1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/fs.h> 5 #include <linux/wait.h> 6 #include <linux/slab.h> 7 #include <linux/gfp.h> 8 #include <linux/sched.h> 9 #include <linux/debugfs.h> 10 #include <linux/seq_file.h> 11 #include <linux/ratelimit.h> 12 #include <linux/bits.h> 13 #include <linux/ktime.h> 14 #include <linux/bitmap.h> 15 #include <linux/mnt_idmapping.h> 16 17 #include "super.h" 18 #include "mds_client.h" 19 #include "crypto.h" 20 21 #include <linux/ceph/ceph_features.h> 22 #include <linux/ceph/messenger.h> 23 #include <linux/ceph/decode.h> 24 #include <linux/ceph/pagelist.h> 25 #include <linux/ceph/auth.h> 26 #include <linux/ceph/debugfs.h> 27 28 #define RECONNECT_MAX_SIZE (INT_MAX - PAGE_SIZE) 29 30 /* 31 * A cluster of MDS (metadata server) daemons is responsible for 32 * managing the file system namespace (the directory hierarchy and 33 * inodes) and for coordinating shared access to storage. Metadata is 34 * partitioning hierarchically across a number of servers, and that 35 * partition varies over time as the cluster adjusts the distribution 36 * in order to balance load. 37 * 38 * The MDS client is primarily responsible to managing synchronous 39 * metadata requests for operations like open, unlink, and so forth. 40 * If there is a MDS failure, we find out about it when we (possibly 41 * request and) receive a new MDS map, and can resubmit affected 42 * requests. 43 * 44 * For the most part, though, we take advantage of a lossless 45 * communications channel to the MDS, and do not need to worry about 46 * timing out or resubmitting requests. 47 * 48 * We maintain a stateful "session" with each MDS we interact with. 49 * Within each session, we sent periodic heartbeat messages to ensure 50 * any capabilities or leases we have been issues remain valid. If 51 * the session times out and goes stale, our leases and capabilities 52 * are no longer valid. 53 */ 54 55 struct ceph_reconnect_state { 56 struct ceph_mds_session *session; 57 int nr_caps, nr_realms; 58 struct ceph_pagelist *pagelist; 59 unsigned msg_version; 60 bool allow_multi; 61 }; 62 63 static void __wake_requests(struct ceph_mds_client *mdsc, 64 struct list_head *head); 65 static void ceph_cap_release_work(struct work_struct *work); 66 static void ceph_cap_reclaim_work(struct work_struct *work); 67 68 static const struct ceph_connection_operations mds_con_ops; 69 70 71 /* 72 * mds reply parsing 73 */ 74 75 static int parse_reply_info_quota(void **p, void *end, 76 struct ceph_mds_reply_info_in *info) 77 { 78 u8 struct_v, struct_compat; 79 u32 struct_len; 80 81 ceph_decode_8_safe(p, end, struct_v, bad); 82 ceph_decode_8_safe(p, end, struct_compat, bad); 83 /* struct_v is expected to be >= 1. we only 84 * understand encoding with struct_compat == 1. */ 85 if (!struct_v || struct_compat != 1) 86 goto bad; 87 ceph_decode_32_safe(p, end, struct_len, bad); 88 ceph_decode_need(p, end, struct_len, bad); 89 end = *p + struct_len; 90 ceph_decode_64_safe(p, end, info->max_bytes, bad); 91 ceph_decode_64_safe(p, end, info->max_files, bad); 92 *p = end; 93 return 0; 94 bad: 95 return -EIO; 96 } 97 98 /* 99 * parse individual inode info 100 */ 101 static int parse_reply_info_in(void **p, void *end, 102 struct ceph_mds_reply_info_in *info, 103 u64 features) 104 { 105 int err = 0; 106 u8 struct_v = 0; 107 108 if (features == (u64)-1) { 109 u32 struct_len; 110 u8 struct_compat; 111 ceph_decode_8_safe(p, end, struct_v, bad); 112 ceph_decode_8_safe(p, end, struct_compat, bad); 113 /* struct_v is expected to be >= 1. we only understand 114 * encoding with struct_compat == 1. */ 115 if (!struct_v || struct_compat != 1) 116 goto bad; 117 ceph_decode_32_safe(p, end, struct_len, bad); 118 ceph_decode_need(p, end, struct_len, bad); 119 end = *p + struct_len; 120 } 121 122 ceph_decode_need(p, end, sizeof(struct ceph_mds_reply_inode), bad); 123 info->in = *p; 124 *p += sizeof(struct ceph_mds_reply_inode) + 125 sizeof(*info->in->fragtree.splits) * 126 le32_to_cpu(info->in->fragtree.nsplits); 127 128 ceph_decode_32_safe(p, end, info->symlink_len, bad); 129 ceph_decode_need(p, end, info->symlink_len, bad); 130 info->symlink = *p; 131 *p += info->symlink_len; 132 133 ceph_decode_copy_safe(p, end, &info->dir_layout, 134 sizeof(info->dir_layout), bad); 135 ceph_decode_32_safe(p, end, info->xattr_len, bad); 136 ceph_decode_need(p, end, info->xattr_len, bad); 137 info->xattr_data = *p; 138 *p += info->xattr_len; 139 140 if (features == (u64)-1) { 141 /* inline data */ 142 ceph_decode_64_safe(p, end, info->inline_version, bad); 143 ceph_decode_32_safe(p, end, info->inline_len, bad); 144 ceph_decode_need(p, end, info->inline_len, bad); 145 info->inline_data = *p; 146 *p += info->inline_len; 147 /* quota */ 148 err = parse_reply_info_quota(p, end, info); 149 if (err < 0) 150 goto out_bad; 151 /* pool namespace */ 152 ceph_decode_32_safe(p, end, info->pool_ns_len, bad); 153 if (info->pool_ns_len > 0) { 154 ceph_decode_need(p, end, info->pool_ns_len, bad); 155 info->pool_ns_data = *p; 156 *p += info->pool_ns_len; 157 } 158 159 /* btime */ 160 ceph_decode_need(p, end, sizeof(info->btime), bad); 161 ceph_decode_copy(p, &info->btime, sizeof(info->btime)); 162 163 /* change attribute */ 164 ceph_decode_64_safe(p, end, info->change_attr, bad); 165 166 /* dir pin */ 167 if (struct_v >= 2) { 168 ceph_decode_32_safe(p, end, info->dir_pin, bad); 169 } else { 170 info->dir_pin = -ENODATA; 171 } 172 173 /* snapshot birth time, remains zero for v<=2 */ 174 if (struct_v >= 3) { 175 ceph_decode_need(p, end, sizeof(info->snap_btime), bad); 176 ceph_decode_copy(p, &info->snap_btime, 177 sizeof(info->snap_btime)); 178 } else { 179 memset(&info->snap_btime, 0, sizeof(info->snap_btime)); 180 } 181 182 /* snapshot count, remains zero for v<=3 */ 183 if (struct_v >= 4) { 184 ceph_decode_64_safe(p, end, info->rsnaps, bad); 185 } else { 186 info->rsnaps = 0; 187 } 188 189 if (struct_v >= 5) { 190 u32 alen; 191 192 ceph_decode_32_safe(p, end, alen, bad); 193 194 while (alen--) { 195 u32 len; 196 197 /* key */ 198 ceph_decode_32_safe(p, end, len, bad); 199 ceph_decode_skip_n(p, end, len, bad); 200 /* value */ 201 ceph_decode_32_safe(p, end, len, bad); 202 ceph_decode_skip_n(p, end, len, bad); 203 } 204 } 205 206 /* fscrypt flag -- ignore */ 207 if (struct_v >= 6) 208 ceph_decode_skip_8(p, end, bad); 209 210 info->fscrypt_auth = NULL; 211 info->fscrypt_auth_len = 0; 212 info->fscrypt_file = NULL; 213 info->fscrypt_file_len = 0; 214 if (struct_v >= 7) { 215 ceph_decode_32_safe(p, end, info->fscrypt_auth_len, bad); 216 if (info->fscrypt_auth_len) { 217 info->fscrypt_auth = kmalloc(info->fscrypt_auth_len, 218 GFP_KERNEL); 219 if (!info->fscrypt_auth) 220 return -ENOMEM; 221 ceph_decode_copy_safe(p, end, info->fscrypt_auth, 222 info->fscrypt_auth_len, bad); 223 } 224 ceph_decode_32_safe(p, end, info->fscrypt_file_len, bad); 225 if (info->fscrypt_file_len) { 226 info->fscrypt_file = kmalloc(info->fscrypt_file_len, 227 GFP_KERNEL); 228 if (!info->fscrypt_file) 229 return -ENOMEM; 230 ceph_decode_copy_safe(p, end, info->fscrypt_file, 231 info->fscrypt_file_len, bad); 232 } 233 } 234 *p = end; 235 } else { 236 /* legacy (unversioned) struct */ 237 if (features & CEPH_FEATURE_MDS_INLINE_DATA) { 238 ceph_decode_64_safe(p, end, info->inline_version, bad); 239 ceph_decode_32_safe(p, end, info->inline_len, bad); 240 ceph_decode_need(p, end, info->inline_len, bad); 241 info->inline_data = *p; 242 *p += info->inline_len; 243 } else 244 info->inline_version = CEPH_INLINE_NONE; 245 246 if (features & CEPH_FEATURE_MDS_QUOTA) { 247 err = parse_reply_info_quota(p, end, info); 248 if (err < 0) 249 goto out_bad; 250 } else { 251 info->max_bytes = 0; 252 info->max_files = 0; 253 } 254 255 info->pool_ns_len = 0; 256 info->pool_ns_data = NULL; 257 if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) { 258 ceph_decode_32_safe(p, end, info->pool_ns_len, bad); 259 if (info->pool_ns_len > 0) { 260 ceph_decode_need(p, end, info->pool_ns_len, bad); 261 info->pool_ns_data = *p; 262 *p += info->pool_ns_len; 263 } 264 } 265 266 if (features & CEPH_FEATURE_FS_BTIME) { 267 ceph_decode_need(p, end, sizeof(info->btime), bad); 268 ceph_decode_copy(p, &info->btime, sizeof(info->btime)); 269 ceph_decode_64_safe(p, end, info->change_attr, bad); 270 } 271 272 info->dir_pin = -ENODATA; 273 /* info->snap_btime and info->rsnaps remain zero */ 274 } 275 return 0; 276 bad: 277 err = -EIO; 278 out_bad: 279 return err; 280 } 281 282 static int parse_reply_info_dir(void **p, void *end, 283 struct ceph_mds_reply_dirfrag **dirfrag, 284 u64 features) 285 { 286 if (features == (u64)-1) { 287 u8 struct_v, struct_compat; 288 u32 struct_len; 289 ceph_decode_8_safe(p, end, struct_v, bad); 290 ceph_decode_8_safe(p, end, struct_compat, bad); 291 /* struct_v is expected to be >= 1. we only understand 292 * encoding whose struct_compat == 1. */ 293 if (!struct_v || struct_compat != 1) 294 goto bad; 295 ceph_decode_32_safe(p, end, struct_len, bad); 296 ceph_decode_need(p, end, struct_len, bad); 297 end = *p + struct_len; 298 } 299 300 ceph_decode_need(p, end, sizeof(**dirfrag), bad); 301 *dirfrag = *p; 302 *p += sizeof(**dirfrag) + sizeof(u32) * le32_to_cpu((*dirfrag)->ndist); 303 if (unlikely(*p > end)) 304 goto bad; 305 if (features == (u64)-1) 306 *p = end; 307 return 0; 308 bad: 309 return -EIO; 310 } 311 312 static int parse_reply_info_lease(void **p, void *end, 313 struct ceph_mds_reply_lease **lease, 314 u64 features, u32 *altname_len, u8 **altname) 315 { 316 u8 struct_v; 317 u32 struct_len; 318 void *lend; 319 320 if (features == (u64)-1) { 321 u8 struct_compat; 322 323 ceph_decode_8_safe(p, end, struct_v, bad); 324 ceph_decode_8_safe(p, end, struct_compat, bad); 325 326 /* struct_v is expected to be >= 1. we only understand 327 * encoding whose struct_compat == 1. */ 328 if (!struct_v || struct_compat != 1) 329 goto bad; 330 331 ceph_decode_32_safe(p, end, struct_len, bad); 332 } else { 333 struct_len = sizeof(**lease); 334 *altname_len = 0; 335 *altname = NULL; 336 } 337 338 lend = *p + struct_len; 339 ceph_decode_need(p, end, struct_len, bad); 340 *lease = *p; 341 *p += sizeof(**lease); 342 343 if (features == (u64)-1) { 344 if (struct_v >= 2) { 345 ceph_decode_32_safe(p, end, *altname_len, bad); 346 ceph_decode_need(p, end, *altname_len, bad); 347 *altname = *p; 348 *p += *altname_len; 349 } else { 350 *altname = NULL; 351 *altname_len = 0; 352 } 353 } 354 *p = lend; 355 return 0; 356 bad: 357 return -EIO; 358 } 359 360 /* 361 * parse a normal reply, which may contain a (dir+)dentry and/or a 362 * target inode. 363 */ 364 static int parse_reply_info_trace(void **p, void *end, 365 struct ceph_mds_reply_info_parsed *info, 366 u64 features) 367 { 368 int err; 369 370 if (info->head->is_dentry) { 371 err = parse_reply_info_in(p, end, &info->diri, features); 372 if (err < 0) 373 goto out_bad; 374 375 err = parse_reply_info_dir(p, end, &info->dirfrag, features); 376 if (err < 0) 377 goto out_bad; 378 379 ceph_decode_32_safe(p, end, info->dname_len, bad); 380 ceph_decode_need(p, end, info->dname_len, bad); 381 info->dname = *p; 382 *p += info->dname_len; 383 384 err = parse_reply_info_lease(p, end, &info->dlease, features, 385 &info->altname_len, &info->altname); 386 if (err < 0) 387 goto out_bad; 388 } 389 390 if (info->head->is_target) { 391 err = parse_reply_info_in(p, end, &info->targeti, features); 392 if (err < 0) 393 goto out_bad; 394 } 395 396 if (unlikely(*p != end)) 397 goto bad; 398 return 0; 399 400 bad: 401 err = -EIO; 402 out_bad: 403 pr_err("problem parsing mds trace %d\n", err); 404 return err; 405 } 406 407 /* 408 * parse readdir results 409 */ 410 static int parse_reply_info_readdir(void **p, void *end, 411 struct ceph_mds_request *req, 412 u64 features) 413 { 414 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info; 415 struct ceph_client *cl = req->r_mdsc->fsc->client; 416 u32 num, i = 0; 417 int err; 418 419 err = parse_reply_info_dir(p, end, &info->dir_dir, features); 420 if (err < 0) 421 goto out_bad; 422 423 ceph_decode_need(p, end, sizeof(num) + 2, bad); 424 num = ceph_decode_32(p); 425 { 426 u16 flags = ceph_decode_16(p); 427 info->dir_end = !!(flags & CEPH_READDIR_FRAG_END); 428 info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE); 429 info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER); 430 info->offset_hash = !!(flags & CEPH_READDIR_OFFSET_HASH); 431 } 432 if (num == 0) 433 goto done; 434 435 BUG_ON(!info->dir_entries); 436 if ((unsigned long)(info->dir_entries + num) > 437 (unsigned long)info->dir_entries + info->dir_buf_size) { 438 pr_err_client(cl, "dir contents are larger than expected\n"); 439 WARN_ON(1); 440 goto bad; 441 } 442 443 info->dir_nr = num; 444 while (num) { 445 struct inode *inode = d_inode(req->r_dentry); 446 struct ceph_inode_info *ci = ceph_inode(inode); 447 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i; 448 struct fscrypt_str tname = FSTR_INIT(NULL, 0); 449 struct fscrypt_str oname = FSTR_INIT(NULL, 0); 450 struct ceph_fname fname; 451 u32 altname_len, _name_len; 452 u8 *altname, *_name; 453 454 /* dentry */ 455 ceph_decode_32_safe(p, end, _name_len, bad); 456 ceph_decode_need(p, end, _name_len, bad); 457 _name = *p; 458 *p += _name_len; 459 doutc(cl, "parsed dir dname '%.*s'\n", _name_len, _name); 460 461 if (info->hash_order) 462 rde->raw_hash = ceph_str_hash(ci->i_dir_layout.dl_dir_hash, 463 _name, _name_len); 464 465 /* dentry lease */ 466 err = parse_reply_info_lease(p, end, &rde->lease, features, 467 &altname_len, &altname); 468 if (err) 469 goto out_bad; 470 471 /* 472 * Try to dencrypt the dentry names and update them 473 * in the ceph_mds_reply_dir_entry struct. 474 */ 475 fname.dir = inode; 476 fname.name = _name; 477 fname.name_len = _name_len; 478 fname.ctext = altname; 479 fname.ctext_len = altname_len; 480 /* 481 * The _name_len maybe larger than altname_len, such as 482 * when the human readable name length is in range of 483 * (CEPH_NOHASH_NAME_MAX, CEPH_NOHASH_NAME_MAX + SHA256_DIGEST_SIZE), 484 * then the copy in ceph_fname_to_usr will corrupt the 485 * data if there has no encryption key. 486 * 487 * Just set the no_copy flag and then if there has no 488 * encryption key the oname.name will be assigned to 489 * _name always. 490 */ 491 fname.no_copy = true; 492 if (altname_len == 0) { 493 /* 494 * Set tname to _name, and this will be used 495 * to do the base64_decode in-place. It's 496 * safe because the decoded string should 497 * always be shorter, which is 3/4 of origin 498 * string. 499 */ 500 tname.name = _name; 501 502 /* 503 * Set oname to _name too, and this will be 504 * used to do the dencryption in-place. 505 */ 506 oname.name = _name; 507 oname.len = _name_len; 508 } else { 509 /* 510 * This will do the decryption only in-place 511 * from altname cryptext directly. 512 */ 513 oname.name = altname; 514 oname.len = altname_len; 515 } 516 rde->is_nokey = false; 517 err = ceph_fname_to_usr(&fname, &tname, &oname, &rde->is_nokey); 518 if (err) { 519 pr_err_client(cl, "unable to decode %.*s, got %d\n", 520 _name_len, _name, err); 521 goto out_bad; 522 } 523 rde->name = oname.name; 524 rde->name_len = oname.len; 525 526 /* inode */ 527 err = parse_reply_info_in(p, end, &rde->inode, features); 528 if (err < 0) 529 goto out_bad; 530 /* ceph_readdir_prepopulate() will update it */ 531 rde->offset = 0; 532 i++; 533 num--; 534 } 535 536 done: 537 /* Skip over any unrecognized fields */ 538 *p = end; 539 return 0; 540 541 bad: 542 err = -EIO; 543 out_bad: 544 pr_err_client(cl, "problem parsing dir contents %d\n", err); 545 return err; 546 } 547 548 /* 549 * parse fcntl F_GETLK results 550 */ 551 static int parse_reply_info_filelock(void **p, void *end, 552 struct ceph_mds_reply_info_parsed *info, 553 u64 features) 554 { 555 if (*p + sizeof(*info->filelock_reply) > end) 556 goto bad; 557 558 info->filelock_reply = *p; 559 560 /* Skip over any unrecognized fields */ 561 *p = end; 562 return 0; 563 bad: 564 return -EIO; 565 } 566 567 568 #if BITS_PER_LONG == 64 569 570 #define DELEGATED_INO_AVAILABLE xa_mk_value(1) 571 572 static int ceph_parse_deleg_inos(void **p, void *end, 573 struct ceph_mds_session *s) 574 { 575 struct ceph_client *cl = s->s_mdsc->fsc->client; 576 u32 sets; 577 578 ceph_decode_32_safe(p, end, sets, bad); 579 doutc(cl, "got %u sets of delegated inodes\n", sets); 580 while (sets--) { 581 u64 start, len; 582 583 ceph_decode_64_safe(p, end, start, bad); 584 ceph_decode_64_safe(p, end, len, bad); 585 586 /* Don't accept a delegation of system inodes */ 587 if (start < CEPH_INO_SYSTEM_BASE) { 588 pr_warn_ratelimited_client(cl, 589 "ignoring reserved inode range delegation (start=0x%llx len=0x%llx)\n", 590 start, len); 591 continue; 592 } 593 while (len--) { 594 int err = xa_insert(&s->s_delegated_inos, start++, 595 DELEGATED_INO_AVAILABLE, 596 GFP_KERNEL); 597 if (!err) { 598 doutc(cl, "added delegated inode 0x%llx\n", start - 1); 599 } else if (err == -EBUSY) { 600 pr_warn_client(cl, 601 "MDS delegated inode 0x%llx more than once.\n", 602 start - 1); 603 } else { 604 return err; 605 } 606 } 607 } 608 return 0; 609 bad: 610 return -EIO; 611 } 612 613 u64 ceph_get_deleg_ino(struct ceph_mds_session *s) 614 { 615 unsigned long ino; 616 void *val; 617 618 xa_for_each(&s->s_delegated_inos, ino, val) { 619 val = xa_erase(&s->s_delegated_inos, ino); 620 if (val == DELEGATED_INO_AVAILABLE) 621 return ino; 622 } 623 return 0; 624 } 625 626 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino) 627 { 628 return xa_insert(&s->s_delegated_inos, ino, DELEGATED_INO_AVAILABLE, 629 GFP_KERNEL); 630 } 631 #else /* BITS_PER_LONG == 64 */ 632 /* 633 * FIXME: xarrays can't handle 64-bit indexes on a 32-bit arch. For now, just 634 * ignore delegated_inos on 32 bit arch. Maybe eventually add xarrays for top 635 * and bottom words? 636 */ 637 static int ceph_parse_deleg_inos(void **p, void *end, 638 struct ceph_mds_session *s) 639 { 640 u32 sets; 641 642 ceph_decode_32_safe(p, end, sets, bad); 643 if (sets) 644 ceph_decode_skip_n(p, end, sets * 2 * sizeof(__le64), bad); 645 return 0; 646 bad: 647 return -EIO; 648 } 649 650 u64 ceph_get_deleg_ino(struct ceph_mds_session *s) 651 { 652 return 0; 653 } 654 655 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino) 656 { 657 return 0; 658 } 659 #endif /* BITS_PER_LONG == 64 */ 660 661 /* 662 * parse create results 663 */ 664 static int parse_reply_info_create(void **p, void *end, 665 struct ceph_mds_reply_info_parsed *info, 666 u64 features, struct ceph_mds_session *s) 667 { 668 int ret; 669 670 if (features == (u64)-1 || 671 (features & CEPH_FEATURE_REPLY_CREATE_INODE)) { 672 if (*p == end) { 673 /* Malformed reply? */ 674 info->has_create_ino = false; 675 } else if (test_bit(CEPHFS_FEATURE_DELEG_INO, &s->s_features)) { 676 info->has_create_ino = true; 677 /* struct_v, struct_compat, and len */ 678 ceph_decode_skip_n(p, end, 2 + sizeof(u32), bad); 679 ceph_decode_64_safe(p, end, info->ino, bad); 680 ret = ceph_parse_deleg_inos(p, end, s); 681 if (ret) 682 return ret; 683 } else { 684 /* legacy */ 685 ceph_decode_64_safe(p, end, info->ino, bad); 686 info->has_create_ino = true; 687 } 688 } else { 689 if (*p != end) 690 goto bad; 691 } 692 693 /* Skip over any unrecognized fields */ 694 *p = end; 695 return 0; 696 bad: 697 return -EIO; 698 } 699 700 static int parse_reply_info_getvxattr(void **p, void *end, 701 struct ceph_mds_reply_info_parsed *info, 702 u64 features) 703 { 704 u32 value_len; 705 706 ceph_decode_skip_8(p, end, bad); /* skip current version: 1 */ 707 ceph_decode_skip_8(p, end, bad); /* skip first version: 1 */ 708 ceph_decode_skip_32(p, end, bad); /* skip payload length */ 709 710 ceph_decode_32_safe(p, end, value_len, bad); 711 712 if (value_len == end - *p) { 713 info->xattr_info.xattr_value = *p; 714 info->xattr_info.xattr_value_len = value_len; 715 *p = end; 716 return value_len; 717 } 718 bad: 719 return -EIO; 720 } 721 722 /* 723 * parse extra results 724 */ 725 static int parse_reply_info_extra(void **p, void *end, 726 struct ceph_mds_request *req, 727 u64 features, struct ceph_mds_session *s) 728 { 729 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info; 730 u32 op = le32_to_cpu(info->head->op); 731 732 if (op == CEPH_MDS_OP_GETFILELOCK) 733 return parse_reply_info_filelock(p, end, info, features); 734 else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP) 735 return parse_reply_info_readdir(p, end, req, features); 736 else if (op == CEPH_MDS_OP_CREATE) 737 return parse_reply_info_create(p, end, info, features, s); 738 else if (op == CEPH_MDS_OP_GETVXATTR) 739 return parse_reply_info_getvxattr(p, end, info, features); 740 else 741 return -EIO; 742 } 743 744 /* 745 * parse entire mds reply 746 */ 747 static int parse_reply_info(struct ceph_mds_session *s, struct ceph_msg *msg, 748 struct ceph_mds_request *req, u64 features) 749 { 750 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info; 751 struct ceph_client *cl = s->s_mdsc->fsc->client; 752 void *p, *end; 753 u32 len; 754 int err; 755 756 info->head = msg->front.iov_base; 757 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 758 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 759 760 /* trace */ 761 ceph_decode_32_safe(&p, end, len, bad); 762 if (len > 0) { 763 ceph_decode_need(&p, end, len, bad); 764 err = parse_reply_info_trace(&p, p+len, info, features); 765 if (err < 0) 766 goto out_bad; 767 } 768 769 /* extra */ 770 ceph_decode_32_safe(&p, end, len, bad); 771 if (len > 0) { 772 ceph_decode_need(&p, end, len, bad); 773 err = parse_reply_info_extra(&p, p+len, req, features, s); 774 if (err < 0) 775 goto out_bad; 776 } 777 778 /* snap blob */ 779 ceph_decode_32_safe(&p, end, len, bad); 780 info->snapblob_len = len; 781 info->snapblob = p; 782 p += len; 783 784 if (p != end) 785 goto bad; 786 return 0; 787 788 bad: 789 err = -EIO; 790 out_bad: 791 pr_err_client(cl, "mds parse_reply err %d\n", err); 792 ceph_msg_dump(msg); 793 return err; 794 } 795 796 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 797 { 798 int i; 799 800 kfree(info->diri.fscrypt_auth); 801 kfree(info->diri.fscrypt_file); 802 kfree(info->targeti.fscrypt_auth); 803 kfree(info->targeti.fscrypt_file); 804 if (!info->dir_entries) 805 return; 806 807 for (i = 0; i < info->dir_nr; i++) { 808 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i; 809 810 kfree(rde->inode.fscrypt_auth); 811 kfree(rde->inode.fscrypt_file); 812 } 813 free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size)); 814 } 815 816 /* 817 * In async unlink case the kclient won't wait for the first reply 818 * from MDS and just drop all the links and unhash the dentry and then 819 * succeeds immediately. 