1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/wait.h> 5 #include <linux/slab.h> 6 #include <linux/gfp.h> 7 #include <linux/sched.h> 8 #include <linux/debugfs.h> 9 #include <linux/seq_file.h> 10 #include <linux/utsname.h> 11 12 #include "super.h" 13 #include "mds_client.h" 14 15 #include <linux/ceph/ceph_features.h> 16 #include <linux/ceph/messenger.h> 17 #include <linux/ceph/decode.h> 18 #include <linux/ceph/pagelist.h> 19 #include <linux/ceph/auth.h> 20 #include <linux/ceph/debugfs.h> 21 22 /* 23 * A cluster of MDS (metadata server) daemons is responsible for 24 * managing the file system namespace (the directory hierarchy and 25 * inodes) and for coordinating shared access to storage. Metadata is 26 * partitioning hierarchically across a number of servers, and that 27 * partition varies over time as the cluster adjusts the distribution 28 * in order to balance load. 29 * 30 * The MDS client is primarily responsible to managing synchronous 31 * metadata requests for operations like open, unlink, and so forth. 32 * If there is a MDS failure, we find out about it when we (possibly 33 * request and) receive a new MDS map, and can resubmit affected 34 * requests. 35 * 36 * For the most part, though, we take advantage of a lossless 37 * communications channel to the MDS, and do not need to worry about 38 * timing out or resubmitting requests. 39 * 40 * We maintain a stateful "session" with each MDS we interact with. 41 * Within each session, we sent periodic heartbeat messages to ensure 42 * any capabilities or leases we have been issues remain valid. If 43 * the session times out and goes stale, our leases and capabilities 44 * are no longer valid. 45 */ 46 47 struct ceph_reconnect_state { 48 int nr_caps; 49 struct ceph_pagelist *pagelist; 50 bool flock; 51 }; 52 53 static void __wake_requests(struct ceph_mds_client *mdsc, 54 struct list_head *head); 55 56 static const struct ceph_connection_operations mds_con_ops; 57 58 59 /* 60 * mds reply parsing 61 */ 62 63 /* 64 * parse individual inode info 65 */ 66 static int parse_reply_info_in(void **p, void *end, 67 struct ceph_mds_reply_info_in *info, 68 u64 features) 69 { 70 int err = -EIO; 71 72 info->in = *p; 73 *p += sizeof(struct ceph_mds_reply_inode) + 74 sizeof(*info->in->fragtree.splits) * 75 le32_to_cpu(info->in->fragtree.nsplits); 76 77 ceph_decode_32_safe(p, end, info->symlink_len, bad); 78 ceph_decode_need(p, end, info->symlink_len, bad); 79 info->symlink = *p; 80 *p += info->symlink_len; 81 82 if (features & CEPH_FEATURE_DIRLAYOUTHASH) 83 ceph_decode_copy_safe(p, end, &info->dir_layout, 84 sizeof(info->dir_layout), bad); 85 else 86 memset(&info->dir_layout, 0, sizeof(info->dir_layout)); 87 88 ceph_decode_32_safe(p, end, info->xattr_len, bad); 89 ceph_decode_need(p, end, info->xattr_len, bad); 90 info->xattr_data = *p; 91 *p += info->xattr_len; 92 93 if (features & CEPH_FEATURE_MDS_INLINE_DATA) { 94 ceph_decode_64_safe(p, end, info->inline_version, bad); 95 ceph_decode_32_safe(p, end, info->inline_len, bad); 96 ceph_decode_need(p, end, info->inline_len, bad); 97 info->inline_data = *p; 98 *p += info->inline_len; 99 } else 100 info->inline_version = CEPH_INLINE_NONE; 101 102 return 0; 103 bad: 104 return err; 105 } 106 107 /* 108 * parse a normal reply, which may contain a (dir+)dentry and/or a 109 * target inode. 110 */ 111 static int parse_reply_info_trace(void **p, void *end, 112 struct ceph_mds_reply_info_parsed *info, 113 u64 features) 114 { 115 int err; 116 117 if (info->head->is_dentry) { 118 err = parse_reply_info_in(p, end, &info->diri, features); 119 if (err < 0) 120 goto out_bad; 121 122 if (unlikely(*p + sizeof(*info->dirfrag) > end)) 123 goto bad; 124 info->dirfrag = *p; 125 *p += sizeof(*info->dirfrag) + 126 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist); 127 if (unlikely(*p > end)) 128 goto bad; 129 130 ceph_decode_32_safe(p, end, info->dname_len, bad); 131 ceph_decode_need(p, end, info->dname_len, bad); 132 info->dname = *p; 133 *p += info->dname_len; 134 info->dlease = *p; 135 *p += sizeof(*info->dlease); 136 } 137 138 if (info->head->is_target) { 139 err = parse_reply_info_in(p, end, &info->targeti, features); 140 if (err < 0) 141 goto out_bad; 142 } 143 144 if (unlikely(*p != end)) 145 goto bad; 146 return 0; 147 148 bad: 149 err = -EIO; 150 out_bad: 151 pr_err("problem parsing mds trace %d\n", err); 152 return err; 153 } 154 155 /* 156 * parse readdir results 157 */ 158 static int parse_reply_info_dir(void **p, void *end, 159 struct ceph_mds_reply_info_parsed *info, 160 u64 features) 161 { 162 u32 num, i = 0; 163 int err; 164 165 info->dir_dir = *p; 166 if (*p + sizeof(*info->dir_dir) > end) 167 goto bad; 168 *p += sizeof(*info->dir_dir) + 169 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist); 170 if (*p > end) 171 goto bad; 172 173 ceph_decode_need(p, end, sizeof(num) + 2, bad); 174 num = ceph_decode_32(p); 175 info->dir_end = ceph_decode_8(p); 176 info->dir_complete = ceph_decode_8(p); 177 if (num == 0) 178 goto done; 179 180 BUG_ON(!info->dir_in); 181 info->dir_dname = (void *)(info->dir_in + num); 182 info->dir_dname_len = (void *)(info->dir_dname + num); 183 info->dir_dlease = (void *)(info->dir_dname_len + num); 184 if ((unsigned long)(info->dir_dlease + num) > 185 (unsigned long)info->dir_in + info->dir_buf_size) { 186 pr_err("dir contents are larger than expected\n"); 187 WARN_ON(1); 188 goto bad; 189 } 190 191 info->dir_nr = num; 192 while (num) { 193 /* dentry */ 194 ceph_decode_need(p, end, sizeof(u32)*2, bad); 195 info->dir_dname_len[i] = ceph_decode_32(p); 196 ceph_decode_need(p, end, info->dir_dname_len[i], bad); 197 info->dir_dname[i] = *p; 198 *p += info->dir_dname_len[i]; 199 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i], 200 info->dir_dname[i]); 201 info->dir_dlease[i] = *p; 202 *p += sizeof(struct ceph_mds_reply_lease); 203 204 /* inode */ 205 err = parse_reply_info_in(p, end, &info->dir_in[i], features); 206 if (err < 0) 207 goto out_bad; 208 i++; 209 num--; 210 } 211 212 done: 213 if (*p != end) 214 goto bad; 215 return 0; 216 217 bad: 218 err = -EIO; 219 out_bad: 220 pr_err("problem parsing dir contents %d\n", err); 221 return err; 222 } 223 224 /* 225 * parse fcntl F_GETLK results 226 */ 227 static int parse_reply_info_filelock(void **p, void *end, 228 struct ceph_mds_reply_info_parsed *info, 229 u64 features) 230 { 231 if (*p + sizeof(*info->filelock_reply) > end) 232 goto bad; 233 234 info->filelock_reply = *p; 235 *p += sizeof(*info->filelock_reply); 236 237 if (unlikely(*p != end)) 238 goto bad; 239 return 0; 240 241 bad: 242 return -EIO; 243 } 244 245 /* 246 * parse create results 247 */ 248 static int parse_reply_info_create(void **p, void *end, 249 struct ceph_mds_reply_info_parsed *info, 250 u64 features) 251 { 252 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) { 253 if (*p == end) { 254 info->has_create_ino = false; 255 } else { 256 info->has_create_ino = true; 257 info->ino = ceph_decode_64(p); 258 } 259 } 260 261 if (unlikely(*p != end)) 262 goto bad; 263 return 0; 264 265 bad: 266 return -EIO; 267 } 268 269 /* 270 * parse extra results 271 */ 272 static int parse_reply_info_extra(void **p, void *end, 273 struct ceph_mds_reply_info_parsed *info, 274 u64 features) 275 { 276 if (info->head->op == CEPH_MDS_OP_GETFILELOCK) 277 return parse_reply_info_filelock(p, end, info, features); 278 else if (info->head->op == CEPH_MDS_OP_READDIR || 279 info->head->op == CEPH_MDS_OP_LSSNAP) 280 return parse_reply_info_dir(p, end, info, features); 281 else if (info->head->op == CEPH_MDS_OP_CREATE) 282 return parse_reply_info_create(p, end, info, features); 283 else 284 return -EIO; 285 } 286 287 /* 288 * parse entire mds reply 289 */ 290 static int parse_reply_info(struct ceph_msg *msg, 291 struct ceph_mds_reply_info_parsed *info, 292 u64 features) 293 { 294 void *p, *end; 295 u32 len; 296 int err; 297 298 info->head = msg->front.iov_base; 299 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 300 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 301 302 /* trace */ 303 ceph_decode_32_safe(&p, end, len, bad); 304 if (len > 0) { 305 ceph_decode_need(&p, end, len, bad); 306 err = parse_reply_info_trace(&p, p+len, info, features); 307 if (err < 0) 308 goto out_bad; 309 } 310 311 /* extra */ 312 ceph_decode_32_safe(&p, end, len, bad); 313 if (len > 0) { 314 ceph_decode_need(&p, end, len, bad); 315 err = parse_reply_info_extra(&p, p+len, info, features); 316 if (err < 0) 317 goto out_bad; 318 } 319 320 /* snap blob */ 321 ceph_decode_32_safe(&p, end, len, bad); 322 info->snapblob_len = len; 323 info->snapblob = p; 324 p += len; 325 326 if (p != end) 327 goto bad; 328 return 0; 329 330 bad: 331 err = -EIO; 332 out_bad: 333 pr_err("mds parse_reply err %d\n", err); 334 return err; 335 } 336 337 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 338 { 339 if (!info->dir_in) 340 return; 341 free_pages((unsigned long)info->dir_in, get_order(info->dir_buf_size)); 342 } 343 344 345 /* 346 * sessions 347 */ 348 const char *ceph_session_state_name(int s) 349 { 350 switch (s) { 351 case CEPH_MDS_SESSION_NEW: return "new"; 352 case CEPH_MDS_SESSION_OPENING: return "opening"; 353 case CEPH_MDS_SESSION_OPEN: return "open"; 354 case CEPH_MDS_SESSION_HUNG: return "hung"; 355 case CEPH_MDS_SESSION_CLOSING: return "closing"; 356 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 357 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 358 default: return "???"; 359 } 360 } 361 362 static struct ceph_mds_session *get_session(struct ceph_mds_session *s) 363 { 364 if (atomic_inc_not_zero(&s->s_ref)) { 365 dout("mdsc get_session %p %d -> %d\n", s, 366 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref)); 367 return s; 368 } else { 369 dout("mdsc get_session %p 0 -- FAIL", s); 370 return NULL; 371 } 372 } 373 374 void ceph_put_mds_session(struct ceph_mds_session *s) 375 { 376 dout("mdsc put_session %p %d -> %d\n", s, 377 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1); 378 if (atomic_dec_and_test(&s->s_ref)) { 379 if (s->s_auth.authorizer) 380 ceph_auth_destroy_authorizer( 381 s->s_mdsc->fsc->client->monc.auth, 382 s->s_auth.authorizer); 383 kfree(s); 384 } 385 } 386 387 /* 388 * called under mdsc->mutex 389 */ 390 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 391 int mds) 392 { 393 struct ceph_mds_session *session; 394 395 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL) 396 return NULL; 397 session = mdsc->sessions[mds]; 398 dout("lookup_mds_session %p %d\n", session, 399 atomic_read(&session->s_ref)); 400 get_session(session); 401 return session; 402 } 403 404 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 405 { 406 if (mds >= mdsc->max_sessions) 407 return false; 408 return mdsc->sessions[mds]; 409 } 410 411 static int __verify_registered_session(struct ceph_mds_client *mdsc, 412 struct ceph_mds_session *s) 413 { 414 if (s->s_mds >= mdsc->max_sessions || 415 mdsc->sessions[s->s_mds] != s) 416 return -ENOENT; 417 return 0; 418 } 419 420 /* 421 * create+register a new session for given mds. 422 * called under mdsc->mutex. 423 */ 424 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 425 int mds) 426 { 427 struct ceph_mds_session *s; 428 429 if (mds >= mdsc->mdsmap->m_max_mds) 430 return ERR_PTR(-EINVAL); 431 432 s = kzalloc(sizeof(*s), GFP_NOFS); 433 if (!s) 434 return ERR_PTR(-ENOMEM); 435 s->s_mdsc = mdsc; 436 s->s_mds = mds; 437 s->s_state = CEPH_MDS_SESSION_NEW; 438 s->s_ttl = 0; 439 s->s_seq = 0; 440 mutex_init(&s->s_mutex); 441 442 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 443 444 spin_lock_init(&s->s_gen_ttl_lock); 445 s->s_cap_gen = 0; 446 s->s_cap_ttl = jiffies - 1; 447 448 spin_lock_init(&s->s_cap_lock); 449 s->s_renew_requested = 0; 450 s->s_renew_seq = 0; 451 INIT_LIST_HEAD(&s->s_caps); 452 s->s_nr_caps = 0; 453 s->s_trim_caps = 0; 454 atomic_set(&s->s_ref, 1); 455 INIT_LIST_HEAD(&s->s_waiting); 456 INIT_LIST_HEAD(&s->s_unsafe); 457 s->s_num_cap_releases = 0; 458 s->s_cap_reconnect = 0; 459 s->s_cap_iterator = NULL; 460 INIT_LIST_HEAD(&s->s_cap_releases); 461 INIT_LIST_HEAD(&s->s_cap_releases_done); 462 INIT_LIST_HEAD(&s->s_cap_flushing); 463 INIT_LIST_HEAD(&s->s_cap_snaps_flushing); 464 465 dout("register_session mds%d\n", mds); 466 if (mds >= mdsc->max_sessions) { 467 int newmax = 1 << get_count_order(mds+1); 468 struct ceph_mds_session **sa; 469 470 dout("register_session realloc to %d\n", newmax); 471 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 472 if (sa == NULL) 473 goto fail_realloc; 474 if (mdsc->sessions) { 475 memcpy(sa, mdsc->sessions, 476 mdsc->max_sessions * sizeof(void *)); 477 kfree(mdsc->sessions); 478 } 479 mdsc->sessions = sa; 480 mdsc->max_sessions = newmax; 481 } 482 mdsc->sessions[mds] = s; 483 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 484 485 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 486 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 487 488 return s; 489 490 fail_realloc: 491 kfree(s); 492 return ERR_PTR(-ENOMEM); 493 } 494 495 /* 496 * called under mdsc->mutex 497 */ 498 static void __unregister_session(struct ceph_mds_client *mdsc, 499 struct ceph_mds_session *s) 500 { 501 dout("__unregister_session mds%d %p\n", s->s_mds, s); 502 BUG_ON(mdsc->sessions[s->s_mds] != s); 503 mdsc->sessions[s->s_mds] = NULL; 504 ceph_con_close(&s->s_con); 505 ceph_put_mds_session(s); 506 } 507 508 /* 509 * drop session refs in request. 