1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/wait.h> 5 #include <linux/slab.h> 6 #include <linux/gfp.h> 7 #include <linux/sched.h> 8 #include <linux/debugfs.h> 9 #include <linux/seq_file.h> 10 #include <linux/utsname.h> 11 12 #include "super.h" 13 #include "mds_client.h" 14 15 #include <linux/ceph/ceph_features.h> 16 #include <linux/ceph/messenger.h> 17 #include <linux/ceph/decode.h> 18 #include <linux/ceph/pagelist.h> 19 #include <linux/ceph/auth.h> 20 #include <linux/ceph/debugfs.h> 21 22 /* 23 * A cluster of MDS (metadata server) daemons is responsible for 24 * managing the file system namespace (the directory hierarchy and 25 * inodes) and for coordinating shared access to storage. Metadata is 26 * partitioning hierarchically across a number of servers, and that 27 * partition varies over time as the cluster adjusts the distribution 28 * in order to balance load. 29 * 30 * The MDS client is primarily responsible to managing synchronous 31 * metadata requests for operations like open, unlink, and so forth. 32 * If there is a MDS failure, we find out about it when we (possibly 33 * request and) receive a new MDS map, and can resubmit affected 34 * requests. 35 * 36 * For the most part, though, we take advantage of a lossless 37 * communications channel to the MDS, and do not need to worry about 38 * timing out or resubmitting requests. 39 * 40 * We maintain a stateful "session" with each MDS we interact with. 41 * Within each session, we sent periodic heartbeat messages to ensure 42 * any capabilities or leases we have been issues remain valid. If 43 * the session times out and goes stale, our leases and capabilities 44 * are no longer valid. 45 */ 46 47 struct ceph_reconnect_state { 48 int nr_caps; 49 struct ceph_pagelist *pagelist; 50 bool flock; 51 }; 52 53 static void __wake_requests(struct ceph_mds_client *mdsc, 54 struct list_head *head); 55 56 static const struct ceph_connection_operations mds_con_ops; 57 58 59 /* 60 * mds reply parsing 61 */ 62 63 /* 64 * parse individual inode info 65 */ 66 static int parse_reply_info_in(void **p, void *end, 67 struct ceph_mds_reply_info_in *info, 68 u64 features) 69 { 70 int err = -EIO; 71 72 info->in = *p; 73 *p += sizeof(struct ceph_mds_reply_inode) + 74 sizeof(*info->in->fragtree.splits) * 75 le32_to_cpu(info->in->fragtree.nsplits); 76 77 ceph_decode_32_safe(p, end, info->symlink_len, bad); 78 ceph_decode_need(p, end, info->symlink_len, bad); 79 info->symlink = *p; 80 *p += info->symlink_len; 81 82 if (features & CEPH_FEATURE_DIRLAYOUTHASH) 83 ceph_decode_copy_safe(p, end, &info->dir_layout, 84 sizeof(info->dir_layout), bad); 85 else 86 memset(&info->dir_layout, 0, sizeof(info->dir_layout)); 87 88 ceph_decode_32_safe(p, end, info->xattr_len, bad); 89 ceph_decode_need(p, end, info->xattr_len, bad); 90 info->xattr_data = *p; 91 *p += info->xattr_len; 92 return 0; 93 bad: 94 return err; 95 } 96 97 /* 98 * parse a normal reply, which may contain a (dir+)dentry and/or a 99 * target inode. 100 */ 101 static int parse_reply_info_trace(void **p, void *end, 102 struct ceph_mds_reply_info_parsed *info, 103 u64 features) 104 { 105 int err; 106 107 if (info->head->is_dentry) { 108 err = parse_reply_info_in(p, end, &info->diri, features); 109 if (err < 0) 110 goto out_bad; 111 112 if (unlikely(*p + sizeof(*info->dirfrag) > end)) 113 goto bad; 114 info->dirfrag = *p; 115 *p += sizeof(*info->dirfrag) + 116 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist); 117 if (unlikely(*p > end)) 118 goto bad; 119 120 ceph_decode_32_safe(p, end, info->dname_len, bad); 121 ceph_decode_need(p, end, info->dname_len, bad); 122 info->dname = *p; 123 *p += info->dname_len; 124 info->dlease = *p; 125 *p += sizeof(*info->dlease); 126 } 127 128 if (info->head->is_target) { 129 err = parse_reply_info_in(p, end, &info->targeti, features); 130 if (err < 0) 131 goto out_bad; 132 } 133 134 if (unlikely(*p != end)) 135 goto bad; 136 return 0; 137 138 bad: 139 err = -EIO; 140 out_bad: 141 pr_err("problem parsing mds trace %d\n", err); 142 return err; 143 } 144 145 /* 146 * parse readdir results 147 */ 148 static int parse_reply_info_dir(void **p, void *end, 149 struct ceph_mds_reply_info_parsed *info, 150 u64 features) 151 { 152 u32 num, i = 0; 153 int err; 154 155 info->dir_dir = *p; 156 if (*p + sizeof(*info->dir_dir) > end) 157 goto bad; 158 *p += sizeof(*info->dir_dir) + 159 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist); 160 if (*p > end) 161 goto bad; 162 163 ceph_decode_need(p, end, sizeof(num) + 2, bad); 164 num = ceph_decode_32(p); 165 info->dir_end = ceph_decode_8(p); 166 info->dir_complete = ceph_decode_8(p); 167 if (num == 0) 168 goto done; 169 170 BUG_ON(!info->dir_in); 171 info->dir_dname = (void *)(info->dir_in + num); 172 info->dir_dname_len = (void *)(info->dir_dname + num); 173 info->dir_dlease = (void *)(info->dir_dname_len + num); 174 if ((unsigned long)(info->dir_dlease + num) > 175 (unsigned long)info->dir_in + info->dir_buf_size) { 176 pr_err("dir contents are larger than expected\n"); 177 WARN_ON(1); 178 goto bad; 179 } 180 181 info->dir_nr = num; 182 while (num) { 183 /* dentry */ 184 ceph_decode_need(p, end, sizeof(u32)*2, bad); 185 info->dir_dname_len[i] = ceph_decode_32(p); 186 ceph_decode_need(p, end, info->dir_dname_len[i], bad); 187 info->dir_dname[i] = *p; 188 *p += info->dir_dname_len[i]; 189 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i], 190 info->dir_dname[i]); 191 info->dir_dlease[i] = *p; 192 *p += sizeof(struct ceph_mds_reply_lease); 193 194 /* inode */ 195 err = parse_reply_info_in(p, end, &info->dir_in[i], features); 196 if (err < 0) 197 goto out_bad; 198 i++; 199 num--; 200 } 201 202 done: 203 if (*p != end) 204 goto bad; 205 return 0; 206 207 bad: 208 err = -EIO; 209 out_bad: 210 pr_err("problem parsing dir contents %d\n", err); 211 return err; 212 } 213 214 /* 215 * parse fcntl F_GETLK results 216 */ 217 static int parse_reply_info_filelock(void **p, void *end, 218 struct ceph_mds_reply_info_parsed *info, 219 u64 features) 220 { 221 if (*p + sizeof(*info->filelock_reply) > end) 222 goto bad; 223 224 info->filelock_reply = *p; 225 *p += sizeof(*info->filelock_reply); 226 227 if (unlikely(*p != end)) 228 goto bad; 229 return 0; 230 231 bad: 232 return -EIO; 233 } 234 235 /* 236 * parse create results 237 */ 238 static int parse_reply_info_create(void **p, void *end, 239 struct ceph_mds_reply_info_parsed *info, 240 u64 features) 241 { 242 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) { 243 if (*p == end) { 244 info->has_create_ino = false; 245 } else { 246 info->has_create_ino = true; 247 info->ino = ceph_decode_64(p); 248 } 249 } 250 251 if (unlikely(*p != end)) 252 goto bad; 253 return 0; 254 255 bad: 256 return -EIO; 257 } 258 259 /* 260 * parse extra results 261 */ 262 static int parse_reply_info_extra(void **p, void *end, 263 struct ceph_mds_reply_info_parsed *info, 264 u64 features) 265 { 266 if (info->head->op == CEPH_MDS_OP_GETFILELOCK) 267 return parse_reply_info_filelock(p, end, info, features); 268 else if (info->head->op == CEPH_MDS_OP_READDIR || 269 info->head->op == CEPH_MDS_OP_LSSNAP) 270 return parse_reply_info_dir(p, end, info, features); 271 else if (info->head->op == CEPH_MDS_OP_CREATE) 272 return parse_reply_info_create(p, end, info, features); 273 else 274 return -EIO; 275 } 276 277 /* 278 * parse entire mds reply 279 */ 280 static int parse_reply_info(struct ceph_msg *msg, 281 struct ceph_mds_reply_info_parsed *info, 282 u64 features) 283 { 284 void *p, *end; 285 u32 len; 286 int err; 287 288 info->head = msg->front.iov_base; 289 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 290 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 291 292 /* trace */ 293 ceph_decode_32_safe(&p, end, len, bad); 294 if (len > 0) { 295 ceph_decode_need(&p, end, len, bad); 296 err = parse_reply_info_trace(&p, p+len, info, features); 297 if (err < 0) 298 goto out_bad; 299 } 300 301 /* extra */ 302 ceph_decode_32_safe(&p, end, len, bad); 303 if (len > 0) { 304 ceph_decode_need(&p, end, len, bad); 305 err = parse_reply_info_extra(&p, p+len, info, features); 306 if (err < 0) 307 goto out_bad; 308 } 309 310 /* snap blob */ 311 ceph_decode_32_safe(&p, end, len, bad); 312 info->snapblob_len = len; 313 info->snapblob = p; 314 p += len; 315 316 if (p != end) 317 goto bad; 318 return 0; 319 320 bad: 321 err = -EIO; 322 out_bad: 323 pr_err("mds parse_reply err %d\n", err); 324 return err; 325 } 326 327 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 328 { 329 if (!info->dir_in) 330 return; 331 free_pages((unsigned long)info->dir_in, get_order(info->dir_buf_size)); 332 } 333 334 335 /* 336 * sessions 337 */ 338 const char *ceph_session_state_name(int s) 339 { 340 switch (s) { 341 case CEPH_MDS_SESSION_NEW: return "new"; 342 case CEPH_MDS_SESSION_OPENING: return "opening"; 343 case CEPH_MDS_SESSION_OPEN: return "open"; 344 case CEPH_MDS_SESSION_HUNG: return "hung"; 345 case CEPH_MDS_SESSION_CLOSING: return "closing"; 346 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 347 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 348 default: return "???"; 349 } 350 } 351 352 static struct ceph_mds_session *get_session(struct ceph_mds_session *s) 353 { 354 if (atomic_inc_not_zero(&s->s_ref)) { 355 dout("mdsc get_session %p %d -> %d\n", s, 356 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref)); 357 return s; 358 } else { 359 dout("mdsc get_session %p 0 -- FAIL", s); 360 return NULL; 361 } 362 } 363 364 void ceph_put_mds_session(struct ceph_mds_session *s) 365 { 366 dout("mdsc put_session %p %d -> %d\n", s, 367 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1); 368 if (atomic_dec_and_test(&s->s_ref)) { 369 if (s->s_auth.authorizer) 370 ceph_auth_destroy_authorizer( 371 s->s_mdsc->fsc->client->monc.auth, 372 s->s_auth.authorizer); 373 kfree(s); 374 } 375 } 376 377 /* 378 * called under mdsc->mutex 379 */ 380 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 381 int mds) 382 { 383 struct ceph_mds_session *session; 384 385 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL) 386 return NULL; 387 session = mdsc->sessions[mds]; 388 dout("lookup_mds_session %p %d\n", session, 389 atomic_read(&session->s_ref)); 390 get_session(session); 391 return session; 392 } 393 394 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 395 { 396 if (mds >= mdsc->max_sessions) 397 return false; 398 return mdsc->sessions[mds]; 399 } 400 401 static int __verify_registered_session(struct ceph_mds_client *mdsc, 402 struct ceph_mds_session *s) 403 { 404 if (s->s_mds >= mdsc->max_sessions || 405 mdsc->sessions[s->s_mds] != s) 406 return -ENOENT; 407 return 0; 408 } 409 410 /* 411 * create+register a new session for given mds. 412 * called under mdsc->mutex. 413 */ 414 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 415 int mds) 416 { 417 struct ceph_mds_session *s; 418 419 if (mds >= mdsc->mdsmap->m_max_mds) 420 return ERR_PTR(-EINVAL); 421 422 s = kzalloc(sizeof(*s), GFP_NOFS); 423 if (!s) 424 return ERR_PTR(-ENOMEM); 425 s->s_mdsc = mdsc; 426 s->s_mds = mds; 427 s->s_state = CEPH_MDS_SESSION_NEW; 428 s->s_ttl = 0; 429 s->s_seq = 0; 430 mutex_init(&s->s_mutex); 431 432 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 433 434 spin_lock_init(&s->s_gen_ttl_lock); 435 s->s_cap_gen = 0; 436 s->s_cap_ttl = jiffies - 1; 437 438 spin_lock_init(&s->s_cap_lock); 439 s->s_renew_requested = 0; 440 s->s_renew_seq = 0; 441 INIT_LIST_HEAD(&s->s_caps); 442 s->s_nr_caps = 0; 443 s->s_trim_caps = 0; 444 atomic_set(&s->s_ref, 1); 445 INIT_LIST_HEAD(&s->s_waiting); 446 INIT_LIST_HEAD(&s->s_unsafe); 447 s->s_num_cap_releases = 0; 448 s->s_cap_reconnect = 0; 449 s->s_cap_iterator = NULL; 450 INIT_LIST_HEAD(&s->s_cap_releases); 451 INIT_LIST_HEAD(&s->s_cap_releases_done); 452 INIT_LIST_HEAD(&s->s_cap_flushing); 453 INIT_LIST_HEAD(&s->s_cap_snaps_flushing); 454 455 dout("register_session mds%d\n", mds); 456 if (mds >= mdsc->max_sessions) { 457 int newmax = 1 << get_count_order(mds+1); 458 struct ceph_mds_session **sa; 459 460 dout("register_session realloc to %d\n", newmax); 461 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 462 if (sa == NULL) 463 goto fail_realloc; 464 if (mdsc->sessions) { 465 memcpy(sa, mdsc->sessions, 466 mdsc->max_sessions * sizeof(void *)); 467 kfree(mdsc->sessions); 468 } 469 mdsc->sessions = sa; 470 mdsc->max_sessions = newmax; 471 } 472 mdsc->sessions[mds] = s; 473 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 474 475 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 476 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 477 478 return s; 479 480 fail_realloc: 481 kfree(s); 482 return ERR_PTR(-ENOMEM); 483 } 484 485 /* 486 * called under mdsc->mutex 487 */ 488 static void __unregister_session(struct ceph_mds_client *mdsc, 489 struct ceph_mds_session *s) 490 { 491 dout("__unregister_session mds%d %p\n", s->s_mds, s); 492 BUG_ON(mdsc->sessions[s->s_mds] != s); 493 mdsc->sessions[s->s_mds] = NULL; 494 ceph_con_close(&s->s_con); 495 ceph_put_mds_session(s); 496 } 497 498 /* 499 * drop session refs in request. 