820 * 821 * For any new create/link/rename,etc requests followed by using the 822 * same file names we must wait for the first reply of the inflight 823 * unlink request, or the MDS possibly will fail these following 824 * requests with -EEXIST if the inflight async unlink request was 825 * delayed for some reasons. 826 * 827 * And the worst case is that for the none async openc request it will 828 * successfully open the file if the CDentry hasn't been unlinked yet, 829 * but later the previous delayed async unlink request will remove the 830 * CDentry. That means the just created file is possibly deleted later 831 * by accident. 832 * 833 * We need to wait for the inflight async unlink requests to finish 834 * when creating new files/directories by using the same file names. 835 */ 836 int ceph_wait_on_conflict_unlink(struct dentry *dentry) 837 { 838 struct ceph_fs_client *fsc = ceph_sb_to_fs_client(dentry->d_sb); 839 struct ceph_client *cl = fsc->client; 840 struct dentry *pdentry = dentry->d_parent; 841 struct dentry *udentry, *found = NULL; 842 struct ceph_dentry_info *di; 843 struct qstr dname; 844 u32 hash = dentry->d_name.hash; 845 int err; 846 847 dname.name = dentry->d_name.name; 848 dname.len = dentry->d_name.len; 849 850 rcu_read_lock(); 851 hash_for_each_possible_rcu(fsc->async_unlink_conflict, di, 852 hnode, hash) { 853 udentry = di->dentry; 854 855 spin_lock(&udentry->d_lock); 856 if (udentry->d_name.hash != hash) 857 goto next; 858 if (unlikely(udentry->d_parent != pdentry)) 859 goto next; 860 if (!hash_hashed(&di->hnode)) 861 goto next; 862 863 if (!test_bit(CEPH_DENTRY_ASYNC_UNLINK_BIT, &di->flags)) 864 pr_warn_client(cl, "dentry %p:%pd async unlink bit is not set\n", 865 dentry, dentry); 866 867 if (!d_same_name(udentry, pdentry, &dname)) 868 goto next; 869 870 found = dget_dlock(udentry); 871 spin_unlock(&udentry->d_lock); 872 break; 873 next: 874 spin_unlock(&udentry->d_lock); 875 } 876 rcu_read_unlock(); 877 878 if (likely(!found)) 879 return 0; 880 881 doutc(cl, "dentry %p:%pd conflict with old %p:%pd\n", dentry, dentry, 882 found, found); 883 884 err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_UNLINK_BIT, 885 TASK_KILLABLE); 886 dput(found); 887 return err; 888 } 889 890 891 /* 892 * sessions 893 */ 894 const char *ceph_session_state_name(int s) 895 { 896 switch (s) { 897 case CEPH_MDS_SESSION_NEW: return "new"; 898 case CEPH_MDS_SESSION_OPENING: return "opening"; 899 case CEPH_MDS_SESSION_OPEN: return "open"; 900 case CEPH_MDS_SESSION_HUNG: return "hung"; 901 case CEPH_MDS_SESSION_CLOSING: return "closing"; 902 case CEPH_MDS_SESSION_CLOSED: return "closed"; 903 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 904 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 905 case CEPH_MDS_SESSION_REJECTED: return "rejected"; 906 default: return "???"; 907 } 908 } 909 910 struct ceph_mds_session *ceph_get_mds_session(struct ceph_mds_session *s) 911 { 912 if (refcount_inc_not_zero(&s->s_ref)) 913 return s; 914 return NULL; 915 } 916 917 void ceph_put_mds_session(struct ceph_mds_session *s) 918 { 919 if (IS_ERR_OR_NULL(s)) 920 return; 921 922 if (refcount_dec_and_test(&s->s_ref)) { 923 if (s->s_auth.authorizer) 924 ceph_auth_destroy_authorizer(s->s_auth.authorizer); 925 WARN_ON(mutex_is_locked(&s->s_mutex)); 926 xa_destroy(&s->s_delegated_inos); 927 kfree(s); 928 } 929 } 930 931 /* 932 * called under mdsc->mutex 933 */ 934 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 935 int mds) 936 { 937 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds]) 938 return NULL; 939 return ceph_get_mds_session(mdsc->sessions[mds]); 940 } 941 942 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 943 { 944 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds]) 945 return false; 946 else 947 return true; 948 } 949 950 static int __verify_registered_session(struct ceph_mds_client *mdsc, 951 struct ceph_mds_session *s) 952 { 953 if (s->s_mds >= mdsc->max_sessions || 954 mdsc->sessions[s->s_mds] != s) 955 return -ENOENT; 956 return 0; 957 } 958 959 /* 960 * create+register a new session for given mds. 961 * called under mdsc->mutex. 962 */ 963 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 964 int mds) 965 { 966 struct ceph_client *cl = mdsc->fsc->client; 967 struct ceph_mds_session *s; 968 969 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) 970 return ERR_PTR(-EIO); 971 972 if (mds >= mdsc->mdsmap->possible_max_rank) 973 return ERR_PTR(-EINVAL); 974 975 s = kzalloc(sizeof(*s), GFP_NOFS); 976 if (!s) 977 return ERR_PTR(-ENOMEM); 978 979 if (mds >= mdsc->max_sessions) { 980 int newmax = 1 << get_count_order(mds + 1); 981 struct ceph_mds_session **sa; 982 983 doutc(cl, "realloc to %d\n", newmax); 984 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 985 if (!sa) 986 goto fail_realloc; 987 if (mdsc->sessions) { 988 memcpy(sa, mdsc->sessions, 989 mdsc->max_sessions * sizeof(void *)); 990 kfree(mdsc->sessions); 991 } 992 mdsc->sessions = sa; 993 mdsc->max_sessions = newmax; 994 } 995 996 doutc(cl, "mds%d\n", mds); 997 s->s_mdsc = mdsc; 998 s->s_mds = mds; 999 s->s_state = CEPH_MDS_SESSION_NEW; 1000 mutex_init(&s->s_mutex); 1001 1002 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 1003 1004 atomic_set(&s->s_cap_gen, 1); 1005 s->s_cap_ttl = jiffies - 1; 1006 1007 spin_lock_init(&s->s_cap_lock); 1008 INIT_LIST_HEAD(&s->s_caps); 1009 refcount_set(&s->s_ref, 1); 1010 INIT_LIST_HEAD(&s->s_waiting); 1011 INIT_LIST_HEAD(&s->s_unsafe); 1012 xa_init(&s->s_delegated_inos); 1013 INIT_LIST_HEAD(&s->s_cap_releases); 1014 INIT_WORK(&s->s_cap_release_work, ceph_cap_release_work); 1015 1016 INIT_LIST_HEAD(&s->s_cap_dirty); 1017 INIT_LIST_HEAD(&s->s_cap_flushing); 1018 1019 mdsc->sessions[mds] = s; 1020 atomic_inc(&mdsc->num_sessions); 1021 refcount_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 1022 1023 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 1024 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 1025 1026 return s; 1027 1028 fail_realloc: 1029 kfree(s); 1030 return ERR_PTR(-ENOMEM); 1031 } 1032 1033 /* 1034 * called under mdsc->mutex 1035 */ 1036 static void __unregister_session(struct ceph_mds_client *mdsc, 1037 struct ceph_mds_session *s) 1038 { 1039 doutc(mdsc->fsc->client, "mds%d %p\n", s->s_mds, s); 1040 BUG_ON(mdsc->sessions[s->s_mds] != s); 1041 mdsc->sessions[s->s_mds] = NULL; 1042 ceph_con_close(&s->s_con); 1043 ceph_put_mds_session(s); 1044 atomic_dec(&mdsc->num_sessions); 1045 } 1046 1047 /* 1048 * drop session refs in request. 1049 * 1050 * should be last request ref, or hold mdsc->mutex 1051 */ 1052 static void put_request_session(struct ceph_mds_request *req) 1053 { 1054 if (req->r_session) { 1055 ceph_put_mds_session(req->r_session); 1056 req->r_session = NULL; 1057 } 1058 } 1059 1060 void ceph_mdsc_iterate_sessions(struct ceph_mds_client *mdsc, 1061 void (*cb)(struct ceph_mds_session *), 1062 bool check_state) 1063 { 1064 int mds; 1065 1066 mutex_lock(&mdsc->mutex); 1067 for (mds = 0; mds < mdsc->max_sessions; ++mds) { 1068 struct ceph_mds_session *s; 1069 1070 s = __ceph_lookup_mds_session(mdsc, mds); 1071 if (!s) 1072 continue; 1073 1074 if (check_state && !check_session_state(s)) { 1075 ceph_put_mds_session(s); 1076 continue; 1077 } 1078 1079 mutex_unlock(&mdsc->mutex); 1080 cb(s); 1081 ceph_put_mds_session(s); 1082 mutex_lock(&mdsc->mutex); 1083 } 1084 mutex_unlock(&mdsc->mutex); 1085 } 1086 1087 void ceph_mdsc_release_request(struct kref *kref) 1088 { 1089 struct ceph_mds_request *req = container_of(kref, 1090 struct ceph_mds_request, 1091 r_kref); 1092 ceph_mdsc_release_dir_caps_async(req); 1093 destroy_reply_info(&req->r_reply_info); 1094 if (req->r_request) 1095 ceph_msg_put(req->r_request); 1096 if (req->r_reply) 1097 ceph_msg_put(req->r_reply); 1098 if (req->r_inode) { 1099 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 1100 iput(req->r_inode); 1101 } 1102 if (req->r_parent) { 1103 ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN); 1104 iput(req->r_parent); 1105 } 1106 iput(req->r_target_inode); 1107 iput(req->r_new_inode); 1108 if (req->r_dentry) 1109 dput(req->r_dentry); 1110 if (req->r_old_dentry) 1111 dput(req->r_old_dentry); 1112 if (req->r_old_dentry_dir) { 1113 /* 1114 * track (and drop pins for) r_old_dentry_dir 1115 * separately, since r_old_dentry's d_parent may have 1116 * changed between the dir mutex being dropped and 1117 * this request being freed. 1118 */ 1119 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 1120 CEPH_CAP_PIN); 1121 iput(req->r_old_dentry_dir); 1122 } 1123 kfree(req->r_path1); 1124 kfree(req->r_path2); 1125 put_cred(req->r_cred); 1126 if (req->r_mnt_idmap) 1127 mnt_idmap_put(req->r_mnt_idmap); 1128 if (req->r_pagelist) 1129 ceph_pagelist_release(req->r_pagelist); 1130 kfree(req->r_fscrypt_auth); 1131 kfree(req->r_altname); 1132 put_request_session(req); 1133 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 1134 WARN_ON_ONCE(!list_empty(&req->r_wait)); 1135 kmem_cache_free(ceph_mds_request_cachep, req); 1136 } 1137 1138 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node) 1139 1140 /* 1141 * lookup session, bump ref if found. 1142 * 1143 * called under mdsc->mutex. 1144 */ 1145 static struct ceph_mds_request * 1146 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid) 1147 { 1148 struct ceph_mds_request *req; 1149 1150 req = lookup_request(&mdsc->request_tree, tid); 1151 if (req) 1152 ceph_mdsc_get_request(req); 1153 1154 return req; 1155 } 1156 1157 /* 1158 * Register an in-flight request, and assign a tid. Link to directory 1159 * are modifying (if any). 1160 * 1161 * Called under mdsc->mutex. 1162 */ 1163 static void __register_request(struct ceph_mds_client *mdsc, 1164 struct ceph_mds_request *req, 1165 struct inode *dir) 1166 { 1167 struct ceph_client *cl = mdsc->fsc->client; 1168 int ret = 0; 1169 1170 req->r_tid = ++mdsc->last_tid; 1171 if (req->r_num_caps) { 1172 ret = ceph_reserve_caps(mdsc, &req->r_caps_reservation, 1173 req->r_num_caps); 1174 if (ret < 0) { 1175 pr_err_client(cl, "%p failed to reserve caps: %d\n", 1176 req, ret); 1177 /* set req->r_err to fail early from __do_request */ 1178 req->r_err = ret; 1179 return; 1180 } 1181 } 1182 doutc(cl, "%p tid %lld\n", req, req->r_tid); 1183 ceph_mdsc_get_request(req); 1184 insert_request(&mdsc->request_tree, req); 1185 1186 req->r_cred = get_current_cred(); 1187 if (!req->r_mnt_idmap) 1188 req->r_mnt_idmap = &nop_mnt_idmap; 1189 1190 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK) 1191 mdsc->oldest_tid = req->r_tid; 1192 1193 if (dir) { 1194 struct ceph_inode_info *ci = ceph_inode(dir); 1195 1196 ihold(dir); 1197 req->r_unsafe_dir = dir; 1198 spin_lock(&ci->i_unsafe_lock); 1199 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 1200 spin_unlock(&ci->i_unsafe_lock); 1201 } 1202 } 1203 1204 static void __unregister_request(struct ceph_mds_client *mdsc, 1205 struct ceph_mds_request *req) 1206 { 1207 doutc(mdsc->fsc->client, "%p tid %lld\n", req, req->r_tid); 1208 1209 /* Never leave an unregistered request on an unsafe list! */ 1210 list_del_init(&req->r_unsafe_item); 1211 1212 if (req->r_tid == mdsc->oldest_tid) { 1213 struct rb_node *p = rb_next(&req->r_node); 1214 mdsc->oldest_tid = 0; 1215 while (p) { 1216 struct ceph_mds_request *next_req = 1217 rb_entry(p, struct ceph_mds_request, r_node); 1218 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) { 1219 mdsc->oldest_tid = next_req->r_tid; 1220 break; 1221 } 1222 p = rb_next(p); 1223 } 1224 } 1225 1226 erase_request(&mdsc->request_tree, req); 1227 1228 if (req->r_unsafe_dir) { 1229 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 1230 spin_lock(&ci->i_unsafe_lock); 1231 list_del_init(&req->r_unsafe_dir_item); 1232 spin_unlock(&ci->i_unsafe_lock); 1233 } 1234 if (req->r_target_inode && 1235 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 1236 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode); 1237 spin_lock(&ci->i_unsafe_lock); 1238 list_del_init(&req->r_unsafe_target_item); 1239 spin_unlock(&ci->i_unsafe_lock); 1240 } 1241 1242 if (req->r_unsafe_dir) { 1243 iput(req->r_unsafe_dir); 1244 req->r_unsafe_dir = NULL; 1245 } 1246 1247 complete_all(&req->r_safe_completion); 1248 1249 ceph_mdsc_put_request(req); 1250 } 1251 1252 /* 1253 * Walk back up the dentry tree until we hit a dentry representing a 1254 * non-snapshot inode. We do this using the rcu_read_lock (which must be held 1255 * when calling this) to ensure that the objects won't disappear while we're 1256 * working with them. Once we hit a candidate dentry, we attempt to take a 1257 * reference to it, and return that as the result. 1258 */ 1259 static struct inode *get_nonsnap_parent(struct dentry *dentry) 1260 { 1261 struct inode *inode = NULL; 1262 1263 while (dentry && !IS_ROOT(dentry)) { 1264 inode = d_inode_rcu(dentry); 1265 if (!inode || ceph_snap(inode) == CEPH_NOSNAP) 1266 break; 1267 dentry = dentry->d_parent; 1268 } 1269 if (inode) 1270 inode = igrab(inode); 1271 return inode; 1272 } 1273 1274 /* 1275 * Choose mds to send request to next. If there is a hint set in the 1276 * request (e.g., due to a prior forward hint from the mds), use that. 1277 * Otherwise, consult frag tree and/or caps to identify the 1278 * appropriate mds. If all else fails, choose randomly. 1279 * 1280 * Called under mdsc->mutex. 1281 */ 1282 static int __choose_mds(struct ceph_mds_client *mdsc, 1283 struct ceph_mds_request *req, 1284 bool *random) 1285 { 1286 struct inode *inode; 1287 struct ceph_inode_info *ci; 1288 struct ceph_cap *cap; 1289 int mode = req->r_direct_mode; 1290 int mds = -1; 1291 u32 hash = req->r_direct_hash; 1292 bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags); 1293 struct ceph_client *cl = mdsc->fsc->client; 1294 1295 if (random) 1296 *random = false; 1297 1298 /* 1299 * is there a specific mds we should try? ignore hint if we have 1300 * no session and the mds is not up (active or recovering). 1301 */ 1302 if (req->r_resend_mds >= 0 && 1303 (__have_session(mdsc, req->r_resend_mds) || 1304 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 1305 doutc(cl, "using resend_mds mds%d\n", req->r_resend_mds); 1306 return req->r_resend_mds; 1307 } 1308 1309 if (mode == USE_RANDOM_MDS) 1310 goto random; 1311 1312 inode = NULL; 1313 if (req->r_inode) { 1314 if (ceph_snap(req->r_inode) != CEPH_SNAPDIR) { 1315 inode = req->r_inode; 1316 ihold(inode); 1317 } else { 1318 /* req->r_dentry is non-null for LSSNAP request */ 1319 rcu_read_lock(); 1320 inode = get_nonsnap_parent(req->r_dentry); 1321 rcu_read_unlock(); 1322 doutc(cl, "using snapdir's parent %p %llx.%llx\n", 1323 inode, ceph_vinop(inode)); 1324 } 1325 } else if (req->r_dentry) { 1326 /* ignore race with rename; old or new d_parent is okay */ 1327 struct dentry *parent; 1328 struct inode *dir; 1329 1330 rcu_read_lock(); 1331 parent = READ_ONCE(req->r_dentry->d_parent); 1332 dir = req->r_parent ? : d_inode_rcu(parent); 1333 1334 if (!dir || dir->i_sb != mdsc->fsc->sb) { 1335 /* not this fs or parent went negative */ 1336 inode = d_inode(req->r_dentry); 1337 if (inode) 1338 ihold(inode); 1339 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 1340 /* direct snapped/virtual snapdir requests 1341 * based on parent dir inode */ 1342 inode = get_nonsnap_parent(parent); 1343 doutc(cl, "using nonsnap parent %p %llx.%llx\n", 1344 inode, ceph_vinop(inode)); 1345 } else { 1346 /* dentry target */ 1347 inode = d_inode(req->r_dentry); 1348 if (!inode || mode == USE_AUTH_MDS) { 1349 /* dir + name */ 1350 inode = igrab(dir); 1351 hash = ceph_dentry_hash(dir, req->r_dentry); 1352 is_hash = true; 1353 } else { 1354 ihold(inode); 1355 } 1356 } 1357 rcu_read_unlock(); 1358 } 1359 1360 if (!inode) 1361 goto random; 1362 1363 doutc(cl, "%p %llx.%llx is_hash=%d (0x%x) mode %d\n", inode, 1364 ceph_vinop(inode), (int)is_hash, hash, mode); 1365 ci = ceph_inode(inode); 1366 1367 if (is_hash && S_ISDIR(inode->i_mode)) { 1368 struct ceph_inode_frag frag; 1369 int found; 1370 1371 ceph_choose_frag(ci, hash, &frag, &found); 1372 if (found) { 1373 if (mode == USE_ANY_MDS && frag.ndist > 0) { 1374 u8 r; 1375 1376 /* choose a random replica */ 1377 get_random_bytes(&r, 1); 1378 r %= frag.ndist; 1379 mds = frag.dist[r]; 1380 doutc(cl, "%p %llx.%llx frag %u mds%d (%d/%d)\n", 1381 inode, ceph_vinop(inode), frag.frag, 1382 mds, (int)r, frag.ndist); 1383 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 1384 CEPH_MDS_STATE_ACTIVE && 1385 !ceph_mdsmap_is_laggy(mdsc->mdsmap, mds)) 1386 goto out; 1387 } 1388 1389 /* since this file/dir wasn't known to be 1390 * replicated, then we want to look for the 1391 * authoritative mds. */ 1392 if (frag.mds >= 0) { 1393 /* choose auth mds */ 1394 mds = frag.mds; 1395 doutc(cl, "%p %llx.%llx frag %u mds%d (auth)\n", 1396 inode, ceph_vinop(inode), frag.frag, mds); 1397 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 1398 CEPH_MDS_STATE_ACTIVE) { 1399 if (!ceph_mdsmap_is_laggy(mdsc->mdsmap, 1400 mds)) 1401 goto out; 1402 } 1403 } 1404 mode = USE_AUTH_MDS; 1405 } 1406 } 1407 1408 spin_lock(&ci->i_ceph_lock); 1409 cap = NULL; 1410 if (mode == USE_AUTH_MDS) 1411 cap = ci->i_auth_cap; 1412 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 1413 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 1414 if (!cap) { 1415 spin_unlock(&ci->i_ceph_lock); 1416 iput(inode); 1417 goto random; 1418 } 1419 mds = cap->session->s_mds; 1420 doutc(cl, "%p %llx.%llx mds%d (%scap %p)\n", inode, 1421 ceph_vinop(inode), mds, 1422 cap == ci->i_auth_cap ? "auth " : "", cap); 1423 spin_unlock(&ci->i_ceph_lock); 1424 out: 1425 iput(inode); 1426 return mds; 1427 1428 random: 1429 if (random) 1430 *random = true; 1431 1432 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 1433 doutc(cl, "chose random mds%d\n", mds); 1434 return mds; 1435 } 1436 1437 1438 /* 1439 * session messages 1440 */ 1441 struct ceph_msg *ceph_create_session_msg(u32 op, u64 seq) 1442 { 1443 struct ceph_msg *msg; 1444 struct ceph_mds_session_head *h; 1445 1446 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 1447 false); 1448 if (!msg) { 1449 pr_err("ENOMEM creating session %s msg\n", 1450 ceph_session_op_name(op)); 1451 return NULL; 1452 } 1453 h = msg->front.iov_base; 1454 h->op = cpu_to_le32(op); 1455 h->seq = cpu_to_le64(seq); 1456 1457 return msg; 1458 } 1459 1460 static const unsigned char feature_bits[] = CEPHFS_FEATURES_CLIENT_SUPPORTED; 1461 #define FEATURE_BYTES(c) (DIV_ROUND_UP((size_t)feature_bits[c - 1] + 1, 64) * 8) 1462 static int encode_supported_features(void **p, void *end) 1463 { 1464 static const size_t count = ARRAY_SIZE(feature_bits); 1465 1466 if (count > 0) { 1467 size_t i; 1468 size_t size = FEATURE_BYTES(count); 1469 unsigned long bit; 1470 1471 if (WARN_ON_ONCE(*p + 4 + size > end)) 1472 return -ERANGE; 1473 1474 ceph_encode_32(p, size); 1475 memset(*p, 0, size); 1476 for (i = 0; i < count; i++) { 1477 bit = feature_bits[i]; 1478 ((unsigned char *)(*p))[bit / 8] |= BIT(bit % 8); 1479 } 1480 *p += size; 1481 } else { 1482 if (WARN_ON_ONCE(*p + 4 > end)) 1483 return -ERANGE; 1484 1485 ceph_encode_32(p, 0); 1486 } 1487 1488 return 0; 1489 } 1490 1491 static const unsigned char metric_bits[] = CEPHFS_METRIC_SPEC_CLIENT_SUPPORTED; 1492 #define METRIC_BYTES(cnt) (DIV_ROUND_UP((size_t)metric_bits[cnt - 1] + 1, 64) * 8) 1493 static int encode_metric_spec(void **p, void *end) 1494 { 1495 static const size_t count = ARRAY_SIZE(metric_bits); 1496 1497 /* header */ 1498 if (WARN_ON_ONCE(*p + 2 > end)) 1499 return -ERANGE; 1500 1501 ceph_encode_8(p, 1); /* version */ 1502 ceph_encode_8(p, 1); /* compat */ 1503 1504 if (count > 0) { 1505 size_t i; 1506 size_t size = METRIC_BYTES(count); 1507 1508 if (WARN_ON_ONCE(*p + 4 + 4 + size > end)) 1509 return -ERANGE; 1510 1511 /* metric spec info length */ 1512 ceph_encode_32(p, 4 + size); 1513 1514 /* metric spec */ 1515 ceph_encode_32(p, size); 1516 memset(*p, 0, size); 1517 for (i = 0; i < count; i++) 1518 ((unsigned char *)(*p))[i / 8] |= BIT(metric_bits[i] % 8); 1519 *p += size; 1520 } else { 1521 if (WARN_ON_ONCE(*p + 4 + 4 > end)) 1522 return -ERANGE; 1523 1524 /* metric spec info length */ 1525 ceph_encode_32(p, 4); 1526 /* metric spec */ 1527 ceph_encode_32(p, 0); 1528 } 1529 1530 return 0; 1531 } 1532 1533 /* 1534 * session message, specialization for CEPH_SESSION_REQUEST_OPEN 1535 * to include additional client metadata fields. 