_send(&session->s_con, msg); 1908 return 1; 1909 } 1910 1911 /* 1912 * Called with s_mutex held. 1913 */ 1914 static int __close_session(struct ceph_mds_client *mdsc, 1915 struct ceph_mds_session *session) 1916 { 1917 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 1918 return 0; 1919 session->s_state = CEPH_MDS_SESSION_CLOSING; 1920 return request_close_session(session); 1921 } 1922 1923 static bool drop_negative_children(struct dentry *dentry) 1924 { 1925 struct dentry *child; 1926 bool all_negative = true; 1927 1928 if (!d_is_dir(dentry)) 1929 goto out; 1930 1931 spin_lock(&dentry->d_lock); 1932 list_for_each_entry(child, &dentry->d_subdirs, d_child) { 1933 if (d_really_is_positive(child)) { 1934 all_negative = false; 1935 break; 1936 } 1937 } 1938 spin_unlock(&dentry->d_lock); 1939 1940 if (all_negative) 1941 shrink_dcache_parent(dentry); 1942 out: 1943 return all_negative; 1944 } 1945 1946 /* 1947 * Trim old(er) caps. 1948 * 1949 * Because we can't cache an inode without one or more caps, we do 1950 * this indirectly: if a cap is unused, we prune its aliases, at which 1951 * point the inode will hopefully get dropped to. 1952 * 1953 * Yes, this is a bit sloppy. Our only real goal here is to respond to 1954 * memory pressure from the MDS, though, so it needn't be perfect. 1955 */ 1956 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1957 { 1958 int *remaining = arg; 1959 struct ceph_inode_info *ci = ceph_inode(inode); 1960 int used, wanted, oissued, mine; 1961 1962 if (*remaining <= 0) 1963 return -1; 1964 1965 spin_lock(&ci->i_ceph_lock); 1966 mine = cap->issued | cap->implemented; 1967 used = __ceph_caps_used(ci); 1968 wanted = __ceph_caps_file_wanted(ci); 1969 oissued = __ceph_caps_issued_other(ci, cap); 1970 1971 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n", 1972 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1973 ceph_cap_string(used), ceph_cap_string(wanted)); 1974 if (cap == ci->i_auth_cap) { 1975 if (ci->i_dirty_caps || ci->i_flushing_caps || 1976 !list_empty(&ci->i_cap_snaps)) 1977 goto out; 1978 if ((used | wanted) & CEPH_CAP_ANY_WR) 1979 goto out; 1980 /* Note: it's possible that i_filelock_ref becomes non-zero 1981 * after dropping auth caps. It doesn't hurt because reply 1982 * of lock mds request will re-add auth caps. */ 1983 if (atomic_read(&ci->i_filelock_ref) > 0) 1984 goto out; 1985 } 1986 /* The inode has cached pages, but it's no longer used. 1987 * we can safely drop it */ 1988 if (S_ISREG(inode->i_mode) && 1989 wanted == 0 && used == CEPH_CAP_FILE_CACHE && 1990 !(oissued & CEPH_CAP_FILE_CACHE)) { 1991 used = 0; 1992 oissued = 0; 1993 } 1994 if ((used | wanted) & ~oissued & mine) 1995 goto out; /* we need these caps */ 1996 1997 if (oissued) { 1998 /* we aren't the only cap.. just remove us */ 1999 ceph_remove_cap(cap, true); 2000 (*remaining)--; 2001 } else { 2002 struct dentry *dentry; 2003 /* try dropping referring dentries */ 2004 spin_unlock(&ci->i_ceph_lock); 2005 dentry = d_find_any_alias(inode); 2006 if (dentry && drop_negative_children(dentry)) { 2007 int count; 2008 dput(dentry); 2009 d_prune_aliases(inode); 2010 count = atomic_read(&inode->i_count); 2011 if (count == 1) 2012 (*remaining)--; 2013 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 2014 inode, cap, count); 2015 } else { 2016 dput(dentry); 2017 } 2018 return 0; 2019 } 2020 2021 out: 2022 spin_unlock(&ci->i_ceph_lock); 2023 return 0; 2024 } 2025 2026 /* 2027 * Trim session cap count down to some max number. 2028 */ 2029 int ceph_trim_caps(struct ceph_mds_client *mdsc, 2030 struct ceph_mds_session *session, 2031 int max_caps) 2032 { 2033 int trim_caps = session->s_nr_caps - max_caps; 2034 2035 dout("trim_caps mds%d start: %d / %d, trim %d\n", 2036 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 2037 if (trim_caps > 0) { 2038 int remaining = trim_caps; 2039 2040 ceph_iterate_session_caps(session, trim_caps_cb, &remaining); 2041 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 2042 session->s_mds, session->s_nr_caps, max_caps, 2043 trim_caps - remaining); 2044 } 2045 2046 ceph_flush_cap_releases(mdsc, session); 2047 return 0; 2048 } 2049 2050 static int check_caps_flush(struct ceph_mds_client *mdsc, 2051 u64 want_flush_tid) 2052 { 2053 int ret = 1; 2054 2055 spin_lock(&mdsc->cap_dirty_lock); 2056 if (!list_empty(&mdsc->cap_flush_list)) { 2057 struct ceph_cap_flush *cf = 2058 list_first_entry(&mdsc->cap_flush_list, 2059 struct ceph_cap_flush, g_list); 2060 if (cf->tid <= want_flush_tid) { 2061 dout("check_caps_flush still flushing tid " 2062 "%llu <= %llu\n", cf->tid, want_flush_tid); 2063 ret = 0; 2064 } 2065 } 2066 spin_unlock(&mdsc->cap_dirty_lock); 2067 return ret; 2068 } 2069 2070 /* 2071 * flush all dirty inode data to disk. 2072 * 2073 * returns true if we've flushed through want_flush_tid 2074 */ 2075 static void wait_caps_flush(struct ceph_mds_client *mdsc, 2076 u64 want_flush_tid) 2077 { 2078 dout("check_caps_flush want %llu\n", want_flush_tid); 2079 2080 wait_event(mdsc->cap_flushing_wq, 2081 check_caps_flush(mdsc, want_flush_tid)); 2082 2083 dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid); 2084 } 2085 2086 /* 2087 * called under s_mutex 2088 */ 2089 static void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 2090 struct ceph_mds_session *session) 2091 { 2092 struct ceph_msg *msg = NULL; 2093 struct ceph_mds_cap_release *head; 2094 struct ceph_mds_cap_item *item; 2095 struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc; 2096 struct ceph_cap *cap; 2097 LIST_HEAD(tmp_list); 2098 int num_cap_releases; 2099 __le32 barrier, *cap_barrier; 2100 2101 down_read(&osdc->lock); 2102 barrier = cpu_to_le32(osdc->epoch_barrier); 2103 up_read(&osdc->lock); 2104 2105 spin_lock(&session->s_cap_lock); 2106 again: 2107 list_splice_init(&session->s_cap_releases, &tmp_list); 2108 num_cap_releases = session->s_num_cap_releases; 2109 session->s_num_cap_releases = 0; 2110 spin_unlock(&session->s_cap_lock); 2111 2112 while (!list_empty(&tmp_list)) { 2113 if (!msg) { 2114 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, 2115 PAGE_SIZE, GFP_NOFS, false); 2116 if (!msg) 2117 goto out_err; 2118 head = msg->front.iov_base; 2119 head->num = cpu_to_le32(0); 2120 msg->front.iov_len = sizeof(*head); 2121 2122 msg->hdr.version = cpu_to_le16(2); 2123 msg->hdr.compat_version = cpu_to_le16(1); 2124 } 2125 2126 cap = list_first_entry(&tmp_list, struct ceph_cap, 2127 session_caps); 2128 list_del(&cap->session_caps); 2129 num_cap_releases--; 2130 2131 head = msg->front.iov_base; 2132 put_unaligned_le32(get_unaligned_le32(&head->num) + 1, 2133 &head->num); 2134 item = msg->front.iov_base + msg->front.iov_len; 2135 item->ino = cpu_to_le64(cap->cap_ino); 2136 item->cap_id = cpu_to_le64(cap->cap_id); 2137 item->migrate_seq = cpu_to_le32(cap->mseq); 2138 item->seq = cpu_to_le32(cap->issue_seq); 2139 msg->front.iov_len += sizeof(*item); 2140 2141 ceph_put_cap(mdsc, cap); 2142 2143 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 2144 // Append cap_barrier field 2145 cap_barrier = msg->front.iov_base + msg->front.iov_len; 2146 *cap_barrier = barrier; 2147 msg->front.iov_len += sizeof(*cap_barrier); 2148 2149 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2150 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 2151 ceph_con_send(&session->s_con, msg); 2152 msg = NULL; 2153 } 2154 } 2155 2156 BUG_ON(num_cap_releases != 0); 2157 2158 spin_lock(&session->s_cap_lock); 2159 if (!list_empty(&session->s_cap_releases)) 2160 goto again; 2161 spin_unlock(&session->s_cap_lock); 2162 2163 if (msg) { 2164 // Append cap_barrier field 2165 cap_barrier = msg->front.iov_base + msg->front.iov_len; 2166 *cap_barrier = barrier; 2167 msg->front.iov_len += sizeof(*cap_barrier); 2168 2169 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2170 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 2171 ceph_con_send(&session->s_con, msg); 2172 } 2173 return; 2174 out_err: 2175 pr_err("send_cap_releases mds%d, failed to allocate message\n", 2176 session->s_mds); 2177 spin_lock(&session->s_cap_lock); 2178 list_splice(&tmp_list, &session->s_cap_releases); 2179 session->s_num_cap_releases += num_cap_releases; 2180 spin_unlock(&session->s_cap_lock); 2181 } 2182 2183 static void ceph_cap_release_work(struct work_struct *work) 2184 { 2185 struct ceph_mds_session *session = 2186 container_of(work, struct ceph_mds_session, s_cap_release_work); 2187 2188 mutex_lock(&session->s_mutex); 2189 if (session->s_state == CEPH_MDS_SESSION_OPEN || 2190 session->s_state == CEPH_MDS_SESSION_HUNG) 2191 ceph_send_cap_releases(session->s_mdsc, session); 2192 mutex_unlock(&session->s_mutex); 2193 ceph_put_mds_session(session); 2194 } 2195 2196 void ceph_flush_cap_releases(struct ceph_mds_client *mdsc, 2197 struct ceph_mds_session *session) 2198 { 2199 if (mdsc->stopping) 2200 return; 2201 2202 ceph_get_mds_session(session); 2203 if (queue_work(mdsc->fsc->cap_wq, 2204 &session->s_cap_release_work)) { 2205 dout("cap release work queued\n"); 2206 } else { 2207 ceph_put_mds_session(session); 2208 dout("failed to queue cap release work\n"); 2209 } 2210 } 2211 2212 /* 2213 * caller holds session->s_cap_lock 2214 */ 2215 void __ceph_queue_cap_release(struct ceph_mds_session *session, 2216 struct ceph_cap *cap) 2217 { 2218 list_add_tail(&cap->session_caps, &session->s_cap_releases); 2219 session->s_num_cap_releases++; 2220 2221 if (!(session->s_num_cap_releases % CEPH_CAPS_PER_RELEASE)) 2222 ceph_flush_cap_releases(session->s_mdsc, session); 2223 } 2224 2225 static void ceph_cap_reclaim_work(struct work_struct *work) 2226 { 2227 struct ceph_mds_client *mdsc = 2228 container_of(work, struct ceph_mds_client, cap_reclaim_work); 2229 int ret = ceph_trim_dentries(mdsc); 2230 if (ret == -EAGAIN) 2231 ceph_queue_cap_reclaim_work(mdsc); 2232 } 2233 2234 void ceph_queue_cap_reclaim_work(struct ceph_mds_client *mdsc) 2235 { 2236 if (mdsc->stopping) 2237 return; 2238 2239 if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_reclaim_work)) { 2240 dout("caps reclaim work queued\n"); 2241 } else { 2242 dout("failed to queue caps release work\n"); 2243 } 2244 } 2245 2246 void ceph_reclaim_caps_nr(struct ceph_mds_client *mdsc, int nr) 2247 { 2248 int val; 2249 if (!nr) 2250 return; 2251 val = atomic_add_return(nr, &mdsc->cap_reclaim_pending); 2252 if ((val % CEPH_CAPS_PER_RELEASE) < nr) { 2253 atomic_set(&mdsc->cap_reclaim_pending, 0); 2254 ceph_queue_cap_reclaim_work(mdsc); 2255 } 2256 } 2257 2258 /* 2259 * requests 2260 */ 2261 2262 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req, 2263 struct inode *dir) 2264 { 2265 struct ceph_inode_info *ci = ceph_inode(dir); 2266 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; 2267 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options; 2268 size_t size = sizeof(struct ceph_mds_reply_dir_entry); 2269 unsigned int num_entries; 2270 int order; 2271 2272 spin_lock(&ci->i_ceph_lock); 2273 num_entries = ci->i_files + ci->i_subdirs; 2274 spin_unlock(&ci->i_ceph_lock); 2275 num_entries = max(num_entries, 1U); 2276 num_entries = min(num_entries, opt->max_readdir); 2277 2278 order = get_order(size * num_entries); 2279 while (order >= 0) { 2280 rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL | 2281 __GFP_NOWARN | 2282 __GFP_ZERO, 2283 order); 2284 if (rinfo->dir_entries) 2285 break; 2286 order--; 2287 } 2288 if (!rinfo->dir_entries) 2289 return -ENOMEM; 2290 2291 num_entries = (PAGE_SIZE << order) / size; 2292 num_entries = min(num_entries, opt->max_readdir); 2293 2294 rinfo->dir_buf_size = PAGE_SIZE << order; 2295 req->r_num_caps = num_entries + 1; 2296 req->r_args.readdir.max_entries = cpu_to_le32(num_entries); 2297 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes); 2298 return 0; 2299 } 2300 2301 /* 2302 * Create an mds request. 2303 */ 2304 struct ceph_mds_request * 2305 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 2306 { 2307 struct ceph_mds_request *req; 2308 2309 req = kmem_cache_zalloc(ceph_mds_request_cachep, GFP_NOFS); 2310 if (!req) 2311 return ERR_PTR(-ENOMEM); 2312 2313 mutex_init(&req->r_fill_mutex); 2314 req->r_mdsc = mdsc; 2315 req->r_started = jiffies; 2316 req->r_start_latency = ktime_get(); 2317 req->r_resend_mds = -1; 2318 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 2319 INIT_LIST_HEAD(&req->r_unsafe_target_item); 2320 req->r_fmode = -1; 2321 kref_init(&req->r_kref); 2322 RB_CLEAR_NODE(&req->r_node); 2323 INIT_LIST_HEAD(&req->r_wait); 2324 init_completion(&req->r_completion); 2325 init_completion(&req->r_safe_completion); 2326 INIT_LIST_HEAD(&req->r_unsafe_item); 2327 2328 ktime_get_coarse_real_ts64(&req->r_stamp); 2329 2330 req->r_op = op; 2331 req->r_direct_mode = mode; 2332 return req; 2333 } 2334 2335 /* 2336 * return oldest (lowest) request, tid in request tree, 0 if none. 2337 * 2338 * called under mdsc->mutex. 2339 */ 2340 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 2341 { 2342 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 2343 return NULL; 2344 return rb_entry(rb_first(&mdsc->request_tree), 2345 struct ceph_mds_request, r_node); 2346 } 2347 2348 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 2349 { 2350 return mdsc->oldest_tid; 2351 } 2352 2353 /* 2354 * Build a dentry's path. Allocate on heap; caller must kfree. Based 2355 * on build_path_from_dentry in fs/cifs/dir.c. 2356 * 2357 * If @stop_on_nosnap, generate path relative to the first non-snapped 2358 * inode. 