1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/fs.h> 5 #include <linux/wait.h> 6 #include <linux/slab.h> 7 #include <linux/gfp.h> 8 #include <linux/sched.h> 9 #include <linux/debugfs.h> 10 #include <linux/seq_file.h> 11 #include <linux/ratelimit.h> 12 13 #include "super.h" 14 #include "mds_client.h" 15 16 #include <linux/ceph/ceph_features.h> 17 #include <linux/ceph/messenger.h> 18 #include <linux/ceph/decode.h> 19 #include <linux/ceph/pagelist.h> 20 #include <linux/ceph/auth.h> 21 #include <linux/ceph/debugfs.h> 22 23 #define RECONNECT_MAX_SIZE (INT_MAX - PAGE_SIZE) 24 25 /* 26 * A cluster of MDS (metadata server) daemons is responsible for 27 * managing the file system namespace (the directory hierarchy and 28 * inodes) and for coordinating shared access to storage. Metadata is 29 * partitioning hierarchically across a number of servers, and that 30 * partition varies over time as the cluster adjusts the distribution 31 * in order to balance load. 32 * 33 * The MDS client is primarily responsible to managing synchronous 34 * metadata requests for operations like open, unlink, and so forth. 35 * If there is a MDS failure, we find out about it when we (possibly 36 * request and) receive a new MDS map, and can resubmit affected 37 * requests. 38 * 39 * For the most part, though, we take advantage of a lossless 40 * communications channel to the MDS, and do not need to worry about 41 * timing out or resubmitting requests. 42 * 43 * We maintain a stateful "session" with each MDS we interact with. 44 * Within each session, we sent periodic heartbeat messages to ensure 45 * any capabilities or leases we have been issues remain valid. If 46 * the session times out and goes stale, our leases and capabilities 47 * are no longer valid. 48 */ 49 50 struct ceph_reconnect_state { 51 struct ceph_mds_session *session; 52 int nr_caps, nr_realms; 53 struct ceph_pagelist *pagelist; 54 unsigned msg_version; 55 bool allow_multi; 56 }; 57 58 static void __wake_requests(struct ceph_mds_client *mdsc, 59 struct list_head *head); 60 static void ceph_cap_release_work(struct work_struct *work); 61 static void ceph_cap_reclaim_work(struct work_struct *work); 62 63 static const struct ceph_connection_operations mds_con_ops; 64 65 66 /* 67 * mds reply parsing 68 */ 69 70 static int parse_reply_info_quota(void **p, void *end, 71 struct ceph_mds_reply_info_in *info) 72 { 73 u8 struct_v, struct_compat; 74 u32 struct_len; 75 76 ceph_decode_8_safe(p, end, struct_v, bad); 77 ceph_decode_8_safe(p, end, struct_compat, bad); 78 /* struct_v is expected to be >= 1. we only 79 * understand encoding with struct_compat == 1. */ 80 if (!struct_v || struct_compat != 1) 81 goto bad; 82 ceph_decode_32_safe(p, end, struct_len, bad); 83 ceph_decode_need(p, end, struct_len, bad); 84 end = *p + struct_len; 85 ceph_decode_64_safe(p, end, info->max_bytes, bad); 86 ceph_decode_64_safe(p, end, info->max_files, bad); 87 *p = end; 88 return 0; 89 bad: 90 return -EIO; 91 } 92 93 /* 94 * parse individual inode info 95 */ 96 static int parse_reply_info_in(void **p, void *end, 97 struct ceph_mds_reply_info_in *info, 98 u64 features) 99 { 100 int err = 0; 101 u8 struct_v = 0; 102 103 if (features == (u64)-1) { 104 u32 struct_len; 105 u8 struct_compat; 106 ceph_decode_8_safe(p, end, struct_v, bad); 107 ceph_decode_8_safe(p, end, struct_compat, bad); 108 /* struct_v is expected to be >= 1. we only understand 109 * encoding with struct_compat == 1. */ 110 if (!struct_v || struct_compat != 1) 111 goto bad; 112 ceph_decode_32_safe(p, end, struct_len, bad); 113 ceph_decode_need(p, end, struct_len, bad); 114 end = *p + struct_len; 115 } 116 117 ceph_decode_need(p, end, sizeof(struct ceph_mds_reply_inode), bad); 118 info->in = *p; 119 *p += sizeof(struct ceph_mds_reply_inode) + 120 sizeof(*info->in->fragtree.splits) * 121 le32_to_cpu(info->in->fragtree.nsplits); 122 123 ceph_decode_32_safe(p, end, info->symlink_len, bad); 124 ceph_decode_need(p, end, info->symlink_len, bad); 125 info->symlink = *p; 126 *p += info->symlink_len; 127 128 ceph_decode_copy_safe(p, end, &info->dir_layout, 129 sizeof(info->dir_layout), bad); 130 ceph_decode_32_safe(p, end, info->xattr_len, bad); 131 ceph_decode_need(p, end, info->xattr_len, bad); 132 info->xattr_data = *p; 133 *p += info->xattr_len; 134 135 if (features == (u64)-1) { 136 /* inline data */ 137 ceph_decode_64_safe(p, end, info->inline_version, bad); 138 ceph_decode_32_safe(p, end, info->inline_len, bad); 139 ceph_decode_need(p, end, info->inline_len, bad); 140 info->inline_data = *p; 141 *p += info->inline_len; 142 /* quota */ 143 err = parse_reply_info_quota(p, end, info); 144 if (err < 0) 145 goto out_bad; 146 /* pool namespace */ 147 ceph_decode_32_safe(p, end, info->pool_ns_len, bad); 148 if (info->pool_ns_len > 0) { 149 ceph_decode_need(p, end, info->pool_ns_len, bad); 150 info->pool_ns_data = *p; 151 *p += info->pool_ns_len; 152 } 153 /* btime, change_attr */ 154 { 155 struct ceph_timespec btime; 156 u64 change_attr; 157 ceph_decode_need(p, end, sizeof(btime), bad); 158 ceph_decode_copy(p, &btime, sizeof(btime)); 159 ceph_decode_64_safe(p, end, change_attr, bad); 160 } 161 162 /* dir pin */ 163 if (struct_v >= 2) { 164 ceph_decode_32_safe(p, end, info->dir_pin, bad); 165 } else { 166 info->dir_pin = -ENODATA; 167 } 168 169 *p = end; 170 } else { 171 if (features & CEPH_FEATURE_MDS_INLINE_DATA) { 172 ceph_decode_64_safe(p, end, info->inline_version, bad); 173 ceph_decode_32_safe(p, end, info->inline_len, bad); 174 ceph_decode_need(p, end, info->inline_len, bad); 175 info->inline_data = *p; 176 *p += info->inline_len; 177 } else 178 info->inline_version = CEPH_INLINE_NONE; 179 180 if (features & CEPH_FEATURE_MDS_QUOTA) { 181 err = parse_reply_info_quota(p, end, info); 182 if (err < 0) 183 goto out_bad; 184 } else { 185 info->max_bytes = 0; 186 info->max_files = 0; 187 } 188 189 info->pool_ns_len = 0; 190 info->pool_ns_data = NULL; 191 if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) { 192 ceph_decode_32_safe(p, end, info->pool_ns_len, bad); 193 if (info->pool_ns_len > 0) { 194 ceph_decode_need(p, end, info->pool_ns_len, bad); 195 info->pool_ns_data = *p; 196 *p += info->pool_ns_len; 197 } 198 } 199 200 info->dir_pin = -ENODATA; 201 } 202 return 0; 203 bad: 204 err = -EIO; 205 out_bad: 206 return err; 207 } 208 209 static int parse_reply_info_dir(void **p, void *end, 210 struct ceph_mds_reply_dirfrag **dirfrag, 211 u64 features) 212 { 213 if (features == (u64)-1) { 214 u8 struct_v, struct_compat; 215 u32 struct_len; 216 ceph_decode_8_safe(p, end, struct_v, bad); 217 ceph_decode_8_safe(p, end, struct_compat, bad); 218 /* struct_v is expected to be >= 1. we only understand 219 * encoding whose struct_compat == 1. */ 220 if (!struct_v || struct_compat != 1) 221 goto bad; 222 ceph_decode_32_safe(p, end, struct_len, bad); 223 ceph_decode_need(p, end, struct_len, bad); 224 end = *p + struct_len; 225 } 226 227 ceph_decode_need(p, end, sizeof(**dirfrag), bad); 228 *dirfrag = *p; 229 *p += sizeof(**dirfrag) + sizeof(u32) * le32_to_cpu((*dirfrag)->ndist); 230 if (unlikely(*p > end)) 231 goto bad; 232 if (features == (u64)-1) 233 *p = end; 234 return 0; 235 bad: 236 return -EIO; 237 } 238 239 static int parse_reply_info_lease(void **p, void *end, 240 struct ceph_mds_reply_lease **lease, 241 u64 features) 242 { 243 if (features == (u64)-1) { 244 u8 struct_v, struct_compat; 245 u32 struct_len; 246 ceph_decode_8_safe(p, end, struct_v, bad); 247 ceph_decode_8_safe(p, end, struct_compat, bad); 248 /* struct_v is expected to be >= 1. we only understand 249 * encoding whose struct_compat == 1. */ 250 if (!struct_v || struct_compat != 1) 251 goto bad; 252 ceph_decode_32_safe(p, end, struct_len, bad); 253 ceph_decode_need(p, end, struct_len, bad); 254 end = *p + struct_len; 255 } 256 257 ceph_decode_need(p, end, sizeof(**lease), bad); 258 *lease = *p; 259 *p += sizeof(**lease); 260 if (features == (u64)-1) 261 *p = end; 262 return 0; 263 bad: 264 return -EIO; 265 } 266 267 /* 268 * parse a normal reply, which may contain a (dir+)dentry and/or a 269 * target inode. 270 */ 271 static int parse_reply_info_trace(void **p, void *end, 272 struct ceph_mds_reply_info_parsed *info, 273 u64 features) 274 { 275 int err; 276 277 if (info->head->is_dentry) { 278 err = parse_reply_info_in(p, end, &info->diri, features); 279 if (err < 0) 280 goto out_bad; 281 282 err = parse_reply_info_dir(p, end, &info->dirfrag, features); 283 if (err < 0) 284 goto out_bad; 285 286 ceph_decode_32_safe(p, end, info->dname_len, bad); 287 ceph_decode_need(p, end, info->dname_len, bad); 288 info->dname = *p; 289 *p += info->dname_len; 290 291 err = parse_reply_info_lease(p, end, &info->dlease, features); 292 if (err < 0) 293 goto out_bad; 294 } 295 296 if (info->head->is_target) { 297 err = parse_reply_info_in(p, end, &info->targeti, features); 298 if (err < 0) 299 goto out_bad; 300 } 301 302 if (unlikely(*p != end)) 303 goto bad; 304 return 0; 305 306 bad: 307 err = -EIO; 308 out_bad: 309 pr_err("problem parsing mds trace %d\n", err); 310 return err; 311 } 312 313 /* 314 * parse readdir results 315 */ 316 static int parse_reply_info_readdir(void **p, void *end, 317 struct ceph_mds_reply_info_parsed *info, 318 u64 features) 319 { 320 u32 num, i = 0; 321 int err; 322 323 err = parse_reply_info_dir(p, end, &info->dir_dir, features); 324 if (err < 0) 325 goto out_bad; 326 327 ceph_decode_need(p, end, sizeof(num) + 2, bad); 328 num = ceph_decode_32(p); 329 { 330 u16 flags = ceph_decode_16(p); 331 info->dir_end = !!(flags & CEPH_READDIR_FRAG_END); 332 info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE); 333 info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER); 334 info->offset_hash = !!(flags & CEPH_READDIR_OFFSET_HASH); 335 } 336 if (num == 0) 337 goto done; 338 339 BUG_ON(!info->dir_entries); 340 if ((unsigned long)(info->dir_entries + num) > 341 (unsigned long)info->dir_entries + info->dir_buf_size) { 342 pr_err("dir contents are larger than expected\n"); 343 WARN_ON(1); 344 goto bad; 345 } 346 347 info->dir_nr = num; 348 while (num) { 349 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i; 350 /* dentry */ 351 ceph_decode_32_safe(p, end, rde->name_len, bad); 352 ceph_decode_need(p, end, rde->name_len, bad); 353 rde->name = *p; 354 *p += rde->name_len; 355 dout("parsed dir dname '%.*s'\n", rde->name_len, rde->name); 356 357 /* dentry lease */ 358 err = parse_reply_info_lease(p, end, &rde->lease, features); 359 if (err) 360 goto out_bad; 361 /* inode */ 362 err = parse_reply_info_in(p, end, &rde->inode, features); 363 if (err < 0) 364 goto out_bad; 365 /* ceph_readdir_prepopulate() will update it */ 366 rde->offset = 0; 367 i++; 368 num--; 369 } 370 371 done: 372 if (*p != end) 373 goto bad; 374 return 0; 375 376 bad: 377 err = -EIO; 378 out_bad: 379 pr_err("problem parsing dir contents %d\n", err); 380 return err; 381 } 382 383 /* 384 * parse fcntl F_GETLK results 385 */ 386 static int parse_reply_info_filelock(void **p, void *end, 387 struct ceph_mds_reply_info_parsed *info, 388 u64 features) 389 { 390 if (*p + sizeof(*info->filelock_reply) > end) 391 goto bad; 392 393 info->filelock_reply = *p; 394 *p += sizeof(*info->filelock_reply); 395 396 if (unlikely(*p != end)) 397 goto bad; 398 return 0; 399 400 bad: 401 return -EIO; 402 } 403 404 /* 405 * parse create results 406 */ 407 static int parse_reply_info_create(void **p, void *end, 408 struct ceph_mds_reply_info_parsed *info, 409 u64 features) 410 { 411 if (features == (u64)-1 || 412 (features & CEPH_FEATURE_REPLY_CREATE_INODE)) { 413 if (*p == end) { 414 info->has_create_ino = false; 415 } else { 416 info->has_create_ino = true; 417 info->ino = ceph_decode_64(p); 418 } 419 } 420 421 if (unlikely(*p != end)) 422 goto bad; 423 return 0; 424 425 bad: 426 return -EIO; 427 } 428 429 /* 430 * parse extra results 431 */ 432 static int parse_reply_info_extra(void **p, void *end, 433 struct ceph_mds_reply_info_parsed *info, 434 u64 features) 435 { 436 u32 op = le32_to_cpu(info->head->op); 437 438 if (op == CEPH_MDS_OP_GETFILELOCK) 439 return parse_reply_info_filelock(p, end, info, features); 440 else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP) 441 return parse_reply_info_readdir(p, end, info, features); 442 else if (op == CEPH_MDS_OP_CREATE) 443 return parse_reply_info_create(p, end, info, features); 444 else 445 return -EIO; 446 } 447 448 /* 449 * parse entire mds reply 450 */ 451 static int parse_reply_info(struct ceph_msg *msg, 452 struct ceph_mds_reply_info_parsed *info, 453 u64 features) 454 { 455 void *p, *end; 456 u32 len; 457 int err; 458 459 info->head = msg->front.iov_base; 460 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 461 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 462 463 /* trace */ 464 ceph_decode_32_safe(&p, end, len, bad); 465 if (len > 0) { 466 ceph_decode_need(&p, end, len, bad); 467 err = parse_reply_info_trace(&p, p+len, info, features); 468 if (err < 0) 469 goto out_bad; 470 } 471 472 /* extra */ 473 ceph_decode_32_safe(&p, end, len, bad); 474 if (len > 0) { 475 ceph_decode_need(&p, end, len, bad); 476 err = parse_reply_info_extra(&p, p+len, info, features); 477 if (err < 0) 478 goto out_bad; 479 } 480 481 /* snap blob */ 482 ceph_decode_32_safe(&p, end, len, bad); 483 info->snapblob_len = len; 484 info->snapblob = p; 485 p += len; 486 487 if (p != end) 488 goto bad; 489 return 0; 490 491 bad: 492 err = -EIO; 493 out_bad: 494 pr_err("mds parse_reply err %d\n", err); 495 return err; 496 } 497 498 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 499 { 500 if (!info->dir_entries) 501 return; 502 free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size)); 503 } 504 505 506 /* 507 * sessions 508 */ 509 const char *ceph_session_state_name(int s) 510 { 511 switch (s) { 512 case CEPH_MDS_SESSION_NEW: return "new"; 513 case CEPH_MDS_SESSION_OPENING: return "opening"; 514 case CEPH_MDS_SESSION_OPEN: return "open"; 515 case CEPH_MDS_SESSION_HUNG: return "hung"; 516 case CEPH_MDS_SESSION_CLOSING: return "closing"; 517 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 518 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 519 case CEPH_MDS_SESSION_REJECTED: return "rejected"; 520 default: return "???"; 521 } 522 } 523 524 static struct ceph_mds_session *get_session(struct ceph_mds_session *s) 525 { 526 if (refcount_inc_not_zero(&s->s_ref)) { 527 dout("mdsc get_session %p %d -> %d\n", s, 528 refcount_read(&s->s_ref)-1, refcount_read(&s->s_ref)); 529 return s; 530 } else { 531 dout("mdsc get_session %p 0 -- FAIL\n", s); 532 return NULL; 533 } 534 } 535 536 void ceph_put_mds_session(struct ceph_mds_session *s) 537 { 538 dout("mdsc put_session %p %d -> %d\n", s, 539 refcount_read(&s->s_ref), refcount_read(&s->s_ref)-1); 540 if (refcount_dec_and_test(&s->s_ref)) { 541 if (s->s_auth.authorizer) 542 ceph_auth_destroy_authorizer(s->s_auth.authorizer); 543 kfree(s); 544 } 545 } 546 547 /* 548 * called under mdsc->mutex 549 */ 550 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 551 int mds) 552 { 553 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds]) 554 return NULL; 555 return get_session(mdsc->sessions[mds]); 556 } 557 558 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 559 { 560 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds]) 561 return false; 562 else 563 return true; 564 } 565 566 static int __verify_registered_session(struct ceph_mds_client *mdsc, 567 struct ceph_mds_session *s) 568 { 569 if (s->s_mds >= mdsc->max_sessions || 570 mdsc->sessions[s->s_mds] != s) 571 return -ENOENT; 572 return 0; 573 } 574 575 /* 576 * create+register a new session for given mds. 577 * called under mdsc->mutex. 578 */ 579 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 580 int mds) 581 { 582 struct ceph_mds_session *s; 583 584 if (mds >= mdsc->mdsmap->m_num_mds) 585 return ERR_PTR(-EINVAL); 586 587 s = kzalloc(sizeof(*s), GFP_NOFS); 588 if (!s) 589 return ERR_PTR(-ENOMEM); 590 591 if (mds >= mdsc->max_sessions) { 592 int newmax = 1 << get_count_order(mds + 1); 593 struct ceph_mds_session **sa; 594 595 dout("%s: realloc to %d\n", __func__, newmax); 596 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 597 if (!sa) 598 goto fail_realloc; 599 if (mdsc->sessions) { 600 memcpy(sa, mdsc->sessions, 601 mdsc->max_sessions * sizeof(void *)); 602 kfree(mdsc->sessions); 603 } 604 mdsc->sessions = sa; 605 mdsc->max_sessions = newmax; 606 } 607 608 dout("%s: mds%d\n", __func__, mds); 609 s->s_mdsc = mdsc; 610 s->s_mds = mds; 611 s->s_state = CEPH_MDS_SESSION_NEW; 612 s->s_ttl = 0; 613 s->s_seq = 0; 614 mutex_init(&s->s_mutex); 615 616 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 617 618 spin_lock_init(&s->s_gen_ttl_lock); 619 s->s_cap_gen = 1; 620 s->s_cap_ttl = jiffies - 1; 621 622 spin_lock_init(&s->s_cap_lock); 623 s->s_renew_requested = 0; 624 s->s_renew_seq = 0; 625 INIT_LIST_HEAD(&s->s_caps); 626 s->s_nr_caps = 0; 627 s->s_trim_caps = 0; 628 refcount_set(&s->s_ref, 1); 629 INIT_LIST_HEAD(&s->s_waiting); 630 INIT_LIST_HEAD(&s->s_unsafe); 631 s->s_num_cap_releases = 0; 632 s->s_cap_reconnect = 0; 633 s->s_cap_iterator = NULL; 634 INIT_LIST_HEAD(&s->s_cap_releases); 635 INIT_WORK(&s->s_cap_release_work, ceph_cap_release_work); 636 637 INIT_LIST_HEAD(&s->s_cap_flushing); 638 639 mdsc->sessions[mds] = s; 640 atomic_inc(&mdsc->num_sessions); 641 refcount_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 642 643 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 644 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 645 646 return s; 647 648 fail_realloc: 649 kfree(s); 650 return ERR_PTR(-ENOMEM); 651 } 652 653 /* 654 * called under mdsc->mutex 655 */ 656 static void __unregister_session(struct ceph_mds_client *mdsc, 657 struct ceph_mds_session *s) 658 { 659 dout("__unregister_session mds%d %p\n", s->s_mds, s); 660 BUG_ON(mdsc->sessions[s->s_mds] != s); 661 mdsc->sessions[s->s_mds] = NULL; 662 s->s_state = 0; 663 ceph_con_close(&s->s_con); 664 ceph_put_mds_session(s); 665 atomic_dec(&mdsc->num_sessions); 666 } 667 668 /* 669 * drop session refs in request. 