1536 */ 1537 static struct ceph_msg * 1538 create_session_full_msg(struct ceph_mds_client *mdsc, int op, u64 seq) 1539 { 1540 struct ceph_msg *msg; 1541 struct ceph_mds_session_head *h; 1542 int i; 1543 int extra_bytes = 0; 1544 int metadata_key_count = 0; 1545 struct ceph_options *opt = mdsc->fsc->client->options; 1546 struct ceph_mount_options *fsopt = mdsc->fsc->mount_options; 1547 struct ceph_client *cl = mdsc->fsc->client; 1548 size_t size, count; 1549 void *p, *end; 1550 int ret; 1551 1552 const char* metadata[][2] = { 1553 {"hostname", mdsc->nodename}, 1554 {"kernel_version", init_utsname()->release}, 1555 {"entity_id", opt->name ? : ""}, 1556 {"root", fsopt->server_path ? : "/"}, 1557 {NULL, NULL} 1558 }; 1559 1560 /* Calculate serialized length of metadata */ 1561 extra_bytes = 4; /* map length */ 1562 for (i = 0; metadata[i][0]; ++i) { 1563 extra_bytes += 8 + strlen(metadata[i][0]) + 1564 strlen(metadata[i][1]); 1565 metadata_key_count++; 1566 } 1567 1568 /* supported feature */ 1569 size = 0; 1570 count = ARRAY_SIZE(feature_bits); 1571 if (count > 0) 1572 size = FEATURE_BYTES(count); 1573 extra_bytes += 4 + size; 1574 1575 /* metric spec */ 1576 size = 0; 1577 count = ARRAY_SIZE(metric_bits); 1578 if (count > 0) 1579 size = METRIC_BYTES(count); 1580 extra_bytes += 2 + 4 + 4 + size; 1581 1582 /* flags, mds auth caps and oldest_client_tid */ 1583 extra_bytes += 4 + 4 + 8; 1584 1585 /* Allocate the message */ 1586 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + extra_bytes, 1587 GFP_NOFS, false); 1588 if (!msg) { 1589 pr_err_client(cl, "ENOMEM creating session open msg\n"); 1590 return ERR_PTR(-ENOMEM); 1591 } 1592 p = msg->front.iov_base; 1593 end = p + msg->front.iov_len; 1594 1595 h = p; 1596 h->op = cpu_to_le32(op); 1597 h->seq = cpu_to_le64(seq); 1598 1599 /* 1600 * Serialize client metadata into waiting buffer space, using 1601 * the format that userspace expects for map<string, string> 1602 * 1603 * ClientSession messages with metadata are v7 1604 */ 1605 msg->hdr.version = cpu_to_le16(7); 1606 msg->hdr.compat_version = cpu_to_le16(1); 1607 1608 /* The write pointer, following the session_head structure */ 1609 p += sizeof(*h); 1610 1611 /* Number of entries in the map */ 1612 ceph_encode_32(&p, metadata_key_count); 1613 1614 /* Two length-prefixed strings for each entry in the map */ 1615 for (i = 0; metadata[i][0]; ++i) { 1616 size_t const key_len = strlen(metadata[i][0]); 1617 size_t const val_len = strlen(metadata[i][1]); 1618 1619 ceph_encode_32(&p, key_len); 1620 memcpy(p, metadata[i][0], key_len); 1621 p += key_len; 1622 ceph_encode_32(&p, val_len); 1623 memcpy(p, metadata[i][1], val_len); 1624 p += val_len; 1625 } 1626 1627 ret = encode_supported_features(&p, end); 1628 if (ret) { 1629 pr_err_client(cl, "encode_supported_features failed!\n"); 1630 ceph_msg_put(msg); 1631 return ERR_PTR(ret); 1632 } 1633 1634 ret = encode_metric_spec(&p, end); 1635 if (ret) { 1636 pr_err_client(cl, "encode_metric_spec failed!\n"); 1637 ceph_msg_put(msg); 1638 return ERR_PTR(ret); 1639 } 1640 1641 /* version == 5, flags */ 1642 ceph_encode_32(&p, 0); 1643 1644 /* version == 6, mds auth caps */ 1645 ceph_encode_32(&p, 0); 1646 1647 /* version == 7, oldest_client_tid */ 1648 ceph_encode_64(&p, mdsc->oldest_tid); 1649 1650 msg->front.iov_len = p - msg->front.iov_base; 1651 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1652 1653 return msg; 1654 } 1655 1656 /* 1657 * send session open request. 1658 * 1659 * called under mdsc->mutex 1660 */ 1661 static int __open_session(struct ceph_mds_client *mdsc, 1662 struct ceph_mds_session *session) 1663 { 1664 struct ceph_msg *msg; 1665 int mstate; 1666 int mds = session->s_mds; 1667 1668 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) 1669 return -EIO; 1670 1671 /* wait for mds to go active? */ 1672 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 1673 doutc(mdsc->fsc->client, "open_session to mds%d (%s)\n", mds, 1674 ceph_mds_state_name(mstate)); 1675 session->s_state = CEPH_MDS_SESSION_OPENING; 1676 session->s_renew_requested = jiffies; 1677 1678 /* send connect message */ 1679 msg = create_session_full_msg(mdsc, CEPH_SESSION_REQUEST_OPEN, 1680 session->s_seq); 1681 if (IS_ERR(msg)) 1682 return PTR_ERR(msg); 1683 ceph_con_send(&session->s_con, msg); 1684 return 0; 1685 } 1686 1687 /* 1688 * open sessions for any export targets for the given mds 1689 * 1690 * called under mdsc->mutex 1691 */ 1692 static struct ceph_mds_session * 1693 __open_export_target_session(struct ceph_mds_client *mdsc, int target) 1694 { 1695 struct ceph_mds_session *session; 1696 int ret; 1697 1698 session = __ceph_lookup_mds_session(mdsc, target); 1699 if (!session) { 1700 session = register_session(mdsc, target); 1701 if (IS_ERR(session)) 1702 return session; 1703 } 1704 if (session->s_state == CEPH_MDS_SESSION_NEW || 1705 session->s_state == CEPH_MDS_SESSION_CLOSING) { 1706 ret = __open_session(mdsc, session); 1707 if (ret) 1708 return ERR_PTR(ret); 1709 } 1710 1711 return session; 1712 } 1713 1714 struct ceph_mds_session * 1715 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target) 1716 { 1717 struct ceph_mds_session *session; 1718 struct ceph_client *cl = mdsc->fsc->client; 1719 1720 doutc(cl, "to mds%d\n", target); 1721 1722 mutex_lock(&mdsc->mutex); 1723 session = __open_export_target_session(mdsc, target); 1724 mutex_unlock(&mdsc->mutex); 1725 1726 return session; 1727 } 1728 1729 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 1730 struct ceph_mds_session *session) 1731 { 1732 struct ceph_mds_info *mi; 1733 struct ceph_mds_session *ts; 1734 int i, mds = session->s_mds; 1735 struct ceph_client *cl = mdsc->fsc->client; 1736 1737 if (mds >= mdsc->mdsmap->possible_max_rank) 1738 return; 1739 1740 mi = &mdsc->mdsmap->m_info[mds]; 1741 doutc(cl, "for mds%d (%d targets)\n", session->s_mds, 1742 mi->num_export_targets); 1743 1744 for (i = 0; i < mi->num_export_targets; i++) { 1745 ts = __open_export_target_session(mdsc, mi->export_targets[i]); 1746 ceph_put_mds_session(ts); 1747 } 1748 } 1749 1750 /* 1751 * session caps 1752 */ 1753 1754 static void detach_cap_releases(struct ceph_mds_session *session, 1755 struct list_head *target) 1756 { 1757 struct ceph_client *cl = session->s_mdsc->fsc->client; 1758 1759 lockdep_assert_held(&session->s_cap_lock); 1760 1761 list_splice_init(&session->s_cap_releases, target); 1762 session->s_num_cap_releases = 0; 1763 doutc(cl, "mds%d\n", session->s_mds); 1764 } 1765 1766 static void dispose_cap_releases(struct ceph_mds_client *mdsc, 1767 struct list_head *dispose) 1768 { 1769 while (!list_empty(dispose)) { 1770 struct ceph_cap *cap; 1771 /* zero out the in-progress message */ 1772 cap = list_first_entry(dispose, struct ceph_cap, session_caps); 1773 list_del(&cap->session_caps); 1774 ceph_put_cap(mdsc, cap); 1775 } 1776 } 1777 1778 static void cleanup_session_requests(struct ceph_mds_client *mdsc, 1779 struct ceph_mds_session *session) 1780 { 1781 struct ceph_client *cl = mdsc->fsc->client; 1782 struct ceph_mds_request *req; 1783 struct rb_node *p; 1784 1785 doutc(cl, "mds%d\n", session->s_mds); 1786 mutex_lock(&mdsc->mutex); 1787 while (!list_empty(&session->s_unsafe)) { 1788 req = list_first_entry(&session->s_unsafe, 1789 struct ceph_mds_request, r_unsafe_item); 1790 pr_warn_ratelimited_client(cl, " dropping unsafe request %llu\n", 1791 req->r_tid); 1792 if (req->r_target_inode) 1793 mapping_set_error(req->r_target_inode->i_mapping, -EIO); 1794 if (req->r_unsafe_dir) 1795 mapping_set_error(req->r_unsafe_dir->i_mapping, -EIO); 1796 __unregister_request(mdsc, req); 1797 } 1798 /* zero r_attempts, so kick_requests() will re-send requests */ 1799 p = rb_first(&mdsc->request_tree); 1800 while (p) { 1801 req = rb_entry(p, struct ceph_mds_request, r_node); 1802 p = rb_next(p); 1803 if (req->r_session && 1804 req->r_session->s_mds == session->s_mds) 1805 req->r_attempts = 0; 1806 } 1807 mutex_unlock(&mdsc->mutex); 1808 } 1809 1810 /* 1811 * Helper to safely iterate over all caps associated with a session, with 1812 * special care taken to handle a racing __ceph_remove_cap(). 1813 * 1814 * Caller must hold session s_mutex. 1815 */ 1816 int ceph_iterate_session_caps(struct ceph_mds_session *session, 1817 int (*cb)(struct inode *, int mds, void *), 1818 void *arg) 1819 { 1820 struct ceph_client *cl = session->s_mdsc->fsc->client; 1821 struct list_head *p; 1822 struct ceph_cap *cap; 1823 struct inode *inode, *last_inode = NULL; 1824 struct ceph_cap *old_cap = NULL; 1825 int ret; 1826 1827 doutc(cl, "%p mds%d\n", session, session->s_mds); 1828 spin_lock(&session->s_cap_lock); 1829 p = session->s_caps.next; 1830 while (p != &session->s_caps) { 1831 int mds; 1832 1833 cap = list_entry(p, struct ceph_cap, session_caps); 1834 inode = igrab(&cap->ci->netfs.inode); 1835 if (!inode) { 1836 p = p->next; 1837 continue; 1838 } 1839 session->s_cap_iterator = cap; 1840 mds = cap->mds; 1841 spin_unlock(&session->s_cap_lock); 1842 1843 if (last_inode) { 1844 iput(last_inode); 1845 last_inode = NULL; 1846 } 1847 if (old_cap) { 1848 ceph_put_cap(session->s_mdsc, old_cap); 1849 old_cap = NULL; 1850 } 1851 1852 ret = cb(inode, mds, arg); 1853 last_inode = inode; 1854 1855 spin_lock(&session->s_cap_lock); 1856 p = p->next; 1857 if (!cap->ci) { 1858 doutc(cl, "finishing cap %p removal\n", cap); 1859 BUG_ON(cap->session != session); 1860 cap->session = NULL; 1861 list_del_init(&cap->session_caps); 1862 session->s_nr_caps--; 1863 atomic64_dec(&session->s_mdsc->metric.total_caps); 1864 if (cap->queue_release) 1865 __ceph_queue_cap_release(session, cap); 1866 else 1867 old_cap = cap; /* put_cap it w/o locks held */ 1868 } 1869 if (ret < 0) 1870 goto out; 1871 } 1872 ret = 0; 1873 out: 1874 session->s_cap_iterator = NULL; 1875 spin_unlock(&session->s_cap_lock); 1876 1877 iput(last_inode); 1878 if (old_cap) 1879 ceph_put_cap(session->s_mdsc, old_cap); 1880 1881 return ret; 1882 } 1883 1884 static int remove_session_caps_cb(struct inode *inode, int mds, void *arg) 1885 { 1886 struct ceph_inode_info *ci = ceph_inode(inode); 1887 struct ceph_client *cl = ceph_inode_to_client(inode); 1888 bool invalidate = false; 1889 struct ceph_cap *cap; 1890 int iputs = 0; 1891 1892 spin_lock(&ci->i_ceph_lock); 1893 cap = __get_cap_for_mds(ci, mds); 1894 if (cap) { 1895 doutc(cl, " removing cap %p, ci is %p, inode is %p\n", 1896 cap, ci, &ci->netfs.inode); 1897 1898 iputs = ceph_purge_inode_cap(inode, cap, &invalidate); 1899 } 1900 spin_unlock(&ci->i_ceph_lock); 1901 1902 if (cap) 1903 wake_up_all(&ci->i_cap_wq); 1904 if (invalidate) 1905 ceph_queue_invalidate(inode); 1906 while (iputs--) 1907 iput(inode); 1908 return 0; 1909 } 1910 1911 /* 1912 * caller must hold session s_mutex 1913 */ 1914 static void remove_session_caps(struct ceph_mds_session *session) 1915 { 1916 struct ceph_fs_client *fsc = session->s_mdsc->fsc; 1917 struct super_block *sb = fsc->sb; 1918 LIST_HEAD(dispose); 1919 1920 doutc(fsc->client, "on %p\n", session); 1921 ceph_iterate_session_caps(session, remove_session_caps_cb, fsc); 1922 1923 wake_up_all(&fsc->mdsc->cap_flushing_wq); 1924 1925 spin_lock(&session->s_cap_lock); 1926 if (session->s_nr_caps > 0) { 1927 struct inode *inode; 1928 struct ceph_cap *cap, *prev = NULL; 1929 struct ceph_vino vino; 1930 /* 1931 * iterate_session_caps() skips inodes that are being 1932 * deleted, we need to wait until deletions are complete. 1933 * __wait_on_freeing_inode() is designed for the job, 1934 * but it is not exported, so use lookup inode function 1935 * to access it. 1936 */ 1937 while (!list_empty(&session->s_caps)) { 1938 cap = list_entry(session->s_caps.next, 1939 struct ceph_cap, session_caps); 1940 if (cap == prev) 1941 break; 1942 prev = cap; 1943 vino = cap->ci->i_vino; 1944 spin_unlock(&session->s_cap_lock); 1945 1946 inode = ceph_find_inode(sb, vino); 1947 iput(inode); 1948 1949 spin_lock(&session->s_cap_lock); 1950 } 1951 } 1952 1953 // drop cap expires and unlock s_cap_lock 1954 detach_cap_releases(session, &dispose); 1955 1956 BUG_ON(session->s_nr_caps > 0); 1957 BUG_ON(!list_empty(&session->s_cap_flushing)); 1958 spin_unlock(&session->s_cap_lock); 1959 dispose_cap_releases(session->s_mdsc, &dispose); 1960 } 1961 1962 enum { 1963 RECONNECT, 1964 RENEWCAPS, 1965 FORCE_RO, 1966 }; 1967 1968 /* 1969 * wake up any threads waiting on this session's caps. if the cap is 1970 * old (didn't get renewed on the client reconnect), remove it now. 1971 * 1972 * caller must hold s_mutex. 1973 */ 1974 static int wake_up_session_cb(struct inode *inode, int mds, void *arg) 1975 { 1976 struct ceph_inode_info *ci = ceph_inode(inode); 1977 unsigned long ev = (unsigned long)arg; 1978 1979 if (ev == RECONNECT) { 1980 spin_lock(&ci->i_ceph_lock); 1981 ci->i_wanted_max_size = 0; 1982 ci->i_requested_max_size = 0; 1983 spin_unlock(&ci->i_ceph_lock); 1984 } else if (ev == RENEWCAPS) { 1985 struct ceph_cap *cap; 1986 1987 spin_lock(&ci->i_ceph_lock); 1988 cap = __get_cap_for_mds(ci, mds); 1989 /* mds did not re-issue stale cap */ 1990 if (cap && cap->cap_gen < atomic_read(&cap->session->s_cap_gen)) 1991 cap->issued = cap->implemented = CEPH_CAP_PIN; 1992 spin_unlock(&ci->i_ceph_lock); 1993 } else if (ev == FORCE_RO) { 1994 } 1995 wake_up_all(&ci->i_cap_wq); 1996 return 0; 1997 } 1998 1999 static void wake_up_session_caps(struct ceph_mds_session *session, int ev) 2000 { 2001 struct ceph_client *cl = session->s_mdsc->fsc->client; 2002 2003 doutc(cl, "session %p mds%d\n", session, session->s_mds); 2004 ceph_iterate_session_caps(session, wake_up_session_cb, 2005 (void *)(unsigned long)ev); 2006 } 2007 2008 /* 2009 * Send periodic message to MDS renewing all currently held caps. The 2010 * ack will reset the expiration for all caps from this session. 2011 * 2012 * caller holds s_mutex 2013 */ 2014 static int send_renew_caps(struct ceph_mds_client *mdsc, 2015 struct ceph_mds_session *session) 2016 { 2017 struct ceph_client *cl = mdsc->fsc->client; 2018 struct ceph_msg *msg; 2019 int state; 2020 2021 if (time_after_eq(jiffies, session->s_cap_ttl) && 2022 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 2023 pr_info_client(cl, "mds%d caps stale\n", session->s_mds); 2024 session->s_renew_requested = jiffies; 2025 2026 /* do not try to renew caps until a recovering mds has reconnected 2027 * with its clients. */ 2028 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 2029 if (state < CEPH_MDS_STATE_RECONNECT) { 2030 doutc(cl, "ignoring mds%d (%s)\n", session->s_mds, 2031 ceph_mds_state_name(state)); 2032 return 0; 2033 } 2034 2035 doutc(cl, "to mds%d (%s)\n", session->s_mds, 2036 ceph_mds_state_name(state)); 2037 msg = create_session_full_msg(mdsc, CEPH_SESSION_REQUEST_RENEWCAPS, 2038 ++session->s_renew_seq); 2039 if (IS_ERR(msg)) 2040 return PTR_ERR(msg); 2041 ceph_con_send(&session->s_con, msg); 2042 return 0; 2043 } 2044 2045 static int send_flushmsg_ack(struct ceph_mds_client *mdsc, 2046 struct ceph_mds_session *session, u64 seq) 2047 { 2048 struct ceph_client *cl = mdsc->fsc->client; 2049 struct ceph_msg *msg; 2050 2051 doutc(cl, "to mds%d (%s)s seq %lld\n", session->s_mds, 2052 ceph_session_state_name(session->s_state), seq); 2053 msg = ceph_create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq); 2054 if (!msg) 2055 return -ENOMEM; 2056 ceph_con_send(&session->s_con, msg); 2057 return 0; 2058 } 2059 2060 2061 /* 2062 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 2063 * 2064 * Called under session->s_mutex 2065 */ 2066 static void renewed_caps(struct ceph_mds_client *mdsc, 2067 struct ceph_mds_session *session, int is_renew) 2068 { 2069 struct ceph_client *cl = mdsc->fsc->client; 2070 int was_stale; 2071 int wake = 0; 2072 2073 spin_lock(&session->s_cap_lock); 2074 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 2075 2076 session->s_cap_ttl = session->s_renew_requested + 2077 mdsc->mdsmap->m_session_timeout*HZ; 2078 2079 if (was_stale) { 2080 if (time_before(jiffies, session->s_cap_ttl)) { 2081 pr_info_client(cl, "mds%d caps renewed\n", 2082 session->s_mds); 2083 wake = 1; 2084 } else { 2085 pr_info_client(cl, "mds%d caps still stale\n", 2086 session->s_mds); 2087 } 2088 } 2089 doutc(cl, "mds%d ttl now %lu, was %s, now %s\n", session->s_mds, 2090 session->s_cap_ttl, was_stale ? "stale" : "fresh", 2091 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 2092 spin_unlock(&session->s_cap_lock); 2093 2094 if (wake) 2095 wake_up_session_caps(session, RENEWCAPS); 2096 } 2097 2098 /* 2099 * send a session close request 2100 */ 2101 static int request_close_session(struct ceph_mds_session *session) 2102 { 2103 struct ceph_client *cl = session->s_mdsc->fsc->client; 2104 struct ceph_msg *msg; 2105 2106 doutc(cl, "mds%d state %s seq %lld\n", session->s_mds, 2107 ceph_session_state_name(session->s_state), session->s_seq); 2108 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_CLOSE, 2109 session->s_seq); 2110 if (!msg) 2111 return -ENOMEM; 2112 ceph_con_send(&session->s_con, msg); 2113 return 1; 2114 } 2115 2116 /* 2117 * Called with s_mutex held. 2118 */ 2119 static int __close_session(struct ceph_mds_client *mdsc, 2120 struct ceph_mds_session *session) 2121 { 2122 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 2123 return 0; 2124 session->s_state = CEPH_MDS_SESSION_CLOSING; 2125 return request_close_session(session); 2126 } 2127 2128 static bool drop_negative_children(struct dentry *dentry) 2129 { 2130 struct dentry *child; 2131 bool all_negative = true; 2132 2133 if (!d_is_dir(dentry)) 2134 goto out; 2135 2136 spin_lock(&dentry->d_lock); 2137 hlist_for_each_entry(child, &dentry->d_children, d_sib) { 2138 if (d_really_is_positive(child)) { 2139 all_negative = false; 2140 break; 2141 } 2142 } 2143 spin_unlock(&dentry->d_lock); 2144 2145 if (all_negative) 2146 shrink_dcache_parent(dentry); 2147 out: 2148 return all_negative; 2149 } 2150 2151 /* 2152 * Trim old(er) caps. 2153 * 2154 * Because we can't cache an inode without one or more caps, we do 2155 * this indirectly: if a cap is unused, we prune its aliases, at which 2156 * point the inode will hopefully get dropped to. 2157 * 2158 * Yes, this is a bit sloppy. Our only real goal here is to respond to 2159 * memory pressure from the MDS, though, so it needn't be perfect. 2160 */ 2161 static int trim_caps_cb(struct inode *inode, int mds, void *arg) 2162 { 2163 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 2164 struct ceph_client *cl = mdsc->fsc->client; 2165 int *remaining = arg; 2166 struct ceph_inode_info *ci = ceph_inode(inode); 2167 int used, wanted, oissued, mine; 2168 struct ceph_cap *cap; 2169 2170 if (*remaining <= 0) 2171 return -1; 2172 2173 spin_lock(&ci->i_ceph_lock); 2174 cap = __get_cap_for_mds(ci, mds); 2175 if (!cap) { 2176 spin_unlock(&ci->i_ceph_lock); 2177 return 0; 2178 } 2179 mine = cap->issued | cap->implemented; 2180 used = __ceph_caps_used(ci); 2181 wanted = __ceph_caps_file_wanted(ci); 2182 oissued = __ceph_caps_issued_other(ci, cap); 2183 2184 doutc(cl, "%p %llx.%llx cap %p mine %s oissued %s used %s wanted %s\n", 2185 inode, ceph_vinop(inode), cap, ceph_cap_string(mine), 2186 ceph_cap_string(oissued), ceph_cap_string(used), 2187 ceph_cap_string(wanted)); 2188 if (cap == ci->i_auth_cap) { 2189 if (ci->i_dirty_caps || ci->i_flushing_caps || 2190 !list_empty(&ci->i_cap_snaps)) 2191 goto out; 2192 if ((used | wanted) & CEPH_CAP_ANY_WR) 2193 goto out; 2194 /* Note: it's possible that i_filelock_ref becomes non-zero 2195 * after dropping auth caps. It doesn't hurt because reply 2196 * of lock mds request will re-add auth caps. */ 2197 if (atomic_read(&ci->i_filelock_ref) > 0) 2198 goto out; 2199 } 2200 /* The inode has cached pages, but it's no longer used. 2201 * we can safely drop it */ 2202 if (S_ISREG(inode->i_mode) && 2203 wanted == 0 && used == CEPH_CAP_FILE_CACHE && 2204 !(oissued & CEPH_CAP_FILE_CACHE)) { 2205 used = 0; 2206 oissued = 0; 2207 } 2208 if ((used | wanted) & ~oissued & mine) 2209 goto out; /* we need these caps */ 2210 2211 if (oissued) { 2212 /* we aren't the only cap.. just remove us */ 2213 ceph_remove_cap(mdsc, cap, true); 2214 (*remaining)--; 2215 } else { 2216 struct dentry *dentry; 2217 /* try dropping referring dentries */ 2218 spin_unlock(&ci->i_ceph_lock); 2219 dentry = d_find_any_alias(inode); 2220 if (dentry && drop_negative_children(dentry)) { 2221 int count; 2222 dput(dentry); 2223 d_prune_aliases(inode); 2224 count = atomic_read(&inode->i_count); 2225 if (count == 1) 2226 (*remaining)--; 2227 doutc(cl, "%p %llx.%llx cap %p pruned, count now %d\n", 2228 inode, ceph_vinop(inode), cap, count); 2229 } else { 2230 dput(dentry); 2231 } 2232 return 0; 2233 } 2234 2235 out: 2236 spin_unlock(&ci->i_ceph_lock); 2237 return 0; 2238 } 2239 2240 /* 2241 * Trim session cap count down to some max number. 