500 * 501 * should be last request ref, or hold mdsc->mutex 502 */ 503 static void put_request_session(struct ceph_mds_request *req) 504 { 505 if (req->r_session) { 506 ceph_put_mds_session(req->r_session); 507 req->r_session = NULL; 508 } 509 } 510 511 void ceph_mdsc_release_request(struct kref *kref) 512 { 513 struct ceph_mds_request *req = container_of(kref, 514 struct ceph_mds_request, 515 r_kref); 516 destroy_reply_info(&req->r_reply_info); 517 if (req->r_request) 518 ceph_msg_put(req->r_request); 519 if (req->r_reply) 520 ceph_msg_put(req->r_reply); 521 if (req->r_inode) { 522 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 523 iput(req->r_inode); 524 } 525 if (req->r_locked_dir) 526 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 527 if (req->r_target_inode) 528 iput(req->r_target_inode); 529 if (req->r_dentry) 530 dput(req->r_dentry); 531 if (req->r_old_dentry) 532 dput(req->r_old_dentry); 533 if (req->r_old_dentry_dir) { 534 /* 535 * track (and drop pins for) r_old_dentry_dir 536 * separately, since r_old_dentry's d_parent may have 537 * changed between the dir mutex being dropped and 538 * this request being freed. 539 */ 540 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 541 CEPH_CAP_PIN); 542 iput(req->r_old_dentry_dir); 543 } 544 kfree(req->r_path1); 545 kfree(req->r_path2); 546 if (req->r_pagelist) 547 ceph_pagelist_release(req->r_pagelist); 548 put_request_session(req); 549 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 550 kfree(req); 551 } 552 553 /* 554 * lookup session, bump ref if found. 555 * 556 * called under mdsc->mutex. 557 */ 558 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc, 559 u64 tid) 560 { 561 struct ceph_mds_request *req; 562 struct rb_node *n = mdsc->request_tree.rb_node; 563 564 while (n) { 565 req = rb_entry(n, struct ceph_mds_request, r_node); 566 if (tid < req->r_tid) 567 n = n->rb_left; 568 else if (tid > req->r_tid) 569 n = n->rb_right; 570 else { 571 ceph_mdsc_get_request(req); 572 return req; 573 } 574 } 575 return NULL; 576 } 577 578 static void __insert_request(struct ceph_mds_client *mdsc, 579 struct ceph_mds_request *new) 580 { 581 struct rb_node **p = &mdsc->request_tree.rb_node; 582 struct rb_node *parent = NULL; 583 struct ceph_mds_request *req = NULL; 584 585 while (*p) { 586 parent = *p; 587 req = rb_entry(parent, struct ceph_mds_request, r_node); 588 if (new->r_tid < req->r_tid) 589 p = &(*p)->rb_left; 590 else if (new->r_tid > req->r_tid) 591 p = &(*p)->rb_right; 592 else 593 BUG(); 594 } 595 596 rb_link_node(&new->r_node, parent, p); 597 rb_insert_color(&new->r_node, &mdsc->request_tree); 598 } 599 600 /* 601 * Register an in-flight request, and assign a tid. Link to directory 602 * are modifying (if any). 603 * 604 * Called under mdsc->mutex. 605 */ 606 static void __register_request(struct ceph_mds_client *mdsc, 607 struct ceph_mds_request *req, 608 struct inode *dir) 609 { 610 req->r_tid = ++mdsc->last_tid; 611 if (req->r_num_caps) 612 ceph_reserve_caps(mdsc, &req->r_caps_reservation, 613 req->r_num_caps); 614 dout("__register_request %p tid %lld\n", req, req->r_tid); 615 ceph_mdsc_get_request(req); 616 __insert_request(mdsc, req); 617 618 req->r_uid = current_fsuid(); 619 req->r_gid = current_fsgid(); 620 621 if (dir) { 622 struct ceph_inode_info *ci = ceph_inode(dir); 623 624 ihold(dir); 625 spin_lock(&ci->i_unsafe_lock); 626 req->r_unsafe_dir = dir; 627 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 628 spin_unlock(&ci->i_unsafe_lock); 629 } 630 } 631 632 static void __unregister_request(struct ceph_mds_client *mdsc, 633 struct ceph_mds_request *req) 634 { 635 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 636 rb_erase(&req->r_node, &mdsc->request_tree); 637 RB_CLEAR_NODE(&req->r_node); 638 639 if (req->r_unsafe_dir) { 640 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 641 642 spin_lock(&ci->i_unsafe_lock); 643 list_del_init(&req->r_unsafe_dir_item); 644 spin_unlock(&ci->i_unsafe_lock); 645 646 iput(req->r_unsafe_dir); 647 req->r_unsafe_dir = NULL; 648 } 649 650 complete_all(&req->r_safe_completion); 651 652 ceph_mdsc_put_request(req); 653 } 654 655 /* 656 * Choose mds to send request to next. If there is a hint set in the 657 * request (e.g., due to a prior forward hint from the mds), use that. 658 * Otherwise, consult frag tree and/or caps to identify the 659 * appropriate mds. If all else fails, choose randomly. 660 * 661 * Called under mdsc->mutex. 662 */ 663 static struct dentry *get_nonsnap_parent(struct dentry *dentry) 664 { 665 /* 666 * we don't need to worry about protecting the d_parent access 667 * here because we never renaming inside the snapped namespace 668 * except to resplice to another snapdir, and either the old or new 669 * result is a valid result. 670 */ 671 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP) 672 dentry = dentry->d_parent; 673 return dentry; 674 } 675 676 static int __choose_mds(struct ceph_mds_client *mdsc, 677 struct ceph_mds_request *req) 678 { 679 struct inode *inode; 680 struct ceph_inode_info *ci; 681 struct ceph_cap *cap; 682 int mode = req->r_direct_mode; 683 int mds = -1; 684 u32 hash = req->r_direct_hash; 685 bool is_hash = req->r_direct_is_hash; 686 687 /* 688 * is there a specific mds we should try? ignore hint if we have 689 * no session and the mds is not up (active or recovering). 690 */ 691 if (req->r_resend_mds >= 0 && 692 (__have_session(mdsc, req->r_resend_mds) || 693 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 694 dout("choose_mds using resend_mds mds%d\n", 695 req->r_resend_mds); 696 return req->r_resend_mds; 697 } 698 699 if (mode == USE_RANDOM_MDS) 700 goto random; 701 702 inode = NULL; 703 if (req->r_inode) { 704 inode = req->r_inode; 705 } else if (req->r_dentry) { 706 /* ignore race with rename; old or new d_parent is okay */ 707 struct dentry *parent = req->r_dentry->d_parent; 708 struct inode *dir = parent->d_inode; 709 710 if (dir->i_sb != mdsc->fsc->sb) { 711 /* not this fs! */ 712 inode = req->r_dentry->d_inode; 713 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 714 /* direct snapped/virtual snapdir requests 715 * based on parent dir inode */ 716 struct dentry *dn = get_nonsnap_parent(parent); 717 inode = dn->d_inode; 718 dout("__choose_mds using nonsnap parent %p\n", inode); 719 } else { 720 /* dentry target */ 721 inode = req->r_dentry->d_inode; 722 if (!inode || mode == USE_AUTH_MDS) { 723 /* dir + name */ 724 inode = dir; 725 hash = ceph_dentry_hash(dir, req->r_dentry); 726 is_hash = true; 727 } 728 } 729 } 730 731 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash, 732 (int)hash, mode); 733 if (!inode) 734 goto random; 735 ci = ceph_inode(inode); 736 737 if (is_hash && S_ISDIR(inode->i_mode)) { 738 struct ceph_inode_frag frag; 739 int found; 740 741 ceph_choose_frag(ci, hash, &frag, &found); 742 if (found) { 743 if (mode == USE_ANY_MDS && frag.ndist > 0) { 744 u8 r; 745 746 /* choose a random replica */ 747 get_random_bytes(&r, 1); 748 r %= frag.ndist; 749 mds = frag.dist[r]; 750 dout("choose_mds %p %llx.%llx " 751 "frag %u mds%d (%d/%d)\n", 752 inode, ceph_vinop(inode), 753 frag.frag, mds, 754 (int)r, frag.ndist); 755 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 756 CEPH_MDS_STATE_ACTIVE) 757 return mds; 758 } 759 760 /* since this file/dir wasn't known to be 761 * replicated, then we want to look for the 762 * authoritative mds. */ 763 mode = USE_AUTH_MDS; 764 if (frag.mds >= 0) { 765 /* choose auth mds */ 766 mds = frag.mds; 767 dout("choose_mds %p %llx.%llx " 768 "frag %u mds%d (auth)\n", 769 inode, ceph_vinop(inode), frag.frag, mds); 770 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 771 CEPH_MDS_STATE_ACTIVE) 772 return mds; 773 } 774 } 775 } 776 777 spin_lock(&ci->i_ceph_lock); 778 cap = NULL; 779 if (mode == USE_AUTH_MDS) 780 cap = ci->i_auth_cap; 781 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 782 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 783 if (!cap) { 784 spin_unlock(&ci->i_ceph_lock); 785 goto random; 786 } 787 mds = cap->session->s_mds; 788 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n", 789 inode, ceph_vinop(inode), mds, 790 cap == ci->i_auth_cap ? "auth " : "", cap); 791 spin_unlock(&ci->i_ceph_lock); 792 return mds; 793 794 random: 795 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 796 dout("choose_mds chose random mds%d\n", mds); 797 return mds; 798 } 799 800 801 /* 802 * session messages 803 */ 804 static struct ceph_msg *create_session_msg(u32 op, u64 seq) 805 { 806 struct ceph_msg *msg; 807 struct ceph_mds_session_head *h; 808 809 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 810 false); 811 if (!msg) { 812 pr_err("create_session_msg ENOMEM creating msg\n"); 813 return NULL; 814 } 815 h = msg->front.iov_base; 816 h->op = cpu_to_le32(op); 817 h->seq = cpu_to_le64(seq); 818 819 return msg; 820 } 821 822 /* 823 * session message, specialization for CEPH_SESSION_REQUEST_OPEN 824 * to include additional client metadata fields. 825 */ 826 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq) 827 { 828 struct ceph_msg *msg; 829 struct ceph_mds_session_head *h; 830 int i = -1; 831 int metadata_bytes = 0; 832 int metadata_key_count = 0; 833 struct ceph_options *opt = mdsc->fsc->client->options; 834 void *p; 835 836 const char* metadata[3][2] = { 837 {"hostname", utsname()->nodename}, 838 {"entity_id", opt->name ? opt->name : ""}, 839 {NULL, NULL} 840 }; 841 842 /* Calculate serialized length of metadata */ 843 metadata_bytes = 4; /* map length */ 844 for (i = 0; metadata[i][0] != NULL; ++i) { 845 metadata_bytes += 8 + strlen(metadata[i][0]) + 846 strlen(metadata[i][1]); 847 metadata_key_count++; 848 } 849 850 /* Allocate the message */ 851 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes, 852 GFP_NOFS, false); 853 if (!msg) { 854 pr_err("create_session_msg ENOMEM creating msg\n"); 855 return NULL; 856 } 857 h = msg->front.iov_base; 858 h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN); 859 h->seq = cpu_to_le64(seq); 860 861 /* 862 * Serialize client metadata into waiting buffer space, using 863 * the format that userspace expects for map<string, string> 864 */ 865 msg->hdr.version = 2; /* ClientSession messages with metadata are v2 */ 866 867 /* The write pointer, following the session_head structure */ 868 p = msg->front.iov_base + sizeof(*h); 869 870 /* Number of entries in the map */ 871 ceph_encode_32(&p, metadata_key_count); 872 873 /* Two length-prefixed strings for each entry in the map */ 874 for (i = 0; metadata[i][0] != NULL; ++i) { 875 size_t const key_len = strlen(metadata[i][0]); 876 size_t const val_len = strlen(metadata[i][1]); 877 878 ceph_encode_32(&p, key_len); 879 memcpy(p, metadata[i][0], key_len); 880 p += key_len; 881 ceph_encode_32(&p, val_len); 882 memcpy(p, metadata[i][1], val_len); 883 p += val_len; 884 } 885 886 return msg; 887 } 888 889 /* 890 * send session open request. 891 * 892 * called under mdsc->mutex 893 */ 894 static int __open_session(struct ceph_mds_client *mdsc, 895 struct ceph_mds_session *session) 896 { 897 struct ceph_msg *msg; 898 int mstate; 899 int mds = session->s_mds; 900 901 /* wait for mds to go active? */ 902 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 903 dout("open_session to mds%d (%s)\n", mds, 904 ceph_mds_state_name(mstate)); 905 session->s_state = CEPH_MDS_SESSION_OPENING; 906 session->s_renew_requested = jiffies; 907 908 /* send connect message */ 909 msg = create_session_open_msg(mdsc, session->s_seq); 910 if (!msg) 911 return -ENOMEM; 912 ceph_con_send(&session->s_con, msg); 913 return 0; 914 } 915 916 /* 917 * open sessions for any export targets for the given mds 918 * 919 * called under mdsc->mutex 920 */ 921 static struct ceph_mds_session * 922 __open_export_target_session(struct ceph_mds_client *mdsc, int target) 923 { 924 struct ceph_mds_session *session; 925 926 session = __ceph_lookup_mds_session(mdsc, target); 927 if (!session) { 928 session = register_session(mdsc, target); 929 if (IS_ERR(session)) 930 return session; 931 } 932 if (session->s_state == CEPH_MDS_SESSION_NEW || 933 session->s_state == CEPH_MDS_SESSION_CLOSING) 934 __open_session(mdsc, session); 935 936 return session; 937 } 938 939 struct ceph_mds_session * 940 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target) 941 { 942 struct ceph_mds_session *session; 943 944 dout("open_export_target_session to mds%d\n", target); 945 946 mutex_lock(&mdsc->mutex); 947 session = __open_export_target_session(mdsc, target); 948 mutex_unlock(&mdsc->mutex); 949 950 return session; 951 } 952 953 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 954 struct ceph_mds_session *session) 955 { 956 struct ceph_mds_info *mi; 957 struct ceph_mds_session *ts; 958 int i, mds = session->s_mds; 959 960 if (mds >= mdsc->mdsmap->m_max_mds) 961 return; 962 963 mi = &mdsc->mdsmap->m_info[mds]; 964 dout("open_export_target_sessions for mds%d (%d targets)\n", 965 session->s_mds, mi->num_export_targets); 966 967 for (i = 0; i < mi->num_export_targets; i++) { 968 ts = __open_export_target_session(mdsc, mi->export_targets[i]); 969 if (!IS_ERR(ts)) 970 ceph_put_mds_session(ts); 971 } 972 } 973 974 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 975 struct ceph_mds_session *session) 976 { 977 mutex_lock(&mdsc->mutex); 978 __open_export_target_sessions(mdsc, session); 979 mutex_unlock(&mdsc->mutex); 980 } 981 982 /* 983 * session caps 984 */ 985 986 /* 987 * Free preallocated cap messages assigned to this session 988 */ 989 static void cleanup_cap_releases(struct ceph_mds_session *session) 990 { 991 struct ceph_msg *msg; 992 993 spin_lock(&session->s_cap_lock); 994 while (!list_empty(&session->s_cap_releases)) { 995 msg = list_first_entry(&session->s_cap_releases, 996 struct ceph_msg, list_head); 997 list_del_init(&msg->list_head); 998 ceph_msg_put(msg); 999 } 1000 while (!list_empty(&session->s_cap_releases_done)) { 1001 msg = list_first_entry(&session->s_cap_releases_done, 1002 struct ceph_msg, list_head); 1003 list_del_init(&msg->list_head); 1004 ceph_msg_put(msg); 1005 } 1006 spin_unlock(&session->s_cap_lock); 1007 } 1008 1009 /* 1010 * Helper to safely iterate over all caps associated with a session, with 1011 * special care taken to handle a racing __ceph_remove_cap(). 