2359 * 2360 * Encode hidden .snap dirs as a double /, i.e. 2361 * foo/.snap/bar -> foo//bar 2362 */ 2363 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *pbase, 2364 int stop_on_nosnap) 2365 { 2366 struct dentry *temp; 2367 char *path; 2368 int pos; 2369 unsigned seq; 2370 u64 base; 2371 2372 if (!dentry) 2373 return ERR_PTR(-EINVAL); 2374 2375 path = __getname(); 2376 if (!path) 2377 return ERR_PTR(-ENOMEM); 2378 retry: 2379 pos = PATH_MAX - 1; 2380 path[pos] = '\0'; 2381 2382 seq = read_seqbegin(&rename_lock); 2383 rcu_read_lock(); 2384 temp = dentry; 2385 for (;;) { 2386 struct inode *inode; 2387 2388 spin_lock(&temp->d_lock); 2389 inode = d_inode(temp); 2390 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 2391 dout("build_path path+%d: %p SNAPDIR\n", 2392 pos, temp); 2393 } else if (stop_on_nosnap && inode && dentry != temp && 2394 ceph_snap(inode) == CEPH_NOSNAP) { 2395 spin_unlock(&temp->d_lock); 2396 pos++; /* get rid of any prepended '/' */ 2397 break; 2398 } else { 2399 pos -= temp->d_name.len; 2400 if (pos < 0) { 2401 spin_unlock(&temp->d_lock); 2402 break; 2403 } 2404 memcpy(path + pos, temp->d_name.name, temp->d_name.len); 2405 } 2406 spin_unlock(&temp->d_lock); 2407 temp = READ_ONCE(temp->d_parent); 2408 2409 /* Are we at the root? */ 2410 if (IS_ROOT(temp)) 2411 break; 2412 2413 /* Are we out of buffer? */ 2414 if (--pos < 0) 2415 break; 2416 2417 path[pos] = '/'; 2418 } 2419 base = ceph_ino(d_inode(temp)); 2420 rcu_read_unlock(); 2421 2422 if (read_seqretry(&rename_lock, seq)) 2423 goto retry; 2424 2425 if (pos < 0) { 2426 /* 2427 * A rename didn't occur, but somehow we didn't end up where 2428 * we thought we would. Throw a warning and try again. 2429 */ 2430 pr_warn("build_path did not end path lookup where " 2431 "expected, pos is %d\n", pos); 2432 goto retry; 2433 } 2434 2435 *pbase = base; 2436 *plen = PATH_MAX - 1 - pos; 2437 dout("build_path on %p %d built %llx '%.*s'\n", 2438 dentry, d_count(dentry), base, *plen, path + pos); 2439 return path + pos; 2440 } 2441 2442 static int build_dentry_path(struct dentry *dentry, struct inode *dir, 2443 const char **ppath, int *ppathlen, u64 *pino, 2444 bool *pfreepath, bool parent_locked) 2445 { 2446 char *path; 2447 2448 rcu_read_lock(); 2449 if (!dir) 2450 dir = d_inode_rcu(dentry->d_parent); 2451 if (dir && parent_locked && ceph_snap(dir) == CEPH_NOSNAP) { 2452 *pino = ceph_ino(dir); 2453 rcu_read_unlock(); 2454 *ppath = dentry->d_name.name; 2455 *ppathlen = dentry->d_name.len; 2456 return 0; 2457 } 2458 rcu_read_unlock(); 2459 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 2460 if (IS_ERR(path)) 2461 return PTR_ERR(path); 2462 *ppath = path; 2463 *pfreepath = true; 2464 return 0; 2465 } 2466 2467 static int build_inode_path(struct inode *inode, 2468 const char **ppath, int *ppathlen, u64 *pino, 2469 bool *pfreepath) 2470 { 2471 struct dentry *dentry; 2472 char *path; 2473 2474 if (ceph_snap(inode) == CEPH_NOSNAP) { 2475 *pino = ceph_ino(inode); 2476 *ppathlen = 0; 2477 return 0; 2478 } 2479 dentry = d_find_alias(inode); 2480 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 2481 dput(dentry); 2482 if (IS_ERR(path)) 2483 return PTR_ERR(path); 2484 *ppath = path; 2485 *pfreepath = true; 2486 return 0; 2487 } 2488 2489 /* 2490 * request arguments may be specified via an inode *, a dentry *, or 2491 * an explicit ino+path. 2492 */ 2493 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 2494 struct inode *rdiri, const char *rpath, 2495 u64 rino, const char **ppath, int *pathlen, 2496 u64 *ino, bool *freepath, bool parent_locked) 2497 { 2498 int r = 0; 2499 2500 if (rinode) { 2501 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 2502 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 2503 ceph_snap(rinode)); 2504 } else if (rdentry) { 2505 r = build_dentry_path(rdentry, rdiri, ppath, pathlen, ino, 2506 freepath, parent_locked); 2507 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 2508 *ppath); 2509 } else if (rpath || rino) { 2510 *ino = rino; 2511 *ppath = rpath; 2512 *pathlen = rpath ? strlen(rpath) : 0; 2513 dout(" path %.*s\n", *pathlen, rpath); 2514 } 2515 2516 return r; 2517 } 2518 2519 static void encode_timestamp_and_gids(void **p, 2520 const struct ceph_mds_request *req) 2521 { 2522 struct ceph_timespec ts; 2523 int i; 2524 2525 ceph_encode_timespec64(&ts, &req->r_stamp); 2526 ceph_encode_copy(p, &ts, sizeof(ts)); 2527 2528 /* gid_list */ 2529 ceph_encode_32(p, req->r_cred->group_info->ngroups); 2530 for (i = 0; i < req->r_cred->group_info->ngroups; i++) 2531 ceph_encode_64(p, from_kgid(&init_user_ns, 2532 req->r_cred->group_info->gid[i])); 2533 } 2534 2535 /* 2536 * called under mdsc->mutex 2537 */ 2538 static struct ceph_msg *create_request_message(struct ceph_mds_session *session, 2539 struct ceph_mds_request *req, 2540 bool drop_cap_releases) 2541 { 2542 int mds = session->s_mds; 2543 struct ceph_mds_client *mdsc = session->s_mdsc; 2544 struct ceph_msg *msg; 2545 struct ceph_mds_request_head_old *head; 2546 const char *path1 = NULL; 2547 const char *path2 = NULL; 2548 u64 ino1 = 0, ino2 = 0; 2549 int pathlen1 = 0, pathlen2 = 0; 2550 bool freepath1 = false, freepath2 = false; 2551 int len; 2552 u16 releases; 2553 void *p, *end; 2554 int ret; 2555 bool legacy = !(session->s_con.peer_features & CEPH_FEATURE_FS_BTIME); 2556 2557 ret = set_request_path_attr(req->r_inode, req->r_dentry, 2558 req->r_parent, req->r_path1, req->r_ino1.ino, 2559 &path1, &pathlen1, &ino1, &freepath1, 2560 test_bit(CEPH_MDS_R_PARENT_LOCKED, 2561 &req->r_req_flags)); 2562 if (ret < 0) { 2563 msg = ERR_PTR(ret); 2564 goto out; 2565 } 2566 2567 /* If r_old_dentry is set, then assume that its parent is locked */ 2568 ret = set_request_path_attr(NULL, req->r_old_dentry, 2569 req->r_old_dentry_dir, 2570 req->r_path2, req->r_ino2.ino, 2571 &path2, &pathlen2, &ino2, &freepath2, true); 2572 if (ret < 0) { 2573 msg = ERR_PTR(ret); 2574 goto out_free1; 2575 } 2576 2577 len = legacy ? sizeof(*head) : sizeof(struct ceph_mds_request_head); 2578 len += pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) + 2579 sizeof(struct ceph_timespec); 2580 len += sizeof(u32) + (sizeof(u64) * req->r_cred->group_info->ngroups); 2581 2582 /* calculate (max) length for cap releases */ 2583 len += sizeof(struct ceph_mds_request_release) * 2584 (!!req->r_inode_drop + !!req->r_dentry_drop + 2585 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 2586 2587 if (req->r_dentry_drop) 2588 len += pathlen1; 2589 if (req->r_old_dentry_drop) 2590 len += pathlen2; 2591 2592 msg = ceph_msg_new2(CEPH_MSG_CLIENT_REQUEST, len, 1, GFP_NOFS, false); 2593 if (!msg) { 2594 msg = ERR_PTR(-ENOMEM); 2595 goto out_free2; 2596 } 2597 2598 msg->hdr.tid = cpu_to_le64(req->r_tid); 2599 2600 /* 2601 * The old ceph_mds_request_head didn't contain a version field, and 2602 * one was added when we moved the message version from 3->4. 2603 */ 2604 if (legacy) { 2605 msg->hdr.version = cpu_to_le16(3); 2606 head = msg->front.iov_base; 2607 p = msg->front.iov_base + sizeof(*head); 2608 } else { 2609 struct ceph_mds_request_head *new_head = msg->front.iov_base; 2610 2611 msg->hdr.version = cpu_to_le16(4); 2612 new_head->version = cpu_to_le16(CEPH_MDS_REQUEST_HEAD_VERSION); 2613 head = (struct ceph_mds_request_head_old *)&new_head->oldest_client_tid; 2614 p = msg->front.iov_base + sizeof(*new_head); 2615 } 2616 2617 end = msg->front.iov_base + msg->front.iov_len; 2618 2619 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 2620 head->op = cpu_to_le32(req->r_op); 2621 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, 2622 req->r_cred->fsuid)); 2623 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, 2624 req->r_cred->fsgid)); 2625 head->ino = cpu_to_le64(req->r_deleg_ino); 2626 head->args = req->r_args; 2627 2628 ceph_encode_filepath(&p, end, ino1, path1); 2629 ceph_encode_filepath(&p, end, ino2, path2); 2630 2631 /* make note of release offset, in case we need to replay */ 2632 req->r_request_release_offset = p - msg->front.iov_base; 2633 2634 /* cap releases */ 2635 releases = 0; 2636 if (req->r_inode_drop) 2637 releases += ceph_encode_inode_release(&p, 2638 req->r_inode ? req->r_inode : d_inode(req->r_dentry), 2639 mds, req->r_inode_drop, req->r_inode_unless, 2640 req->r_op == CEPH_MDS_OP_READDIR); 2641 if (req->r_dentry_drop) 2642 releases += ceph_encode_dentry_release(&p, req->r_dentry, 2643 req->r_parent, mds, req->r_dentry_drop, 2644 req->r_dentry_unless); 2645 if (req->r_old_dentry_drop) 2646 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 2647 req->r_old_dentry_dir, mds, 2648 req->r_old_dentry_drop, 2649 req->r_old_dentry_unless); 2650 if (req->r_old_inode_drop) 2651 releases += ceph_encode_inode_release(&p, 2652 d_inode(req->r_old_dentry), 2653 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 2654 2655 if (drop_cap_releases) { 2656 releases = 0; 2657 p = msg->front.iov_base + req->r_request_release_offset; 2658 } 2659 2660 head->num_releases = cpu_to_le16(releases); 2661 2662 encode_timestamp_and_gids(&p, req); 2663 2664 if (WARN_ON_ONCE(p > end)) { 2665 ceph_msg_put(msg); 2666 msg = ERR_PTR(-ERANGE); 2667 goto out_free2; 2668 } 2669 2670 msg->front.iov_len = p - msg->front.iov_base; 2671 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2672 2673 if (req->r_pagelist) { 2674 struct ceph_pagelist *pagelist = req->r_pagelist; 2675 ceph_msg_data_add_pagelist(msg, pagelist); 2676 msg->hdr.data_len = cpu_to_le32(pagelist->length); 2677 } else { 2678 msg->hdr.data_len = 0; 2679 } 2680 2681 msg->hdr.data_off = cpu_to_le16(0); 2682 2683 out_free2: 2684 if (freepath2) 2685 ceph_mdsc_free_path((char *)path2, pathlen2); 2686 out_free1: 2687 if (freepath1) 2688 ceph_mdsc_free_path((char *)path1, pathlen1); 2689 out: 2690 return msg; 2691 } 2692 2693 /* 2694 * called under mdsc->mutex if error, under no mutex if 2695 * success. 2696 */ 2697 static void complete_request(struct ceph_mds_client *mdsc, 2698 struct ceph_mds_request *req) 2699 { 2700 req->r_end_latency = ktime_get(); 2701 2702 if (req->r_callback) 2703 req->r_callback(mdsc, req); 2704 complete_all(&req->r_completion); 2705 } 2706 2707 static struct ceph_mds_request_head_old * 2708 find_old_request_head(void *p, u64 features) 2709 { 2710 bool legacy = !(features & CEPH_FEATURE_FS_BTIME); 2711 struct ceph_mds_request_head *new_head; 2712 2713 if (legacy) 2714 return (struct ceph_mds_request_head_old *)p; 2715 new_head = (struct ceph_mds_request_head *)p; 2716 return (struct ceph_mds_request_head_old *)&new_head->oldest_client_tid; 2717 } 2718 2719 /* 2720 * called under mdsc->mutex 2721 */ 2722 static int __prepare_send_request(struct ceph_mds_session *session, 2723 struct ceph_mds_request *req, 2724 bool drop_cap_releases) 2725 { 2726 int mds = session->s_mds; 2727 struct ceph_mds_client *mdsc = session->s_mdsc; 2728 struct ceph_mds_request_head_old *rhead; 2729 struct ceph_msg *msg; 2730 int flags = 0, max_retry; 2731 2732 /* 2733 * The type of 'r_attempts' in kernel 'ceph_mds_request' 2734 * is 'int', while in 'ceph_mds_request_head' the type of 2735 * 'num_retry' is '__u8'. So in case the request retries 2736 * exceeding 256 times, the MDS will receive a incorrect 2737 * retry seq. 2738 * 2739 * In this case it's ususally a bug in MDS and continue 2740 * retrying the request makes no sense. 2741 * 2742 * In future this could be fixed in ceph code, so avoid 2743 * using the hardcode here. 2744 */ 2745 max_retry = sizeof_field(struct ceph_mds_request_head, num_retry); 2746 max_retry = 1 << (max_retry * BITS_PER_BYTE); 2747 if (req->r_attempts >= max_retry) { 2748 pr_warn_ratelimited("%s request tid %llu seq overflow\n", 2749 __func__, req->r_tid); 2750 return -EMULTIHOP; 2751 } 2752 2753 req->r_attempts++; 2754 if (req->r_inode) { 2755 struct ceph_cap *cap = 2756 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 2757 2758 if (cap) 2759 req->r_sent_on_mseq = cap->mseq; 2760 else 2761 req->r_sent_on_mseq = -1; 2762 } 2763 dout("%s %p tid %lld %s (attempt %d)\n", __func__, req, 2764 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 2765 2766 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 2767 void *p; 2768 2769 /* 2770 * Replay. Do not regenerate message (and rebuild 2771 * paths, etc.); just use the original message. 