510 * 511 * should be last request ref, or hold mdsc->mutex 512 */ 513 static void put_request_session(struct ceph_mds_request *req) 514 { 515 if (req->r_session) { 516 ceph_put_mds_session(req->r_session); 517 req->r_session = NULL; 518 } 519 } 520 521 void ceph_mdsc_release_request(struct kref *kref) 522 { 523 struct ceph_mds_request *req = container_of(kref, 524 struct ceph_mds_request, 525 r_kref); 526 destroy_reply_info(&req->r_reply_info); 527 if (req->r_request) 528 ceph_msg_put(req->r_request); 529 if (req->r_reply) 530 ceph_msg_put(req->r_reply); 531 if (req->r_inode) { 532 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 533 iput(req->r_inode); 534 } 535 if (req->r_locked_dir) 536 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 537 iput(req->r_target_inode); 538 if (req->r_dentry) 539 dput(req->r_dentry); 540 if (req->r_old_dentry) 541 dput(req->r_old_dentry); 542 if (req->r_old_dentry_dir) { 543 /* 544 * track (and drop pins for) r_old_dentry_dir 545 * separately, since r_old_dentry's d_parent may have 546 * changed between the dir mutex being dropped and 547 * this request being freed. 548 */ 549 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 550 CEPH_CAP_PIN); 551 iput(req->r_old_dentry_dir); 552 } 553 kfree(req->r_path1); 554 kfree(req->r_path2); 555 if (req->r_pagelist) 556 ceph_pagelist_release(req->r_pagelist); 557 put_request_session(req); 558 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 559 kfree(req); 560 } 561 562 /* 563 * lookup session, bump ref if found. 564 * 565 * called under mdsc->mutex. 566 */ 567 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc, 568 u64 tid) 569 { 570 struct ceph_mds_request *req; 571 struct rb_node *n = mdsc->request_tree.rb_node; 572 573 while (n) { 574 req = rb_entry(n, struct ceph_mds_request, r_node); 575 if (tid < req->r_tid) 576 n = n->rb_left; 577 else if (tid > req->r_tid) 578 n = n->rb_right; 579 else { 580 ceph_mdsc_get_request(req); 581 return req; 582 } 583 } 584 return NULL; 585 } 586 587 static void __insert_request(struct ceph_mds_client *mdsc, 588 struct ceph_mds_request *new) 589 { 590 struct rb_node **p = &mdsc->request_tree.rb_node; 591 struct rb_node *parent = NULL; 592 struct ceph_mds_request *req = NULL; 593 594 while (*p) { 595 parent = *p; 596 req = rb_entry(parent, struct ceph_mds_request, r_node); 597 if (new->r_tid < req->r_tid) 598 p = &(*p)->rb_left; 599 else if (new->r_tid > req->r_tid) 600 p = &(*p)->rb_right; 601 else 602 BUG(); 603 } 604 605 rb_link_node(&new->r_node, parent, p); 606 rb_insert_color(&new->r_node, &mdsc->request_tree); 607 } 608 609 /* 610 * Register an in-flight request, and assign a tid. Link to directory 611 * are modifying (if any). 612 * 613 * Called under mdsc->mutex. 614 */ 615 static void __register_request(struct ceph_mds_client *mdsc, 616 struct ceph_mds_request *req, 617 struct inode *dir) 618 { 619 req->r_tid = ++mdsc->last_tid; 620 if (req->r_num_caps) 621 ceph_reserve_caps(mdsc, &req->r_caps_reservation, 622 req->r_num_caps); 623 dout("__register_request %p tid %lld\n", req, req->r_tid); 624 ceph_mdsc_get_request(req); 625 __insert_request(mdsc, req); 626 627 req->r_uid = current_fsuid(); 628 req->r_gid = current_fsgid(); 629 630 if (dir) { 631 struct ceph_inode_info *ci = ceph_inode(dir); 632 633 ihold(dir); 634 spin_lock(&ci->i_unsafe_lock); 635 req->r_unsafe_dir = dir; 636 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 637 spin_unlock(&ci->i_unsafe_lock); 638 } 639 } 640 641 static void __unregister_request(struct ceph_mds_client *mdsc, 642 struct ceph_mds_request *req) 643 { 644 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 645 rb_erase(&req->r_node, &mdsc->request_tree); 646 RB_CLEAR_NODE(&req->r_node); 647 648 if (req->r_unsafe_dir) { 649 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 650 651 spin_lock(&ci->i_unsafe_lock); 652 list_del_init(&req->r_unsafe_dir_item); 653 spin_unlock(&ci->i_unsafe_lock); 654 655 iput(req->r_unsafe_dir); 656 req->r_unsafe_dir = NULL; 657 } 658 659 complete_all(&req->r_safe_completion); 660 661 ceph_mdsc_put_request(req); 662 } 663 664 /* 665 * Choose mds to send request to next. If there is a hint set in the 666 * request (e.g., due to a prior forward hint from the mds), use that. 667 * Otherwise, consult frag tree and/or caps to identify the 668 * appropriate mds. If all else fails, choose randomly. 669 * 670 * Called under mdsc->mutex. 671 */ 672 static struct dentry *get_nonsnap_parent(struct dentry *dentry) 673 { 674 /* 675 * we don't need to worry about protecting the d_parent access 676 * here because we never renaming inside the snapped namespace 677 * except to resplice to another snapdir, and either the old or new 678 * result is a valid result. 679 */ 680 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP) 681 dentry = dentry->d_parent; 682 return dentry; 683 } 684 685 static int __choose_mds(struct ceph_mds_client *mdsc, 686 struct ceph_mds_request *req) 687 { 688 struct inode *inode; 689 struct ceph_inode_info *ci; 690 struct ceph_cap *cap; 691 int mode = req->r_direct_mode; 692 int mds = -1; 693 u32 hash = req->r_direct_hash; 694 bool is_hash = req->r_direct_is_hash; 695 696 /* 697 * is there a specific mds we should try? ignore hint if we have 698 * no session and the mds is not up (active or recovering). 699 */ 700 if (req->r_resend_mds >= 0 && 701 (__have_session(mdsc, req->r_resend_mds) || 702 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 703 dout("choose_mds using resend_mds mds%d\n", 704 req->r_resend_mds); 705 return req->r_resend_mds; 706 } 707 708 if (mode == USE_RANDOM_MDS) 709 goto random; 710 711 inode = NULL; 712 if (req->r_inode) { 713 inode = req->r_inode; 714 } else if (req->r_dentry) { 715 /* ignore race with rename; old or new d_parent is okay */ 716 struct dentry *parent = req->r_dentry->d_parent; 717 struct inode *dir = parent->d_inode; 718 719 if (dir->i_sb != mdsc->fsc->sb) { 720 /* not this fs! */ 721 inode = req->r_dentry->d_inode; 722 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 723 /* direct snapped/virtual snapdir requests 724 * based on parent dir inode */ 725 struct dentry *dn = get_nonsnap_parent(parent); 726 inode = dn->d_inode; 727 dout("__choose_mds using nonsnap parent %p\n", inode); 728 } else { 729 /* dentry target */ 730 inode = req->r_dentry->d_inode; 731 if (!inode || mode == USE_AUTH_MDS) { 732 /* dir + name */ 733 inode = dir; 734 hash = ceph_dentry_hash(dir, req->r_dentry); 735 is_hash = true; 736 } 737 } 738 } 739 740 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash, 741 (int)hash, mode); 742 if (!inode) 743 goto random; 744 ci = ceph_inode(inode); 745 746 if (is_hash && S_ISDIR(inode->i_mode)) { 747 struct ceph_inode_frag frag; 748 int found; 749 750 ceph_choose_frag(ci, hash, &frag, &found); 751 if (found) { 752 if (mode == USE_ANY_MDS && frag.ndist > 0) { 753 u8 r; 754 755 /* choose a random replica */ 756 get_random_bytes(&r, 1); 757 r %= frag.ndist; 758 mds = frag.dist[r]; 759 dout("choose_mds %p %llx.%llx " 760 "frag %u mds%d (%d/%d)\n", 761 inode, ceph_vinop(inode), 762 frag.frag, mds, 763 (int)r, frag.ndist); 764 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 765 CEPH_MDS_STATE_ACTIVE) 766 return mds; 767 } 768 769 /* since this file/dir wasn't known to be 770 * replicated, then we want to look for the 771 * authoritative mds. */ 772 mode = USE_AUTH_MDS; 773 if (frag.mds >= 0) { 774 /* choose auth mds */ 775 mds = frag.mds; 776 dout("choose_mds %p %llx.%llx " 777 "frag %u mds%d (auth)\n", 778 inode, ceph_vinop(inode), frag.frag, mds); 779 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 780 CEPH_MDS_STATE_ACTIVE) 781 return mds; 782 } 783 } 784 } 785 786 spin_lock(&ci->i_ceph_lock); 787 cap = NULL; 788 if (mode == USE_AUTH_MDS) 789 cap = ci->i_auth_cap; 790 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 791 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 792 if (!cap) { 793 spin_unlock(&ci->i_ceph_lock); 794 goto random; 795 } 796 mds = cap->session->s_mds; 797 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n", 798 inode, ceph_vinop(inode), mds, 799 cap == ci->i_auth_cap ? "auth " : "", cap); 800 spin_unlock(&ci->i_ceph_lock); 801 return mds; 802 803 random: 804 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 805 dout("choose_mds chose random mds%d\n", mds); 806 return mds; 807 } 808 809 810 /* 811 * session messages 812 */ 813 static struct ceph_msg *create_session_msg(u32 op, u64 seq) 814 { 815 struct ceph_msg *msg; 816 struct ceph_mds_session_head *h; 817 818 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 819 false); 820 if (!msg) { 821 pr_err("create_session_msg ENOMEM creating msg\n"); 822 return NULL; 823 } 824 h = msg->front.iov_base; 825 h->op = cpu_to_le32(op); 826 h->seq = cpu_to_le64(seq); 827 828 return msg; 829 } 830 831 /* 832 * session message, specialization for CEPH_SESSION_REQUEST_OPEN 833 * to include additional client metadata fields. 834 */ 835 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq) 836 { 837 struct ceph_msg *msg; 838 struct ceph_mds_session_head *h; 839 int i = -1; 840 int metadata_bytes = 0; 841 int metadata_key_count = 0; 842 struct ceph_options *opt = mdsc->fsc->client->options; 843 void *p; 844 845 const char* metadata[3][2] = { 846 {"hostname", utsname()->nodename}, 847 {"entity_id", opt->name ? opt->name : ""}, 848 {NULL, NULL} 849 }; 850 851 /* Calculate serialized length of metadata */ 852 metadata_bytes = 4; /* map length */ 853 for (i = 0; metadata[i][0] != NULL; ++i) { 854 metadata_bytes += 8 + strlen(metadata[i][0]) + 855 strlen(metadata[i][1]); 856 metadata_key_count++; 857 } 858 859 /* Allocate the message */ 860 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes, 861 GFP_NOFS, false); 862 if (!msg) { 863 pr_err("create_session_msg ENOMEM creating msg\n"); 864 return NULL; 865 } 866 h = msg->front.iov_base; 867 h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN); 868 h->seq = cpu_to_le64(seq); 869 870 /* 871 * Serialize client metadata into waiting buffer space, using 872 * the format that userspace expects for map<string, string> 873 * 874 * ClientSession messages with metadata are v2 875 */ 876 msg->hdr.version = cpu_to_le16(2); 877 msg->hdr.compat_version = cpu_to_le16(1); 878 879 /* The write pointer, following the session_head structure */ 880 p = msg->front.iov_base + sizeof(*h); 881 882 /* Number of entries in the map */ 883 ceph_encode_32(&p, metadata_key_count); 884 885 /* Two length-prefixed strings for each entry in the map */ 886 for (i = 0; metadata[i][0] != NULL; ++i) { 887 size_t const key_len = strlen(metadata[i][0]); 888 size_t const val_len = strlen(metadata[i][1]); 889 890 ceph_encode_32(&p, key_len); 891 memcpy(p, metadata[i][0], key_len); 892 p += key_len; 893 ceph_encode_32(&p, val_len); 894 memcpy(p, metadata[i][1], val_len); 895 p += val_len; 896 } 897 898 return msg; 899 } 900 901 /* 902 * send session open request. 903 * 904 * called under mdsc->mutex 905 */ 906 static int __open_session(struct ceph_mds_client *mdsc, 907 struct ceph_mds_session *session) 908 { 909 struct ceph_msg *msg; 910 int mstate; 911 int mds = session->s_mds; 912 913 /* wait for mds to go active? */ 914 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 915 dout("open_session to mds%d (%s)\n", mds, 916 ceph_mds_state_name(mstate)); 917 session->s_state = CEPH_MDS_SESSION_OPENING; 918 session->s_renew_requested = jiffies; 919 920 /* send connect message */ 921 msg = create_session_open_msg(mdsc, session->s_seq); 922 if (!msg) 923 return -ENOMEM; 924 ceph_con_send(&session->s_con, msg); 925 return 0; 926 } 927 928 /* 929 * open sessions for any export targets for the given mds 930 * 931 * called under mdsc->mutex 932 */ 933 static struct ceph_mds_session * 934 __open_export_target_session(struct ceph_mds_client *mdsc, int target) 935 { 936 struct ceph_mds_session *session; 937 938 session = __ceph_lookup_mds_session(mdsc, target); 939 if (!session) { 940 session = register_session(mdsc, target); 941 if (IS_ERR(session)) 942 return session; 943 } 944 if (session->s_state == CEPH_MDS_SESSION_NEW || 945 session->s_state == CEPH_MDS_SESSION_CLOSING) 946 __open_session(mdsc, session); 947 948 return session; 949 } 950 951 struct ceph_mds_session * 952 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target) 953 { 954 struct ceph_mds_session *session; 955 956 dout("open_export_target_session to mds%d\n", target); 957 958 mutex_lock(&mdsc->mutex); 959 session = __open_export_target_session(mdsc, target); 960 mutex_unlock(&mdsc->mutex); 961 962 return session; 963 } 964 965 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 966 struct ceph_mds_session *session) 967 { 968 struct ceph_mds_info *mi; 969 struct ceph_mds_session *ts; 970 int i, mds = session->s_mds; 971 972 if (mds >= mdsc->mdsmap->m_max_mds) 973 return; 974 975 mi = &mdsc->mdsmap->m_info[mds]; 976 dout("open_export_target_sessions for mds%d (%d targets)\n", 977 session->s_mds, mi->num_export_targets); 978 979 for (i = 0; i < mi->num_export_targets; i++) { 980 ts = __open_export_target_session(mdsc, mi->export_targets[i]); 981 if (!IS_ERR(ts)) 982 ceph_put_mds_session(ts); 983 } 984 } 985 986 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 987 struct ceph_mds_session *session) 988 { 989 mutex_lock(&mdsc->mutex); 990 __open_export_target_sessions(mdsc, session); 991 mutex_unlock(&mdsc->mutex); 992 } 993 994 /* 995 * session caps 996 */ 997 998 /* 999 * Free preallocated cap messages assigned to this session 1000 */ 1001 static void cleanup_cap_releases(struct ceph_mds_session *session) 1002 { 1003 struct ceph_msg *msg; 1004 1005 spin_lock(&session->s_cap_lock); 1006 while (!list_empty(&session->s_cap_releases)) { 1007 msg = list_first_entry(&session->s_cap_releases, 1008 struct ceph_msg, list_head); 1009 list_del_init(&msg->list_head); 1010 ceph_msg_put(msg); 1011 } 1012 while (!list_empty(&session->s_cap_releases_done)) { 1013 msg = list_first_entry(&session->s_cap_releases_done, 1014 struct ceph_msg, list_head); 1015 list_del_init(&msg->list_head); 1016 ceph_msg_put(msg); 1017 } 1018 spin_unlock(&session->s_cap_lock); 1019 } 1020 1021 /* 1022 * Helper to safely iterate over all caps associated with a session, with 1023 * special care taken to handle a racing __ceph_remove_cap(). 