1012 * 1013 * Caller must hold session s_mutex. 1014 */ 1015 static int iterate_session_caps(struct ceph_mds_session *session, 1016 int (*cb)(struct inode *, struct ceph_cap *, 1017 void *), void *arg) 1018 { 1019 struct list_head *p; 1020 struct ceph_cap *cap; 1021 struct inode *inode, *last_inode = NULL; 1022 struct ceph_cap *old_cap = NULL; 1023 int ret; 1024 1025 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 1026 spin_lock(&session->s_cap_lock); 1027 p = session->s_caps.next; 1028 while (p != &session->s_caps) { 1029 cap = list_entry(p, struct ceph_cap, session_caps); 1030 inode = igrab(&cap->ci->vfs_inode); 1031 if (!inode) { 1032 p = p->next; 1033 continue; 1034 } 1035 session->s_cap_iterator = cap; 1036 spin_unlock(&session->s_cap_lock); 1037 1038 if (last_inode) { 1039 iput(last_inode); 1040 last_inode = NULL; 1041 } 1042 if (old_cap) { 1043 ceph_put_cap(session->s_mdsc, old_cap); 1044 old_cap = NULL; 1045 } 1046 1047 ret = cb(inode, cap, arg); 1048 last_inode = inode; 1049 1050 spin_lock(&session->s_cap_lock); 1051 p = p->next; 1052 if (cap->ci == NULL) { 1053 dout("iterate_session_caps finishing cap %p removal\n", 1054 cap); 1055 BUG_ON(cap->session != session); 1056 list_del_init(&cap->session_caps); 1057 session->s_nr_caps--; 1058 cap->session = NULL; 1059 old_cap = cap; /* put_cap it w/o locks held */ 1060 } 1061 if (ret < 0) 1062 goto out; 1063 } 1064 ret = 0; 1065 out: 1066 session->s_cap_iterator = NULL; 1067 spin_unlock(&session->s_cap_lock); 1068 1069 if (last_inode) 1070 iput(last_inode); 1071 if (old_cap) 1072 ceph_put_cap(session->s_mdsc, old_cap); 1073 1074 return ret; 1075 } 1076 1077 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 1078 void *arg) 1079 { 1080 struct ceph_inode_info *ci = ceph_inode(inode); 1081 int drop = 0; 1082 1083 dout("removing cap %p, ci is %p, inode is %p\n", 1084 cap, ci, &ci->vfs_inode); 1085 spin_lock(&ci->i_ceph_lock); 1086 __ceph_remove_cap(cap, false); 1087 if (!__ceph_is_any_real_caps(ci)) { 1088 struct ceph_mds_client *mdsc = 1089 ceph_sb_to_client(inode->i_sb)->mdsc; 1090 1091 spin_lock(&mdsc->cap_dirty_lock); 1092 if (!list_empty(&ci->i_dirty_item)) { 1093 pr_info(" dropping dirty %s state for %p %lld\n", 1094 ceph_cap_string(ci->i_dirty_caps), 1095 inode, ceph_ino(inode)); 1096 ci->i_dirty_caps = 0; 1097 list_del_init(&ci->i_dirty_item); 1098 drop = 1; 1099 } 1100 if (!list_empty(&ci->i_flushing_item)) { 1101 pr_info(" dropping dirty+flushing %s state for %p %lld\n", 1102 ceph_cap_string(ci->i_flushing_caps), 1103 inode, ceph_ino(inode)); 1104 ci->i_flushing_caps = 0; 1105 list_del_init(&ci->i_flushing_item); 1106 mdsc->num_cap_flushing--; 1107 drop = 1; 1108 } 1109 if (drop && ci->i_wrbuffer_ref) { 1110 pr_info(" dropping dirty data for %p %lld\n", 1111 inode, ceph_ino(inode)); 1112 ci->i_wrbuffer_ref = 0; 1113 ci->i_wrbuffer_ref_head = 0; 1114 drop++; 1115 } 1116 spin_unlock(&mdsc->cap_dirty_lock); 1117 } 1118 spin_unlock(&ci->i_ceph_lock); 1119 while (drop--) 1120 iput(inode); 1121 return 0; 1122 } 1123 1124 /* 1125 * caller must hold session s_mutex 1126 */ 1127 static void remove_session_caps(struct ceph_mds_session *session) 1128 { 1129 dout("remove_session_caps on %p\n", session); 1130 iterate_session_caps(session, remove_session_caps_cb, NULL); 1131 1132 spin_lock(&session->s_cap_lock); 1133 if (session->s_nr_caps > 0) { 1134 struct super_block *sb = session->s_mdsc->fsc->sb; 1135 struct inode *inode; 1136 struct ceph_cap *cap, *prev = NULL; 1137 struct ceph_vino vino; 1138 /* 1139 * iterate_session_caps() skips inodes that are being 1140 * deleted, we need to wait until deletions are complete. 1141 * __wait_on_freeing_inode() is designed for the job, 1142 * but it is not exported, so use lookup inode function 1143 * to access it. 1144 */ 1145 while (!list_empty(&session->s_caps)) { 1146 cap = list_entry(session->s_caps.next, 1147 struct ceph_cap, session_caps); 1148 if (cap == prev) 1149 break; 1150 prev = cap; 1151 vino = cap->ci->i_vino; 1152 spin_unlock(&session->s_cap_lock); 1153 1154 inode = ceph_find_inode(sb, vino); 1155 iput(inode); 1156 1157 spin_lock(&session->s_cap_lock); 1158 } 1159 } 1160 spin_unlock(&session->s_cap_lock); 1161 1162 BUG_ON(session->s_nr_caps > 0); 1163 BUG_ON(!list_empty(&session->s_cap_flushing)); 1164 cleanup_cap_releases(session); 1165 } 1166 1167 /* 1168 * wake up any threads waiting on this session's caps. if the cap is 1169 * old (didn't get renewed on the client reconnect), remove it now. 1170 * 1171 * caller must hold s_mutex. 1172 */ 1173 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 1174 void *arg) 1175 { 1176 struct ceph_inode_info *ci = ceph_inode(inode); 1177 1178 wake_up_all(&ci->i_cap_wq); 1179 if (arg) { 1180 spin_lock(&ci->i_ceph_lock); 1181 ci->i_wanted_max_size = 0; 1182 ci->i_requested_max_size = 0; 1183 spin_unlock(&ci->i_ceph_lock); 1184 } 1185 return 0; 1186 } 1187 1188 static void wake_up_session_caps(struct ceph_mds_session *session, 1189 int reconnect) 1190 { 1191 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1192 iterate_session_caps(session, wake_up_session_cb, 1193 (void *)(unsigned long)reconnect); 1194 } 1195 1196 /* 1197 * Send periodic message to MDS renewing all currently held caps. The 1198 * ack will reset the expiration for all caps from this session. 1199 * 1200 * caller holds s_mutex 1201 */ 1202 static int send_renew_caps(struct ceph_mds_client *mdsc, 1203 struct ceph_mds_session *session) 1204 { 1205 struct ceph_msg *msg; 1206 int state; 1207 1208 if (time_after_eq(jiffies, session->s_cap_ttl) && 1209 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1210 pr_info("mds%d caps stale\n", session->s_mds); 1211 session->s_renew_requested = jiffies; 1212 1213 /* do not try to renew caps until a recovering mds has reconnected 1214 * with its clients. */ 1215 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1216 if (state < CEPH_MDS_STATE_RECONNECT) { 1217 dout("send_renew_caps ignoring mds%d (%s)\n", 1218 session->s_mds, ceph_mds_state_name(state)); 1219 return 0; 1220 } 1221 1222 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 1223 ceph_mds_state_name(state)); 1224 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 1225 ++session->s_renew_seq); 1226 if (!msg) 1227 return -ENOMEM; 1228 ceph_con_send(&session->s_con, msg); 1229 return 0; 1230 } 1231 1232 static int send_flushmsg_ack(struct ceph_mds_client *mdsc, 1233 struct ceph_mds_session *session, u64 seq) 1234 { 1235 struct ceph_msg *msg; 1236 1237 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n", 1238 session->s_mds, ceph_session_state_name(session->s_state), seq); 1239 msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq); 1240 if (!msg) 1241 return -ENOMEM; 1242 ceph_con_send(&session->s_con, msg); 1243 return 0; 1244 } 1245 1246 1247 /* 1248 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 1249 * 1250 * Called under session->s_mutex 1251 */ 1252 static void renewed_caps(struct ceph_mds_client *mdsc, 1253 struct ceph_mds_session *session, int is_renew) 1254 { 1255 int was_stale; 1256 int wake = 0; 1257 1258 spin_lock(&session->s_cap_lock); 1259 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 1260 1261 session->s_cap_ttl = session->s_renew_requested + 1262 mdsc->mdsmap->m_session_timeout*HZ; 1263 1264 if (was_stale) { 1265 if (time_before(jiffies, session->s_cap_ttl)) { 1266 pr_info("mds%d caps renewed\n", session->s_mds); 1267 wake = 1; 1268 } else { 1269 pr_info("mds%d caps still stale\n", session->s_mds); 1270 } 1271 } 1272 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 1273 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 1274 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 1275 spin_unlock(&session->s_cap_lock); 1276 1277 if (wake) 1278 wake_up_session_caps(session, 0); 1279 } 1280 1281 /* 1282 * send a session close request 1283 */ 1284 static int request_close_session(struct ceph_mds_client *mdsc, 1285 struct ceph_mds_session *session) 1286 { 1287 struct ceph_msg *msg; 1288 1289 dout("request_close_session mds%d state %s seq %lld\n", 1290 session->s_mds, ceph_session_state_name(session->s_state), 1291 session->s_seq); 1292 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); 1293 if (!msg) 1294 return -ENOMEM; 1295 ceph_con_send(&session->s_con, msg); 1296 return 0; 1297 } 1298 1299 /* 1300 * Called with s_mutex held. 1301 */ 1302 static int __close_session(struct ceph_mds_client *mdsc, 1303 struct ceph_mds_session *session) 1304 { 1305 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 1306 return 0; 1307 session->s_state = CEPH_MDS_SESSION_CLOSING; 1308 return request_close_session(mdsc, session); 1309 } 1310 1311 /* 1312 * Trim old(er) caps. 1313 * 1314 * Because we can't cache an inode without one or more caps, we do 1315 * this indirectly: if a cap is unused, we prune its aliases, at which 1316 * point the inode will hopefully get dropped to. 1317 * 1318 * Yes, this is a bit sloppy. Our only real goal here is to respond to 1319 * memory pressure from the MDS, though, so it needn't be perfect. 1320 */ 1321 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1322 { 1323 struct ceph_mds_session *session = arg; 1324 struct ceph_inode_info *ci = ceph_inode(inode); 1325 int used, wanted, oissued, mine; 1326 1327 if (session->s_trim_caps <= 0) 1328 return -1; 1329 1330 spin_lock(&ci->i_ceph_lock); 1331 mine = cap->issued | cap->implemented; 1332 used = __ceph_caps_used(ci); 1333 wanted = __ceph_caps_file_wanted(ci); 1334 oissued = __ceph_caps_issued_other(ci, cap); 1335 1336 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n", 1337 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1338 ceph_cap_string(used), ceph_cap_string(wanted)); 1339 if (cap == ci->i_auth_cap) { 1340 if (ci->i_dirty_caps | ci->i_flushing_caps) 1341 goto out; 1342 if ((used | wanted) & CEPH_CAP_ANY_WR) 1343 goto out; 1344 } 1345 if ((used | wanted) & ~oissued & mine) 1346 goto out; /* we need these caps */ 1347 1348 session->s_trim_caps--; 1349 if (oissued) { 1350 /* we aren't the only cap.. just remove us */ 1351 __ceph_remove_cap(cap, true); 1352 } else { 1353 /* try to drop referring dentries */ 1354 spin_unlock(&ci->i_ceph_lock); 1355 d_prune_aliases(inode); 1356 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 1357 inode, cap, atomic_read(&inode->i_count)); 1358 return 0; 1359 } 1360 1361 out: 1362 spin_unlock(&ci->i_ceph_lock); 1363 return 0; 1364 } 1365 1366 /* 1367 * Trim session cap count down to some max number. 1368 */ 1369 static int trim_caps(struct ceph_mds_client *mdsc, 1370 struct ceph_mds_session *session, 1371 int max_caps) 1372 { 1373 int trim_caps = session->s_nr_caps - max_caps; 1374 1375 dout("trim_caps mds%d start: %d / %d, trim %d\n", 1376 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 1377 if (trim_caps > 0) { 1378 session->s_trim_caps = trim_caps; 1379 iterate_session_caps(session, trim_caps_cb, session); 1380 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 1381 session->s_mds, session->s_nr_caps, max_caps, 1382 trim_caps - session->s_trim_caps); 1383 session->s_trim_caps = 0; 1384 } 1385 1386 ceph_add_cap_releases(mdsc, session); 1387 ceph_send_cap_releases(mdsc, session); 1388 return 0; 1389 } 1390 1391 /* 1392 * Allocate cap_release messages. If there is a partially full message 1393 * in the queue, try to allocate enough to cover it's remainder, so that 1394 * we can send it immediately. 1395 * 1396 * Called under s_mutex. 