2772 * Rebuilding paths will break for renames because 2773 * d_move mangles the src name. 2774 */ 2775 msg = req->r_request; 2776 rhead = find_old_request_head(msg->front.iov_base, 2777 session->s_con.peer_features); 2778 2779 flags = le32_to_cpu(rhead->flags); 2780 flags |= CEPH_MDS_FLAG_REPLAY; 2781 rhead->flags = cpu_to_le32(flags); 2782 2783 if (req->r_target_inode) 2784 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 2785 2786 rhead->num_retry = req->r_attempts - 1; 2787 2788 /* remove cap/dentry releases from message */ 2789 rhead->num_releases = 0; 2790 2791 p = msg->front.iov_base + req->r_request_release_offset; 2792 encode_timestamp_and_gids(&p, req); 2793 2794 msg->front.iov_len = p - msg->front.iov_base; 2795 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2796 return 0; 2797 } 2798 2799 if (req->r_request) { 2800 ceph_msg_put(req->r_request); 2801 req->r_request = NULL; 2802 } 2803 msg = create_request_message(session, req, drop_cap_releases); 2804 if (IS_ERR(msg)) { 2805 req->r_err = PTR_ERR(msg); 2806 return PTR_ERR(msg); 2807 } 2808 req->r_request = msg; 2809 2810 rhead = find_old_request_head(msg->front.iov_base, 2811 session->s_con.peer_features); 2812 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 2813 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 2814 flags |= CEPH_MDS_FLAG_REPLAY; 2815 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) 2816 flags |= CEPH_MDS_FLAG_ASYNC; 2817 if (req->r_parent) 2818 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 2819 rhead->flags = cpu_to_le32(flags); 2820 rhead->num_fwd = req->r_num_fwd; 2821 rhead->num_retry = req->r_attempts - 1; 2822 2823 dout(" r_parent = %p\n", req->r_parent); 2824 return 0; 2825 } 2826 2827 /* 2828 * called under mdsc->mutex 2829 */ 2830 static int __send_request(struct ceph_mds_session *session, 2831 struct ceph_mds_request *req, 2832 bool drop_cap_releases) 2833 { 2834 int err; 2835 2836 err = __prepare_send_request(session, req, drop_cap_releases); 2837 if (!err) { 2838 ceph_msg_get(req->r_request); 2839 ceph_con_send(&session->s_con, req->r_request); 2840 } 2841 2842 return err; 2843 } 2844 2845 /* 2846 * send request, or put it on the appropriate wait list. 2847 */ 2848 static void __do_request(struct ceph_mds_client *mdsc, 2849 struct ceph_mds_request *req) 2850 { 2851 struct ceph_mds_session *session = NULL; 2852 int mds = -1; 2853 int err = 0; 2854 bool random; 2855 2856 if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { 2857 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) 2858 __unregister_request(mdsc, req); 2859 return; 2860 } 2861 2862 if (req->r_timeout && 2863 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 2864 dout("do_request timed out\n"); 2865 err = -ETIMEDOUT; 2866 goto finish; 2867 } 2868 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) { 2869 dout("do_request forced umount\n"); 2870 err = -EIO; 2871 goto finish; 2872 } 2873 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) { 2874 if (mdsc->mdsmap_err) { 2875 err = mdsc->mdsmap_err; 2876 dout("do_request mdsmap err %d\n", err); 2877 goto finish; 2878 } 2879 if (mdsc->mdsmap->m_epoch == 0) { 2880 dout("do_request no mdsmap, waiting for map\n"); 2881 list_add(&req->r_wait, &mdsc->waiting_for_map); 2882 return; 2883 } 2884 if (!(mdsc->fsc->mount_options->flags & 2885 CEPH_MOUNT_OPT_MOUNTWAIT) && 2886 !ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) { 2887 err = -EHOSTUNREACH; 2888 goto finish; 2889 } 2890 } 2891 2892 put_request_session(req); 2893 2894 mds = __choose_mds(mdsc, req, &random); 2895 if (mds < 0 || 2896 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 2897 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) { 2898 err = -EJUKEBOX; 2899 goto finish; 2900 } 2901 dout("do_request no mds or not active, waiting for map\n"); 2902 list_add(&req->r_wait, &mdsc->waiting_for_map); 2903 return; 2904 } 2905 2906 /* get, open session */ 2907 session = __ceph_lookup_mds_session(mdsc, mds); 2908 if (!session) { 2909 session = register_session(mdsc, mds); 2910 if (IS_ERR(session)) { 2911 err = PTR_ERR(session); 2912 goto finish; 2913 } 2914 } 2915 req->r_session = ceph_get_mds_session(session); 2916 2917 dout("do_request mds%d session %p state %s\n", mds, session, 2918 ceph_session_state_name(session->s_state)); 2919 if (session->s_state != CEPH_MDS_SESSION_OPEN && 2920 session->s_state != CEPH_MDS_SESSION_HUNG) { 2921 /* 2922 * We cannot queue async requests since the caps and delegated 2923 * inodes are bound to the session. Just return -EJUKEBOX and 2924 * let the caller retry a sync request in that case. 2925 */ 2926 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) { 2927 err = -EJUKEBOX; 2928 goto out_session; 2929 } 2930 2931 /* 2932 * If the session has been REJECTED, then return a hard error, 2933 * unless it's a CLEANRECOVER mount, in which case we'll queue 2934 * it to the mdsc queue. 2935 */ 2936 if (session->s_state == CEPH_MDS_SESSION_REJECTED) { 2937 if (ceph_test_mount_opt(mdsc->fsc, CLEANRECOVER)) 2938 list_add(&req->r_wait, &mdsc->waiting_for_map); 2939 else 2940 err = -EACCES; 2941 goto out_session; 2942 } 2943 2944 if (session->s_state == CEPH_MDS_SESSION_NEW || 2945 session->s_state == CEPH_MDS_SESSION_CLOSING) { 2946 err = __open_session(mdsc, session); 2947 if (err) 2948 goto out_session; 2949 /* retry the same mds later */ 2950 if (random) 2951 req->r_resend_mds = mds; 2952 } 2953 list_add(&req->r_wait, &session->s_waiting); 2954 goto out_session; 2955 } 2956 2957 /* send request */ 2958 req->r_resend_mds = -1; /* forget any previous mds hint */ 2959 2960 if (req->r_request_started == 0) /* note request start time */ 2961 req->r_request_started = jiffies; 2962 2963 /* 2964 * For async create we will choose the auth MDS of frag in parent 2965 * directory to send the request and ususally this works fine, but 2966 * if the migrated the dirtory to another MDS before it could handle 2967 * it the request will be forwarded. 2968 * 2969 * And then the auth cap will be changed. 2970 */ 2971 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags) && req->r_num_fwd) { 2972 struct ceph_dentry_info *di = ceph_dentry(req->r_dentry); 2973 struct ceph_inode_info *ci; 2974 struct ceph_cap *cap; 2975 2976 /* 2977 * The request maybe handled very fast and the new inode 2978 * hasn't been linked to the dentry yet. We need to wait 2979 * for the ceph_finish_async_create(), which shouldn't be 2980 * stuck too long or fail in thoery, to finish when forwarding 2981 * the request. 2982 */ 2983 if (!d_inode(req->r_dentry)) { 2984 err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_CREATE_BIT, 2985 TASK_KILLABLE); 2986 if (err) { 2987 mutex_lock(&req->r_fill_mutex); 2988 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 2989 mutex_unlock(&req->r_fill_mutex); 2990 goto out_session; 2991 } 2992 } 2993 2994 ci = ceph_inode(d_inode(req->r_dentry)); 2995 2996 spin_lock(&ci->i_ceph_lock); 2997 cap = ci->i_auth_cap; 2998 if (ci->i_ceph_flags & CEPH_I_ASYNC_CREATE && mds != cap->mds) { 2999 dout("do_request session changed for auth cap %d -> %d\n", 3000 cap->session->s_mds, session->s_mds); 3001 3002 /* Remove the auth cap from old session */ 3003 spin_lock(&cap->session->s_cap_lock); 3004 cap->session->s_nr_caps--; 3005 list_del_init(&cap->session_caps); 3006 spin_unlock(&cap->session->s_cap_lock); 3007 3008 /* Add the auth cap to the new session */ 3009 cap->mds = mds; 3010 cap->session = session; 3011 spin_lock(&session->s_cap_lock); 3012 session->s_nr_caps++; 3013 list_add_tail(&cap->session_caps, &session->s_caps); 3014 spin_unlock(&session->s_cap_lock); 3015 3016 change_auth_cap_ses(ci, session); 3017 } 3018 spin_unlock(&ci->i_ceph_lock); 3019 } 3020 3021 err = __send_request(session, req, false); 3022 3023 out_session: 3024 ceph_put_mds_session(session); 3025 finish: 3026 if (err) { 3027 dout("__do_request early error %d\n", err); 3028 req->r_err = err; 3029 complete_request(mdsc, req); 3030 __unregister_request(mdsc, req); 3031 } 3032 return; 3033 } 3034 3035 /* 3036 * called under mdsc->mutex 3037 */ 3038 static void __wake_requests(struct ceph_mds_client *mdsc, 3039 struct list_head *head) 3040 { 3041 struct ceph_mds_request *req; 3042 LIST_HEAD(tmp_list); 3043 3044 list_splice_init(head, &tmp_list); 3045 3046 while (!list_empty(&tmp_list)) { 3047 req = list_entry(tmp_list.next, 3048 struct ceph_mds_request, r_wait); 3049 list_del_init(&req->r_wait); 3050 dout(" wake request %p tid %llu\n", req, req->r_tid); 3051 __do_request(mdsc, req); 3052 } 3053 } 3054 3055 /* 3056 * Wake up threads with requests pending for @mds, so that they can 3057 * resubmit their requests to a possibly different mds. 3058 */ 3059 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 3060 { 3061 struct ceph_mds_request *req; 3062 struct rb_node *p = rb_first(&mdsc->request_tree); 3063 3064 dout("kick_requests mds%d\n", mds); 3065 while (p) { 3066 req = rb_entry(p, struct ceph_mds_request, r_node); 3067 p = rb_next(p); 3068 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 3069 continue; 3070 if (req->r_attempts > 0) 3071 continue; /* only new requests */ 3072 if (req->r_session && 3073 req->r_session->s_mds == mds) { 3074 dout(" kicking tid %llu\n", req->r_tid); 3075 list_del_init(&req->r_wait); 3076 __do_request(mdsc, req); 3077 } 3078 } 3079 } 3080 3081 int ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, struct inode *dir, 3082 struct ceph_mds_request *req) 3083 { 3084 int err = 0; 3085 3086 /* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */ 3087 if (req->r_inode) 3088 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 3089 if (req->r_parent) { 3090 struct ceph_inode_info *ci = ceph_inode(req->r_parent); 3091 int fmode = (req->r_op & CEPH_MDS_OP_WRITE) ? 3092 CEPH_FILE_MODE_WR : CEPH_FILE_MODE_RD; 3093 spin_lock(&ci->i_ceph_lock); 3094 ceph_take_cap_refs(ci, CEPH_CAP_PIN, false); 3095 __ceph_touch_fmode(ci, mdsc, fmode); 3096 spin_unlock(&ci->i_ceph_lock); 3097 } 3098 if (req->r_old_dentry_dir) 3099 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 3100 CEPH_CAP_PIN); 3101 3102 if (req->r_inode) { 3103 err = ceph_wait_on_async_create(req->r_inode); 3104 if (err) { 3105 dout("%s: wait for async create returned: %d\n", 3106 __func__, err); 3107 return err; 3108 } 3109 } 3110 3111 if (!err && req->r_old_inode) { 3112 err = ceph_wait_on_async_create(req->r_old_inode); 3113 if (err) { 3114 dout("%s: wait for async create returned: %d\n", 3115 __func__, err); 3116 return err; 3117 } 3118 } 3119 3120 dout("submit_request on %p for inode %p\n", req, dir); 3121 mutex_lock(&mdsc->mutex); 3122 __register_request(mdsc, req, dir); 3123 __do_request(mdsc, req); 3124 err = req->r_err; 3125 mutex_unlock(&mdsc->mutex); 3126 return err; 3127 } 3128 3129 int ceph_mdsc_wait_request(struct ceph_mds_client *mdsc, 3130 struct ceph_mds_request *req, 3131 ceph_mds_request_wait_callback_t wait_func) 3132 { 3133 int err; 3134 3135 /* wait */ 3136 dout("do_request waiting\n"); 3137 if (wait_func) { 3138 err = wait_func(mdsc, req); 3139 } else { 3140 long timeleft = wait_for_completion_killable_timeout( 3141 &req->r_completion, 3142 ceph_timeout_jiffies(req->r_timeout)); 3143 if (timeleft > 0) 3144 err = 0; 3145 else if (!timeleft) 3146 err = -ETIMEDOUT; /* timed out */ 3147 else 3148 err = timeleft; /* killed */ 3149 } 3150 dout("do_request waited, got %d\n", err); 3151 mutex_lock(&mdsc->mutex); 3152 3153 /* only abort if we didn't race with a real reply */ 3154 if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { 3155 err = le32_to_cpu(req->r_reply_info.head->result); 3156 } else if (err < 0) { 3157 dout("aborted request %lld with %d\n", req->r_tid, err); 3158 3159 /* 3160 * ensure we aren't running concurrently with 3161 * ceph_fill_trace or ceph_readdir_prepopulate, which 3162 * rely on locks (dir mutex) held by our caller. 3163 */ 3164 mutex_lock(&req->r_fill_mutex); 3165 req->r_err = err; 3166 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 3167 mutex_unlock(&req->r_fill_mutex); 3168 3169 if (req->r_parent && 3170 (req->r_op & CEPH_MDS_OP_WRITE)) 3171 ceph_invalidate_dir_request(req); 3172 } else { 3173 err = req->r_err; 3174 } 3175 3176 mutex_unlock(&mdsc->mutex); 3177 return err; 3178 } 3179 3180 /* 3181 * Synchrously perform an mds request. Take care of all of the 3182 * session setup, forwarding, retry details. 3183 */ 3184 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 3185 struct inode *dir, 3186 struct ceph_mds_request *req) 3187 { 3188 int err; 3189 3190 dout("do_request on %p\n", req); 3191 3192 /* issue */ 3193 err = ceph_mdsc_submit_request(mdsc, dir, req); 3194 if (!err) 3195 err = ceph_mdsc_wait_request(mdsc, req, NULL); 3196 dout("do_request %p done, result %d\n", req, err); 3197 return err; 3198 } 3199 3200 /* 3201 * Invalidate dir's completeness, dentry lease state on an aborted MDS 3202 * namespace request. 3203 */ 3204 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 3205 { 3206 struct inode *dir = req->r_parent; 3207 struct inode *old_dir = req->r_old_dentry_dir; 3208 3209 dout("invalidate_dir_request %p %p (complete, lease(s))\n", dir, old_dir); 3210 3211 ceph_dir_clear_complete(dir); 3212 if (old_dir) 3213 ceph_dir_clear_complete(old_dir); 3214 if (req->r_dentry) 3215 ceph_invalidate_dentry_lease(req->r_dentry); 3216 if (req->r_old_dentry) 3217 ceph_invalidate_dentry_lease(req->r_old_dentry); 3218 } 3219 3220 /* 3221 * Handle mds reply. 3222 * 3223 * We take the session mutex and parse and process the reply immediately. 3224 * This preserves the logical ordering of replies, capabilities, etc., sent 3225 * by the MDS as they are applied to our local cache. 3226 */ 3227 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 3228 { 3229 struct ceph_mds_client *mdsc = session->s_mdsc; 3230 struct ceph_mds_request *req; 3231 struct ceph_mds_reply_head *head = msg->front.iov_base; 3232 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 3233 struct ceph_snap_realm *realm; 3234 u64 tid; 3235 int err, result; 3236 int mds = session->s_mds; 3237 3238 if (msg->front.iov_len < sizeof(*head)) { 3239 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 3240 ceph_msg_dump(msg); 3241 return; 3242 } 3243 3244 /* get request, session */ 3245 tid = le64_to_cpu(msg->hdr.tid); 3246 mutex_lock(&mdsc->mutex); 3247 req = lookup_get_request(mdsc, tid); 3248 if (!req) { 3249 dout("handle_reply on unknown tid %llu\n", tid); 3250 mutex_unlock(&mdsc->mutex); 3251 return; 3252 } 3253 dout("handle_reply %p\n", req); 3254 3255 /* correct session? */ 3256 if (req->r_session != session) { 3257 pr_err("mdsc_handle_reply got %llu on session mds%d" 3258 " not mds%d\n", tid, session->s_mds, 3259 req->r_session ? req->r_session->s_mds : -1); 3260 mutex_unlock(&mdsc->mutex); 3261 goto out; 3262 } 3263 3264 /* dup? */ 3265 if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) || 3266 (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) { 3267 pr_warn("got a dup %s reply on %llu from mds%d\n", 3268 head->safe ? "safe" : "unsafe", tid, mds); 3269 mutex_unlock(&mdsc->mutex); 3270 goto out; 3271 } 3272 if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) { 3273 pr_warn("got unsafe after safe on %llu from mds%d\n", 3274 tid, mds); 3275 mutex_unlock(&mdsc->mutex); 3276 goto out; 3277 } 3278 3279 result = le32_to_cpu(head->result); 3280 3281 if (head->safe) { 3282 set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags); 3283 __unregister_request(mdsc, req); 3284 3285 /* last request during umount? */ 3286 if (mdsc->stopping && !