2242 */ 2243 int ceph_trim_caps(struct ceph_mds_client *mdsc, 2244 struct ceph_mds_session *session, 2245 int max_caps) 2246 { 2247 struct ceph_client *cl = mdsc->fsc->client; 2248 int trim_caps = session->s_nr_caps - max_caps; 2249 2250 doutc(cl, "mds%d start: %d / %d, trim %d\n", session->s_mds, 2251 session->s_nr_caps, max_caps, trim_caps); 2252 if (trim_caps > 0) { 2253 int remaining = trim_caps; 2254 2255 ceph_iterate_session_caps(session, trim_caps_cb, &remaining); 2256 doutc(cl, "mds%d done: %d / %d, trimmed %d\n", 2257 session->s_mds, session->s_nr_caps, max_caps, 2258 trim_caps - remaining); 2259 } 2260 2261 ceph_flush_session_cap_releases(mdsc, session); 2262 return 0; 2263 } 2264 2265 static int check_caps_flush(struct ceph_mds_client *mdsc, 2266 u64 want_flush_tid) 2267 { 2268 struct ceph_client *cl = mdsc->fsc->client; 2269 int ret = 1; 2270 2271 spin_lock(&mdsc->cap_dirty_lock); 2272 if (!list_empty(&mdsc->cap_flush_list)) { 2273 struct ceph_cap_flush *cf = 2274 list_first_entry(&mdsc->cap_flush_list, 2275 struct ceph_cap_flush, g_list); 2276 if (cf->tid <= want_flush_tid) { 2277 doutc(cl, "still flushing tid %llu <= %llu\n", 2278 cf->tid, want_flush_tid); 2279 ret = 0; 2280 } 2281 } 2282 spin_unlock(&mdsc->cap_dirty_lock); 2283 return ret; 2284 } 2285 2286 /* 2287 * flush all dirty inode data to disk. 2288 * 2289 * returns true if we've flushed through want_flush_tid 2290 */ 2291 static void wait_caps_flush(struct ceph_mds_client *mdsc, 2292 u64 want_flush_tid) 2293 { 2294 struct ceph_client *cl = mdsc->fsc->client; 2295 2296 doutc(cl, "want %llu\n", want_flush_tid); 2297 2298 wait_event(mdsc->cap_flushing_wq, 2299 check_caps_flush(mdsc, want_flush_tid)); 2300 2301 doutc(cl, "ok, flushed thru %llu\n", want_flush_tid); 2302 } 2303 2304 /* 2305 * called under s_mutex 2306 */ 2307 static void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 2308 struct ceph_mds_session *session) 2309 { 2310 struct ceph_client *cl = mdsc->fsc->client; 2311 struct ceph_msg *msg = NULL; 2312 struct ceph_mds_cap_release *head; 2313 struct ceph_mds_cap_item *item; 2314 struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc; 2315 struct ceph_cap *cap; 2316 LIST_HEAD(tmp_list); 2317 int num_cap_releases; 2318 __le32 barrier, *cap_barrier; 2319 2320 down_read(&osdc->lock); 2321 barrier = cpu_to_le32(osdc->epoch_barrier); 2322 up_read(&osdc->lock); 2323 2324 spin_lock(&session->s_cap_lock); 2325 again: 2326 list_splice_init(&session->s_cap_releases, &tmp_list); 2327 num_cap_releases = session->s_num_cap_releases; 2328 session->s_num_cap_releases = 0; 2329 spin_unlock(&session->s_cap_lock); 2330 2331 while (!list_empty(&tmp_list)) { 2332 if (!msg) { 2333 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, 2334 PAGE_SIZE, GFP_NOFS, false); 2335 if (!msg) 2336 goto out_err; 2337 head = msg->front.iov_base; 2338 head->num = cpu_to_le32(0); 2339 msg->front.iov_len = sizeof(*head); 2340 2341 msg->hdr.version = cpu_to_le16(2); 2342 msg->hdr.compat_version = cpu_to_le16(1); 2343 } 2344 2345 cap = list_first_entry(&tmp_list, struct ceph_cap, 2346 session_caps); 2347 list_del(&cap->session_caps); 2348 num_cap_releases--; 2349 2350 head = msg->front.iov_base; 2351 put_unaligned_le32(get_unaligned_le32(&head->num) + 1, 2352 &head->num); 2353 item = msg->front.iov_base + msg->front.iov_len; 2354 item->ino = cpu_to_le64(cap->cap_ino); 2355 item->cap_id = cpu_to_le64(cap->cap_id); 2356 item->migrate_seq = cpu_to_le32(cap->mseq); 2357 item->issue_seq = cpu_to_le32(cap->issue_seq); 2358 msg->front.iov_len += sizeof(*item); 2359 2360 ceph_put_cap(mdsc, cap); 2361 2362 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 2363 // Append cap_barrier field 2364 cap_barrier = msg->front.iov_base + msg->front.iov_len; 2365 *cap_barrier = barrier; 2366 msg->front.iov_len += sizeof(*cap_barrier); 2367 2368 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2369 doutc(cl, "mds%d %p\n", session->s_mds, msg); 2370 ceph_con_send(&session->s_con, msg); 2371 msg = NULL; 2372 } 2373 } 2374 2375 BUG_ON(num_cap_releases != 0); 2376 2377 spin_lock(&session->s_cap_lock); 2378 if (!list_empty(&session->s_cap_releases)) 2379 goto again; 2380 spin_unlock(&session->s_cap_lock); 2381 2382 if (msg) { 2383 // Append cap_barrier field 2384 cap_barrier = msg->front.iov_base + msg->front.iov_len; 2385 *cap_barrier = barrier; 2386 msg->front.iov_len += sizeof(*cap_barrier); 2387 2388 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2389 doutc(cl, "mds%d %p\n", session->s_mds, msg); 2390 ceph_con_send(&session->s_con, msg); 2391 } 2392 return; 2393 out_err: 2394 pr_err_client(cl, "mds%d, failed to allocate message\n", 2395 session->s_mds); 2396 spin_lock(&session->s_cap_lock); 2397 list_splice(&tmp_list, &session->s_cap_releases); 2398 session->s_num_cap_releases += num_cap_releases; 2399 spin_unlock(&session->s_cap_lock); 2400 } 2401 2402 static void ceph_cap_release_work(struct work_struct *work) 2403 { 2404 struct ceph_mds_session *session = 2405 container_of(work, struct ceph_mds_session, s_cap_release_work); 2406 2407 mutex_lock(&session->s_mutex); 2408 if (session->s_state == CEPH_MDS_SESSION_OPEN || 2409 session->s_state == CEPH_MDS_SESSION_HUNG) 2410 ceph_send_cap_releases(session->s_mdsc, session); 2411 mutex_unlock(&session->s_mutex); 2412 ceph_put_mds_session(session); 2413 } 2414 2415 void ceph_flush_session_cap_releases(struct ceph_mds_client *mdsc, 2416 struct ceph_mds_session *session) 2417 { 2418 struct ceph_client *cl = mdsc->fsc->client; 2419 if (mdsc->stopping) 2420 return; 2421 2422 ceph_get_mds_session(session); 2423 if (queue_work(mdsc->fsc->cap_wq, 2424 &session->s_cap_release_work)) { 2425 doutc(cl, "cap release work queued\n"); 2426 } else { 2427 ceph_put_mds_session(session); 2428 doutc(cl, "failed to queue cap release work\n"); 2429 } 2430 } 2431 2432 /* 2433 * caller holds session->s_cap_lock 2434 */ 2435 void __ceph_queue_cap_release(struct ceph_mds_session *session, 2436 struct ceph_cap *cap) 2437 { 2438 list_add_tail(&cap->session_caps, &session->s_cap_releases); 2439 session->s_num_cap_releases++; 2440 2441 if (!(session->s_num_cap_releases % CEPH_CAPS_PER_RELEASE)) 2442 ceph_flush_session_cap_releases(session->s_mdsc, session); 2443 } 2444 2445 static void ceph_cap_reclaim_work(struct work_struct *work) 2446 { 2447 struct ceph_mds_client *mdsc = 2448 container_of(work, struct ceph_mds_client, cap_reclaim_work); 2449 int ret = ceph_trim_dentries(mdsc); 2450 if (ret == -EAGAIN) 2451 ceph_queue_cap_reclaim_work(mdsc); 2452 } 2453 2454 void ceph_queue_cap_reclaim_work(struct ceph_mds_client *mdsc) 2455 { 2456 struct ceph_client *cl = mdsc->fsc->client; 2457 if (mdsc->stopping) 2458 return; 2459 2460 if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_reclaim_work)) { 2461 doutc(cl, "caps reclaim work queued\n"); 2462 } else { 2463 doutc(cl, "failed to queue caps release work\n"); 2464 } 2465 } 2466 2467 void ceph_reclaim_caps_nr(struct ceph_mds_client *mdsc, int nr) 2468 { 2469 int val; 2470 if (!nr) 2471 return; 2472 val = atomic_add_return(nr, &mdsc->cap_reclaim_pending); 2473 if ((val % CEPH_CAPS_PER_RELEASE) < nr) { 2474 atomic_set(&mdsc->cap_reclaim_pending, 0); 2475 ceph_queue_cap_reclaim_work(mdsc); 2476 } 2477 } 2478 2479 void ceph_queue_cap_unlink_work(struct ceph_mds_client *mdsc) 2480 { 2481 struct ceph_client *cl = mdsc->fsc->client; 2482 if (mdsc->stopping) 2483 return; 2484 2485 if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_unlink_work)) { 2486 doutc(cl, "caps unlink work queued\n"); 2487 } else { 2488 doutc(cl, "failed to queue caps unlink work\n"); 2489 } 2490 } 2491 2492 static void ceph_cap_unlink_work(struct work_struct *work) 2493 { 2494 struct ceph_mds_client *mdsc = 2495 container_of(work, struct ceph_mds_client, cap_unlink_work); 2496 struct ceph_client *cl = mdsc->fsc->client; 2497 2498 doutc(cl, "begin\n"); 2499 spin_lock(&mdsc->cap_delay_lock); 2500 while (!list_empty(&mdsc->cap_unlink_delay_list)) { 2501 struct ceph_inode_info *ci; 2502 struct inode *inode; 2503 2504 ci = list_first_entry(&mdsc->cap_unlink_delay_list, 2505 struct ceph_inode_info, 2506 i_cap_delay_list); 2507 list_del_init(&ci->i_cap_delay_list); 2508 2509 inode = igrab(&ci->netfs.inode); 2510 if (inode) { 2511 spin_unlock(&mdsc->cap_delay_lock); 2512 doutc(cl, "on %p %llx.%llx\n", inode, 2513 ceph_vinop(inode)); 2514 ceph_check_caps(ci, CHECK_CAPS_FLUSH); 2515 iput(inode); 2516 spin_lock(&mdsc->cap_delay_lock); 2517 } 2518 } 2519 spin_unlock(&mdsc->cap_delay_lock); 2520 doutc(cl, "done\n"); 2521 } 2522 2523 /* 2524 * requests 2525 */ 2526 2527 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req, 2528 struct inode *dir) 2529 { 2530 struct ceph_inode_info *ci = ceph_inode(dir); 2531 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; 2532 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options; 2533 size_t size = sizeof(struct ceph_mds_reply_dir_entry); 2534 unsigned int num_entries; 2535 int order; 2536 2537 spin_lock(&ci->i_ceph_lock); 2538 num_entries = ci->i_files + ci->i_subdirs; 2539 spin_unlock(&ci->i_ceph_lock); 2540 num_entries = max(num_entries, 1U); 2541 num_entries = min(num_entries, opt->max_readdir); 2542 2543 order = get_order(size * num_entries); 2544 while (order >= 0) { 2545 rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL | 2546 __GFP_NOWARN | 2547 __GFP_ZERO, 2548 order); 2549 if (rinfo->dir_entries) 2550 break; 2551 order--; 2552 } 2553 if (!rinfo->dir_entries) 2554 return -ENOMEM; 2555 2556 num_entries = (PAGE_SIZE << order) / size; 2557 num_entries = min(num_entries, opt->max_readdir); 2558 2559 rinfo->dir_buf_size = PAGE_SIZE << order; 2560 req->r_num_caps = num_entries + 1; 2561 req->r_args.readdir.max_entries = cpu_to_le32(num_entries); 2562 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes); 2563 return 0; 2564 } 2565 2566 /* 2567 * Create an mds request. 2568 */ 2569 struct ceph_mds_request * 2570 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 2571 { 2572 struct ceph_mds_request *req; 2573 2574 req = kmem_cache_zalloc(ceph_mds_request_cachep, GFP_NOFS); 2575 if (!req) 2576 return ERR_PTR(-ENOMEM); 2577 2578 mutex_init(&req->r_fill_mutex); 2579 req->r_mdsc = mdsc; 2580 req->r_started = jiffies; 2581 req->r_start_latency = ktime_get(); 2582 req->r_resend_mds = -1; 2583 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 2584 INIT_LIST_HEAD(&req->r_unsafe_target_item); 2585 req->r_fmode = -1; 2586 req->r_feature_needed = -1; 2587 kref_init(&req->r_kref); 2588 RB_CLEAR_NODE(&req->r_node); 2589 INIT_LIST_HEAD(&req->r_wait); 2590 init_completion(&req->r_completion); 2591 init_completion(&req->r_safe_completion); 2592 INIT_LIST_HEAD(&req->r_unsafe_item); 2593 2594 ktime_get_coarse_real_ts64(&req->r_stamp); 2595 2596 req->r_op = op; 2597 req->r_direct_mode = mode; 2598 return req; 2599 } 2600 2601 /* 2602 * return oldest (lowest) request, tid in request tree, 0 if none. 2603 * 2604 * called under mdsc->mutex. 2605 */ 2606 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 2607 { 2608 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 2609 return NULL; 2610 return rb_entry(rb_first(&mdsc->request_tree), 2611 struct ceph_mds_request, r_node); 2612 } 2613 2614 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 2615 { 2616 return mdsc->oldest_tid; 2617 } 2618 2619 #if IS_ENABLED(CONFIG_FS_ENCRYPTION) 2620 static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen) 2621 { 2622 struct inode *dir = req->r_parent; 2623 struct dentry *dentry = req->r_dentry; 2624 u8 *cryptbuf = NULL; 2625 u32 len = 0; 2626 int ret = 0; 2627 2628 /* only encode if we have parent and dentry */ 2629 if (!dir || !dentry) 2630 goto success; 2631 2632 /* No-op unless this is encrypted */ 2633 if (!IS_ENCRYPTED(dir)) 2634 goto success; 2635 2636 ret = ceph_fscrypt_prepare_readdir(dir); 2637 if (ret < 0) 2638 return ERR_PTR(ret); 2639 2640 /* No key? Just ignore it. */ 2641 if (!fscrypt_has_encryption_key(dir)) 2642 goto success; 2643 2644 if (!fscrypt_fname_encrypted_size(dir, dentry->d_name.len, NAME_MAX, 2645 &len)) { 2646 WARN_ON_ONCE(1); 2647 return ERR_PTR(-ENAMETOOLONG); 2648 } 2649 2650 /* No need to append altname if name is short enough */ 2651 if (len <= CEPH_NOHASH_NAME_MAX) { 2652 len = 0; 2653 goto success; 2654 } 2655 2656 cryptbuf = kmalloc(len, GFP_KERNEL); 2657 if (!cryptbuf) 2658 return ERR_PTR(-ENOMEM); 2659 2660 ret = fscrypt_fname_encrypt(dir, &dentry->d_name, cryptbuf, len); 2661 if (ret) { 2662 kfree(cryptbuf); 2663 return ERR_PTR(ret); 2664 } 2665 success: 2666 *plen = len; 2667 return cryptbuf; 2668 } 2669 #else 2670 static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen) 2671 { 2672 *plen = 0; 2673 return NULL; 2674 } 2675 #endif 2676 2677 /** 2678 * ceph_mdsc_build_path - build a path string to a given dentry 2679 * @mdsc: mds client 2680 * @dentry: dentry to which path should be built 2681 * @plen: returned length of string 2682 * @pbase: returned base inode number 2683 * @for_wire: is this path going to be sent to the MDS? 2684 * 2685 * Build a string that represents the path to the dentry. This is mostly called 2686 * for two different purposes: 2687 * 2688 * 1) we need to build a path string to send to the MDS (for_wire == true) 2689 * 2) we need a path string for local presentation (e.g. debugfs) 2690 * (for_wire == false) 2691 * 2692 * The path is built in reverse, starting with the dentry. Walk back up toward 2693 * the root, building the path until the first non-snapped inode is reached 2694 * (for_wire) or the root inode is reached (!for_wire). 2695 * 2696 * Encode hidden .snap dirs as a double /, i.e. 2697 * foo/.snap/bar -> foo//bar 2698 */ 2699 char *ceph_mdsc_build_path(struct ceph_mds_client *mdsc, struct dentry *dentry, 2700 int *plen, u64 *pbase, int for_wire) 2701 { 2702 struct ceph_client *cl = mdsc->fsc->client; 2703 struct dentry *cur; 2704 struct inode *inode; 2705 char *path; 2706 int pos; 2707 unsigned seq; 2708 u64 base; 2709 2710 if (!dentry) 2711 return ERR_PTR(-EINVAL); 2712 2713 path = __getname(); 2714 if (!path) 2715 return ERR_PTR(-ENOMEM); 2716 retry: 2717 pos = PATH_MAX - 1; 2718 path[pos] = '\0'; 2719 2720 seq = read_seqbegin(&rename_lock); 2721 cur = dget(dentry); 2722 for (;;) { 2723 struct dentry *parent; 2724 2725 spin_lock(&cur->d_lock); 2726 inode = d_inode(cur); 2727 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 2728 doutc(cl, "path+%d: %p SNAPDIR\n", pos, cur); 2729 spin_unlock(&cur->d_lock); 2730 parent = dget_parent(cur); 2731 } else if (for_wire && inode && dentry != cur && 2732 ceph_snap(inode) == CEPH_NOSNAP) { 2733 spin_unlock(&cur->d_lock); 2734 pos++; /* get rid of any prepended '/' */ 2735 break; 2736 } else if (!for_wire || !IS_ENCRYPTED(d_inode(cur->d_parent))) { 2737 pos -= cur->d_name.len; 2738 if (pos < 0) { 2739 spin_unlock(&cur->d_lock); 2740 break; 2741 } 2742 memcpy(path + pos, cur->d_name.name, cur->d_name.len); 2743 spin_unlock(&cur->d_lock); 2744 parent = dget_parent(cur); 2745 } else { 2746 int len, ret; 2747 char buf[NAME_MAX]; 2748 2749 /* 2750 * Proactively copy name into buf, in case we need to 2751 * present it as-is. 2752 */ 2753 memcpy(buf, cur->d_name.name, cur->d_name.len); 2754 len = cur->d_name.len; 2755 spin_unlock(&cur->d_lock); 2756 parent = dget_parent(cur); 2757 2758 ret = ceph_fscrypt_prepare_readdir(d_inode(parent)); 2759 if (ret < 0) { 2760 dput(parent); 2761 dput(cur); 2762 return ERR_PTR(ret); 2763 } 2764 2765 if (fscrypt_has_encryption_key(d_inode(parent))) { 2766 len = ceph_encode_encrypted_fname(d_inode(parent), 2767 cur, buf); 2768 if (len < 0) { 2769 dput(parent); 2770 dput(cur); 2771 return ERR_PTR(len); 2772 } 2773 } 2774 pos -= len; 2775 if (pos < 0) { 2776 dput(parent); 2777 break; 2778 } 2779 memcpy(path + pos, buf, len); 2780 } 2781 dput(cur); 2782 cur = parent; 2783 2784 /* Are we at the root? */ 2785 if (IS_ROOT(cur)) 2786 break; 2787 2788 /* Are we out of buffer? */ 2789 if (--pos < 0) 2790 break; 2791 2792 path[pos] = '/'; 2793 } 2794 inode = d_inode(cur); 2795 base = inode ? ceph_ino(inode) : 0; 2796 dput(cur); 2797 2798 if (read_seqretry(&rename_lock, seq)) 2799 goto retry; 2800 2801 if (pos < 0) { 2802 /* 2803 * A rename didn't occur, but somehow we didn't end up where 2804 * we thought we would. Throw a warning and try again. 2805 */ 2806 pr_warn_client(cl, "did not end path lookup where expected (pos = %d)\n", 2807 pos); 2808 goto retry; 2809 } 2810 2811 *pbase = base; 2812 *plen = PATH_MAX - 1 - pos; 2813 doutc(cl, "on %p %d built %llx '%.*s'\n", dentry, d_count(dentry), 2814 base, *plen, path + pos); 2815 return path + pos; 2816 } 2817 2818 static int build_dentry_path(struct ceph_mds_client *mdsc, struct dentry *dentry, 2819 struct inode *dir, const char **ppath, int *ppathlen, 2820 u64 *pino, bool *pfreepath, bool parent_locked) 2821 { 2822 char *path; 2823 2824 rcu_read_lock(); 2825 if (!dir) 2826 dir = d_inode_rcu(dentry->d_parent); 2827 if (dir && parent_locked && ceph_snap(dir) == CEPH_NOSNAP && 2828 !IS_ENCRYPTED(dir)) { 2829 *pino = ceph_ino(dir); 2830 rcu_read_unlock(); 2831 *ppath = dentry->d_name.name; 2832 *ppathlen = dentry->d_name.len; 2833 return 0; 2834 } 2835 rcu_read_unlock(); 2836 path = ceph_mdsc_build_path(mdsc, dentry, ppathlen, pino, 1); 2837 if (IS_ERR(path)) 2838 return PTR_ERR(path); 2839 *ppath = path; 2840 *pfreepath = true; 2841 return 0; 2842 } 2843 2844 static int build_inode_path(struct inode *inode, 2845 const char **ppath, int *ppathlen, u64 *pino, 2846 bool *pfreepath) 2847 { 2848 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 2849 struct dentry *dentry; 2850 char *path; 2851 2852 if (ceph_snap(inode) == CEPH_NOSNAP) { 2853 *pino = ceph_ino(inode); 2854 *ppathlen = 0; 2855 return 0; 2856 } 2857 dentry = d_find_alias(inode); 2858 path = ceph_mdsc_build_path(mdsc, dentry, ppathlen, pino, 1); 2859 dput(dentry); 2860 if (IS_ERR(path)) 2861 return PTR_ERR(path); 2862 *ppath = path; 2863 *pfreepath = true; 2864 return 0; 2865 } 2866 2867 /* 2868 * request arguments may be specified via an inode *, a dentry *, or 2869 * an explicit ino+path. 2870 */ 2871 static int set_request_path_attr(struct ceph_mds_client *mdsc, struct inode *rinode, 2872 struct dentry *rdentry, struct inode *rdiri, 2873 const char *rpath, u64 rino, const char **ppath, 2874 int *pathlen, u64 *ino, bool *freepath, 2875 bool parent_locked) 2876 { 2877 struct ceph_client *cl = mdsc->fsc->client; 2878 int r = 0; 2879 2880 if (rinode) { 2881 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 2882 doutc(cl, " inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 2883 ceph_snap(rinode)); 2884 } else if (rdentry) { 2885 r = build_dentry_path(mdsc, rdentry, rdiri, ppath, pathlen, ino, 2886 freepath, parent_locked); 2887 doutc(cl, " dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, *ppath); 2888 } else if (rpath || rino) { 2889 *ino = rino; 2890 *ppath = rpath; 2891 *pathlen = rpath ? strlen(rpath) : 0; 2892 doutc(cl, " path %.*s\n", *pathlen, rpath); 2893 } 2894 2895 return r; 2896 } 2897 2898 static void encode_mclientrequest_tail(void **p, 2899 const struct ceph_mds_request *req) 2900 { 2901 struct ceph_timespec ts; 2902 int i; 2903 2904 ceph_encode_timespec64(&ts, &req->r_stamp); 2905 ceph_encode_copy(p, &ts, sizeof(ts)); 2906 2907 /* v4: gid_list */ 2908 ceph_encode_32(p, req->r_cred->group_info->ngroups); 2909 for (i = 0; i < req->r_cred->group_info->ngroups; i++) 2910 ceph_encode_64(p, from_kgid(&init_user_ns, 2911 req->r_cred->group_info->gid[i])); 2912 2913 /* v5: altname */ 2914 ceph_encode_32(p, req->r_altname_len); 2915 ceph_encode_copy(p, req->r_altname, req->r_altname_len); 2916 2917 /* v6: fscrypt_auth and fscrypt_file */ 2918 if (req->r_fscrypt_auth) { 2919 u32 authlen = ceph_fscrypt_auth_len(req->r_fscrypt_auth); 2920 2921 ceph_encode_32(p, authlen); 2922 ceph_encode_copy(p, req->r_fscrypt_auth, authlen); 2923 } else { 2924 ceph_encode_32(p, 0); 2925 } 2926 if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags)) { 2927 ceph_encode_32(p, sizeof(__le64)); 2928 ceph_encode_64(p, req->r_fscrypt_file); 2929 } else { 2930 ceph_encode_32(p, 0); 2931 } 2932 } 2933 2934 static inline u16 mds_supported_head_version(struct ceph_mds_session *session) 2935 { 2936 if (!test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD, &session->s_features)) 2937 return 1; 2938 2939 if (!test_bit(CEPHFS_FEATURE_HAS_OWNER_UIDGID, &session->s_features)) 2940 return 2; 2941 2942 return CEPH_MDS_REQUEST_HEAD_VERSION; 2943 } 2944 2945 static struct ceph_mds_request_head_legacy * 2946 find_legacy_request_head(void *p, u64 features) 2947 { 2948 bool legacy = !(features & CEPH_FEATURE_FS_BTIME); 2949 struct ceph_mds_request_head_old *ohead; 2950 2951 if (legacy) 2952 return (struct ceph_mds_request_head_legacy *)p; 2953 ohead = (struct ceph_mds_request_head_old *)p; 2954 return (struct ceph_mds_request_head_legacy *)&ohead->oldest_client_tid; 2955 } 2956 2957 /* 2958 * called under mdsc->mutex 2959 */ 2960 static struct ceph_msg *create_request_message(struct ceph_mds_session *session, 2961 struct ceph_mds_request *req, 2962 bool drop_cap_releases) 2963 { 2964 int mds = session->s_mds; 2965 struct ceph_mds_client *mdsc = session->s_mdsc; 2966 struct ceph_client *cl = mdsc->fsc->client; 2967 struct ceph_msg *msg; 2968 struct ceph_mds_request_head_legacy *lhead; 2969 const char *path1 = NULL; 2970 const char *path2 = NULL; 2971 u64 ino1 = 0, ino2 = 0; 2972 int pathlen1 = 0, pathlen2 = 0; 2973 bool freepath1 = false, freepath2 = false; 2974 struct dentry *old_dentry = NULL; 2975 int len; 2976 u16 releases; 2977 void *p, *end; 2978 int ret; 2979 bool legacy = !(session->s_con.peer_features & CEPH_FEATURE_FS_BTIME); 2980 u16 request_head_version = mds_supported_head_version(session); 2981 kuid_t caller_fsuid = req->r_cred->fsuid; 2982 kgid_t caller_fsgid = req->r_cred->fsgid; 2983 2984 ret = set_request_path_attr(mdsc, req->r_inode, req->r_dentry, 2985 req->r_parent, req->r_path1, req->r_ino1.ino, 2986 &path1, &pathlen1, &ino1, &freepath1, 2987 test_bit(CEPH_MDS_R_PARENT_LOCKED, 2988 &req->r_req_flags)); 2989 if (ret < 0) { 2990 msg = ERR_PTR(ret); 2991 goto out; 2992 } 2993 2994 /* If r_old_dentry is set, then assume that its parent is locked */ 2995 if (req->r_old_dentry && 2996 !