1397 */ 1398 int ceph_add_cap_releases(struct ceph_mds_client *mdsc, 1399 struct ceph_mds_session *session) 1400 { 1401 struct ceph_msg *msg, *partial = NULL; 1402 struct ceph_mds_cap_release *head; 1403 int err = -ENOMEM; 1404 int extra = mdsc->fsc->mount_options->cap_release_safety; 1405 int num; 1406 1407 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds, 1408 extra); 1409 1410 spin_lock(&session->s_cap_lock); 1411 1412 if (!list_empty(&session->s_cap_releases)) { 1413 msg = list_first_entry(&session->s_cap_releases, 1414 struct ceph_msg, 1415 list_head); 1416 head = msg->front.iov_base; 1417 num = le32_to_cpu(head->num); 1418 if (num) { 1419 dout(" partial %p with (%d/%d)\n", msg, num, 1420 (int)CEPH_CAPS_PER_RELEASE); 1421 extra += CEPH_CAPS_PER_RELEASE - num; 1422 partial = msg; 1423 } 1424 } 1425 while (session->s_num_cap_releases < session->s_nr_caps + extra) { 1426 spin_unlock(&session->s_cap_lock); 1427 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE, 1428 GFP_NOFS, false); 1429 if (!msg) 1430 goto out_unlocked; 1431 dout("add_cap_releases %p msg %p now %d\n", session, msg, 1432 (int)msg->front.iov_len); 1433 head = msg->front.iov_base; 1434 head->num = cpu_to_le32(0); 1435 msg->front.iov_len = sizeof(*head); 1436 spin_lock(&session->s_cap_lock); 1437 list_add(&msg->list_head, &session->s_cap_releases); 1438 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE; 1439 } 1440 1441 if (partial) { 1442 head = partial->front.iov_base; 1443 num = le32_to_cpu(head->num); 1444 dout(" queueing partial %p with %d/%d\n", partial, num, 1445 (int)CEPH_CAPS_PER_RELEASE); 1446 list_move_tail(&partial->list_head, 1447 &session->s_cap_releases_done); 1448 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num; 1449 } 1450 err = 0; 1451 spin_unlock(&session->s_cap_lock); 1452 out_unlocked: 1453 return err; 1454 } 1455 1456 /* 1457 * flush all dirty inode data to disk. 1458 * 1459 * returns true if we've flushed through want_flush_seq 1460 */ 1461 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq) 1462 { 1463 int mds, ret = 1; 1464 1465 dout("check_cap_flush want %lld\n", want_flush_seq); 1466 mutex_lock(&mdsc->mutex); 1467 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) { 1468 struct ceph_mds_session *session = mdsc->sessions[mds]; 1469 1470 if (!session) 1471 continue; 1472 get_session(session); 1473 mutex_unlock(&mdsc->mutex); 1474 1475 mutex_lock(&session->s_mutex); 1476 if (!list_empty(&session->s_cap_flushing)) { 1477 struct ceph_inode_info *ci = 1478 list_entry(session->s_cap_flushing.next, 1479 struct ceph_inode_info, 1480 i_flushing_item); 1481 struct inode *inode = &ci->vfs_inode; 1482 1483 spin_lock(&ci->i_ceph_lock); 1484 if (ci->i_cap_flush_seq <= want_flush_seq) { 1485 dout("check_cap_flush still flushing %p " 1486 "seq %lld <= %lld to mds%d\n", inode, 1487 ci->i_cap_flush_seq, want_flush_seq, 1488 session->s_mds); 1489 ret = 0; 1490 } 1491 spin_unlock(&ci->i_ceph_lock); 1492 } 1493 mutex_unlock(&session->s_mutex); 1494 ceph_put_mds_session(session); 1495 1496 if (!ret) 1497 return ret; 1498 mutex_lock(&mdsc->mutex); 1499 } 1500 1501 mutex_unlock(&mdsc->mutex); 1502 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq); 1503 return ret; 1504 } 1505 1506 /* 1507 * called under s_mutex 1508 */ 1509 void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 1510 struct ceph_mds_session *session) 1511 { 1512 struct ceph_msg *msg; 1513 1514 dout("send_cap_releases mds%d\n", session->s_mds); 1515 spin_lock(&session->s_cap_lock); 1516 while (!list_empty(&session->s_cap_releases_done)) { 1517 msg = list_first_entry(&session->s_cap_releases_done, 1518 struct ceph_msg, list_head); 1519 list_del_init(&msg->list_head); 1520 spin_unlock(&session->s_cap_lock); 1521 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1522 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1523 ceph_con_send(&session->s_con, msg); 1524 spin_lock(&session->s_cap_lock); 1525 } 1526 spin_unlock(&session->s_cap_lock); 1527 } 1528 1529 static void discard_cap_releases(struct ceph_mds_client *mdsc, 1530 struct ceph_mds_session *session) 1531 { 1532 struct ceph_msg *msg; 1533 struct ceph_mds_cap_release *head; 1534 unsigned num; 1535 1536 dout("discard_cap_releases mds%d\n", session->s_mds); 1537 1538 if (!list_empty(&session->s_cap_releases)) { 1539 /* zero out the in-progress message */ 1540 msg = list_first_entry(&session->s_cap_releases, 1541 struct ceph_msg, list_head); 1542 head = msg->front.iov_base; 1543 num = le32_to_cpu(head->num); 1544 dout("discard_cap_releases mds%d %p %u\n", 1545 session->s_mds, msg, num); 1546 head->num = cpu_to_le32(0); 1547 msg->front.iov_len = sizeof(*head); 1548 session->s_num_cap_releases += num; 1549 } 1550 1551 /* requeue completed messages */ 1552 while (!list_empty(&session->s_cap_releases_done)) { 1553 msg = list_first_entry(&session->s_cap_releases_done, 1554 struct ceph_msg, list_head); 1555 list_del_init(&msg->list_head); 1556 1557 head = msg->front.iov_base; 1558 num = le32_to_cpu(head->num); 1559 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, 1560 num); 1561 session->s_num_cap_releases += num; 1562 head->num = cpu_to_le32(0); 1563 msg->front.iov_len = sizeof(*head); 1564 list_add(&msg->list_head, &session->s_cap_releases); 1565 } 1566 } 1567 1568 /* 1569 * requests 1570 */ 1571 1572 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req, 1573 struct inode *dir) 1574 { 1575 struct ceph_inode_info *ci = ceph_inode(dir); 1576 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; 1577 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options; 1578 size_t size = sizeof(*rinfo->dir_in) + sizeof(*rinfo->dir_dname_len) + 1579 sizeof(*rinfo->dir_dname) + sizeof(*rinfo->dir_dlease); 1580 int order, num_entries; 1581 1582 spin_lock(&ci->i_ceph_lock); 1583 num_entries = ci->i_files + ci->i_subdirs; 1584 spin_unlock(&ci->i_ceph_lock); 1585 num_entries = max(num_entries, 1); 1586 num_entries = min(num_entries, opt->max_readdir); 1587 1588 order = get_order(size * num_entries); 1589 while (order >= 0) { 1590 rinfo->dir_in = (void*)__get_free_pages(GFP_NOFS | __GFP_NOWARN, 1591 order); 1592 if (rinfo->dir_in) 1593 break; 1594 order--; 1595 } 1596 if (!rinfo->dir_in) 1597 return -ENOMEM; 1598 1599 num_entries = (PAGE_SIZE << order) / size; 1600 num_entries = min(num_entries, opt->max_readdir); 1601 1602 rinfo->dir_buf_size = PAGE_SIZE << order; 1603 req->r_num_caps = num_entries + 1; 1604 req->r_args.readdir.max_entries = cpu_to_le32(num_entries); 1605 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes); 1606 return 0; 1607 } 1608 1609 /* 1610 * Create an mds request. 1611 */ 1612 struct ceph_mds_request * 1613 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 1614 { 1615 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS); 1616 1617 if (!req) 1618 return ERR_PTR(-ENOMEM); 1619 1620 mutex_init(&req->r_fill_mutex); 1621 req->r_mdsc = mdsc; 1622 req->r_started = jiffies; 1623 req->r_resend_mds = -1; 1624 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 1625 req->r_fmode = -1; 1626 kref_init(&req->r_kref); 1627 INIT_LIST_HEAD(&req->r_wait); 1628 init_completion(&req->r_completion); 1629 init_completion(&req->r_safe_completion); 1630 INIT_LIST_HEAD(&req->r_unsafe_item); 1631 1632 req->r_stamp = CURRENT_TIME; 1633 1634 req->r_op = op; 1635 req->r_direct_mode = mode; 1636 return req; 1637 } 1638 1639 /* 1640 * return oldest (lowest) request, tid in request tree, 0 if none. 1641 * 1642 * called under mdsc->mutex. 1643 */ 1644 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 1645 { 1646 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 1647 return NULL; 1648 return rb_entry(rb_first(&mdsc->request_tree), 1649 struct ceph_mds_request, r_node); 1650 } 1651 1652 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 1653 { 1654 struct ceph_mds_request *req = __get_oldest_req(mdsc); 1655 1656 if (req) 1657 return req->r_tid; 1658 return 0; 1659 } 1660 1661 /* 1662 * Build a dentry's path. Allocate on heap; caller must kfree. Based 1663 * on build_path_from_dentry in fs/cifs/dir.c. 1664 * 1665 * If @stop_on_nosnap, generate path relative to the first non-snapped 1666 * inode. 1667 * 1668 * Encode hidden .snap dirs as a double /, i.e. 1669 * foo/.snap/bar -> foo//bar 1670 */ 1671 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base, 1672 int stop_on_nosnap) 1673 { 1674 struct dentry *temp; 1675 char *path; 1676 int len, pos; 1677 unsigned seq; 1678 1679 if (dentry == NULL) 1680 return ERR_PTR(-EINVAL); 1681 1682 retry: 1683 len = 0; 1684 seq = read_seqbegin(&rename_lock); 1685 rcu_read_lock(); 1686 for (temp = dentry; !IS_ROOT(temp);) { 1687 struct inode *inode = temp->d_inode; 1688 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) 1689 len++; /* slash only */ 1690 else if (stop_on_nosnap && inode && 1691 ceph_snap(inode) == CEPH_NOSNAP) 1692 break; 1693 else 1694 len += 1 + temp->d_name.len; 1695 temp = temp->d_parent; 1696 } 1697 rcu_read_unlock(); 1698 if (len) 1699 len--; /* no leading '/' */ 1700 1701 path = kmalloc(len+1, GFP_NOFS); 1702 if (path == NULL) 1703 return ERR_PTR(-ENOMEM); 1704 pos = len; 1705 path[pos] = 0; /* trailing null */ 1706 rcu_read_lock(); 1707 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) { 1708 struct inode *inode; 1709 1710 spin_lock(&temp->d_lock); 1711 inode = temp->d_inode; 1712 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 1713 dout("build_path path+%d: %p SNAPDIR\n", 1714 pos, temp); 1715 } else if (stop_on_nosnap && inode && 1716 ceph_snap(inode) == CEPH_NOSNAP) { 1717 spin_unlock(&temp->d_lock); 1718 break; 1719 } else { 1720 pos -= temp->d_name.len; 1721 if (pos < 0) { 1722 spin_unlock(&temp->d_lock); 1723 break; 1724 } 1725 strncpy(path + pos, temp->d_name.name, 1726 temp->d_name.len); 1727 } 1728 spin_unlock(&temp->d_lock); 1729 if (pos) 1730 path[--pos] = '/'; 1731 temp = temp->d_parent; 1732 } 1733 rcu_read_unlock(); 1734 if (pos != 0 || read_seqretry(&rename_lock, seq)) { 1735 pr_err("build_path did not end path lookup where " 1736 "expected, namelen is %d, pos is %d\n", len, pos); 1737 /* presumably this is only possible if racing with a 1738 rename of one of the parent directories (we can not 1739 lock the dentries above us to prevent this, but 1740 retrying should be harmless) */ 1741 kfree(path); 1742 goto retry; 1743 } 1744 1745 *base = ceph_ino(temp->d_inode); 1746 *plen = len; 1747 dout("build_path on %p %d built %llx '%.*s'\n", 1748 dentry, d_count(dentry), *base, len, path); 1749 return path; 1750 } 1751 1752 static int build_dentry_path(struct dentry *dentry, 1753 const char **ppath, int *ppathlen, u64 *pino, 1754 int *pfreepath) 1755 { 1756 char *path; 1757 1758 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) { 1759 *pino = ceph_ino(dentry->d_parent->d_inode); 1760 *ppath = dentry->d_name.name; 1761 *ppathlen = dentry->d_name.len; 1762 return 0; 1763 } 1764 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1765 if (IS_ERR(path)) 1766 return PTR_ERR(path); 1767 *ppath = path; 1768 *pfreepath = 1; 1769 return 0; 1770 } 1771 1772 static int build_inode_path(struct inode *inode, 1773 const char **ppath, int *ppathlen, u64 *pino, 1774 int *pfreepath) 1775 { 1776 struct dentry *dentry; 1777 char *path; 1778 1779 if (ceph_snap(inode) == CEPH_NOSNAP) { 1780 *pino = ceph_ino(inode); 1781 *ppathlen = 0; 1782 return 0; 1783 } 1784 dentry = d_find_alias(inode); 1785 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1786 dput(dentry); 1787 if (IS_ERR(path)) 1788 return PTR_ERR(path); 1789 *ppath = path; 1790 *pfreepath = 1; 1791 return 0; 1792 } 1793 1794 /* 1795 * request arguments may be specified via an inode *, a dentry *, or 1796 * an explicit ino+path. 1797 */ 1798 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 1799 const char *rpath, u64 rino, 1800 const char **ppath, int *pathlen, 1801 u64 *ino, int *freepath) 1802 { 1803 int r = 0; 1804 1805 if (rinode) { 1806 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 1807 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 1808 ceph_snap(rinode)); 1809 } else if (rdentry) { 1810 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath); 1811 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 1812 *ppath); 1813 } else if (rpath || rino) { 1814 *ino = rino; 1815 *ppath = rpath; 1816 *pathlen = rpath ? strlen(rpath) : 0; 1817 dout(" path %.*s\n", *pathlen, rpath); 1818 } 1819 1820 return r; 1821 } 1822 1823 /* 1824 * called under mdsc->mutex 1825 */ 1826 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc, 1827 struct ceph_mds_request *req, 1828 int mds) 1829 { 1830 struct ceph_msg *msg; 1831 struct ceph_mds_request_head *head; 1832 const char *path1 = NULL; 1833 const char *path2 = NULL; 1834 u64 ino1 = 0, ino2 = 0; 1835 int pathlen1 = 0, pathlen2 = 0; 1836 int freepath1 = 0, freepath2 = 0; 1837 int len; 1838 u16 releases; 1839 void *p, *end; 1840 int ret; 1841 1842 ret = set_request_path_attr(req->r_inode, req->r_dentry, 1843 req->r_path1, req->r_ino1.ino, 1844 &path1, &pathlen1, &ino1, &freepath1); 1845 if (ret < 0) { 1846 msg = ERR_PTR(ret); 1847 goto out; 1848 } 1849 1850 ret = set_request_path_attr(NULL, req->r_old_dentry, 1851 req->r_path2, req->r_ino2.ino, 1852 &path2, &pathlen2, &ino2, &freepath2); 1853 if (ret < 0) { 1854 msg = ERR_PTR(ret); 1855 goto out_free1; 1856 } 1857 1858 len = sizeof(*head) + 1859 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) + 1860 sizeof(struct timespec); 1861 1862 /* calculate (max) length for cap releases */ 1863 len += sizeof(struct ceph_mds_request_release) * 1864 (!!req->r_inode_drop + !!req->r_dentry_drop + 1865 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 1866 if (req->r_dentry_drop) 1867 len += req->r_dentry->d_name.len; 1868 if (req->r_old_dentry_drop) 1869 len += req->r_old_dentry->d_name.len; 1870 1871 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false); 1872 if (!msg) { 1873 msg = ERR_PTR(-ENOMEM); 1874 goto out_free2; 1875 } 1876 1877 msg->hdr.version = 2; 1878 msg->hdr.tid = cpu_to_le64(req->r_tid); 1879 1880 head = msg->front.iov_base; 1881 p = msg->front.iov_base + sizeof(*head); 1882 end = msg->front.iov_base + msg->front.iov_len; 1883 1884 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 1885 head->op = cpu_to_le32(req->r_op); 1886 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid)); 1887 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid)); 1888 head->args = req->r_args; 1889 1890 ceph_encode_filepath(&p, end, ino1, path1); 1891 ceph_encode_filepath(&p, end, ino2, path2); 1892 1893 /* make note of release offset, in case we need to replay */ 1894 req->r_request_release_offset = p - msg->front.iov_base; 1895 1896 /* cap releases */ 1897 releases = 0; 1898 if (req->r_inode_drop) 1899 releases += ceph_encode_inode_release(&p, 1900 req->r_inode ? req->r_inode : req->r_dentry->d_inode, 1901 mds, req->r_inode_drop, req->r_inode_unless, 0); 1902 if (req->r_dentry_drop) 1903 releases += ceph_encode_dentry_release(&p, req->r_dentry, 1904 mds, req->r_dentry_drop, req->r_dentry_unless); 1905 if (req->r_old_dentry_drop) 1906 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 1907 mds, req->r_old_dentry_drop, req->r_old_dentry_unless); 1908 if (req->r_old_inode_drop) 1909 releases += ceph_encode_inode_release(&p, 1910 req->r_old_dentry->d_inode, 1911 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 1912 head->num_releases = cpu_to_le16(releases); 1913 1914 /* time stamp */ 1915 ceph_encode_copy(&p, &req->r_stamp, sizeof(req->r_stamp)); 1916 1917 BUG_ON(p > end); 1918 msg->front.iov_len = p - msg->front.iov_base; 1919 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1920 1921 if (req->r_pagelist) { 1922 struct ceph_pagelist *pagelist = req->r_pagelist; 1923 atomic_inc(&pagelist->refcnt); 1924 ceph_msg_data_add_pagelist(msg, pagelist); 1925 msg->hdr.data_len = cpu_to_le32(pagelist->length); 1926 } else { 1927 msg->hdr.data_len = 0; 1928 } 1929 1930 msg->hdr.data_off = cpu_to_le16(0); 1931 1932 out_free2: 1933 if (freepath2) 1934 kfree((char *)path2); 1935 out_free1: 1936 if (freepath1) 1937 kfree((char *)path1); 1938 out: 1939 return msg; 1940 } 1941 1942 /* 1943 * called under mdsc->mutex if error, under no mutex if 1944 * success. 