670 * 671 * should be last request ref, or hold mdsc->mutex 672 */ 673 static void put_request_session(struct ceph_mds_request *req) 674 { 675 if (req->r_session) { 676 ceph_put_mds_session(req->r_session); 677 req->r_session = NULL; 678 } 679 } 680 681 void ceph_mdsc_release_request(struct kref *kref) 682 { 683 struct ceph_mds_request *req = container_of(kref, 684 struct ceph_mds_request, 685 r_kref); 686 destroy_reply_info(&req->r_reply_info); 687 if (req->r_request) 688 ceph_msg_put(req->r_request); 689 if (req->r_reply) 690 ceph_msg_put(req->r_reply); 691 if (req->r_inode) { 692 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 693 /* avoid calling iput_final() in mds dispatch threads */ 694 ceph_async_iput(req->r_inode); 695 } 696 if (req->r_parent) 697 ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN); 698 ceph_async_iput(req->r_target_inode); 699 if (req->r_dentry) 700 dput(req->r_dentry); 701 if (req->r_old_dentry) 702 dput(req->r_old_dentry); 703 if (req->r_old_dentry_dir) { 704 /* 705 * track (and drop pins for) r_old_dentry_dir 706 * separately, since r_old_dentry's d_parent may have 707 * changed between the dir mutex being dropped and 708 * this request being freed. 709 */ 710 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 711 CEPH_CAP_PIN); 712 ceph_async_iput(req->r_old_dentry_dir); 713 } 714 kfree(req->r_path1); 715 kfree(req->r_path2); 716 if (req->r_pagelist) 717 ceph_pagelist_release(req->r_pagelist); 718 put_request_session(req); 719 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 720 kfree(req); 721 } 722 723 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node) 724 725 /* 726 * lookup session, bump ref if found. 727 * 728 * called under mdsc->mutex. 729 */ 730 static struct ceph_mds_request * 731 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid) 732 { 733 struct ceph_mds_request *req; 734 735 req = lookup_request(&mdsc->request_tree, tid); 736 if (req) 737 ceph_mdsc_get_request(req); 738 739 return req; 740 } 741 742 /* 743 * Register an in-flight request, and assign a tid. Link to directory 744 * are modifying (if any). 745 * 746 * Called under mdsc->mutex. 747 */ 748 static void __register_request(struct ceph_mds_client *mdsc, 749 struct ceph_mds_request *req, 750 struct inode *dir) 751 { 752 int ret = 0; 753 754 req->r_tid = ++mdsc->last_tid; 755 if (req->r_num_caps) { 756 ret = ceph_reserve_caps(mdsc, &req->r_caps_reservation, 757 req->r_num_caps); 758 if (ret < 0) { 759 pr_err("__register_request %p " 760 "failed to reserve caps: %d\n", req, ret); 761 /* set req->r_err to fail early from __do_request */ 762 req->r_err = ret; 763 return; 764 } 765 } 766 dout("__register_request %p tid %lld\n", req, req->r_tid); 767 ceph_mdsc_get_request(req); 768 insert_request(&mdsc->request_tree, req); 769 770 req->r_uid = current_fsuid(); 771 req->r_gid = current_fsgid(); 772 773 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK) 774 mdsc->oldest_tid = req->r_tid; 775 776 if (dir) { 777 ihold(dir); 778 req->r_unsafe_dir = dir; 779 } 780 } 781 782 static void __unregister_request(struct ceph_mds_client *mdsc, 783 struct ceph_mds_request *req) 784 { 785 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 786 787 /* Never leave an unregistered request on an unsafe list! */ 788 list_del_init(&req->r_unsafe_item); 789 790 if (req->r_tid == mdsc->oldest_tid) { 791 struct rb_node *p = rb_next(&req->r_node); 792 mdsc->oldest_tid = 0; 793 while (p) { 794 struct ceph_mds_request *next_req = 795 rb_entry(p, struct ceph_mds_request, r_node); 796 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) { 797 mdsc->oldest_tid = next_req->r_tid; 798 break; 799 } 800 p = rb_next(p); 801 } 802 } 803 804 erase_request(&mdsc->request_tree, req); 805 806 if (req->r_unsafe_dir && 807 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 808 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 809 spin_lock(&ci->i_unsafe_lock); 810 list_del_init(&req->r_unsafe_dir_item); 811 spin_unlock(&ci->i_unsafe_lock); 812 } 813 if (req->r_target_inode && 814 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 815 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode); 816 spin_lock(&ci->i_unsafe_lock); 817 list_del_init(&req->r_unsafe_target_item); 818 spin_unlock(&ci->i_unsafe_lock); 819 } 820 821 if (req->r_unsafe_dir) { 822 /* avoid calling iput_final() in mds dispatch threads */ 823 ceph_async_iput(req->r_unsafe_dir); 824 req->r_unsafe_dir = NULL; 825 } 826 827 complete_all(&req->r_safe_completion); 828 829 ceph_mdsc_put_request(req); 830 } 831 832 /* 833 * Walk back up the dentry tree until we hit a dentry representing a 834 * non-snapshot inode. We do this using the rcu_read_lock (which must be held 835 * when calling this) to ensure that the objects won't disappear while we're 836 * working with them. Once we hit a candidate dentry, we attempt to take a 837 * reference to it, and return that as the result. 838 */ 839 static struct inode *get_nonsnap_parent(struct dentry *dentry) 840 { 841 struct inode *inode = NULL; 842 843 while (dentry && !IS_ROOT(dentry)) { 844 inode = d_inode_rcu(dentry); 845 if (!inode || ceph_snap(inode) == CEPH_NOSNAP) 846 break; 847 dentry = dentry->d_parent; 848 } 849 if (inode) 850 inode = igrab(inode); 851 return inode; 852 } 853 854 /* 855 * Choose mds to send request to next. If there is a hint set in the 856 * request (e.g., due to a prior forward hint from the mds), use that. 857 * Otherwise, consult frag tree and/or caps to identify the 858 * appropriate mds. If all else fails, choose randomly. 859 * 860 * Called under mdsc->mutex. 861 */ 862 static int __choose_mds(struct ceph_mds_client *mdsc, 863 struct ceph_mds_request *req) 864 { 865 struct inode *inode; 866 struct ceph_inode_info *ci; 867 struct ceph_cap *cap; 868 int mode = req->r_direct_mode; 869 int mds = -1; 870 u32 hash = req->r_direct_hash; 871 bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags); 872 873 /* 874 * is there a specific mds we should try? ignore hint if we have 875 * no session and the mds is not up (active or recovering). 876 */ 877 if (req->r_resend_mds >= 0 && 878 (__have_session(mdsc, req->r_resend_mds) || 879 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 880 dout("choose_mds using resend_mds mds%d\n", 881 req->r_resend_mds); 882 return req->r_resend_mds; 883 } 884 885 if (mode == USE_RANDOM_MDS) 886 goto random; 887 888 inode = NULL; 889 if (req->r_inode) { 890 if (ceph_snap(req->r_inode) != CEPH_SNAPDIR) { 891 inode = req->r_inode; 892 ihold(inode); 893 } else { 894 /* req->r_dentry is non-null for LSSNAP request */ 895 rcu_read_lock(); 896 inode = get_nonsnap_parent(req->r_dentry); 897 rcu_read_unlock(); 898 dout("__choose_mds using snapdir's parent %p\n", inode); 899 } 900 } else if (req->r_dentry) { 901 /* ignore race with rename; old or new d_parent is okay */ 902 struct dentry *parent; 903 struct inode *dir; 904 905 rcu_read_lock(); 906 parent = req->r_dentry->d_parent; 907 dir = req->r_parent ? : d_inode_rcu(parent); 908 909 if (!dir || dir->i_sb != mdsc->fsc->sb) { 910 /* not this fs or parent went negative */ 911 inode = d_inode(req->r_dentry); 912 if (inode) 913 ihold(inode); 914 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 915 /* direct snapped/virtual snapdir requests 916 * based on parent dir inode */ 917 inode = get_nonsnap_parent(parent); 918 dout("__choose_mds using nonsnap parent %p\n", inode); 919 } else { 920 /* dentry target */ 921 inode = d_inode(req->r_dentry); 922 if (!inode || mode == USE_AUTH_MDS) { 923 /* dir + name */ 924 inode = igrab(dir); 925 hash = ceph_dentry_hash(dir, req->r_dentry); 926 is_hash = true; 927 } else { 928 ihold(inode); 929 } 930 } 931 rcu_read_unlock(); 932 } 933 934 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash, 935 (int)hash, mode); 936 if (!inode) 937 goto random; 938 ci = ceph_inode(inode); 939 940 if (is_hash && S_ISDIR(inode->i_mode)) { 941 struct ceph_inode_frag frag; 942 int found; 943 944 ceph_choose_frag(ci, hash, &frag, &found); 945 if (found) { 946 if (mode == USE_ANY_MDS && frag.ndist > 0) { 947 u8 r; 948 949 /* choose a random replica */ 950 get_random_bytes(&r, 1); 951 r %= frag.ndist; 952 mds = frag.dist[r]; 953 dout("choose_mds %p %llx.%llx " 954 "frag %u mds%d (%d/%d)\n", 955 inode, ceph_vinop(inode), 956 frag.frag, mds, 957 (int)r, frag.ndist); 958 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 959 CEPH_MDS_STATE_ACTIVE) 960 goto out; 961 } 962 963 /* since this file/dir wasn't known to be 964 * replicated, then we want to look for the 965 * authoritative mds. */ 966 mode = USE_AUTH_MDS; 967 if (frag.mds >= 0) { 968 /* choose auth mds */ 969 mds = frag.mds; 970 dout("choose_mds %p %llx.%llx " 971 "frag %u mds%d (auth)\n", 972 inode, ceph_vinop(inode), frag.frag, mds); 973 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 974 CEPH_MDS_STATE_ACTIVE) 975 goto out; 976 } 977 } 978 } 979 980 spin_lock(&ci->i_ceph_lock); 981 cap = NULL; 982 if (mode == USE_AUTH_MDS) 983 cap = ci->i_auth_cap; 984 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 985 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 986 if (!cap) { 987 spin_unlock(&ci->i_ceph_lock); 988 ceph_async_iput(inode); 989 goto random; 990 } 991 mds = cap->session->s_mds; 992 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n", 993 inode, ceph_vinop(inode), mds, 994 cap == ci->i_auth_cap ? "auth " : "", cap); 995 spin_unlock(&ci->i_ceph_lock); 996 out: 997 /* avoid calling iput_final() while holding mdsc->mutex or 998 * in mds dispatch threads */ 999 ceph_async_iput(inode); 1000 return mds; 1001 1002 random: 1003 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 1004 dout("choose_mds chose random mds%d\n", mds); 1005 return mds; 1006 } 1007 1008 1009 /* 1010 * session messages 1011 */ 1012 static struct ceph_msg *create_session_msg(u32 op, u64 seq) 1013 { 1014 struct ceph_msg *msg; 1015 struct ceph_mds_session_head *h; 1016 1017 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 1018 false); 1019 if (!msg) { 1020 pr_err("create_session_msg ENOMEM creating msg\n"); 1021 return NULL; 1022 } 1023 h = msg->front.iov_base; 1024 h->op = cpu_to_le32(op); 1025 h->seq = cpu_to_le64(seq); 1026 1027 return msg; 1028 } 1029 1030 static void encode_supported_features(void **p, void *end) 1031 { 1032 static const unsigned char bits[] = CEPHFS_FEATURES_CLIENT_SUPPORTED; 1033 static const size_t count = ARRAY_SIZE(bits); 1034 1035 if (count > 0) { 1036 size_t i; 1037 size_t size = ((size_t)bits[count - 1] + 64) / 64 * 8; 1038 1039 BUG_ON(*p + 4 + size > end); 1040 ceph_encode_32(p, size); 1041 memset(*p, 0, size); 1042 for (i = 0; i < count; i++) 1043 ((unsigned char*)(*p))[i / 8] |= 1 << (bits[i] % 8); 1044 *p += size; 1045 } else { 1046 BUG_ON(*p + 4 > end); 1047 ceph_encode_32(p, 0); 1048 } 1049 } 1050 1051 /* 1052 * session message, specialization for CEPH_SESSION_REQUEST_OPEN 1053 * to include additional client metadata fields. 1054 */ 1055 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq) 1056 { 1057 struct ceph_msg *msg; 1058 struct ceph_mds_session_head *h; 1059 int i = -1; 1060 int extra_bytes = 0; 1061 int metadata_key_count = 0; 1062 struct ceph_options *opt = mdsc->fsc->client->options; 1063 struct ceph_mount_options *fsopt = mdsc->fsc->mount_options; 1064 void *p, *end; 1065 1066 const char* metadata[][2] = { 1067 {"hostname", mdsc->nodename}, 1068 {"kernel_version", init_utsname()->release}, 1069 {"entity_id", opt->name ? : ""}, 1070 {"root", fsopt->server_path ? : "/"}, 1071 {NULL, NULL} 1072 }; 1073 1074 /* Calculate serialized length of metadata */ 1075 extra_bytes = 4; /* map length */ 1076 for (i = 0; metadata[i][0]; ++i) { 1077 extra_bytes += 8 + strlen(metadata[i][0]) + 1078 strlen(metadata[i][1]); 1079 metadata_key_count++; 1080 } 1081 /* supported feature */ 1082 extra_bytes += 4 + 8; 1083 1084 /* Allocate the message */ 1085 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + extra_bytes, 1086 GFP_NOFS, false); 1087 if (!msg) { 1088 pr_err("create_session_msg ENOMEM creating msg\n"); 1089 return NULL; 1090 } 1091 p = msg->front.iov_base; 1092 end = p + msg->front.iov_len; 1093 1094 h = p; 1095 h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN); 1096 h->seq = cpu_to_le64(seq); 1097 1098 /* 1099 * Serialize client metadata into waiting buffer space, using 1100 * the format that userspace expects for map<string, string> 1101 * 1102 * ClientSession messages with metadata are v2 1103 */ 1104 msg->hdr.version = cpu_to_le16(3); 1105 msg->hdr.compat_version = cpu_to_le16(1); 1106 1107 /* The write pointer, following the session_head structure */ 1108 p += sizeof(*h); 1109 1110 /* Number of entries in the map */ 1111 ceph_encode_32(&p, metadata_key_count); 1112 1113 /* Two length-prefixed strings for each entry in the map */ 1114 for (i = 0; metadata[i][0]; ++i) { 1115 size_t const key_len = strlen(metadata[i][0]); 1116 size_t const val_len = strlen(metadata[i][1]); 1117 1118 ceph_encode_32(&p, key_len); 1119 memcpy(p, metadata[i][0], key_len); 1120 p += key_len; 1121 ceph_encode_32(&p, val_len); 1122 memcpy(p, metadata[i][1], val_len); 1123 p += val_len; 1124 } 1125 1126 encode_supported_features(&p, end); 1127 msg->front.iov_len = p - msg->front.iov_base; 1128 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1129 1130 return msg; 1131 } 1132 1133 /* 1134 * send session open request. 1135 * 1136 * called under mdsc->mutex 1137 */ 1138 static int __open_session(struct ceph_mds_client *mdsc, 1139 struct ceph_mds_session *session) 1140 { 1141 struct ceph_msg *msg; 1142 int mstate; 1143 int mds = session->s_mds; 1144 1145 /* wait for mds to go active? */ 1146 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 1147 dout("open_session to mds%d (%s)\n", mds, 1148 ceph_mds_state_name(mstate)); 1149 session->s_state = CEPH_MDS_SESSION_OPENING; 1150 session->s_renew_requested = jiffies; 1151 1152 /* send connect message */ 1153 msg = create_session_open_msg(mdsc, session->s_seq); 1154 if (!msg) 1155 return -ENOMEM; 1156 ceph_con_send(&session->s_con, msg); 1157 return 0; 1158 } 1159 1160 /* 1161 * open sessions for any export targets for the given mds 1162 * 1163 * called under mdsc->mutex 1164 */ 1165 static struct ceph_mds_session * 1166 __open_export_target_session(struct ceph_mds_client *mdsc, int target) 1167 { 1168 struct ceph_mds_session *session; 1169 1170 session = __ceph_lookup_mds_session(mdsc, target); 1171 if (!session) { 1172 session = register_session(mdsc, target); 1173 if (IS_ERR(session)) 1174 return session; 1175 } 1176 if (session->s_state == CEPH_MDS_SESSION_NEW || 1177 session->s_state == CEPH_MDS_SESSION_CLOSING) 1178 __open_session(mdsc, session); 1179 1180 return session; 1181 } 1182 1183 struct ceph_mds_session * 1184 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target) 1185 { 1186 struct ceph_mds_session *session; 1187 1188 dout("open_export_target_session to mds%d\n", target); 1189 1190 mutex_lock(&mdsc->mutex); 1191 session = __open_export_target_session(mdsc, target); 1192 mutex_unlock(&mdsc->mutex); 1193 1194 return session; 1195 } 1196 1197 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 1198 struct ceph_mds_session *session) 1199 { 1200 struct ceph_mds_info *mi; 1201 struct ceph_mds_session *ts; 1202 int i, mds = session->s_mds; 1203 1204 if (mds >= mdsc->mdsmap->m_num_mds) 1205 return; 1206 1207 mi = &mdsc->mdsmap->m_info[mds]; 1208 dout("open_export_target_sessions for mds%d (%d targets)\n", 1209 session->s_mds, mi->num_export_targets); 1210 1211 for (i = 0; i < mi->num_export_targets; i++) { 1212 ts = __open_export_target_session(mdsc, mi->export_targets[i]); 1213 if (!IS_ERR(ts)) 1214 ceph_put_mds_session(ts); 1215 } 1216 } 1217 1218 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 1219 struct ceph_mds_session *session) 1220 { 1221 mutex_lock(&mdsc->mutex); 1222 __open_export_target_sessions(mdsc, session); 1223 mutex_unlock(&mdsc->mutex); 1224 } 1225 1226 /* 1227 * session caps 1228 */ 1229 1230 static void detach_cap_releases(struct ceph_mds_session *session, 1231 struct list_head *target) 1232 { 1233 lockdep_assert_held(&session->s_cap_lock); 1234 1235 list_splice_init(&session->s_cap_releases, target); 1236 session->s_num_cap_releases = 0; 1237 dout("dispose_cap_releases mds%d\n", session->s_mds); 1238 } 1239 1240 static void dispose_cap_releases(struct ceph_mds_client *mdsc, 1241 struct list_head *dispose) 1242 { 1243 while (!list_empty(dispose)) { 1244 struct ceph_cap *cap; 1245 /* zero out the in-progress message */ 1246 cap = list_first_entry(dispose, struct ceph_cap, session_caps); 1247 list_del(&cap->session_caps); 1248 ceph_put_cap(mdsc, cap); 1249 } 1250 } 1251 1252 static void cleanup_session_requests(struct ceph_mds_client *mdsc, 1253 struct ceph_mds_session *session) 1254 { 1255 struct ceph_mds_request *req; 1256 struct rb_node *p; 1257 1258 dout("cleanup_session_requests mds%d\n", session->s_mds); 1259 mutex_lock(&mdsc->mutex); 1260 while (!list_empty(&session->s_unsafe)) { 1261 req = list_first_entry(&session->s_unsafe, 1262 struct ceph_mds_request, r_unsafe_item); 1263 pr_warn_ratelimited(" dropping unsafe request %llu\n", 1264 req->r_tid); 1265 __unregister_request(mdsc, req); 1266 } 1267 /* zero r_attempts, so kick_requests() will re-send requests */ 1268 p = rb_first(&mdsc->request_tree); 1269 while (p) { 1270 req = rb_entry(p, struct ceph_mds_request, r_node); 1271 p = rb_next(p); 1272 if (req->r_session && 1273 req->r_session->s_mds == session->s_mds) 1274 req->r_attempts = 0; 1275 } 1276 mutex_unlock(&mdsc->mutex); 1277 } 1278 1279 /* 1280 * Helper to safely iterate over all caps associated with a session, with 1281 * special care taken to handle a racing __ceph_remove_cap(). 