1024 * 1025 * Caller must hold session s_mutex. 1026 */ 1027 static int iterate_session_caps(struct ceph_mds_session *session, 1028 int (*cb)(struct inode *, struct ceph_cap *, 1029 void *), void *arg) 1030 { 1031 struct list_head *p; 1032 struct ceph_cap *cap; 1033 struct inode *inode, *last_inode = NULL; 1034 struct ceph_cap *old_cap = NULL; 1035 int ret; 1036 1037 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 1038 spin_lock(&session->s_cap_lock); 1039 p = session->s_caps.next; 1040 while (p != &session->s_caps) { 1041 cap = list_entry(p, struct ceph_cap, session_caps); 1042 inode = igrab(&cap->ci->vfs_inode); 1043 if (!inode) { 1044 p = p->next; 1045 continue; 1046 } 1047 session->s_cap_iterator = cap; 1048 spin_unlock(&session->s_cap_lock); 1049 1050 if (last_inode) { 1051 iput(last_inode); 1052 last_inode = NULL; 1053 } 1054 if (old_cap) { 1055 ceph_put_cap(session->s_mdsc, old_cap); 1056 old_cap = NULL; 1057 } 1058 1059 ret = cb(inode, cap, arg); 1060 last_inode = inode; 1061 1062 spin_lock(&session->s_cap_lock); 1063 p = p->next; 1064 if (cap->ci == NULL) { 1065 dout("iterate_session_caps finishing cap %p removal\n", 1066 cap); 1067 BUG_ON(cap->session != session); 1068 list_del_init(&cap->session_caps); 1069 session->s_nr_caps--; 1070 cap->session = NULL; 1071 old_cap = cap; /* put_cap it w/o locks held */ 1072 } 1073 if (ret < 0) 1074 goto out; 1075 } 1076 ret = 0; 1077 out: 1078 session->s_cap_iterator = NULL; 1079 spin_unlock(&session->s_cap_lock); 1080 1081 iput(last_inode); 1082 if (old_cap) 1083 ceph_put_cap(session->s_mdsc, old_cap); 1084 1085 return ret; 1086 } 1087 1088 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 1089 void *arg) 1090 { 1091 struct ceph_inode_info *ci = ceph_inode(inode); 1092 int drop = 0; 1093 1094 dout("removing cap %p, ci is %p, inode is %p\n", 1095 cap, ci, &ci->vfs_inode); 1096 spin_lock(&ci->i_ceph_lock); 1097 __ceph_remove_cap(cap, false); 1098 if (!__ceph_is_any_real_caps(ci)) { 1099 struct ceph_mds_client *mdsc = 1100 ceph_sb_to_client(inode->i_sb)->mdsc; 1101 1102 spin_lock(&mdsc->cap_dirty_lock); 1103 if (!list_empty(&ci->i_dirty_item)) { 1104 pr_info(" dropping dirty %s state for %p %lld\n", 1105 ceph_cap_string(ci->i_dirty_caps), 1106 inode, ceph_ino(inode)); 1107 ci->i_dirty_caps = 0; 1108 list_del_init(&ci->i_dirty_item); 1109 drop = 1; 1110 } 1111 if (!list_empty(&ci->i_flushing_item)) { 1112 pr_info(" dropping dirty+flushing %s state for %p %lld\n", 1113 ceph_cap_string(ci->i_flushing_caps), 1114 inode, ceph_ino(inode)); 1115 ci->i_flushing_caps = 0; 1116 list_del_init(&ci->i_flushing_item); 1117 mdsc->num_cap_flushing--; 1118 drop = 1; 1119 } 1120 if (drop && ci->i_wrbuffer_ref) { 1121 pr_info(" dropping dirty data for %p %lld\n", 1122 inode, ceph_ino(inode)); 1123 ci->i_wrbuffer_ref = 0; 1124 ci->i_wrbuffer_ref_head = 0; 1125 drop++; 1126 } 1127 spin_unlock(&mdsc->cap_dirty_lock); 1128 } 1129 spin_unlock(&ci->i_ceph_lock); 1130 while (drop--) 1131 iput(inode); 1132 return 0; 1133 } 1134 1135 /* 1136 * caller must hold session s_mutex 1137 */ 1138 static void remove_session_caps(struct ceph_mds_session *session) 1139 { 1140 dout("remove_session_caps on %p\n", session); 1141 iterate_session_caps(session, remove_session_caps_cb, NULL); 1142 1143 spin_lock(&session->s_cap_lock); 1144 if (session->s_nr_caps > 0) { 1145 struct super_block *sb = session->s_mdsc->fsc->sb; 1146 struct inode *inode; 1147 struct ceph_cap *cap, *prev = NULL; 1148 struct ceph_vino vino; 1149 /* 1150 * iterate_session_caps() skips inodes that are being 1151 * deleted, we need to wait until deletions are complete. 1152 * __wait_on_freeing_inode() is designed for the job, 1153 * but it is not exported, so use lookup inode function 1154 * to access it. 1155 */ 1156 while (!list_empty(&session->s_caps)) { 1157 cap = list_entry(session->s_caps.next, 1158 struct ceph_cap, session_caps); 1159 if (cap == prev) 1160 break; 1161 prev = cap; 1162 vino = cap->ci->i_vino; 1163 spin_unlock(&session->s_cap_lock); 1164 1165 inode = ceph_find_inode(sb, vino); 1166 iput(inode); 1167 1168 spin_lock(&session->s_cap_lock); 1169 } 1170 } 1171 spin_unlock(&session->s_cap_lock); 1172 1173 BUG_ON(session->s_nr_caps > 0); 1174 BUG_ON(!list_empty(&session->s_cap_flushing)); 1175 cleanup_cap_releases(session); 1176 } 1177 1178 /* 1179 * wake up any threads waiting on this session's caps. if the cap is 1180 * old (didn't get renewed on the client reconnect), remove it now. 1181 * 1182 * caller must hold s_mutex. 1183 */ 1184 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 1185 void *arg) 1186 { 1187 struct ceph_inode_info *ci = ceph_inode(inode); 1188 1189 wake_up_all(&ci->i_cap_wq); 1190 if (arg) { 1191 spin_lock(&ci->i_ceph_lock); 1192 ci->i_wanted_max_size = 0; 1193 ci->i_requested_max_size = 0; 1194 spin_unlock(&ci->i_ceph_lock); 1195 } 1196 return 0; 1197 } 1198 1199 static void wake_up_session_caps(struct ceph_mds_session *session, 1200 int reconnect) 1201 { 1202 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1203 iterate_session_caps(session, wake_up_session_cb, 1204 (void *)(unsigned long)reconnect); 1205 } 1206 1207 /* 1208 * Send periodic message to MDS renewing all currently held caps. The 1209 * ack will reset the expiration for all caps from this session. 1210 * 1211 * caller holds s_mutex 1212 */ 1213 static int send_renew_caps(struct ceph_mds_client *mdsc, 1214 struct ceph_mds_session *session) 1215 { 1216 struct ceph_msg *msg; 1217 int state; 1218 1219 if (time_after_eq(jiffies, session->s_cap_ttl) && 1220 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1221 pr_info("mds%d caps stale\n", session->s_mds); 1222 session->s_renew_requested = jiffies; 1223 1224 /* do not try to renew caps until a recovering mds has reconnected 1225 * with its clients. */ 1226 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1227 if (state < CEPH_MDS_STATE_RECONNECT) { 1228 dout("send_renew_caps ignoring mds%d (%s)\n", 1229 session->s_mds, ceph_mds_state_name(state)); 1230 return 0; 1231 } 1232 1233 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 1234 ceph_mds_state_name(state)); 1235 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 1236 ++session->s_renew_seq); 1237 if (!msg) 1238 return -ENOMEM; 1239 ceph_con_send(&session->s_con, msg); 1240 return 0; 1241 } 1242 1243 static int send_flushmsg_ack(struct ceph_mds_client *mdsc, 1244 struct ceph_mds_session *session, u64 seq) 1245 { 1246 struct ceph_msg *msg; 1247 1248 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n", 1249 session->s_mds, ceph_session_state_name(session->s_state), seq); 1250 msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq); 1251 if (!msg) 1252 return -ENOMEM; 1253 ceph_con_send(&session->s_con, msg); 1254 return 0; 1255 } 1256 1257 1258 /* 1259 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 1260 * 1261 * Called under session->s_mutex 1262 */ 1263 static void renewed_caps(struct ceph_mds_client *mdsc, 1264 struct ceph_mds_session *session, int is_renew) 1265 { 1266 int was_stale; 1267 int wake = 0; 1268 1269 spin_lock(&session->s_cap_lock); 1270 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 1271 1272 session->s_cap_ttl = session->s_renew_requested + 1273 mdsc->mdsmap->m_session_timeout*HZ; 1274 1275 if (was_stale) { 1276 if (time_before(jiffies, session->s_cap_ttl)) { 1277 pr_info("mds%d caps renewed\n", session->s_mds); 1278 wake = 1; 1279 } else { 1280 pr_info("mds%d caps still stale\n", session->s_mds); 1281 } 1282 } 1283 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 1284 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 1285 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 1286 spin_unlock(&session->s_cap_lock); 1287 1288 if (wake) 1289 wake_up_session_caps(session, 0); 1290 } 1291 1292 /* 1293 * send a session close request 1294 */ 1295 static int request_close_session(struct ceph_mds_client *mdsc, 1296 struct ceph_mds_session *session) 1297 { 1298 struct ceph_msg *msg; 1299 1300 dout("request_close_session mds%d state %s seq %lld\n", 1301 session->s_mds, ceph_session_state_name(session->s_state), 1302 session->s_seq); 1303 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); 1304 if (!msg) 1305 return -ENOMEM; 1306 ceph_con_send(&session->s_con, msg); 1307 return 0; 1308 } 1309 1310 /* 1311 * Called with s_mutex held. 1312 */ 1313 static int __close_session(struct ceph_mds_client *mdsc, 1314 struct ceph_mds_session *session) 1315 { 1316 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 1317 return 0; 1318 session->s_state = CEPH_MDS_SESSION_CLOSING; 1319 return request_close_session(mdsc, session); 1320 } 1321 1322 /* 1323 * Trim old(er) caps. 1324 * 1325 * Because we can't cache an inode without one or more caps, we do 1326 * this indirectly: if a cap is unused, we prune its aliases, at which 1327 * point the inode will hopefully get dropped to. 1328 * 1329 * Yes, this is a bit sloppy. Our only real goal here is to respond to 1330 * memory pressure from the MDS, though, so it needn't be perfect. 1331 */ 1332 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1333 { 1334 struct ceph_mds_session *session = arg; 1335 struct ceph_inode_info *ci = ceph_inode(inode); 1336 int used, wanted, oissued, mine; 1337 1338 if (session->s_trim_caps <= 0) 1339 return -1; 1340 1341 spin_lock(&ci->i_ceph_lock); 1342 mine = cap->issued | cap->implemented; 1343 used = __ceph_caps_used(ci); 1344 wanted = __ceph_caps_file_wanted(ci); 1345 oissued = __ceph_caps_issued_other(ci, cap); 1346 1347 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n", 1348 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1349 ceph_cap_string(used), ceph_cap_string(wanted)); 1350 if (cap == ci->i_auth_cap) { 1351 if (ci->i_dirty_caps | ci->i_flushing_caps) 1352 goto out; 1353 if ((used | wanted) & CEPH_CAP_ANY_WR) 1354 goto out; 1355 } 1356 if ((used | wanted) & ~oissued & mine) 1357 goto out; /* we need these caps */ 1358 1359 session->s_trim_caps--; 1360 if (oissued) { 1361 /* we aren't the only cap.. just remove us */ 1362 __ceph_remove_cap(cap, true); 1363 } else { 1364 /* try to drop referring dentries */ 1365 spin_unlock(&ci->i_ceph_lock); 1366 d_prune_aliases(inode); 1367 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 1368 inode, cap, atomic_read(&inode->i_count)); 1369 return 0; 1370 } 1371 1372 out: 1373 spin_unlock(&ci->i_ceph_lock); 1374 return 0; 1375 } 1376 1377 /* 1378 * Trim session cap count down to some max number. 1379 */ 1380 static int trim_caps(struct ceph_mds_client *mdsc, 1381 struct ceph_mds_session *session, 1382 int max_caps) 1383 { 1384 int trim_caps = session->s_nr_caps - max_caps; 1385 1386 dout("trim_caps mds%d start: %d / %d, trim %d\n", 1387 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 1388 if (trim_caps > 0) { 1389 session->s_trim_caps = trim_caps; 1390 iterate_session_caps(session, trim_caps_cb, session); 1391 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 1392 session->s_mds, session->s_nr_caps, max_caps, 1393 trim_caps - session->s_trim_caps); 1394 session->s_trim_caps = 0; 1395 } 1396 1397 ceph_add_cap_releases(mdsc, session); 1398 ceph_send_cap_releases(mdsc, session); 1399 return 0; 1400 } 1401 1402 /* 1403 * Allocate cap_release messages. If there is a partially full message 1404 * in the queue, try to allocate enough to cover it's remainder, so that 1405 * we can send it immediately. 1406 * 1407 * Called under s_mutex. 