1945 */ 1946 static void complete_request(struct ceph_mds_client *mdsc, 1947 struct ceph_mds_request *req) 1948 { 1949 if (req->r_callback) 1950 req->r_callback(mdsc, req); 1951 else 1952 complete_all(&req->r_completion); 1953 } 1954 1955 /* 1956 * called under mdsc->mutex 1957 */ 1958 static int __prepare_send_request(struct ceph_mds_client *mdsc, 1959 struct ceph_mds_request *req, 1960 int mds) 1961 { 1962 struct ceph_mds_request_head *rhead; 1963 struct ceph_msg *msg; 1964 int flags = 0; 1965 1966 req->r_attempts++; 1967 if (req->r_inode) { 1968 struct ceph_cap *cap = 1969 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 1970 1971 if (cap) 1972 req->r_sent_on_mseq = cap->mseq; 1973 else 1974 req->r_sent_on_mseq = -1; 1975 } 1976 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, 1977 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 1978 1979 if (req->r_got_unsafe) { 1980 void *p; 1981 /* 1982 * Replay. Do not regenerate message (and rebuild 1983 * paths, etc.); just use the original message. 1984 * Rebuilding paths will break for renames because 1985 * d_move mangles the src name. 1986 */ 1987 msg = req->r_request; 1988 rhead = msg->front.iov_base; 1989 1990 flags = le32_to_cpu(rhead->flags); 1991 flags |= CEPH_MDS_FLAG_REPLAY; 1992 rhead->flags = cpu_to_le32(flags); 1993 1994 if (req->r_target_inode) 1995 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 1996 1997 rhead->num_retry = req->r_attempts - 1; 1998 1999 /* remove cap/dentry releases from message */ 2000 rhead->num_releases = 0; 2001 2002 /* time stamp */ 2003 p = msg->front.iov_base + req->r_request_release_offset; 2004 ceph_encode_copy(&p, &req->r_stamp, sizeof(req->r_stamp)); 2005 2006 msg->front.iov_len = p - msg->front.iov_base; 2007 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2008 return 0; 2009 } 2010 2011 if (req->r_request) { 2012 ceph_msg_put(req->r_request); 2013 req->r_request = NULL; 2014 } 2015 msg = create_request_message(mdsc, req, mds); 2016 if (IS_ERR(msg)) { 2017 req->r_err = PTR_ERR(msg); 2018 complete_request(mdsc, req); 2019 return PTR_ERR(msg); 2020 } 2021 req->r_request = msg; 2022 2023 rhead = msg->front.iov_base; 2024 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 2025 if (req->r_got_unsafe) 2026 flags |= CEPH_MDS_FLAG_REPLAY; 2027 if (req->r_locked_dir) 2028 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 2029 rhead->flags = cpu_to_le32(flags); 2030 rhead->num_fwd = req->r_num_fwd; 2031 rhead->num_retry = req->r_attempts - 1; 2032 rhead->ino = 0; 2033 2034 dout(" r_locked_dir = %p\n", req->r_locked_dir); 2035 return 0; 2036 } 2037 2038 /* 2039 * send request, or put it on the appropriate wait list. 2040 */ 2041 static int __do_request(struct ceph_mds_client *mdsc, 2042 struct ceph_mds_request *req) 2043 { 2044 struct ceph_mds_session *session = NULL; 2045 int mds = -1; 2046 int err = -EAGAIN; 2047 2048 if (req->r_err || req->r_got_result) { 2049 if (req->r_aborted) 2050 __unregister_request(mdsc, req); 2051 goto out; 2052 } 2053 2054 if (req->r_timeout && 2055 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 2056 dout("do_request timed out\n"); 2057 err = -EIO; 2058 goto finish; 2059 } 2060 2061 put_request_session(req); 2062 2063 mds = __choose_mds(mdsc, req); 2064 if (mds < 0 || 2065 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 2066 dout("do_request no mds or not active, waiting for map\n"); 2067 list_add(&req->r_wait, &mdsc->waiting_for_map); 2068 goto out; 2069 } 2070 2071 /* get, open session */ 2072 session = __ceph_lookup_mds_session(mdsc, mds); 2073 if (!session) { 2074 session = register_session(mdsc, mds); 2075 if (IS_ERR(session)) { 2076 err = PTR_ERR(session); 2077 goto finish; 2078 } 2079 } 2080 req->r_session = get_session(session); 2081 2082 dout("do_request mds%d session %p state %s\n", mds, session, 2083 ceph_session_state_name(session->s_state)); 2084 if (session->s_state != CEPH_MDS_SESSION_OPEN && 2085 session->s_state != CEPH_MDS_SESSION_HUNG) { 2086 if (session->s_state == CEPH_MDS_SESSION_NEW || 2087 session->s_state == CEPH_MDS_SESSION_CLOSING) 2088 __open_session(mdsc, session); 2089 list_add(&req->r_wait, &session->s_waiting); 2090 goto out_session; 2091 } 2092 2093 /* send request */ 2094 req->r_resend_mds = -1; /* forget any previous mds hint */ 2095 2096 if (req->r_request_started == 0) /* note request start time */ 2097 req->r_request_started = jiffies; 2098 2099 err = __prepare_send_request(mdsc, req, mds); 2100 if (!err) { 2101 ceph_msg_get(req->r_request); 2102 ceph_con_send(&session->s_con, req->r_request); 2103 } 2104 2105 out_session: 2106 ceph_put_mds_session(session); 2107 out: 2108 return err; 2109 2110 finish: 2111 req->r_err = err; 2112 complete_request(mdsc, req); 2113 goto out; 2114 } 2115 2116 /* 2117 * called under mdsc->mutex 2118 */ 2119 static void __wake_requests(struct ceph_mds_client *mdsc, 2120 struct list_head *head) 2121 { 2122 struct ceph_mds_request *req; 2123 LIST_HEAD(tmp_list); 2124 2125 list_splice_init(head, &tmp_list); 2126 2127 while (!list_empty(&tmp_list)) { 2128 req = list_entry(tmp_list.next, 2129 struct ceph_mds_request, r_wait); 2130 list_del_init(&req->r_wait); 2131 dout(" wake request %p tid %llu\n", req, req->r_tid); 2132 __do_request(mdsc, req); 2133 } 2134 } 2135 2136 /* 2137 * Wake up threads with requests pending for @mds, so that they can 2138 * resubmit their requests to a possibly different mds. 2139 */ 2140 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 2141 { 2142 struct ceph_mds_request *req; 2143 struct rb_node *p = rb_first(&mdsc->request_tree); 2144 2145 dout("kick_requests mds%d\n", mds); 2146 while (p) { 2147 req = rb_entry(p, struct ceph_mds_request, r_node); 2148 p = rb_next(p); 2149 if (req->r_got_unsafe) 2150 continue; 2151 if (req->r_session && 2152 req->r_session->s_mds == mds) { 2153 dout(" kicking tid %llu\n", req->r_tid); 2154 list_del_init(&req->r_wait); 2155 __do_request(mdsc, req); 2156 } 2157 } 2158 } 2159 2160 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, 2161 struct ceph_mds_request *req) 2162 { 2163 dout("submit_request on %p\n", req); 2164 mutex_lock(&mdsc->mutex); 2165 __register_request(mdsc, req, NULL); 2166 __do_request(mdsc, req); 2167 mutex_unlock(&mdsc->mutex); 2168 } 2169 2170 /* 2171 * Synchrously perform an mds request. Take care of all of the 2172 * session setup, forwarding, retry details. 2173 */ 2174 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 2175 struct inode *dir, 2176 struct ceph_mds_request *req) 2177 { 2178 int err; 2179 2180 dout("do_request on %p\n", req); 2181 2182 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */ 2183 if (req->r_inode) 2184 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 2185 if (req->r_locked_dir) 2186 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 2187 if (req->r_old_dentry_dir) 2188 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 2189 CEPH_CAP_PIN); 2190 2191 /* issue */ 2192 mutex_lock(&mdsc->mutex); 2193 __register_request(mdsc, req, dir); 2194 __do_request(mdsc, req); 2195 2196 if (req->r_err) { 2197 err = req->r_err; 2198 __unregister_request(mdsc, req); 2199 dout("do_request early error %d\n", err); 2200 goto out; 2201 } 2202 2203 /* wait */ 2204 mutex_unlock(&mdsc->mutex); 2205 dout("do_request waiting\n"); 2206 if (req->r_timeout) { 2207 err = (long)wait_for_completion_killable_timeout( 2208 &req->r_completion, req->r_timeout); 2209 if (err == 0) 2210 err = -EIO; 2211 } else { 2212 err = wait_for_completion_killable(&req->r_completion); 2213 } 2214 dout("do_request waited, got %d\n", err); 2215 mutex_lock(&mdsc->mutex); 2216 2217 /* only abort if we didn't race with a real reply */ 2218 if (req->r_got_result) { 2219 err = le32_to_cpu(req->r_reply_info.head->result); 2220 } else if (err < 0) { 2221 dout("aborted request %lld with %d\n", req->r_tid, err); 2222 2223 /* 2224 * ensure we aren't running concurrently with 2225 * ceph_fill_trace or ceph_readdir_prepopulate, which 2226 * rely on locks (dir mutex) held by our caller. 2227 */ 2228 mutex_lock(&req->r_fill_mutex); 2229 req->r_err = err; 2230 req->r_aborted = true; 2231 mutex_unlock(&req->r_fill_mutex); 2232 2233 if (req->r_locked_dir && 2234 (req->r_op & CEPH_MDS_OP_WRITE)) 2235 ceph_invalidate_dir_request(req); 2236 } else { 2237 err = req->r_err; 2238 } 2239 2240 out: 2241 mutex_unlock(&mdsc->mutex); 2242 dout("do_request %p done, result %d\n", req, err); 2243 return err; 2244 } 2245 2246 /* 2247 * Invalidate dir's completeness, dentry lease state on an aborted MDS 2248 * namespace request. 2249 */ 2250 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 2251 { 2252 struct inode *inode = req->r_locked_dir; 2253 2254 dout("invalidate_dir_request %p (complete, lease(s))\n", inode); 2255 2256 ceph_dir_clear_complete(inode); 2257 if (req->r_dentry) 2258 ceph_invalidate_dentry_lease(req->r_dentry); 2259 if (req->r_old_dentry) 2260 ceph_invalidate_dentry_lease(req->r_old_dentry); 2261 } 2262 2263 /* 2264 * Handle mds reply. 2265 * 2266 * We take the session mutex and parse and process the reply immediately. 2267 * This preserves the logical ordering of replies, capabilities, etc., sent 2268 * by the MDS as they are applied to our local cache. 2269 */ 2270 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 2271 { 2272 struct ceph_mds_client *mdsc = session->s_mdsc; 2273 struct ceph_mds_request *req; 2274 struct ceph_mds_reply_head *head = msg->front.iov_base; 2275 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 2276 u64 tid; 2277 int err, result; 2278 int mds = session->s_mds; 2279 2280 if (msg->front.iov_len < sizeof(*head)) { 2281 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 2282 ceph_msg_dump(msg); 2283 return; 2284 } 2285 2286 /* get request, session */ 2287 tid = le64_to_cpu(msg->hdr.tid); 2288 mutex_lock(&mdsc->mutex); 2289 req = __lookup_request(mdsc, tid); 2290 if (!req) { 2291 dout("handle_reply on unknown tid %llu\n", tid); 2292 mutex_unlock(&mdsc->mutex); 2293 return; 2294 } 2295 dout("handle_reply %p\n", req); 2296 2297 /* correct session? */ 2298 if (req->r_session != session) { 2299 pr_err("mdsc_handle_reply got %llu on session mds%d" 2300 " not mds%d\n", tid, session->s_mds, 2301 req->r_session ? req->r_session->s_mds : -1); 2302 mutex_unlock(&mdsc->mutex); 2303 goto out; 2304 } 2305 2306 /* dup? */ 2307 if ((req->r_got_unsafe && !head->safe) || 2308 (req->r_got_safe && head->safe)) { 2309 pr_warn("got a dup %s reply on %llu from mds%d\n", 2310 head->safe ? "safe" : "unsafe", tid, mds); 2311 mutex_unlock(&mdsc->mutex); 2312 goto out; 2313 } 2314 if (req->r_got_safe && !head->safe) { 2315 pr_warn("got unsafe after safe on %llu from mds%d\n", 2316 tid, mds); 2317 mutex_unlock(&mdsc->mutex); 2318 goto out; 2319 } 2320 2321 result = le32_to_cpu(head->result); 2322 2323 /* 2324 * Handle an ESTALE 2325 * if we're not talking to the authority, send to them 2326 * if the authority has changed while we weren't looking, 2327 * send to new authority 2328 * Otherwise we just have to return an ESTALE 2329 */ 2330 if (result == -ESTALE) { 2331 dout("got ESTALE on request %llu", req->r_tid); 2332 req->r_resend_mds = -1; 2333 if (req->r_direct_mode != USE_AUTH_MDS) { 2334 dout("not using auth, setting for that now"); 2335 req->r_direct_mode = USE_AUTH_MDS; 2336 __do_request(mdsc, req); 2337 mutex_unlock(&mdsc->mutex); 2338 goto out; 2339 } else { 2340 int mds = __choose_mds(mdsc, req); 2341 if (mds >= 0 && mds != req->r_session->s_mds) { 2342 dout("but auth changed, so resending"); 2343 __do_request(mdsc, req); 2344 mutex_unlock(&mdsc->mutex); 2345 goto out; 2346 } 2347 } 2348 dout("have to return ESTALE on request %llu", req->r_tid); 2349 } 2350 2351 2352 if (head->safe) { 2353 req->r_got_safe = true; 2354 __unregister_request(mdsc, req); 2355 2356 if (req->r_got_unsafe) { 2357 /* 2358 * We already handled the unsafe response, now do the 2359 * cleanup. No need to examine the response; the MDS 2360 * doesn't include any result info in the safe 2361 * response. And even if it did, there is nothing 2362 * useful we could do with a revised return value. 2363 */ 2364 dout("got safe reply %llu, mds%d\n", tid, mds); 2365 list_del_init(&req->r_unsafe_item); 2366 2367 /* last unsafe request during umount? */ 2368 if (mdsc->stopping && !