1282 * 1283 * Caller must hold session s_mutex. 1284 */ 1285 int ceph_iterate_session_caps(struct ceph_mds_session *session, 1286 int (*cb)(struct inode *, struct ceph_cap *, 1287 void *), void *arg) 1288 { 1289 struct list_head *p; 1290 struct ceph_cap *cap; 1291 struct inode *inode, *last_inode = NULL; 1292 struct ceph_cap *old_cap = NULL; 1293 int ret; 1294 1295 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 1296 spin_lock(&session->s_cap_lock); 1297 p = session->s_caps.next; 1298 while (p != &session->s_caps) { 1299 cap = list_entry(p, struct ceph_cap, session_caps); 1300 inode = igrab(&cap->ci->vfs_inode); 1301 if (!inode) { 1302 p = p->next; 1303 continue; 1304 } 1305 session->s_cap_iterator = cap; 1306 spin_unlock(&session->s_cap_lock); 1307 1308 if (last_inode) { 1309 /* avoid calling iput_final() while holding 1310 * s_mutex or in mds dispatch threads */ 1311 ceph_async_iput(last_inode); 1312 last_inode = NULL; 1313 } 1314 if (old_cap) { 1315 ceph_put_cap(session->s_mdsc, old_cap); 1316 old_cap = NULL; 1317 } 1318 1319 ret = cb(inode, cap, arg); 1320 last_inode = inode; 1321 1322 spin_lock(&session->s_cap_lock); 1323 p = p->next; 1324 if (!cap->ci) { 1325 dout("iterate_session_caps finishing cap %p removal\n", 1326 cap); 1327 BUG_ON(cap->session != session); 1328 cap->session = NULL; 1329 list_del_init(&cap->session_caps); 1330 session->s_nr_caps--; 1331 if (cap->queue_release) 1332 __ceph_queue_cap_release(session, cap); 1333 else 1334 old_cap = cap; /* put_cap it w/o locks held */ 1335 } 1336 if (ret < 0) 1337 goto out; 1338 } 1339 ret = 0; 1340 out: 1341 session->s_cap_iterator = NULL; 1342 spin_unlock(&session->s_cap_lock); 1343 1344 ceph_async_iput(last_inode); 1345 if (old_cap) 1346 ceph_put_cap(session->s_mdsc, old_cap); 1347 1348 return ret; 1349 } 1350 1351 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 1352 void *arg) 1353 { 1354 struct ceph_fs_client *fsc = (struct ceph_fs_client *)arg; 1355 struct ceph_inode_info *ci = ceph_inode(inode); 1356 LIST_HEAD(to_remove); 1357 bool drop = false; 1358 bool invalidate = false; 1359 1360 dout("removing cap %p, ci is %p, inode is %p\n", 1361 cap, ci, &ci->vfs_inode); 1362 spin_lock(&ci->i_ceph_lock); 1363 if (cap->mds_wanted | cap->issued) 1364 ci->i_ceph_flags |= CEPH_I_CAP_DROPPED; 1365 __ceph_remove_cap(cap, false); 1366 if (!ci->i_auth_cap) { 1367 struct ceph_cap_flush *cf; 1368 struct ceph_mds_client *mdsc = fsc->mdsc; 1369 1370 if (ci->i_wrbuffer_ref > 0 && 1371 READ_ONCE(fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) 1372 invalidate = true; 1373 1374 while (!list_empty(&ci->i_cap_flush_list)) { 1375 cf = list_first_entry(&ci->i_cap_flush_list, 1376 struct ceph_cap_flush, i_list); 1377 list_move(&cf->i_list, &to_remove); 1378 } 1379 1380 spin_lock(&mdsc->cap_dirty_lock); 1381 1382 list_for_each_entry(cf, &to_remove, i_list) 1383 list_del(&cf->g_list); 1384 1385 if (!list_empty(&ci->i_dirty_item)) { 1386 pr_warn_ratelimited( 1387 " dropping dirty %s state for %p %lld\n", 1388 ceph_cap_string(ci->i_dirty_caps), 1389 inode, ceph_ino(inode)); 1390 ci->i_dirty_caps = 0; 1391 list_del_init(&ci->i_dirty_item); 1392 drop = true; 1393 } 1394 if (!list_empty(&ci->i_flushing_item)) { 1395 pr_warn_ratelimited( 1396 " dropping dirty+flushing %s state for %p %lld\n", 1397 ceph_cap_string(ci->i_flushing_caps), 1398 inode, ceph_ino(inode)); 1399 ci->i_flushing_caps = 0; 1400 list_del_init(&ci->i_flushing_item); 1401 mdsc->num_cap_flushing--; 1402 drop = true; 1403 } 1404 spin_unlock(&mdsc->cap_dirty_lock); 1405 1406 if (atomic_read(&ci->i_filelock_ref) > 0) { 1407 /* make further file lock syscall return -EIO */ 1408 ci->i_ceph_flags |= CEPH_I_ERROR_FILELOCK; 1409 pr_warn_ratelimited(" dropping file locks for %p %lld\n", 1410 inode, ceph_ino(inode)); 1411 } 1412 1413 if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) { 1414 list_add(&ci->i_prealloc_cap_flush->i_list, &to_remove); 1415 ci->i_prealloc_cap_flush = NULL; 1416 } 1417 1418 if (drop && 1419 ci->i_wrbuffer_ref_head == 0 && 1420 ci->i_wr_ref == 0 && 1421 ci->i_dirty_caps == 0 && 1422 ci->i_flushing_caps == 0) { 1423 ceph_put_snap_context(ci->i_head_snapc); 1424 ci->i_head_snapc = NULL; 1425 } 1426 } 1427 spin_unlock(&ci->i_ceph_lock); 1428 while (!list_empty(&to_remove)) { 1429 struct ceph_cap_flush *cf; 1430 cf = list_first_entry(&to_remove, 1431 struct ceph_cap_flush, i_list); 1432 list_del(&cf->i_list); 1433 ceph_free_cap_flush(cf); 1434 } 1435 1436 wake_up_all(&ci->i_cap_wq); 1437 if (invalidate) 1438 ceph_queue_invalidate(inode); 1439 if (drop) 1440 iput(inode); 1441 return 0; 1442 } 1443 1444 /* 1445 * caller must hold session s_mutex 1446 */ 1447 static void remove_session_caps(struct ceph_mds_session *session) 1448 { 1449 struct ceph_fs_client *fsc = session->s_mdsc->fsc; 1450 struct super_block *sb = fsc->sb; 1451 LIST_HEAD(dispose); 1452 1453 dout("remove_session_caps on %p\n", session); 1454 ceph_iterate_session_caps(session, remove_session_caps_cb, fsc); 1455 1456 wake_up_all(&fsc->mdsc->cap_flushing_wq); 1457 1458 spin_lock(&session->s_cap_lock); 1459 if (session->s_nr_caps > 0) { 1460 struct inode *inode; 1461 struct ceph_cap *cap, *prev = NULL; 1462 struct ceph_vino vino; 1463 /* 1464 * iterate_session_caps() skips inodes that are being 1465 * deleted, we need to wait until deletions are complete. 1466 * __wait_on_freeing_inode() is designed for the job, 1467 * but it is not exported, so use lookup inode function 1468 * to access it. 1469 */ 1470 while (!list_empty(&session->s_caps)) { 1471 cap = list_entry(session->s_caps.next, 1472 struct ceph_cap, session_caps); 1473 if (cap == prev) 1474 break; 1475 prev = cap; 1476 vino = cap->ci->i_vino; 1477 spin_unlock(&session->s_cap_lock); 1478 1479 inode = ceph_find_inode(sb, vino); 1480 /* avoid calling iput_final() while holding s_mutex */ 1481 ceph_async_iput(inode); 1482 1483 spin_lock(&session->s_cap_lock); 1484 } 1485 } 1486 1487 // drop cap expires and unlock s_cap_lock 1488 detach_cap_releases(session, &dispose); 1489 1490 BUG_ON(session->s_nr_caps > 0); 1491 BUG_ON(!list_empty(&session->s_cap_flushing)); 1492 spin_unlock(&session->s_cap_lock); 1493 dispose_cap_releases(session->s_mdsc, &dispose); 1494 } 1495 1496 enum { 1497 RECONNECT, 1498 RENEWCAPS, 1499 FORCE_RO, 1500 }; 1501 1502 /* 1503 * wake up any threads waiting on this session's caps. if the cap is 1504 * old (didn't get renewed on the client reconnect), remove it now. 1505 * 1506 * caller must hold s_mutex. 1507 */ 1508 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 1509 void *arg) 1510 { 1511 struct ceph_inode_info *ci = ceph_inode(inode); 1512 unsigned long ev = (unsigned long)arg; 1513 1514 if (ev == RECONNECT) { 1515 spin_lock(&ci->i_ceph_lock); 1516 ci->i_wanted_max_size = 0; 1517 ci->i_requested_max_size = 0; 1518 spin_unlock(&ci->i_ceph_lock); 1519 } else if (ev == RENEWCAPS) { 1520 if (cap->cap_gen < cap->session->s_cap_gen) { 1521 /* mds did not re-issue stale cap */ 1522 spin_lock(&ci->i_ceph_lock); 1523 cap->issued = cap->implemented = CEPH_CAP_PIN; 1524 /* make sure mds knows what we want */ 1525 if (__ceph_caps_file_wanted(ci) & ~cap->mds_wanted) 1526 ci->i_ceph_flags |= CEPH_I_CAP_DROPPED; 1527 spin_unlock(&ci->i_ceph_lock); 1528 } 1529 } else if (ev == FORCE_RO) { 1530 } 1531 wake_up_all(&ci->i_cap_wq); 1532 return 0; 1533 } 1534 1535 static void wake_up_session_caps(struct ceph_mds_session *session, int ev) 1536 { 1537 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1538 ceph_iterate_session_caps(session, wake_up_session_cb, 1539 (void *)(unsigned long)ev); 1540 } 1541 1542 /* 1543 * Send periodic message to MDS renewing all currently held caps. The 1544 * ack will reset the expiration for all caps from this session. 1545 * 1546 * caller holds s_mutex 1547 */ 1548 static int send_renew_caps(struct ceph_mds_client *mdsc, 1549 struct ceph_mds_session *session) 1550 { 1551 struct ceph_msg *msg; 1552 int state; 1553 1554 if (time_after_eq(jiffies, session->s_cap_ttl) && 1555 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1556 pr_info("mds%d caps stale\n", session->s_mds); 1557 session->s_renew_requested = jiffies; 1558 1559 /* do not try to renew caps until a recovering mds has reconnected 1560 * with its clients. */ 1561 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1562 if (state < CEPH_MDS_STATE_RECONNECT) { 1563 dout("send_renew_caps ignoring mds%d (%s)\n", 1564 session->s_mds, ceph_mds_state_name(state)); 1565 return 0; 1566 } 1567 1568 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 1569 ceph_mds_state_name(state)); 1570 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 1571 ++session->s_renew_seq); 1572 if (!msg) 1573 return -ENOMEM; 1574 ceph_con_send(&session->s_con, msg); 1575 return 0; 1576 } 1577 1578 static int send_flushmsg_ack(struct ceph_mds_client *mdsc, 1579 struct ceph_mds_session *session, u64 seq) 1580 { 1581 struct ceph_msg *msg; 1582 1583 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n", 1584 session->s_mds, ceph_session_state_name(session->s_state), seq); 1585 msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq); 1586 if (!msg) 1587 return -ENOMEM; 1588 ceph_con_send(&session->s_con, msg); 1589 return 0; 1590 } 1591 1592 1593 /* 1594 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 1595 * 1596 * Called under session->s_mutex 1597 */ 1598 static void renewed_caps(struct ceph_mds_client *mdsc, 1599 struct ceph_mds_session *session, int is_renew) 1600 { 1601 int was_stale; 1602 int wake = 0; 1603 1604 spin_lock(&session->s_cap_lock); 1605 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 1606 1607 session->s_cap_ttl = session->s_renew_requested + 1608 mdsc->mdsmap->m_session_timeout*HZ; 1609 1610 if (was_stale) { 1611 if (time_before(jiffies, session->s_cap_ttl)) { 1612 pr_info("mds%d caps renewed\n", session->s_mds); 1613 wake = 1; 1614 } else { 1615 pr_info("mds%d caps still stale\n", session->s_mds); 1616 } 1617 } 1618 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 1619 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 1620 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 1621 spin_unlock(&session->s_cap_lock); 1622 1623 if (wake) 1624 wake_up_session_caps(session, RENEWCAPS); 1625 } 1626 1627 /* 1628 * send a session close request 1629 */ 1630 static int request_close_session(struct ceph_mds_client *mdsc, 1631 struct ceph_mds_session *session) 1632 { 1633 struct ceph_msg *msg; 1634 1635 dout("request_close_session mds%d state %s seq %lld\n", 1636 session->s_mds, ceph_session_state_name(session->s_state), 1637 session->s_seq); 1638 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); 1639 if (!msg) 1640 return -ENOMEM; 1641 ceph_con_send(&session->s_con, msg); 1642 return 1; 1643 } 1644 1645 /* 1646 * Called with s_mutex held. 1647 */ 1648 static int __close_session(struct ceph_mds_client *mdsc, 1649 struct ceph_mds_session *session) 1650 { 1651 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 1652 return 0; 1653 session->s_state = CEPH_MDS_SESSION_CLOSING; 1654 return request_close_session(mdsc, session); 1655 } 1656 1657 static bool drop_negative_children(struct dentry *dentry) 1658 { 1659 struct dentry *child; 1660 bool all_negative = true; 1661 1662 if (!d_is_dir(dentry)) 1663 goto out; 1664 1665 spin_lock(&dentry->d_lock); 1666 list_for_each_entry(child, &dentry->d_subdirs, d_child) { 1667 if (d_really_is_positive(child)) { 1668 all_negative = false; 1669 break; 1670 } 1671 } 1672 spin_unlock(&dentry->d_lock); 1673 1674 if (all_negative) 1675 shrink_dcache_parent(dentry); 1676 out: 1677 return all_negative; 1678 } 1679 1680 /* 1681 * Trim old(er) caps. 1682 * 1683 * Because we can't cache an inode without one or more caps, we do 1684 * this indirectly: if a cap is unused, we prune its aliases, at which 1685 * point the inode will hopefully get dropped to. 1686 * 1687 * Yes, this is a bit sloppy. Our only real goal here is to respond to 1688 * memory pressure from the MDS, though, so it needn't be perfect. 1689 */ 1690 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1691 { 1692 struct ceph_mds_session *session = arg; 1693 struct ceph_inode_info *ci = ceph_inode(inode); 1694 int used, wanted, oissued, mine; 1695 1696 if (session->s_trim_caps <= 0) 1697 return -1; 1698 1699 spin_lock(&ci->i_ceph_lock); 1700 mine = cap->issued | cap->implemented; 1701 used = __ceph_caps_used(ci); 1702 wanted = __ceph_caps_file_wanted(ci); 1703 oissued = __ceph_caps_issued_other(ci, cap); 1704 1705 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n", 1706 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1707 ceph_cap_string(used), ceph_cap_string(wanted)); 1708 if (cap == ci->i_auth_cap) { 1709 if (ci->i_dirty_caps || ci->i_flushing_caps || 1710 !list_empty(&ci->i_cap_snaps)) 1711 goto out; 1712 if ((used | wanted) & CEPH_CAP_ANY_WR) 1713 goto out; 1714 /* Note: it's possible that i_filelock_ref becomes non-zero 1715 * after dropping auth caps. It doesn't hurt because reply 1716 * of lock mds request will re-add auth caps. */ 1717 if (atomic_read(&ci->i_filelock_ref) > 0) 1718 goto out; 1719 } 1720 /* The inode has cached pages, but it's no longer used. 1721 * we can safely drop it */ 1722 if (wanted == 0 && used == CEPH_CAP_FILE_CACHE && 1723 !(oissued & CEPH_CAP_FILE_CACHE)) { 1724 used = 0; 1725 oissued = 0; 1726 } 1727 if ((used | wanted) & ~oissued & mine) 1728 goto out; /* we need these caps */ 1729 1730 if (oissued) { 1731 /* we aren't the only cap.. just remove us */ 1732 __ceph_remove_cap(cap, true); 1733 session->s_trim_caps--; 1734 } else { 1735 struct dentry *dentry; 1736 /* try dropping referring dentries */ 1737 spin_unlock(&ci->i_ceph_lock); 1738 dentry = d_find_any_alias(inode); 1739 if (dentry && drop_negative_children(dentry)) { 1740 int count; 1741 dput(dentry); 1742 d_prune_aliases(inode); 1743 count = atomic_read(&inode->i_count); 1744 if (count == 1) 1745 session->s_trim_caps--; 1746 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 1747 inode, cap, count); 1748 } else { 1749 dput(dentry); 1750 } 1751 return 0; 1752 } 1753 1754 out: 1755 spin_unlock(&ci->i_ceph_lock); 1756 return 0; 1757 } 1758 1759 /* 1760 * Trim session cap count down to some max number. 