__get_oldest_req(mdsc)) 3287 complete_all(&mdsc->safe_umount_waiters); 3288 3289 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3290 /* 3291 * We already handled the unsafe response, now do the 3292 * cleanup. No need to examine the response; the MDS 3293 * doesn't include any result info in the safe 3294 * response. And even if it did, there is nothing 3295 * useful we could do with a revised return value. 3296 */ 3297 dout("got safe reply %llu, mds%d\n", tid, mds); 3298 3299 mutex_unlock(&mdsc->mutex); 3300 goto out; 3301 } 3302 } else { 3303 set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags); 3304 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 3305 } 3306 3307 dout("handle_reply tid %lld result %d\n", tid, result); 3308 rinfo = &req->r_reply_info; 3309 if (test_bit(CEPHFS_FEATURE_REPLY_ENCODING, &session->s_features)) 3310 err = parse_reply_info(session, msg, rinfo, (u64)-1); 3311 else 3312 err = parse_reply_info(session, msg, rinfo, session->s_con.peer_features); 3313 mutex_unlock(&mdsc->mutex); 3314 3315 /* Must find target inode outside of mutexes to avoid deadlocks */ 3316 if ((err >= 0) && rinfo->head->is_target) { 3317 struct inode *in; 3318 struct ceph_vino tvino = { 3319 .ino = le64_to_cpu(rinfo->targeti.in->ino), 3320 .snap = le64_to_cpu(rinfo->targeti.in->snapid) 3321 }; 3322 3323 in = ceph_get_inode(mdsc->fsc->sb, tvino); 3324 if (IS_ERR(in)) { 3325 err = PTR_ERR(in); 3326 mutex_lock(&session->s_mutex); 3327 goto out_err; 3328 } 3329 req->r_target_inode = in; 3330 } 3331 3332 mutex_lock(&session->s_mutex); 3333 if (err < 0) { 3334 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 3335 ceph_msg_dump(msg); 3336 goto out_err; 3337 } 3338 3339 /* snap trace */ 3340 realm = NULL; 3341 if (rinfo->snapblob_len) { 3342 down_write(&mdsc->snap_rwsem); 3343 ceph_update_snap_trace(mdsc, rinfo->snapblob, 3344 rinfo->snapblob + rinfo->snapblob_len, 3345 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP, 3346 &realm); 3347 downgrade_write(&mdsc->snap_rwsem); 3348 } else { 3349 down_read(&mdsc->snap_rwsem); 3350 } 3351 3352 /* insert trace into our cache */ 3353 mutex_lock(&req->r_fill_mutex); 3354 current->journal_info = req; 3355 err = ceph_fill_trace(mdsc->fsc->sb, req); 3356 if (err == 0) { 3357 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || 3358 req->r_op == CEPH_MDS_OP_LSSNAP)) 3359 ceph_readdir_prepopulate(req, req->r_session); 3360 } 3361 current->journal_info = NULL; 3362 mutex_unlock(&req->r_fill_mutex); 3363 3364 up_read(&mdsc->snap_rwsem); 3365 if (realm) 3366 ceph_put_snap_realm(mdsc, realm); 3367 3368 if (err == 0) { 3369 if (req->r_target_inode && 3370 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3371 struct ceph_inode_info *ci = 3372 ceph_inode(req->r_target_inode); 3373 spin_lock(&ci->i_unsafe_lock); 3374 list_add_tail(&req->r_unsafe_target_item, 3375 &ci->i_unsafe_iops); 3376 spin_unlock(&ci->i_unsafe_lock); 3377 } 3378 3379 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 3380 } 3381 out_err: 3382 mutex_lock(&mdsc->mutex); 3383 if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { 3384 if (err) { 3385 req->r_err = err; 3386 } else { 3387 req->r_reply = ceph_msg_get(msg); 3388 set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags); 3389 } 3390 } else { 3391 dout("reply arrived after request %lld was aborted\n", tid); 3392 } 3393 mutex_unlock(&mdsc->mutex); 3394 3395 mutex_unlock(&session->s_mutex); 3396 3397 /* kick calling process */ 3398 complete_request(mdsc, req); 3399 3400 ceph_update_metadata_metrics(&mdsc->metric, req->r_start_latency, 3401 req->r_end_latency, err); 3402 out: 3403 ceph_mdsc_put_request(req); 3404 return; 3405 } 3406 3407 3408 3409 /* 3410 * handle mds notification that our request has been forwarded. 3411 */ 3412 static void handle_forward(struct ceph_mds_client *mdsc, 3413 struct ceph_mds_session *session, 3414 struct ceph_msg *msg) 3415 { 3416 struct ceph_mds_request *req; 3417 u64 tid = le64_to_cpu(msg->hdr.tid); 3418 u32 next_mds; 3419 u32 fwd_seq; 3420 int err = -EINVAL; 3421 void *p = msg->front.iov_base; 3422 void *end = p + msg->front.iov_len; 3423 bool aborted = false; 3424 3425 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 3426 next_mds = ceph_decode_32(&p); 3427 fwd_seq = ceph_decode_32(&p); 3428 3429 mutex_lock(&mdsc->mutex); 3430 req = lookup_get_request(mdsc, tid); 3431 if (!req) { 3432 mutex_unlock(&mdsc->mutex); 3433 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 3434 return; /* dup reply? */ 3435 } 3436 3437 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { 3438 dout("forward tid %llu aborted, unregistering\n", tid); 3439 __unregister_request(mdsc, req); 3440 } else if (fwd_seq <= req->r_num_fwd) { 3441 /* 3442 * The type of 'num_fwd' in ceph 'MClientRequestForward' 3443 * is 'int32_t', while in 'ceph_mds_request_head' the 3444 * type is '__u8'. So in case the request bounces between 3445 * MDSes exceeding 256 times, the client will get stuck. 3446 * 3447 * In this case it's ususally a bug in MDS and continue 3448 * bouncing the request makes no sense. 3449 * 3450 * In future this could be fixed in ceph code, so avoid 3451 * using the hardcode here. 3452 */ 3453 int max = sizeof_field(struct ceph_mds_request_head, num_fwd); 3454 max = 1 << (max * BITS_PER_BYTE); 3455 if (req->r_num_fwd >= max) { 3456 mutex_lock(&req->r_fill_mutex); 3457 req->r_err = -EMULTIHOP; 3458 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 3459 mutex_unlock(&req->r_fill_mutex); 3460 aborted = true; 3461 pr_warn_ratelimited("forward tid %llu seq overflow\n", 3462 tid); 3463 } else { 3464 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 3465 tid, next_mds, req->r_num_fwd, fwd_seq); 3466 } 3467 } else { 3468 /* resend. forward race not possible; mds would drop */ 3469 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 3470 BUG_ON(req->r_err); 3471 BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)); 3472 req->r_attempts = 0; 3473 req->r_num_fwd = fwd_seq; 3474 req->r_resend_mds = next_mds; 3475 put_request_session(req); 3476 __do_request(mdsc, req); 3477 } 3478 mutex_unlock(&mdsc->mutex); 3479 3480 /* kick calling process */ 3481 if (aborted) 3482 complete_request(mdsc, req); 3483 ceph_mdsc_put_request(req); 3484 return; 3485 3486 bad: 3487 pr_err("mdsc_handle_forward decode error err=%d\n", err); 3488 } 3489 3490 static int __decode_session_metadata(void **p, void *end, 3491 bool *blocklisted) 3492 { 3493 /* map<string,string> */ 3494 u32 n; 3495 bool err_str; 3496 ceph_decode_32_safe(p, end, n, bad); 3497 while (n-- > 0) { 3498 u32 len; 3499 ceph_decode_32_safe(p, end, len, bad); 3500 ceph_decode_need(p, end, len, bad); 3501 err_str = !strncmp(*p, "error_string", len); 3502 *p += len; 3503 ceph_decode_32_safe(p, end, len, bad); 3504 ceph_decode_need(p, end, len, bad); 3505 /* 3506 * Match "blocklisted (blacklisted)" from newer MDSes, 3507 * or "blacklisted" from older MDSes. 3508 */ 3509 if (err_str && strnstr(*p, "blacklisted", len)) 3510 *blocklisted = true; 3511 *p += len; 3512 } 3513 return 0; 3514 bad: 3515 return -1; 3516 } 3517 3518 /* 3519 * handle a mds session control message 3520 */ 3521 static void handle_session(struct ceph_mds_session *session, 3522 struct ceph_msg *msg) 3523 { 3524 struct ceph_mds_client *mdsc = session->s_mdsc; 3525 int mds = session->s_mds; 3526 int msg_version = le16_to_cpu(msg->hdr.version); 3527 void *p = msg->front.iov_base; 3528 void *end = p + msg->front.iov_len; 3529 struct ceph_mds_session_head *h; 3530 u32 op; 3531 u64 seq, features = 0; 3532 int wake = 0; 3533 bool blocklisted = false; 3534 3535 /* decode */ 3536 ceph_decode_need(&p, end, sizeof(*h), bad); 3537 h = p; 3538 p += sizeof(*h); 3539 3540 op = le32_to_cpu(h->op); 3541 seq = le64_to_cpu(h->seq); 3542 3543 if (msg_version >= 3) { 3544 u32 len; 3545 /* version >= 2 and < 5, decode metadata, skip otherwise 3546 * as it's handled via flags. 3547 */ 3548 if (msg_version >= 5) 3549 ceph_decode_skip_map(&p, end, string, string, bad); 3550 else if (__decode_session_metadata(&p, end, &blocklisted) < 0) 3551 goto bad; 3552 3553 /* version >= 3, feature bits */ 3554 ceph_decode_32_safe(&p, end, len, bad); 3555 if (len) { 3556 ceph_decode_64_safe(&p, end, features, bad); 3557 p += len - sizeof(features); 3558 } 3559 } 3560 3561 if (msg_version >= 5) { 3562 u32 flags, len; 3563 3564 /* version >= 4 */ 3565 ceph_decode_skip_16(&p, end, bad); /* struct_v, struct_cv */ 3566 ceph_decode_32_safe(&p, end, len, bad); /* len */ 3567 ceph_decode_skip_n(&p, end, len, bad); /* metric_spec */ 3568 3569 /* version >= 5, flags */ 3570 ceph_decode_32_safe(&p, end, flags, bad); 3571 if (flags & CEPH_SESSION_BLOCKLISTED) { 3572 pr_warn("mds%d session blocklisted\n", session->s_mds); 3573 blocklisted = true; 3574 } 3575 } 3576 3577 mutex_lock(&mdsc->mutex); 3578 if (op == CEPH_SESSION_CLOSE) { 3579 ceph_get_mds_session(session); 3580 __unregister_session(mdsc, session); 3581 } 3582 /* FIXME: this ttl calculation is generous */ 3583 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 3584 mutex_unlock(&mdsc->mutex); 3585 3586 mutex_lock(&session->s_mutex); 3587 3588 dout("handle_session mds%d %s %p state %s seq %llu\n", 3589 mds, ceph_session_op_name(op), session, 3590 ceph_session_state_name(session->s_state), seq); 3591 3592 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 3593 session->s_state = CEPH_MDS_SESSION_OPEN; 3594 pr_info("mds%d came back\n", session->s_mds); 3595 } 3596 3597 switch (op) { 3598 case CEPH_SESSION_OPEN: 3599 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 3600 pr_info("mds%d reconnect success\n", session->s_mds); 3601 3602 if (session->s_state == CEPH_MDS_SESSION_OPEN) { 3603 pr_notice("mds%d is already opened\n", session->s_mds); 3604 } else { 3605 session->s_state = CEPH_MDS_SESSION_OPEN; 3606 session->s_features = features; 3607 renewed_caps(mdsc, session, 0); 3608 if (test_bit(CEPHFS_FEATURE_METRIC_COLLECT, 3609 &session->s_features)) 3610 metric_schedule_delayed(&mdsc->metric); 3611 } 3612 3613 /* 3614 * The connection maybe broken and the session in client 3615 * side has been reinitialized, need to update the seq 3616 * anyway. 3617 */ 3618 if (!session->s_seq && seq) 3619 session->s_seq = seq; 3620 3621 wake = 1; 3622 if (mdsc->stopping) 3623 __close_session(mdsc, session); 3624 break; 3625 3626 case CEPH_SESSION_RENEWCAPS: 3627 if (session->s_renew_seq == seq) 3628 renewed_caps(mdsc, session, 1); 3629 break; 3630 3631 case CEPH_SESSION_CLOSE: 3632 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 3633 pr_info("mds%d reconnect denied\n", session->s_mds); 3634 session->s_state = CEPH_MDS_SESSION_CLOSED; 3635 cleanup_session_requests(mdsc, session); 3636 remove_session_caps(session); 3637 wake = 2; /* for good measure */ 3638 wake_up_all(&mdsc->session_close_wq); 3639 break; 3640 3641 case CEPH_SESSION_STALE: 3642 pr_info("mds%d caps went stale, renewing\n", 3643 session->s_mds); 3644 atomic_inc(&session->s_cap_gen); 3645 session->s_cap_ttl = jiffies - 1; 3646 send_renew_caps(mdsc, session); 3647 break; 3648 3649 case CEPH_SESSION_RECALL_STATE: 3650 ceph_trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 3651 break; 3652 3653 case CEPH_SESSION_FLUSHMSG: 3654 send_flushmsg_ack(mdsc, session, seq); 3655 break; 3656 3657 case CEPH_SESSION_FORCE_RO: 3658 dout("force_session_readonly %p\n", session); 3659 spin_lock(&session->s_cap_lock); 3660 session->s_readonly = true; 3661 spin_unlock(&session->s_cap_lock); 3662 wake_up_session_caps(session, FORCE_RO); 3663 break; 3664 3665 case CEPH_SESSION_REJECT: 3666 WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING); 3667 pr_info("mds%d rejected session\n", session->s_mds); 3668 session->s_state = CEPH_MDS_SESSION_REJECTED; 3669 cleanup_session_requests(mdsc, session); 3670 remove_session_caps(session); 3671 if (blocklisted) 3672 mdsc->fsc->blocklisted = true; 3673 wake = 2; /* for good measure */ 3674 break; 3675 3676 default: 3677 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 3678 WARN_ON(1); 3679 } 3680 3681 mutex_unlock(&session->s_mutex); 3682 if (wake) { 3683 mutex_lock(&mdsc->mutex); 3684 __wake_requests(mdsc, &session->s_waiting); 3685 if (wake == 2) 3686 kick_requests(mdsc, mds); 3687 mutex_unlock(&mdsc->mutex); 3688 } 3689 if (op == CEPH_SESSION_CLOSE) 3690 ceph_put_mds_session(session); 3691 return; 3692 3693 bad: 3694 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 3695 (int)msg->front.iov_len); 3696 ceph_msg_dump(msg); 3697 return; 3698 } 3699 3700 void ceph_mdsc_release_dir_caps(struct ceph_mds_request *req) 3701 { 3702 int dcaps; 3703 3704 dcaps = xchg(&req->r_dir_caps, 0); 3705 if (dcaps) { 3706 dout("releasing r_dir_caps=%s\n", ceph_cap_string(dcaps)); 3707 ceph_put_cap_refs(ceph_inode(req->r_parent), dcaps); 3708 } 3709 } 3710 3711 void ceph_mdsc_release_dir_caps_no_check(struct ceph_mds_request *req) 3712 { 3713 int dcaps; 3714 3715 dcaps = xchg(&req->r_dir_caps, 0); 3716 if (dcaps) { 3717 dout("releasing r_dir_caps=%s\n", ceph_cap_string(dcaps)); 3718 ceph_put_cap_refs_no_check_caps(ceph_inode(req->r_parent), 3719 dcaps); 3720 } 3721 } 3722 3723 /* 3724 * called under session->mutex. 