(req->r_old_dentry->d_flags & DCACHE_DISCONNECTED)) 2997 old_dentry = req->r_old_dentry; 2998 ret = set_request_path_attr(mdsc, NULL, old_dentry, 2999 req->r_old_dentry_dir, 3000 req->r_path2, req->r_ino2.ino, 3001 &path2, &pathlen2, &ino2, &freepath2, true); 3002 if (ret < 0) { 3003 msg = ERR_PTR(ret); 3004 goto out_free1; 3005 } 3006 3007 req->r_altname = get_fscrypt_altname(req, &req->r_altname_len); 3008 if (IS_ERR(req->r_altname)) { 3009 msg = ERR_CAST(req->r_altname); 3010 req->r_altname = NULL; 3011 goto out_free2; 3012 } 3013 3014 /* 3015 * For old cephs without supporting the 32bit retry/fwd feature 3016 * it will copy the raw memories directly when decoding the 3017 * requests. While new cephs will decode the head depending the 3018 * version member, so we need to make sure it will be compatible 3019 * with them both. 3020 */ 3021 if (legacy) 3022 len = sizeof(struct ceph_mds_request_head_legacy); 3023 else if (request_head_version == 1) 3024 len = sizeof(struct ceph_mds_request_head_old); 3025 else if (request_head_version == 2) 3026 len = offsetofend(struct ceph_mds_request_head, ext_num_fwd); 3027 else 3028 len = sizeof(struct ceph_mds_request_head); 3029 3030 /* filepaths */ 3031 len += 2 * (1 + sizeof(u32) + sizeof(u64)); 3032 len += pathlen1 + pathlen2; 3033 3034 /* cap releases */ 3035 len += sizeof(struct ceph_mds_request_release) * 3036 (!!req->r_inode_drop + !!req->r_dentry_drop + 3037 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 3038 3039 if (req->r_dentry_drop) 3040 len += pathlen1; 3041 if (req->r_old_dentry_drop) 3042 len += pathlen2; 3043 3044 /* MClientRequest tail */ 3045 3046 /* req->r_stamp */ 3047 len += sizeof(struct ceph_timespec); 3048 3049 /* gid list */ 3050 len += sizeof(u32) + (sizeof(u64) * req->r_cred->group_info->ngroups); 3051 3052 /* alternate name */ 3053 len += sizeof(u32) + req->r_altname_len; 3054 3055 /* fscrypt_auth */ 3056 len += sizeof(u32); // fscrypt_auth 3057 if (req->r_fscrypt_auth) 3058 len += ceph_fscrypt_auth_len(req->r_fscrypt_auth); 3059 3060 /* fscrypt_file */ 3061 len += sizeof(u32); 3062 if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags)) 3063 len += sizeof(__le64); 3064 3065 msg = ceph_msg_new2(CEPH_MSG_CLIENT_REQUEST, len, 1, GFP_NOFS, false); 3066 if (!msg) { 3067 msg = ERR_PTR(-ENOMEM); 3068 goto out_free2; 3069 } 3070 3071 msg->hdr.tid = cpu_to_le64(req->r_tid); 3072 3073 lhead = find_legacy_request_head(msg->front.iov_base, 3074 session->s_con.peer_features); 3075 3076 if ((req->r_mnt_idmap != &nop_mnt_idmap) && 3077 !test_bit(CEPHFS_FEATURE_HAS_OWNER_UIDGID, &session->s_features)) { 3078 WARN_ON_ONCE(!IS_CEPH_MDS_OP_NEWINODE(req->r_op)); 3079 3080 if (enable_unsafe_idmap) { 3081 pr_warn_once_client(cl, 3082 "idmapped mount is used and CEPHFS_FEATURE_HAS_OWNER_UIDGID" 3083 " is not supported by MDS. UID/GID-based restrictions may" 3084 " not work properly.\n"); 3085 3086 caller_fsuid = from_vfsuid(req->r_mnt_idmap, &init_user_ns, 3087 VFSUIDT_INIT(req->r_cred->fsuid)); 3088 caller_fsgid = from_vfsgid(req->r_mnt_idmap, &init_user_ns, 3089 VFSGIDT_INIT(req->r_cred->fsgid)); 3090 } else { 3091 pr_err_ratelimited_client(cl, 3092 "idmapped mount is used and CEPHFS_FEATURE_HAS_OWNER_UIDGID" 3093 " is not supported by MDS. Fail request with -EIO.\n"); 3094 3095 ret = -EIO; 3096 goto out_err; 3097 } 3098 } 3099 3100 /* 3101 * The ceph_mds_request_head_legacy didn't contain a version field, and 3102 * one was added when we moved the message version from 3->4. 3103 */ 3104 if (legacy) { 3105 msg->hdr.version = cpu_to_le16(3); 3106 p = msg->front.iov_base + sizeof(*lhead); 3107 } else if (request_head_version == 1) { 3108 struct ceph_mds_request_head_old *ohead = msg->front.iov_base; 3109 3110 msg->hdr.version = cpu_to_le16(4); 3111 ohead->version = cpu_to_le16(1); 3112 p = msg->front.iov_base + sizeof(*ohead); 3113 } else if (request_head_version == 2) { 3114 struct ceph_mds_request_head *nhead = msg->front.iov_base; 3115 3116 msg->hdr.version = cpu_to_le16(6); 3117 nhead->version = cpu_to_le16(2); 3118 3119 p = msg->front.iov_base + offsetofend(struct ceph_mds_request_head, ext_num_fwd); 3120 } else { 3121 struct ceph_mds_request_head *nhead = msg->front.iov_base; 3122 kuid_t owner_fsuid; 3123 kgid_t owner_fsgid; 3124 3125 msg->hdr.version = cpu_to_le16(6); 3126 nhead->version = cpu_to_le16(CEPH_MDS_REQUEST_HEAD_VERSION); 3127 nhead->struct_len = cpu_to_le32(sizeof(struct ceph_mds_request_head)); 3128 3129 if (IS_CEPH_MDS_OP_NEWINODE(req->r_op)) { 3130 owner_fsuid = from_vfsuid(req->r_mnt_idmap, &init_user_ns, 3131 VFSUIDT_INIT(req->r_cred->fsuid)); 3132 owner_fsgid = from_vfsgid(req->r_mnt_idmap, &init_user_ns, 3133 VFSGIDT_INIT(req->r_cred->fsgid)); 3134 nhead->owner_uid = cpu_to_le32(from_kuid(&init_user_ns, owner_fsuid)); 3135 nhead->owner_gid = cpu_to_le32(from_kgid(&init_user_ns, owner_fsgid)); 3136 } else { 3137 nhead->owner_uid = cpu_to_le32(-1); 3138 nhead->owner_gid = cpu_to_le32(-1); 3139 } 3140 3141 p = msg->front.iov_base + sizeof(*nhead); 3142 } 3143 3144 end = msg->front.iov_base + msg->front.iov_len; 3145 3146 lhead->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 3147 lhead->op = cpu_to_le32(req->r_op); 3148 lhead->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, 3149 caller_fsuid)); 3150 lhead->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, 3151 caller_fsgid)); 3152 lhead->ino = cpu_to_le64(req->r_deleg_ino); 3153 lhead->args = req->r_args; 3154 3155 ceph_encode_filepath(&p, end, ino1, path1); 3156 ceph_encode_filepath(&p, end, ino2, path2); 3157 3158 /* make note of release offset, in case we need to replay */ 3159 req->r_request_release_offset = p - msg->front.iov_base; 3160 3161 /* cap releases */ 3162 releases = 0; 3163 if (req->r_inode_drop) 3164 releases += ceph_encode_inode_release(&p, 3165 req->r_inode ? req->r_inode : d_inode(req->r_dentry), 3166 mds, req->r_inode_drop, req->r_inode_unless, 3167 req->r_op == CEPH_MDS_OP_READDIR); 3168 if (req->r_dentry_drop) { 3169 ret = ceph_encode_dentry_release(&p, req->r_dentry, 3170 req->r_parent, mds, req->r_dentry_drop, 3171 req->r_dentry_unless); 3172 if (ret < 0) 3173 goto out_err; 3174 releases += ret; 3175 } 3176 if (req->r_old_dentry_drop) { 3177 ret = ceph_encode_dentry_release(&p, req->r_old_dentry, 3178 req->r_old_dentry_dir, mds, 3179 req->r_old_dentry_drop, 3180 req->r_old_dentry_unless); 3181 if (ret < 0) 3182 goto out_err; 3183 releases += ret; 3184 } 3185 if (req->r_old_inode_drop) 3186 releases += ceph_encode_inode_release(&p, 3187 d_inode(req->r_old_dentry), 3188 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 3189 3190 if (drop_cap_releases) { 3191 releases = 0; 3192 p = msg->front.iov_base + req->r_request_release_offset; 3193 } 3194 3195 lhead->num_releases = cpu_to_le16(releases); 3196 3197 encode_mclientrequest_tail(&p, req); 3198 3199 if (WARN_ON_ONCE(p > end)) { 3200 ceph_msg_put(msg); 3201 msg = ERR_PTR(-ERANGE); 3202 goto out_free2; 3203 } 3204 3205 msg->front.iov_len = p - msg->front.iov_base; 3206 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 3207 3208 if (req->r_pagelist) { 3209 struct ceph_pagelist *pagelist = req->r_pagelist; 3210 ceph_msg_data_add_pagelist(msg, pagelist); 3211 msg->hdr.data_len = cpu_to_le32(pagelist->length); 3212 } else { 3213 msg->hdr.data_len = 0; 3214 } 3215 3216 msg->hdr.data_off = cpu_to_le16(0); 3217 3218 out_free2: 3219 if (freepath2) 3220 ceph_mdsc_free_path((char *)path2, pathlen2); 3221 out_free1: 3222 if (freepath1) 3223 ceph_mdsc_free_path((char *)path1, pathlen1); 3224 out: 3225 return msg; 3226 out_err: 3227 ceph_msg_put(msg); 3228 msg = ERR_PTR(ret); 3229 goto out_free2; 3230 } 3231 3232 /* 3233 * called under mdsc->mutex if error, under no mutex if 3234 * success. 3235 */ 3236 static void complete_request(struct ceph_mds_client *mdsc, 3237 struct ceph_mds_request *req) 3238 { 3239 req->r_end_latency = ktime_get(); 3240 3241 if (req->r_callback) 3242 req->r_callback(mdsc, req); 3243 complete_all(&req->r_completion); 3244 } 3245 3246 /* 3247 * called under mdsc->mutex 3248 */ 3249 static int __prepare_send_request(struct ceph_mds_session *session, 3250 struct ceph_mds_request *req, 3251 bool drop_cap_releases) 3252 { 3253 int mds = session->s_mds; 3254 struct ceph_mds_client *mdsc = session->s_mdsc; 3255 struct ceph_client *cl = mdsc->fsc->client; 3256 struct ceph_mds_request_head_legacy *lhead; 3257 struct ceph_mds_request_head *nhead; 3258 struct ceph_msg *msg; 3259 int flags = 0, old_max_retry; 3260 bool old_version = !test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD, 3261 &session->s_features); 3262 3263 /* 3264 * Avoid infinite retrying after overflow. The client will 3265 * increase the retry count and if the MDS is old version, 3266 * so we limit to retry at most 256 times. 3267 */ 3268 if (req->r_attempts) { 3269 old_max_retry = sizeof_field(struct ceph_mds_request_head_old, 3270 num_retry); 3271 old_max_retry = 1 << (old_max_retry * BITS_PER_BYTE); 3272 if ((old_version && req->r_attempts >= old_max_retry) || 3273 ((uint32_t)req->r_attempts >= U32_MAX)) { 3274 pr_warn_ratelimited_client(cl, "request tid %llu seq overflow\n", 3275 req->r_tid); 3276 return -EMULTIHOP; 3277 } 3278 } 3279 3280 req->r_attempts++; 3281 if (req->r_inode) { 3282 struct ceph_cap *cap = 3283 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 3284 3285 if (cap) 3286 req->r_sent_on_mseq = cap->mseq; 3287 else 3288 req->r_sent_on_mseq = -1; 3289 } 3290 doutc(cl, "%p tid %lld %s (attempt %d)\n", req, req->r_tid, 3291 ceph_mds_op_name(req->r_op), req->r_attempts); 3292 3293 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3294 void *p; 3295 3296 /* 3297 * Replay. Do not regenerate message (and rebuild 3298 * paths, etc.); just use the original message. 3299 * Rebuilding paths will break for renames because 3300 * d_move mangles the src name. 3301 */ 3302 msg = req->r_request; 3303 lhead = find_legacy_request_head(msg->front.iov_base, 3304 session->s_con.peer_features); 3305 3306 flags = le32_to_cpu(lhead->flags); 3307 flags |= CEPH_MDS_FLAG_REPLAY; 3308 lhead->flags = cpu_to_le32(flags); 3309 3310 if (req->r_target_inode) 3311 lhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 3312 3313 lhead->num_retry = req->r_attempts - 1; 3314 if (!old_version) { 3315 nhead = (struct ceph_mds_request_head*)msg->front.iov_base; 3316 nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1); 3317 } 3318 3319 /* remove cap/dentry releases from message */ 3320 lhead->num_releases = 0; 3321 3322 p = msg->front.iov_base + req->r_request_release_offset; 3323 encode_mclientrequest_tail(&p, req); 3324 3325 msg->front.iov_len = p - msg->front.iov_base; 3326 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 3327 return 0; 3328 } 3329 3330 if (req->r_request) { 3331 ceph_msg_put(req->r_request); 3332 req->r_request = NULL; 3333 } 3334 msg = create_request_message(session, req, drop_cap_releases); 3335 if (IS_ERR(msg)) { 3336 req->r_err = PTR_ERR(msg); 3337 return PTR_ERR(msg); 3338 } 3339 req->r_request = msg; 3340 3341 lhead = find_legacy_request_head(msg->front.iov_base, 3342 session->s_con.peer_features); 3343 lhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 3344 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 3345 flags |= CEPH_MDS_FLAG_REPLAY; 3346 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) 3347 flags |= CEPH_MDS_FLAG_ASYNC; 3348 if (req->r_parent) 3349 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 3350 lhead->flags = cpu_to_le32(flags); 3351 lhead->num_fwd = req->r_num_fwd; 3352 lhead->num_retry = req->r_attempts - 1; 3353 if (!old_version) { 3354 nhead = (struct ceph_mds_request_head*)msg->front.iov_base; 3355 nhead->ext_num_fwd = cpu_to_le32(req->r_num_fwd); 3356 nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1); 3357 } 3358 3359 doutc(cl, " r_parent = %p\n", req->r_parent); 3360 return 0; 3361 } 3362 3363 /* 3364 * called under mdsc->mutex 3365 */ 3366 static int __send_request(struct ceph_mds_session *session, 3367 struct ceph_mds_request *req, 3368 bool drop_cap_releases) 3369 { 3370 int err; 3371 3372 err = __prepare_send_request(session, req, drop_cap_releases); 3373 if (!err) { 3374 ceph_msg_get(req->r_request); 3375 ceph_con_send(&session->s_con, req->r_request); 3376 } 3377 3378 return err; 3379 } 3380 3381 /* 3382 * send request, or put it on the appropriate wait list. 3383 */ 3384 static void __do_request(struct ceph_mds_client *mdsc, 3385 struct ceph_mds_request *req) 3386 { 3387 struct ceph_client *cl = mdsc->fsc->client; 3388 struct ceph_mds_session *session = NULL; 3389 int mds = -1; 3390 int err = 0; 3391 bool random; 3392 3393 if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { 3394 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) 3395 __unregister_request(mdsc, req); 3396 return; 3397 } 3398 3399 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) { 3400 doutc(cl, "metadata corrupted\n"); 3401 err = -EIO; 3402 goto finish; 3403 } 3404 if (req->r_timeout && 3405 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 3406 doutc(cl, "timed out\n"); 3407 err = -ETIMEDOUT; 3408 goto finish; 3409 } 3410 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) { 3411 doutc(cl, "forced umount\n"); 3412 err = -EIO; 3413 goto finish; 3414 } 3415 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) { 3416 if (mdsc->mdsmap_err) { 3417 err = mdsc->mdsmap_err; 3418 doutc(cl, "mdsmap err %d\n", err); 3419 goto finish; 3420 } 3421 if (mdsc->mdsmap->m_epoch == 0) { 3422 doutc(cl, "no mdsmap, waiting for map\n"); 3423 list_add(&req->r_wait, &mdsc->waiting_for_map); 3424 return; 3425 } 3426 if (!(mdsc->fsc->mount_options->flags & 3427 CEPH_MOUNT_OPT_MOUNTWAIT) && 3428 !ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) { 3429 err = -EHOSTUNREACH; 3430 goto finish; 3431 } 3432 } 3433 3434 put_request_session(req); 3435 3436 mds = __choose_mds(mdsc, req, &random); 3437 if (mds < 0 || 3438 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 3439 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) { 3440 err = -EJUKEBOX; 3441 goto finish; 3442 } 3443 doutc(cl, "no mds or not active, waiting for map\n"); 3444 list_add(&req->r_wait, &mdsc->waiting_for_map); 3445 return; 3446 } 3447 3448 /* get, open session */ 3449 session = __ceph_lookup_mds_session(mdsc, mds); 3450 if (!session) { 3451 session = register_session(mdsc, mds); 3452 if (IS_ERR(session)) { 3453 err = PTR_ERR(session); 3454 goto finish; 3455 } 3456 } 3457 req->r_session = ceph_get_mds_session(session); 3458 3459 doutc(cl, "mds%d session %p state %s\n", mds, session, 3460 ceph_session_state_name(session->s_state)); 3461 3462 /* 3463 * The old ceph will crash the MDSs when see unknown OPs 3464 */ 3465 if (req->r_feature_needed > 0 && 3466 !test_bit(req->r_feature_needed, &session->s_features)) { 3467 err = -EOPNOTSUPP; 3468 goto out_session; 3469 } 3470 3471 if (session->s_state != CEPH_MDS_SESSION_OPEN && 3472 session->s_state != CEPH_MDS_SESSION_HUNG) { 3473 /* 3474 * We cannot queue async requests since the caps and delegated 3475 * inodes are bound to the session. Just return -EJUKEBOX and 3476 * let the caller retry a sync request in that case. 3477 */ 3478 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) { 3479 err = -EJUKEBOX; 3480 goto out_session; 3481 } 3482 3483 /* 3484 * If the session has been REJECTED, then return a hard error, 3485 * unless it's a CLEANRECOVER mount, in which case we'll queue 3486 * it to the mdsc queue. 3487 */ 3488 if (session->s_state == CEPH_MDS_SESSION_REJECTED) { 3489 if (ceph_test_mount_opt(mdsc->fsc, CLEANRECOVER)) 3490 list_add(&req->r_wait, &mdsc->waiting_for_map); 3491 else 3492 err = -EACCES; 3493 goto out_session; 3494 } 3495 3496 if (session->s_state == CEPH_MDS_SESSION_NEW || 3497 session->s_state == CEPH_MDS_SESSION_CLOSING) { 3498 err = __open_session(mdsc, session); 3499 if (err) 3500 goto out_session; 3501 /* retry the same mds later */ 3502 if (random) 3503 req->r_resend_mds = mds; 3504 } 3505 list_add(&req->r_wait, &session->s_waiting); 3506 goto out_session; 3507 } 3508 3509 /* send request */ 3510 req->r_resend_mds = -1; /* forget any previous mds hint */ 3511 3512 if (req->r_request_started == 0) /* note request start time */ 3513 req->r_request_started = jiffies; 3514 3515 /* 3516 * For async create we will choose the auth MDS of frag in parent 3517 * directory to send the request and usually this works fine, but 3518 * if the migrated the dirtory to another MDS before it could handle 3519 * it the request will be forwarded. 3520 * 3521 * And then the auth cap will be changed. 3522 */ 3523 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags) && req->r_num_fwd) { 3524 struct ceph_dentry_info *di = ceph_dentry(req->r_dentry); 3525 struct ceph_inode_info *ci; 3526 struct ceph_cap *cap; 3527 3528 /* 3529 * The request maybe handled very fast and the new inode 3530 * hasn't been linked to the dentry yet. We need to wait 3531 * for the ceph_finish_async_create(), which shouldn't be 3532 * stuck too long or fail in thoery, to finish when forwarding 3533 * the request. 3534 */ 3535 if (!d_inode(req->r_dentry)) { 3536 err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_CREATE_BIT, 3537 TASK_KILLABLE); 3538 if (err) { 3539 mutex_lock(&req->r_fill_mutex); 3540 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 3541 mutex_unlock(&req->r_fill_mutex); 3542 goto out_session; 3543 } 3544 } 3545 3546 ci = ceph_inode(d_inode(req->r_dentry)); 3547 3548 spin_lock(&ci->i_ceph_lock); 3549 cap = ci->i_auth_cap; 3550 if (ci->i_ceph_flags & CEPH_I_ASYNC_CREATE && mds != cap->mds) { 3551 doutc(cl, "session changed for auth cap %d -> %d\n", 3552 cap->session->s_mds, session->s_mds); 3553 3554 /* Remove the auth cap from old session */ 3555 spin_lock(&cap->session->s_cap_lock); 3556 cap->session->s_nr_caps--; 3557 list_del_init(&cap->session_caps); 3558 spin_unlock(&cap->session->s_cap_lock); 3559 3560 /* Add the auth cap to the new session */ 3561 cap->mds = mds; 3562 cap->session = session; 3563 spin_lock(&session->s_cap_lock); 3564 session->s_nr_caps++; 3565 list_add_tail(&cap->session_caps, &session->s_caps); 3566 spin_unlock(&session->s_cap_lock); 3567 3568 change_auth_cap_ses(ci, session); 3569 } 3570 spin_unlock(&ci->i_ceph_lock); 3571 } 3572 3573 err = __send_request(session, req, false); 3574 3575 out_session: 3576 ceph_put_mds_session(session); 3577 finish: 3578 if (err) { 3579 doutc(cl, "early error %d\n", err); 3580 req->r_err = err; 3581 complete_request(mdsc, req); 3582 __unregister_request(mdsc, req); 3583 } 3584 return; 3585 } 3586 3587 /* 3588 * called under mdsc->mutex 3589 */ 3590 static void __wake_requests(struct ceph_mds_client *mdsc, 3591 struct list_head *head) 3592 { 3593 struct ceph_client *cl = mdsc->fsc->client; 3594 struct ceph_mds_request *req; 3595 LIST_HEAD(tmp_list); 3596 3597 list_splice_init(head, &tmp_list); 3598 3599 while (!list_empty(&tmp_list)) { 3600 req = list_entry(tmp_list.next, 3601 struct ceph_mds_request, r_wait); 3602 list_del_init(&req->r_wait); 3603 doutc(cl, " wake request %p tid %llu\n", req, 3604 req->r_tid); 3605 __do_request(mdsc, req); 3606 } 3607 } 3608 3609 /* 3610 * Wake up threads with requests pending for @mds, so that they can 3611 * resubmit their requests to a possibly different mds. 3612 */ 3613 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 3614 { 3615 struct ceph_client *cl = mdsc->fsc->client; 3616 struct ceph_mds_request *req; 3617 struct rb_node *p = rb_first(&mdsc->request_tree); 3618 3619 doutc(cl, "kick_requests mds%d\n", mds); 3620 while (p) { 3621 req = rb_entry(p, struct ceph_mds_request, r_node); 3622 p = rb_next(p); 3623 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 3624 continue; 3625 if (req->r_attempts > 0) 3626 continue; /* only new requests */ 3627 if (req->r_session && 3628 req->r_session->s_mds == mds) { 3629 doutc(cl, " kicking tid %llu\n", req->r_tid); 3630 list_del_init(&req->r_wait); 3631 __do_request(mdsc, req); 3632 } 3633 } 3634 } 3635 3636 int ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, struct inode *dir, 3637 struct ceph_mds_request *req) 3638 { 3639 struct ceph_client *cl = mdsc->fsc->client; 3640 int err = 0; 3641 3642 /* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */ 3643 if (req->r_inode) 3644 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 3645 if (req->r_parent) { 3646 struct ceph_inode_info *ci = ceph_inode(req->r_parent); 3647 int fmode = (req->r_op & CEPH_MDS_OP_WRITE) ? 3648 CEPH_FILE_MODE_WR : CEPH_FILE_MODE_RD; 3649 spin_lock(&ci->i_ceph_lock); 3650 ceph_take_cap_refs(ci, CEPH_CAP_PIN, false); 3651 __ceph_touch_fmode(ci, mdsc, fmode); 3652 spin_unlock(&ci->i_ceph_lock); 3653 } 3654 if (req->r_old_dentry_dir) 3655 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 3656 CEPH_CAP_PIN); 3657 3658 if (req->r_inode) { 3659 err = ceph_wait_on_async_create(req->r_inode); 3660 if (err) { 3661 doutc(cl, "wait for async create returned: %d\n", err); 3662 return err; 3663 } 3664 } 3665 3666 if (!err && req->r_old_inode) { 3667 err = ceph_wait_on_async_create(req->r_old_inode); 3668 if (err) { 3669 doutc(cl, "wait for async create returned: %d\n", err); 3670 return err; 3671 } 3672 } 3673 3674 doutc(cl, "submit_request on %p for inode %p\n", req, dir); 3675 mutex_lock(&mdsc->mutex); 3676 __register_request(mdsc, req, dir); 3677 __do_request(mdsc, req); 3678 err = req->r_err; 3679 mutex_unlock(&mdsc->mutex); 3680 return err; 3681 } 3682 3683 int ceph_mdsc_wait_request(struct ceph_mds_client *mdsc, 3684 struct ceph_mds_request *req, 3685 ceph_mds_request_wait_callback_t wait_func) 3686 { 3687 struct ceph_client *cl = mdsc->fsc->client; 3688 int err; 3689 3690 /* wait */ 3691 doutc(cl, "do_request waiting\n"); 3692 if (wait_func) { 3693 err = wait_func(mdsc, req); 3694 } else { 3695 long timeleft = wait_for_completion_killable_timeout( 3696 &req->r_completion, 3697 ceph_timeout_jiffies(req->r_timeout)); 3698 if (timeleft > 0) 3699 err = 0; 3700 else if (!timeleft) 3701 err = -ETIMEDOUT; /* timed out */ 3702 else 3703 err = timeleft; /* killed */ 3704 } 3705 doutc(cl, "do_request waited, got %d\n", err); 3706 mutex_lock(&mdsc->mutex); 3707 3708 /* only abort if we didn't race with a real reply */ 3709 if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { 3710 err = le32_to_cpu(req->r_reply_info.head->result); 3711 } else if (err < 0) { 3712 doutc(cl, "aborted request %lld with %d\n", req->r_tid, err); 3713 3714 /* 3715 * ensure we aren't running concurrently with 3716 * ceph_fill_trace or ceph_readdir_prepopulate, which 3717 * rely on locks (dir mutex) held by our caller. 