1761 */ 1762 int ceph_trim_caps(struct ceph_mds_client *mdsc, 1763 struct ceph_mds_session *session, 1764 int max_caps) 1765 { 1766 int trim_caps = session->s_nr_caps - max_caps; 1767 1768 dout("trim_caps mds%d start: %d / %d, trim %d\n", 1769 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 1770 if (trim_caps > 0) { 1771 session->s_trim_caps = trim_caps; 1772 ceph_iterate_session_caps(session, trim_caps_cb, session); 1773 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 1774 session->s_mds, session->s_nr_caps, max_caps, 1775 trim_caps - session->s_trim_caps); 1776 session->s_trim_caps = 0; 1777 } 1778 1779 ceph_flush_cap_releases(mdsc, session); 1780 return 0; 1781 } 1782 1783 static int check_caps_flush(struct ceph_mds_client *mdsc, 1784 u64 want_flush_tid) 1785 { 1786 int ret = 1; 1787 1788 spin_lock(&mdsc->cap_dirty_lock); 1789 if (!list_empty(&mdsc->cap_flush_list)) { 1790 struct ceph_cap_flush *cf = 1791 list_first_entry(&mdsc->cap_flush_list, 1792 struct ceph_cap_flush, g_list); 1793 if (cf->tid <= want_flush_tid) { 1794 dout("check_caps_flush still flushing tid " 1795 "%llu <= %llu\n", cf->tid, want_flush_tid); 1796 ret = 0; 1797 } 1798 } 1799 spin_unlock(&mdsc->cap_dirty_lock); 1800 return ret; 1801 } 1802 1803 /* 1804 * flush all dirty inode data to disk. 1805 * 1806 * returns true if we've flushed through want_flush_tid 1807 */ 1808 static void wait_caps_flush(struct ceph_mds_client *mdsc, 1809 u64 want_flush_tid) 1810 { 1811 dout("check_caps_flush want %llu\n", want_flush_tid); 1812 1813 wait_event(mdsc->cap_flushing_wq, 1814 check_caps_flush(mdsc, want_flush_tid)); 1815 1816 dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid); 1817 } 1818 1819 /* 1820 * called under s_mutex 1821 */ 1822 static void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 1823 struct ceph_mds_session *session) 1824 { 1825 struct ceph_msg *msg = NULL; 1826 struct ceph_mds_cap_release *head; 1827 struct ceph_mds_cap_item *item; 1828 struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc; 1829 struct ceph_cap *cap; 1830 LIST_HEAD(tmp_list); 1831 int num_cap_releases; 1832 __le32 barrier, *cap_barrier; 1833 1834 down_read(&osdc->lock); 1835 barrier = cpu_to_le32(osdc->epoch_barrier); 1836 up_read(&osdc->lock); 1837 1838 spin_lock(&session->s_cap_lock); 1839 again: 1840 list_splice_init(&session->s_cap_releases, &tmp_list); 1841 num_cap_releases = session->s_num_cap_releases; 1842 session->s_num_cap_releases = 0; 1843 spin_unlock(&session->s_cap_lock); 1844 1845 while (!list_empty(&tmp_list)) { 1846 if (!msg) { 1847 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, 1848 PAGE_SIZE, GFP_NOFS, false); 1849 if (!msg) 1850 goto out_err; 1851 head = msg->front.iov_base; 1852 head->num = cpu_to_le32(0); 1853 msg->front.iov_len = sizeof(*head); 1854 1855 msg->hdr.version = cpu_to_le16(2); 1856 msg->hdr.compat_version = cpu_to_le16(1); 1857 } 1858 1859 cap = list_first_entry(&tmp_list, struct ceph_cap, 1860 session_caps); 1861 list_del(&cap->session_caps); 1862 num_cap_releases--; 1863 1864 head = msg->front.iov_base; 1865 put_unaligned_le32(get_unaligned_le32(&head->num) + 1, 1866 &head->num); 1867 item = msg->front.iov_base + msg->front.iov_len; 1868 item->ino = cpu_to_le64(cap->cap_ino); 1869 item->cap_id = cpu_to_le64(cap->cap_id); 1870 item->migrate_seq = cpu_to_le32(cap->mseq); 1871 item->seq = cpu_to_le32(cap->issue_seq); 1872 msg->front.iov_len += sizeof(*item); 1873 1874 ceph_put_cap(mdsc, cap); 1875 1876 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1877 // Append cap_barrier field 1878 cap_barrier = msg->front.iov_base + msg->front.iov_len; 1879 *cap_barrier = barrier; 1880 msg->front.iov_len += sizeof(*cap_barrier); 1881 1882 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1883 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1884 ceph_con_send(&session->s_con, msg); 1885 msg = NULL; 1886 } 1887 } 1888 1889 BUG_ON(num_cap_releases != 0); 1890 1891 spin_lock(&session->s_cap_lock); 1892 if (!list_empty(&session->s_cap_releases)) 1893 goto again; 1894 spin_unlock(&session->s_cap_lock); 1895 1896 if (msg) { 1897 // Append cap_barrier field 1898 cap_barrier = msg->front.iov_base + msg->front.iov_len; 1899 *cap_barrier = barrier; 1900 msg->front.iov_len += sizeof(*cap_barrier); 1901 1902 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1903 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1904 ceph_con_send(&session->s_con, msg); 1905 } 1906 return; 1907 out_err: 1908 pr_err("send_cap_releases mds%d, failed to allocate message\n", 1909 session->s_mds); 1910 spin_lock(&session->s_cap_lock); 1911 list_splice(&tmp_list, &session->s_cap_releases); 1912 session->s_num_cap_releases += num_cap_releases; 1913 spin_unlock(&session->s_cap_lock); 1914 } 1915 1916 static void ceph_cap_release_work(struct work_struct *work) 1917 { 1918 struct ceph_mds_session *session = 1919 container_of(work, struct ceph_mds_session, s_cap_release_work); 1920 1921 mutex_lock(&session->s_mutex); 1922 if (session->s_state == CEPH_MDS_SESSION_OPEN || 1923 session->s_state == CEPH_MDS_SESSION_HUNG) 1924 ceph_send_cap_releases(session->s_mdsc, session); 1925 mutex_unlock(&session->s_mutex); 1926 ceph_put_mds_session(session); 1927 } 1928 1929 void ceph_flush_cap_releases(struct ceph_mds_client *mdsc, 1930 struct ceph_mds_session *session) 1931 { 1932 if (mdsc->stopping) 1933 return; 1934 1935 get_session(session); 1936 if (queue_work(mdsc->fsc->cap_wq, 1937 &session->s_cap_release_work)) { 1938 dout("cap release work queued\n"); 1939 } else { 1940 ceph_put_mds_session(session); 1941 dout("failed to queue cap release work\n"); 1942 } 1943 } 1944 1945 /* 1946 * caller holds session->s_cap_lock 1947 */ 1948 void __ceph_queue_cap_release(struct ceph_mds_session *session, 1949 struct ceph_cap *cap) 1950 { 1951 list_add_tail(&cap->session_caps, &session->s_cap_releases); 1952 session->s_num_cap_releases++; 1953 1954 if (!(session->s_num_cap_releases % CEPH_CAPS_PER_RELEASE)) 1955 ceph_flush_cap_releases(session->s_mdsc, session); 1956 } 1957 1958 static void ceph_cap_reclaim_work(struct work_struct *work) 1959 { 1960 struct ceph_mds_client *mdsc = 1961 container_of(work, struct ceph_mds_client, cap_reclaim_work); 1962 int ret = ceph_trim_dentries(mdsc); 1963 if (ret == -EAGAIN) 1964 ceph_queue_cap_reclaim_work(mdsc); 1965 } 1966 1967 void ceph_queue_cap_reclaim_work(struct ceph_mds_client *mdsc) 1968 { 1969 if (mdsc->stopping) 1970 return; 1971 1972 if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_reclaim_work)) { 1973 dout("caps reclaim work queued\n"); 1974 } else { 1975 dout("failed to queue caps release work\n"); 1976 } 1977 } 1978 1979 void ceph_reclaim_caps_nr(struct ceph_mds_client *mdsc, int nr) 1980 { 1981 int val; 1982 if (!nr) 1983 return; 1984 val = atomic_add_return(nr, &mdsc->cap_reclaim_pending); 1985 if (!(val % CEPH_CAPS_PER_RELEASE)) { 1986 atomic_set(&mdsc->cap_reclaim_pending, 0); 1987 ceph_queue_cap_reclaim_work(mdsc); 1988 } 1989 } 1990 1991 /* 1992 * requests 1993 */ 1994 1995 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req, 1996 struct inode *dir) 1997 { 1998 struct ceph_inode_info *ci = ceph_inode(dir); 1999 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; 2000 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options; 2001 size_t size = sizeof(struct ceph_mds_reply_dir_entry); 2002 int order, num_entries; 2003 2004 spin_lock(&ci->i_ceph_lock); 2005 num_entries = ci->i_files + ci->i_subdirs; 2006 spin_unlock(&ci->i_ceph_lock); 2007 num_entries = max(num_entries, 1); 2008 num_entries = min(num_entries, opt->max_readdir); 2009 2010 order = get_order(size * num_entries); 2011 while (order >= 0) { 2012 rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL | 2013 __GFP_NOWARN, 2014 order); 2015 if (rinfo->dir_entries) 2016 break; 2017 order--; 2018 } 2019 if (!rinfo->dir_entries) 2020 return -ENOMEM; 2021 2022 num_entries = (PAGE_SIZE << order) / size; 2023 num_entries = min(num_entries, opt->max_readdir); 2024 2025 rinfo->dir_buf_size = PAGE_SIZE << order; 2026 req->r_num_caps = num_entries + 1; 2027 req->r_args.readdir.max_entries = cpu_to_le32(num_entries); 2028 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes); 2029 return 0; 2030 } 2031 2032 /* 2033 * Create an mds request. 2034 */ 2035 struct ceph_mds_request * 2036 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 2037 { 2038 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS); 2039 struct timespec64 ts; 2040 2041 if (!req) 2042 return ERR_PTR(-ENOMEM); 2043 2044 mutex_init(&req->r_fill_mutex); 2045 req->r_mdsc = mdsc; 2046 req->r_started = jiffies; 2047 req->r_resend_mds = -1; 2048 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 2049 INIT_LIST_HEAD(&req->r_unsafe_target_item); 2050 req->r_fmode = -1; 2051 kref_init(&req->r_kref); 2052 RB_CLEAR_NODE(&req->r_node); 2053 INIT_LIST_HEAD(&req->r_wait); 2054 init_completion(&req->r_completion); 2055 init_completion(&req->r_safe_completion); 2056 INIT_LIST_HEAD(&req->r_unsafe_item); 2057 2058 ktime_get_coarse_real_ts64(&ts); 2059 req->r_stamp = timespec64_trunc(ts, mdsc->fsc->sb->s_time_gran); 2060 2061 req->r_op = op; 2062 req->r_direct_mode = mode; 2063 return req; 2064 } 2065 2066 /* 2067 * return oldest (lowest) request, tid in request tree, 0 if none. 2068 * 2069 * called under mdsc->mutex. 2070 */ 2071 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 2072 { 2073 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 2074 return NULL; 2075 return rb_entry(rb_first(&mdsc->request_tree), 2076 struct ceph_mds_request, r_node); 2077 } 2078 2079 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 2080 { 2081 return mdsc->oldest_tid; 2082 } 2083 2084 /* 2085 * Build a dentry's path. Allocate on heap; caller must kfree. Based 2086 * on build_path_from_dentry in fs/cifs/dir.c. 2087 * 2088 * If @stop_on_nosnap, generate path relative to the first non-snapped 2089 * inode. 2090 * 2091 * Encode hidden .snap dirs as a double /, i.e. 2092 * foo/.snap/bar -> foo//bar 2093 */ 2094 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *pbase, 2095 int stop_on_nosnap) 2096 { 2097 struct dentry *temp; 2098 char *path; 2099 int pos; 2100 unsigned seq; 2101 u64 base; 2102 2103 if (!dentry) 2104 return ERR_PTR(-EINVAL); 2105 2106 path = __getname(); 2107 if (!path) 2108 return ERR_PTR(-ENOMEM); 2109 retry: 2110 pos = PATH_MAX - 1; 2111 path[pos] = '\0'; 2112 2113 seq = read_seqbegin(&rename_lock); 2114 rcu_read_lock(); 2115 temp = dentry; 2116 for (;;) { 2117 struct inode *inode; 2118 2119 spin_lock(&temp->d_lock); 2120 inode = d_inode(temp); 2121 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 2122 dout("build_path path+%d: %p SNAPDIR\n", 2123 pos, temp); 2124 } else if (stop_on_nosnap && inode && 2125 ceph_snap(inode) == CEPH_NOSNAP) { 2126 spin_unlock(&temp->d_lock); 2127 break; 2128 } else { 2129 pos -= temp->d_name.len; 2130 if (pos < 0) { 2131 spin_unlock(&temp->d_lock); 2132 break; 2133 } 2134 memcpy(path + pos, temp->d_name.name, temp->d_name.len); 2135 } 2136 spin_unlock(&temp->d_lock); 2137 temp = temp->d_parent; 2138 2139 /* Are we at the root? */ 2140 if (IS_ROOT(temp)) 2141 break; 2142 2143 /* Are we out of buffer? */ 2144 if (--pos < 0) 2145 break; 2146 2147 path[pos] = '/'; 2148 } 2149 base = ceph_ino(d_inode(temp)); 2150 rcu_read_unlock(); 2151 if (pos < 0 || read_seqretry(&rename_lock, seq)) { 2152 pr_err("build_path did not end path lookup where " 2153 "expected, pos is %d\n", pos); 2154 /* presumably this is only possible if racing with a 2155 rename of one of the parent directories (we can not 2156 lock the dentries above us to prevent this, but 2157 retrying should be harmless) */ 2158 goto retry; 2159 } 2160 2161 *pbase = base; 2162 *plen = PATH_MAX - 1 - pos; 2163 dout("build_path on %p %d built %llx '%.*s'\n", 2164 dentry, d_count(dentry), base, *plen, path + pos); 2165 return path + pos; 2166 } 2167 2168 static int build_dentry_path(struct dentry *dentry, struct inode *dir, 2169 const char **ppath, int *ppathlen, u64 *pino, 2170 bool *pfreepath, bool parent_locked) 2171 { 2172 char *path; 2173 2174 rcu_read_lock(); 2175 if (!dir) 2176 dir = d_inode_rcu(dentry->d_parent); 2177 if (dir && parent_locked && ceph_snap(dir) == CEPH_NOSNAP) { 2178 *pino = ceph_ino(dir); 2179 rcu_read_unlock(); 2180 *ppath = dentry->d_name.name; 2181 *ppathlen = dentry->d_name.len; 2182 return 0; 2183 } 2184 rcu_read_unlock(); 2185 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 2186 if (IS_ERR(path)) 2187 return PTR_ERR(path); 2188 *ppath = path; 2189 *pfreepath = true; 2190 return 0; 2191 } 2192 2193 static int build_inode_path(struct inode *inode, 2194 const char **ppath, int *ppathlen, u64 *pino, 2195 bool *pfreepath) 2196 { 2197 struct dentry *dentry; 2198 char *path; 2199 2200 if (ceph_snap(inode) == CEPH_NOSNAP) { 2201 *pino = ceph_ino(inode); 2202 *ppathlen = 0; 2203 return 0; 2204 } 2205 dentry = d_find_alias(inode); 2206 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 2207 dput(dentry); 2208 if (IS_ERR(path)) 2209 return PTR_ERR(path); 2210 *ppath = path; 2211 *pfreepath = true; 2212 return 0; 2213 } 2214 2215 /* 2216 * request arguments may be specified via an inode *, a dentry *, or 2217 * an explicit ino+path. 2218 */ 2219 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 2220 struct inode *rdiri, const char *rpath, 2221 u64 rino, const char **ppath, int *pathlen, 2222 u64 *ino, bool *freepath, bool parent_locked) 2223 { 2224 int r = 0; 2225 2226 if (rinode) { 2227 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 2228 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 2229 ceph_snap(rinode)); 2230 } else if (rdentry) { 2231 r = build_dentry_path(rdentry, rdiri, ppath, pathlen, ino, 2232 freepath, parent_locked); 2233 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 2234 *ppath); 2235 } else if (rpath || rino) { 2236 *ino = rino; 2237 *ppath = rpath; 2238 *pathlen = rpath ? strlen(rpath) : 0; 2239 dout(" path %.*s\n", *pathlen, rpath); 2240 } 2241 2242 return r; 2243 } 2244 2245 /* 2246 * called under mdsc->mutex 2247 */ 2248 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc, 2249 struct ceph_mds_request *req, 2250 int mds, bool drop_cap_releases) 2251 { 2252 struct ceph_msg *msg; 2253 struct ceph_mds_request_head *head; 2254 const char *path1 = NULL; 2255 const char *path2 = NULL; 2256 u64 ino1 = 0, ino2 = 0; 2257 int pathlen1 = 0, pathlen2 = 0; 2258 bool freepath1 = false, freepath2 = false; 2259 int len; 2260 u16 releases; 2261 void *p, *end; 2262 int ret; 2263 2264 ret = set_request_path_attr(req->r_inode, req->r_dentry, 2265 req->r_parent, req->r_path1, req->r_ino1.ino, 2266 &path1, &pathlen1, &ino1, &freepath1, 2267 test_bit(CEPH_MDS_R_PARENT_LOCKED, 2268 &req->r_req_flags)); 2269 if (ret < 0) { 2270 msg = ERR_PTR(ret); 2271 goto out; 2272 } 2273 2274 /* If r_old_dentry is set, then assume that its parent is locked */ 2275 ret = set_request_path_attr(NULL, req->r_old_dentry, 2276 req->r_old_dentry_dir, 2277 req->r_path2, req->r_ino2.ino, 2278 &path2, &pathlen2, &ino2, &freepath2, true); 2279 if (ret < 0) { 2280 msg = ERR_PTR(ret); 2281 goto out_free1; 2282 } 2283 2284 len = sizeof(*head) + 2285 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) + 2286 sizeof(struct ceph_timespec); 2287 2288 /* calculate (max) length for cap releases */ 2289 len += sizeof(struct ceph_mds_request_release) * 2290 (!!req->r_inode_drop + !!req->r_dentry_drop + 2291 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 2292 if (req->r_dentry_drop) 2293 len += pathlen1; 2294 if (req->r_old_dentry_drop) 2295 len += pathlen2; 2296 2297 msg = ceph_msg_new2(CEPH_MSG_CLIENT_REQUEST, len, 1, GFP_NOFS, false); 2298 if (!msg) { 2299 msg = ERR_PTR(-ENOMEM); 2300 goto out_free2; 2301 } 2302 2303 msg->hdr.version = cpu_to_le16(2); 2304 msg->hdr.tid = cpu_to_le64(req->r_tid); 2305 2306 head = msg->front.iov_base; 2307 p = msg->front.iov_base + sizeof(*head); 2308 end = msg->front.iov_base + msg->front.iov_len; 2309 2310 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 2311 head->op = cpu_to_le32(req->r_op); 2312 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid)); 2313 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid)); 2314 head->args = req->r_args; 2315 2316 ceph_encode_filepath(&p, end, ino1, path1); 2317 ceph_encode_filepath(&p, end, ino2, path2); 2318 2319 /* make note of release offset, in case we need to replay */ 2320 req->r_request_release_offset = p - msg->front.iov_base; 2321 2322 /* cap releases */ 2323 releases = 0; 2324 if (req->r_inode_drop) 2325 releases += ceph_encode_inode_release(&p, 2326 req->r_inode ? req->r_inode : d_inode(req->r_dentry), 2327 mds, req->r_inode_drop, req->r_inode_unless, 0); 2328 if (req->r_dentry_drop) 2329 releases += ceph_encode_dentry_release(&p, req->r_dentry, 2330 req->r_parent, mds, req->r_dentry_drop, 2331 req->r_dentry_unless); 2332 if (req->r_old_dentry_drop) 2333 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 2334 req->r_old_dentry_dir, mds, 2335 req->r_old_dentry_drop, 2336 req->r_old_dentry_unless); 2337 if (req->r_old_inode_drop) 2338 releases += ceph_encode_inode_release(&p, 2339 d_inode(req->r_old_dentry), 2340 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 2341 2342 if (drop_cap_releases) { 2343 releases = 0; 2344 p = msg->front.iov_base + req->r_request_release_offset; 2345 } 2346 2347 head->num_releases = cpu_to_le16(releases); 2348 2349 /* time stamp */ 2350 { 2351 struct ceph_timespec ts; 2352 ceph_encode_timespec64(&ts, &req->r_stamp); 2353 ceph_encode_copy(&p, &ts, sizeof(ts)); 2354 } 2355 2356 BUG_ON(p > end); 2357 msg->front.iov_len = p - msg->front.iov_base; 2358 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2359 2360 if (req->r_pagelist) { 2361 struct ceph_pagelist *pagelist = req->r_pagelist; 2362 ceph_msg_data_add_pagelist(msg, pagelist); 2363 msg->hdr.data_len = cpu_to_le32(pagelist->length); 2364 } else { 2365 msg->hdr.data_len = 0; 2366 } 2367 2368 msg->hdr.data_off = cpu_to_le16(0); 2369 2370 out_free2: 2371 if (freepath2) 2372 ceph_mdsc_free_path((char *)path2, pathlen2); 2373 out_free1: 2374 if (freepath1) 2375 ceph_mdsc_free_path((char *)path1, pathlen1); 2376 out: 2377 return msg; 2378 } 2379 2380 /* 2381 * called under mdsc->mutex if error, under no mutex if 2382 * success. 