3725 */ 3726 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 3727 struct ceph_mds_session *session) 3728 { 3729 struct ceph_mds_request *req, *nreq; 3730 struct rb_node *p; 3731 3732 dout("replay_unsafe_requests mds%d\n", session->s_mds); 3733 3734 mutex_lock(&mdsc->mutex); 3735 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) 3736 __send_request(session, req, true); 3737 3738 /* 3739 * also re-send old requests when MDS enters reconnect stage. So that MDS 3740 * can process completed request in clientreplay stage. 3741 */ 3742 p = rb_first(&mdsc->request_tree); 3743 while (p) { 3744 req = rb_entry(p, struct ceph_mds_request, r_node); 3745 p = rb_next(p); 3746 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 3747 continue; 3748 if (req->r_attempts == 0) 3749 continue; /* only old requests */ 3750 if (!req->r_session) 3751 continue; 3752 if (req->r_session->s_mds != session->s_mds) 3753 continue; 3754 3755 ceph_mdsc_release_dir_caps_no_check(req); 3756 3757 __send_request(session, req, true); 3758 } 3759 mutex_unlock(&mdsc->mutex); 3760 } 3761 3762 static int send_reconnect_partial(struct ceph_reconnect_state *recon_state) 3763 { 3764 struct ceph_msg *reply; 3765 struct ceph_pagelist *_pagelist; 3766 struct page *page; 3767 __le32 *addr; 3768 int err = -ENOMEM; 3769 3770 if (!recon_state->allow_multi) 3771 return -ENOSPC; 3772 3773 /* can't handle message that contains both caps and realm */ 3774 BUG_ON(!recon_state->nr_caps == !recon_state->nr_realms); 3775 3776 /* pre-allocate new pagelist */ 3777 _pagelist = ceph_pagelist_alloc(GFP_NOFS); 3778 if (!_pagelist) 3779 return -ENOMEM; 3780 3781 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false); 3782 if (!reply) 3783 goto fail_msg; 3784 3785 /* placeholder for nr_caps */ 3786 err = ceph_pagelist_encode_32(_pagelist, 0); 3787 if (err < 0) 3788 goto fail; 3789 3790 if (recon_state->nr_caps) { 3791 /* currently encoding caps */ 3792 err = ceph_pagelist_encode_32(recon_state->pagelist, 0); 3793 if (err) 3794 goto fail; 3795 } else { 3796 /* placeholder for nr_realms (currently encoding relams) */ 3797 err = ceph_pagelist_encode_32(_pagelist, 0); 3798 if (err < 0) 3799 goto fail; 3800 } 3801 3802 err = ceph_pagelist_encode_8(recon_state->pagelist, 1); 3803 if (err) 3804 goto fail; 3805 3806 page = list_first_entry(&recon_state->pagelist->head, struct page, lru); 3807 addr = kmap_atomic(page); 3808 if (recon_state->nr_caps) { 3809 /* currently encoding caps */ 3810 *addr = cpu_to_le32(recon_state->nr_caps); 3811 } else { 3812 /* currently encoding relams */ 3813 *(addr + 1) = cpu_to_le32(recon_state->nr_realms); 3814 } 3815 kunmap_atomic(addr); 3816 3817 reply->hdr.version = cpu_to_le16(5); 3818 reply->hdr.compat_version = cpu_to_le16(4); 3819 3820 reply->hdr.data_len = cpu_to_le32(recon_state->pagelist->length); 3821 ceph_msg_data_add_pagelist(reply, recon_state->pagelist); 3822 3823 ceph_con_send(&recon_state->session->s_con, reply); 3824 ceph_pagelist_release(recon_state->pagelist); 3825 3826 recon_state->pagelist = _pagelist; 3827 recon_state->nr_caps = 0; 3828 recon_state->nr_realms = 0; 3829 recon_state->msg_version = 5; 3830 return 0; 3831 fail: 3832 ceph_msg_put(reply); 3833 fail_msg: 3834 ceph_pagelist_release(_pagelist); 3835 return err; 3836 } 3837 3838 static struct dentry* d_find_primary(struct inode *inode) 3839 { 3840 struct dentry *alias, *dn = NULL; 3841 3842 if (hlist_empty(&inode->i_dentry)) 3843 return NULL; 3844 3845 spin_lock(&inode->i_lock); 3846 if (hlist_empty(&inode->i_dentry)) 3847 goto out_unlock; 3848 3849 if (S_ISDIR(inode->i_mode)) { 3850 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 3851 if (!IS_ROOT(alias)) 3852 dn = dget(alias); 3853 goto out_unlock; 3854 } 3855 3856 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 3857 spin_lock(&alias->d_lock); 3858 if (!d_unhashed(alias) && 3859 (ceph_dentry(alias)->flags & CEPH_DENTRY_PRIMARY_LINK)) { 3860 dn = dget_dlock(alias); 3861 } 3862 spin_unlock(&alias->d_lock); 3863 if (dn) 3864 break; 3865 } 3866 out_unlock: 3867 spin_unlock(&inode->i_lock); 3868 return dn; 3869 } 3870 3871 /* 3872 * Encode information about a cap for a reconnect with the MDS. 3873 */ 3874 static int reconnect_caps_cb(struct inode *inode, struct ceph_cap *cap, 3875 void *arg) 3876 { 3877 union { 3878 struct ceph_mds_cap_reconnect v2; 3879 struct ceph_mds_cap_reconnect_v1 v1; 3880 } rec; 3881 struct ceph_inode_info *ci = cap->ci; 3882 struct ceph_reconnect_state *recon_state = arg; 3883 struct ceph_pagelist *pagelist = recon_state->pagelist; 3884 struct dentry *dentry; 3885 char *path; 3886 int pathlen = 0, err; 3887 u64 pathbase; 3888 u64 snap_follows; 3889 3890 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 3891 inode, ceph_vinop(inode), cap, cap->cap_id, 3892 ceph_cap_string(cap->issued)); 3893 3894 dentry = d_find_primary(inode); 3895 if (dentry) { 3896 /* set pathbase to parent dir when msg_version >= 2 */ 3897 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 3898 recon_state->msg_version >= 2); 3899 dput(dentry); 3900 if (IS_ERR(path)) { 3901 err = PTR_ERR(path); 3902 goto out_err; 3903 } 3904 } else { 3905 path = NULL; 3906 pathbase = 0; 3907 } 3908 3909 spin_lock(&ci->i_ceph_lock); 3910 cap->seq = 0; /* reset cap seq */ 3911 cap->issue_seq = 0; /* and issue_seq */ 3912 cap->mseq = 0; /* and migrate_seq */ 3913 cap->cap_gen = atomic_read(&cap->session->s_cap_gen); 3914 3915 /* These are lost when the session goes away */ 3916 if (S_ISDIR(inode->i_mode)) { 3917 if (cap->issued & CEPH_CAP_DIR_CREATE) { 3918 ceph_put_string(rcu_dereference_raw(ci->i_cached_layout.pool_ns)); 3919 memset(&ci->i_cached_layout, 0, sizeof(ci->i_cached_layout)); 3920 } 3921 cap->issued &= ~CEPH_CAP_ANY_DIR_OPS; 3922 } 3923 3924 if (recon_state->msg_version >= 2) { 3925 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 3926 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 3927 rec.v2.issued = cpu_to_le32(cap->issued); 3928 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 3929 rec.v2.pathbase = cpu_to_le64(pathbase); 3930 rec.v2.flock_len = (__force __le32) 3931 ((ci->i_ceph_flags & CEPH_I_ERROR_FILELOCK) ? 0 : 1); 3932 } else { 3933 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 3934 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 3935 rec.v1.issued = cpu_to_le32(cap->issued); 3936 rec.v1.size = cpu_to_le64(i_size_read(inode)); 3937 ceph_encode_timespec64(&rec.v1.mtime, &inode->i_mtime); 3938 ceph_encode_timespec64(&rec.v1.atime, &inode->i_atime); 3939 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 3940 rec.v1.pathbase = cpu_to_le64(pathbase); 3941 } 3942 3943 if (list_empty(&ci->i_cap_snaps)) { 3944 snap_follows = ci->i_head_snapc ? ci->i_head_snapc->seq : 0; 3945 } else { 3946 struct ceph_cap_snap *capsnap = 3947 list_first_entry(&ci->i_cap_snaps, 3948 struct ceph_cap_snap, ci_item); 3949 snap_follows = capsnap->follows; 3950 } 3951 spin_unlock(&ci->i_ceph_lock); 3952 3953 if (recon_state->msg_version >= 2) { 3954 int num_fcntl_locks, num_flock_locks; 3955 struct ceph_filelock *flocks = NULL; 3956 size_t struct_len, total_len = sizeof(u64); 3957 u8 struct_v = 0; 3958 3959 encode_again: 3960 if (rec.v2.flock_len) { 3961 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); 3962 } else { 3963 num_fcntl_locks = 0; 3964 num_flock_locks = 0; 3965 } 3966 if (num_fcntl_locks + num_flock_locks > 0) { 3967 flocks = kmalloc_array(num_fcntl_locks + num_flock_locks, 3968 sizeof(struct ceph_filelock), 3969 GFP_NOFS); 3970 if (!flocks) { 3971 err = -ENOMEM; 3972 goto out_err; 3973 } 3974 err = ceph_encode_locks_to_buffer(inode, flocks, 3975 num_fcntl_locks, 3976 num_flock_locks); 3977 if (err) { 3978 kfree(flocks); 3979 flocks = NULL; 3980 if (err == -ENOSPC) 3981 goto encode_again; 3982 goto out_err; 3983 } 3984 } else { 3985 kfree(flocks); 3986 flocks = NULL; 3987 } 3988 3989 if (recon_state->msg_version >= 3) { 3990 /* version, compat_version and struct_len */ 3991 total_len += 2 * sizeof(u8) + sizeof(u32); 3992 struct_v = 2; 3993 } 3994 /* 3995 * number of encoded locks is stable, so copy to pagelist 3996 */ 3997 struct_len = 2 * sizeof(u32) + 3998 (num_fcntl_locks + num_flock_locks) * 3999 sizeof(struct ceph_filelock); 4000 rec.v2.flock_len = cpu_to_le32(struct_len); 4001 4002 struct_len += sizeof(u32) + pathlen + sizeof(rec.v2); 4003 4004 if (struct_v >= 2) 4005 struct_len += sizeof(u64); /* snap_follows */ 4006 4007 total_len += struct_len; 4008 4009 if (pagelist->length + total_len > RECONNECT_MAX_SIZE) { 4010 err = send_reconnect_partial(recon_state); 4011 if (err) 4012 goto out_freeflocks; 4013 pagelist = recon_state->pagelist; 4014 } 4015 4016 err = ceph_pagelist_reserve(pagelist, total_len); 4017 if (err) 4018 goto out_freeflocks; 4019 4020 ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 4021 if (recon_state->msg_version >= 3) { 4022 ceph_pagelist_encode_8(pagelist, struct_v); 4023 ceph_pagelist_encode_8(pagelist, 1); 4024 ceph_pagelist_encode_32(pagelist, struct_len); 4025 } 4026 ceph_pagelist_encode_string(pagelist, path, pathlen); 4027 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2)); 4028 ceph_locks_to_pagelist(flocks, pagelist, 4029 num_fcntl_locks, num_flock_locks); 4030 if (struct_v >= 2) 4031 ceph_pagelist_encode_64(pagelist, snap_follows); 4032 out_freeflocks: 4033 kfree(flocks); 4034 } else { 4035 err = ceph_pagelist_reserve(pagelist, 4036 sizeof(u64) + sizeof(u32) + 4037 pathlen + sizeof(rec.v1)); 4038 if (err) 4039 goto out_err; 4040 4041 ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 4042 ceph_pagelist_encode_string(pagelist, path, pathlen); 4043 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1)); 4044 } 4045 4046 out_err: 4047 ceph_mdsc_free_path(path, pathlen); 4048 if (!err) 4049 recon_state->nr_caps++; 4050 return err; 4051 } 4052 4053 static int encode_snap_realms(struct ceph_mds_client *mdsc, 4054 struct ceph_reconnect_state *recon_state) 4055 { 4056 struct rb_node *p; 4057 struct ceph_pagelist *pagelist = recon_state->pagelist; 4058 int err = 0; 4059 4060 if (recon_state->msg_version >= 4) { 4061 err = ceph_pagelist_encode_32(pagelist, mdsc->num_snap_realms); 4062 if (err < 0) 4063 goto fail; 4064 } 4065 4066 /* 4067 * snaprealms. we provide mds with the ino, seq (version), and 4068 * parent for all of our realms. If the mds has any newer info, 4069 * it will tell us. 4070 */ 4071 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 4072 struct ceph_snap_realm *realm = 4073 rb_entry(p, struct ceph_snap_realm, node); 4074 struct ceph_mds_snaprealm_reconnect sr_rec; 4075 4076 if (recon_state->msg_version >= 4) { 4077 size_t need = sizeof(u8) * 2 + sizeof(u32) + 4078 sizeof(sr_rec); 4079 4080 if (pagelist->length + need > RECONNECT_MAX_SIZE) { 4081 err = send_reconnect_partial(recon_state); 4082 if (err) 4083 goto fail; 4084 pagelist = recon_state->pagelist; 4085 } 4086 4087 err = ceph_pagelist_reserve(pagelist, need); 4088 if (err) 4089 goto fail; 4090 4091 ceph_pagelist_encode_8(pagelist, 1); 4092 ceph_pagelist_encode_8(pagelist, 1); 4093 ceph_pagelist_encode_32(pagelist, sizeof(sr_rec)); 4094 } 4095 4096 dout(" adding snap realm %llx seq %lld parent %llx\n", 4097 realm->ino, realm->seq, realm->parent_ino); 4098 sr_rec.ino = cpu_to_le64(realm->ino); 4099 sr_rec.seq = cpu_to_le64(realm->seq); 4100 sr_rec.parent = cpu_to_le64(realm->parent_ino); 4101 4102 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 4103 if (err) 4104 goto fail; 4105 4106 recon_state->nr_realms++; 4107 } 4108 fail: 4109 return err; 4110 } 4111 4112 4113 /* 4114 * If an MDS fails and recovers, clients need to reconnect in order to 4115 * reestablish shared state. This includes all caps issued through 4116 * this session _and_ the snap_realm hierarchy. Because it's not 4117 * clear which snap realms the mds cares about, we send everything we 4118 * know about.. that ensures we'll then get any new info the 4119 * recovering MDS might have. 4120 * 4121 * This is a relatively heavyweight operation, but it's rare. 4122 */ 4123 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 4124 struct ceph_mds_session *session) 4125 { 4126 struct ceph_msg *reply; 4127 int mds = session->s_mds; 4128 int err = -ENOMEM; 4129 struct ceph_reconnect_state recon_state = { 4130 .session = session, 4131 }; 4132 LIST_HEAD(dispose); 4133 4134 pr_info("mds%d reconnect start\n", mds); 4135 4136 recon_state.pagelist = ceph_pagelist_alloc(GFP_NOFS); 4137 if (!recon_state.pagelist) 4138 goto fail_nopagelist; 4139 4140 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false); 4141 if (!reply) 4142 goto fail_nomsg; 4143 4144 xa_destroy(&session->s_delegated_inos); 4145 4146 mutex_lock(&session->s_mutex); 4147 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 4148 session->s_seq = 0; 4149 4150 dout("session %p state %s\n", session, 4151 ceph_session_state_name(session->s_state)); 4152 4153 atomic_inc(&session->s_cap_gen); 4154 4155 spin_lock(&session->s_cap_lock); 4156 /* don't know if session is readonly */ 4157 session->s_readonly = 0; 4158 /* 4159 * notify __ceph_remove_cap() that we are composing cap reconnect. 