3718 */ 3719 mutex_lock(&req->r_fill_mutex); 3720 req->r_err = err; 3721 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 3722 mutex_unlock(&req->r_fill_mutex); 3723 3724 if (req->r_parent && 3725 (req->r_op & CEPH_MDS_OP_WRITE)) 3726 ceph_invalidate_dir_request(req); 3727 } else { 3728 err = req->r_err; 3729 } 3730 3731 mutex_unlock(&mdsc->mutex); 3732 return err; 3733 } 3734 3735 /* 3736 * Synchrously perform an mds request. Take care of all of the 3737 * session setup, forwarding, retry details. 3738 */ 3739 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 3740 struct inode *dir, 3741 struct ceph_mds_request *req) 3742 { 3743 struct ceph_client *cl = mdsc->fsc->client; 3744 int err; 3745 3746 doutc(cl, "do_request on %p\n", req); 3747 3748 /* issue */ 3749 err = ceph_mdsc_submit_request(mdsc, dir, req); 3750 if (!err) 3751 err = ceph_mdsc_wait_request(mdsc, req, NULL); 3752 doutc(cl, "do_request %p done, result %d\n", req, err); 3753 return err; 3754 } 3755 3756 /* 3757 * Invalidate dir's completeness, dentry lease state on an aborted MDS 3758 * namespace request. 3759 */ 3760 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 3761 { 3762 struct inode *dir = req->r_parent; 3763 struct inode *old_dir = req->r_old_dentry_dir; 3764 struct ceph_client *cl = req->r_mdsc->fsc->client; 3765 3766 doutc(cl, "invalidate_dir_request %p %p (complete, lease(s))\n", 3767 dir, old_dir); 3768 3769 ceph_dir_clear_complete(dir); 3770 if (old_dir) 3771 ceph_dir_clear_complete(old_dir); 3772 if (req->r_dentry) 3773 ceph_invalidate_dentry_lease(req->r_dentry); 3774 if (req->r_old_dentry) 3775 ceph_invalidate_dentry_lease(req->r_old_dentry); 3776 } 3777 3778 /* 3779 * Handle mds reply. 3780 * 3781 * We take the session mutex and parse and process the reply immediately. 3782 * This preserves the logical ordering of replies, capabilities, etc., sent 3783 * by the MDS as they are applied to our local cache. 3784 */ 3785 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 3786 { 3787 struct ceph_mds_client *mdsc = session->s_mdsc; 3788 struct ceph_client *cl = mdsc->fsc->client; 3789 struct ceph_mds_request *req; 3790 struct ceph_mds_reply_head *head = msg->front.iov_base; 3791 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 3792 struct ceph_snap_realm *realm; 3793 u64 tid; 3794 int err, result; 3795 int mds = session->s_mds; 3796 bool close_sessions = false; 3797 3798 if (msg->front.iov_len < sizeof(*head)) { 3799 pr_err_client(cl, "got corrupt (short) reply\n"); 3800 ceph_msg_dump(msg); 3801 return; 3802 } 3803 3804 /* get request, session */ 3805 tid = le64_to_cpu(msg->hdr.tid); 3806 mutex_lock(&mdsc->mutex); 3807 req = lookup_get_request(mdsc, tid); 3808 if (!req) { 3809 doutc(cl, "on unknown tid %llu\n", tid); 3810 mutex_unlock(&mdsc->mutex); 3811 return; 3812 } 3813 doutc(cl, "handle_reply %p\n", req); 3814 3815 /* correct session? */ 3816 if (req->r_session != session) { 3817 pr_err_client(cl, "got %llu on session mds%d not mds%d\n", 3818 tid, session->s_mds, 3819 req->r_session ? req->r_session->s_mds : -1); 3820 mutex_unlock(&mdsc->mutex); 3821 goto out; 3822 } 3823 3824 /* dup? */ 3825 if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) || 3826 (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) { 3827 pr_warn_client(cl, "got a dup %s reply on %llu from mds%d\n", 3828 head->safe ? "safe" : "unsafe", tid, mds); 3829 mutex_unlock(&mdsc->mutex); 3830 goto out; 3831 } 3832 if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) { 3833 pr_warn_client(cl, "got unsafe after safe on %llu from mds%d\n", 3834 tid, mds); 3835 mutex_unlock(&mdsc->mutex); 3836 goto out; 3837 } 3838 3839 result = le32_to_cpu(head->result); 3840 3841 if (head->safe) { 3842 set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags); 3843 __unregister_request(mdsc, req); 3844 3845 /* last request during umount? */ 3846 if (mdsc->stopping && !__get_oldest_req(mdsc)) 3847 complete_all(&mdsc->safe_umount_waiters); 3848 3849 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3850 /* 3851 * We already handled the unsafe response, now do the 3852 * cleanup. No need to examine the response; the MDS 3853 * doesn't include any result info in the safe 3854 * response. And even if it did, there is nothing 3855 * useful we could do with a revised return value. 3856 */ 3857 doutc(cl, "got safe reply %llu, mds%d\n", tid, mds); 3858 3859 mutex_unlock(&mdsc->mutex); 3860 goto out; 3861 } 3862 } else { 3863 set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags); 3864 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 3865 } 3866 3867 doutc(cl, "tid %lld result %d\n", tid, result); 3868 if (test_bit(CEPHFS_FEATURE_REPLY_ENCODING, &session->s_features)) 3869 err = parse_reply_info(session, msg, req, (u64)-1); 3870 else 3871 err = parse_reply_info(session, msg, req, 3872 session->s_con.peer_features); 3873 mutex_unlock(&mdsc->mutex); 3874 3875 /* Must find target inode outside of mutexes to avoid deadlocks */ 3876 rinfo = &req->r_reply_info; 3877 if ((err >= 0) && rinfo->head->is_target) { 3878 struct inode *in = xchg(&req->r_new_inode, NULL); 3879 struct ceph_vino tvino = { 3880 .ino = le64_to_cpu(rinfo->targeti.in->ino), 3881 .snap = le64_to_cpu(rinfo->targeti.in->snapid) 3882 }; 3883 3884 /* 3885 * If we ended up opening an existing inode, discard 3886 * r_new_inode 3887 */ 3888 if (req->r_op == CEPH_MDS_OP_CREATE && 3889 !req->r_reply_info.has_create_ino) { 3890 /* This should never happen on an async create */ 3891 WARN_ON_ONCE(req->r_deleg_ino); 3892 iput(in); 3893 in = NULL; 3894 } 3895 3896 in = ceph_get_inode(mdsc->fsc->sb, tvino, in); 3897 if (IS_ERR(in)) { 3898 err = PTR_ERR(in); 3899 mutex_lock(&session->s_mutex); 3900 goto out_err; 3901 } 3902 req->r_target_inode = in; 3903 } 3904 3905 mutex_lock(&session->s_mutex); 3906 if (err < 0) { 3907 pr_err_client(cl, "got corrupt reply mds%d(tid:%lld)\n", 3908 mds, tid); 3909 ceph_msg_dump(msg); 3910 goto out_err; 3911 } 3912 3913 /* snap trace */ 3914 realm = NULL; 3915 if (rinfo->snapblob_len) { 3916 down_write(&mdsc->snap_rwsem); 3917 err = ceph_update_snap_trace(mdsc, rinfo->snapblob, 3918 rinfo->snapblob + rinfo->snapblob_len, 3919 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP, 3920 &realm); 3921 if (err) { 3922 up_write(&mdsc->snap_rwsem); 3923 close_sessions = true; 3924 if (err == -EIO) 3925 ceph_msg_dump(msg); 3926 goto out_err; 3927 } 3928 downgrade_write(&mdsc->snap_rwsem); 3929 } else { 3930 down_read(&mdsc->snap_rwsem); 3931 } 3932 3933 /* insert trace into our cache */ 3934 mutex_lock(&req->r_fill_mutex); 3935 current->journal_info = req; 3936 err = ceph_fill_trace(mdsc->fsc->sb, req); 3937 if (err == 0) { 3938 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || 3939 req->r_op == CEPH_MDS_OP_LSSNAP)) 3940 err = ceph_readdir_prepopulate(req, req->r_session); 3941 } 3942 current->journal_info = NULL; 3943 mutex_unlock(&req->r_fill_mutex); 3944 3945 up_read(&mdsc->snap_rwsem); 3946 if (realm) 3947 ceph_put_snap_realm(mdsc, realm); 3948 3949 if (err == 0) { 3950 if (req->r_target_inode && 3951 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3952 struct ceph_inode_info *ci = 3953 ceph_inode(req->r_target_inode); 3954 spin_lock(&ci->i_unsafe_lock); 3955 list_add_tail(&req->r_unsafe_target_item, 3956 &ci->i_unsafe_iops); 3957 spin_unlock(&ci->i_unsafe_lock); 3958 } 3959 3960 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 3961 } 3962 out_err: 3963 mutex_lock(&mdsc->mutex); 3964 if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { 3965 if (err) { 3966 req->r_err = err; 3967 } else { 3968 req->r_reply = ceph_msg_get(msg); 3969 set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags); 3970 } 3971 } else { 3972 doutc(cl, "reply arrived after request %lld was aborted\n", tid); 3973 } 3974 mutex_unlock(&mdsc->mutex); 3975 3976 mutex_unlock(&session->s_mutex); 3977 3978 /* kick calling process */ 3979 complete_request(mdsc, req); 3980 3981 ceph_update_metadata_metrics(&mdsc->metric, req->r_start_latency, 3982 req->r_end_latency, err); 3983 out: 3984 ceph_mdsc_put_request(req); 3985 3986 /* Defer closing the sessions after s_mutex lock being released */ 3987 if (close_sessions) 3988 ceph_mdsc_close_sessions(mdsc); 3989 return; 3990 } 3991 3992 3993 3994 /* 3995 * handle mds notification that our request has been forwarded. 3996 */ 3997 static void handle_forward(struct ceph_mds_client *mdsc, 3998 struct ceph_mds_session *session, 3999 struct ceph_msg *msg) 4000 { 4001 struct ceph_client *cl = mdsc->fsc->client; 4002 struct ceph_mds_request *req; 4003 u64 tid = le64_to_cpu(msg->hdr.tid); 4004 u32 next_mds; 4005 u32 fwd_seq; 4006 int err = -EINVAL; 4007 void *p = msg->front.iov_base; 4008 void *end = p + msg->front.iov_len; 4009 bool aborted = false; 4010 4011 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 4012 next_mds = ceph_decode_32(&p); 4013 fwd_seq = ceph_decode_32(&p); 4014 4015 mutex_lock(&mdsc->mutex); 4016 req = lookup_get_request(mdsc, tid); 4017 if (!req) { 4018 mutex_unlock(&mdsc->mutex); 4019 doutc(cl, "forward tid %llu to mds%d - req dne\n", tid, next_mds); 4020 return; /* dup reply? */ 4021 } 4022 4023 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { 4024 doutc(cl, "forward tid %llu aborted, unregistering\n", tid); 4025 __unregister_request(mdsc, req); 4026 } else if (fwd_seq <= req->r_num_fwd || (uint32_t)fwd_seq >= U32_MAX) { 4027 /* 4028 * Avoid infinite retrying after overflow. 4029 * 4030 * The MDS will increase the fwd count and in client side 4031 * if the num_fwd is less than the one saved in request 4032 * that means the MDS is an old version and overflowed of 4033 * 8 bits. 4034 */ 4035 mutex_lock(&req->r_fill_mutex); 4036 req->r_err = -EMULTIHOP; 4037 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 4038 mutex_unlock(&req->r_fill_mutex); 4039 aborted = true; 4040 pr_warn_ratelimited_client(cl, "forward tid %llu seq overflow\n", 4041 tid); 4042 } else { 4043 /* resend. forward race not possible; mds would drop */ 4044 doutc(cl, "forward tid %llu to mds%d (we resend)\n", tid, next_mds); 4045 BUG_ON(req->r_err); 4046 BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)); 4047 req->r_attempts = 0; 4048 req->r_num_fwd = fwd_seq; 4049 req->r_resend_mds = next_mds; 4050 put_request_session(req); 4051 __do_request(mdsc, req); 4052 } 4053 mutex_unlock(&mdsc->mutex); 4054 4055 /* kick calling process */ 4056 if (aborted) 4057 complete_request(mdsc, req); 4058 ceph_mdsc_put_request(req); 4059 return; 4060 4061 bad: 4062 pr_err_client(cl, "decode error err=%d\n", err); 4063 ceph_msg_dump(msg); 4064 } 4065 4066 static int __decode_session_metadata(void **p, void *end, 4067 bool *blocklisted) 4068 { 4069 /* map<string,string> */ 4070 u32 n; 4071 bool err_str; 4072 ceph_decode_32_safe(p, end, n, bad); 4073 while (n-- > 0) { 4074 u32 len; 4075 ceph_decode_32_safe(p, end, len, bad); 4076 ceph_decode_need(p, end, len, bad); 4077 err_str = !strncmp(*p, "error_string", len); 4078 *p += len; 4079 ceph_decode_32_safe(p, end, len, bad); 4080 ceph_decode_need(p, end, len, bad); 4081 /* 4082 * Match "blocklisted (blacklisted)" from newer MDSes, 4083 * or "blacklisted" from older MDSes. 4084 */ 4085 if (err_str && strnstr(*p, "blacklisted", len)) 4086 *blocklisted = true; 4087 *p += len; 4088 } 4089 return 0; 4090 bad: 4091 return -1; 4092 } 4093 4094 /* 4095 * handle a mds session control message 4096 */ 4097 static void handle_session(struct ceph_mds_session *session, 4098 struct ceph_msg *msg) 4099 { 4100 struct ceph_mds_client *mdsc = session->s_mdsc; 4101 struct ceph_client *cl = mdsc->fsc->client; 4102 int mds = session->s_mds; 4103 int msg_version = le16_to_cpu(msg->hdr.version); 4104 void *p = msg->front.iov_base; 4105 void *end = p + msg->front.iov_len; 4106 struct ceph_mds_session_head *h; 4107 struct ceph_mds_cap_auth *cap_auths = NULL; 4108 u32 op, cap_auths_num = 0; 4109 u64 seq, features = 0; 4110 int wake = 0; 4111 bool blocklisted = false; 4112 u32 i; 4113 4114 4115 /* decode */ 4116 ceph_decode_need(&p, end, sizeof(*h), bad); 4117 h = p; 4118 p += sizeof(*h); 4119 4120 op = le32_to_cpu(h->op); 4121 seq = le64_to_cpu(h->seq); 4122 4123 if (msg_version >= 3) { 4124 u32 len; 4125 /* version >= 2 and < 5, decode metadata, skip otherwise 4126 * as it's handled via flags. 4127 */ 4128 if (msg_version >= 5) 4129 ceph_decode_skip_map(&p, end, string, string, bad); 4130 else if (__decode_session_metadata(&p, end, &blocklisted) < 0) 4131 goto bad; 4132 4133 /* version >= 3, feature bits */ 4134 ceph_decode_32_safe(&p, end, len, bad); 4135 if (len) { 4136 ceph_decode_64_safe(&p, end, features, bad); 4137 p += len - sizeof(features); 4138 } 4139 } 4140 4141 if (msg_version >= 5) { 4142 u32 flags, len; 4143 4144 /* version >= 4 */ 4145 ceph_decode_skip_16(&p, end, bad); /* struct_v, struct_cv */ 4146 ceph_decode_32_safe(&p, end, len, bad); /* len */ 4147 ceph_decode_skip_n(&p, end, len, bad); /* metric_spec */ 4148 4149 /* version >= 5, flags */ 4150 ceph_decode_32_safe(&p, end, flags, bad); 4151 if (flags & CEPH_SESSION_BLOCKLISTED) { 4152 pr_warn_client(cl, "mds%d session blocklisted\n", 4153 session->s_mds); 4154 blocklisted = true; 4155 } 4156 } 4157 4158 if (msg_version >= 6) { 4159 ceph_decode_32_safe(&p, end, cap_auths_num, bad); 4160 doutc(cl, "cap_auths_num %d\n", cap_auths_num); 4161 4162 if (cap_auths_num && op != CEPH_SESSION_OPEN) { 4163 WARN_ON_ONCE(op != CEPH_SESSION_OPEN); 4164 goto skip_cap_auths; 4165 } 4166 4167 cap_auths = kcalloc(cap_auths_num, 4168 sizeof(struct ceph_mds_cap_auth), 4169 GFP_KERNEL); 4170 if (!cap_auths) { 4171 pr_err_client(cl, "No memory for cap_auths\n"); 4172 return; 4173 } 4174 4175 for (i = 0; i < cap_auths_num; i++) { 4176 u32 _len, j; 4177 4178 /* struct_v, struct_compat, and struct_len in MDSCapAuth */ 4179 ceph_decode_skip_n(&p, end, 2 + sizeof(u32), bad); 4180 4181 /* struct_v, struct_compat, and struct_len in MDSCapMatch */ 4182 ceph_decode_skip_n(&p, end, 2 + sizeof(u32), bad); 4183 ceph_decode_64_safe(&p, end, cap_auths[i].match.uid, bad); 4184 ceph_decode_32_safe(&p, end, _len, bad); 4185 if (_len) { 4186 cap_auths[i].match.gids = kcalloc(_len, sizeof(u32), 4187 GFP_KERNEL); 4188 if (!cap_auths[i].match.gids) { 4189 pr_err_client(cl, "No memory for gids\n"); 4190 goto fail; 4191 } 4192 4193 cap_auths[i].match.num_gids = _len; 4194 for (j = 0; j < _len; j++) 4195 ceph_decode_32_safe(&p, end, 4196 cap_auths[i].match.gids[j], 4197 bad); 4198 } 4199 4200 ceph_decode_32_safe(&p, end, _len, bad); 4201 if (_len) { 4202 cap_auths[i].match.path = kcalloc(_len + 1, sizeof(char), 4203 GFP_KERNEL); 4204 if (!cap_auths[i].match.path) { 4205 pr_err_client(cl, "No memory for path\n"); 4206 goto fail; 4207 } 4208 ceph_decode_copy(&p, cap_auths[i].match.path, _len); 4209 4210 /* Remove the tailing '/' */ 4211 while (_len && cap_auths[i].match.path[_len - 1] == '/') { 4212 cap_auths[i].match.path[_len - 1] = '\0'; 4213 _len -= 1; 4214 } 4215 } 4216 4217 ceph_decode_32_safe(&p, end, _len, bad); 4218 if (_len) { 4219 cap_auths[i].match.fs_name = kcalloc(_len + 1, sizeof(char), 4220 GFP_KERNEL); 4221 if (!cap_auths[i].match.fs_name) { 4222 pr_err_client(cl, "No memory for fs_name\n"); 4223 goto fail; 4224 } 4225 ceph_decode_copy(&p, cap_auths[i].match.fs_name, _len); 4226 } 4227 4228 ceph_decode_8_safe(&p, end, cap_auths[i].match.root_squash, bad); 4229 ceph_decode_8_safe(&p, end, cap_auths[i].readable, bad); 4230 ceph_decode_8_safe(&p, end, cap_auths[i].writeable, bad); 4231 doutc(cl, "uid %lld, num_gids %u, path %s, fs_name %s, root_squash %d, readable %d, writeable %d\n", 4232 cap_auths[i].match.uid, cap_auths[i].match.num_gids, 4233 cap_auths[i].match.path, cap_auths[i].match.fs_name, 4234 cap_auths[i].match.root_squash, 4235 cap_auths[i].readable, cap_auths[i].writeable); 4236 } 4237 } 4238 4239 skip_cap_auths: 4240 mutex_lock(&mdsc->mutex); 4241 if (op == CEPH_SESSION_OPEN) { 4242 if (mdsc->s_cap_auths) { 4243 for (i = 0; i < mdsc->s_cap_auths_num; i++) { 4244 kfree(mdsc->s_cap_auths[i].match.gids); 4245 kfree(mdsc->s_cap_auths[i].match.path); 4246 kfree(mdsc->s_cap_auths[i].match.fs_name); 4247 } 4248 kfree(mdsc->s_cap_auths); 4249 } 4250 mdsc->s_cap_auths_num = cap_auths_num; 4251 mdsc->s_cap_auths = cap_auths; 4252 } 4253 if (op == CEPH_SESSION_CLOSE) { 4254 ceph_get_mds_session(session); 4255 __unregister_session(mdsc, session); 4256 } 4257 /* FIXME: this ttl calculation is generous */ 4258 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 4259 mutex_unlock(&mdsc->mutex); 4260 4261 mutex_lock(&session->s_mutex); 4262 4263 doutc(cl, "mds%d %s %p state %s seq %llu\n", mds, 4264 ceph_session_op_name(op), session, 4265 ceph_session_state_name(session->s_state), seq); 4266 4267 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 4268 session->s_state = CEPH_MDS_SESSION_OPEN; 4269 pr_info_client(cl, "mds%d came back\n", session->s_mds); 4270 } 4271 4272 switch (op) { 4273 case CEPH_SESSION_OPEN: 4274 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 4275 pr_info_client(cl, "mds%d reconnect success\n", 4276 session->s_mds); 4277 4278 session->s_features = features; 4279 if (session->s_state == CEPH_MDS_SESSION_OPEN) { 4280 pr_notice_client(cl, "mds%d is already opened\n", 4281 session->s_mds); 4282 } else { 4283 session->s_state = CEPH_MDS_SESSION_OPEN; 4284 renewed_caps(mdsc, session, 0); 4285 if (test_bit(CEPHFS_FEATURE_METRIC_COLLECT, 4286 &session->s_features)) 4287 metric_schedule_delayed(&mdsc->metric); 4288 } 4289 4290 /* 4291 * The connection maybe broken and the session in client 4292 * side has been reinitialized, need to update the seq 4293 * anyway. 4294 */ 4295 if (!session->s_seq && seq) 4296 session->s_seq = seq; 4297 4298 wake = 1; 4299 if (mdsc->stopping) 4300 __close_session(mdsc, session); 4301 break; 4302 4303 case CEPH_SESSION_RENEWCAPS: 4304 if (session->s_renew_seq == seq) 4305 renewed_caps(mdsc, session, 1); 4306 break; 4307 4308 case CEPH_SESSION_CLOSE: 4309 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 4310 pr_info_client(cl, "mds%d reconnect denied\n", 4311 session->s_mds); 4312 session->s_state = CEPH_MDS_SESSION_CLOSED; 4313 cleanup_session_requests(mdsc, session); 4314 remove_session_caps(session); 4315 wake = 2; /* for good measure */ 4316 wake_up_all(&mdsc->session_close_wq); 4317 break; 4318 4319 case CEPH_SESSION_STALE: 4320 pr_info_client(cl, "mds%d caps went stale, renewing\n", 4321 session->s_mds); 4322 atomic_inc(&session->s_cap_gen); 4323 session->s_cap_ttl = jiffies - 1; 4324 send_renew_caps(mdsc, session); 4325 break; 4326 4327 case CEPH_SESSION_RECALL_STATE: 4328 ceph_trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 4329 break; 4330 4331 case CEPH_SESSION_FLUSHMSG: 4332 /* flush cap releases */ 4333 spin_lock(&session->s_cap_lock); 4334 if (session->s_num_cap_releases) 4335 ceph_flush_session_cap_releases(mdsc, session); 4336 spin_unlock(&session->s_cap_lock); 4337 4338 send_flushmsg_ack(mdsc, session, seq); 4339 break; 4340 4341 case CEPH_SESSION_FORCE_RO: 4342 doutc(cl, "force_session_readonly %p\n", session); 4343 spin_lock(&session->s_cap_lock); 4344 session->s_readonly = true; 4345 spin_unlock(&session->s_cap_lock); 4346 wake_up_session_caps(session, FORCE_RO); 4347 break; 4348 4349 case CEPH_SESSION_REJECT: 4350 WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING); 4351 pr_info_client(cl, "mds%d rejected session\n", 4352 session->s_mds); 4353 session->s_state = CEPH_MDS_SESSION_REJECTED; 4354 cleanup_session_requests(mdsc, session); 4355 remove_session_caps(session); 4356 if (blocklisted) 4357 mdsc->fsc->blocklisted = true; 4358 wake = 2; /* for good measure */ 4359 break; 4360 4361 default: 4362 pr_err_client(cl, "bad op %d mds%d\n", op, mds); 4363 WARN_ON(1); 4364 } 4365 4366 mutex_unlock(&session->s_mutex); 4367 if (wake) { 4368 mutex_lock(&mdsc->mutex); 4369 __wake_requests(mdsc, &session->s_waiting); 4370 if (wake == 2) 4371 kick_requests(mdsc, mds); 4372 mutex_unlock(&mdsc->mutex); 4373 } 4374 if (op == CEPH_SESSION_CLOSE) 4375 ceph_put_mds_session(session); 4376 return; 4377 4378 bad: 4379 pr_err_client(cl, "corrupt message mds%d len %d\n", mds, 4380 (int)msg->front.iov_len); 4381 ceph_msg_dump(msg); 4382 fail: 4383 for (i = 0; i < cap_auths_num; i++) { 4384 kfree(cap_auths[i].match.gids); 4385 kfree(cap_auths[i].match.path); 4386 kfree(cap_auths[i].match.fs_name); 4387 } 4388 kfree(cap_auths); 4389 return; 4390 } 4391 4392 void ceph_mdsc_release_dir_caps(struct ceph_mds_request *req) 4393 { 4394 struct ceph_client *cl = req->r_mdsc->fsc->client; 4395 int dcaps; 4396 4397 dcaps = xchg(&req->r_dir_caps, 0); 4398 if (dcaps) { 4399 doutc(cl, "releasing r_dir_caps=%s\n", ceph_cap_string(dcaps)); 4400 ceph_put_cap_refs(ceph_inode(req->r_parent), dcaps); 4401 } 4402 } 4403 4404 void ceph_mdsc_release_dir_caps_async(struct ceph_mds_request *req) 4405 { 4406 struct ceph_client *cl = req->r_mdsc->fsc->client; 4407 int dcaps; 4408 4409 dcaps = xchg(&req->r_dir_caps, 0); 4410 if (dcaps) { 4411 doutc(cl, "releasing r_dir_caps=%s\n", ceph_cap_string(dcaps)); 4412 ceph_put_cap_refs_async(ceph_inode(req->r_parent), dcaps); 4413 } 4414 } 4415 4416 /* 4417 * called under session->mutex. 