2383 */ 2384 static void complete_request(struct ceph_mds_client *mdsc, 2385 struct ceph_mds_request *req) 2386 { 2387 if (req->r_callback) 2388 req->r_callback(mdsc, req); 2389 complete_all(&req->r_completion); 2390 } 2391 2392 /* 2393 * called under mdsc->mutex 2394 */ 2395 static int __prepare_send_request(struct ceph_mds_client *mdsc, 2396 struct ceph_mds_request *req, 2397 int mds, bool drop_cap_releases) 2398 { 2399 struct ceph_mds_request_head *rhead; 2400 struct ceph_msg *msg; 2401 int flags = 0; 2402 2403 req->r_attempts++; 2404 if (req->r_inode) { 2405 struct ceph_cap *cap = 2406 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 2407 2408 if (cap) 2409 req->r_sent_on_mseq = cap->mseq; 2410 else 2411 req->r_sent_on_mseq = -1; 2412 } 2413 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, 2414 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 2415 2416 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 2417 void *p; 2418 /* 2419 * Replay. Do not regenerate message (and rebuild 2420 * paths, etc.); just use the original message. 2421 * Rebuilding paths will break for renames because 2422 * d_move mangles the src name. 2423 */ 2424 msg = req->r_request; 2425 rhead = msg->front.iov_base; 2426 2427 flags = le32_to_cpu(rhead->flags); 2428 flags |= CEPH_MDS_FLAG_REPLAY; 2429 rhead->flags = cpu_to_le32(flags); 2430 2431 if (req->r_target_inode) 2432 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 2433 2434 rhead->num_retry = req->r_attempts - 1; 2435 2436 /* remove cap/dentry releases from message */ 2437 rhead->num_releases = 0; 2438 2439 /* time stamp */ 2440 p = msg->front.iov_base + req->r_request_release_offset; 2441 { 2442 struct ceph_timespec ts; 2443 ceph_encode_timespec64(&ts, &req->r_stamp); 2444 ceph_encode_copy(&p, &ts, sizeof(ts)); 2445 } 2446 2447 msg->front.iov_len = p - msg->front.iov_base; 2448 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2449 return 0; 2450 } 2451 2452 if (req->r_request) { 2453 ceph_msg_put(req->r_request); 2454 req->r_request = NULL; 2455 } 2456 msg = create_request_message(mdsc, req, mds, drop_cap_releases); 2457 if (IS_ERR(msg)) { 2458 req->r_err = PTR_ERR(msg); 2459 return PTR_ERR(msg); 2460 } 2461 req->r_request = msg; 2462 2463 rhead = msg->front.iov_base; 2464 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 2465 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 2466 flags |= CEPH_MDS_FLAG_REPLAY; 2467 if (req->r_parent) 2468 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 2469 rhead->flags = cpu_to_le32(flags); 2470 rhead->num_fwd = req->r_num_fwd; 2471 rhead->num_retry = req->r_attempts - 1; 2472 rhead->ino = 0; 2473 2474 dout(" r_parent = %p\n", req->r_parent); 2475 return 0; 2476 } 2477 2478 /* 2479 * send request, or put it on the appropriate wait list. 2480 */ 2481 static void __do_request(struct ceph_mds_client *mdsc, 2482 struct ceph_mds_request *req) 2483 { 2484 struct ceph_mds_session *session = NULL; 2485 int mds = -1; 2486 int err = 0; 2487 2488 if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { 2489 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) 2490 __unregister_request(mdsc, req); 2491 return; 2492 } 2493 2494 if (req->r_timeout && 2495 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 2496 dout("do_request timed out\n"); 2497 err = -EIO; 2498 goto finish; 2499 } 2500 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) { 2501 dout("do_request forced umount\n"); 2502 err = -EIO; 2503 goto finish; 2504 } 2505 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) { 2506 if (mdsc->mdsmap_err) { 2507 err = mdsc->mdsmap_err; 2508 dout("do_request mdsmap err %d\n", err); 2509 goto finish; 2510 } 2511 if (mdsc->mdsmap->m_epoch == 0) { 2512 dout("do_request no mdsmap, waiting for map\n"); 2513 list_add(&req->r_wait, &mdsc->waiting_for_map); 2514 return; 2515 } 2516 if (!(mdsc->fsc->mount_options->flags & 2517 CEPH_MOUNT_OPT_MOUNTWAIT) && 2518 !ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) { 2519 err = -ENOENT; 2520 pr_info("probably no mds server is up\n"); 2521 goto finish; 2522 } 2523 } 2524 2525 put_request_session(req); 2526 2527 mds = __choose_mds(mdsc, req); 2528 if (mds < 0 || 2529 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 2530 dout("do_request no mds or not active, waiting for map\n"); 2531 list_add(&req->r_wait, &mdsc->waiting_for_map); 2532 return; 2533 } 2534 2535 /* get, open session */ 2536 session = __ceph_lookup_mds_session(mdsc, mds); 2537 if (!session) { 2538 session = register_session(mdsc, mds); 2539 if (IS_ERR(session)) { 2540 err = PTR_ERR(session); 2541 goto finish; 2542 } 2543 } 2544 req->r_session = get_session(session); 2545 2546 dout("do_request mds%d session %p state %s\n", mds, session, 2547 ceph_session_state_name(session->s_state)); 2548 if (session->s_state != CEPH_MDS_SESSION_OPEN && 2549 session->s_state != CEPH_MDS_SESSION_HUNG) { 2550 if (session->s_state == CEPH_MDS_SESSION_REJECTED) { 2551 err = -EACCES; 2552 goto out_session; 2553 } 2554 if (session->s_state == CEPH_MDS_SESSION_NEW || 2555 session->s_state == CEPH_MDS_SESSION_CLOSING) 2556 __open_session(mdsc, session); 2557 list_add(&req->r_wait, &session->s_waiting); 2558 goto out_session; 2559 } 2560 2561 /* send request */ 2562 req->r_resend_mds = -1; /* forget any previous mds hint */ 2563 2564 if (req->r_request_started == 0) /* note request start time */ 2565 req->r_request_started = jiffies; 2566 2567 err = __prepare_send_request(mdsc, req, mds, false); 2568 if (!err) { 2569 ceph_msg_get(req->r_request); 2570 ceph_con_send(&session->s_con, req->r_request); 2571 } 2572 2573 out_session: 2574 ceph_put_mds_session(session); 2575 finish: 2576 if (err) { 2577 dout("__do_request early error %d\n", err); 2578 req->r_err = err; 2579 complete_request(mdsc, req); 2580 __unregister_request(mdsc, req); 2581 } 2582 return; 2583 } 2584 2585 /* 2586 * called under mdsc->mutex 2587 */ 2588 static void __wake_requests(struct ceph_mds_client *mdsc, 2589 struct list_head *head) 2590 { 2591 struct ceph_mds_request *req; 2592 LIST_HEAD(tmp_list); 2593 2594 list_splice_init(head, &tmp_list); 2595 2596 while (!list_empty(&tmp_list)) { 2597 req = list_entry(tmp_list.next, 2598 struct ceph_mds_request, r_wait); 2599 list_del_init(&req->r_wait); 2600 dout(" wake request %p tid %llu\n", req, req->r_tid); 2601 __do_request(mdsc, req); 2602 } 2603 } 2604 2605 /* 2606 * Wake up threads with requests pending for @mds, so that they can 2607 * resubmit their requests to a possibly different mds. 2608 */ 2609 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 2610 { 2611 struct ceph_mds_request *req; 2612 struct rb_node *p = rb_first(&mdsc->request_tree); 2613 2614 dout("kick_requests mds%d\n", mds); 2615 while (p) { 2616 req = rb_entry(p, struct ceph_mds_request, r_node); 2617 p = rb_next(p); 2618 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 2619 continue; 2620 if (req->r_attempts > 0) 2621 continue; /* only new requests */ 2622 if (req->r_session && 2623 req->r_session->s_mds == mds) { 2624 dout(" kicking tid %llu\n", req->r_tid); 2625 list_del_init(&req->r_wait); 2626 __do_request(mdsc, req); 2627 } 2628 } 2629 } 2630 2631 int ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, struct inode *dir, 2632 struct ceph_mds_request *req) 2633 { 2634 int err; 2635 2636 /* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */ 2637 if (req->r_inode) 2638 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 2639 if (req->r_parent) 2640 ceph_get_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN); 2641 if (req->r_old_dentry_dir) 2642 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 2643 CEPH_CAP_PIN); 2644 2645 dout("submit_request on %p for inode %p\n", req, dir); 2646 mutex_lock(&mdsc->mutex); 2647 __register_request(mdsc, req, dir); 2648 __do_request(mdsc, req); 2649 err = req->r_err; 2650 mutex_unlock(&mdsc->mutex); 2651 return err; 2652 } 2653 2654 static int ceph_mdsc_wait_request(struct ceph_mds_client *mdsc, 2655 struct ceph_mds_request *req) 2656 { 2657 int err; 2658 2659 /* wait */ 2660 dout("do_request waiting\n"); 2661 if (!req->r_timeout && req->r_wait_for_completion) { 2662 err = req->r_wait_for_completion(mdsc, req); 2663 } else { 2664 long timeleft = wait_for_completion_killable_timeout( 2665 &req->r_completion, 2666 ceph_timeout_jiffies(req->r_timeout)); 2667 if (timeleft > 0) 2668 err = 0; 2669 else if (!timeleft) 2670 err = -EIO; /* timed out */ 2671 else 2672 err = timeleft; /* killed */ 2673 } 2674 dout("do_request waited, got %d\n", err); 2675 mutex_lock(&mdsc->mutex); 2676 2677 /* only abort if we didn't race with a real reply */ 2678 if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { 2679 err = le32_to_cpu(req->r_reply_info.head->result); 2680 } else if (err < 0) { 2681 dout("aborted request %lld with %d\n", req->r_tid, err); 2682 2683 /* 2684 * ensure we aren't running concurrently with 2685 * ceph_fill_trace or ceph_readdir_prepopulate, which 2686 * rely on locks (dir mutex) held by our caller. 2687 */ 2688 mutex_lock(&req->r_fill_mutex); 2689 req->r_err = err; 2690 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 2691 mutex_unlock(&req->r_fill_mutex); 2692 2693 if (req->r_parent && 2694 (req->r_op & CEPH_MDS_OP_WRITE)) 2695 ceph_invalidate_dir_request(req); 2696 } else { 2697 err = req->r_err; 2698 } 2699 2700 mutex_unlock(&mdsc->mutex); 2701 return err; 2702 } 2703 2704 /* 2705 * Synchrously perform an mds request. Take care of all of the 2706 * session setup, forwarding, retry details. 2707 */ 2708 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 2709 struct inode *dir, 2710 struct ceph_mds_request *req) 2711 { 2712 int err; 2713 2714 dout("do_request on %p\n", req); 2715 2716 /* issue */ 2717 err = ceph_mdsc_submit_request(mdsc, dir, req); 2718 if (!err) 2719 err = ceph_mdsc_wait_request(mdsc, req); 2720 dout("do_request %p done, result %d\n", req, err); 2721 return err; 2722 } 2723 2724 /* 2725 * Invalidate dir's completeness, dentry lease state on an aborted MDS 2726 * namespace request. 2727 */ 2728 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 2729 { 2730 struct inode *dir = req->r_parent; 2731 struct inode *old_dir = req->r_old_dentry_dir; 2732 2733 dout("invalidate_dir_request %p %p (complete, lease(s))\n", dir, old_dir); 2734 2735 ceph_dir_clear_complete(dir); 2736 if (old_dir) 2737 ceph_dir_clear_complete(old_dir); 2738 if (req->r_dentry) 2739 ceph_invalidate_dentry_lease(req->r_dentry); 2740 if (req->r_old_dentry) 2741 ceph_invalidate_dentry_lease(req->r_old_dentry); 2742 } 2743 2744 /* 2745 * Handle mds reply. 2746 * 2747 * We take the session mutex and parse and process the reply immediately. 2748 * This preserves the logical ordering of replies, capabilities, etc., sent 2749 * by the MDS as they are applied to our local cache. 2750 */ 2751 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 2752 { 2753 struct ceph_mds_client *mdsc = session->s_mdsc; 2754 struct ceph_mds_request *req; 2755 struct ceph_mds_reply_head *head = msg->front.iov_base; 2756 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 2757 struct ceph_snap_realm *realm; 2758 u64 tid; 2759 int err, result; 2760 int mds = session->s_mds; 2761 2762 if (msg->front.iov_len < sizeof(*head)) { 2763 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 2764 ceph_msg_dump(msg); 2765 return; 2766 } 2767 2768 /* get request, session */ 2769 tid = le64_to_cpu(msg->hdr.tid); 2770 mutex_lock(&mdsc->mutex); 2771 req = lookup_get_request(mdsc, tid); 2772 if (!req) { 2773 dout("handle_reply on unknown tid %llu\n", tid); 2774 mutex_unlock(&mdsc->mutex); 2775 return; 2776 } 2777 dout("handle_reply %p\n", req); 2778 2779 /* correct session? */ 2780 if (req->r_session != session) { 2781 pr_err("mdsc_handle_reply got %llu on session mds%d" 2782 " not mds%d\n", tid, session->s_mds, 2783 req->r_session ? req->r_session->s_mds : -1); 2784 mutex_unlock(&mdsc->mutex); 2785 goto out; 2786 } 2787 2788 /* dup? */ 2789 if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) || 2790 (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) { 2791 pr_warn("got a dup %s reply on %llu from mds%d\n", 2792 head->safe ? "safe" : "unsafe", tid, mds); 2793 mutex_unlock(&mdsc->mutex); 2794 goto out; 2795 } 2796 if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) { 2797 pr_warn("got unsafe after safe on %llu from mds%d\n", 2798 tid, mds); 2799 mutex_unlock(&mdsc->mutex); 2800 goto out; 2801 } 2802 2803 result = le32_to_cpu(head->result); 2804 2805 /* 2806 * Handle an ESTALE 2807 * if we're not talking to the authority, send to them 2808 * if the authority has changed while we weren't looking, 2809 * send to new authority 2810 * Otherwise we just have to return an ESTALE 2811 */ 2812 if (result == -ESTALE) { 2813 dout("got ESTALE on request %llu\n", req->r_tid); 2814 req->r_resend_mds = -1; 2815 if (req->r_direct_mode != USE_AUTH_MDS) { 2816 dout("not using auth, setting for that now\n"); 2817 req->r_direct_mode = USE_AUTH_MDS; 2818 __do_request(mdsc, req); 2819 mutex_unlock(&mdsc->mutex); 2820 goto out; 2821 } else { 2822 int mds = __choose_mds(mdsc, req); 2823 if (mds >= 0 && mds != req->r_session->s_mds) { 2824 dout("but auth changed, so resending\n"); 2825 __do_request(mdsc, req); 2826 mutex_unlock(&mdsc->mutex); 2827 goto out; 2828 } 2829 } 2830 dout("have to return ESTALE on request %llu\n", req->r_tid); 2831 } 2832 2833 2834 if (head->safe) { 2835 set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags); 2836 __unregister_request(mdsc, req); 2837 2838 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 2839 /* 2840 * We already handled the unsafe response, now do the 2841 * cleanup. No need to examine the response; the MDS 2842 * doesn't include any result info in the safe 2843 * response. And even if it did, there is nothing 2844 * useful we could do with a revised return value. 2845 */ 2846 dout("got safe reply %llu, mds%d\n", tid, mds); 2847 2848 /* last unsafe request during umount? */ 2849 if (mdsc->stopping && !__get_oldest_req(mdsc)) 2850 complete_all(&mdsc->safe_umount_waiters); 2851 mutex_unlock(&mdsc->mutex); 2852 goto out; 2853 } 2854 } else { 2855 set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags); 2856 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 2857 if (req->r_unsafe_dir) { 2858 struct ceph_inode_info *ci = 2859 ceph_inode(req->r_unsafe_dir); 2860 spin_lock(&ci->i_unsafe_lock); 2861 list_add_tail(&req->r_unsafe_dir_item, 2862 &ci->i_unsafe_dirops); 2863 spin_unlock(&ci->i_unsafe_lock); 2864 } 2865 } 2866 2867 dout("handle_reply tid %lld result %d\n", tid, result); 2868 rinfo = &req->r_reply_info; 2869 if (test_bit(CEPHFS_FEATURE_REPLY_ENCODING, &session->s_features)) 2870 err = parse_reply_info(msg, rinfo, (u64)-1); 2871 else 2872 err = parse_reply_info(msg, rinfo, session->s_con.peer_features); 2873 mutex_unlock(&mdsc->mutex); 2874 2875 mutex_lock(&session->s_mutex); 2876 if (err < 0) { 2877 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 2878 ceph_msg_dump(msg); 2879 goto out_err; 2880 } 2881 2882 /* snap trace */ 2883 realm = NULL; 2884 if (rinfo->snapblob_len) { 2885 down_write(&mdsc->snap_rwsem); 2886 ceph_update_snap_trace(mdsc, rinfo->snapblob, 2887 rinfo->snapblob + rinfo->snapblob_len, 2888 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP, 2889 &realm); 2890 downgrade_write(&mdsc->snap_rwsem); 2891 } else { 2892 down_read(&mdsc->snap_rwsem); 2893 } 2894 2895 /* insert trace into our cache */ 2896 mutex_lock(&req->r_fill_mutex); 2897 current->journal_info = req; 2898 err = ceph_fill_trace(mdsc->fsc->sb, req); 2899 if (err == 0) { 2900 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || 2901 req->r_op == CEPH_MDS_OP_LSSNAP)) 2902 ceph_readdir_prepopulate(req, req->r_session); 2903 } 2904 current->journal_info = NULL; 2905 mutex_unlock(&req->r_fill_mutex); 2906 2907 up_read(&mdsc->snap_rwsem); 2908 if (realm) 2909 ceph_put_snap_realm(mdsc, realm); 2910 2911 if (err == 0) { 2912 if (req->r_target_inode && 2913 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 2914 struct ceph_inode_info *ci = 2915 ceph_inode(req->r_target_inode); 2916 spin_lock(&ci->i_unsafe_lock); 2917 list_add_tail(&req->r_unsafe_target_item, 2918 &ci->i_unsafe_iops); 2919 spin_unlock(&ci->i_unsafe_lock); 2920 } 2921 2922 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 2923 } 2924 out_err: 2925 mutex_lock(&mdsc->mutex); 2926 if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { 2927 if (err) { 2928 req->r_err = err; 2929 } else { 2930 req->r_reply = ceph_msg_get(msg); 2931 set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags); 2932 } 2933 } else { 2934 dout("reply arrived after request %lld was aborted\n", tid); 2935 } 2936 mutex_unlock(&mdsc->mutex); 2937 2938 mutex_unlock(&session->s_mutex); 2939 2940 /* kick calling process */ 2941 complete_request(mdsc, req); 2942 out: 2943 ceph_mdsc_put_request(req); 2944 return; 2945 } 2946 2947 2948 2949 /* 2950 * handle mds notification that our request has been forwarded. 