__get_oldest_req(mdsc)) 2369 complete_all(&mdsc->safe_umount_waiters); 2370 mutex_unlock(&mdsc->mutex); 2371 goto out; 2372 } 2373 } else { 2374 req->r_got_unsafe = true; 2375 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 2376 } 2377 2378 dout("handle_reply tid %lld result %d\n", tid, result); 2379 rinfo = &req->r_reply_info; 2380 err = parse_reply_info(msg, rinfo, session->s_con.peer_features); 2381 mutex_unlock(&mdsc->mutex); 2382 2383 mutex_lock(&session->s_mutex); 2384 if (err < 0) { 2385 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 2386 ceph_msg_dump(msg); 2387 goto out_err; 2388 } 2389 2390 /* snap trace */ 2391 if (rinfo->snapblob_len) { 2392 down_write(&mdsc->snap_rwsem); 2393 ceph_update_snap_trace(mdsc, rinfo->snapblob, 2394 rinfo->snapblob + rinfo->snapblob_len, 2395 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP); 2396 downgrade_write(&mdsc->snap_rwsem); 2397 } else { 2398 down_read(&mdsc->snap_rwsem); 2399 } 2400 2401 /* insert trace into our cache */ 2402 mutex_lock(&req->r_fill_mutex); 2403 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session); 2404 if (err == 0) { 2405 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || 2406 req->r_op == CEPH_MDS_OP_LSSNAP)) 2407 ceph_readdir_prepopulate(req, req->r_session); 2408 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 2409 } 2410 mutex_unlock(&req->r_fill_mutex); 2411 2412 up_read(&mdsc->snap_rwsem); 2413 out_err: 2414 mutex_lock(&mdsc->mutex); 2415 if (!req->r_aborted) { 2416 if (err) { 2417 req->r_err = err; 2418 } else { 2419 req->r_reply = msg; 2420 ceph_msg_get(msg); 2421 req->r_got_result = true; 2422 } 2423 } else { 2424 dout("reply arrived after request %lld was aborted\n", tid); 2425 } 2426 mutex_unlock(&mdsc->mutex); 2427 2428 ceph_add_cap_releases(mdsc, req->r_session); 2429 mutex_unlock(&session->s_mutex); 2430 2431 /* kick calling process */ 2432 complete_request(mdsc, req); 2433 out: 2434 ceph_mdsc_put_request(req); 2435 return; 2436 } 2437 2438 2439 2440 /* 2441 * handle mds notification that our request has been forwarded. 2442 */ 2443 static void handle_forward(struct ceph_mds_client *mdsc, 2444 struct ceph_mds_session *session, 2445 struct ceph_msg *msg) 2446 { 2447 struct ceph_mds_request *req; 2448 u64 tid = le64_to_cpu(msg->hdr.tid); 2449 u32 next_mds; 2450 u32 fwd_seq; 2451 int err = -EINVAL; 2452 void *p = msg->front.iov_base; 2453 void *end = p + msg->front.iov_len; 2454 2455 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 2456 next_mds = ceph_decode_32(&p); 2457 fwd_seq = ceph_decode_32(&p); 2458 2459 mutex_lock(&mdsc->mutex); 2460 req = __lookup_request(mdsc, tid); 2461 if (!req) { 2462 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 2463 goto out; /* dup reply? */ 2464 } 2465 2466 if (req->r_aborted) { 2467 dout("forward tid %llu aborted, unregistering\n", tid); 2468 __unregister_request(mdsc, req); 2469 } else if (fwd_seq <= req->r_num_fwd) { 2470 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 2471 tid, next_mds, req->r_num_fwd, fwd_seq); 2472 } else { 2473 /* resend. forward race not possible; mds would drop */ 2474 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 2475 BUG_ON(req->r_err); 2476 BUG_ON(req->r_got_result); 2477 req->r_num_fwd = fwd_seq; 2478 req->r_resend_mds = next_mds; 2479 put_request_session(req); 2480 __do_request(mdsc, req); 2481 } 2482 ceph_mdsc_put_request(req); 2483 out: 2484 mutex_unlock(&mdsc->mutex); 2485 return; 2486 2487 bad: 2488 pr_err("mdsc_handle_forward decode error err=%d\n", err); 2489 } 2490 2491 /* 2492 * handle a mds session control message 2493 */ 2494 static void handle_session(struct ceph_mds_session *session, 2495 struct ceph_msg *msg) 2496 { 2497 struct ceph_mds_client *mdsc = session->s_mdsc; 2498 u32 op; 2499 u64 seq; 2500 int mds = session->s_mds; 2501 struct ceph_mds_session_head *h = msg->front.iov_base; 2502 int wake = 0; 2503 2504 /* decode */ 2505 if (msg->front.iov_len != sizeof(*h)) 2506 goto bad; 2507 op = le32_to_cpu(h->op); 2508 seq = le64_to_cpu(h->seq); 2509 2510 mutex_lock(&mdsc->mutex); 2511 if (op == CEPH_SESSION_CLOSE) 2512 __unregister_session(mdsc, session); 2513 /* FIXME: this ttl calculation is generous */ 2514 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 2515 mutex_unlock(&mdsc->mutex); 2516 2517 mutex_lock(&session->s_mutex); 2518 2519 dout("handle_session mds%d %s %p state %s seq %llu\n", 2520 mds, ceph_session_op_name(op), session, 2521 ceph_session_state_name(session->s_state), seq); 2522 2523 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 2524 session->s_state = CEPH_MDS_SESSION_OPEN; 2525 pr_info("mds%d came back\n", session->s_mds); 2526 } 2527 2528 switch (op) { 2529 case CEPH_SESSION_OPEN: 2530 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2531 pr_info("mds%d reconnect success\n", session->s_mds); 2532 session->s_state = CEPH_MDS_SESSION_OPEN; 2533 renewed_caps(mdsc, session, 0); 2534 wake = 1; 2535 if (mdsc->stopping) 2536 __close_session(mdsc, session); 2537 break; 2538 2539 case CEPH_SESSION_RENEWCAPS: 2540 if (session->s_renew_seq == seq) 2541 renewed_caps(mdsc, session, 1); 2542 break; 2543 2544 case CEPH_SESSION_CLOSE: 2545 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2546 pr_info("mds%d reconnect denied\n", session->s_mds); 2547 remove_session_caps(session); 2548 wake = 2; /* for good measure */ 2549 wake_up_all(&mdsc->session_close_wq); 2550 break; 2551 2552 case CEPH_SESSION_STALE: 2553 pr_info("mds%d caps went stale, renewing\n", 2554 session->s_mds); 2555 spin_lock(&session->s_gen_ttl_lock); 2556 session->s_cap_gen++; 2557 session->s_cap_ttl = jiffies - 1; 2558 spin_unlock(&session->s_gen_ttl_lock); 2559 send_renew_caps(mdsc, session); 2560 break; 2561 2562 case CEPH_SESSION_RECALL_STATE: 2563 trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 2564 break; 2565 2566 case CEPH_SESSION_FLUSHMSG: 2567 send_flushmsg_ack(mdsc, session, seq); 2568 break; 2569 2570 default: 2571 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 2572 WARN_ON(1); 2573 } 2574 2575 mutex_unlock(&session->s_mutex); 2576 if (wake) { 2577 mutex_lock(&mdsc->mutex); 2578 __wake_requests(mdsc, &session->s_waiting); 2579 if (wake == 2) 2580 kick_requests(mdsc, mds); 2581 mutex_unlock(&mdsc->mutex); 2582 } 2583 return; 2584 2585 bad: 2586 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 2587 (int)msg->front.iov_len); 2588 ceph_msg_dump(msg); 2589 return; 2590 } 2591 2592 2593 /* 2594 * called under session->mutex. 2595 */ 2596 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 2597 struct ceph_mds_session *session) 2598 { 2599 struct ceph_mds_request *req, *nreq; 2600 int err; 2601 2602 dout("replay_unsafe_requests mds%d\n", session->s_mds); 2603 2604 mutex_lock(&mdsc->mutex); 2605 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) { 2606 err = __prepare_send_request(mdsc, req, session->s_mds); 2607 if (!err) { 2608 ceph_msg_get(req->r_request); 2609 ceph_con_send(&session->s_con, req->r_request); 2610 } 2611 } 2612 mutex_unlock(&mdsc->mutex); 2613 } 2614 2615 /* 2616 * Encode information about a cap for a reconnect with the MDS. 2617 */ 2618 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap, 2619 void *arg) 2620 { 2621 union { 2622 struct ceph_mds_cap_reconnect v2; 2623 struct ceph_mds_cap_reconnect_v1 v1; 2624 } rec; 2625 size_t reclen; 2626 struct ceph_inode_info *ci; 2627 struct ceph_reconnect_state *recon_state = arg; 2628 struct ceph_pagelist *pagelist = recon_state->pagelist; 2629 char *path; 2630 int pathlen, err; 2631 u64 pathbase; 2632 struct dentry *dentry; 2633 2634 ci = cap->ci; 2635 2636 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 2637 inode, ceph_vinop(inode), cap, cap->cap_id, 2638 ceph_cap_string(cap->issued)); 2639 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 2640 if (err) 2641 return err; 2642 2643 dentry = d_find_alias(inode); 2644 if (dentry) { 2645 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0); 2646 if (IS_ERR(path)) { 2647 err = PTR_ERR(path); 2648 goto out_dput; 2649 } 2650 } else { 2651 path = NULL; 2652 pathlen = 0; 2653 } 2654 err = ceph_pagelist_encode_string(pagelist, path, pathlen); 2655 if (err) 2656 goto out_free; 2657 2658 spin_lock(&ci->i_ceph_lock); 2659 cap->seq = 0; /* reset cap seq */ 2660 cap->issue_seq = 0; /* and issue_seq */ 2661 cap->mseq = 0; /* and migrate_seq */ 2662 cap->cap_gen = cap->session->s_cap_gen; 2663 2664 if (recon_state->flock) { 2665 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 2666 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2667 rec.v2.issued = cpu_to_le32(cap->issued); 2668 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2669 rec.v2.pathbase = cpu_to_le64(pathbase); 2670 rec.v2.flock_len = 0; 2671 reclen = sizeof(rec.v2); 2672 } else { 2673 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 2674 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2675 rec.v1.issued = cpu_to_le32(cap->issued); 2676 rec.v1.size = cpu_to_le64(inode->i_size); 2677 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime); 2678 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime); 2679 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2680 rec.v1.pathbase = cpu_to_le64(pathbase); 2681 reclen = sizeof(rec.v1); 2682 } 2683 spin_unlock(&ci->i_ceph_lock); 2684 2685 if (recon_state->flock) { 2686 int num_fcntl_locks, num_flock_locks; 2687 struct ceph_filelock *flocks; 2688 2689 encode_again: 2690 spin_lock(&inode->i_lock); 2691 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); 2692 spin_unlock(&inode->i_lock); 2693 flocks = kmalloc((num_fcntl_locks+num_flock_locks) * 2694 sizeof(struct ceph_filelock), GFP_NOFS); 2695 if (!flocks) { 2696 err = -ENOMEM; 2697 goto out_free; 2698 } 2699 spin_lock(&inode->i_lock); 2700 err = ceph_encode_locks_to_buffer(inode, flocks, 2701 num_fcntl_locks, 2702 num_flock_locks); 2703 spin_unlock(&inode->i_lock); 2704 if (err) { 2705 kfree(flocks); 2706 if (err == -ENOSPC) 2707 goto encode_again; 2708 goto out_free; 2709 } 2710 /* 2711 * number of encoded locks is stable, so copy to pagelist 2712 */ 2713 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) + 2714 (num_fcntl_locks+num_flock_locks) * 2715 sizeof(struct ceph_filelock)); 2716 err = ceph_pagelist_append(pagelist, &rec, reclen); 2717 if (!err) 2718 err = ceph_locks_to_pagelist(flocks, pagelist, 2719 num_fcntl_locks, 2720 num_flock_locks); 2721 kfree(flocks); 2722 } else { 2723 err = ceph_pagelist_append(pagelist, &rec, reclen); 2724 } 2725 2726 recon_state->nr_caps++; 2727 out_free: 2728 kfree(path); 2729 out_dput: 2730 dput(dentry); 2731 return err; 2732 } 2733 2734 2735 /* 2736 * If an MDS fails and recovers, clients need to reconnect in order to 2737 * reestablish shared state. This includes all caps issued through 2738 * this session _and_ the snap_realm hierarchy. Because it's not 2739 * clear which snap realms the mds cares about, we send everything we 2740 * know about.. that ensures we'll then get any new info the 2741 * recovering MDS might have. 2742 * 2743 * This is a relatively heavyweight operation, but it's rare. 2744 * 2745 * called with mdsc->mutex held. 2746 */ 2747 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 2748 struct ceph_mds_session *session) 2749 { 2750 struct ceph_msg *reply; 2751 struct rb_node *p; 2752 int mds = session->s_mds; 2753 int err = -ENOMEM; 2754 int s_nr_caps; 2755 struct ceph_pagelist *pagelist; 2756 struct ceph_reconnect_state recon_state; 2757 2758 pr_info("mds%d reconnect start\n", mds); 2759 2760 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS); 2761 if (!pagelist) 2762 goto fail_nopagelist; 2763 ceph_pagelist_init(pagelist); 2764 2765 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false); 2766 if (!reply) 2767 goto fail_nomsg; 2768 2769 mutex_lock(&session->s_mutex); 2770 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 2771 session->s_seq = 0; 2772 2773 dout("session %p state %s\n", session, 2774 ceph_session_state_name(session->s_state)); 2775 2776 spin_lock(&session->s_gen_ttl_lock); 2777 session->s_cap_gen++; 2778 spin_unlock(&session->s_gen_ttl_lock); 2779 2780 spin_lock(&session->s_cap_lock); 2781 /* 2782 * notify __ceph_remove_cap() that we are composing cap reconnect. 2783 * If a cap get released before being added to the cap reconnect, 2784 * __ceph_remove_cap() should skip queuing cap release. 