4160 * If a cap get released before being added to the cap reconnect, 4161 * __ceph_remove_cap() should skip queuing cap release. 4162 */ 4163 session->s_cap_reconnect = 1; 4164 /* drop old cap expires; we're about to reestablish that state */ 4165 detach_cap_releases(session, &dispose); 4166 spin_unlock(&session->s_cap_lock); 4167 dispose_cap_releases(mdsc, &dispose); 4168 4169 /* trim unused caps to reduce MDS's cache rejoin time */ 4170 if (mdsc->fsc->sb->s_root) 4171 shrink_dcache_parent(mdsc->fsc->sb->s_root); 4172 4173 ceph_con_close(&session->s_con); 4174 ceph_con_open(&session->s_con, 4175 CEPH_ENTITY_TYPE_MDS, mds, 4176 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 4177 4178 /* replay unsafe requests */ 4179 replay_unsafe_requests(mdsc, session); 4180 4181 ceph_early_kick_flushing_caps(mdsc, session); 4182 4183 down_read(&mdsc->snap_rwsem); 4184 4185 /* placeholder for nr_caps */ 4186 err = ceph_pagelist_encode_32(recon_state.pagelist, 0); 4187 if (err) 4188 goto fail; 4189 4190 if (test_bit(CEPHFS_FEATURE_MULTI_RECONNECT, &session->s_features)) { 4191 recon_state.msg_version = 3; 4192 recon_state.allow_multi = true; 4193 } else if (session->s_con.peer_features & CEPH_FEATURE_MDSENC) { 4194 recon_state.msg_version = 3; 4195 } else { 4196 recon_state.msg_version = 2; 4197 } 4198 /* trsaverse this session's caps */ 4199 err = ceph_iterate_session_caps(session, reconnect_caps_cb, &recon_state); 4200 4201 spin_lock(&session->s_cap_lock); 4202 session->s_cap_reconnect = 0; 4203 spin_unlock(&session->s_cap_lock); 4204 4205 if (err < 0) 4206 goto fail; 4207 4208 /* check if all realms can be encoded into current message */ 4209 if (mdsc->num_snap_realms) { 4210 size_t total_len = 4211 recon_state.pagelist->length + 4212 mdsc->num_snap_realms * 4213 sizeof(struct ceph_mds_snaprealm_reconnect); 4214 if (recon_state.msg_version >= 4) { 4215 /* number of realms */ 4216 total_len += sizeof(u32); 4217 /* version, compat_version and struct_len */ 4218 total_len += mdsc->num_snap_realms * 4219 (2 * sizeof(u8) + sizeof(u32)); 4220 } 4221 if (total_len > RECONNECT_MAX_SIZE) { 4222 if (!recon_state.allow_multi) { 4223 err = -ENOSPC; 4224 goto fail; 4225 } 4226 if (recon_state.nr_caps) { 4227 err = send_reconnect_partial(&recon_state); 4228 if (err) 4229 goto fail; 4230 } 4231 recon_state.msg_version = 5; 4232 } 4233 } 4234 4235 err = encode_snap_realms(mdsc, &recon_state); 4236 if (err < 0) 4237 goto fail; 4238 4239 if (recon_state.msg_version >= 5) { 4240 err = ceph_pagelist_encode_8(recon_state.pagelist, 0); 4241 if (err < 0) 4242 goto fail; 4243 } 4244 4245 if (recon_state.nr_caps || recon_state.nr_realms) { 4246 struct page *page = 4247 list_first_entry(&recon_state.pagelist->head, 4248 struct page, lru); 4249 __le32 *addr = kmap_atomic(page); 4250 if (recon_state.nr_caps) { 4251 WARN_ON(recon_state.nr_realms != mdsc->num_snap_realms); 4252 *addr = cpu_to_le32(recon_state.nr_caps); 4253 } else if (recon_state.msg_version >= 4) { 4254 *(addr + 1) = cpu_to_le32(recon_state.nr_realms); 4255 } 4256 kunmap_atomic(addr); 4257 } 4258 4259 reply->hdr.version = cpu_to_le16(recon_state.msg_version); 4260 if (recon_state.msg_version >= 4) 4261 reply->hdr.compat_version = cpu_to_le16(4); 4262 4263 reply->hdr.data_len = cpu_to_le32(recon_state.pagelist->length); 4264 ceph_msg_data_add_pagelist(reply, recon_state.pagelist); 4265 4266 ceph_con_send(&session->s_con, reply); 4267 4268 mutex_unlock(&session->s_mutex); 4269 4270 mutex_lock(&mdsc->mutex); 4271 __wake_requests(mdsc, &session->s_waiting); 4272 mutex_unlock(&mdsc->mutex); 4273 4274 up_read(&mdsc->snap_rwsem); 4275 ceph_pagelist_release(recon_state.pagelist); 4276 return; 4277 4278 fail: 4279 ceph_msg_put(reply); 4280 up_read(&mdsc->snap_rwsem); 4281 mutex_unlock(&session->s_mutex); 4282 fail_nomsg: 4283 ceph_pagelist_release(recon_state.pagelist); 4284 fail_nopagelist: 4285 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 4286 return; 4287 } 4288 4289 4290 /* 4291 * compare old and new mdsmaps, kicking requests 4292 * and closing out old connections as necessary 4293 * 4294 * called under mdsc->mutex. 4295 */ 4296 static void check_new_map(struct ceph_mds_client *mdsc, 4297 struct ceph_mdsmap *newmap, 4298 struct ceph_mdsmap *oldmap) 4299 { 4300 int i, j, err; 4301 int oldstate, newstate; 4302 struct ceph_mds_session *s; 4303 unsigned long targets[DIV_ROUND_UP(CEPH_MAX_MDS, sizeof(unsigned long))] = {0}; 4304 4305 dout("check_new_map new %u old %u\n", 4306 newmap->m_epoch, oldmap->m_epoch); 4307 4308 if (newmap->m_info) { 4309 for (i = 0; i < newmap->possible_max_rank; i++) { 4310 for (j = 0; j < newmap->m_info[i].num_export_targets; j++) 4311 set_bit(newmap->m_info[i].export_targets[j], targets); 4312 } 4313 } 4314 4315 for (i = 0; i < oldmap->possible_max_rank && i < mdsc->max_sessions; i++) { 4316 if (!mdsc->sessions[i]) 4317 continue; 4318 s = mdsc->sessions[i]; 4319 oldstate = ceph_mdsmap_get_state(oldmap, i); 4320 newstate = ceph_mdsmap_get_state(newmap, i); 4321 4322 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 4323 i, ceph_mds_state_name(oldstate), 4324 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 4325 ceph_mds_state_name(newstate), 4326 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 4327 ceph_session_state_name(s->s_state)); 4328 4329 if (i >= newmap->possible_max_rank) { 4330 /* force close session for stopped mds */ 4331 ceph_get_mds_session(s); 4332 __unregister_session(mdsc, s); 4333 __wake_requests(mdsc, &s->s_waiting); 4334 mutex_unlock(&mdsc->mutex); 4335 4336 mutex_lock(&s->s_mutex); 4337 cleanup_session_requests(mdsc, s); 4338 remove_session_caps(s); 4339 mutex_unlock(&s->s_mutex); 4340 4341 ceph_put_mds_session(s); 4342 4343 mutex_lock(&mdsc->mutex); 4344 kick_requests(mdsc, i); 4345 continue; 4346 } 4347 4348 if (memcmp(ceph_mdsmap_get_addr(oldmap, i), 4349 ceph_mdsmap_get_addr(newmap, i), 4350 sizeof(struct ceph_entity_addr))) { 4351 /* just close it */ 4352 mutex_unlock(&mdsc->mutex); 4353 mutex_lock(&s->s_mutex); 4354 mutex_lock(&mdsc->mutex); 4355 ceph_con_close(&s->s_con); 4356 mutex_unlock(&s->s_mutex); 4357 s->s_state = CEPH_MDS_SESSION_RESTARTING; 4358 } else if (oldstate == newstate) { 4359 continue; /* nothing new with this mds */ 4360 } 4361 4362 /* 4363 * send reconnect? 4364 */ 4365 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 4366 newstate >= CEPH_MDS_STATE_RECONNECT) { 4367 mutex_unlock(&mdsc->mutex); 4368 clear_bit(i, targets); 4369 send_mds_reconnect(mdsc, s); 4370 mutex_lock(&mdsc->mutex); 4371 } 4372 4373 /* 4374 * kick request on any mds that has gone active. 4375 */ 4376 if (oldstate < CEPH_MDS_STATE_ACTIVE && 4377 newstate >= CEPH_MDS_STATE_ACTIVE) { 4378 if (oldstate != CEPH_MDS_STATE_CREATING && 4379 oldstate != CEPH_MDS_STATE_STARTING) 4380 pr_info("mds%d recovery completed\n", s->s_mds); 4381 kick_requests(mdsc, i); 4382 mutex_unlock(&mdsc->mutex); 4383 mutex_lock(&s->s_mutex); 4384 mutex_lock(&mdsc->mutex); 4385 ceph_kick_flushing_caps(mdsc, s); 4386 mutex_unlock(&s->s_mutex); 4387 wake_up_session_caps(s, RECONNECT); 4388 } 4389 } 4390 4391 /* 4392 * Only open and reconnect sessions that don't exist yet. 4393 */ 4394 for (i = 0; i < newmap->possible_max_rank; i++) { 4395 /* 4396 * In case the import MDS is crashed just after 4397 * the EImportStart journal is flushed, so when 4398 * a standby MDS takes over it and is replaying 4399 * the EImportStart journal the new MDS daemon 4400 * will wait the client to reconnect it, but the 4401 * client may never register/open the session yet. 4402 * 4403 * Will try to reconnect that MDS daemon if the 4404 * rank number is in the export targets array and 4405 * is the up:reconnect state. 4406 */ 4407 newstate = ceph_mdsmap_get_state(newmap, i); 4408 if (!test_bit(i, targets) || newstate != CEPH_MDS_STATE_RECONNECT) 4409 continue; 4410 4411 /* 4412 * The session maybe registered and opened by some 4413 * requests which were choosing random MDSes during 4414 * the mdsc->mutex's unlock/lock gap below in rare 4415 * case. But the related MDS daemon will just queue 4416 * that requests and be still waiting for the client's 4417 * reconnection request in up:reconnect state. 4418 */ 4419 s = __ceph_lookup_mds_session(mdsc, i); 4420 if (likely(!s)) { 4421 s = __open_export_target_session(mdsc, i); 4422 if (IS_ERR(s)) { 4423 err = PTR_ERR(s); 4424 pr_err("failed to open export target session, err %d\n", 4425 err); 4426 continue; 4427 } 4428 } 4429 dout("send reconnect to export target mds.%d\n", i); 4430 mutex_unlock(&mdsc->mutex); 4431 send_mds_reconnect(mdsc, s); 4432 ceph_put_mds_session(s); 4433 mutex_lock(&mdsc->mutex); 4434 } 4435 4436 for (i = 0; i < newmap->possible_max_rank && i < mdsc->max_sessions; i++) { 4437 s = mdsc->sessions[i]; 4438 if (!s) 4439 continue; 4440 if (!ceph_mdsmap_is_laggy(newmap, i)) 4441 continue; 4442 if (s->s_state == CEPH_MDS_SESSION_OPEN || 4443 s->s_state == CEPH_MDS_SESSION_HUNG || 4444 s->s_state == CEPH_MDS_SESSION_CLOSING) { 4445 dout(" connecting to export targets of laggy mds%d\n", 4446 i); 4447 __open_export_target_sessions(mdsc, s); 4448 } 4449 } 4450 } 4451 4452 4453 4454 /* 4455 * leases 4456 */ 4457 4458 /* 4459 * caller must hold session s_mutex, dentry->d_lock 4460 */ 4461 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 4462 { 4463 struct ceph_dentry_info *di = ceph_dentry(dentry); 4464 4465 ceph_put_mds_session(di->lease_session); 4466 di->lease_session = NULL; 4467 } 4468 4469 static void handle_lease(struct ceph_mds_client *mdsc, 4470 struct ceph_mds_session *session, 4471 struct ceph_msg *msg) 4472 { 4473 struct super_block *sb = mdsc->fsc->sb; 4474 struct inode *inode; 4475 struct dentry *parent, *dentry; 4476 struct ceph_dentry_info *di; 4477 int mds = session->s_mds; 4478 struct ceph_mds_lease *h = msg->front.iov_base; 4479 u32 seq; 4480 struct ceph_vino vino; 4481 struct qstr dname; 4482 int release = 0; 4483 4484 dout("handle_lease from mds%d\n", mds); 4485 4486 /* decode */ 4487 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 4488 goto bad; 4489 vino.ino = le64_to_cpu(h->ino); 4490 vino.snap = CEPH_NOSNAP; 4491 seq = le32_to_cpu(h->seq); 4492 dname.len = get_unaligned_le32(h + 1); 4493 if (msg->front.iov_len < sizeof(*h) + sizeof(u32) + dname.len) 4494 goto bad; 4495 dname.name = (void *)(h + 1) + sizeof(u32); 4496 4497 /* lookup inode */ 4498 inode = ceph_find_inode(sb, vino); 4499 dout("handle_lease %s, ino %llx %p %.*s\n", 4500 ceph_lease_op_name(h->action), vino.ino, inode, 4501 dname.len, dname.name); 4502 4503 mutex_lock(&session->s_mutex); 4504 inc_session_sequence(session); 4505 4506 if (!inode) { 4507 dout("handle_lease no inode %llx\n", vino.ino); 4508 goto release; 4509 } 4510 4511 /* dentry */ 4512 parent = d_find_alias(inode); 4513 if (!parent) { 4514 dout("no parent dentry on inode %p\n", inode); 4515 WARN_ON(1); 4516 goto release; /* hrm... */ 4517 } 4518 dname.hash = full_name_hash(parent, dname.name, dname.len); 4519 dentry = d_lookup(parent, &dname); 4520 dput(parent); 4521 if (!dentry) 4522 goto release; 4523 4524 spin_lock(&dentry->d_lock); 4525 di = ceph_dentry(dentry); 4526 switch (h->action) { 4527 case CEPH_MDS_LEASE_REVOKE: 4528 if (di->lease_session == session) { 4529 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 4530 h->seq = cpu_to_le32(di->lease_seq); 4531 __ceph_mdsc_drop_dentry_lease(dentry); 4532 } 4533 release = 1; 4534 break; 4535 4536 case CEPH_MDS_LEASE_RENEW: 4537 if (di->lease_session == session && 4538 di->lease_gen == atomic_read(&session->s_cap_gen) && 4539 di->lease_renew_from && 4540 di->lease_renew_after == 0) { 4541 unsigned long duration = 4542 msecs_to_jiffies(le32_to_cpu(h->duration_ms)); 4543 4544 di->lease_seq = seq; 4545 di->time = di->lease_renew_from + duration; 4546 di->lease_renew_after = di->lease_renew_from + 4547 (duration >> 1); 4548 di->lease_renew_from = 0; 4549 } 4550 break; 4551 } 4552 spin_unlock(&dentry->d_lock); 4553 dput(dentry); 4554 4555 if (!release) 4556 goto out; 4557 4558 release: 4559 /* let's just reuse the same message */ 4560 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 4561 ceph_msg_get(msg); 4562 ceph_con_send(&session->s_con, msg); 4563 4564 out: 4565 mutex_unlock(&session->s_mutex); 4566 iput(inode); 4567 return; 4568 4569 bad: 4570 pr_err("corrupt lease message\n"); 4571 ceph_msg_dump(msg); 4572 } 4573 4574 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 4575 struct dentry *dentry, char action, 4576 u32 seq) 4577 { 4578 struct ceph_msg *msg; 4579 struct ceph_mds_lease *lease; 4580 struct inode *dir; 4581 int len = sizeof(*lease) + sizeof(u32) + NAME_MAX; 4582 4583 dout("lease_send_msg identry %p %s to mds%d\n", 4584 dentry, ceph_lease_op_name(action), session->s_mds); 4585 4586 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 4587 if (!msg) 4588 return; 4589 lease = msg->front.iov_base; 4590 lease->action = action; 4591 lease->seq = cpu_to_le32(seq); 4592 4593 spin_lock(&dentry->d_lock); 4594 dir = d_inode(dentry->d_parent); 4595 lease->ino = cpu_to_le64(ceph_ino(dir)); 4596 lease->first = lease->last = cpu_to_le64(ceph_snap(dir)); 4597 4598 put_unaligned_le32(dentry->d_name.len, lease + 1); 4599 memcpy((void *)(lease + 1) + 4, 4600 dentry->d_name.name, dentry->d_name.len); 4601 spin_unlock(&dentry->d_lock); 4602 4603 ceph_con_send(&session->s_con, msg); 4604 } 4605 4606 /* 4607 * lock unlock the session, to wait ongoing session activities 4608 */ 4609 static void lock_unlock_session(struct ceph_mds_session *s) 4610 { 4611 mutex_lock(&s->s_mutex); 4612 mutex_unlock(&s->s_mutex); 4613 } 4614 4615 static void maybe_recover_session(struct ceph_mds_client *mdsc) 4616 { 4617 struct ceph_fs_client *fsc = mdsc->fsc; 4618 4619 if (!ceph_test_mount_opt(fsc, CLEANRECOVER)) 4620 return; 4621 4622 if (READ_ONCE(fsc->mount_state) != CEPH_MOUNT_MOUNTED) 4623 return; 4624 4625 if (!READ_ONCE(fsc->blocklisted)) 4626 return; 4627 4628 pr_info("auto reconnect after blocklisted\n"); 4629 ceph_force_reconnect(fsc->sb); 4630 } 4631 4632 bool check_session_state(struct ceph_mds_session *s) 4633 { 4634 switch (s->s_state) { 4635 case CEPH_MDS_SESSION_OPEN: 4636 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 4637 s->s_state = CEPH_MDS_SESSION_HUNG; 4638 pr_info("mds%d hung\n", s->s_mds); 4639 } 4640 break; 4641 case CEPH_MDS_SESSION_CLOSING: 4642 case CEPH_MDS_SESSION_NEW: 4643 case CEPH_MDS_SESSION_RESTARTING: 4644 case CEPH_MDS_SESSION_CLOSED: 4645 case CEPH_MDS_SESSION_REJECTED: 4646 return false; 4647 } 4648 4649 return true; 4650 } 4651 4652 /* 4653 * If the sequence is incremented while we're waiting on a REQUEST_CLOSE reply, 4654 * then we need to retransmit that request. 