1408 */ 1409 int ceph_add_cap_releases(struct ceph_mds_client *mdsc, 1410 struct ceph_mds_session *session) 1411 { 1412 struct ceph_msg *msg, *partial = NULL; 1413 struct ceph_mds_cap_release *head; 1414 int err = -ENOMEM; 1415 int extra = mdsc->fsc->mount_options->cap_release_safety; 1416 int num; 1417 1418 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds, 1419 extra); 1420 1421 spin_lock(&session->s_cap_lock); 1422 1423 if (!list_empty(&session->s_cap_releases)) { 1424 msg = list_first_entry(&session->s_cap_releases, 1425 struct ceph_msg, 1426 list_head); 1427 head = msg->front.iov_base; 1428 num = le32_to_cpu(head->num); 1429 if (num) { 1430 dout(" partial %p with (%d/%d)\n", msg, num, 1431 (int)CEPH_CAPS_PER_RELEASE); 1432 extra += CEPH_CAPS_PER_RELEASE - num; 1433 partial = msg; 1434 } 1435 } 1436 while (session->s_num_cap_releases < session->s_nr_caps + extra) { 1437 spin_unlock(&session->s_cap_lock); 1438 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE, 1439 GFP_NOFS, false); 1440 if (!msg) 1441 goto out_unlocked; 1442 dout("add_cap_releases %p msg %p now %d\n", session, msg, 1443 (int)msg->front.iov_len); 1444 head = msg->front.iov_base; 1445 head->num = cpu_to_le32(0); 1446 msg->front.iov_len = sizeof(*head); 1447 spin_lock(&session->s_cap_lock); 1448 list_add(&msg->list_head, &session->s_cap_releases); 1449 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE; 1450 } 1451 1452 if (partial) { 1453 head = partial->front.iov_base; 1454 num = le32_to_cpu(head->num); 1455 dout(" queueing partial %p with %d/%d\n", partial, num, 1456 (int)CEPH_CAPS_PER_RELEASE); 1457 list_move_tail(&partial->list_head, 1458 &session->s_cap_releases_done); 1459 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num; 1460 } 1461 err = 0; 1462 spin_unlock(&session->s_cap_lock); 1463 out_unlocked: 1464 return err; 1465 } 1466 1467 /* 1468 * flush all dirty inode data to disk. 1469 * 1470 * returns true if we've flushed through want_flush_seq 1471 */ 1472 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq) 1473 { 1474 int mds, ret = 1; 1475 1476 dout("check_cap_flush want %lld\n", want_flush_seq); 1477 mutex_lock(&mdsc->mutex); 1478 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) { 1479 struct ceph_mds_session *session = mdsc->sessions[mds]; 1480 1481 if (!session) 1482 continue; 1483 get_session(session); 1484 mutex_unlock(&mdsc->mutex); 1485 1486 mutex_lock(&session->s_mutex); 1487 if (!list_empty(&session->s_cap_flushing)) { 1488 struct ceph_inode_info *ci = 1489 list_entry(session->s_cap_flushing.next, 1490 struct ceph_inode_info, 1491 i_flushing_item); 1492 struct inode *inode = &ci->vfs_inode; 1493 1494 spin_lock(&ci->i_ceph_lock); 1495 if (ci->i_cap_flush_seq <= want_flush_seq) { 1496 dout("check_cap_flush still flushing %p " 1497 "seq %lld <= %lld to mds%d\n", inode, 1498 ci->i_cap_flush_seq, want_flush_seq, 1499 session->s_mds); 1500 ret = 0; 1501 } 1502 spin_unlock(&ci->i_ceph_lock); 1503 } 1504 mutex_unlock(&session->s_mutex); 1505 ceph_put_mds_session(session); 1506 1507 if (!ret) 1508 return ret; 1509 mutex_lock(&mdsc->mutex); 1510 } 1511 1512 mutex_unlock(&mdsc->mutex); 1513 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq); 1514 return ret; 1515 } 1516 1517 /* 1518 * called under s_mutex 1519 */ 1520 void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 1521 struct ceph_mds_session *session) 1522 { 1523 struct ceph_msg *msg; 1524 1525 dout("send_cap_releases mds%d\n", session->s_mds); 1526 spin_lock(&session->s_cap_lock); 1527 while (!list_empty(&session->s_cap_releases_done)) { 1528 msg = list_first_entry(&session->s_cap_releases_done, 1529 struct ceph_msg, list_head); 1530 list_del_init(&msg->list_head); 1531 spin_unlock(&session->s_cap_lock); 1532 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1533 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1534 ceph_con_send(&session->s_con, msg); 1535 spin_lock(&session->s_cap_lock); 1536 } 1537 spin_unlock(&session->s_cap_lock); 1538 } 1539 1540 static void discard_cap_releases(struct ceph_mds_client *mdsc, 1541 struct ceph_mds_session *session) 1542 { 1543 struct ceph_msg *msg; 1544 struct ceph_mds_cap_release *head; 1545 unsigned num; 1546 1547 dout("discard_cap_releases mds%d\n", session->s_mds); 1548 1549 if (!list_empty(&session->s_cap_releases)) { 1550 /* zero out the in-progress message */ 1551 msg = list_first_entry(&session->s_cap_releases, 1552 struct ceph_msg, list_head); 1553 head = msg->front.iov_base; 1554 num = le32_to_cpu(head->num); 1555 dout("discard_cap_releases mds%d %p %u\n", 1556 session->s_mds, msg, num); 1557 head->num = cpu_to_le32(0); 1558 msg->front.iov_len = sizeof(*head); 1559 session->s_num_cap_releases += num; 1560 } 1561 1562 /* requeue completed messages */ 1563 while (!list_empty(&session->s_cap_releases_done)) { 1564 msg = list_first_entry(&session->s_cap_releases_done, 1565 struct ceph_msg, list_head); 1566 list_del_init(&msg->list_head); 1567 1568 head = msg->front.iov_base; 1569 num = le32_to_cpu(head->num); 1570 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, 1571 num); 1572 session->s_num_cap_releases += num; 1573 head->num = cpu_to_le32(0); 1574 msg->front.iov_len = sizeof(*head); 1575 list_add(&msg->list_head, &session->s_cap_releases); 1576 } 1577 } 1578 1579 /* 1580 * requests 1581 */ 1582 1583 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req, 1584 struct inode *dir) 1585 { 1586 struct ceph_inode_info *ci = ceph_inode(dir); 1587 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; 1588 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options; 1589 size_t size = sizeof(*rinfo->dir_in) + sizeof(*rinfo->dir_dname_len) + 1590 sizeof(*rinfo->dir_dname) + sizeof(*rinfo->dir_dlease); 1591 int order, num_entries; 1592 1593 spin_lock(&ci->i_ceph_lock); 1594 num_entries = ci->i_files + ci->i_subdirs; 1595 spin_unlock(&ci->i_ceph_lock); 1596 num_entries = max(num_entries, 1); 1597 num_entries = min(num_entries, opt->max_readdir); 1598 1599 order = get_order(size * num_entries); 1600 while (order >= 0) { 1601 rinfo->dir_in = (void*)__get_free_pages(GFP_NOFS | __GFP_NOWARN, 1602 order); 1603 if (rinfo->dir_in) 1604 break; 1605 order--; 1606 } 1607 if (!rinfo->dir_in) 1608 return -ENOMEM; 1609 1610 num_entries = (PAGE_SIZE << order) / size; 1611 num_entries = min(num_entries, opt->max_readdir); 1612 1613 rinfo->dir_buf_size = PAGE_SIZE << order; 1614 req->r_num_caps = num_entries + 1; 1615 req->r_args.readdir.max_entries = cpu_to_le32(num_entries); 1616 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes); 1617 return 0; 1618 } 1619 1620 /* 1621 * Create an mds request. 1622 */ 1623 struct ceph_mds_request * 1624 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 1625 { 1626 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS); 1627 1628 if (!req) 1629 return ERR_PTR(-ENOMEM); 1630 1631 mutex_init(&req->r_fill_mutex); 1632 req->r_mdsc = mdsc; 1633 req->r_started = jiffies; 1634 req->r_resend_mds = -1; 1635 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 1636 req->r_fmode = -1; 1637 kref_init(&req->r_kref); 1638 INIT_LIST_HEAD(&req->r_wait); 1639 init_completion(&req->r_completion); 1640 init_completion(&req->r_safe_completion); 1641 INIT_LIST_HEAD(&req->r_unsafe_item); 1642 1643 req->r_stamp = CURRENT_TIME; 1644 1645 req->r_op = op; 1646 req->r_direct_mode = mode; 1647 return req; 1648 } 1649 1650 /* 1651 * return oldest (lowest) request, tid in request tree, 0 if none. 1652 * 1653 * called under mdsc->mutex. 1654 */ 1655 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 1656 { 1657 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 1658 return NULL; 1659 return rb_entry(rb_first(&mdsc->request_tree), 1660 struct ceph_mds_request, r_node); 1661 } 1662 1663 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 1664 { 1665 struct ceph_mds_request *req = __get_oldest_req(mdsc); 1666 1667 if (req) 1668 return req->r_tid; 1669 return 0; 1670 } 1671 1672 /* 1673 * Build a dentry's path. Allocate on heap; caller must kfree. Based 1674 * on build_path_from_dentry in fs/cifs/dir.c. 1675 * 1676 * If @stop_on_nosnap, generate path relative to the first non-snapped 1677 * inode. 1678 * 1679 * Encode hidden .snap dirs as a double /, i.e. 1680 * foo/.snap/bar -> foo//bar 1681 */ 1682 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base, 1683 int stop_on_nosnap) 1684 { 1685 struct dentry *temp; 1686 char *path; 1687 int len, pos; 1688 unsigned seq; 1689 1690 if (dentry == NULL) 1691 return ERR_PTR(-EINVAL); 1692 1693 retry: 1694 len = 0; 1695 seq = read_seqbegin(&rename_lock); 1696 rcu_read_lock(); 1697 for (temp = dentry; !IS_ROOT(temp);) { 1698 struct inode *inode = temp->d_inode; 1699 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) 1700 len++; /* slash only */ 1701 else if (stop_on_nosnap && inode && 1702 ceph_snap(inode) == CEPH_NOSNAP) 1703 break; 1704 else 1705 len += 1 + temp->d_name.len; 1706 temp = temp->d_parent; 1707 } 1708 rcu_read_unlock(); 1709 if (len) 1710 len--; /* no leading '/' */ 1711 1712 path = kmalloc(len+1, GFP_NOFS); 1713 if (path == NULL) 1714 return ERR_PTR(-ENOMEM); 1715 pos = len; 1716 path[pos] = 0; /* trailing null */ 1717 rcu_read_lock(); 1718 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) { 1719 struct inode *inode; 1720 1721 spin_lock(&temp->d_lock); 1722 inode = temp->d_inode; 1723 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 1724 dout("build_path path+%d: %p SNAPDIR\n", 1725 pos, temp); 1726 } else if (stop_on_nosnap && inode && 1727 ceph_snap(inode) == CEPH_NOSNAP) { 1728 spin_unlock(&temp->d_lock); 1729 break; 1730 } else { 1731 pos -= temp->d_name.len; 1732 if (pos < 0) { 1733 spin_unlock(&temp->d_lock); 1734 break; 1735 } 1736 strncpy(path + pos, temp->d_name.name, 1737 temp->d_name.len); 1738 } 1739 spin_unlock(&temp->d_lock); 1740 if (pos) 1741 path[--pos] = '/'; 1742 temp = temp->d_parent; 1743 } 1744 rcu_read_unlock(); 1745 if (pos != 0 || read_seqretry(&rename_lock, seq)) { 1746 pr_err("build_path did not end path lookup where " 1747 "expected, namelen is %d, pos is %d\n", len, pos); 1748 /* presumably this is only possible if racing with a 1749 rename of one of the parent directories (we can not 1750 lock the dentries above us to prevent this, but 1751 retrying should be harmless) */ 1752 kfree(path); 1753 goto retry; 1754 } 1755 1756 *base = ceph_ino(temp->d_inode); 1757 *plen = len; 1758 dout("build_path on %p %d built %llx '%.*s'\n", 1759 dentry, d_count(dentry), *base, len, path); 1760 return path; 1761 } 1762 1763 static int build_dentry_path(struct dentry *dentry, 1764 const char **ppath, int *ppathlen, u64 *pino, 1765 int *pfreepath) 1766 { 1767 char *path; 1768 1769 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) { 1770 *pino = ceph_ino(dentry->d_parent->d_inode); 1771 *ppath = dentry->d_name.name; 1772 *ppathlen = dentry->d_name.len; 1773 return 0; 1774 } 1775 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1776 if (IS_ERR(path)) 1777 return PTR_ERR(path); 1778 *ppath = path; 1779 *pfreepath = 1; 1780 return 0; 1781 } 1782 1783 static int build_inode_path(struct inode *inode, 1784 const char **ppath, int *ppathlen, u64 *pino, 1785 int *pfreepath) 1786 { 1787 struct dentry *dentry; 1788 char *path; 1789 1790 if (ceph_snap(inode) == CEPH_NOSNAP) { 1791 *pino = ceph_ino(inode); 1792 *ppathlen = 0; 1793 return 0; 1794 } 1795 dentry = d_find_alias(inode); 1796 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1797 dput(dentry); 1798 if (IS_ERR(path)) 1799 return PTR_ERR(path); 1800 *ppath = path; 1801 *pfreepath = 1; 1802 return 0; 1803 } 1804 1805 /* 1806 * request arguments may be specified via an inode *, a dentry *, or 1807 * an explicit ino+path. 1808 */ 1809 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 1810 const char *rpath, u64 rino, 1811 const char **ppath, int *pathlen, 1812 u64 *ino, int *freepath) 1813 { 1814 int r = 0; 1815 1816 if (rinode) { 1817 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 1818 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 1819 ceph_snap(rinode)); 1820 } else if (rdentry) { 1821 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath); 1822 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 1823 *ppath); 1824 } else if (rpath || rino) { 1825 *ino = rino; 1826 *ppath = rpath; 1827 *pathlen = rpath ? strlen(rpath) : 0; 1828 dout(" path %.*s\n", *pathlen, rpath); 1829 } 1830 1831 return r; 1832 } 1833 1834 /* 1835 * called under mdsc->mutex 1836 */ 1837 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc, 1838 struct ceph_mds_request *req, 1839 int mds) 1840 { 1841 struct ceph_msg *msg; 1842 struct ceph_mds_request_head *head; 1843 const char *path1 = NULL; 1844 const char *path2 = NULL; 1845 u64 ino1 = 0, ino2 = 0; 1846 int pathlen1 = 0, pathlen2 = 0; 1847 int freepath1 = 0, freepath2 = 0; 1848 int len; 1849 u16 releases; 1850 void *p, *end; 1851 int ret; 1852 1853 ret = set_request_path_attr(req->r_inode, req->r_dentry, 1854 req->r_path1, req->r_ino1.ino, 1855 &path1, &pathlen1, &ino1, &freepath1); 1856 if (ret < 0) { 1857 msg = ERR_PTR(ret); 1858 goto out; 1859 } 1860 1861 ret = set_request_path_attr(NULL, req->r_old_dentry, 1862 req->r_path2, req->r_ino2.ino, 1863 &path2, &pathlen2, &ino2, &freepath2); 1864 if (ret < 0) { 1865 msg = ERR_PTR(ret); 1866 goto out_free1; 1867 } 1868 1869 len = sizeof(*head) + 1870 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) + 1871 sizeof(struct timespec); 1872 1873 /* calculate (max) length for cap releases */ 1874 len += sizeof(struct ceph_mds_request_release) * 1875 (!!req->r_inode_drop + !!req->r_dentry_drop + 1876 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 1877 if (req->r_dentry_drop) 1878 len += req->r_dentry->d_name.len; 1879 if (req->r_old_dentry_drop) 1880 len += req->r_old_dentry->d_name.len; 1881 1882 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false); 1883 if (!msg) { 1884 msg = ERR_PTR(-ENOMEM); 1885 goto out_free2; 1886 } 1887 1888 msg->hdr.version = cpu_to_le16(2); 1889 msg->hdr.tid = cpu_to_le64(req->r_tid); 1890 1891 head = msg->front.iov_base; 1892 p = msg->front.iov_base + sizeof(*head); 1893 end = msg->front.iov_base + msg->front.iov_len; 1894 1895 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 1896 head->op = cpu_to_le32(req->r_op); 1897 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid)); 1898 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid)); 1899 head->args = req->r_args; 1900 1901 ceph_encode_filepath(&p, end, ino1, path1); 1902 ceph_encode_filepath(&p, end, ino2, path2); 1903 1904 /* make note of release offset, in case we need to replay */ 1905 req->r_request_release_offset = p - msg->front.iov_base; 1906 1907 /* cap releases */ 1908 releases = 0; 1909 if (req->r_inode_drop) 1910 releases += ceph_encode_inode_release(&p, 1911 req->r_inode ? req->r_inode : req->r_dentry->d_inode, 1912 mds, req->r_inode_drop, req->r_inode_unless, 0); 1913 if (req->r_dentry_drop) 1914 releases += ceph_encode_dentry_release(&p, req->r_dentry, 1915 mds, req->r_dentry_drop, req->r_dentry_unless); 1916 if (req->r_old_dentry_drop) 1917 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 1918 mds, req->r_old_dentry_drop, req->r_old_dentry_unless); 1919 if (req->r_old_inode_drop) 1920 releases += ceph_encode_inode_release(&p, 1921 req->r_old_dentry->d_inode, 1922 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 1923 head->num_releases = cpu_to_le16(releases); 1924 1925 /* time stamp */ 1926 ceph_encode_copy(&p, &req->r_stamp, sizeof(req->r_stamp)); 1927 1928 BUG_ON(p > end); 1929 msg->front.iov_len = p - msg->front.iov_base; 1930 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1931 1932 if (req->r_pagelist) { 1933 struct ceph_pagelist *pagelist = req->r_pagelist; 1934 atomic_inc(&pagelist->refcnt); 1935 ceph_msg_data_add_pagelist(msg, pagelist); 1936 msg->hdr.data_len = cpu_to_le32(pagelist->length); 1937 } else { 1938 msg->hdr.data_len = 0; 1939 } 1940 1941 msg->hdr.data_off = cpu_to_le16(0); 1942 1943 out_free2: 1944 if (freepath2) 1945 kfree((char *)path2); 1946 out_free1: 1947 if (freepath1) 1948 kfree((char *)path1); 1949 out: 1950 return msg; 1951 } 1952 1953 /* 1954 * called under mdsc->mutex if error, under no mutex if 1955 * success. 