4418 */ 4419 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 4420 struct ceph_mds_session *session) 4421 { 4422 struct ceph_mds_request *req, *nreq; 4423 struct rb_node *p; 4424 4425 doutc(mdsc->fsc->client, "mds%d\n", session->s_mds); 4426 4427 mutex_lock(&mdsc->mutex); 4428 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) 4429 __send_request(session, req, true); 4430 4431 /* 4432 * also re-send old requests when MDS enters reconnect stage. So that MDS 4433 * can process completed request in clientreplay stage. 4434 */ 4435 p = rb_first(&mdsc->request_tree); 4436 while (p) { 4437 req = rb_entry(p, struct ceph_mds_request, r_node); 4438 p = rb_next(p); 4439 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 4440 continue; 4441 if (req->r_attempts == 0) 4442 continue; /* only old requests */ 4443 if (!req->r_session) 4444 continue; 4445 if (req->r_session->s_mds != session->s_mds) 4446 continue; 4447 4448 ceph_mdsc_release_dir_caps_async(req); 4449 4450 __send_request(session, req, true); 4451 } 4452 mutex_unlock(&mdsc->mutex); 4453 } 4454 4455 static int send_reconnect_partial(struct ceph_reconnect_state *recon_state) 4456 { 4457 struct ceph_msg *reply; 4458 struct ceph_pagelist *_pagelist; 4459 struct page *page; 4460 __le32 *addr; 4461 int err = -ENOMEM; 4462 4463 if (!recon_state->allow_multi) 4464 return -ENOSPC; 4465 4466 /* can't handle message that contains both caps and realm */ 4467 BUG_ON(!recon_state->nr_caps == !recon_state->nr_realms); 4468 4469 /* pre-allocate new pagelist */ 4470 _pagelist = ceph_pagelist_alloc(GFP_NOFS); 4471 if (!_pagelist) 4472 return -ENOMEM; 4473 4474 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false); 4475 if (!reply) 4476 goto fail_msg; 4477 4478 /* placeholder for nr_caps */ 4479 err = ceph_pagelist_encode_32(_pagelist, 0); 4480 if (err < 0) 4481 goto fail; 4482 4483 if (recon_state->nr_caps) { 4484 /* currently encoding caps */ 4485 err = ceph_pagelist_encode_32(recon_state->pagelist, 0); 4486 if (err) 4487 goto fail; 4488 } else { 4489 /* placeholder for nr_realms (currently encoding relams) */ 4490 err = ceph_pagelist_encode_32(_pagelist, 0); 4491 if (err < 0) 4492 goto fail; 4493 } 4494 4495 err = ceph_pagelist_encode_8(recon_state->pagelist, 1); 4496 if (err) 4497 goto fail; 4498 4499 page = list_first_entry(&recon_state->pagelist->head, struct page, lru); 4500 addr = kmap_atomic(page); 4501 if (recon_state->nr_caps) { 4502 /* currently encoding caps */ 4503 *addr = cpu_to_le32(recon_state->nr_caps); 4504 } else { 4505 /* currently encoding relams */ 4506 *(addr + 1) = cpu_to_le32(recon_state->nr_realms); 4507 } 4508 kunmap_atomic(addr); 4509 4510 reply->hdr.version = cpu_to_le16(5); 4511 reply->hdr.compat_version = cpu_to_le16(4); 4512 4513 reply->hdr.data_len = cpu_to_le32(recon_state->pagelist->length); 4514 ceph_msg_data_add_pagelist(reply, recon_state->pagelist); 4515 4516 ceph_con_send(&recon_state->session->s_con, reply); 4517 ceph_pagelist_release(recon_state->pagelist); 4518 4519 recon_state->pagelist = _pagelist; 4520 recon_state->nr_caps = 0; 4521 recon_state->nr_realms = 0; 4522 recon_state->msg_version = 5; 4523 return 0; 4524 fail: 4525 ceph_msg_put(reply); 4526 fail_msg: 4527 ceph_pagelist_release(_pagelist); 4528 return err; 4529 } 4530 4531 static struct dentry* d_find_primary(struct inode *inode) 4532 { 4533 struct dentry *alias, *dn = NULL; 4534 4535 if (hlist_empty(&inode->i_dentry)) 4536 return NULL; 4537 4538 spin_lock(&inode->i_lock); 4539 if (hlist_empty(&inode->i_dentry)) 4540 goto out_unlock; 4541 4542 if (S_ISDIR(inode->i_mode)) { 4543 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 4544 if (!IS_ROOT(alias)) 4545 dn = dget(alias); 4546 goto out_unlock; 4547 } 4548 4549 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 4550 spin_lock(&alias->d_lock); 4551 if (!d_unhashed(alias) && 4552 (ceph_dentry(alias)->flags & CEPH_DENTRY_PRIMARY_LINK)) { 4553 dn = dget_dlock(alias); 4554 } 4555 spin_unlock(&alias->d_lock); 4556 if (dn) 4557 break; 4558 } 4559 out_unlock: 4560 spin_unlock(&inode->i_lock); 4561 return dn; 4562 } 4563 4564 /* 4565 * Encode information about a cap for a reconnect with the MDS. 4566 */ 4567 static int reconnect_caps_cb(struct inode *inode, int mds, void *arg) 4568 { 4569 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 4570 struct ceph_client *cl = ceph_inode_to_client(inode); 4571 union { 4572 struct ceph_mds_cap_reconnect v2; 4573 struct ceph_mds_cap_reconnect_v1 v1; 4574 } rec; 4575 struct ceph_inode_info *ci = ceph_inode(inode); 4576 struct ceph_reconnect_state *recon_state = arg; 4577 struct ceph_pagelist *pagelist = recon_state->pagelist; 4578 struct dentry *dentry; 4579 struct ceph_cap *cap; 4580 char *path; 4581 int pathlen = 0, err; 4582 u64 pathbase; 4583 u64 snap_follows; 4584 4585 dentry = d_find_primary(inode); 4586 if (dentry) { 4587 /* set pathbase to parent dir when msg_version >= 2 */ 4588 path = ceph_mdsc_build_path(mdsc, dentry, &pathlen, &pathbase, 4589 recon_state->msg_version >= 2); 4590 dput(dentry); 4591 if (IS_ERR(path)) { 4592 err = PTR_ERR(path); 4593 goto out_err; 4594 } 4595 } else { 4596 path = NULL; 4597 pathbase = 0; 4598 } 4599 4600 spin_lock(&ci->i_ceph_lock); 4601 cap = __get_cap_for_mds(ci, mds); 4602 if (!cap) { 4603 spin_unlock(&ci->i_ceph_lock); 4604 err = 0; 4605 goto out_err; 4606 } 4607 doutc(cl, " adding %p ino %llx.%llx cap %p %lld %s\n", inode, 4608 ceph_vinop(inode), cap, cap->cap_id, 4609 ceph_cap_string(cap->issued)); 4610 4611 cap->seq = 0; /* reset cap seq */ 4612 cap->issue_seq = 0; /* and issue_seq */ 4613 cap->mseq = 0; /* and migrate_seq */ 4614 cap->cap_gen = atomic_read(&cap->session->s_cap_gen); 4615 4616 /* These are lost when the session goes away */ 4617 if (S_ISDIR(inode->i_mode)) { 4618 if (cap->issued & CEPH_CAP_DIR_CREATE) { 4619 ceph_put_string(rcu_dereference_raw(ci->i_cached_layout.pool_ns)); 4620 memset(&ci->i_cached_layout, 0, sizeof(ci->i_cached_layout)); 4621 } 4622 cap->issued &= ~CEPH_CAP_ANY_DIR_OPS; 4623 } 4624 4625 if (recon_state->msg_version >= 2) { 4626 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 4627 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 4628 rec.v2.issued = cpu_to_le32(cap->issued); 4629 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 4630 rec.v2.pathbase = cpu_to_le64(pathbase); 4631 rec.v2.flock_len = (__force __le32) 4632 ((ci->i_ceph_flags & CEPH_I_ERROR_FILELOCK) ? 0 : 1); 4633 } else { 4634 struct timespec64 ts; 4635 4636 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 4637 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 4638 rec.v1.issued = cpu_to_le32(cap->issued); 4639 rec.v1.size = cpu_to_le64(i_size_read(inode)); 4640 ts = inode_get_mtime(inode); 4641 ceph_encode_timespec64(&rec.v1.mtime, &ts); 4642 ts = inode_get_atime(inode); 4643 ceph_encode_timespec64(&rec.v1.atime, &ts); 4644 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 4645 rec.v1.pathbase = cpu_to_le64(pathbase); 4646 } 4647 4648 if (list_empty(&ci->i_cap_snaps)) { 4649 snap_follows = ci->i_head_snapc ? ci->i_head_snapc->seq : 0; 4650 } else { 4651 struct ceph_cap_snap *capsnap = 4652 list_first_entry(&ci->i_cap_snaps, 4653 struct ceph_cap_snap, ci_item); 4654 snap_follows = capsnap->follows; 4655 } 4656 spin_unlock(&ci->i_ceph_lock); 4657 4658 if (recon_state->msg_version >= 2) { 4659 int num_fcntl_locks, num_flock_locks; 4660 struct ceph_filelock *flocks = NULL; 4661 size_t struct_len, total_len = sizeof(u64); 4662 u8 struct_v = 0; 4663 4664 encode_again: 4665 if (rec.v2.flock_len) { 4666 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); 4667 } else { 4668 num_fcntl_locks = 0; 4669 num_flock_locks = 0; 4670 } 4671 if (num_fcntl_locks + num_flock_locks > 0) { 4672 flocks = kmalloc_array(num_fcntl_locks + num_flock_locks, 4673 sizeof(struct ceph_filelock), 4674 GFP_NOFS); 4675 if (!flocks) { 4676 err = -ENOMEM; 4677 goto out_err; 4678 } 4679 err = ceph_encode_locks_to_buffer(inode, flocks, 4680 num_fcntl_locks, 4681 num_flock_locks); 4682 if (err) { 4683 kfree(flocks); 4684 flocks = NULL; 4685 if (err == -ENOSPC) 4686 goto encode_again; 4687 goto out_err; 4688 } 4689 } else { 4690 kfree(flocks); 4691 flocks = NULL; 4692 } 4693 4694 if (recon_state->msg_version >= 3) { 4695 /* version, compat_version and struct_len */ 4696 total_len += 2 * sizeof(u8) + sizeof(u32); 4697 struct_v = 2; 4698 } 4699 /* 4700 * number of encoded locks is stable, so copy to pagelist 4701 */ 4702 struct_len = 2 * sizeof(u32) + 4703 (num_fcntl_locks + num_flock_locks) * 4704 sizeof(struct ceph_filelock); 4705 rec.v2.flock_len = cpu_to_le32(struct_len); 4706 4707 struct_len += sizeof(u32) + pathlen + sizeof(rec.v2); 4708 4709 if (struct_v >= 2) 4710 struct_len += sizeof(u64); /* snap_follows */ 4711 4712 total_len += struct_len; 4713 4714 if (pagelist->length + total_len > RECONNECT_MAX_SIZE) { 4715 err = send_reconnect_partial(recon_state); 4716 if (err) 4717 goto out_freeflocks; 4718 pagelist = recon_state->pagelist; 4719 } 4720 4721 err = ceph_pagelist_reserve(pagelist, total_len); 4722 if (err) 4723 goto out_freeflocks; 4724 4725 ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 4726 if (recon_state->msg_version >= 3) { 4727 ceph_pagelist_encode_8(pagelist, struct_v); 4728 ceph_pagelist_encode_8(pagelist, 1); 4729 ceph_pagelist_encode_32(pagelist, struct_len); 4730 } 4731 ceph_pagelist_encode_string(pagelist, path, pathlen); 4732 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2)); 4733 ceph_locks_to_pagelist(flocks, pagelist, 4734 num_fcntl_locks, num_flock_locks); 4735 if (struct_v >= 2) 4736 ceph_pagelist_encode_64(pagelist, snap_follows); 4737 out_freeflocks: 4738 kfree(flocks); 4739 } else { 4740 err = ceph_pagelist_reserve(pagelist, 4741 sizeof(u64) + sizeof(u32) + 4742 pathlen + sizeof(rec.v1)); 4743 if (err) 4744 goto out_err; 4745 4746 ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 4747 ceph_pagelist_encode_string(pagelist, path, pathlen); 4748 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1)); 4749 } 4750 4751 out_err: 4752 ceph_mdsc_free_path(path, pathlen); 4753 if (!err) 4754 recon_state->nr_caps++; 4755 return err; 4756 } 4757 4758 static int encode_snap_realms(struct ceph_mds_client *mdsc, 4759 struct ceph_reconnect_state *recon_state) 4760 { 4761 struct rb_node *p; 4762 struct ceph_pagelist *pagelist = recon_state->pagelist; 4763 struct ceph_client *cl = mdsc->fsc->client; 4764 int err = 0; 4765 4766 if (recon_state->msg_version >= 4) { 4767 err = ceph_pagelist_encode_32(pagelist, mdsc->num_snap_realms); 4768 if (err < 0) 4769 goto fail; 4770 } 4771 4772 /* 4773 * snaprealms. we provide mds with the ino, seq (version), and 4774 * parent for all of our realms. If the mds has any newer info, 4775 * it will tell us. 4776 */ 4777 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 4778 struct ceph_snap_realm *realm = 4779 rb_entry(p, struct ceph_snap_realm, node); 4780 struct ceph_mds_snaprealm_reconnect sr_rec; 4781 4782 if (recon_state->msg_version >= 4) { 4783 size_t need = sizeof(u8) * 2 + sizeof(u32) + 4784 sizeof(sr_rec); 4785 4786 if (pagelist->length + need > RECONNECT_MAX_SIZE) { 4787 err = send_reconnect_partial(recon_state); 4788 if (err) 4789 goto fail; 4790 pagelist = recon_state->pagelist; 4791 } 4792 4793 err = ceph_pagelist_reserve(pagelist, need); 4794 if (err) 4795 goto fail; 4796 4797 ceph_pagelist_encode_8(pagelist, 1); 4798 ceph_pagelist_encode_8(pagelist, 1); 4799 ceph_pagelist_encode_32(pagelist, sizeof(sr_rec)); 4800 } 4801 4802 doutc(cl, " adding snap realm %llx seq %lld parent %llx\n", 4803 realm->ino, realm->seq, realm->parent_ino); 4804 sr_rec.ino = cpu_to_le64(realm->ino); 4805 sr_rec.seq = cpu_to_le64(realm->seq); 4806 sr_rec.parent = cpu_to_le64(realm->parent_ino); 4807 4808 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 4809 if (err) 4810 goto fail; 4811 4812 recon_state->nr_realms++; 4813 } 4814 fail: 4815 return err; 4816 } 4817 4818 4819 /* 4820 * If an MDS fails and recovers, clients need to reconnect in order to 4821 * reestablish shared state. This includes all caps issued through 4822 * this session _and_ the snap_realm hierarchy. Because it's not 4823 * clear which snap realms the mds cares about, we send everything we 4824 * know about.. that ensures we'll then get any new info the 4825 * recovering MDS might have. 4826 * 4827 * This is a relatively heavyweight operation, but it's rare. 4828 */ 4829 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 4830 struct ceph_mds_session *session) 4831 { 4832 struct ceph_client *cl = mdsc->fsc->client; 4833 struct ceph_msg *reply; 4834 int mds = session->s_mds; 4835 int err = -ENOMEM; 4836 struct ceph_reconnect_state recon_state = { 4837 .session = session, 4838 }; 4839 LIST_HEAD(dispose); 4840 4841 pr_info_client(cl, "mds%d reconnect start\n", mds); 4842 4843 recon_state.pagelist = ceph_pagelist_alloc(GFP_NOFS); 4844 if (!recon_state.pagelist) 4845 goto fail_nopagelist; 4846 4847 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false); 4848 if (!reply) 4849 goto fail_nomsg; 4850 4851 xa_destroy(&session->s_delegated_inos); 4852 4853 mutex_lock(&session->s_mutex); 4854 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 4855 session->s_seq = 0; 4856 4857 doutc(cl, "session %p state %s\n", session, 4858 ceph_session_state_name(session->s_state)); 4859 4860 atomic_inc(&session->s_cap_gen); 4861 4862 spin_lock(&session->s_cap_lock); 4863 /* don't know if session is readonly */ 4864 session->s_readonly = 0; 4865 /* 4866 * notify __ceph_remove_cap() that we are composing cap reconnect. 4867 * If a cap get released before being added to the cap reconnect, 4868 * __ceph_remove_cap() should skip queuing cap release. 4869 */ 4870 session->s_cap_reconnect = 1; 4871 /* drop old cap expires; we're about to reestablish that state */ 4872 detach_cap_releases(session, &dispose); 4873 spin_unlock(&session->s_cap_lock); 4874 dispose_cap_releases(mdsc, &dispose); 4875 4876 /* trim unused caps to reduce MDS's cache rejoin time */ 4877 if (mdsc->fsc->sb->s_root) 4878 shrink_dcache_parent(mdsc->fsc->sb->s_root); 4879 4880 ceph_con_close(&session->s_con); 4881 ceph_con_open(&session->s_con, 4882 CEPH_ENTITY_TYPE_MDS, mds, 4883 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 4884 4885 /* replay unsafe requests */ 4886 replay_unsafe_requests(mdsc, session); 4887 4888 ceph_early_kick_flushing_caps(mdsc, session); 4889 4890 down_read(&mdsc->snap_rwsem); 4891 4892 /* placeholder for nr_caps */ 4893 err = ceph_pagelist_encode_32(recon_state.pagelist, 0); 4894 if (err) 4895 goto fail; 4896 4897 if (test_bit(CEPHFS_FEATURE_MULTI_RECONNECT, &session->s_features)) { 4898 recon_state.msg_version = 3; 4899 recon_state.allow_multi = true; 4900 } else if (session->s_con.peer_features & CEPH_FEATURE_MDSENC) { 4901 recon_state.msg_version = 3; 4902 } else { 4903 recon_state.msg_version = 2; 4904 } 4905 /* traverse this session's caps */ 4906 err = ceph_iterate_session_caps(session, reconnect_caps_cb, &recon_state); 4907 4908 spin_lock(&session->s_cap_lock); 4909 session->s_cap_reconnect = 0; 4910 spin_unlock(&session->s_cap_lock); 4911 4912 if (err < 0) 4913 goto fail; 4914 4915 /* check if all realms can be encoded into current message */ 4916 if (mdsc->num_snap_realms) { 4917 size_t total_len = 4918 recon_state.pagelist->length + 4919 mdsc->num_snap_realms * 4920 sizeof(struct ceph_mds_snaprealm_reconnect); 4921 if (recon_state.msg_version >= 4) { 4922 /* number of realms */ 4923 total_len += sizeof(u32); 4924 /* version, compat_version and struct_len */ 4925 total_len += mdsc->num_snap_realms * 4926 (2 * sizeof(u8) + sizeof(u32)); 4927 } 4928 if (total_len > RECONNECT_MAX_SIZE) { 4929 if (!recon_state.allow_multi) { 4930 err = -ENOSPC; 4931 goto fail; 4932 } 4933 if (recon_state.nr_caps) { 4934 err = send_reconnect_partial(&recon_state); 4935 if (err) 4936 goto fail; 4937 } 4938 recon_state.msg_version = 5; 4939 } 4940 } 4941 4942 err = encode_snap_realms(mdsc, &recon_state); 4943 if (err < 0) 4944 goto fail; 4945 4946 if (recon_state.msg_version >= 5) { 4947 err = ceph_pagelist_encode_8(recon_state.pagelist, 0); 4948 if (err < 0) 4949 goto fail; 4950 } 4951 4952 if (recon_state.nr_caps || recon_state.nr_realms) { 4953 struct page *page = 4954 list_first_entry(&recon_state.pagelist->head, 4955 struct page, lru); 4956 __le32 *addr = kmap_atomic(page); 4957 if (recon_state.nr_caps) { 4958 WARN_ON(recon_state.nr_realms != mdsc->num_snap_realms); 4959 *addr = cpu_to_le32(recon_state.nr_caps); 4960 } else if (recon_state.msg_version >= 4) { 4961 *(addr + 1) = cpu_to_le32(recon_state.nr_realms); 4962 } 4963 kunmap_atomic(addr); 4964 } 4965 4966 reply->hdr.version = cpu_to_le16(recon_state.msg_version); 4967 if (recon_state.msg_version >= 4) 4968 reply->hdr.compat_version = cpu_to_le16(4); 4969 4970 reply->hdr.data_len = cpu_to_le32(recon_state.pagelist->length); 4971 ceph_msg_data_add_pagelist(reply, recon_state.pagelist); 4972 4973 ceph_con_send(&session->s_con, reply); 4974 4975 mutex_unlock(&session->s_mutex); 4976 4977 mutex_lock(&mdsc->mutex); 4978 __wake_requests(mdsc, &session->s_waiting); 4979 mutex_unlock(&mdsc->mutex); 4980 4981 up_read(&mdsc->snap_rwsem); 4982 ceph_pagelist_release(recon_state.pagelist); 4983 return; 4984 4985 fail: 4986 ceph_msg_put(reply); 4987 up_read(&mdsc->snap_rwsem); 4988 mutex_unlock(&session->s_mutex); 4989 fail_nomsg: 4990 ceph_pagelist_release(recon_state.pagelist); 4991 fail_nopagelist: 4992 pr_err_client(cl, "error %d preparing reconnect for mds%d\n", 4993 err, mds); 4994 return; 4995 } 4996 4997 4998 /* 4999 * compare old and new mdsmaps, kicking requests 5000 * and closing out old connections as necessary 5001 * 5002 * called under mdsc->mutex. 5003 */ 5004 static void check_new_map(struct ceph_mds_client *mdsc, 5005 struct ceph_mdsmap *newmap, 5006 struct ceph_mdsmap *oldmap) 5007 { 5008 int i, j, err; 5009 int oldstate, newstate; 5010 struct ceph_mds_session *s; 5011 unsigned long targets[DIV_ROUND_UP(CEPH_MAX_MDS, sizeof(unsigned long))] = {0}; 5012 struct ceph_client *cl = mdsc->fsc->client; 5013 5014 doutc(cl, "new %u old %u\n", newmap->m_epoch, oldmap->m_epoch); 5015 5016 if (newmap->m_info) { 5017 for (i = 0; i < newmap->possible_max_rank; i++) { 5018 for (j = 0; j < newmap->m_info[i].num_export_targets; j++) 5019 set_bit(newmap->m_info[i].export_targets[j], targets); 5020 } 5021 } 5022 5023 for (i = 0; i < oldmap->possible_max_rank && i < mdsc->max_sessions; i++) { 5024 if (!mdsc->sessions[i]) 5025 continue; 5026 s = mdsc->sessions[i]; 5027 oldstate = ceph_mdsmap_get_state(oldmap, i); 5028 newstate = ceph_mdsmap_get_state(newmap, i); 5029 5030 doutc(cl, "mds%d state %s%s -> %s%s (session %s)\n", 5031 i, ceph_mds_state_name(oldstate), 5032 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 5033 ceph_mds_state_name(newstate), 5034 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 5035 ceph_session_state_name(s->s_state)); 5036 5037 if (i >= newmap->possible_max_rank) { 5038 /* force close session for stopped mds */ 5039 ceph_get_mds_session(s); 5040 __unregister_session(mdsc, s); 5041 __wake_requests(mdsc, &s->s_waiting); 5042 mutex_unlock(&mdsc->mutex); 5043 5044 mutex_lock(&s->s_mutex); 5045 cleanup_session_requests(mdsc, s); 5046 remove_session_caps(s); 5047 mutex_unlock(&s->s_mutex); 5048 5049 ceph_put_mds_session(s); 5050 5051 mutex_lock(&mdsc->mutex); 5052 kick_requests(mdsc, i); 5053 continue; 5054 } 5055 5056 if (memcmp(ceph_mdsmap_get_addr(oldmap, i), 5057 ceph_mdsmap_get_addr(newmap, i), 5058 sizeof(struct ceph_entity_addr))) { 5059 /* just close it */ 5060 mutex_unlock(&mdsc->mutex); 5061 mutex_lock(&s->s_mutex); 5062 mutex_lock(&mdsc->mutex); 5063 ceph_con_close(&s->s_con); 5064 mutex_unlock(&s->s_mutex); 5065 s->s_state = CEPH_MDS_SESSION_RESTARTING; 5066 } else if (oldstate == newstate) { 5067 continue; /* nothing new with this mds */ 5068 } 5069 5070 /* 5071 * send reconnect? 5072 */ 5073 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 5074 newstate >= CEPH_MDS_STATE_RECONNECT) { 5075 mutex_unlock(&mdsc->mutex); 5076 clear_bit(i, targets); 5077 send_mds_reconnect(mdsc, s); 5078 mutex_lock(&mdsc->mutex); 5079 } 5080 5081 /* 5082 * kick request on any mds that has gone active. 5083 */ 5084 if (oldstate < CEPH_MDS_STATE_ACTIVE && 5085 newstate >= CEPH_MDS_STATE_ACTIVE) { 5086 if (oldstate != CEPH_MDS_STATE_CREATING && 5087 oldstate != CEPH_MDS_STATE_STARTING) 5088 pr_info_client(cl, "mds%d recovery completed\n", 5089 s->s_mds); 5090 kick_requests(mdsc, i); 5091 mutex_unlock(&mdsc->mutex); 5092 mutex_lock(&s->s_mutex); 5093 mutex_lock(&mdsc->mutex); 5094 ceph_kick_flushing_caps(mdsc, s); 5095 mutex_unlock(&s->s_mutex); 5096 wake_up_session_caps(s, RECONNECT); 5097 } 5098 } 5099 5100 /* 5101 * Only open and reconnect sessions that don't exist yet. 5102 */ 5103 for (i = 0; i < newmap->possible_max_rank; i++) { 5104 /* 5105 * In case the import MDS is crashed just after 5106 * the EImportStart journal is flushed, so when 5107 * a standby MDS takes over it and is replaying 5108 * the EImportStart journal the new MDS daemon 5109 * will wait the client to reconnect it, but the 5110 * client may never register/open the session yet. 5111 * 5112 * Will try to reconnect that MDS daemon if the 5113 * rank number is in the export targets array and 5114 * is the up:reconnect state. 