2951 */ 2952 static void handle_forward(struct ceph_mds_client *mdsc, 2953 struct ceph_mds_session *session, 2954 struct ceph_msg *msg) 2955 { 2956 struct ceph_mds_request *req; 2957 u64 tid = le64_to_cpu(msg->hdr.tid); 2958 u32 next_mds; 2959 u32 fwd_seq; 2960 int err = -EINVAL; 2961 void *p = msg->front.iov_base; 2962 void *end = p + msg->front.iov_len; 2963 2964 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 2965 next_mds = ceph_decode_32(&p); 2966 fwd_seq = ceph_decode_32(&p); 2967 2968 mutex_lock(&mdsc->mutex); 2969 req = lookup_get_request(mdsc, tid); 2970 if (!req) { 2971 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 2972 goto out; /* dup reply? */ 2973 } 2974 2975 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { 2976 dout("forward tid %llu aborted, unregistering\n", tid); 2977 __unregister_request(mdsc, req); 2978 } else if (fwd_seq <= req->r_num_fwd) { 2979 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 2980 tid, next_mds, req->r_num_fwd, fwd_seq); 2981 } else { 2982 /* resend. forward race not possible; mds would drop */ 2983 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 2984 BUG_ON(req->r_err); 2985 BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)); 2986 req->r_attempts = 0; 2987 req->r_num_fwd = fwd_seq; 2988 req->r_resend_mds = next_mds; 2989 put_request_session(req); 2990 __do_request(mdsc, req); 2991 } 2992 ceph_mdsc_put_request(req); 2993 out: 2994 mutex_unlock(&mdsc->mutex); 2995 return; 2996 2997 bad: 2998 pr_err("mdsc_handle_forward decode error err=%d\n", err); 2999 } 3000 3001 static int __decode_and_drop_session_metadata(void **p, void *end) 3002 { 3003 /* map<string,string> */ 3004 u32 n; 3005 ceph_decode_32_safe(p, end, n, bad); 3006 while (n-- > 0) { 3007 u32 len; 3008 ceph_decode_32_safe(p, end, len, bad); 3009 ceph_decode_need(p, end, len, bad); 3010 *p += len; 3011 ceph_decode_32_safe(p, end, len, bad); 3012 ceph_decode_need(p, end, len, bad); 3013 *p += len; 3014 } 3015 return 0; 3016 bad: 3017 return -1; 3018 } 3019 3020 /* 3021 * handle a mds session control message 3022 */ 3023 static void handle_session(struct ceph_mds_session *session, 3024 struct ceph_msg *msg) 3025 { 3026 struct ceph_mds_client *mdsc = session->s_mdsc; 3027 int mds = session->s_mds; 3028 int msg_version = le16_to_cpu(msg->hdr.version); 3029 void *p = msg->front.iov_base; 3030 void *end = p + msg->front.iov_len; 3031 struct ceph_mds_session_head *h; 3032 u32 op; 3033 u64 seq; 3034 unsigned long features = 0; 3035 int wake = 0; 3036 3037 /* decode */ 3038 ceph_decode_need(&p, end, sizeof(*h), bad); 3039 h = p; 3040 p += sizeof(*h); 3041 3042 op = le32_to_cpu(h->op); 3043 seq = le64_to_cpu(h->seq); 3044 3045 if (msg_version >= 3) { 3046 u32 len; 3047 /* version >= 2, metadata */ 3048 if (__decode_and_drop_session_metadata(&p, end) < 0) 3049 goto bad; 3050 /* version >= 3, feature bits */ 3051 ceph_decode_32_safe(&p, end, len, bad); 3052 ceph_decode_need(&p, end, len, bad); 3053 memcpy(&features, p, min_t(size_t, len, sizeof(features))); 3054 p += len; 3055 } 3056 3057 mutex_lock(&mdsc->mutex); 3058 if (op == CEPH_SESSION_CLOSE) { 3059 get_session(session); 3060 __unregister_session(mdsc, session); 3061 } 3062 /* FIXME: this ttl calculation is generous */ 3063 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 3064 mutex_unlock(&mdsc->mutex); 3065 3066 mutex_lock(&session->s_mutex); 3067 3068 dout("handle_session mds%d %s %p state %s seq %llu\n", 3069 mds, ceph_session_op_name(op), session, 3070 ceph_session_state_name(session->s_state), seq); 3071 3072 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 3073 session->s_state = CEPH_MDS_SESSION_OPEN; 3074 pr_info("mds%d came back\n", session->s_mds); 3075 } 3076 3077 switch (op) { 3078 case CEPH_SESSION_OPEN: 3079 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 3080 pr_info("mds%d reconnect success\n", session->s_mds); 3081 session->s_state = CEPH_MDS_SESSION_OPEN; 3082 session->s_features = features; 3083 renewed_caps(mdsc, session, 0); 3084 wake = 1; 3085 if (mdsc->stopping) 3086 __close_session(mdsc, session); 3087 break; 3088 3089 case CEPH_SESSION_RENEWCAPS: 3090 if (session->s_renew_seq == seq) 3091 renewed_caps(mdsc, session, 1); 3092 break; 3093 3094 case CEPH_SESSION_CLOSE: 3095 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 3096 pr_info("mds%d reconnect denied\n", session->s_mds); 3097 cleanup_session_requests(mdsc, session); 3098 remove_session_caps(session); 3099 wake = 2; /* for good measure */ 3100 wake_up_all(&mdsc->session_close_wq); 3101 break; 3102 3103 case CEPH_SESSION_STALE: 3104 pr_info("mds%d caps went stale, renewing\n", 3105 session->s_mds); 3106 spin_lock(&session->s_gen_ttl_lock); 3107 session->s_cap_gen++; 3108 session->s_cap_ttl = jiffies - 1; 3109 spin_unlock(&session->s_gen_ttl_lock); 3110 send_renew_caps(mdsc, session); 3111 break; 3112 3113 case CEPH_SESSION_RECALL_STATE: 3114 ceph_trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 3115 break; 3116 3117 case CEPH_SESSION_FLUSHMSG: 3118 send_flushmsg_ack(mdsc, session, seq); 3119 break; 3120 3121 case CEPH_SESSION_FORCE_RO: 3122 dout("force_session_readonly %p\n", session); 3123 spin_lock(&session->s_cap_lock); 3124 session->s_readonly = true; 3125 spin_unlock(&session->s_cap_lock); 3126 wake_up_session_caps(session, FORCE_RO); 3127 break; 3128 3129 case CEPH_SESSION_REJECT: 3130 WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING); 3131 pr_info("mds%d rejected session\n", session->s_mds); 3132 session->s_state = CEPH_MDS_SESSION_REJECTED; 3133 cleanup_session_requests(mdsc, session); 3134 remove_session_caps(session); 3135 wake = 2; /* for good measure */ 3136 break; 3137 3138 default: 3139 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 3140 WARN_ON(1); 3141 } 3142 3143 mutex_unlock(&session->s_mutex); 3144 if (wake) { 3145 mutex_lock(&mdsc->mutex); 3146 __wake_requests(mdsc, &session->s_waiting); 3147 if (wake == 2) 3148 kick_requests(mdsc, mds); 3149 mutex_unlock(&mdsc->mutex); 3150 } 3151 if (op == CEPH_SESSION_CLOSE) 3152 ceph_put_mds_session(session); 3153 return; 3154 3155 bad: 3156 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 3157 (int)msg->front.iov_len); 3158 ceph_msg_dump(msg); 3159 return; 3160 } 3161 3162 3163 /* 3164 * called under session->mutex. 3165 */ 3166 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 3167 struct ceph_mds_session *session) 3168 { 3169 struct ceph_mds_request *req, *nreq; 3170 struct rb_node *p; 3171 int err; 3172 3173 dout("replay_unsafe_requests mds%d\n", session->s_mds); 3174 3175 mutex_lock(&mdsc->mutex); 3176 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) { 3177 err = __prepare_send_request(mdsc, req, session->s_mds, true); 3178 if (!err) { 3179 ceph_msg_get(req->r_request); 3180 ceph_con_send(&session->s_con, req->r_request); 3181 } 3182 } 3183 3184 /* 3185 * also re-send old requests when MDS enters reconnect stage. So that MDS 3186 * can process completed request in clientreplay stage. 3187 */ 3188 p = rb_first(&mdsc->request_tree); 3189 while (p) { 3190 req = rb_entry(p, struct ceph_mds_request, r_node); 3191 p = rb_next(p); 3192 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 3193 continue; 3194 if (req->r_attempts == 0) 3195 continue; /* only old requests */ 3196 if (req->r_session && 3197 req->r_session->s_mds == session->s_mds) { 3198 err = __prepare_send_request(mdsc, req, 3199 session->s_mds, true); 3200 if (!err) { 3201 ceph_msg_get(req->r_request); 3202 ceph_con_send(&session->s_con, req->r_request); 3203 } 3204 } 3205 } 3206 mutex_unlock(&mdsc->mutex); 3207 } 3208 3209 static int send_reconnect_partial(struct ceph_reconnect_state *recon_state) 3210 { 3211 struct ceph_msg *reply; 3212 struct ceph_pagelist *_pagelist; 3213 struct page *page; 3214 __le32 *addr; 3215 int err = -ENOMEM; 3216 3217 if (!recon_state->allow_multi) 3218 return -ENOSPC; 3219 3220 /* can't handle message that contains both caps and realm */ 3221 BUG_ON(!recon_state->nr_caps == !recon_state->nr_realms); 3222 3223 /* pre-allocate new pagelist */ 3224 _pagelist = ceph_pagelist_alloc(GFP_NOFS); 3225 if (!_pagelist) 3226 return -ENOMEM; 3227 3228 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false); 3229 if (!reply) 3230 goto fail_msg; 3231 3232 /* placeholder for nr_caps */ 3233 err = ceph_pagelist_encode_32(_pagelist, 0); 3234 if (err < 0) 3235 goto fail; 3236 3237 if (recon_state->nr_caps) { 3238 /* currently encoding caps */ 3239 err = ceph_pagelist_encode_32(recon_state->pagelist, 0); 3240 if (err) 3241 goto fail; 3242 } else { 3243 /* placeholder for nr_realms (currently encoding relams) */ 3244 err = ceph_pagelist_encode_32(_pagelist, 0); 3245 if (err < 0) 3246 goto fail; 3247 } 3248 3249 err = ceph_pagelist_encode_8(recon_state->pagelist, 1); 3250 if (err) 3251 goto fail; 3252 3253 page = list_first_entry(&recon_state->pagelist->head, struct page, lru); 3254 addr = kmap_atomic(page); 3255 if (recon_state->nr_caps) { 3256 /* currently encoding caps */ 3257 *addr = cpu_to_le32(recon_state->nr_caps); 3258 } else { 3259 /* currently encoding relams */ 3260 *(addr + 1) = cpu_to_le32(recon_state->nr_realms); 3261 } 3262 kunmap_atomic(addr); 3263 3264 reply->hdr.version = cpu_to_le16(5); 3265 reply->hdr.compat_version = cpu_to_le16(4); 3266 3267 reply->hdr.data_len = cpu_to_le32(recon_state->pagelist->length); 3268 ceph_msg_data_add_pagelist(reply, recon_state->pagelist); 3269 3270 ceph_con_send(&recon_state->session->s_con, reply); 3271 ceph_pagelist_release(recon_state->pagelist); 3272 3273 recon_state->pagelist = _pagelist; 3274 recon_state->nr_caps = 0; 3275 recon_state->nr_realms = 0; 3276 recon_state->msg_version = 5; 3277 return 0; 3278 fail: 3279 ceph_msg_put(reply); 3280 fail_msg: 3281 ceph_pagelist_release(_pagelist); 3282 return err; 3283 } 3284 3285 /* 3286 * Encode information about a cap for a reconnect with the MDS. 3287 */ 3288 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap, 3289 void *arg) 3290 { 3291 union { 3292 struct ceph_mds_cap_reconnect v2; 3293 struct ceph_mds_cap_reconnect_v1 v1; 3294 } rec; 3295 struct ceph_inode_info *ci = cap->ci; 3296 struct ceph_reconnect_state *recon_state = arg; 3297 struct ceph_pagelist *pagelist = recon_state->pagelist; 3298 int err; 3299 u64 snap_follows; 3300 3301 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 3302 inode, ceph_vinop(inode), cap, cap->cap_id, 3303 ceph_cap_string(cap->issued)); 3304 3305 spin_lock(&ci->i_ceph_lock); 3306 cap->seq = 0; /* reset cap seq */ 3307 cap->issue_seq = 0; /* and issue_seq */ 3308 cap->mseq = 0; /* and migrate_seq */ 3309 cap->cap_gen = cap->session->s_cap_gen; 3310 3311 if (recon_state->msg_version >= 2) { 3312 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 3313 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 3314 rec.v2.issued = cpu_to_le32(cap->issued); 3315 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 3316 rec.v2.pathbase = 0; 3317 rec.v2.flock_len = (__force __le32) 3318 ((ci->i_ceph_flags & CEPH_I_ERROR_FILELOCK) ? 0 : 1); 3319 } else { 3320 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 3321 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 3322 rec.v1.issued = cpu_to_le32(cap->issued); 3323 rec.v1.size = cpu_to_le64(inode->i_size); 3324 ceph_encode_timespec64(&rec.v1.mtime, &inode->i_mtime); 3325 ceph_encode_timespec64(&rec.v1.atime, &inode->i_atime); 3326 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 3327 rec.v1.pathbase = 0; 3328 } 3329 3330 if (list_empty(&ci->i_cap_snaps)) { 3331 snap_follows = ci->i_head_snapc ? ci->i_head_snapc->seq : 0; 3332 } else { 3333 struct ceph_cap_snap *capsnap = 3334 list_first_entry(&ci->i_cap_snaps, 3335 struct ceph_cap_snap, ci_item); 3336 snap_follows = capsnap->follows; 3337 } 3338 spin_unlock(&ci->i_ceph_lock); 3339 3340 if (recon_state->msg_version >= 2) { 3341 int num_fcntl_locks, num_flock_locks; 3342 struct ceph_filelock *flocks = NULL; 3343 size_t struct_len, total_len = sizeof(u64); 3344 u8 struct_v = 0; 3345 3346 encode_again: 3347 if (rec.v2.flock_len) { 3348 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); 3349 } else { 3350 num_fcntl_locks = 0; 3351 num_flock_locks = 0; 3352 } 3353 if (num_fcntl_locks + num_flock_locks > 0) { 3354 flocks = kmalloc_array(num_fcntl_locks + num_flock_locks, 3355 sizeof(struct ceph_filelock), 3356 GFP_NOFS); 3357 if (!flocks) { 3358 err = -ENOMEM; 3359 goto out_err; 3360 } 3361 err = ceph_encode_locks_to_buffer(inode, flocks, 3362 num_fcntl_locks, 3363 num_flock_locks); 3364 if (err) { 3365 kfree(flocks); 3366 flocks = NULL; 3367 if (err == -ENOSPC) 3368 goto encode_again; 3369 goto out_err; 3370 } 3371 } else { 3372 kfree(flocks); 3373 flocks = NULL; 3374 } 3375 3376 if (recon_state->msg_version >= 3) { 3377 /* version, compat_version and struct_len */ 3378 total_len += 2 * sizeof(u8) + sizeof(u32); 3379 struct_v = 2; 3380 } 3381 /* 3382 * number of encoded locks is stable, so copy to pagelist 3383 */ 3384 struct_len = 2 * sizeof(u32) + 3385 (num_fcntl_locks + num_flock_locks) * 3386 sizeof(struct ceph_filelock); 3387 rec.v2.flock_len = cpu_to_le32(struct_len); 3388 3389 struct_len += sizeof(u32) + sizeof(rec.v2); 3390 3391 if (struct_v >= 2) 3392 struct_len += sizeof(u64); /* snap_follows */ 3393 3394 total_len += struct_len; 3395 3396 if (pagelist->length + total_len > RECONNECT_MAX_SIZE) { 3397 err = send_reconnect_partial(recon_state); 3398 if (err) 3399 goto out_freeflocks; 3400 pagelist = recon_state->pagelist; 3401 } 3402 3403 err = ceph_pagelist_reserve(pagelist, total_len); 3404 if (err) 3405 goto out_freeflocks; 3406 3407 ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 3408 if (recon_state->msg_version >= 3) { 3409 ceph_pagelist_encode_8(pagelist, struct_v); 3410 ceph_pagelist_encode_8(pagelist, 1); 3411 ceph_pagelist_encode_32(pagelist, struct_len); 3412 } 3413 ceph_pagelist_encode_string(pagelist, NULL, 0); 3414 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2)); 3415 ceph_locks_to_pagelist(flocks, pagelist, 3416 num_fcntl_locks, num_flock_locks); 3417 if (struct_v >= 2) 3418 ceph_pagelist_encode_64(pagelist, snap_follows); 3419 out_freeflocks: 3420 kfree(flocks); 3421 } else { 3422 u64 pathbase = 0; 3423 int pathlen = 0; 3424 char *path = NULL; 3425 struct dentry *dentry; 3426 3427 dentry = d_find_alias(inode); 3428 if (dentry) { 3429 path = ceph_mdsc_build_path(dentry, 3430 &pathlen, &pathbase, 0); 3431 dput(dentry); 3432 if (IS_ERR(path)) { 3433 err = PTR_ERR(path); 3434 goto out_err; 3435 } 3436 rec.v1.pathbase = cpu_to_le64(pathbase); 3437 } 3438 3439 err = ceph_pagelist_reserve(pagelist, 3440 sizeof(u64) + sizeof(u32) + 3441 pathlen + sizeof(rec.v1)); 3442 if (err) { 3443 goto out_freepath; 3444 } 3445 3446 ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 3447 ceph_pagelist_encode_string(pagelist, path, pathlen); 3448 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1)); 3449 out_freepath: 3450 ceph_mdsc_free_path(path, pathlen); 3451 } 3452 3453 out_err: 3454 if (err >= 0) 3455 recon_state->nr_caps++; 3456 return err; 3457 } 3458 3459 static int encode_snap_realms(struct ceph_mds_client *mdsc, 3460 struct ceph_reconnect_state *recon_state) 3461 { 3462 struct rb_node *p; 3463 struct ceph_pagelist *pagelist = recon_state->pagelist; 3464 int err = 0; 3465 3466 if (recon_state->msg_version >= 4) { 3467 err = ceph_pagelist_encode_32(pagelist, mdsc->num_snap_realms); 3468 if (err < 0) 3469 goto fail; 3470 } 3471 3472 /* 3473 * snaprealms. we provide mds with the ino, seq (version), and 3474 * parent for all of our realms. If the mds has any newer info, 3475 * it will tell us. 3476 */ 3477 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 3478 struct ceph_snap_realm *realm = 3479 rb_entry(p, struct ceph_snap_realm, node); 3480 struct ceph_mds_snaprealm_reconnect sr_rec; 3481 3482 if (recon_state->msg_version >= 4) { 3483 size_t need = sizeof(u8) * 2 + sizeof(u32) + 3484 sizeof(sr_rec); 3485 3486 if (pagelist->length + need > RECONNECT_MAX_SIZE) { 3487 err = send_reconnect_partial(recon_state); 3488 if (err) 3489 goto fail; 3490 pagelist = recon_state->pagelist; 3491 } 3492 3493 err = ceph_pagelist_reserve(pagelist, need); 3494 if (err) 3495 goto fail; 3496 3497 ceph_pagelist_encode_8(pagelist, 1); 3498 ceph_pagelist_encode_8(pagelist, 1); 3499 ceph_pagelist_encode_32(pagelist, sizeof(sr_rec)); 3500 } 3501 3502 dout(" adding snap realm %llx seq %lld parent %llx\n", 3503 realm->ino, realm->seq, realm->parent_ino); 3504 sr_rec.ino = cpu_to_le64(realm->ino); 3505 sr_rec.seq = cpu_to_le64(realm->seq); 3506 sr_rec.parent = cpu_to_le64(realm->parent_ino); 3507 3508 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 3509 if (err) 3510 goto fail; 3511 3512 recon_state->nr_realms++; 3513 } 3514 fail: 3515 return err; 3516 } 3517 3518 3519 /* 3520 * If an MDS fails and recovers, clients need to reconnect in order to 3521 * reestablish shared state. This includes all caps issued through 3522 * this session _and_ the snap_realm hierarchy. Because it's not 3523 * clear which snap realms the mds cares about, we send everything we 3524 * know about.. that ensures we'll then get any new info the 3525 * recovering MDS might have. 3526 * 3527 * This is a relatively heavyweight operation, but it's rare. 3528 * 3529 * called with mdsc->mutex held. 3530 */ 3531 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 3532 struct ceph_mds_session *session) 3533 { 3534 struct ceph_msg *reply; 3535 int mds = session->s_mds; 3536 int err = -ENOMEM; 3537 struct ceph_reconnect_state recon_state = { 3538 .session = session, 3539 }; 3540 LIST_HEAD(dispose); 3541 3542 pr_info("mds%d reconnect start\n", mds); 3543 3544 recon_state.pagelist = ceph_pagelist_alloc(GFP_NOFS); 3545 if (!recon_state.pagelist) 3546 goto fail_nopagelist; 3547 3548 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false); 3549 if (!reply) 3550 goto fail_nomsg; 3551 3552 mutex_lock(&session->s_mutex); 3553 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 3554 session->s_seq = 0; 3555 3556 dout("session %p state %s\n", session, 3557 ceph_session_state_name(session->s_state)); 3558 3559 spin_lock(&session->s_gen_ttl_lock); 3560 session->s_cap_gen++; 3561 spin_unlock(&session->s_gen_ttl_lock); 3562 3563 spin_lock(&session->s_cap_lock); 3564 /* don't know if session is readonly */ 3565 session->s_readonly = 0; 3566 /* 3567 * notify __ceph_remove_cap() that we are composing cap reconnect. 