1956 */ 1957 static void complete_request(struct ceph_mds_client *mdsc, 1958 struct ceph_mds_request *req) 1959 { 1960 if (req->r_callback) 1961 req->r_callback(mdsc, req); 1962 else 1963 complete_all(&req->r_completion); 1964 } 1965 1966 /* 1967 * called under mdsc->mutex 1968 */ 1969 static int __prepare_send_request(struct ceph_mds_client *mdsc, 1970 struct ceph_mds_request *req, 1971 int mds) 1972 { 1973 struct ceph_mds_request_head *rhead; 1974 struct ceph_msg *msg; 1975 int flags = 0; 1976 1977 req->r_attempts++; 1978 if (req->r_inode) { 1979 struct ceph_cap *cap = 1980 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 1981 1982 if (cap) 1983 req->r_sent_on_mseq = cap->mseq; 1984 else 1985 req->r_sent_on_mseq = -1; 1986 } 1987 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, 1988 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 1989 1990 if (req->r_got_unsafe) { 1991 void *p; 1992 /* 1993 * Replay. Do not regenerate message (and rebuild 1994 * paths, etc.); just use the original message. 1995 * Rebuilding paths will break for renames because 1996 * d_move mangles the src name. 1997 */ 1998 msg = req->r_request; 1999 rhead = msg->front.iov_base; 2000 2001 flags = le32_to_cpu(rhead->flags); 2002 flags |= CEPH_MDS_FLAG_REPLAY; 2003 rhead->flags = cpu_to_le32(flags); 2004 2005 if (req->r_target_inode) 2006 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 2007 2008 rhead->num_retry = req->r_attempts - 1; 2009 2010 /* remove cap/dentry releases from message */ 2011 rhead->num_releases = 0; 2012 2013 /* time stamp */ 2014 p = msg->front.iov_base + req->r_request_release_offset; 2015 ceph_encode_copy(&p, &req->r_stamp, sizeof(req->r_stamp)); 2016 2017 msg->front.iov_len = p - msg->front.iov_base; 2018 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2019 return 0; 2020 } 2021 2022 if (req->r_request) { 2023 ceph_msg_put(req->r_request); 2024 req->r_request = NULL; 2025 } 2026 msg = create_request_message(mdsc, req, mds); 2027 if (IS_ERR(msg)) { 2028 req->r_err = PTR_ERR(msg); 2029 complete_request(mdsc, req); 2030 return PTR_ERR(msg); 2031 } 2032 req->r_request = msg; 2033 2034 rhead = msg->front.iov_base; 2035 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 2036 if (req->r_got_unsafe) 2037 flags |= CEPH_MDS_FLAG_REPLAY; 2038 if (req->r_locked_dir) 2039 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 2040 rhead->flags = cpu_to_le32(flags); 2041 rhead->num_fwd = req->r_num_fwd; 2042 rhead->num_retry = req->r_attempts - 1; 2043 rhead->ino = 0; 2044 2045 dout(" r_locked_dir = %p\n", req->r_locked_dir); 2046 return 0; 2047 } 2048 2049 /* 2050 * send request, or put it on the appropriate wait list. 2051 */ 2052 static int __do_request(struct ceph_mds_client *mdsc, 2053 struct ceph_mds_request *req) 2054 { 2055 struct ceph_mds_session *session = NULL; 2056 int mds = -1; 2057 int err = -EAGAIN; 2058 2059 if (req->r_err || req->r_got_result) { 2060 if (req->r_aborted) 2061 __unregister_request(mdsc, req); 2062 goto out; 2063 } 2064 2065 if (req->r_timeout && 2066 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 2067 dout("do_request timed out\n"); 2068 err = -EIO; 2069 goto finish; 2070 } 2071 2072 put_request_session(req); 2073 2074 mds = __choose_mds(mdsc, req); 2075 if (mds < 0 || 2076 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 2077 dout("do_request no mds or not active, waiting for map\n"); 2078 list_add(&req->r_wait, &mdsc->waiting_for_map); 2079 goto out; 2080 } 2081 2082 /* get, open session */ 2083 session = __ceph_lookup_mds_session(mdsc, mds); 2084 if (!session) { 2085 session = register_session(mdsc, mds); 2086 if (IS_ERR(session)) { 2087 err = PTR_ERR(session); 2088 goto finish; 2089 } 2090 } 2091 req->r_session = get_session(session); 2092 2093 dout("do_request mds%d session %p state %s\n", mds, session, 2094 ceph_session_state_name(session->s_state)); 2095 if (session->s_state != CEPH_MDS_SESSION_OPEN && 2096 session->s_state != CEPH_MDS_SESSION_HUNG) { 2097 if (session->s_state == CEPH_MDS_SESSION_NEW || 2098 session->s_state == CEPH_MDS_SESSION_CLOSING) 2099 __open_session(mdsc, session); 2100 list_add(&req->r_wait, &session->s_waiting); 2101 goto out_session; 2102 } 2103 2104 /* send request */ 2105 req->r_resend_mds = -1; /* forget any previous mds hint */ 2106 2107 if (req->r_request_started == 0) /* note request start time */ 2108 req->r_request_started = jiffies; 2109 2110 err = __prepare_send_request(mdsc, req, mds); 2111 if (!err) { 2112 ceph_msg_get(req->r_request); 2113 ceph_con_send(&session->s_con, req->r_request); 2114 } 2115 2116 out_session: 2117 ceph_put_mds_session(session); 2118 out: 2119 return err; 2120 2121 finish: 2122 req->r_err = err; 2123 complete_request(mdsc, req); 2124 goto out; 2125 } 2126 2127 /* 2128 * called under mdsc->mutex 2129 */ 2130 static void __wake_requests(struct ceph_mds_client *mdsc, 2131 struct list_head *head) 2132 { 2133 struct ceph_mds_request *req; 2134 LIST_HEAD(tmp_list); 2135 2136 list_splice_init(head, &tmp_list); 2137 2138 while (!list_empty(&tmp_list)) { 2139 req = list_entry(tmp_list.next, 2140 struct ceph_mds_request, r_wait); 2141 list_del_init(&req->r_wait); 2142 dout(" wake request %p tid %llu\n", req, req->r_tid); 2143 __do_request(mdsc, req); 2144 } 2145 } 2146 2147 /* 2148 * Wake up threads with requests pending for @mds, so that they can 2149 * resubmit their requests to a possibly different mds. 2150 */ 2151 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 2152 { 2153 struct ceph_mds_request *req; 2154 struct rb_node *p = rb_first(&mdsc->request_tree); 2155 2156 dout("kick_requests mds%d\n", mds); 2157 while (p) { 2158 req = rb_entry(p, struct ceph_mds_request, r_node); 2159 p = rb_next(p); 2160 if (req->r_got_unsafe) 2161 continue; 2162 if (req->r_session && 2163 req->r_session->s_mds == mds) { 2164 dout(" kicking tid %llu\n", req->r_tid); 2165 list_del_init(&req->r_wait); 2166 __do_request(mdsc, req); 2167 } 2168 } 2169 } 2170 2171 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, 2172 struct ceph_mds_request *req) 2173 { 2174 dout("submit_request on %p\n", req); 2175 mutex_lock(&mdsc->mutex); 2176 __register_request(mdsc, req, NULL); 2177 __do_request(mdsc, req); 2178 mutex_unlock(&mdsc->mutex); 2179 } 2180 2181 /* 2182 * Synchrously perform an mds request. Take care of all of the 2183 * session setup, forwarding, retry details. 2184 */ 2185 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 2186 struct inode *dir, 2187 struct ceph_mds_request *req) 2188 { 2189 int err; 2190 2191 dout("do_request on %p\n", req); 2192 2193 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */ 2194 if (req->r_inode) 2195 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 2196 if (req->r_locked_dir) 2197 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 2198 if (req->r_old_dentry_dir) 2199 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 2200 CEPH_CAP_PIN); 2201 2202 /* issue */ 2203 mutex_lock(&mdsc->mutex); 2204 __register_request(mdsc, req, dir); 2205 __do_request(mdsc, req); 2206 2207 if (req->r_err) { 2208 err = req->r_err; 2209 __unregister_request(mdsc, req); 2210 dout("do_request early error %d\n", err); 2211 goto out; 2212 } 2213 2214 /* wait */ 2215 mutex_unlock(&mdsc->mutex); 2216 dout("do_request waiting\n"); 2217 if (req->r_timeout) { 2218 err = (long)wait_for_completion_killable_timeout( 2219 &req->r_completion, req->r_timeout); 2220 if (err == 0) 2221 err = -EIO; 2222 } else if (req->r_wait_for_completion) { 2223 err = req->r_wait_for_completion(mdsc, req); 2224 } else { 2225 err = wait_for_completion_killable(&req->r_completion); 2226 } 2227 dout("do_request waited, got %d\n", err); 2228 mutex_lock(&mdsc->mutex); 2229 2230 /* only abort if we didn't race with a real reply */ 2231 if (req->r_got_result) { 2232 err = le32_to_cpu(req->r_reply_info.head->result); 2233 } else if (err < 0) { 2234 dout("aborted request %lld with %d\n", req->r_tid, err); 2235 2236 /* 2237 * ensure we aren't running concurrently with 2238 * ceph_fill_trace or ceph_readdir_prepopulate, which 2239 * rely on locks (dir mutex) held by our caller. 2240 */ 2241 mutex_lock(&req->r_fill_mutex); 2242 req->r_err = err; 2243 req->r_aborted = true; 2244 mutex_unlock(&req->r_fill_mutex); 2245 2246 if (req->r_locked_dir && 2247 (req->r_op & CEPH_MDS_OP_WRITE)) 2248 ceph_invalidate_dir_request(req); 2249 } else { 2250 err = req->r_err; 2251 } 2252 2253 out: 2254 mutex_unlock(&mdsc->mutex); 2255 dout("do_request %p done, result %d\n", req, err); 2256 return err; 2257 } 2258 2259 /* 2260 * Invalidate dir's completeness, dentry lease state on an aborted MDS 2261 * namespace request. 2262 */ 2263 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 2264 { 2265 struct inode *inode = req->r_locked_dir; 2266 2267 dout("invalidate_dir_request %p (complete, lease(s))\n", inode); 2268 2269 ceph_dir_clear_complete(inode); 2270 if (req->r_dentry) 2271 ceph_invalidate_dentry_lease(req->r_dentry); 2272 if (req->r_old_dentry) 2273 ceph_invalidate_dentry_lease(req->r_old_dentry); 2274 } 2275 2276 /* 2277 * Handle mds reply. 2278 * 2279 * We take the session mutex and parse and process the reply immediately. 2280 * This preserves the logical ordering of replies, capabilities, etc., sent 2281 * by the MDS as they are applied to our local cache. 2282 */ 2283 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 2284 { 2285 struct ceph_mds_client *mdsc = session->s_mdsc; 2286 struct ceph_mds_request *req; 2287 struct ceph_mds_reply_head *head = msg->front.iov_base; 2288 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 2289 u64 tid; 2290 int err, result; 2291 int mds = session->s_mds; 2292 2293 if (msg->front.iov_len < sizeof(*head)) { 2294 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 2295 ceph_msg_dump(msg); 2296 return; 2297 } 2298 2299 /* get request, session */ 2300 tid = le64_to_cpu(msg->hdr.tid); 2301 mutex_lock(&mdsc->mutex); 2302 req = __lookup_request(mdsc, tid); 2303 if (!req) { 2304 dout("handle_reply on unknown tid %llu\n", tid); 2305 mutex_unlock(&mdsc->mutex); 2306 return; 2307 } 2308 dout("handle_reply %p\n", req); 2309 2310 /* correct session? */ 2311 if (req->r_session != session) { 2312 pr_err("mdsc_handle_reply got %llu on session mds%d" 2313 " not mds%d\n", tid, session->s_mds, 2314 req->r_session ? req->r_session->s_mds : -1); 2315 mutex_unlock(&mdsc->mutex); 2316 goto out; 2317 } 2318 2319 /* dup? */ 2320 if ((req->r_got_unsafe && !head->safe) || 2321 (req->r_got_safe && head->safe)) { 2322 pr_warn("got a dup %s reply on %llu from mds%d\n", 2323 head->safe ? "safe" : "unsafe", tid, mds); 2324 mutex_unlock(&mdsc->mutex); 2325 goto out; 2326 } 2327 if (req->r_got_safe && !head->safe) { 2328 pr_warn("got unsafe after safe on %llu from mds%d\n", 2329 tid, mds); 2330 mutex_unlock(&mdsc->mutex); 2331 goto out; 2332 } 2333 2334 result = le32_to_cpu(head->result); 2335 2336 /* 2337 * Handle an ESTALE 2338 * if we're not talking to the authority, send to them 2339 * if the authority has changed while we weren't looking, 2340 * send to new authority 2341 * Otherwise we just have to return an ESTALE 2342 */ 2343 if (result == -ESTALE) { 2344 dout("got ESTALE on request %llu", req->r_tid); 2345 req->r_resend_mds = -1; 2346 if (req->r_direct_mode != USE_AUTH_MDS) { 2347 dout("not using auth, setting for that now"); 2348 req->r_direct_mode = USE_AUTH_MDS; 2349 __do_request(mdsc, req); 2350 mutex_unlock(&mdsc->mutex); 2351 goto out; 2352 } else { 2353 int mds = __choose_mds(mdsc, req); 2354 if (mds >= 0 && mds != req->r_session->s_mds) { 2355 dout("but auth changed, so resending"); 2356 __do_request(mdsc, req); 2357 mutex_unlock(&mdsc->mutex); 2358 goto out; 2359 } 2360 } 2361 dout("have to return ESTALE on request %llu", req->r_tid); 2362 } 2363 2364 2365 if (head->safe) { 2366 req->r_got_safe = true; 2367 __unregister_request(mdsc, req); 2368 2369 if (req->r_got_unsafe) { 2370 /* 2371 * We already handled the unsafe response, now do the 2372 * cleanup. No need to examine the response; the MDS 2373 * doesn't include any result info in the safe 2374 * response. And even if it did, there is nothing 2375 * useful we could do with a revised return value. 2376 */ 2377 dout("got safe reply %llu, mds%d\n", tid, mds); 2378 list_del_init(&req->r_unsafe_item); 2379 2380 /* last unsafe request during umount? */ 2381 if (mdsc->stopping && !