2785 */ 2786 session->s_cap_reconnect = 1; 2787 /* drop old cap expires; we're about to reestablish that state */ 2788 discard_cap_releases(mdsc, session); 2789 spin_unlock(&session->s_cap_lock); 2790 2791 /* trim unused caps to reduce MDS's cache rejoin time */ 2792 shrink_dcache_parent(mdsc->fsc->sb->s_root); 2793 2794 ceph_con_close(&session->s_con); 2795 ceph_con_open(&session->s_con, 2796 CEPH_ENTITY_TYPE_MDS, mds, 2797 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 2798 2799 /* replay unsafe requests */ 2800 replay_unsafe_requests(mdsc, session); 2801 2802 down_read(&mdsc->snap_rwsem); 2803 2804 /* traverse this session's caps */ 2805 s_nr_caps = session->s_nr_caps; 2806 err = ceph_pagelist_encode_32(pagelist, s_nr_caps); 2807 if (err) 2808 goto fail; 2809 2810 recon_state.nr_caps = 0; 2811 recon_state.pagelist = pagelist; 2812 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK; 2813 err = iterate_session_caps(session, encode_caps_cb, &recon_state); 2814 if (err < 0) 2815 goto fail; 2816 2817 spin_lock(&session->s_cap_lock); 2818 session->s_cap_reconnect = 0; 2819 spin_unlock(&session->s_cap_lock); 2820 2821 /* 2822 * snaprealms. we provide mds with the ino, seq (version), and 2823 * parent for all of our realms. If the mds has any newer info, 2824 * it will tell us. 2825 */ 2826 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 2827 struct ceph_snap_realm *realm = 2828 rb_entry(p, struct ceph_snap_realm, node); 2829 struct ceph_mds_snaprealm_reconnect sr_rec; 2830 2831 dout(" adding snap realm %llx seq %lld parent %llx\n", 2832 realm->ino, realm->seq, realm->parent_ino); 2833 sr_rec.ino = cpu_to_le64(realm->ino); 2834 sr_rec.seq = cpu_to_le64(realm->seq); 2835 sr_rec.parent = cpu_to_le64(realm->parent_ino); 2836 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 2837 if (err) 2838 goto fail; 2839 } 2840 2841 if (recon_state.flock) 2842 reply->hdr.version = cpu_to_le16(2); 2843 2844 /* raced with cap release? */ 2845 if (s_nr_caps != recon_state.nr_caps) { 2846 struct page *page = list_first_entry(&pagelist->head, 2847 struct page, lru); 2848 __le32 *addr = kmap_atomic(page); 2849 *addr = cpu_to_le32(recon_state.nr_caps); 2850 kunmap_atomic(addr); 2851 } 2852 2853 reply->hdr.data_len = cpu_to_le32(pagelist->length); 2854 ceph_msg_data_add_pagelist(reply, pagelist); 2855 ceph_con_send(&session->s_con, reply); 2856 2857 mutex_unlock(&session->s_mutex); 2858 2859 mutex_lock(&mdsc->mutex); 2860 __wake_requests(mdsc, &session->s_waiting); 2861 mutex_unlock(&mdsc->mutex); 2862 2863 up_read(&mdsc->snap_rwsem); 2864 return; 2865 2866 fail: 2867 ceph_msg_put(reply); 2868 up_read(&mdsc->snap_rwsem); 2869 mutex_unlock(&session->s_mutex); 2870 fail_nomsg: 2871 ceph_pagelist_release(pagelist); 2872 fail_nopagelist: 2873 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 2874 return; 2875 } 2876 2877 2878 /* 2879 * compare old and new mdsmaps, kicking requests 2880 * and closing out old connections as necessary 2881 * 2882 * called under mdsc->mutex. 2883 */ 2884 static void check_new_map(struct ceph_mds_client *mdsc, 2885 struct ceph_mdsmap *newmap, 2886 struct ceph_mdsmap *oldmap) 2887 { 2888 int i; 2889 int oldstate, newstate; 2890 struct ceph_mds_session *s; 2891 2892 dout("check_new_map new %u old %u\n", 2893 newmap->m_epoch, oldmap->m_epoch); 2894 2895 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) { 2896 if (mdsc->sessions[i] == NULL) 2897 continue; 2898 s = mdsc->sessions[i]; 2899 oldstate = ceph_mdsmap_get_state(oldmap, i); 2900 newstate = ceph_mdsmap_get_state(newmap, i); 2901 2902 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 2903 i, ceph_mds_state_name(oldstate), 2904 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 2905 ceph_mds_state_name(newstate), 2906 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 2907 ceph_session_state_name(s->s_state)); 2908 2909 if (i >= newmap->m_max_mds || 2910 memcmp(ceph_mdsmap_get_addr(oldmap, i), 2911 ceph_mdsmap_get_addr(newmap, i), 2912 sizeof(struct ceph_entity_addr))) { 2913 if (s->s_state == CEPH_MDS_SESSION_OPENING) { 2914 /* the session never opened, just close it 2915 * out now */ 2916 __wake_requests(mdsc, &s->s_waiting); 2917 __unregister_session(mdsc, s); 2918 } else { 2919 /* just close it */ 2920 mutex_unlock(&mdsc->mutex); 2921 mutex_lock(&s->s_mutex); 2922 mutex_lock(&mdsc->mutex); 2923 ceph_con_close(&s->s_con); 2924 mutex_unlock(&s->s_mutex); 2925 s->s_state = CEPH_MDS_SESSION_RESTARTING; 2926 } 2927 2928 /* kick any requests waiting on the recovering mds */ 2929 kick_requests(mdsc, i); 2930 } else if (oldstate == newstate) { 2931 continue; /* nothing new with this mds */ 2932 } 2933 2934 /* 2935 * send reconnect? 2936 */ 2937 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 2938 newstate >= CEPH_MDS_STATE_RECONNECT) { 2939 mutex_unlock(&mdsc->mutex); 2940 send_mds_reconnect(mdsc, s); 2941 mutex_lock(&mdsc->mutex); 2942 } 2943 2944 /* 2945 * kick request on any mds that has gone active. 2946 */ 2947 if (oldstate < CEPH_MDS_STATE_ACTIVE && 2948 newstate >= CEPH_MDS_STATE_ACTIVE) { 2949 if (oldstate != CEPH_MDS_STATE_CREATING && 2950 oldstate != CEPH_MDS_STATE_STARTING) 2951 pr_info("mds%d recovery completed\n", s->s_mds); 2952 kick_requests(mdsc, i); 2953 ceph_kick_flushing_caps(mdsc, s); 2954 wake_up_session_caps(s, 1); 2955 } 2956 } 2957 2958 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) { 2959 s = mdsc->sessions[i]; 2960 if (!s) 2961 continue; 2962 if (!ceph_mdsmap_is_laggy(newmap, i)) 2963 continue; 2964 if (s->s_state == CEPH_MDS_SESSION_OPEN || 2965 s->s_state == CEPH_MDS_SESSION_HUNG || 2966 s->s_state == CEPH_MDS_SESSION_CLOSING) { 2967 dout(" connecting to export targets of laggy mds%d\n", 2968 i); 2969 __open_export_target_sessions(mdsc, s); 2970 } 2971 } 2972 } 2973 2974 2975 2976 /* 2977 * leases 2978 */ 2979 2980 /* 2981 * caller must hold session s_mutex, dentry->d_lock 2982 */ 2983 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 2984 { 2985 struct ceph_dentry_info *di = ceph_dentry(dentry); 2986 2987 ceph_put_mds_session(di->lease_session); 2988 di->lease_session = NULL; 2989 } 2990 2991 static void handle_lease(struct ceph_mds_client *mdsc, 2992 struct ceph_mds_session *session, 2993 struct ceph_msg *msg) 2994 { 2995 struct super_block *sb = mdsc->fsc->sb; 2996 struct inode *inode; 2997 struct dentry *parent, *dentry; 2998 struct ceph_dentry_info *di; 2999 int mds = session->s_mds; 3000 struct ceph_mds_lease *h = msg->front.iov_base; 3001 u32 seq; 3002 struct ceph_vino vino; 3003 struct qstr dname; 3004 int release = 0; 3005 3006 dout("handle_lease from mds%d\n", mds); 3007 3008 /* decode */ 3009 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 3010 goto bad; 3011 vino.ino = le64_to_cpu(h->ino); 3012 vino.snap = CEPH_NOSNAP; 3013 seq = le32_to_cpu(h->seq); 3014 dname.name = (void *)h + sizeof(*h) + sizeof(u32); 3015 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32); 3016 if (dname.len != get_unaligned_le32(h+1)) 3017 goto bad; 3018 3019 /* lookup inode */ 3020 inode = ceph_find_inode(sb, vino); 3021 dout("handle_lease %s, ino %llx %p %.*s\n", 3022 ceph_lease_op_name(h->action), vino.ino, inode, 3023 dname.len, dname.name); 3024 3025 mutex_lock(&session->s_mutex); 3026 session->s_seq++; 3027 3028 if (inode == NULL) { 3029 dout("handle_lease no inode %llx\n", vino.ino); 3030 goto release; 3031 } 3032 3033 /* dentry */ 3034 parent = d_find_alias(inode); 3035 if (!parent) { 3036 dout("no parent dentry on inode %p\n", inode); 3037 WARN_ON(1); 3038 goto release; /* hrm... */ 3039 } 3040 dname.hash = full_name_hash(dname.name, dname.len); 3041 dentry = d_lookup(parent, &dname); 3042 dput(parent); 3043 if (!dentry) 3044 goto release; 3045 3046 spin_lock(&dentry->d_lock); 3047 di = ceph_dentry(dentry); 3048 switch (h->action) { 3049 case CEPH_MDS_LEASE_REVOKE: 3050 if (di->lease_session == session) { 3051 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 3052 h->seq = cpu_to_le32(di->lease_seq); 3053 __ceph_mdsc_drop_dentry_lease(dentry); 3054 } 3055 release = 1; 3056 break; 3057 3058 case CEPH_MDS_LEASE_RENEW: 3059 if (di->lease_session == session && 3060 di->lease_gen == session->s_cap_gen && 3061 di->lease_renew_from && 3062 di->lease_renew_after == 0) { 3063 unsigned long duration = 3064 le32_to_cpu(h->duration_ms) * HZ / 1000; 3065 3066 di->lease_seq = seq; 3067 dentry->d_time = di->lease_renew_from + duration; 3068 di->lease_renew_after = di->lease_renew_from + 3069 (duration >> 1); 3070 di->lease_renew_from = 0; 3071 } 3072 break; 3073 } 3074 spin_unlock(&dentry->d_lock); 3075 dput(dentry); 3076 3077 if (!release) 3078 goto out; 3079 3080 release: 3081 /* let's just reuse the same message */ 3082 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 3083 ceph_msg_get(msg); 3084 ceph_con_send(&session->s_con, msg); 3085 3086 out: 3087 iput(inode); 3088 mutex_unlock(&session->s_mutex); 3089 return; 3090 3091 bad: 3092 pr_err("corrupt lease message\n"); 3093 ceph_msg_dump(msg); 3094 } 3095 3096 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 3097 struct inode *inode, 3098 struct dentry *dentry, char action, 3099 u32 seq) 3100 { 3101 struct ceph_msg *msg; 3102 struct ceph_mds_lease *lease; 3103 int len = sizeof(*lease) + sizeof(u32); 3104 int dnamelen = 0; 3105 3106 dout("lease_send_msg inode %p dentry %p %s to mds%d\n", 3107 inode, dentry, ceph_lease_op_name(action), session->s_mds); 3108 dnamelen = dentry->d_name.len; 3109 len += dnamelen; 3110 3111 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 3112 if (!msg) 3113 return; 3114 lease = msg->front.iov_base; 3115 lease->action = action; 3116 lease->ino = cpu_to_le64(ceph_vino(inode).ino); 3117 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap); 3118 lease->seq = cpu_to_le32(seq); 3119 put_unaligned_le32(dnamelen, lease + 1); 3120 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen); 3121 3122 /* 3123 * if this is a preemptive lease RELEASE, no need to 3124 * flush request stream, since the actual request will 3125 * soon follow. 3126 */ 3127 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); 3128 3129 ceph_con_send(&session->s_con, msg); 3130 } 3131 3132 /* 3133 * Preemptively release a lease we expect to invalidate anyway. 3134 * Pass @inode always, @dentry is optional. 3135 */ 3136 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode, 3137 struct dentry *dentry) 3138 { 3139 struct ceph_dentry_info *di; 3140 struct ceph_mds_session *session; 3141 u32 seq; 3142 3143 BUG_ON(inode == NULL); 3144 BUG_ON(dentry == NULL); 3145 3146 /* is dentry lease valid? */ 3147 spin_lock(&dentry->d_lock); 3148 di = ceph_dentry(dentry); 3149 if (!di || !di->lease_session || 3150 di->lease_session->s_mds < 0 || 3151 di->lease_gen != di->lease_session->s_cap_gen || 3152 !time_before(jiffies, dentry->d_time)) { 3153 dout("lease_release inode %p dentry %p -- " 3154 "no lease\n", 3155 inode, dentry); 3156 spin_unlock(&dentry->d_lock); 3157 return; 3158 } 3159 3160 /* we do have a lease on this dentry; note mds and seq */ 3161 session = ceph_get_mds_session(di->lease_session); 3162 seq = di->lease_seq; 3163 __ceph_mdsc_drop_dentry_lease(dentry); 3164 spin_unlock(&dentry->d_lock); 3165 3166 dout("lease_release inode %p dentry %p to mds%d\n", 3167 inode, dentry, session->s_mds); 3168 ceph_mdsc_lease_send_msg(session, inode, dentry, 3169 CEPH_MDS_LEASE_RELEASE, seq); 3170 ceph_put_mds_session(session); 3171 } 3172 3173 /* 3174 * drop all leases (and dentry refs) in preparation for umount 3175 */ 3176 static void drop_leases(struct ceph_mds_client *mdsc) 3177 { 3178 int i; 3179 3180 dout("drop_leases\n"); 3181 mutex_lock(&mdsc->mutex); 3182 for (i = 0; i < mdsc->max_sessions; i++) { 3183 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 3184 if (!s) 3185 continue; 3186 mutex_unlock(&mdsc->mutex); 3187 mutex_lock(&s->s_mutex); 3188 mutex_unlock(&s->s_mutex); 3189 ceph_put_mds_session(s); 3190 mutex_lock(&mdsc->mutex); 3191 } 3192 mutex_unlock(&mdsc->mutex); 3193 } 3194 3195 3196 3197 /* 3198 * delayed work -- periodically trim expired leases, renew caps with mds 3199 */ 3200 static void schedule_delayed(struct ceph_mds_client *mdsc) 3201 { 3202 int delay = 5; 3203 unsigned hz = round_jiffies_relative(HZ * delay); 3204 schedule_delayed_work(&mdsc->delayed_work, hz); 3205 } 3206 3207 static void delayed_work(struct work_struct *work) 3208 { 3209 int i; 3210 struct ceph_mds_client *mdsc = 3211 container_of(work, struct ceph_mds_client, delayed_work.work); 3212 int renew_interval; 3213 int renew_caps; 3214 3215 dout("mdsc delayed_work\n"); 3216 ceph_check_delayed_caps(mdsc); 3217 3218 mutex_lock(&mdsc->mutex); 3219 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 3220 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 3221 mdsc->last_renew_caps); 3222 if (renew_caps) 3223 mdsc->last_renew_caps = jiffies; 3224 3225 for (i = 0; i < mdsc->max_sessions; i++) { 3226 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 3227 if (s == NULL) 3228 continue; 3229 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 3230 dout("resending session close request for mds%d\n", 3231 s->s_mds); 3232 request_close_session(mdsc, s); 3233 ceph_put_mds_session(s); 3234 continue; 3235 } 3236 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 3237 if (s->s_state == CEPH_MDS_SESSION_OPEN) { 3238 s->s_state = CEPH_MDS_SESSION_HUNG; 3239 pr_info("mds%d hung\n", s->s_mds); 3240 } 3241 } 3242 if (s->s_state < CEPH_MDS_SESSION_OPEN) { 3243 /* this mds is failed or recovering, just wait */ 3244 ceph_put_mds_session(s); 3245 continue; 3246 } 3247 mutex_unlock(&mdsc->mutex); 3248 3249 mutex_lock(&s->s_mutex); 3250 if (renew_caps) 3251 send_renew_caps(mdsc, s); 3252 else 3253 ceph_con_keepalive(&s->s_con); 3254 ceph_add_cap_releases(mdsc, s); 3255 if (s->s_state == CEPH_MDS_SESSION_OPEN || 3256 s->s_state == CEPH_MDS_SESSION_HUNG) 3257 ceph_send_cap_releases(mdsc, s); 3258 mutex_unlock(&s->s_mutex); 3259 ceph_put_mds_session(s); 3260 3261 mutex_lock(&mdsc->mutex); 3262 } 3263 mutex_unlock(&mdsc->mutex); 3264 3265 schedule_delayed(mdsc); 3266 } 3267 3268 int ceph_mdsc_init(struct ceph_fs_client *fsc) 3269 3270 { 3271 struct ceph_mds_client *mdsc; 3272 3273 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 3274 if (!mdsc) 3275 return -ENOMEM; 3276 mdsc->fsc = fsc; 3277 fsc->mdsc = mdsc; 3278 mutex_init(&mdsc->mutex); 3279 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 3280 if (mdsc->mdsmap == NULL) { 3281 kfree(mdsc); 3282 return -ENOMEM; 3283 } 3284 3285 