3568 * If a cap get released before being added to the cap reconnect, 3569 * __ceph_remove_cap() should skip queuing cap release. 3570 */ 3571 session->s_cap_reconnect = 1; 3572 /* drop old cap expires; we're about to reestablish that state */ 3573 detach_cap_releases(session, &dispose); 3574 spin_unlock(&session->s_cap_lock); 3575 dispose_cap_releases(mdsc, &dispose); 3576 3577 /* trim unused caps to reduce MDS's cache rejoin time */ 3578 if (mdsc->fsc->sb->s_root) 3579 shrink_dcache_parent(mdsc->fsc->sb->s_root); 3580 3581 ceph_con_close(&session->s_con); 3582 ceph_con_open(&session->s_con, 3583 CEPH_ENTITY_TYPE_MDS, mds, 3584 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 3585 3586 /* replay unsafe requests */ 3587 replay_unsafe_requests(mdsc, session); 3588 3589 ceph_early_kick_flushing_caps(mdsc, session); 3590 3591 down_read(&mdsc->snap_rwsem); 3592 3593 /* placeholder for nr_caps */ 3594 err = ceph_pagelist_encode_32(recon_state.pagelist, 0); 3595 if (err) 3596 goto fail; 3597 3598 if (test_bit(CEPHFS_FEATURE_MULTI_RECONNECT, &session->s_features)) { 3599 recon_state.msg_version = 3; 3600 recon_state.allow_multi = true; 3601 } else if (session->s_con.peer_features & CEPH_FEATURE_MDSENC) { 3602 recon_state.msg_version = 3; 3603 } else { 3604 recon_state.msg_version = 2; 3605 } 3606 /* trsaverse this session's caps */ 3607 err = ceph_iterate_session_caps(session, encode_caps_cb, &recon_state); 3608 3609 spin_lock(&session->s_cap_lock); 3610 session->s_cap_reconnect = 0; 3611 spin_unlock(&session->s_cap_lock); 3612 3613 if (err < 0) 3614 goto fail; 3615 3616 /* check if all realms can be encoded into current message */ 3617 if (mdsc->num_snap_realms) { 3618 size_t total_len = 3619 recon_state.pagelist->length + 3620 mdsc->num_snap_realms * 3621 sizeof(struct ceph_mds_snaprealm_reconnect); 3622 if (recon_state.msg_version >= 4) { 3623 /* number of realms */ 3624 total_len += sizeof(u32); 3625 /* version, compat_version and struct_len */ 3626 total_len += mdsc->num_snap_realms * 3627 (2 * sizeof(u8) + sizeof(u32)); 3628 } 3629 if (total_len > RECONNECT_MAX_SIZE) { 3630 if (!recon_state.allow_multi) { 3631 err = -ENOSPC; 3632 goto fail; 3633 } 3634 if (recon_state.nr_caps) { 3635 err = send_reconnect_partial(&recon_state); 3636 if (err) 3637 goto fail; 3638 } 3639 recon_state.msg_version = 5; 3640 } 3641 } 3642 3643 err = encode_snap_realms(mdsc, &recon_state); 3644 if (err < 0) 3645 goto fail; 3646 3647 if (recon_state.msg_version >= 5) { 3648 err = ceph_pagelist_encode_8(recon_state.pagelist, 0); 3649 if (err < 0) 3650 goto fail; 3651 } 3652 3653 if (recon_state.nr_caps || recon_state.nr_realms) { 3654 struct page *page = 3655 list_first_entry(&recon_state.pagelist->head, 3656 struct page, lru); 3657 __le32 *addr = kmap_atomic(page); 3658 if (recon_state.nr_caps) { 3659 WARN_ON(recon_state.nr_realms != mdsc->num_snap_realms); 3660 *addr = cpu_to_le32(recon_state.nr_caps); 3661 } else if (recon_state.msg_version >= 4) { 3662 *(addr + 1) = cpu_to_le32(recon_state.nr_realms); 3663 } 3664 kunmap_atomic(addr); 3665 } 3666 3667 reply->hdr.version = cpu_to_le16(recon_state.msg_version); 3668 if (recon_state.msg_version >= 4) 3669 reply->hdr.compat_version = cpu_to_le16(4); 3670 3671 reply->hdr.data_len = cpu_to_le32(recon_state.pagelist->length); 3672 ceph_msg_data_add_pagelist(reply, recon_state.pagelist); 3673 3674 ceph_con_send(&session->s_con, reply); 3675 3676 mutex_unlock(&session->s_mutex); 3677 3678 mutex_lock(&mdsc->mutex); 3679 __wake_requests(mdsc, &session->s_waiting); 3680 mutex_unlock(&mdsc->mutex); 3681 3682 up_read(&mdsc->snap_rwsem); 3683 ceph_pagelist_release(recon_state.pagelist); 3684 return; 3685 3686 fail: 3687 ceph_msg_put(reply); 3688 up_read(&mdsc->snap_rwsem); 3689 mutex_unlock(&session->s_mutex); 3690 fail_nomsg: 3691 ceph_pagelist_release(recon_state.pagelist); 3692 fail_nopagelist: 3693 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 3694 return; 3695 } 3696 3697 3698 /* 3699 * compare old and new mdsmaps, kicking requests 3700 * and closing out old connections as necessary 3701 * 3702 * called under mdsc->mutex. 3703 */ 3704 static void check_new_map(struct ceph_mds_client *mdsc, 3705 struct ceph_mdsmap *newmap, 3706 struct ceph_mdsmap *oldmap) 3707 { 3708 int i; 3709 int oldstate, newstate; 3710 struct ceph_mds_session *s; 3711 3712 dout("check_new_map new %u old %u\n", 3713 newmap->m_epoch, oldmap->m_epoch); 3714 3715 for (i = 0; i < oldmap->m_num_mds && i < mdsc->max_sessions; i++) { 3716 if (!mdsc->sessions[i]) 3717 continue; 3718 s = mdsc->sessions[i]; 3719 oldstate = ceph_mdsmap_get_state(oldmap, i); 3720 newstate = ceph_mdsmap_get_state(newmap, i); 3721 3722 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 3723 i, ceph_mds_state_name(oldstate), 3724 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 3725 ceph_mds_state_name(newstate), 3726 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 3727 ceph_session_state_name(s->s_state)); 3728 3729 if (i >= newmap->m_num_mds || 3730 memcmp(ceph_mdsmap_get_addr(oldmap, i), 3731 ceph_mdsmap_get_addr(newmap, i), 3732 sizeof(struct ceph_entity_addr))) { 3733 if (s->s_state == CEPH_MDS_SESSION_OPENING) { 3734 /* the session never opened, just close it 3735 * out now */ 3736 get_session(s); 3737 __unregister_session(mdsc, s); 3738 __wake_requests(mdsc, &s->s_waiting); 3739 ceph_put_mds_session(s); 3740 } else if (i >= newmap->m_num_mds) { 3741 /* force close session for stopped mds */ 3742 get_session(s); 3743 __unregister_session(mdsc, s); 3744 __wake_requests(mdsc, &s->s_waiting); 3745 kick_requests(mdsc, i); 3746 mutex_unlock(&mdsc->mutex); 3747 3748 mutex_lock(&s->s_mutex); 3749 cleanup_session_requests(mdsc, s); 3750 remove_session_caps(s); 3751 mutex_unlock(&s->s_mutex); 3752 3753 ceph_put_mds_session(s); 3754 3755 mutex_lock(&mdsc->mutex); 3756 } else { 3757 /* just close it */ 3758 mutex_unlock(&mdsc->mutex); 3759 mutex_lock(&s->s_mutex); 3760 mutex_lock(&mdsc->mutex); 3761 ceph_con_close(&s->s_con); 3762 mutex_unlock(&s->s_mutex); 3763 s->s_state = CEPH_MDS_SESSION_RESTARTING; 3764 } 3765 } else if (oldstate == newstate) { 3766 continue; /* nothing new with this mds */ 3767 } 3768 3769 /* 3770 * send reconnect? 3771 */ 3772 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 3773 newstate >= CEPH_MDS_STATE_RECONNECT) { 3774 mutex_unlock(&mdsc->mutex); 3775 send_mds_reconnect(mdsc, s); 3776 mutex_lock(&mdsc->mutex); 3777 } 3778 3779 /* 3780 * kick request on any mds that has gone active. 3781 */ 3782 if (oldstate < CEPH_MDS_STATE_ACTIVE && 3783 newstate >= CEPH_MDS_STATE_ACTIVE) { 3784 if (oldstate != CEPH_MDS_STATE_CREATING && 3785 oldstate != CEPH_MDS_STATE_STARTING) 3786 pr_info("mds%d recovery completed\n", s->s_mds); 3787 kick_requests(mdsc, i); 3788 ceph_kick_flushing_caps(mdsc, s); 3789 wake_up_session_caps(s, RECONNECT); 3790 } 3791 } 3792 3793 for (i = 0; i < newmap->m_num_mds && i < mdsc->max_sessions; i++) { 3794 s = mdsc->sessions[i]; 3795 if (!s) 3796 continue; 3797 if (!ceph_mdsmap_is_laggy(newmap, i)) 3798 continue; 3799 if (s->s_state == CEPH_MDS_SESSION_OPEN || 3800 s->s_state == CEPH_MDS_SESSION_HUNG || 3801 s->s_state == CEPH_MDS_SESSION_CLOSING) { 3802 dout(" connecting to export targets of laggy mds%d\n", 3803 i); 3804 __open_export_target_sessions(mdsc, s); 3805 } 3806 } 3807 } 3808 3809 3810 3811 /* 3812 * leases 3813 */ 3814 3815 /* 3816 * caller must hold session s_mutex, dentry->d_lock 3817 */ 3818 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 3819 { 3820 struct ceph_dentry_info *di = ceph_dentry(dentry); 3821 3822 ceph_put_mds_session(di->lease_session); 3823 di->lease_session = NULL; 3824 } 3825 3826 static void handle_lease(struct ceph_mds_client *mdsc, 3827 struct ceph_mds_session *session, 3828 struct ceph_msg *msg) 3829 { 3830 struct super_block *sb = mdsc->fsc->sb; 3831 struct inode *inode; 3832 struct dentry *parent, *dentry; 3833 struct ceph_dentry_info *di; 3834 int mds = session->s_mds; 3835 struct ceph_mds_lease *h = msg->front.iov_base; 3836 u32 seq; 3837 struct ceph_vino vino; 3838 struct qstr dname; 3839 int release = 0; 3840 3841 dout("handle_lease from mds%d\n", mds); 3842 3843 /* decode */ 3844 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 3845 goto bad; 3846 vino.ino = le64_to_cpu(h->ino); 3847 vino.snap = CEPH_NOSNAP; 3848 seq = le32_to_cpu(h->seq); 3849 dname.len = get_unaligned_le32(h + 1); 3850 if (msg->front.iov_len < sizeof(*h) + sizeof(u32) + dname.len) 3851 goto bad; 3852 dname.name = (void *)(h + 1) + sizeof(u32); 3853 3854 /* lookup inode */ 3855 inode = ceph_find_inode(sb, vino); 3856 dout("handle_lease %s, ino %llx %p %.*s\n", 3857 ceph_lease_op_name(h->action), vino.ino, inode, 3858 dname.len, dname.name); 3859 3860 mutex_lock(&session->s_mutex); 3861 session->s_seq++; 3862 3863 if (!inode) { 3864 dout("handle_lease no inode %llx\n", vino.ino); 3865 goto release; 3866 } 3867 3868 /* dentry */ 3869 parent = d_find_alias(inode); 3870 if (!parent) { 3871 dout("no parent dentry on inode %p\n", inode); 3872 WARN_ON(1); 3873 goto release; /* hrm... */ 3874 } 3875 dname.hash = full_name_hash(parent, dname.name, dname.len); 3876 dentry = d_lookup(parent, &dname); 3877 dput(parent); 3878 if (!dentry) 3879 goto release; 3880 3881 spin_lock(&dentry->d_lock); 3882 di = ceph_dentry(dentry); 3883 switch (h->action) { 3884 case CEPH_MDS_LEASE_REVOKE: 3885 if (di->lease_session == session) { 3886 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 3887 h->seq = cpu_to_le32(di->lease_seq); 3888 __ceph_mdsc_drop_dentry_lease(dentry); 3889 } 3890 release = 1; 3891 break; 3892 3893 case CEPH_MDS_LEASE_RENEW: 3894 if (di->lease_session == session && 3895 di->lease_gen == session->s_cap_gen && 3896 di->lease_renew_from && 3897 di->lease_renew_after == 0) { 3898 unsigned long duration = 3899 msecs_to_jiffies(le32_to_cpu(h->duration_ms)); 3900 3901 di->lease_seq = seq; 3902 di->time = di->lease_renew_from + duration; 3903 di->lease_renew_after = di->lease_renew_from + 3904 (duration >> 1); 3905 di->lease_renew_from = 0; 3906 } 3907 break; 3908 } 3909 spin_unlock(&dentry->d_lock); 3910 dput(dentry); 3911 3912 if (!release) 3913 goto out; 3914 3915 release: 3916 /* let's just reuse the same message */ 3917 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 3918 ceph_msg_get(msg); 3919 ceph_con_send(&session->s_con, msg); 3920 3921 out: 3922 mutex_unlock(&session->s_mutex); 3923 /* avoid calling iput_final() in mds dispatch threads */ 3924 ceph_async_iput(inode); 3925 return; 3926 3927 bad: 3928 pr_err("corrupt lease message\n"); 3929 ceph_msg_dump(msg); 3930 } 3931 3932 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 3933 struct inode *inode, 3934 struct dentry *dentry, char action, 3935 u32 seq) 3936 { 3937 struct ceph_msg *msg; 3938 struct ceph_mds_lease *lease; 3939 int len = sizeof(*lease) + sizeof(u32); 3940 int dnamelen = 0; 3941 3942 dout("lease_send_msg inode %p dentry %p %s to mds%d\n", 3943 inode, dentry, ceph_lease_op_name(action), session->s_mds); 3944 dnamelen = dentry->d_name.len; 3945 len += dnamelen; 3946 3947 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 3948 if (!msg) 3949 return; 3950 lease = msg->front.iov_base; 3951 lease->action = action; 3952 lease->ino = cpu_to_le64(ceph_vino(inode).ino); 3953 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap); 3954 lease->seq = cpu_to_le32(seq); 3955 put_unaligned_le32(dnamelen, lease + 1); 3956 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen); 3957 3958 /* 3959 * if this is a preemptive lease RELEASE, no need to 3960 * flush request stream, since the actual request will 3961 * soon follow. 3962 */ 3963 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); 3964 3965 ceph_con_send(&session->s_con, msg); 3966 } 3967 3968 /* 3969 * lock unlock sessions, to wait ongoing session activities 3970 */ 3971 static void lock_unlock_sessions(struct ceph_mds_client *mdsc) 3972 { 3973 int i; 3974 3975 mutex_lock(&mdsc->mutex); 3976 for (i = 0; i < mdsc->max_sessions; i++) { 3977 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 3978 if (!s) 3979 continue; 3980 mutex_unlock(&mdsc->mutex); 3981 mutex_lock(&s->s_mutex); 3982 mutex_unlock(&s->s_mutex); 3983 ceph_put_mds_session(s); 3984 mutex_lock(&mdsc->mutex); 3985 } 3986 mutex_unlock(&mdsc->mutex); 3987 } 3988 3989 3990 3991 /* 3992 * delayed work -- periodically trim expired leases, renew caps with mds 3993 */ 3994 static void schedule_delayed(struct ceph_mds_client *mdsc) 3995 { 3996 int delay = 5; 3997 unsigned hz = round_jiffies_relative(HZ * delay); 3998 schedule_delayed_work(&mdsc->delayed_work, hz); 3999 } 4000 4001 static void delayed_work(struct work_struct *work) 4002 { 4003 int i; 4004 struct ceph_mds_client *mdsc = 4005 container_of(work, struct ceph_mds_client, delayed_work.work); 4006 int renew_interval; 4007 int renew_caps; 4008 4009 dout("mdsc delayed_work\n"); 4010 4011 mutex_lock(&mdsc->mutex); 4012 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 4013 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 4014 mdsc->last_renew_caps); 4015 if (renew_caps) 4016 mdsc->last_renew_caps = jiffies; 4017 4018 for (i = 0; i < mdsc->max_sessions; i++) { 4019 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 4020 if (!s) 4021 continue; 4022 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 4023 dout("resending session close request for mds%d\n", 4024 s->s_mds); 4025 request_close_session(mdsc, s); 4026 ceph_put_mds_session(s); 4027 continue; 4028 } 4029 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 4030 if (s->s_state == CEPH_MDS_SESSION_OPEN) { 4031 s->s_state = CEPH_MDS_SESSION_HUNG; 4032 pr_info("mds%d hung\n", s->s_mds); 4033 } 4034 } 4035 if (s->s_state < CEPH_MDS_SESSION_OPEN) { 4036 /* this mds is failed or recovering, just wait */ 4037 ceph_put_mds_session(s); 4038 continue; 4039 } 4040 mutex_unlock(&mdsc->mutex); 4041 4042 mutex_lock(&s->s_mutex); 4043 if (renew_caps) 4044 send_renew_caps(mdsc, s); 4045 else 4046 ceph_con_keepalive(&s->s_con); 4047 if (s->s_state == CEPH_MDS_SESSION_OPEN || 4048 s->s_state == CEPH_MDS_SESSION_HUNG) 4049 ceph_send_cap_releases(mdsc, s); 4050 mutex_unlock(&s->s_mutex); 4051 ceph_put_mds_session(s); 4052 4053 mutex_lock(&mdsc->mutex); 4054 } 4055 mutex_unlock(&mdsc->mutex); 4056 4057 ceph_check_delayed_caps(mdsc); 4058 4059 ceph_queue_cap_reclaim_work(mdsc); 4060 4061 ceph_trim_snapid_map(mdsc); 4062 4063 schedule_delayed(mdsc); 4064 } 4065 4066 int ceph_mdsc_init(struct ceph_fs_client *fsc) 4067 4068 { 4069 struct ceph_mds_client *mdsc; 4070 4071 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 4072 if (!mdsc) 4073 return -ENOMEM; 4074 mdsc->fsc = fsc; 4075 mutex_init(&mdsc->mutex); 4076 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 4077 if (!mdsc->mdsmap) { 4078 kfree(mdsc); 4079 return -ENOMEM; 4080 } 4081 4082 fsc->mdsc = mdsc; 4083 init_completion(&mdsc->safe_umount_waiters); 4084 init_waitqueue_head(&mdsc->session_close_wq); 4085 INIT_LIST_HEAD(&mdsc->waiting_for_map); 4086 mdsc->sessions = NULL; 4087 atomic_set(&mdsc->num_sessions, 0); 4088 mdsc->max_sessions = 0; 4089 mdsc->stopping = 0; 4090 atomic64_set(&mdsc->quotarealms_count, 0); 4091 mdsc->quotarealms_inodes = RB_ROOT; 4092 mutex_init(&mdsc->quotarealms_inodes_mutex); 4093 mdsc->last_snap_seq = 0; 4094 init_rwsem(&mdsc->snap_rwsem); 4095 mdsc->snap_realms = RB_ROOT; 4096 INIT_LIST_HEAD(&mdsc->snap_empty); 4097 mdsc->num_snap_realms = 0; 4098 spin_lock_init(&mdsc->snap_empty_lock); 4099 mdsc->last_tid = 0; 4100 mdsc->oldest_tid = 0; 4101 mdsc->request_tree = RB_ROOT; 4102 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 4103 mdsc->last_renew_caps = jiffies; 4104 INIT_LIST_HEAD(&mdsc->cap_delay_list); 4105 spin_lock_init(&mdsc->cap_delay_lock); 4106 INIT_LIST_HEAD(&mdsc->snap_flush_list); 4107 spin_lock_init(&mdsc->snap_flush_lock); 4108 mdsc->last_cap_flush_tid = 1; 4109 INIT_LIST_HEAD(&mdsc->cap_flush_list); 4110 INIT_LIST_HEAD(&mdsc->cap_dirty); 4111 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 4112 mdsc->num_cap_flushing = 0; 4113 spin_lock_init(&mdsc->cap_dirty_lock); 4114 init_waitqueue_head(&mdsc->cap_flushing_wq); 4115 INIT_WORK(&mdsc->cap_reclaim_work, ceph_cap_reclaim_work); 4116 atomic_set(&mdsc->cap_reclaim_pending, 0); 4117 4118 spin_lock_init(&mdsc->dentry_list_lock); 4119 INIT_LIST_HEAD(&mdsc->dentry_leases); 4120 INIT_LIST_HEAD(&mdsc->dentry_dir_leases); 4121 4122 ceph_caps_init(mdsc); 4123 ceph_adjust_caps_max_min(mdsc, fsc->mount_options); 4124 4125 spin_lock_init(&mdsc->snapid_map_lock); 4126 mdsc->snapid_map_tree = RB_ROOT; 4127 INIT_LIST_HEAD(&mdsc->snapid_map_lru); 4128 4129 init_rwsem(&mdsc->pool_perm_rwsem); 4130 mdsc->pool_perm_tree = RB_ROOT; 4131 4132 strscpy(mdsc->nodename, utsname()->nodename, 4133 sizeof(mdsc->nodename)); 4134 return 0; 4135 } 4136 4137 /* 4138 * Wait for safe replies on open mds requests. If we time out, drop 4139 * all requests from the tree to avoid dangling dentry refs. 4140 */ 4141 static void wait_requests(struct ceph_mds_client *mdsc) 4142 { 4143 struct ceph_options *opts = mdsc->fsc->client->options; 4144 struct ceph_mds_request *req; 4145 4146 mutex_lock(&mdsc->mutex); 4147 if (__get_oldest_req(mdsc)) { 4148 mutex_unlock(&mdsc->mutex); 4149 4150 dout("wait_requests waiting for requests\n"); 4151 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 4152 ceph_timeout_jiffies(opts->mount_timeout)); 4153 4154 /* tear down remaining requests */ 4155 mutex_lock(&mdsc->mutex); 4156 while ((req = __get_oldest_req(mdsc))) { 4157 dout("wait_requests timed out on tid %llu\n", 4158 req->r_tid); 4159 __unregister_request(mdsc, req); 4160 } 4161 } 4162 mutex_unlock(&mdsc->mutex); 4163 dout("wait_requests done\n"); 4164 } 4165 4166 /* 4167 * called before mount is ro, and before dentries are torn down. 4168 * (hmm, does this still race with new lookups?) 