__get_oldest_req(mdsc)) 2382 complete_all(&mdsc->safe_umount_waiters); 2383 mutex_unlock(&mdsc->mutex); 2384 goto out; 2385 } 2386 } else { 2387 req->r_got_unsafe = true; 2388 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 2389 } 2390 2391 dout("handle_reply tid %lld result %d\n", tid, result); 2392 rinfo = &req->r_reply_info; 2393 err = parse_reply_info(msg, rinfo, session->s_con.peer_features); 2394 mutex_unlock(&mdsc->mutex); 2395 2396 mutex_lock(&session->s_mutex); 2397 if (err < 0) { 2398 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 2399 ceph_msg_dump(msg); 2400 goto out_err; 2401 } 2402 2403 /* snap trace */ 2404 if (rinfo->snapblob_len) { 2405 down_write(&mdsc->snap_rwsem); 2406 ceph_update_snap_trace(mdsc, rinfo->snapblob, 2407 rinfo->snapblob + rinfo->snapblob_len, 2408 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP); 2409 downgrade_write(&mdsc->snap_rwsem); 2410 } else { 2411 down_read(&mdsc->snap_rwsem); 2412 } 2413 2414 /* insert trace into our cache */ 2415 mutex_lock(&req->r_fill_mutex); 2416 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session); 2417 if (err == 0) { 2418 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || 2419 req->r_op == CEPH_MDS_OP_LSSNAP)) 2420 ceph_readdir_prepopulate(req, req->r_session); 2421 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 2422 } 2423 mutex_unlock(&req->r_fill_mutex); 2424 2425 up_read(&mdsc->snap_rwsem); 2426 out_err: 2427 mutex_lock(&mdsc->mutex); 2428 if (!req->r_aborted) { 2429 if (err) { 2430 req->r_err = err; 2431 } else { 2432 req->r_reply = msg; 2433 ceph_msg_get(msg); 2434 req->r_got_result = true; 2435 } 2436 } else { 2437 dout("reply arrived after request %lld was aborted\n", tid); 2438 } 2439 mutex_unlock(&mdsc->mutex); 2440 2441 ceph_add_cap_releases(mdsc, req->r_session); 2442 mutex_unlock(&session->s_mutex); 2443 2444 /* kick calling process */ 2445 complete_request(mdsc, req); 2446 out: 2447 ceph_mdsc_put_request(req); 2448 return; 2449 } 2450 2451 2452 2453 /* 2454 * handle mds notification that our request has been forwarded. 2455 */ 2456 static void handle_forward(struct ceph_mds_client *mdsc, 2457 struct ceph_mds_session *session, 2458 struct ceph_msg *msg) 2459 { 2460 struct ceph_mds_request *req; 2461 u64 tid = le64_to_cpu(msg->hdr.tid); 2462 u32 next_mds; 2463 u32 fwd_seq; 2464 int err = -EINVAL; 2465 void *p = msg->front.iov_base; 2466 void *end = p + msg->front.iov_len; 2467 2468 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 2469 next_mds = ceph_decode_32(&p); 2470 fwd_seq = ceph_decode_32(&p); 2471 2472 mutex_lock(&mdsc->mutex); 2473 req = __lookup_request(mdsc, tid); 2474 if (!req) { 2475 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 2476 goto out; /* dup reply? */ 2477 } 2478 2479 if (req->r_aborted) { 2480 dout("forward tid %llu aborted, unregistering\n", tid); 2481 __unregister_request(mdsc, req); 2482 } else if (fwd_seq <= req->r_num_fwd) { 2483 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 2484 tid, next_mds, req->r_num_fwd, fwd_seq); 2485 } else { 2486 /* resend. forward race not possible; mds would drop */ 2487 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 2488 BUG_ON(req->r_err); 2489 BUG_ON(req->r_got_result); 2490 req->r_num_fwd = fwd_seq; 2491 req->r_resend_mds = next_mds; 2492 put_request_session(req); 2493 __do_request(mdsc, req); 2494 } 2495 ceph_mdsc_put_request(req); 2496 out: 2497 mutex_unlock(&mdsc->mutex); 2498 return; 2499 2500 bad: 2501 pr_err("mdsc_handle_forward decode error err=%d\n", err); 2502 } 2503 2504 /* 2505 * handle a mds session control message 2506 */ 2507 static void handle_session(struct ceph_mds_session *session, 2508 struct ceph_msg *msg) 2509 { 2510 struct ceph_mds_client *mdsc = session->s_mdsc; 2511 u32 op; 2512 u64 seq; 2513 int mds = session->s_mds; 2514 struct ceph_mds_session_head *h = msg->front.iov_base; 2515 int wake = 0; 2516 2517 /* decode */ 2518 if (msg->front.iov_len != sizeof(*h)) 2519 goto bad; 2520 op = le32_to_cpu(h->op); 2521 seq = le64_to_cpu(h->seq); 2522 2523 mutex_lock(&mdsc->mutex); 2524 if (op == CEPH_SESSION_CLOSE) 2525 __unregister_session(mdsc, session); 2526 /* FIXME: this ttl calculation is generous */ 2527 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 2528 mutex_unlock(&mdsc->mutex); 2529 2530 mutex_lock(&session->s_mutex); 2531 2532 dout("handle_session mds%d %s %p state %s seq %llu\n", 2533 mds, ceph_session_op_name(op), session, 2534 ceph_session_state_name(session->s_state), seq); 2535 2536 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 2537 session->s_state = CEPH_MDS_SESSION_OPEN; 2538 pr_info("mds%d came back\n", session->s_mds); 2539 } 2540 2541 switch (op) { 2542 case CEPH_SESSION_OPEN: 2543 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2544 pr_info("mds%d reconnect success\n", session->s_mds); 2545 session->s_state = CEPH_MDS_SESSION_OPEN; 2546 renewed_caps(mdsc, session, 0); 2547 wake = 1; 2548 if (mdsc->stopping) 2549 __close_session(mdsc, session); 2550 break; 2551 2552 case CEPH_SESSION_RENEWCAPS: 2553 if (session->s_renew_seq == seq) 2554 renewed_caps(mdsc, session, 1); 2555 break; 2556 2557 case CEPH_SESSION_CLOSE: 2558 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2559 pr_info("mds%d reconnect denied\n", session->s_mds); 2560 remove_session_caps(session); 2561 wake = 2; /* for good measure */ 2562 wake_up_all(&mdsc->session_close_wq); 2563 break; 2564 2565 case CEPH_SESSION_STALE: 2566 pr_info("mds%d caps went stale, renewing\n", 2567 session->s_mds); 2568 spin_lock(&session->s_gen_ttl_lock); 2569 session->s_cap_gen++; 2570 session->s_cap_ttl = jiffies - 1; 2571 spin_unlock(&session->s_gen_ttl_lock); 2572 send_renew_caps(mdsc, session); 2573 break; 2574 2575 case CEPH_SESSION_RECALL_STATE: 2576 trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 2577 break; 2578 2579 case CEPH_SESSION_FLUSHMSG: 2580 send_flushmsg_ack(mdsc, session, seq); 2581 break; 2582 2583 default: 2584 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 2585 WARN_ON(1); 2586 } 2587 2588 mutex_unlock(&session->s_mutex); 2589 if (wake) { 2590 mutex_lock(&mdsc->mutex); 2591 __wake_requests(mdsc, &session->s_waiting); 2592 if (wake == 2) 2593 kick_requests(mdsc, mds); 2594 mutex_unlock(&mdsc->mutex); 2595 } 2596 return; 2597 2598 bad: 2599 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 2600 (int)msg->front.iov_len); 2601 ceph_msg_dump(msg); 2602 return; 2603 } 2604 2605 2606 /* 2607 * called under session->mutex. 2608 */ 2609 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 2610 struct ceph_mds_session *session) 2611 { 2612 struct ceph_mds_request *req, *nreq; 2613 int err; 2614 2615 dout("replay_unsafe_requests mds%d\n", session->s_mds); 2616 2617 mutex_lock(&mdsc->mutex); 2618 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) { 2619 err = __prepare_send_request(mdsc, req, session->s_mds); 2620 if (!err) { 2621 ceph_msg_get(req->r_request); 2622 ceph_con_send(&session->s_con, req->r_request); 2623 } 2624 } 2625 mutex_unlock(&mdsc->mutex); 2626 } 2627 2628 /* 2629 * Encode information about a cap for a reconnect with the MDS. 2630 */ 2631 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap, 2632 void *arg) 2633 { 2634 union { 2635 struct ceph_mds_cap_reconnect v2; 2636 struct ceph_mds_cap_reconnect_v1 v1; 2637 } rec; 2638 size_t reclen; 2639 struct ceph_inode_info *ci; 2640 struct ceph_reconnect_state *recon_state = arg; 2641 struct ceph_pagelist *pagelist = recon_state->pagelist; 2642 char *path; 2643 int pathlen, err; 2644 u64 pathbase; 2645 struct dentry *dentry; 2646 2647 ci = cap->ci; 2648 2649 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 2650 inode, ceph_vinop(inode), cap, cap->cap_id, 2651 ceph_cap_string(cap->issued)); 2652 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 2653 if (err) 2654 return err; 2655 2656 dentry = d_find_alias(inode); 2657 if (dentry) { 2658 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0); 2659 if (IS_ERR(path)) { 2660 err = PTR_ERR(path); 2661 goto out_dput; 2662 } 2663 } else { 2664 path = NULL; 2665 pathlen = 0; 2666 } 2667 err = ceph_pagelist_encode_string(pagelist, path, pathlen); 2668 if (err) 2669 goto out_free; 2670 2671 spin_lock(&ci->i_ceph_lock); 2672 cap->seq = 0; /* reset cap seq */ 2673 cap->issue_seq = 0; /* and issue_seq */ 2674 cap->mseq = 0; /* and migrate_seq */ 2675 cap->cap_gen = cap->session->s_cap_gen; 2676 2677 if (recon_state->flock) { 2678 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 2679 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2680 rec.v2.issued = cpu_to_le32(cap->issued); 2681 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2682 rec.v2.pathbase = cpu_to_le64(pathbase); 2683 rec.v2.flock_len = 0; 2684 reclen = sizeof(rec.v2); 2685 } else { 2686 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 2687 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2688 rec.v1.issued = cpu_to_le32(cap->issued); 2689 rec.v1.size = cpu_to_le64(inode->i_size); 2690 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime); 2691 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime); 2692 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2693 rec.v1.pathbase = cpu_to_le64(pathbase); 2694 reclen = sizeof(rec.v1); 2695 } 2696 spin_unlock(&ci->i_ceph_lock); 2697 2698 if (recon_state->flock) { 2699 int num_fcntl_locks, num_flock_locks; 2700 struct ceph_filelock *flocks; 2701 2702 encode_again: 2703 spin_lock(&inode->i_lock); 2704 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); 2705 spin_unlock(&inode->i_lock); 2706 flocks = kmalloc((num_fcntl_locks+num_flock_locks) * 2707 sizeof(struct ceph_filelock), GFP_NOFS); 2708 if (!flocks) { 2709 err = -ENOMEM; 2710 goto out_free; 2711 } 2712 spin_lock(&inode->i_lock); 2713 err = ceph_encode_locks_to_buffer(inode, flocks, 2714 num_fcntl_locks, 2715 num_flock_locks); 2716 spin_unlock(&inode->i_lock); 2717 if (err) { 2718 kfree(flocks); 2719 if (err == -ENOSPC) 2720 goto encode_again; 2721 goto out_free; 2722 } 2723 /* 2724 * number of encoded locks is stable, so copy to pagelist 2725 */ 2726 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) + 2727 (num_fcntl_locks+num_flock_locks) * 2728 sizeof(struct ceph_filelock)); 2729 err = ceph_pagelist_append(pagelist, &rec, reclen); 2730 if (!err) 2731 err = ceph_locks_to_pagelist(flocks, pagelist, 2732 num_fcntl_locks, 2733 num_flock_locks); 2734 kfree(flocks); 2735 } else { 2736 err = ceph_pagelist_append(pagelist, &rec, reclen); 2737 } 2738 2739 recon_state->nr_caps++; 2740 out_free: 2741 kfree(path); 2742 out_dput: 2743 dput(dentry); 2744 return err; 2745 } 2746 2747 2748 /* 2749 * If an MDS fails and recovers, clients need to reconnect in order to 2750 * reestablish shared state. This includes all caps issued through 2751 * this session _and_ the snap_realm hierarchy. Because it's not 2752 * clear which snap realms the mds cares about, we send everything we 2753 * know about.. that ensures we'll then get any new info the 2754 * recovering MDS might have. 2755 * 2756 * This is a relatively heavyweight operation, but it's rare. 2757 * 2758 * called with mdsc->mutex held. 2759 */ 2760 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 2761 struct ceph_mds_session *session) 2762 { 2763 struct ceph_msg *reply; 2764 struct rb_node *p; 2765 int mds = session->s_mds; 2766 int err = -ENOMEM; 2767 int s_nr_caps; 2768 struct ceph_pagelist *pagelist; 2769 struct ceph_reconnect_state recon_state; 2770 2771 pr_info("mds%d reconnect start\n", mds); 2772 2773 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS); 2774 if (!pagelist) 2775 goto fail_nopagelist; 2776 ceph_pagelist_init(pagelist); 2777 2778 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false); 2779 if (!reply) 2780 goto fail_nomsg; 2781 2782 mutex_lock(&session->s_mutex); 2783 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 2784 session->s_seq = 0; 2785 2786 dout("session %p state %s\n", session, 2787 ceph_session_state_name(session->s_state)); 2788 2789 spin_lock(&session->s_gen_ttl_lock); 2790 session->s_cap_gen++; 2791 spin_unlock(&session->s_gen_ttl_lock); 2792 2793 spin_lock(&session->s_cap_lock); 2794 /* 2795 * notify __ceph_remove_cap() that we are composing cap reconnect. 2796 * If a cap get released before being added to the cap reconnect, 2797 * __ceph_remove_cap() should skip queuing cap release. 