init_completion(&mdsc->safe_umount_waiters); 3286 init_waitqueue_head(&mdsc->session_close_wq); 3287 INIT_LIST_HEAD(&mdsc->waiting_for_map); 3288 mdsc->sessions = NULL; 3289 mdsc->max_sessions = 0; 3290 mdsc->stopping = 0; 3291 init_rwsem(&mdsc->snap_rwsem); 3292 mdsc->snap_realms = RB_ROOT; 3293 INIT_LIST_HEAD(&mdsc->snap_empty); 3294 spin_lock_init(&mdsc->snap_empty_lock); 3295 mdsc->last_tid = 0; 3296 mdsc->request_tree = RB_ROOT; 3297 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 3298 mdsc->last_renew_caps = jiffies; 3299 INIT_LIST_HEAD(&mdsc->cap_delay_list); 3300 spin_lock_init(&mdsc->cap_delay_lock); 3301 INIT_LIST_HEAD(&mdsc->snap_flush_list); 3302 spin_lock_init(&mdsc->snap_flush_lock); 3303 mdsc->cap_flush_seq = 0; 3304 INIT_LIST_HEAD(&mdsc->cap_dirty); 3305 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 3306 mdsc->num_cap_flushing = 0; 3307 spin_lock_init(&mdsc->cap_dirty_lock); 3308 init_waitqueue_head(&mdsc->cap_flushing_wq); 3309 spin_lock_init(&mdsc->dentry_lru_lock); 3310 INIT_LIST_HEAD(&mdsc->dentry_lru); 3311 3312 ceph_caps_init(mdsc); 3313 ceph_adjust_min_caps(mdsc, fsc->min_caps); 3314 3315 return 0; 3316 } 3317 3318 /* 3319 * Wait for safe replies on open mds requests. If we time out, drop 3320 * all requests from the tree to avoid dangling dentry refs. 3321 */ 3322 static void wait_requests(struct ceph_mds_client *mdsc) 3323 { 3324 struct ceph_mds_request *req; 3325 struct ceph_fs_client *fsc = mdsc->fsc; 3326 3327 mutex_lock(&mdsc->mutex); 3328 if (__get_oldest_req(mdsc)) { 3329 mutex_unlock(&mdsc->mutex); 3330 3331 dout("wait_requests waiting for requests\n"); 3332 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 3333 fsc->client->options->mount_timeout * HZ); 3334 3335 /* tear down remaining requests */ 3336 mutex_lock(&mdsc->mutex); 3337 while ((req = __get_oldest_req(mdsc))) { 3338 dout("wait_requests timed out on tid %llu\n", 3339 req->r_tid); 3340 __unregister_request(mdsc, req); 3341 } 3342 } 3343 mutex_unlock(&mdsc->mutex); 3344 dout("wait_requests done\n"); 3345 } 3346 3347 /* 3348 * called before mount is ro, and before dentries are torn down. 3349 * (hmm, does this still race with new lookups?) 3350 */ 3351 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 3352 { 3353 dout("pre_umount\n"); 3354 mdsc->stopping = 1; 3355 3356 drop_leases(mdsc); 3357 ceph_flush_dirty_caps(mdsc); 3358 wait_requests(mdsc); 3359 3360 /* 3361 * wait for reply handlers to drop their request refs and 3362 * their inode/dcache refs 3363 */ 3364 ceph_msgr_flush(); 3365 } 3366 3367 /* 3368 * wait for all write mds requests to flush. 3369 */ 3370 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) 3371 { 3372 struct ceph_mds_request *req = NULL, *nextreq; 3373 struct rb_node *n; 3374 3375 mutex_lock(&mdsc->mutex); 3376 dout("wait_unsafe_requests want %lld\n", want_tid); 3377 restart: 3378 req = __get_oldest_req(mdsc); 3379 while (req && req->r_tid <= want_tid) { 3380 /* find next request */ 3381 n = rb_next(&req->r_node); 3382 if (n) 3383 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 3384 else 3385 nextreq = NULL; 3386 if ((req->r_op & CEPH_MDS_OP_WRITE)) { 3387 /* write op */ 3388 ceph_mdsc_get_request(req); 3389 if (nextreq) 3390 ceph_mdsc_get_request(nextreq); 3391 mutex_unlock(&mdsc->mutex); 3392 dout("wait_unsafe_requests wait on %llu (want %llu)\n", 3393 req->r_tid, want_tid); 3394 wait_for_completion(&req->r_safe_completion); 3395 mutex_lock(&mdsc->mutex); 3396 ceph_mdsc_put_request(req); 3397 if (!nextreq) 3398 break; /* next dne before, so we're done! */ 3399 if (RB_EMPTY_NODE(&nextreq->r_node)) { 3400 /* next request was removed from tree */ 3401 ceph_mdsc_put_request(nextreq); 3402 goto restart; 3403 } 3404 ceph_mdsc_put_request(nextreq); /* won't go away */ 3405 } 3406 req = nextreq; 3407 } 3408 mutex_unlock(&mdsc->mutex); 3409 dout("wait_unsafe_requests done\n"); 3410 } 3411 3412 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 3413 { 3414 u64 want_tid, want_flush; 3415 3416 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3417 return; 3418 3419 dout("sync\n"); 3420 mutex_lock(&mdsc->mutex); 3421 want_tid = mdsc->last_tid; 3422 want_flush = mdsc->cap_flush_seq; 3423 mutex_unlock(&mdsc->mutex); 3424 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush); 3425 3426 ceph_flush_dirty_caps(mdsc); 3427 3428 wait_unsafe_requests(mdsc, want_tid); 3429 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush)); 3430 } 3431 3432 /* 3433 * true if all sessions are closed, or we force unmount 3434 */ 3435 static bool done_closing_sessions(struct ceph_mds_client *mdsc) 3436 { 3437 int i, n = 0; 3438 3439 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3440 return true; 3441 3442 mutex_lock(&mdsc->mutex); 3443 for (i = 0; i < mdsc->max_sessions; i++) 3444 if (mdsc->sessions[i]) 3445 n++; 3446 mutex_unlock(&mdsc->mutex); 3447 return n == 0; 3448 } 3449 3450 /* 3451 * called after sb is ro. 3452 */ 3453 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 3454 { 3455 struct ceph_mds_session *session; 3456 int i; 3457 struct ceph_fs_client *fsc = mdsc->fsc; 3458 unsigned long timeout = fsc->client->options->mount_timeout * HZ; 3459 3460 dout("close_sessions\n"); 3461 3462 /* close sessions */ 3463 mutex_lock(&mdsc->mutex); 3464 for (i = 0; i < mdsc->max_sessions; i++) { 3465 session = __ceph_lookup_mds_session(mdsc, i); 3466 if (!session) 3467 continue; 3468 mutex_unlock(&mdsc->mutex); 3469 mutex_lock(&session->s_mutex); 3470 __close_session(mdsc, session); 3471 mutex_unlock(&session->s_mutex); 3472 ceph_put_mds_session(session); 3473 mutex_lock(&mdsc->mutex); 3474 } 3475 mutex_unlock(&mdsc->mutex); 3476 3477 dout("waiting for sessions to close\n"); 3478 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc), 3479 timeout); 3480 3481 /* tear down remaining sessions */ 3482 mutex_lock(&mdsc->mutex); 3483 for (i = 0; i < mdsc->max_sessions; i++) { 3484 if (mdsc->sessions[i]) { 3485 session = get_session(mdsc->sessions[i]); 3486 __unregister_session(mdsc, session); 3487 mutex_unlock(&mdsc->mutex); 3488 mutex_lock(&session->s_mutex); 3489 remove_session_caps(session); 3490 mutex_unlock(&session->s_mutex); 3491 ceph_put_mds_session(session); 3492 mutex_lock(&mdsc->mutex); 3493 } 3494 } 3495 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 3496 mutex_unlock(&mdsc->mutex); 3497 3498 ceph_cleanup_empty_realms(mdsc); 3499 3500 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3501 3502 dout("stopped\n"); 3503 } 3504 3505 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 3506 { 3507 dout("stop\n"); 3508 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3509 if (mdsc->mdsmap) 3510 ceph_mdsmap_destroy(mdsc->mdsmap); 3511 kfree(mdsc->sessions); 3512 ceph_caps_finalize(mdsc); 3513 } 3514 3515 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 3516 { 3517 struct ceph_mds_client *mdsc = fsc->mdsc; 3518 3519 dout("mdsc_destroy %p\n", mdsc); 3520 ceph_mdsc_stop(mdsc); 3521 3522 /* flush out any connection work with references to us */ 3523 ceph_msgr_flush(); 3524 3525 fsc->mdsc = NULL; 3526 kfree(mdsc); 3527 dout("mdsc_destroy %p done\n", mdsc); 3528 } 3529 3530 3531 /* 3532 * handle mds map update. 3533 */ 3534 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 3535 { 3536 u32 epoch; 3537 u32 maplen; 3538 void *p = msg->front.iov_base; 3539 void *end = p + msg->front.iov_len; 3540 struct ceph_mdsmap *newmap, *oldmap; 3541 struct ceph_fsid fsid; 3542 int err = -EINVAL; 3543 3544 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 3545 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 3546 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 3547 return; 3548 epoch = ceph_decode_32(&p); 3549 maplen = ceph_decode_32(&p); 3550 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 3551 3552 /* do we need it? */ 3553 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch); 3554 mutex_lock(&mdsc->mutex); 3555 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 3556 dout("handle_map epoch %u <= our %u\n", 3557 epoch, mdsc->mdsmap->m_epoch); 3558 mutex_unlock(&mdsc->mutex); 3559 return; 3560 } 3561 3562 newmap = ceph_mdsmap_decode(&p, end); 3563 if (IS_ERR(newmap)) { 3564 err = PTR_ERR(newmap); 3565 goto bad_unlock; 3566 } 3567 3568 /* swap into place */ 3569 if (mdsc->mdsmap) { 3570 oldmap = mdsc->mdsmap; 3571 mdsc->mdsmap = newmap; 3572 check_new_map(mdsc, newmap, oldmap); 3573 ceph_mdsmap_destroy(oldmap); 3574 } else { 3575 mdsc->mdsmap = newmap; /* first mds map */ 3576 } 3577 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size; 3578 3579 __wake_requests(mdsc, &mdsc->waiting_for_map); 3580 3581 mutex_unlock(&mdsc->mutex); 3582 schedule_delayed(mdsc); 3583 return; 3584 3585 bad_unlock: 3586 mutex_unlock(&mdsc->mutex); 3587 bad: 3588 pr_err("error decoding mdsmap %d\n", err); 3589 return; 3590 } 3591 3592 static struct ceph_connection *con_get(struct ceph_connection *con) 3593 { 3594 struct ceph_mds_session *s = con->private; 3595 3596 if (get_session(s)) { 3597 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref)); 3598 return con; 3599 } 3600 dout("mdsc con_get %p FAIL\n", s); 3601 return NULL; 3602 } 3603 3604 static void con_put(struct ceph_connection *con) 3605 { 3606 struct ceph_mds_session *s = con->private; 3607 3608 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1); 3609 ceph_put_mds_session(s); 3610 } 3611 3612 /* 3613 * if the client is unresponsive for long enough, the mds will kill 3614 * the session entirely. 3615 */ 3616 static void peer_reset(struct ceph_connection *con) 3617 { 3618 struct ceph_mds_session *s = con->private; 3619 struct ceph_mds_client *mdsc = s->s_mdsc; 3620 3621 pr_warn("mds%d closed our session\n", s->s_mds); 3622 send_mds_reconnect(mdsc, s); 3623 } 3624 3625 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg) 3626 { 3627 struct ceph_mds_session *s = con->private; 3628 struct ceph_mds_client *mdsc = s->s_mdsc; 3629 int type = le16_to_cpu(msg->hdr.type); 3630 3631 mutex_lock(&mdsc->mutex); 3632 if (__verify_registered_session(mdsc, s) < 0) { 3633 mutex_unlock(&mdsc->mutex); 3634 goto out; 3635 } 3636 mutex_unlock(&mdsc->mutex); 3637 3638 switch (type) { 3639 case CEPH_MSG_MDS_MAP: 3640 ceph_mdsc_handle_map(mdsc, msg); 3641 break; 3642 case CEPH_MSG_CLIENT_SESSION: 3643 handle_session(s, msg); 3644 break; 3645 case CEPH_MSG_CLIENT_REPLY: 3646 handle_reply(s, msg); 3647 break; 3648 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 3649 handle_forward(mdsc, s, msg); 3650 break; 3651 case CEPH_MSG_CLIENT_CAPS: 3652 ceph_handle_caps(s, msg); 3653 break; 3654 case CEPH_MSG_CLIENT_SNAP: 3655 ceph_handle_snap(mdsc, s, msg); 3656 break; 3657 case CEPH_MSG_CLIENT_LEASE: 3658 handle_lease(mdsc, s, msg); 3659 break; 3660 3661 default: 3662 pr_err("received unknown message type %d %s\n", type, 3663 ceph_msg_type_name(type)); 3664 } 3665 out: 3666 ceph_msg_put(msg); 3667 } 3668 3669 /* 3670 * authentication 3671 */ 3672 3673 /* 3674 * Note: returned pointer is the address of a structure that's 3675 * managed separately. Caller must *not* attempt to free it. 3676 */ 3677 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con, 3678 int *proto, int force_new) 3679 { 3680 struct ceph_mds_session *s = con->private; 3681 struct ceph_mds_client *mdsc = s->s_mdsc; 3682 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3683 struct ceph_auth_handshake *auth = &s->s_auth; 3684 3685 if (force_new && auth->authorizer) { 3686 ceph_auth_destroy_authorizer(ac, auth->authorizer); 3687 auth->authorizer = NULL; 3688 } 3689 if (!auth->authorizer) { 3690 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3691 auth); 3692 if (ret) 3693 return ERR_PTR(ret); 3694 } else { 3695 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3696 auth); 3697 if (ret) 3698 return ERR_PTR(ret); 3699 } 3700 *proto = ac->protocol; 3701 3702 return auth; 3703 } 3704 3705 3706 static int verify_authorizer_reply(struct ceph_connection *con, int len) 3707 { 3708 struct ceph_mds_session *s = con->private; 3709 struct ceph_mds_client *mdsc = s->s_mdsc; 3710 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3711 3712 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len); 3713 } 3714 3715 static int invalidate_authorizer(struct ceph_connection *con) 3716 { 3717 struct ceph_mds_session *s = con->private; 3718 struct ceph_mds_client *mdsc = s->s_mdsc; 3719 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3720 3721 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 3722 3723 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 3724 } 3725 3726 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, 3727 struct ceph_msg_header *hdr, int *skip) 3728 { 3729 struct ceph_msg *msg; 3730 int type = (int) le16_to_cpu(hdr->type); 3731 int front_len = (int) le32_to_cpu(hdr->front_len); 3732 3733 if (con->in_msg) 3734 return con->in_msg; 3735 3736 *skip = 0; 3737 msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 3738 if (!msg) { 3739 pr_err("unable to allocate msg type %d len %d\n", 3740 type, front_len); 3741 return NULL; 3742 } 3743 3744 return msg; 3745 } 3746 3747 static const struct ceph_connection_operations mds_con_ops = { 3748 .get = con_get, 3749 .put = con_put, 3750 .dispatch = dispatch, 3751 .get_authorizer = get_authorizer, 3752 .verify_authorizer_reply = verify_authorizer_reply, 3753 .invalidate_authorizer = invalidate_authorizer, 3754 .peer_reset = peer_reset, 3755 .alloc_msg = mds_alloc_msg, 3756 }; 3757 3758 /* eof */ 3759