4169 */ 4170 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 4171 { 4172 dout("pre_umount\n"); 4173 mdsc->stopping = 1; 4174 4175 lock_unlock_sessions(mdsc); 4176 ceph_flush_dirty_caps(mdsc); 4177 wait_requests(mdsc); 4178 4179 /* 4180 * wait for reply handlers to drop their request refs and 4181 * their inode/dcache refs 4182 */ 4183 ceph_msgr_flush(); 4184 4185 ceph_cleanup_quotarealms_inodes(mdsc); 4186 } 4187 4188 /* 4189 * wait for all write mds requests to flush. 4190 */ 4191 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) 4192 { 4193 struct ceph_mds_request *req = NULL, *nextreq; 4194 struct rb_node *n; 4195 4196 mutex_lock(&mdsc->mutex); 4197 dout("wait_unsafe_requests want %lld\n", want_tid); 4198 restart: 4199 req = __get_oldest_req(mdsc); 4200 while (req && req->r_tid <= want_tid) { 4201 /* find next request */ 4202 n = rb_next(&req->r_node); 4203 if (n) 4204 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 4205 else 4206 nextreq = NULL; 4207 if (req->r_op != CEPH_MDS_OP_SETFILELOCK && 4208 (req->r_op & CEPH_MDS_OP_WRITE)) { 4209 /* write op */ 4210 ceph_mdsc_get_request(req); 4211 if (nextreq) 4212 ceph_mdsc_get_request(nextreq); 4213 mutex_unlock(&mdsc->mutex); 4214 dout("wait_unsafe_requests wait on %llu (want %llu)\n", 4215 req->r_tid, want_tid); 4216 wait_for_completion(&req->r_safe_completion); 4217 mutex_lock(&mdsc->mutex); 4218 ceph_mdsc_put_request(req); 4219 if (!nextreq) 4220 break; /* next dne before, so we're done! */ 4221 if (RB_EMPTY_NODE(&nextreq->r_node)) { 4222 /* next request was removed from tree */ 4223 ceph_mdsc_put_request(nextreq); 4224 goto restart; 4225 } 4226 ceph_mdsc_put_request(nextreq); /* won't go away */ 4227 } 4228 req = nextreq; 4229 } 4230 mutex_unlock(&mdsc->mutex); 4231 dout("wait_unsafe_requests done\n"); 4232 } 4233 4234 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 4235 { 4236 u64 want_tid, want_flush; 4237 4238 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) 4239 return; 4240 4241 dout("sync\n"); 4242 mutex_lock(&mdsc->mutex); 4243 want_tid = mdsc->last_tid; 4244 mutex_unlock(&mdsc->mutex); 4245 4246 ceph_flush_dirty_caps(mdsc); 4247 spin_lock(&mdsc->cap_dirty_lock); 4248 want_flush = mdsc->last_cap_flush_tid; 4249 if (!list_empty(&mdsc->cap_flush_list)) { 4250 struct ceph_cap_flush *cf = 4251 list_last_entry(&mdsc->cap_flush_list, 4252 struct ceph_cap_flush, g_list); 4253 cf->wake = true; 4254 } 4255 spin_unlock(&mdsc->cap_dirty_lock); 4256 4257 dout("sync want tid %lld flush_seq %lld\n", 4258 want_tid, want_flush); 4259 4260 wait_unsafe_requests(mdsc, want_tid); 4261 wait_caps_flush(mdsc, want_flush); 4262 } 4263 4264 /* 4265 * true if all sessions are closed, or we force unmount 4266 */ 4267 static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped) 4268 { 4269 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) 4270 return true; 4271 return atomic_read(&mdsc->num_sessions) <= skipped; 4272 } 4273 4274 /* 4275 * called after sb is ro. 4276 */ 4277 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 4278 { 4279 struct ceph_options *opts = mdsc->fsc->client->options; 4280 struct ceph_mds_session *session; 4281 int i; 4282 int skipped = 0; 4283 4284 dout("close_sessions\n"); 4285 4286 /* close sessions */ 4287 mutex_lock(&mdsc->mutex); 4288 for (i = 0; i < mdsc->max_sessions; i++) { 4289 session = __ceph_lookup_mds_session(mdsc, i); 4290 if (!session) 4291 continue; 4292 mutex_unlock(&mdsc->mutex); 4293 mutex_lock(&session->s_mutex); 4294 if (__close_session(mdsc, session) <= 0) 4295 skipped++; 4296 mutex_unlock(&session->s_mutex); 4297 ceph_put_mds_session(session); 4298 mutex_lock(&mdsc->mutex); 4299 } 4300 mutex_unlock(&mdsc->mutex); 4301 4302 dout("waiting for sessions to close\n"); 4303 wait_event_timeout(mdsc->session_close_wq, 4304 done_closing_sessions(mdsc, skipped), 4305 ceph_timeout_jiffies(opts->mount_timeout)); 4306 4307 /* tear down remaining sessions */ 4308 mutex_lock(&mdsc->mutex); 4309 for (i = 0; i < mdsc->max_sessions; i++) { 4310 if (mdsc->sessions[i]) { 4311 session = get_session(mdsc->sessions[i]); 4312 __unregister_session(mdsc, session); 4313 mutex_unlock(&mdsc->mutex); 4314 mutex_lock(&session->s_mutex); 4315 remove_session_caps(session); 4316 mutex_unlock(&session->s_mutex); 4317 ceph_put_mds_session(session); 4318 mutex_lock(&mdsc->mutex); 4319 } 4320 } 4321 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 4322 mutex_unlock(&mdsc->mutex); 4323 4324 ceph_cleanup_snapid_map(mdsc); 4325 ceph_cleanup_empty_realms(mdsc); 4326 4327 cancel_work_sync(&mdsc->cap_reclaim_work); 4328 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 4329 4330 dout("stopped\n"); 4331 } 4332 4333 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc) 4334 { 4335 struct ceph_mds_session *session; 4336 int mds; 4337 4338 dout("force umount\n"); 4339 4340 mutex_lock(&mdsc->mutex); 4341 for (mds = 0; mds < mdsc->max_sessions; mds++) { 4342 session = __ceph_lookup_mds_session(mdsc, mds); 4343 if (!session) 4344 continue; 4345 mutex_unlock(&mdsc->mutex); 4346 mutex_lock(&session->s_mutex); 4347 __close_session(mdsc, session); 4348 if (session->s_state == CEPH_MDS_SESSION_CLOSING) { 4349 cleanup_session_requests(mdsc, session); 4350 remove_session_caps(session); 4351 } 4352 mutex_unlock(&session->s_mutex); 4353 ceph_put_mds_session(session); 4354 mutex_lock(&mdsc->mutex); 4355 kick_requests(mdsc, mds); 4356 } 4357 __wake_requests(mdsc, &mdsc->waiting_for_map); 4358 mutex_unlock(&mdsc->mutex); 4359 } 4360 4361 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 4362 { 4363 dout("stop\n"); 4364 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 4365 if (mdsc->mdsmap) 4366 ceph_mdsmap_destroy(mdsc->mdsmap); 4367 kfree(mdsc->sessions); 4368 ceph_caps_finalize(mdsc); 4369 ceph_pool_perm_destroy(mdsc); 4370 } 4371 4372 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 4373 { 4374 struct ceph_mds_client *mdsc = fsc->mdsc; 4375 dout("mdsc_destroy %p\n", mdsc); 4376 4377 if (!mdsc) 4378 return; 4379 4380 /* flush out any connection work with references to us */ 4381 ceph_msgr_flush(); 4382 4383 ceph_mdsc_stop(mdsc); 4384 4385 fsc->mdsc = NULL; 4386 kfree(mdsc); 4387 dout("mdsc_destroy %p done\n", mdsc); 4388 } 4389 4390 void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 4391 { 4392 struct ceph_fs_client *fsc = mdsc->fsc; 4393 const char *mds_namespace = fsc->mount_options->mds_namespace; 4394 void *p = msg->front.iov_base; 4395 void *end = p + msg->front.iov_len; 4396 u32 epoch; 4397 u32 map_len; 4398 u32 num_fs; 4399 u32 mount_fscid = (u32)-1; 4400 u8 struct_v, struct_cv; 4401 int err = -EINVAL; 4402 4403 ceph_decode_need(&p, end, sizeof(u32), bad); 4404 epoch = ceph_decode_32(&p); 4405 4406 dout("handle_fsmap epoch %u\n", epoch); 4407 4408 ceph_decode_need(&p, end, 2 + sizeof(u32), bad); 4409 struct_v = ceph_decode_8(&p); 4410 struct_cv = ceph_decode_8(&p); 4411 map_len = ceph_decode_32(&p); 4412 4413 ceph_decode_need(&p, end, sizeof(u32) * 3, bad); 4414 p += sizeof(u32) * 2; /* skip epoch and legacy_client_fscid */ 4415 4416 num_fs = ceph_decode_32(&p); 4417 while (num_fs-- > 0) { 4418 void *info_p, *info_end; 4419 u32 info_len; 4420 u8 info_v, info_cv; 4421 u32 fscid, namelen; 4422 4423 ceph_decode_need(&p, end, 2 + sizeof(u32), bad); 4424 info_v = ceph_decode_8(&p); 4425 info_cv = ceph_decode_8(&p); 4426 info_len = ceph_decode_32(&p); 4427 ceph_decode_need(&p, end, info_len, bad); 4428 info_p = p; 4429 info_end = p + info_len; 4430 p = info_end; 4431 4432 ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad); 4433 fscid = ceph_decode_32(&info_p); 4434 namelen = ceph_decode_32(&info_p); 4435 ceph_decode_need(&info_p, info_end, namelen, bad); 4436 4437 if (mds_namespace && 4438 strlen(mds_namespace) == namelen && 4439 !strncmp(mds_namespace, (char *)info_p, namelen)) { 4440 mount_fscid = fscid; 4441 break; 4442 } 4443 } 4444 4445 ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch); 4446 if (mount_fscid != (u32)-1) { 4447 fsc->client->monc.fs_cluster_id = mount_fscid; 4448 ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP, 4449 0, true); 4450 ceph_monc_renew_subs(&fsc->client->monc); 4451 } else { 4452 err = -ENOENT; 4453 goto err_out; 4454 } 4455 return; 4456 4457 bad: 4458 pr_err("error decoding fsmap\n"); 4459 err_out: 4460 mutex_lock(&mdsc->mutex); 4461 mdsc->mdsmap_err = err; 4462 __wake_requests(mdsc, &mdsc->waiting_for_map); 4463 mutex_unlock(&mdsc->mutex); 4464 } 4465 4466 /* 4467 * handle mds map update. 4468 */ 4469 void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 4470 { 4471 u32 epoch; 4472 u32 maplen; 4473 void *p = msg->front.iov_base; 4474 void *end = p + msg->front.iov_len; 4475 struct ceph_mdsmap *newmap, *oldmap; 4476 struct ceph_fsid fsid; 4477 int err = -EINVAL; 4478 4479 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 4480 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 4481 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 4482 return; 4483 epoch = ceph_decode_32(&p); 4484 maplen = ceph_decode_32(&p); 4485 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 4486 4487 /* do we need it? */ 4488 mutex_lock(&mdsc->mutex); 4489 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 4490 dout("handle_map epoch %u <= our %u\n", 4491 epoch, mdsc->mdsmap->m_epoch); 4492 mutex_unlock(&mdsc->mutex); 4493 return; 4494 } 4495 4496 newmap = ceph_mdsmap_decode(&p, end); 4497 if (IS_ERR(newmap)) { 4498 err = PTR_ERR(newmap); 4499 goto bad_unlock; 4500 } 4501 4502 /* swap into place */ 4503 if (mdsc->mdsmap) { 4504 oldmap = mdsc->mdsmap; 4505 mdsc->mdsmap = newmap; 4506 check_new_map(mdsc, newmap, oldmap); 4507 ceph_mdsmap_destroy(oldmap); 4508 } else { 4509 mdsc->mdsmap = newmap; /* first mds map */ 4510 } 4511 mdsc->fsc->max_file_size = min((loff_t)mdsc->mdsmap->m_max_file_size, 4512 MAX_LFS_FILESIZE); 4513 4514 __wake_requests(mdsc, &mdsc->waiting_for_map); 4515 ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP, 4516 mdsc->mdsmap->m_epoch); 4517 4518 mutex_unlock(&mdsc->mutex); 4519 schedule_delayed(mdsc); 4520 return; 4521 4522 bad_unlock: 4523 mutex_unlock(&mdsc->mutex); 4524 bad: 4525 pr_err("error decoding mdsmap %d\n", err); 4526 return; 4527 } 4528 4529 static struct ceph_connection *con_get(struct ceph_connection *con) 4530 { 4531 struct ceph_mds_session *s = con->private; 4532 4533 if (get_session(s)) { 4534 dout("mdsc con_get %p ok (%d)\n", s, refcount_read(&s->s_ref)); 4535 return con; 4536 } 4537 dout("mdsc con_get %p FAIL\n", s); 4538 return NULL; 4539 } 4540 4541 static void con_put(struct ceph_connection *con) 4542 { 4543 struct ceph_mds_session *s = con->private; 4544 4545 dout("mdsc con_put %p (%d)\n", s, refcount_read(&s->s_ref) - 1); 4546 ceph_put_mds_session(s); 4547 } 4548 4549 /* 4550 * if the client is unresponsive for long enough, the mds will kill 4551 * the session entirely. 4552 */ 4553 static void peer_reset(struct ceph_connection *con) 4554 { 4555 struct ceph_mds_session *s = con->private; 4556 struct ceph_mds_client *mdsc = s->s_mdsc; 4557 4558 pr_warn("mds%d closed our session\n", s->s_mds); 4559 send_mds_reconnect(mdsc, s); 4560 } 4561 4562 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg) 4563 { 4564 struct ceph_mds_session *s = con->private; 4565 struct ceph_mds_client *mdsc = s->s_mdsc; 4566 int type = le16_to_cpu(msg->hdr.type); 4567 4568 mutex_lock(&mdsc->mutex); 4569 if (__verify_registered_session(mdsc, s) < 0) { 4570 mutex_unlock(&mdsc->mutex); 4571 goto out; 4572 } 4573 mutex_unlock(&mdsc->mutex); 4574 4575 switch (type) { 4576 case CEPH_MSG_MDS_MAP: 4577 ceph_mdsc_handle_mdsmap(mdsc, msg); 4578 break; 4579 case CEPH_MSG_FS_MAP_USER: 4580 ceph_mdsc_handle_fsmap(mdsc, msg); 4581 break; 4582 case CEPH_MSG_CLIENT_SESSION: 4583 handle_session(s, msg); 4584 break; 4585 case CEPH_MSG_CLIENT_REPLY: 4586 handle_reply(s, msg); 4587 break; 4588 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 4589 handle_forward(mdsc, s, msg); 4590 break; 4591 case CEPH_MSG_CLIENT_CAPS: 4592 ceph_handle_caps(s, msg); 4593 break; 4594 case CEPH_MSG_CLIENT_SNAP: 4595 ceph_handle_snap(mdsc, s, msg); 4596 break; 4597 case CEPH_MSG_CLIENT_LEASE: 4598 handle_lease(mdsc, s, msg); 4599 break; 4600 case CEPH_MSG_CLIENT_QUOTA: 4601 ceph_handle_quota(mdsc, s, msg); 4602 break; 4603 4604 default: 4605 pr_err("received unknown message type %d %s\n", type, 4606 ceph_msg_type_name(type)); 4607 } 4608 out: 4609 ceph_msg_put(msg); 4610 } 4611 4612 /* 4613 * authentication 4614 */ 4615 4616 /* 4617 * Note: returned pointer is the address of a structure that's 4618 * managed separately. Caller must *not* attempt to free it. 4619 */ 4620 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con, 4621 int *proto, int force_new) 4622 { 4623 struct ceph_mds_session *s = con->private; 4624 struct ceph_mds_client *mdsc = s->s_mdsc; 4625 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 4626 struct ceph_auth_handshake *auth = &s->s_auth; 4627 4628 if (force_new && auth->authorizer) { 4629 ceph_auth_destroy_authorizer(auth->authorizer); 4630 auth->authorizer = NULL; 4631 } 4632 if (!auth->authorizer) { 4633 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 4634 auth); 4635 if (ret) 4636 return ERR_PTR(ret); 4637 } else { 4638 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 4639 auth); 4640 if (ret) 4641 return ERR_PTR(ret); 4642 } 4643 *proto = ac->protocol; 4644 4645 return auth; 4646 } 4647 4648 static int add_authorizer_challenge(struct ceph_connection *con, 4649 void *challenge_buf, int challenge_buf_len) 4650 { 4651 struct ceph_mds_session *s = con->private; 4652 struct ceph_mds_client *mdsc = s->s_mdsc; 4653 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 4654 4655 return ceph_auth_add_authorizer_challenge(ac, s->s_auth.authorizer, 4656 challenge_buf, challenge_buf_len); 4657 } 4658 4659 static int verify_authorizer_reply(struct ceph_connection *con) 4660 { 4661 struct ceph_mds_session *s = con->private; 4662 struct ceph_mds_client *mdsc = s->s_mdsc; 4663 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 4664 4665 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer); 4666 } 4667 4668 static int invalidate_authorizer(struct ceph_connection *con) 4669 { 4670 struct ceph_mds_session *s = con->private; 4671 struct ceph_mds_client *mdsc = s->s_mdsc; 4672 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 4673 4674 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 4675 4676 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 4677 } 4678 4679 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, 4680 struct ceph_msg_header *hdr, int *skip) 4681 { 4682 struct ceph_msg *msg; 4683 int type = (int) le16_to_cpu(hdr->type); 4684 int front_len = (int) le32_to_cpu(hdr->front_len); 4685 4686 if (con->in_msg) 4687 return con->in_msg; 4688 4689 *skip = 0; 4690 msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 4691 if (!msg) { 4692 pr_err("unable to allocate msg type %d len %d\n", 4693 type, front_len); 4694 return NULL; 4695 } 4696 4697 return msg; 4698 } 4699 4700 static int mds_sign_message(struct ceph_msg *msg) 4701 { 4702 struct ceph_mds_session *s = msg->con->private; 4703 struct ceph_auth_handshake *auth = &s->s_auth; 4704 4705 return ceph_auth_sign_message(auth, msg); 4706 } 4707 4708 static int mds_check_message_signature(struct ceph_msg *msg) 4709 { 4710 struct ceph_mds_session *s = msg->con->private; 4711 struct ceph_auth_handshake *auth = &s->s_auth; 4712 4713 return ceph_auth_check_message_signature(auth, msg); 4714 } 4715 4716 static const struct ceph_connection_operations mds_con_ops = { 4717 .get = con_get, 4718 .put = con_put, 4719 .dispatch = dispatch, 4720 .get_authorizer = get_authorizer, 4721 .add_authorizer_challenge = add_authorizer_challenge, 4722 .verify_authorizer_reply = verify_authorizer_reply, 4723 .invalidate_authorizer = invalidate_authorizer, 4724 .peer_reset = peer_reset, 4725 .alloc_msg = mds_alloc_msg, 4726 .sign_message = mds_sign_message, 4727 .check_message_signature = mds_check_message_signature, 4728 }; 4729 4730 /* eof */ 4731