2798 */ 2799 session->s_cap_reconnect = 1; 2800 /* drop old cap expires; we're about to reestablish that state */ 2801 discard_cap_releases(mdsc, session); 2802 spin_unlock(&session->s_cap_lock); 2803 2804 /* trim unused caps to reduce MDS's cache rejoin time */ 2805 shrink_dcache_parent(mdsc->fsc->sb->s_root); 2806 2807 ceph_con_close(&session->s_con); 2808 ceph_con_open(&session->s_con, 2809 CEPH_ENTITY_TYPE_MDS, mds, 2810 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 2811 2812 /* replay unsafe requests */ 2813 replay_unsafe_requests(mdsc, session); 2814 2815 down_read(&mdsc->snap_rwsem); 2816 2817 /* traverse this session's caps */ 2818 s_nr_caps = session->s_nr_caps; 2819 err = ceph_pagelist_encode_32(pagelist, s_nr_caps); 2820 if (err) 2821 goto fail; 2822 2823 recon_state.nr_caps = 0; 2824 recon_state.pagelist = pagelist; 2825 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK; 2826 err = iterate_session_caps(session, encode_caps_cb, &recon_state); 2827 if (err < 0) 2828 goto fail; 2829 2830 spin_lock(&session->s_cap_lock); 2831 session->s_cap_reconnect = 0; 2832 spin_unlock(&session->s_cap_lock); 2833 2834 /* 2835 * snaprealms. we provide mds with the ino, seq (version), and 2836 * parent for all of our realms. If the mds has any newer info, 2837 * it will tell us. 2838 */ 2839 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 2840 struct ceph_snap_realm *realm = 2841 rb_entry(p, struct ceph_snap_realm, node); 2842 struct ceph_mds_snaprealm_reconnect sr_rec; 2843 2844 dout(" adding snap realm %llx seq %lld parent %llx\n", 2845 realm->ino, realm->seq, realm->parent_ino); 2846 sr_rec.ino = cpu_to_le64(realm->ino); 2847 sr_rec.seq = cpu_to_le64(realm->seq); 2848 sr_rec.parent = cpu_to_le64(realm->parent_ino); 2849 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 2850 if (err) 2851 goto fail; 2852 } 2853 2854 if (recon_state.flock) 2855 reply->hdr.version = cpu_to_le16(2); 2856 2857 /* raced with cap release? */ 2858 if (s_nr_caps != recon_state.nr_caps) { 2859 struct page *page = list_first_entry(&pagelist->head, 2860 struct page, lru); 2861 __le32 *addr = kmap_atomic(page); 2862 *addr = cpu_to_le32(recon_state.nr_caps); 2863 kunmap_atomic(addr); 2864 } 2865 2866 reply->hdr.data_len = cpu_to_le32(pagelist->length); 2867 ceph_msg_data_add_pagelist(reply, pagelist); 2868 ceph_con_send(&session->s_con, reply); 2869 2870 mutex_unlock(&session->s_mutex); 2871 2872 mutex_lock(&mdsc->mutex); 2873 __wake_requests(mdsc, &session->s_waiting); 2874 mutex_unlock(&mdsc->mutex); 2875 2876 up_read(&mdsc->snap_rwsem); 2877 return; 2878 2879 fail: 2880 ceph_msg_put(reply); 2881 up_read(&mdsc->snap_rwsem); 2882 mutex_unlock(&session->s_mutex); 2883 fail_nomsg: 2884 ceph_pagelist_release(pagelist); 2885 fail_nopagelist: 2886 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 2887 return; 2888 } 2889 2890 2891 /* 2892 * compare old and new mdsmaps, kicking requests 2893 * and closing out old connections as necessary 2894 * 2895 * called under mdsc->mutex. 2896 */ 2897 static void check_new_map(struct ceph_mds_client *mdsc, 2898 struct ceph_mdsmap *newmap, 2899 struct ceph_mdsmap *oldmap) 2900 { 2901 int i; 2902 int oldstate, newstate; 2903 struct ceph_mds_session *s; 2904 2905 dout("check_new_map new %u old %u\n", 2906 newmap->m_epoch, oldmap->m_epoch); 2907 2908 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) { 2909 if (mdsc->sessions[i] == NULL) 2910 continue; 2911 s = mdsc->sessions[i]; 2912 oldstate = ceph_mdsmap_get_state(oldmap, i); 2913 newstate = ceph_mdsmap_get_state(newmap, i); 2914 2915 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 2916 i, ceph_mds_state_name(oldstate), 2917 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 2918 ceph_mds_state_name(newstate), 2919 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 2920 ceph_session_state_name(s->s_state)); 2921 2922 if (i >= newmap->m_max_mds || 2923 memcmp(ceph_mdsmap_get_addr(oldmap, i), 2924 ceph_mdsmap_get_addr(newmap, i), 2925 sizeof(struct ceph_entity_addr))) { 2926 if (s->s_state == CEPH_MDS_SESSION_OPENING) { 2927 /* the session never opened, just close it 2928 * out now */ 2929 __wake_requests(mdsc, &s->s_waiting); 2930 __unregister_session(mdsc, s); 2931 } else { 2932 /* just close it */ 2933 mutex_unlock(&mdsc->mutex); 2934 mutex_lock(&s->s_mutex); 2935 mutex_lock(&mdsc->mutex); 2936 ceph_con_close(&s->s_con); 2937 mutex_unlock(&s->s_mutex); 2938 s->s_state = CEPH_MDS_SESSION_RESTARTING; 2939 } 2940 2941 /* kick any requests waiting on the recovering mds */ 2942 kick_requests(mdsc, i); 2943 } else if (oldstate == newstate) { 2944 continue; /* nothing new with this mds */ 2945 } 2946 2947 /* 2948 * send reconnect? 2949 */ 2950 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 2951 newstate >= CEPH_MDS_STATE_RECONNECT) { 2952 mutex_unlock(&mdsc->mutex); 2953 send_mds_reconnect(mdsc, s); 2954 mutex_lock(&mdsc->mutex); 2955 } 2956 2957 /* 2958 * kick request on any mds that has gone active. 2959 */ 2960 if (oldstate < CEPH_MDS_STATE_ACTIVE && 2961 newstate >= CEPH_MDS_STATE_ACTIVE) { 2962 if (oldstate != CEPH_MDS_STATE_CREATING && 2963 oldstate != CEPH_MDS_STATE_STARTING) 2964 pr_info("mds%d recovery completed\n", s->s_mds); 2965 kick_requests(mdsc, i); 2966 ceph_kick_flushing_caps(mdsc, s); 2967 wake_up_session_caps(s, 1); 2968 } 2969 } 2970 2971 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) { 2972 s = mdsc->sessions[i]; 2973 if (!s) 2974 continue; 2975 if (!ceph_mdsmap_is_laggy(newmap, i)) 2976 continue; 2977 if (s->s_state == CEPH_MDS_SESSION_OPEN || 2978 s->s_state == CEPH_MDS_SESSION_HUNG || 2979 s->s_state == CEPH_MDS_SESSION_CLOSING) { 2980 dout(" connecting to export targets of laggy mds%d\n", 2981 i); 2982 __open_export_target_sessions(mdsc, s); 2983 } 2984 } 2985 } 2986 2987 2988 2989 /* 2990 * leases 2991 */ 2992 2993 /* 2994 * caller must hold session s_mutex, dentry->d_lock 2995 */ 2996 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 2997 { 2998 struct ceph_dentry_info *di = ceph_dentry(dentry); 2999 3000 ceph_put_mds_session(di->lease_session); 3001 di->lease_session = NULL; 3002 } 3003 3004 static void handle_lease(struct ceph_mds_client *mdsc, 3005 struct ceph_mds_session *session, 3006 struct ceph_msg *msg) 3007 { 3008 struct super_block *sb = mdsc->fsc->sb; 3009 struct inode *inode; 3010 struct dentry *parent, *dentry; 3011 struct ceph_dentry_info *di; 3012 int mds = session->s_mds; 3013 struct ceph_mds_lease *h = msg->front.iov_base; 3014 u32 seq; 3015 struct ceph_vino vino; 3016 struct qstr dname; 3017 int release = 0; 3018 3019 dout("handle_lease from mds%d\n", mds); 3020 3021 /* decode */ 3022 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 3023 goto bad; 3024 vino.ino = le64_to_cpu(h->ino); 3025 vino.snap = CEPH_NOSNAP; 3026 seq = le32_to_cpu(h->seq); 3027 dname.name = (void *)h + sizeof(*h) + sizeof(u32); 3028 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32); 3029 if (dname.len != get_unaligned_le32(h+1)) 3030 goto bad; 3031 3032 /* lookup inode */ 3033 inode = ceph_find_inode(sb, vino); 3034 dout("handle_lease %s, ino %llx %p %.*s\n", 3035 ceph_lease_op_name(h->action), vino.ino, inode, 3036 dname.len, dname.name); 3037 3038 mutex_lock(&session->s_mutex); 3039 session->s_seq++; 3040 3041 if (inode == NULL) { 3042 dout("handle_lease no inode %llx\n", vino.ino); 3043 goto release; 3044 } 3045 3046 /* dentry */ 3047 parent = d_find_alias(inode); 3048 if (!parent) { 3049 dout("no parent dentry on inode %p\n", inode); 3050 WARN_ON(1); 3051 goto release; /* hrm... */ 3052 } 3053 dname.hash = full_name_hash(dname.name, dname.len); 3054 dentry = d_lookup(parent, &dname); 3055 dput(parent); 3056 if (!dentry) 3057 goto release; 3058 3059 spin_lock(&dentry->d_lock); 3060 di = ceph_dentry(dentry); 3061 switch (h->action) { 3062 case CEPH_MDS_LEASE_REVOKE: 3063 if (di->lease_session == session) { 3064 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 3065 h->seq = cpu_to_le32(di->lease_seq); 3066 __ceph_mdsc_drop_dentry_lease(dentry); 3067 } 3068 release = 1; 3069 break; 3070 3071 case CEPH_MDS_LEASE_RENEW: 3072 if (di->lease_session == session && 3073 di->lease_gen == session->s_cap_gen && 3074 di->lease_renew_from && 3075 di->lease_renew_after == 0) { 3076 unsigned long duration = 3077 le32_to_cpu(h->duration_ms) * HZ / 1000; 3078 3079 di->lease_seq = seq; 3080 dentry->d_time = di->lease_renew_from + duration; 3081 di->lease_renew_after = di->lease_renew_from + 3082 (duration >> 1); 3083 di->lease_renew_from = 0; 3084 } 3085 break; 3086 } 3087 spin_unlock(&dentry->d_lock); 3088 dput(dentry); 3089 3090 if (!release) 3091 goto out; 3092 3093 release: 3094 /* let's just reuse the same message */ 3095 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 3096 ceph_msg_get(msg); 3097 ceph_con_send(&session->s_con, msg); 3098 3099 out: 3100 iput(inode); 3101 mutex_unlock(&session->s_mutex); 3102 return; 3103 3104 bad: 3105 pr_err("corrupt lease message\n"); 3106 ceph_msg_dump(msg); 3107 } 3108 3109 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 3110 struct inode *inode, 3111 struct dentry *dentry, char action, 3112 u32 seq) 3113 { 3114 struct ceph_msg *msg; 3115 struct ceph_mds_lease *lease; 3116 int len = sizeof(*lease) + sizeof(u32); 3117 int dnamelen = 0; 3118 3119 dout("lease_send_msg inode %p dentry %p %s to mds%d\n", 3120 inode, dentry, ceph_lease_op_name(action), session->s_mds); 3121 dnamelen = dentry->d_name.len; 3122 len += dnamelen; 3123 3124 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 3125 if (!msg) 3126 return; 3127 lease = msg->front.iov_base; 3128 lease->action = action; 3129 lease->ino = cpu_to_le64(ceph_vino(inode).ino); 3130 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap); 3131 lease->seq = cpu_to_le32(seq); 3132 put_unaligned_le32(dnamelen, lease + 1); 3133 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen); 3134 3135 /* 3136 * if this is a preemptive lease RELEASE, no need to 3137 * flush request stream, since the actual request will 3138 * soon follow. 3139 */ 3140 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); 3141 3142 ceph_con_send(&session->s_con, msg); 3143 } 3144 3145 /* 3146 * Preemptively release a lease we expect to invalidate anyway. 3147 * Pass @inode always, @dentry is optional. 3148 */ 3149 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode, 3150 struct dentry *dentry) 3151 { 3152 struct ceph_dentry_info *di; 3153 struct ceph_mds_session *session; 3154 u32 seq; 3155 3156 BUG_ON(inode == NULL); 3157 BUG_ON(dentry == NULL); 3158 3159 /* is dentry lease valid? */ 3160 spin_lock(&dentry->d_lock); 3161 di = ceph_dentry(dentry); 3162 if (!di || !di->lease_session || 3163 di->lease_session->s_mds < 0 || 3164 di->lease_gen != di->lease_session->s_cap_gen || 3165 !time_before(jiffies, dentry->d_time)) { 3166 dout("lease_release inode %p dentry %p -- " 3167 "no lease\n", 3168 inode, dentry); 3169 spin_unlock(&dentry->d_lock); 3170 return; 3171 } 3172 3173 /* we do have a lease on this dentry; note mds and seq */ 3174 session = ceph_get_mds_session(di->lease_session); 3175 seq = di->lease_seq; 3176 __ceph_mdsc_drop_dentry_lease(dentry); 3177 spin_unlock(&dentry->d_lock); 3178 3179 dout("lease_release inode %p dentry %p to mds%d\n", 3180 inode, dentry, session->s_mds); 3181 ceph_mdsc_lease_send_msg(session, inode, dentry, 3182 CEPH_MDS_LEASE_RELEASE, seq); 3183 ceph_put_mds_session(session); 3184 } 3185 3186 /* 3187 * drop all leases (and dentry refs) in preparation for umount 3188 */ 3189 static void drop_leases(struct ceph_mds_client *mdsc) 3190 { 3191 int i; 3192 3193 dout("drop_leases\n"); 3194 mutex_lock(&mdsc->mutex); 3195 for (i = 0; i < mdsc->max_sessions; i++) { 3196 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 3197 if (!s) 3198 continue; 3199 mutex_unlock(&mdsc->mutex); 3200 mutex_lock(&s->s_mutex); 3201 mutex_unlock(&s->s_mutex); 3202 ceph_put_mds_session(s); 3203 mutex_lock(&mdsc->mutex); 3204 } 3205 mutex_unlock(&mdsc->mutex); 3206 } 3207 3208 3209 3210 /* 3211 * delayed work -- periodically trim expired leases, renew caps with mds 3212 */ 3213 static void schedule_delayed(struct ceph_mds_client *mdsc) 3214 { 3215 int delay = 5; 3216 unsigned hz = round_jiffies_relative(HZ * delay); 3217 schedule_delayed_work(&mdsc->delayed_work, hz); 3218 } 3219 3220 static void delayed_work(struct work_struct *work) 3221 { 3222 int i; 3223 struct ceph_mds_client *mdsc = 3224 container_of(work, struct ceph_mds_client, delayed_work.work); 3225 int renew_interval; 3226 int renew_caps; 3227 3228 dout("mdsc delayed_work\n"); 3229 ceph_check_delayed_caps(mdsc); 3230 3231 mutex_lock(&mdsc->mutex); 3232 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 3233 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 3234 mdsc->last_renew_caps); 3235 if (renew_caps) 3236 mdsc->last_renew_caps = jiffies; 3237 3238 for (i = 0; i < mdsc->max_sessions; i++) { 3239 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 3240 if (s == NULL) 3241 continue; 3242 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 3243 dout("resending session close request for mds%d\n", 3244 s->s_mds); 3245 request_close_session(mdsc, s); 3246 ceph_put_mds_session(s); 3247 continue; 3248 } 3249 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 3250 if (s->s_state == CEPH_MDS_SESSION_OPEN) { 3251 s->s_state = CEPH_MDS_SESSION_HUNG; 3252 pr_info("mds%d hung\n", s->s_mds); 3253 } 3254 } 3255 if (s->s_state < CEPH_MDS_SESSION_OPEN) { 3256 /* this mds is failed or recovering, just wait */ 3257 ceph_put_mds_session(s); 3258 continue; 3259 } 3260 mutex_unlock(&mdsc->mutex); 3261 3262 mutex_lock(&s->s_mutex); 3263 if (renew_caps) 3264 send_renew_caps(mdsc, s); 3265 else 3266 ceph_con_keepalive(&s->s_con); 3267 ceph_add_cap_releases(mdsc, s); 3268 if (s->s_state == CEPH_MDS_SESSION_OPEN || 3269 s->s_state == CEPH_MDS_SESSION_HUNG) 3270 ceph_send_cap_releases(mdsc, s); 3271 mutex_unlock(&s->s_mutex); 3272 ceph_put_mds_session(s); 3273 3274 mutex_lock(&mdsc->mutex); 3275 } 3276 mutex_unlock(&mdsc->mutex); 3277 3278 schedule_delayed(mdsc); 3279 } 3280 3281 int ceph_mdsc_init(struct ceph_fs_client *fsc) 3282 3283 { 3284 struct ceph_mds_client *mdsc; 3285 3286 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 3287 if (!mdsc) 3288 return -ENOMEM; 3289 mdsc->fsc = fsc; 3290 fsc->mdsc = mdsc; 3291 mutex_init(&mdsc->mutex); 3292 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 3293 if (mdsc->mdsmap == NULL) { 3294 kfree(mdsc); 3295 return -ENOMEM; 3296 } 3297 3298 init_completion(&mdsc->safe_umount_waiters); 3299 init_waitqueue_head(&mdsc->session_close_wq); 3300 INIT_LIST_HEAD(&mdsc->waiting_for_map); 3301 mdsc->sessions = NULL; 3302 mdsc->max_sessions = 0; 3303 mdsc->stopping = 0; 3304 init_rwsem(&mdsc->snap_rwsem); 3305 mdsc->snap_realms = RB_ROOT; 3306 INIT_LIST_HEAD(&mdsc->snap_empty); 3307 spin_lock_init(&mdsc->snap_empty_lock); 3308 mdsc->last_tid = 0; 3309 mdsc->request_tree = RB_ROOT; 3310 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 3311 mdsc->last_renew_caps = jiffies; 3312 INIT_LIST_HEAD(&mdsc->cap_delay_list); 3313 spin_lock_init(&mdsc->cap_delay_lock); 3314 INIT_LIST_HEAD(&mdsc->snap_flush_list); 3315 spin_lock_init(&mdsc->snap_flush_lock); 3316 mdsc->cap_flush_seq = 0; 3317 INIT_LIST_HEAD(&mdsc->cap_dirty); 3318 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 3319 mdsc->num_cap_flushing = 0; 3320 spin_lock_init(&mdsc->cap_dirty_lock); 3321 init_waitqueue_head(&mdsc->cap_flushing_wq); 3322 spin_lock_init(&mdsc->dentry_lru_lock); 3323 INIT_LIST_HEAD(&mdsc->dentry_lru); 3324 3325 ceph_caps_init(mdsc); 3326 ceph_adjust_min_caps(mdsc, fsc->min_caps); 3327 3328 return 0; 3329 } 3330 3331 /* 3332 * Wait for safe replies on open mds requests. If we time out, drop 3333 * all requests from the tree to avoid dangling dentry refs. 3334 */ 3335 static void wait_requests(struct ceph_mds_client *mdsc) 3336 { 3337 struct ceph_mds_request *req; 3338 struct ceph_fs_client *fsc = mdsc->fsc; 3339 3340 mutex_lock(&mdsc->mutex); 3341 if (__get_oldest_req(mdsc)) { 3342 mutex_unlock(&mdsc->mutex); 3343 3344 dout("wait_requests waiting for requests\n"); 3345 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 3346 fsc->client->options->mount_timeout * HZ); 3347 3348 /* tear down remaining requests */ 3349 mutex_lock(&mdsc->mutex); 3350 while ((req = __get_oldest_req(mdsc))) { 3351 dout("wait_requests timed out on tid %llu\n", 3352 req->r_tid); 3353 __unregister_request(mdsc, req); 3354 } 3355 } 3356 mutex_unlock(&mdsc->mutex); 3357 dout("wait_requests done\n"); 3358 } 3359 3360 /* 3361 * called before mount is ro, and before dentries are torn down. 3362 * (hmm, does this still race with new lookups?) 