4655 */ 4656 void inc_session_sequence(struct ceph_mds_session *s) 4657 { 4658 lockdep_assert_held(&s->s_mutex); 4659 4660 s->s_seq++; 4661 4662 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 4663 int ret; 4664 4665 dout("resending session close request for mds%d\n", s->s_mds); 4666 ret = request_close_session(s); 4667 if (ret < 0) 4668 pr_err("unable to close session to mds%d: %d\n", 4669 s->s_mds, ret); 4670 } 4671 } 4672 4673 /* 4674 * delayed work -- periodically trim expired leases, renew caps with mds. If 4675 * the @delay parameter is set to 0 or if it's more than 5 secs, the default 4676 * workqueue delay value of 5 secs will be used. 4677 */ 4678 static void schedule_delayed(struct ceph_mds_client *mdsc, unsigned long delay) 4679 { 4680 unsigned long max_delay = HZ * 5; 4681 4682 /* 5 secs default delay */ 4683 if (!delay || (delay > max_delay)) 4684 delay = max_delay; 4685 schedule_delayed_work(&mdsc->delayed_work, 4686 round_jiffies_relative(delay)); 4687 } 4688 4689 static void delayed_work(struct work_struct *work) 4690 { 4691 struct ceph_mds_client *mdsc = 4692 container_of(work, struct ceph_mds_client, delayed_work.work); 4693 unsigned long delay; 4694 int renew_interval; 4695 int renew_caps; 4696 int i; 4697 4698 dout("mdsc delayed_work\n"); 4699 4700 if (mdsc->stopping) 4701 return; 4702 4703 mutex_lock(&mdsc->mutex); 4704 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 4705 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 4706 mdsc->last_renew_caps); 4707 if (renew_caps) 4708 mdsc->last_renew_caps = jiffies; 4709 4710 for (i = 0; i < mdsc->max_sessions; i++) { 4711 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 4712 if (!s) 4713 continue; 4714 4715 if (!check_session_state(s)) { 4716 ceph_put_mds_session(s); 4717 continue; 4718 } 4719 mutex_unlock(&mdsc->mutex); 4720 4721 mutex_lock(&s->s_mutex); 4722 if (renew_caps) 4723 send_renew_caps(mdsc, s); 4724 else 4725 ceph_con_keepalive(&s->s_con); 4726 if (s->s_state == CEPH_MDS_SESSION_OPEN || 4727 s->s_state == CEPH_MDS_SESSION_HUNG) 4728 ceph_send_cap_releases(mdsc, s); 4729 mutex_unlock(&s->s_mutex); 4730 ceph_put_mds_session(s); 4731 4732 mutex_lock(&mdsc->mutex); 4733 } 4734 mutex_unlock(&mdsc->mutex); 4735 4736 delay = ceph_check_delayed_caps(mdsc); 4737 4738 ceph_queue_cap_reclaim_work(mdsc); 4739 4740 ceph_trim_snapid_map(mdsc); 4741 4742 maybe_recover_session(mdsc); 4743 4744 schedule_delayed(mdsc, delay); 4745 } 4746 4747 int ceph_mdsc_init(struct ceph_fs_client *fsc) 4748 4749 { 4750 struct ceph_mds_client *mdsc; 4751 int err; 4752 4753 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 4754 if (!mdsc) 4755 return -ENOMEM; 4756 mdsc->fsc = fsc; 4757 mutex_init(&mdsc->mutex); 4758 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 4759 if (!mdsc->mdsmap) { 4760 err = -ENOMEM; 4761 goto err_mdsc; 4762 } 4763 4764 init_completion(&mdsc->safe_umount_waiters); 4765 init_waitqueue_head(&mdsc->session_close_wq); 4766 INIT_LIST_HEAD(&mdsc->waiting_for_map); 4767 mdsc->quotarealms_inodes = RB_ROOT; 4768 mutex_init(&mdsc->quotarealms_inodes_mutex); 4769 init_rwsem(&mdsc->snap_rwsem); 4770 mdsc->snap_realms = RB_ROOT; 4771 INIT_LIST_HEAD(&mdsc->snap_empty); 4772 spin_lock_init(&mdsc->snap_empty_lock); 4773 mdsc->request_tree = RB_ROOT; 4774 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 4775 mdsc->last_renew_caps = jiffies; 4776 INIT_LIST_HEAD(&mdsc->cap_delay_list); 4777 INIT_LIST_HEAD(&mdsc->cap_wait_list); 4778 spin_lock_init(&mdsc->cap_delay_lock); 4779 INIT_LIST_HEAD(&mdsc->snap_flush_list); 4780 spin_lock_init(&mdsc->snap_flush_lock); 4781 mdsc->last_cap_flush_tid = 1; 4782 INIT_LIST_HEAD(&mdsc->cap_flush_list); 4783 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 4784 spin_lock_init(&mdsc->cap_dirty_lock); 4785 init_waitqueue_head(&mdsc->cap_flushing_wq); 4786 INIT_WORK(&mdsc->cap_reclaim_work, ceph_cap_reclaim_work); 4787 err = ceph_metric_init(&mdsc->metric); 4788 if (err) 4789 goto err_mdsmap; 4790 4791 spin_lock_init(&mdsc->dentry_list_lock); 4792 INIT_LIST_HEAD(&mdsc->dentry_leases); 4793 INIT_LIST_HEAD(&mdsc->dentry_dir_leases); 4794 4795 ceph_caps_init(mdsc); 4796 ceph_adjust_caps_max_min(mdsc, fsc->mount_options); 4797 4798 spin_lock_init(&mdsc->snapid_map_lock); 4799 mdsc->snapid_map_tree = RB_ROOT; 4800 INIT_LIST_HEAD(&mdsc->snapid_map_lru); 4801 4802 init_rwsem(&mdsc->pool_perm_rwsem); 4803 mdsc->pool_perm_tree = RB_ROOT; 4804 4805 strscpy(mdsc->nodename, utsname()->nodename, 4806 sizeof(mdsc->nodename)); 4807 4808 fsc->mdsc = mdsc; 4809 return 0; 4810 4811 err_mdsmap: 4812 kfree(mdsc->mdsmap); 4813 err_mdsc: 4814 kfree(mdsc); 4815 return err; 4816 } 4817 4818 /* 4819 * Wait for safe replies on open mds requests. If we time out, drop 4820 * all requests from the tree to avoid dangling dentry refs. 4821 */ 4822 static void wait_requests(struct ceph_mds_client *mdsc) 4823 { 4824 struct ceph_options *opts = mdsc->fsc->client->options; 4825 struct ceph_mds_request *req; 4826 4827 mutex_lock(&mdsc->mutex); 4828 if (__get_oldest_req(mdsc)) { 4829 mutex_unlock(&mdsc->mutex); 4830 4831 dout("wait_requests waiting for requests\n"); 4832 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 4833 ceph_timeout_jiffies(opts->mount_timeout)); 4834 4835 /* tear down remaining requests */ 4836 mutex_lock(&mdsc->mutex); 4837 while ((req = __get_oldest_req(mdsc))) { 4838 dout("wait_requests timed out on tid %llu\n", 4839 req->r_tid); 4840 list_del_init(&req->r_wait); 4841 __unregister_request(mdsc, req); 4842 } 4843 } 4844 mutex_unlock(&mdsc->mutex); 4845 dout("wait_requests done\n"); 4846 } 4847 4848 void send_flush_mdlog(struct ceph_mds_session *s) 4849 { 4850 struct ceph_msg *msg; 4851 4852 /* 4853 * Pre-luminous MDS crashes when it sees an unknown session request 4854 */ 4855 if (!CEPH_HAVE_FEATURE(s->s_con.peer_features, SERVER_LUMINOUS)) 4856 return; 4857 4858 mutex_lock(&s->s_mutex); 4859 dout("request mdlog flush to mds%d (%s)s seq %lld\n", s->s_mds, 4860 ceph_session_state_name(s->s_state), s->s_seq); 4861 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_FLUSH_MDLOG, 4862 s->s_seq); 4863 if (!msg) { 4864 pr_err("failed to request mdlog flush to mds%d (%s) seq %lld\n", 4865 s->s_mds, ceph_session_state_name(s->s_state), s->s_seq); 4866 } else { 4867 ceph_con_send(&s->s_con, msg); 4868 } 4869 mutex_unlock(&s->s_mutex); 4870 } 4871 4872 /* 4873 * called before mount is ro, and before dentries are torn down. 4874 * (hmm, does this still race with new lookups?) 4875 */ 4876 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 4877 { 4878 dout("pre_umount\n"); 4879 mdsc->stopping = 1; 4880 4881 ceph_mdsc_iterate_sessions(mdsc, send_flush_mdlog, true); 4882 ceph_mdsc_iterate_sessions(mdsc, lock_unlock_session, false); 4883 ceph_flush_dirty_caps(mdsc); 4884 wait_requests(mdsc); 4885 4886 /* 4887 * wait for reply handlers to drop their request refs and 4888 * their inode/dcache refs 4889 */ 4890 ceph_msgr_flush(); 4891 4892 ceph_cleanup_quotarealms_inodes(mdsc); 4893 } 4894 4895 /* 4896 * flush the mdlog and wait for all write mds requests to flush. 4897 */ 4898 static void flush_mdlog_and_wait_mdsc_unsafe_requests(struct ceph_mds_client *mdsc, 4899 u64 want_tid) 4900 { 4901 struct ceph_mds_request *req = NULL, *nextreq; 4902 struct ceph_mds_session *last_session = NULL; 4903 struct rb_node *n; 4904 4905 mutex_lock(&mdsc->mutex); 4906 dout("%s want %lld\n", __func__, want_tid); 4907 restart: 4908 req = __get_oldest_req(mdsc); 4909 while (req && req->r_tid <= want_tid) { 4910 /* find next request */ 4911 n = rb_next(&req->r_node); 4912 if (n) 4913 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 4914 else 4915 nextreq = NULL; 4916 if (req->r_op != CEPH_MDS_OP_SETFILELOCK && 4917 (req->r_op & CEPH_MDS_OP_WRITE)) { 4918 struct ceph_mds_session *s = req->r_session; 4919 4920 if (!s) { 4921 req = nextreq; 4922 continue; 4923 } 4924 4925 /* write op */ 4926 ceph_mdsc_get_request(req); 4927 if (nextreq) 4928 ceph_mdsc_get_request(nextreq); 4929 s = ceph_get_mds_session(s); 4930 mutex_unlock(&mdsc->mutex); 4931 4932 /* send flush mdlog request to MDS */ 4933 if (last_session != s) { 4934 send_flush_mdlog(s); 4935 ceph_put_mds_session(last_session); 4936 last_session = s; 4937 } else { 4938 ceph_put_mds_session(s); 4939 } 4940 dout("%s wait on %llu (want %llu)\n", __func__, 4941 req->r_tid, want_tid); 4942 wait_for_completion(&req->r_safe_completion); 4943 4944 mutex_lock(&mdsc->mutex); 4945 ceph_mdsc_put_request(req); 4946 if (!nextreq) 4947 break; /* next dne before, so we're done! */ 4948 if (RB_EMPTY_NODE(&nextreq->r_node)) { 4949 /* next request was removed from tree */ 4950 ceph_mdsc_put_request(nextreq); 4951 goto restart; 4952 } 4953 ceph_mdsc_put_request(nextreq); /* won't go away */ 4954 } 4955 req = nextreq; 4956 } 4957 mutex_unlock(&mdsc->mutex); 4958 ceph_put_mds_session(last_session); 4959 dout("%s done\n", __func__); 4960 } 4961 4962 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 4963 { 4964 u64 want_tid, want_flush; 4965 4966 if (READ_ONCE(mdsc->fsc->mount_state) >= CEPH_MOUNT_SHUTDOWN) 4967 return; 4968 4969 dout("sync\n"); 4970 mutex_lock(&mdsc->mutex); 4971 want_tid = mdsc->last_tid; 4972 mutex_unlock(&mdsc->mutex); 4973 4974 ceph_flush_dirty_caps(mdsc); 4975 spin_lock(&mdsc->cap_dirty_lock); 4976 want_flush = mdsc->last_cap_flush_tid; 4977 if (!list_empty(&mdsc->cap_flush_list)) { 4978 struct ceph_cap_flush *cf = 4979 list_last_entry(&mdsc->cap_flush_list, 4980 struct ceph_cap_flush, g_list); 4981 cf->wake = true; 4982 } 4983 spin_unlock(&mdsc->cap_dirty_lock); 4984 4985 dout("sync want tid %lld flush_seq %lld\n", 4986 want_tid, want_flush); 4987 4988 flush_mdlog_and_wait_mdsc_unsafe_requests(mdsc, want_tid); 4989 wait_caps_flush(mdsc, want_flush); 4990 } 4991 4992 /* 4993 * true if all sessions are closed, or we force unmount 4994 */ 4995 static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped) 4996 { 4997 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) 4998 return true; 4999 return atomic_read(&mdsc->num_sessions) <= skipped; 5000 } 5001 5002 /* 5003 * called after sb is ro. 5004 */ 5005 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 5006 { 5007 struct ceph_options *opts = mdsc->fsc->client->options; 5008 struct ceph_mds_session *session; 5009 int i; 5010 int skipped = 0; 5011 5012 dout("close_sessions\n"); 5013 5014 /* close sessions */ 5015 mutex_lock(&mdsc->mutex); 5016 for (i = 0; i < mdsc->max_sessions; i++) { 5017 session = __ceph_lookup_mds_session(mdsc, i); 5018 if (!session) 5019 continue; 5020 mutex_unlock(&mdsc->mutex); 5021 mutex_lock(&session->s_mutex); 5022 if (__close_session(mdsc, session) <= 0) 5023 skipped++; 5024 mutex_unlock(&session->s_mutex); 5025 ceph_put_mds_session(session); 5026 mutex_lock(&mdsc->mutex); 5027 } 5028 mutex_unlock(&mdsc->mutex); 5029 5030 dout("waiting for sessions to close\n"); 5031 wait_event_timeout(mdsc->session_close_wq, 5032 done_closing_sessions(mdsc, skipped), 5033 ceph_timeout_jiffies(opts->mount_timeout)); 5034 5035 /* tear down remaining sessions */ 5036 mutex_lock(&mdsc->mutex); 5037 for (i = 0; i < mdsc->max_sessions; i++) { 5038 if (mdsc->sessions[i]) { 5039 session = ceph_get_mds_session(mdsc->sessions[i]); 5040 __unregister_session(mdsc, session); 5041 mutex_unlock(&mdsc->mutex); 5042 mutex_lock(&session->s_mutex); 5043 remove_session_caps(session); 5044 mutex_unlock(&session->s_mutex); 5045 ceph_put_mds_session(session); 5046 mutex_lock(&mdsc->mutex); 5047 } 5048 } 5049 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 5050 mutex_unlock(&mdsc->mutex); 5051 5052 ceph_cleanup_snapid_map(mdsc); 5053 ceph_cleanup_global_and_empty_realms(mdsc); 5054 5055 cancel_work_sync(&mdsc->cap_reclaim_work); 5056 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 5057 5058 dout("stopped\n"); 5059 } 5060 5061 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc) 5062 { 5063 struct ceph_mds_session *session; 5064 int mds; 5065 5066 dout("force umount\n"); 5067 5068 mutex_lock(&mdsc->mutex); 5069 for (mds = 0; mds < mdsc->max_sessions; mds++) { 5070 session = __ceph_lookup_mds_session(mdsc, mds); 5071 if (!session) 5072 continue; 5073 5074 if (session->s_state == CEPH_MDS_SESSION_REJECTED) 5075 __unregister_session(mdsc, session); 5076 __wake_requests(mdsc, &session->s_waiting); 5077 mutex_unlock(&mdsc->mutex); 5078 5079 mutex_lock(&session->s_mutex); 5080 __close_session(mdsc, session); 5081 if (session->s_state == CEPH_MDS_SESSION_CLOSING) { 5082 cleanup_session_requests(mdsc, session); 5083 remove_session_caps(session); 5084 } 5085 mutex_unlock(&session->s_mutex); 5086 ceph_put_mds_session(session); 5087 5088 mutex_lock(&mdsc->mutex); 5089 kick_requests(mdsc, mds); 5090 } 5091 __wake_requests(mdsc, &mdsc->waiting_for_map); 5092 mutex_unlock(&mdsc->mutex); 5093 } 5094 5095 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 5096 { 5097 dout("stop\n"); 5098 /* 5099 * Make sure the delayed work stopped before releasing 5100 * the resources. 