3363 */ 3364 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 3365 { 3366 dout("pre_umount\n"); 3367 mdsc->stopping = 1; 3368 3369 drop_leases(mdsc); 3370 ceph_flush_dirty_caps(mdsc); 3371 wait_requests(mdsc); 3372 3373 /* 3374 * wait for reply handlers to drop their request refs and 3375 * their inode/dcache refs 3376 */ 3377 ceph_msgr_flush(); 3378 } 3379 3380 /* 3381 * wait for all write mds requests to flush. 3382 */ 3383 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) 3384 { 3385 struct ceph_mds_request *req = NULL, *nextreq; 3386 struct rb_node *n; 3387 3388 mutex_lock(&mdsc->mutex); 3389 dout("wait_unsafe_requests want %lld\n", want_tid); 3390 restart: 3391 req = __get_oldest_req(mdsc); 3392 while (req && req->r_tid <= want_tid) { 3393 /* find next request */ 3394 n = rb_next(&req->r_node); 3395 if (n) 3396 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 3397 else 3398 nextreq = NULL; 3399 if ((req->r_op & CEPH_MDS_OP_WRITE)) { 3400 /* write op */ 3401 ceph_mdsc_get_request(req); 3402 if (nextreq) 3403 ceph_mdsc_get_request(nextreq); 3404 mutex_unlock(&mdsc->mutex); 3405 dout("wait_unsafe_requests wait on %llu (want %llu)\n", 3406 req->r_tid, want_tid); 3407 wait_for_completion(&req->r_safe_completion); 3408 mutex_lock(&mdsc->mutex); 3409 ceph_mdsc_put_request(req); 3410 if (!nextreq) 3411 break; /* next dne before, so we're done! */ 3412 if (RB_EMPTY_NODE(&nextreq->r_node)) { 3413 /* next request was removed from tree */ 3414 ceph_mdsc_put_request(nextreq); 3415 goto restart; 3416 } 3417 ceph_mdsc_put_request(nextreq); /* won't go away */ 3418 } 3419 req = nextreq; 3420 } 3421 mutex_unlock(&mdsc->mutex); 3422 dout("wait_unsafe_requests done\n"); 3423 } 3424 3425 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 3426 { 3427 u64 want_tid, want_flush; 3428 3429 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3430 return; 3431 3432 dout("sync\n"); 3433 mutex_lock(&mdsc->mutex); 3434 want_tid = mdsc->last_tid; 3435 want_flush = mdsc->cap_flush_seq; 3436 mutex_unlock(&mdsc->mutex); 3437 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush); 3438 3439 ceph_flush_dirty_caps(mdsc); 3440 3441 wait_unsafe_requests(mdsc, want_tid); 3442 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush)); 3443 } 3444 3445 /* 3446 * true if all sessions are closed, or we force unmount 3447 */ 3448 static bool done_closing_sessions(struct ceph_mds_client *mdsc) 3449 { 3450 int i, n = 0; 3451 3452 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3453 return true; 3454 3455 mutex_lock(&mdsc->mutex); 3456 for (i = 0; i < mdsc->max_sessions; i++) 3457 if (mdsc->sessions[i]) 3458 n++; 3459 mutex_unlock(&mdsc->mutex); 3460 return n == 0; 3461 } 3462 3463 /* 3464 * called after sb is ro. 3465 */ 3466 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 3467 { 3468 struct ceph_mds_session *session; 3469 int i; 3470 struct ceph_fs_client *fsc = mdsc->fsc; 3471 unsigned long timeout = fsc->client->options->mount_timeout * HZ; 3472 3473 dout("close_sessions\n"); 3474 3475 /* close sessions */ 3476 mutex_lock(&mdsc->mutex); 3477 for (i = 0; i < mdsc->max_sessions; i++) { 3478 session = __ceph_lookup_mds_session(mdsc, i); 3479 if (!session) 3480 continue; 3481 mutex_unlock(&mdsc->mutex); 3482 mutex_lock(&session->s_mutex); 3483 __close_session(mdsc, session); 3484 mutex_unlock(&session->s_mutex); 3485 ceph_put_mds_session(session); 3486 mutex_lock(&mdsc->mutex); 3487 } 3488 mutex_unlock(&mdsc->mutex); 3489 3490 dout("waiting for sessions to close\n"); 3491 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc), 3492 timeout); 3493 3494 /* tear down remaining sessions */ 3495 mutex_lock(&mdsc->mutex); 3496 for (i = 0; i < mdsc->max_sessions; i++) { 3497 if (mdsc->sessions[i]) { 3498 session = get_session(mdsc->sessions[i]); 3499 __unregister_session(mdsc, session); 3500 mutex_unlock(&mdsc->mutex); 3501 mutex_lock(&session->s_mutex); 3502 remove_session_caps(session); 3503 mutex_unlock(&session->s_mutex); 3504 ceph_put_mds_session(session); 3505 mutex_lock(&mdsc->mutex); 3506 } 3507 } 3508 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 3509 mutex_unlock(&mdsc->mutex); 3510 3511 ceph_cleanup_empty_realms(mdsc); 3512 3513 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3514 3515 dout("stopped\n"); 3516 } 3517 3518 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 3519 { 3520 dout("stop\n"); 3521 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3522 if (mdsc->mdsmap) 3523 ceph_mdsmap_destroy(mdsc->mdsmap); 3524 kfree(mdsc->sessions); 3525 ceph_caps_finalize(mdsc); 3526 } 3527 3528 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 3529 { 3530 struct ceph_mds_client *mdsc = fsc->mdsc; 3531 3532 dout("mdsc_destroy %p\n", mdsc); 3533 ceph_mdsc_stop(mdsc); 3534 3535 /* flush out any connection work with references to us */ 3536 ceph_msgr_flush(); 3537 3538 fsc->mdsc = NULL; 3539 kfree(mdsc); 3540 dout("mdsc_destroy %p done\n", mdsc); 3541 } 3542 3543 3544 /* 3545 * handle mds map update. 3546 */ 3547 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 3548 { 3549 u32 epoch; 3550 u32 maplen; 3551 void *p = msg->front.iov_base; 3552 void *end = p + msg->front.iov_len; 3553 struct ceph_mdsmap *newmap, *oldmap; 3554 struct ceph_fsid fsid; 3555 int err = -EINVAL; 3556 3557 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 3558 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 3559 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 3560 return; 3561 epoch = ceph_decode_32(&p); 3562 maplen = ceph_decode_32(&p); 3563 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 3564 3565 /* do we need it? */ 3566 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch); 3567 mutex_lock(&mdsc->mutex); 3568 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 3569 dout("handle_map epoch %u <= our %u\n", 3570 epoch, mdsc->mdsmap->m_epoch); 3571 mutex_unlock(&mdsc->mutex); 3572 return; 3573 } 3574 3575 newmap = ceph_mdsmap_decode(&p, end); 3576 if (IS_ERR(newmap)) { 3577 err = PTR_ERR(newmap); 3578 goto bad_unlock; 3579 } 3580 3581 /* swap into place */ 3582 if (mdsc->mdsmap) { 3583 oldmap = mdsc->mdsmap; 3584 mdsc->mdsmap = newmap; 3585 check_new_map(mdsc, newmap, oldmap); 3586 ceph_mdsmap_destroy(oldmap); 3587 } else { 3588 mdsc->mdsmap = newmap; /* first mds map */ 3589 } 3590 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size; 3591 3592 __wake_requests(mdsc, &mdsc->waiting_for_map); 3593 3594 mutex_unlock(&mdsc->mutex); 3595 schedule_delayed(mdsc); 3596 return; 3597 3598 bad_unlock: 3599 mutex_unlock(&mdsc->mutex); 3600 bad: 3601 pr_err("error decoding mdsmap %d\n", err); 3602 return; 3603 } 3604 3605 static struct ceph_connection *con_get(struct ceph_connection *con) 3606 { 3607 struct ceph_mds_session *s = con->private; 3608 3609 if (get_session(s)) { 3610 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref)); 3611 return con; 3612 } 3613 dout("mdsc con_get %p FAIL\n", s); 3614 return NULL; 3615 } 3616 3617 static void con_put(struct ceph_connection *con) 3618 { 3619 struct ceph_mds_session *s = con->private; 3620 3621 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1); 3622 ceph_put_mds_session(s); 3623 } 3624 3625 /* 3626 * if the client is unresponsive for long enough, the mds will kill 3627 * the session entirely. 3628 */ 3629 static void peer_reset(struct ceph_connection *con) 3630 { 3631 struct ceph_mds_session *s = con->private; 3632 struct ceph_mds_client *mdsc = s->s_mdsc; 3633 3634 pr_warn("mds%d closed our session\n", s->s_mds); 3635 send_mds_reconnect(mdsc, s); 3636 } 3637 3638 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg) 3639 { 3640 struct ceph_mds_session *s = con->private; 3641 struct ceph_mds_client *mdsc = s->s_mdsc; 3642 int type = le16_to_cpu(msg->hdr.type); 3643 3644 mutex_lock(&mdsc->mutex); 3645 if (__verify_registered_session(mdsc, s) < 0) { 3646 mutex_unlock(&mdsc->mutex); 3647 goto out; 3648 } 3649 mutex_unlock(&mdsc->mutex); 3650 3651 switch (type) { 3652 case CEPH_MSG_MDS_MAP: 3653 ceph_mdsc_handle_map(mdsc, msg); 3654 break; 3655 case CEPH_MSG_CLIENT_SESSION: 3656 handle_session(s, msg); 3657 break; 3658 case CEPH_MSG_CLIENT_REPLY: 3659 handle_reply(s, msg); 3660 break; 3661 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 3662 handle_forward(mdsc, s, msg); 3663 break; 3664 case CEPH_MSG_CLIENT_CAPS: 3665 ceph_handle_caps(s, msg); 3666 break; 3667 case CEPH_MSG_CLIENT_SNAP: 3668 ceph_handle_snap(mdsc, s, msg); 3669 break; 3670 case CEPH_MSG_CLIENT_LEASE: 3671 handle_lease(mdsc, s, msg); 3672 break; 3673 3674 default: 3675 pr_err("received unknown message type %d %s\n", type, 3676 ceph_msg_type_name(type)); 3677 } 3678 out: 3679 ceph_msg_put(msg); 3680 } 3681 3682 /* 3683 * authentication 3684 */ 3685 3686 /* 3687 * Note: returned pointer is the address of a structure that's 3688 * managed separately. Caller must *not* attempt to free it. 3689 */ 3690 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con, 3691 int *proto, int force_new) 3692 { 3693 struct ceph_mds_session *s = con->private; 3694 struct ceph_mds_client *mdsc = s->s_mdsc; 3695 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3696 struct ceph_auth_handshake *auth = &s->s_auth; 3697 3698 if (force_new && auth->authorizer) { 3699 ceph_auth_destroy_authorizer(ac, auth->authorizer); 3700 auth->authorizer = NULL; 3701 } 3702 if (!auth->authorizer) { 3703 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3704 auth); 3705 if (ret) 3706 return ERR_PTR(ret); 3707 } else { 3708 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3709 auth); 3710 if (ret) 3711 return ERR_PTR(ret); 3712 } 3713 *proto = ac->protocol; 3714 3715 return auth; 3716 } 3717 3718 3719 static int verify_authorizer_reply(struct ceph_connection *con, int len) 3720 { 3721 struct ceph_mds_session *s = con->private; 3722 struct ceph_mds_client *mdsc = s->s_mdsc; 3723 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3724 3725 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len); 3726 } 3727 3728 static int invalidate_authorizer(struct ceph_connection *con) 3729 { 3730 struct ceph_mds_session *s = con->private; 3731 struct ceph_mds_client *mdsc = s->s_mdsc; 3732 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3733 3734 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 3735 3736 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 3737 } 3738 3739 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, 3740 struct ceph_msg_header *hdr, int *skip) 3741 { 3742 struct ceph_msg *msg; 3743 int type = (int) le16_to_cpu(hdr->type); 3744 int front_len = (int) le32_to_cpu(hdr->front_len); 3745 3746 if (con->in_msg) 3747 return con->in_msg; 3748 3749 *skip = 0; 3750 msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 3751 if (!msg) { 3752 pr_err("unable to allocate msg type %d len %d\n", 3753 type, front_len); 3754 return NULL; 3755 } 3756 3757 return msg; 3758 } 3759 3760 static int sign_message(struct ceph_connection *con, struct ceph_msg *msg) 3761 { 3762 struct ceph_mds_session *s = con->private; 3763 struct ceph_auth_handshake *auth = &s->s_auth; 3764 return ceph_auth_sign_message(auth, msg); 3765 } 3766 3767 static int check_message_signature(struct ceph_connection *con, struct ceph_msg *msg) 3768 { 3769 struct ceph_mds_session *s = con->private; 3770 struct ceph_auth_handshake *auth = &s->s_auth; 3771 return ceph_auth_check_message_signature(auth, msg); 3772 } 3773 3774 static const struct ceph_connection_operations mds_con_ops = { 3775 .get = con_get, 3776 .put = con_put, 3777 .dispatch = dispatch, 3778 .get_authorizer = get_authorizer, 3779 .verify_authorizer_reply = verify_authorizer_reply, 3780 .invalidate_authorizer = invalidate_authorizer, 3781 .peer_reset = peer_reset, 3782 .alloc_msg = mds_alloc_msg, 3783 .sign_message = sign_message, 3784 .check_message_signature = check_message_signature, 3785 }; 3786 3787 /* eof */ 3788