5101 * 5102 * Because the cancel_delayed_work_sync() will only 5103 * guarantee that the work finishes executing. But the 5104 * delayed work will re-arm itself again after that. 5105 */ 5106 flush_delayed_work(&mdsc->delayed_work); 5107 5108 if (mdsc->mdsmap) 5109 ceph_mdsmap_destroy(mdsc->mdsmap); 5110 kfree(mdsc->sessions); 5111 ceph_caps_finalize(mdsc); 5112 ceph_pool_perm_destroy(mdsc); 5113 } 5114 5115 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 5116 { 5117 struct ceph_mds_client *mdsc = fsc->mdsc; 5118 dout("mdsc_destroy %p\n", mdsc); 5119 5120 if (!mdsc) 5121 return; 5122 5123 /* flush out any connection work with references to us */ 5124 ceph_msgr_flush(); 5125 5126 ceph_mdsc_stop(mdsc); 5127 5128 ceph_metric_destroy(&mdsc->metric); 5129 5130 fsc->mdsc = NULL; 5131 kfree(mdsc); 5132 dout("mdsc_destroy %p done\n", mdsc); 5133 } 5134 5135 void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 5136 { 5137 struct ceph_fs_client *fsc = mdsc->fsc; 5138 const char *mds_namespace = fsc->mount_options->mds_namespace; 5139 void *p = msg->front.iov_base; 5140 void *end = p + msg->front.iov_len; 5141 u32 epoch; 5142 u32 num_fs; 5143 u32 mount_fscid = (u32)-1; 5144 int err = -EINVAL; 5145 5146 ceph_decode_need(&p, end, sizeof(u32), bad); 5147 epoch = ceph_decode_32(&p); 5148 5149 dout("handle_fsmap epoch %u\n", epoch); 5150 5151 /* struct_v, struct_cv, map_len, epoch, legacy_client_fscid */ 5152 ceph_decode_skip_n(&p, end, 2 + sizeof(u32) * 3, bad); 5153 5154 ceph_decode_32_safe(&p, end, num_fs, bad); 5155 while (num_fs-- > 0) { 5156 void *info_p, *info_end; 5157 u32 info_len; 5158 u32 fscid, namelen; 5159 5160 ceph_decode_need(&p, end, 2 + sizeof(u32), bad); 5161 p += 2; // info_v, info_cv 5162 info_len = ceph_decode_32(&p); 5163 ceph_decode_need(&p, end, info_len, bad); 5164 info_p = p; 5165 info_end = p + info_len; 5166 p = info_end; 5167 5168 ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad); 5169 fscid = ceph_decode_32(&info_p); 5170 namelen = ceph_decode_32(&info_p); 5171 ceph_decode_need(&info_p, info_end, namelen, bad); 5172 5173 if (mds_namespace && 5174 strlen(mds_namespace) == namelen && 5175 !strncmp(mds_namespace, (char *)info_p, namelen)) { 5176 mount_fscid = fscid; 5177 break; 5178 } 5179 } 5180 5181 ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch); 5182 if (mount_fscid != (u32)-1) { 5183 fsc->client->monc.fs_cluster_id = mount_fscid; 5184 ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP, 5185 0, true); 5186 ceph_monc_renew_subs(&fsc->client->monc); 5187 } else { 5188 err = -ENOENT; 5189 goto err_out; 5190 } 5191 return; 5192 5193 bad: 5194 pr_err("error decoding fsmap %d. Shutting down mount.\n", err); 5195 ceph_umount_begin(mdsc->fsc->sb); 5196 err_out: 5197 mutex_lock(&mdsc->mutex); 5198 mdsc->mdsmap_err = err; 5199 __wake_requests(mdsc, &mdsc->waiting_for_map); 5200 mutex_unlock(&mdsc->mutex); 5201 } 5202 5203 /* 5204 * handle mds map update. 5205 */ 5206 void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 5207 { 5208 u32 epoch; 5209 u32 maplen; 5210 void *p = msg->front.iov_base; 5211 void *end = p + msg->front.iov_len; 5212 struct ceph_mdsmap *newmap, *oldmap; 5213 struct ceph_fsid fsid; 5214 int err = -EINVAL; 5215 5216 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 5217 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 5218 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 5219 return; 5220 epoch = ceph_decode_32(&p); 5221 maplen = ceph_decode_32(&p); 5222 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 5223 5224 /* do we need it? */ 5225 mutex_lock(&mdsc->mutex); 5226 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 5227 dout("handle_map epoch %u <= our %u\n", 5228 epoch, mdsc->mdsmap->m_epoch); 5229 mutex_unlock(&mdsc->mutex); 5230 return; 5231 } 5232 5233 newmap = ceph_mdsmap_decode(&p, end, ceph_msgr2(mdsc->fsc->client)); 5234 if (IS_ERR(newmap)) { 5235 err = PTR_ERR(newmap); 5236 goto bad_unlock; 5237 } 5238 5239 /* swap into place */ 5240 if (mdsc->mdsmap) { 5241 oldmap = mdsc->mdsmap; 5242 mdsc->mdsmap = newmap; 5243 check_new_map(mdsc, newmap, oldmap); 5244 ceph_mdsmap_destroy(oldmap); 5245 } else { 5246 mdsc->mdsmap = newmap; /* first mds map */ 5247 } 5248 mdsc->fsc->max_file_size = min((loff_t)mdsc->mdsmap->m_max_file_size, 5249 MAX_LFS_FILESIZE); 5250 5251 __wake_requests(mdsc, &mdsc->waiting_for_map); 5252 ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP, 5253 mdsc->mdsmap->m_epoch); 5254 5255 mutex_unlock(&mdsc->mutex); 5256 schedule_delayed(mdsc, 0); 5257 return; 5258 5259 bad_unlock: 5260 mutex_unlock(&mdsc->mutex); 5261 bad: 5262 pr_err("error decoding mdsmap %d. Shutting down mount.\n", err); 5263 ceph_umount_begin(mdsc->fsc->sb); 5264 return; 5265 } 5266 5267 static struct ceph_connection *mds_get_con(struct ceph_connection *con) 5268 { 5269 struct ceph_mds_session *s = con->private; 5270 5271 if (ceph_get_mds_session(s)) 5272 return con; 5273 return NULL; 5274 } 5275 5276 static void mds_put_con(struct ceph_connection *con) 5277 { 5278 struct ceph_mds_session *s = con->private; 5279 5280 ceph_put_mds_session(s); 5281 } 5282 5283 /* 5284 * if the client is unresponsive for long enough, the mds will kill 5285 * the session entirely. 5286 */ 5287 static void mds_peer_reset(struct ceph_connection *con) 5288 { 5289 struct ceph_mds_session *s = con->private; 5290 struct ceph_mds_client *mdsc = s->s_mdsc; 5291 5292 pr_warn("mds%d closed our session\n", s->s_mds); 5293 send_mds_reconnect(mdsc, s); 5294 } 5295 5296 static void mds_dispatch(struct ceph_connection *con, struct ceph_msg *msg) 5297 { 5298 struct ceph_mds_session *s = con->private; 5299 struct ceph_mds_client *mdsc = s->s_mdsc; 5300 int type = le16_to_cpu(msg->hdr.type); 5301 5302 mutex_lock(&mdsc->mutex); 5303 if (__verify_registered_session(mdsc, s) < 0) { 5304 mutex_unlock(&mdsc->mutex); 5305 goto out; 5306 } 5307 mutex_unlock(&mdsc->mutex); 5308 5309 switch (type) { 5310 case CEPH_MSG_MDS_MAP: 5311 ceph_mdsc_handle_mdsmap(mdsc, msg); 5312 break; 5313 case CEPH_MSG_FS_MAP_USER: 5314 ceph_mdsc_handle_fsmap(mdsc, msg); 5315 break; 5316 case CEPH_MSG_CLIENT_SESSION: 5317 handle_session(s, msg); 5318 break; 5319 case CEPH_MSG_CLIENT_REPLY: 5320 handle_reply(s, msg); 5321 break; 5322 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 5323 handle_forward(mdsc, s, msg); 5324 break; 5325 case CEPH_MSG_CLIENT_CAPS: 5326 ceph_handle_caps(s, msg); 5327 break; 5328 case CEPH_MSG_CLIENT_SNAP: 5329 ceph_handle_snap(mdsc, s, msg); 5330 break; 5331 case CEPH_MSG_CLIENT_LEASE: 5332 handle_lease(mdsc, s, msg); 5333 break; 5334 case CEPH_MSG_CLIENT_QUOTA: 5335 ceph_handle_quota(mdsc, s, msg); 5336 break; 5337 5338 default: 5339 pr_err("received unknown message type %d %s\n", type, 5340 ceph_msg_type_name(type)); 5341 } 5342 out: 5343 ceph_msg_put(msg); 5344 } 5345 5346 /* 5347 * authentication 5348 */ 5349 5350 /* 5351 * Note: returned pointer is the address of a structure that's 5352 * managed separately. Caller must *not* attempt to free it. 5353 */ 5354 static struct ceph_auth_handshake * 5355 mds_get_authorizer(struct ceph_connection *con, int *proto, int force_new) 5356 { 5357 struct ceph_mds_session *s = con->private; 5358 struct ceph_mds_client *mdsc = s->s_mdsc; 5359 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 5360 struct ceph_auth_handshake *auth = &s->s_auth; 5361 int ret; 5362 5363 ret = __ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS, 5364 force_new, proto, NULL, NULL); 5365 if (ret) 5366 return ERR_PTR(ret); 5367 5368 return auth; 5369 } 5370 5371 static int mds_add_authorizer_challenge(struct ceph_connection *con, 5372 void *challenge_buf, int challenge_buf_len) 5373 { 5374 struct ceph_mds_session *s = con->private; 5375 struct ceph_mds_client *mdsc = s->s_mdsc; 5376 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 5377 5378 return ceph_auth_add_authorizer_challenge(ac, s->s_auth.authorizer, 5379 challenge_buf, challenge_buf_len); 5380 } 5381 5382 static int mds_verify_authorizer_reply(struct ceph_connection *con) 5383 { 5384 struct ceph_mds_session *s = con->private; 5385 struct ceph_mds_client *mdsc = s->s_mdsc; 5386 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 5387 struct ceph_auth_handshake *auth = &s->s_auth; 5388 5389 return ceph_auth_verify_authorizer_reply(ac, auth->authorizer, 5390 auth->authorizer_reply_buf, auth->authorizer_reply_buf_len, 5391 NULL, NULL, NULL, NULL); 5392 } 5393 5394 static int mds_invalidate_authorizer(struct ceph_connection *con) 5395 { 5396 struct ceph_mds_session *s = con->private; 5397 struct ceph_mds_client *mdsc = s->s_mdsc; 5398 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 5399 5400 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 5401 5402 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 5403 } 5404 5405 static int mds_get_auth_request(struct ceph_connection *con, 5406 void *buf, int *buf_len, 5407 void **authorizer, int *authorizer_len) 5408 { 5409 struct ceph_mds_session *s = con->private; 5410 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 5411 struct ceph_auth_handshake *auth = &s->s_auth; 5412 int ret; 5413 5414 ret = ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS, 5415 buf, buf_len); 5416 if (ret) 5417 return ret; 5418 5419 *authorizer = auth->authorizer_buf; 5420 *authorizer_len = auth->authorizer_buf_len; 5421 return 0; 5422 } 5423 5424 static int mds_handle_auth_reply_more(struct ceph_connection *con, 5425 void *reply, int reply_len, 5426 void *buf, int *buf_len, 5427 void **authorizer, int *authorizer_len) 5428 { 5429 struct ceph_mds_session *s = con->private; 5430 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 5431 struct ceph_auth_handshake *auth = &s->s_auth; 5432 int ret; 5433 5434 ret = ceph_auth_handle_svc_reply_more(ac, auth, reply, reply_len, 5435 buf, buf_len); 5436 if (ret) 5437 return ret; 5438 5439 *authorizer = auth->authorizer_buf; 5440 *authorizer_len = auth->authorizer_buf_len; 5441 return 0; 5442 } 5443 5444 static int mds_handle_auth_done(struct ceph_connection *con, 5445 u64 global_id, void *reply, int reply_len, 5446 u8 *session_key, int *session_key_len, 5447 u8 *con_secret, int *con_secret_len) 5448 { 5449 struct ceph_mds_session *s = con->private; 5450 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 5451 struct ceph_auth_handshake *auth = &s->s_auth; 5452 5453 return ceph_auth_handle_svc_reply_done(ac, auth, reply, reply_len, 5454 session_key, session_key_len, 5455 con_secret, con_secret_len); 5456 } 5457 5458 static int mds_handle_auth_bad_method(struct ceph_connection *con, 5459 int used_proto, int result, 5460 const int *allowed_protos, int proto_cnt, 5461 const int *allowed_modes, int mode_cnt) 5462 { 5463 struct ceph_mds_session *s = con->private; 5464 struct ceph_mon_client *monc = &s->s_mdsc->fsc->client->monc; 5465 int ret; 5466 5467 if (ceph_auth_handle_bad_authorizer(monc->auth, CEPH_ENTITY_TYPE_MDS, 5468 used_proto, result, 5469 allowed_protos, proto_cnt, 5470 allowed_modes, mode_cnt)) { 5471 ret = ceph_monc_validate_auth(monc); 5472 if (ret) 5473 return ret; 5474 } 5475 5476 return -EACCES; 5477 } 5478 5479 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, 5480 struct ceph_msg_header *hdr, int *skip) 5481 { 5482 struct ceph_msg *msg; 5483 int type = (int) le16_to_cpu(hdr->type); 5484 int front_len = (int) le32_to_cpu(hdr->front_len); 5485 5486 if (con->in_msg) 5487 return con->in_msg; 5488 5489 *skip = 0; 5490 msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 5491 if (!msg) { 5492 pr_err("unable to allocate msg type %d len %d\n", 5493 type, front_len); 5494 return NULL; 5495 } 5496 5497 return msg; 5498 } 5499 5500 static int mds_sign_message(struct ceph_msg *msg) 5501 { 5502 struct ceph_mds_session *s = msg->con->private; 5503 struct ceph_auth_handshake *auth = &s->s_auth; 5504 5505 return ceph_auth_sign_message(auth, msg); 5506 } 5507 5508 static int mds_check_message_signature(struct ceph_msg *msg) 5509 { 5510 struct ceph_mds_session *s = msg->con->private; 5511 struct ceph_auth_handshake *auth = &s->s_auth; 5512 5513 return ceph_auth_check_message_signature(auth, msg); 5514 } 5515 5516 static const struct ceph_connection_operations mds_con_ops = { 5517 .get = mds_get_con, 5518 .put = mds_put_con, 5519 .alloc_msg = mds_alloc_msg, 5520 .dispatch = mds_dispatch, 5521 .peer_reset = mds_peer_reset, 5522 .get_authorizer = mds_get_authorizer, 5523 .add_authorizer_challenge = mds_add_authorizer_challenge, 5524 .verify_authorizer_reply = mds_verify_authorizer_reply, 5525 .invalidate_authorizer = mds_invalidate_authorizer, 5526 .sign_message = mds_sign_message, 5527 .check_message_signature = mds_check_message_signature, 5528 .get_auth_request = mds_get_auth_request, 5529 .handle_auth_reply_more = mds_handle_auth_reply_more, 5530 .handle_auth_done = mds_handle_auth_done, 5531 .handle_auth_bad_method = mds_handle_auth_bad_method, 5532 }; 5533 5534 /* eof */ 5535