5115 */ 5116 newstate = ceph_mdsmap_get_state(newmap, i); 5117 if (!test_bit(i, targets) || newstate != CEPH_MDS_STATE_RECONNECT) 5118 continue; 5119 5120 /* 5121 * The session maybe registered and opened by some 5122 * requests which were choosing random MDSes during 5123 * the mdsc->mutex's unlock/lock gap below in rare 5124 * case. But the related MDS daemon will just queue 5125 * that requests and be still waiting for the client's 5126 * reconnection request in up:reconnect state. 5127 */ 5128 s = __ceph_lookup_mds_session(mdsc, i); 5129 if (likely(!s)) { 5130 s = __open_export_target_session(mdsc, i); 5131 if (IS_ERR(s)) { 5132 err = PTR_ERR(s); 5133 pr_err_client(cl, 5134 "failed to open export target session, err %d\n", 5135 err); 5136 continue; 5137 } 5138 } 5139 doutc(cl, "send reconnect to export target mds.%d\n", i); 5140 mutex_unlock(&mdsc->mutex); 5141 send_mds_reconnect(mdsc, s); 5142 ceph_put_mds_session(s); 5143 mutex_lock(&mdsc->mutex); 5144 } 5145 5146 for (i = 0; i < newmap->possible_max_rank && i < mdsc->max_sessions; i++) { 5147 s = mdsc->sessions[i]; 5148 if (!s) 5149 continue; 5150 if (!ceph_mdsmap_is_laggy(newmap, i)) 5151 continue; 5152 if (s->s_state == CEPH_MDS_SESSION_OPEN || 5153 s->s_state == CEPH_MDS_SESSION_HUNG || 5154 s->s_state == CEPH_MDS_SESSION_CLOSING) { 5155 doutc(cl, " connecting to export targets of laggy mds%d\n", i); 5156 __open_export_target_sessions(mdsc, s); 5157 } 5158 } 5159 } 5160 5161 5162 5163 /* 5164 * leases 5165 */ 5166 5167 /* 5168 * caller must hold session s_mutex, dentry->d_lock 5169 */ 5170 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 5171 { 5172 struct ceph_dentry_info *di = ceph_dentry(dentry); 5173 5174 ceph_put_mds_session(di->lease_session); 5175 di->lease_session = NULL; 5176 } 5177 5178 static void handle_lease(struct ceph_mds_client *mdsc, 5179 struct ceph_mds_session *session, 5180 struct ceph_msg *msg) 5181 { 5182 struct ceph_client *cl = mdsc->fsc->client; 5183 struct super_block *sb = mdsc->fsc->sb; 5184 struct inode *inode; 5185 struct dentry *parent, *dentry; 5186 struct ceph_dentry_info *di; 5187 int mds = session->s_mds; 5188 struct ceph_mds_lease *h = msg->front.iov_base; 5189 u32 seq; 5190 struct ceph_vino vino; 5191 struct qstr dname; 5192 int release = 0; 5193 5194 doutc(cl, "from mds%d\n", mds); 5195 5196 if (!ceph_inc_mds_stopping_blocker(mdsc, session)) 5197 return; 5198 5199 /* decode */ 5200 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 5201 goto bad; 5202 vino.ino = le64_to_cpu(h->ino); 5203 vino.snap = CEPH_NOSNAP; 5204 seq = le32_to_cpu(h->seq); 5205 dname.len = get_unaligned_le32(h + 1); 5206 if (msg->front.iov_len < sizeof(*h) + sizeof(u32) + dname.len) 5207 goto bad; 5208 dname.name = (void *)(h + 1) + sizeof(u32); 5209 5210 /* lookup inode */ 5211 inode = ceph_find_inode(sb, vino); 5212 doutc(cl, "%s, ino %llx %p %.*s\n", ceph_lease_op_name(h->action), 5213 vino.ino, inode, dname.len, dname.name); 5214 5215 mutex_lock(&session->s_mutex); 5216 if (!inode) { 5217 doutc(cl, "no inode %llx\n", vino.ino); 5218 goto release; 5219 } 5220 5221 /* dentry */ 5222 parent = d_find_alias(inode); 5223 if (!parent) { 5224 doutc(cl, "no parent dentry on inode %p\n", inode); 5225 WARN_ON(1); 5226 goto release; /* hrm... */ 5227 } 5228 dname.hash = full_name_hash(parent, dname.name, dname.len); 5229 dentry = d_lookup(parent, &dname); 5230 dput(parent); 5231 if (!dentry) 5232 goto release; 5233 5234 spin_lock(&dentry->d_lock); 5235 di = ceph_dentry(dentry); 5236 switch (h->action) { 5237 case CEPH_MDS_LEASE_REVOKE: 5238 if (di->lease_session == session) { 5239 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 5240 h->seq = cpu_to_le32(di->lease_seq); 5241 __ceph_mdsc_drop_dentry_lease(dentry); 5242 } 5243 release = 1; 5244 break; 5245 5246 case CEPH_MDS_LEASE_RENEW: 5247 if (di->lease_session == session && 5248 di->lease_gen == atomic_read(&session->s_cap_gen) && 5249 di->lease_renew_from && 5250 di->lease_renew_after == 0) { 5251 unsigned long duration = 5252 msecs_to_jiffies(le32_to_cpu(h->duration_ms)); 5253 5254 di->lease_seq = seq; 5255 di->time = di->lease_renew_from + duration; 5256 di->lease_renew_after = di->lease_renew_from + 5257 (duration >> 1); 5258 di->lease_renew_from = 0; 5259 } 5260 break; 5261 } 5262 spin_unlock(&dentry->d_lock); 5263 dput(dentry); 5264 5265 if (!release) 5266 goto out; 5267 5268 release: 5269 /* let's just reuse the same message */ 5270 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 5271 ceph_msg_get(msg); 5272 ceph_con_send(&session->s_con, msg); 5273 5274 out: 5275 mutex_unlock(&session->s_mutex); 5276 iput(inode); 5277 5278 ceph_dec_mds_stopping_blocker(mdsc); 5279 return; 5280 5281 bad: 5282 ceph_dec_mds_stopping_blocker(mdsc); 5283 5284 pr_err_client(cl, "corrupt lease message\n"); 5285 ceph_msg_dump(msg); 5286 } 5287 5288 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 5289 struct dentry *dentry, char action, 5290 u32 seq) 5291 { 5292 struct ceph_client *cl = session->s_mdsc->fsc->client; 5293 struct ceph_msg *msg; 5294 struct ceph_mds_lease *lease; 5295 struct inode *dir; 5296 int len = sizeof(*lease) + sizeof(u32) + NAME_MAX; 5297 5298 doutc(cl, "identry %p %s to mds%d\n", dentry, ceph_lease_op_name(action), 5299 session->s_mds); 5300 5301 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 5302 if (!msg) 5303 return; 5304 lease = msg->front.iov_base; 5305 lease->action = action; 5306 lease->seq = cpu_to_le32(seq); 5307 5308 spin_lock(&dentry->d_lock); 5309 dir = d_inode(dentry->d_parent); 5310 lease->ino = cpu_to_le64(ceph_ino(dir)); 5311 lease->first = lease->last = cpu_to_le64(ceph_snap(dir)); 5312 5313 put_unaligned_le32(dentry->d_name.len, lease + 1); 5314 memcpy((void *)(lease + 1) + 4, 5315 dentry->d_name.name, dentry->d_name.len); 5316 spin_unlock(&dentry->d_lock); 5317 5318 ceph_con_send(&session->s_con, msg); 5319 } 5320 5321 /* 5322 * lock unlock the session, to wait ongoing session activities 5323 */ 5324 static void lock_unlock_session(struct ceph_mds_session *s) 5325 { 5326 mutex_lock(&s->s_mutex); 5327 mutex_unlock(&s->s_mutex); 5328 } 5329 5330 static void maybe_recover_session(struct ceph_mds_client *mdsc) 5331 { 5332 struct ceph_client *cl = mdsc->fsc->client; 5333 struct ceph_fs_client *fsc = mdsc->fsc; 5334 5335 if (!ceph_test_mount_opt(fsc, CLEANRECOVER)) 5336 return; 5337 5338 if (READ_ONCE(fsc->mount_state) != CEPH_MOUNT_MOUNTED) 5339 return; 5340 5341 if (!READ_ONCE(fsc->blocklisted)) 5342 return; 5343 5344 pr_info_client(cl, "auto reconnect after blocklisted\n"); 5345 ceph_force_reconnect(fsc->sb); 5346 } 5347 5348 bool check_session_state(struct ceph_mds_session *s) 5349 { 5350 struct ceph_client *cl = s->s_mdsc->fsc->client; 5351 5352 switch (s->s_state) { 5353 case CEPH_MDS_SESSION_OPEN: 5354 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 5355 s->s_state = CEPH_MDS_SESSION_HUNG; 5356 pr_info_client(cl, "mds%d hung\n", s->s_mds); 5357 } 5358 break; 5359 case CEPH_MDS_SESSION_CLOSING: 5360 case CEPH_MDS_SESSION_NEW: 5361 case CEPH_MDS_SESSION_RESTARTING: 5362 case CEPH_MDS_SESSION_CLOSED: 5363 case CEPH_MDS_SESSION_REJECTED: 5364 return false; 5365 } 5366 5367 return true; 5368 } 5369 5370 /* 5371 * If the sequence is incremented while we're waiting on a REQUEST_CLOSE reply, 5372 * then we need to retransmit that request. 5373 */ 5374 void inc_session_sequence(struct ceph_mds_session *s) 5375 { 5376 struct ceph_client *cl = s->s_mdsc->fsc->client; 5377 5378 lockdep_assert_held(&s->s_mutex); 5379 5380 s->s_seq++; 5381 5382 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 5383 int ret; 5384 5385 doutc(cl, "resending session close request for mds%d\n", s->s_mds); 5386 ret = request_close_session(s); 5387 if (ret < 0) 5388 pr_err_client(cl, "unable to close session to mds%d: %d\n", 5389 s->s_mds, ret); 5390 } 5391 } 5392 5393 /* 5394 * delayed work -- periodically trim expired leases, renew caps with mds. If 5395 * the @delay parameter is set to 0 or if it's more than 5 secs, the default 5396 * workqueue delay value of 5 secs will be used. 5397 */ 5398 static void schedule_delayed(struct ceph_mds_client *mdsc, unsigned long delay) 5399 { 5400 unsigned long max_delay = HZ * 5; 5401 5402 /* 5 secs default delay */ 5403 if (!delay || (delay > max_delay)) 5404 delay = max_delay; 5405 schedule_delayed_work(&mdsc->delayed_work, 5406 round_jiffies_relative(delay)); 5407 } 5408 5409 static void delayed_work(struct work_struct *work) 5410 { 5411 struct ceph_mds_client *mdsc = 5412 container_of(work, struct ceph_mds_client, delayed_work.work); 5413 unsigned long delay; 5414 int renew_interval; 5415 int renew_caps; 5416 int i; 5417 5418 doutc(mdsc->fsc->client, "mdsc delayed_work\n"); 5419 5420 if (mdsc->stopping >= CEPH_MDSC_STOPPING_FLUSHED) 5421 return; 5422 5423 mutex_lock(&mdsc->mutex); 5424 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 5425 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 5426 mdsc->last_renew_caps); 5427 if (renew_caps) 5428 mdsc->last_renew_caps = jiffies; 5429 5430 for (i = 0; i < mdsc->max_sessions; i++) { 5431 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 5432 if (!s) 5433 continue; 5434 5435 if (!check_session_state(s)) { 5436 ceph_put_mds_session(s); 5437 continue; 5438 } 5439 mutex_unlock(&mdsc->mutex); 5440 5441 ceph_flush_session_cap_releases(mdsc, s); 5442 5443 mutex_lock(&s->s_mutex); 5444 if (renew_caps) 5445 send_renew_caps(mdsc, s); 5446 else 5447 ceph_con_keepalive(&s->s_con); 5448 if (s->s_state == CEPH_MDS_SESSION_OPEN || 5449 s->s_state == CEPH_MDS_SESSION_HUNG) 5450 ceph_send_cap_releases(mdsc, s); 5451 mutex_unlock(&s->s_mutex); 5452 ceph_put_mds_session(s); 5453 5454 mutex_lock(&mdsc->mutex); 5455 } 5456 mutex_unlock(&mdsc->mutex); 5457 5458 delay = ceph_check_delayed_caps(mdsc); 5459 5460 ceph_queue_cap_reclaim_work(mdsc); 5461 5462 ceph_trim_snapid_map(mdsc); 5463 5464 maybe_recover_session(mdsc); 5465 5466 schedule_delayed(mdsc, delay); 5467 } 5468 5469 int ceph_mdsc_init(struct ceph_fs_client *fsc) 5470 5471 { 5472 struct ceph_mds_client *mdsc; 5473 int err; 5474 5475 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 5476 if (!mdsc) 5477 return -ENOMEM; 5478 mdsc->fsc = fsc; 5479 mutex_init(&mdsc->mutex); 5480 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 5481 if (!mdsc->mdsmap) { 5482 err = -ENOMEM; 5483 goto err_mdsc; 5484 } 5485 5486 init_completion(&mdsc->safe_umount_waiters); 5487 spin_lock_init(&mdsc->stopping_lock); 5488 atomic_set(&mdsc->stopping_blockers, 0); 5489 init_completion(&mdsc->stopping_waiter); 5490 init_waitqueue_head(&mdsc->session_close_wq); 5491 INIT_LIST_HEAD(&mdsc->waiting_for_map); 5492 mdsc->quotarealms_inodes = RB_ROOT; 5493 mutex_init(&mdsc->quotarealms_inodes_mutex); 5494 init_rwsem(&mdsc->snap_rwsem); 5495 mdsc->snap_realms = RB_ROOT; 5496 INIT_LIST_HEAD(&mdsc->snap_empty); 5497 spin_lock_init(&mdsc->snap_empty_lock); 5498 mdsc->request_tree = RB_ROOT; 5499 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 5500 mdsc->last_renew_caps = jiffies; 5501 INIT_LIST_HEAD(&mdsc->cap_delay_list); 5502 #ifdef CONFIG_DEBUG_FS 5503 INIT_LIST_HEAD(&mdsc->cap_wait_list); 5504 #endif 5505 spin_lock_init(&mdsc->cap_delay_lock); 5506 INIT_LIST_HEAD(&mdsc->cap_unlink_delay_list); 5507 INIT_LIST_HEAD(&mdsc->snap_flush_list); 5508 spin_lock_init(&mdsc->snap_flush_lock); 5509 mdsc->last_cap_flush_tid = 1; 5510 INIT_LIST_HEAD(&mdsc->cap_flush_list); 5511 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 5512 spin_lock_init(&mdsc->cap_dirty_lock); 5513 init_waitqueue_head(&mdsc->cap_flushing_wq); 5514 INIT_WORK(&mdsc->cap_reclaim_work, ceph_cap_reclaim_work); 5515 INIT_WORK(&mdsc->cap_unlink_work, ceph_cap_unlink_work); 5516 err = ceph_metric_init(&mdsc->metric); 5517 if (err) 5518 goto err_mdsmap; 5519 5520 spin_lock_init(&mdsc->dentry_list_lock); 5521 INIT_LIST_HEAD(&mdsc->dentry_leases); 5522 INIT_LIST_HEAD(&mdsc->dentry_dir_leases); 5523 5524 ceph_caps_init(mdsc); 5525 ceph_adjust_caps_max_min(mdsc, fsc->mount_options); 5526 5527 spin_lock_init(&mdsc->snapid_map_lock); 5528 mdsc->snapid_map_tree = RB_ROOT; 5529 INIT_LIST_HEAD(&mdsc->snapid_map_lru); 5530 5531 init_rwsem(&mdsc->pool_perm_rwsem); 5532 mdsc->pool_perm_tree = RB_ROOT; 5533 5534 strscpy(mdsc->nodename, utsname()->nodename, 5535 sizeof(mdsc->nodename)); 5536 5537 fsc->mdsc = mdsc; 5538 return 0; 5539 5540 err_mdsmap: 5541 kfree(mdsc->mdsmap); 5542 err_mdsc: 5543 kfree(mdsc); 5544 return err; 5545 } 5546 5547 /* 5548 * Wait for safe replies on open mds requests. If we time out, drop 5549 * all requests from the tree to avoid dangling dentry refs. 5550 */ 5551 static void wait_requests(struct ceph_mds_client *mdsc) 5552 { 5553 struct ceph_client *cl = mdsc->fsc->client; 5554 struct ceph_options *opts = mdsc->fsc->client->options; 5555 struct ceph_mds_request *req; 5556 5557 mutex_lock(&mdsc->mutex); 5558 if (__get_oldest_req(mdsc)) { 5559 mutex_unlock(&mdsc->mutex); 5560 5561 doutc(cl, "waiting for requests\n"); 5562 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 5563 ceph_timeout_jiffies(opts->mount_timeout)); 5564 5565 /* tear down remaining requests */ 5566 mutex_lock(&mdsc->mutex); 5567 while ((req = __get_oldest_req(mdsc))) { 5568 doutc(cl, "timed out on tid %llu\n", req->r_tid); 5569 list_del_init(&req->r_wait); 5570 __unregister_request(mdsc, req); 5571 } 5572 } 5573 mutex_unlock(&mdsc->mutex); 5574 doutc(cl, "done\n"); 5575 } 5576 5577 void send_flush_mdlog(struct ceph_mds_session *s) 5578 { 5579 struct ceph_client *cl = s->s_mdsc->fsc->client; 5580 struct ceph_msg *msg; 5581 5582 /* 5583 * Pre-luminous MDS crashes when it sees an unknown session request 5584 */ 5585 if (!CEPH_HAVE_FEATURE(s->s_con.peer_features, SERVER_LUMINOUS)) 5586 return; 5587 5588 mutex_lock(&s->s_mutex); 5589 doutc(cl, "request mdlog flush to mds%d (%s)s seq %lld\n", 5590 s->s_mds, ceph_session_state_name(s->s_state), s->s_seq); 5591 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_FLUSH_MDLOG, 5592 s->s_seq); 5593 if (!msg) { 5594 pr_err_client(cl, "failed to request mdlog flush to mds%d (%s) seq %lld\n", 5595 s->s_mds, ceph_session_state_name(s->s_state), s->s_seq); 5596 } else { 5597 ceph_con_send(&s->s_con, msg); 5598 } 5599 mutex_unlock(&s->s_mutex); 5600 } 5601 5602 static int ceph_mds_auth_match(struct ceph_mds_client *mdsc, 5603 struct ceph_mds_cap_auth *auth, 5604 const struct cred *cred, 5605 char *tpath) 5606 { 5607 u32 caller_uid = from_kuid(&init_user_ns, cred->fsuid); 5608 u32 caller_gid = from_kgid(&init_user_ns, cred->fsgid); 5609 struct ceph_client *cl = mdsc->fsc->client; 5610 const char *spath = mdsc->fsc->mount_options->server_path; 5611 bool gid_matched = false; 5612 u32 gid, tlen, len; 5613 int i, j; 5614 5615 doutc(cl, "match.uid %lld\n", auth->match.uid); 5616 if (auth->match.uid != MDS_AUTH_UID_ANY) { 5617 if (auth->match.uid != caller_uid) 5618 return 0; 5619 if (auth->match.num_gids) { 5620 for (i = 0; i < auth->match.num_gids; i++) { 5621 if (caller_gid == auth->match.gids[i]) 5622 gid_matched = true; 5623 } 5624 if (!gid_matched && cred->group_info->ngroups) { 5625 for (i = 0; i < cred->group_info->ngroups; i++) { 5626 gid = from_kgid(&init_user_ns, 5627 cred->group_info->gid[i]); 5628 for (j = 0; j < auth->match.num_gids; j++) { 5629 if (gid == auth->match.gids[j]) { 5630 gid_matched = true; 5631 break; 5632 } 5633 } 5634 if (gid_matched) 5635 break; 5636 } 5637 } 5638 if (!gid_matched) 5639 return 0; 5640 } 5641 } 5642 5643 /* path match */ 5644 if (auth->match.path) { 5645 if (!tpath) 5646 return 0; 5647 5648 tlen = strlen(tpath); 5649 len = strlen(auth->match.path); 5650 if (len) { 5651 char *_tpath = tpath; 5652 bool free_tpath = false; 5653 int m, n; 5654 5655 doutc(cl, "server path %s, tpath %s, match.path %s\n", 5656 spath, tpath, auth->match.path); 5657 if (spath && (m = strlen(spath)) != 1) { 5658 /* mount path + '/' + tpath + an extra space */ 5659 n = m + 1 + tlen + 1; 5660 _tpath = kmalloc(n, GFP_NOFS); 5661 if (!_tpath) 5662 return -ENOMEM; 5663 /* remove the leading '/' */ 5664 snprintf(_tpath, n, "%s/%s", spath + 1, tpath); 5665 free_tpath = true; 5666 tlen = strlen(_tpath); 5667 } 5668 5669 /* 5670 * Please note the tailing '/' for match.path has already 5671 * been removed when parsing. 5672 * 5673 * Remove the tailing '/' for the target path. 5674 */ 5675 while (tlen && _tpath[tlen - 1] == '/') { 5676 _tpath[tlen - 1] = '\0'; 5677 tlen -= 1; 5678 } 5679 doutc(cl, "_tpath %s\n", _tpath); 5680 5681 /* 5682 * In case first == _tpath && tlen == len: 5683 * match.path=/foo --> /foo _path=/foo --> match 5684 * match.path=/foo/ --> /foo _path=/foo --> match 5685 * 5686 * In case first == _tmatch.path && tlen > len: 5687 * match.path=/foo/ --> /foo _path=/foo/ --> match 5688 * match.path=/foo --> /foo _path=/foo/ --> match 5689 * match.path=/foo/ --> /foo _path=/foo/d --> match 5690 * match.path=/foo --> /foo _path=/food --> mismatch 5691 * 5692 * All the other cases --> mismatch 5693 */ 5694 char *first = strstr(_tpath, auth->match.path); 5695 if (first != _tpath) { 5696 if (free_tpath) 5697 kfree(_tpath); 5698 return 0; 5699 } 5700 5701 if (tlen > len && _tpath[len] != '/') { 5702 if (free_tpath) 5703 kfree(_tpath); 5704 return 0; 5705 } 5706 } 5707 } 5708 5709 doutc(cl, "matched\n"); 5710 return 1; 5711 } 5712 5713 int ceph_mds_check_access(struct ceph_mds_client *mdsc, char *tpath, int mask) 5714 { 5715 const struct cred *cred = get_current_cred(); 5716 u32 caller_uid = from_kuid(&init_user_ns, cred->fsuid); 5717 u32 caller_gid = from_kgid(&init_user_ns, cred->fsgid); 5718 struct ceph_mds_cap_auth *rw_perms_s = NULL; 5719 struct ceph_client *cl = mdsc->fsc->client; 5720 bool root_squash_perms = true; 5721 int i, err; 5722 5723 doutc(cl, "tpath '%s', mask %d, caller_uid %d, caller_gid %d\n", 5724 tpath, mask, caller_uid, caller_gid); 5725 5726 for (i = 0; i < mdsc->s_cap_auths_num; i++) { 5727 struct ceph_mds_cap_auth *s = &mdsc->s_cap_auths[i]; 5728 5729 err = ceph_mds_auth_match(mdsc, s, cred, tpath); 5730 if (err < 0) { 5731 put_cred(cred); 5732 return err; 5733 } else if (err > 0) { 5734 /* always follow the last auth caps' permission */ 5735 root_squash_perms = true; 5736 rw_perms_s = NULL; 5737 if ((mask & MAY_WRITE) && s->writeable && 5738 s->match.root_squash && (!caller_uid || !caller_gid)) 5739 root_squash_perms = false; 5740 5741 if (((mask & MAY_WRITE) && !s->writeable) || 5742 ((mask & MAY_READ) && !s->readable)) 5743 rw_perms_s = s; 5744 } 5745 } 5746 5747 put_cred(cred); 5748 5749 doutc(cl, "root_squash_perms %d, rw_perms_s %p\n", root_squash_perms, 5750 rw_perms_s); 5751 if (root_squash_perms && rw_perms_s == NULL) { 5752 doutc(cl, "access allowed\n"); 5753 return 0; 5754 } 5755 5756 if (!root_squash_perms) { 5757 doutc(cl, "root_squash is enabled and user(%d %d) isn't allowed to write", 5758 caller_uid, caller_gid); 5759 } 5760 if (rw_perms_s) { 5761 doutc(cl, "mds auth caps readable/writeable %d/%d while request r/w %d/%d", 5762 rw_perms_s->readable, rw_perms_s->writeable, 5763 !!(mask & MAY_READ), !!(mask & MAY_WRITE)); 5764 } 5765 doutc(cl, "access denied\n"); 5766 return -EACCES; 5767 } 5768 5769 /* 5770 * called before mount is ro, and before dentries are torn down. 5771 * (hmm, does this still race with new lookups?) 5772 */ 5773 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 5774 { 5775 doutc(mdsc->fsc->client, "begin\n"); 5776 mdsc->stopping = CEPH_MDSC_STOPPING_BEGIN; 5777 5778 ceph_mdsc_iterate_sessions(mdsc, send_flush_mdlog, true); 5779 ceph_mdsc_iterate_sessions(mdsc, lock_unlock_session, false); 5780 ceph_flush_dirty_caps(mdsc); 5781 wait_requests(mdsc); 5782 5783 /* 5784 * wait for reply handlers to drop their request refs and 5785 * their inode/dcache refs 5786 */ 5787 ceph_msgr_flush(); 5788 5789 ceph_cleanup_quotarealms_inodes(mdsc); 5790 doutc(mdsc->fsc->client, "done\n"); 5791 } 5792 5793 /* 5794 * flush the mdlog and wait for all write mds requests to flush. 5795 */ 5796 static void flush_mdlog_and_wait_mdsc_unsafe_requests(struct ceph_mds_client *mdsc, 5797 u64 want_tid) 5798 { 5799 struct ceph_client *cl = mdsc->fsc->client; 5800 struct ceph_mds_request *req = NULL, *nextreq; 5801 struct ceph_mds_session *last_session = NULL; 5802 struct rb_node *n; 5803 5804 mutex_lock(&mdsc->mutex); 5805 doutc(cl, "want %lld\n", want_tid); 5806 restart: 5807 req = __get_oldest_req(mdsc); 5808 while (req && req->r_tid <= want_tid) { 5809 /* find next request */ 5810 n = rb_next(&req->r_node); 5811 if (n) 5812 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 5813 else 5814 nextreq = NULL; 5815 if (req->r_op != CEPH_MDS_OP_SETFILELOCK && 5816 (req->r_op & CEPH_MDS_OP_WRITE)) { 5817 struct ceph_mds_session *s = req->r_session; 5818 5819 if (!s) { 5820 req = nextreq; 5821 continue; 5822 } 5823 5824 /* write op */ 5825 ceph_mdsc_get_request(req); 5826 if (nextreq) 5827 ceph_mdsc_get_request(nextreq); 5828 s = ceph_get_mds_session(s); 5829 mutex_unlock(&mdsc->mutex); 5830 5831 /* send flush mdlog request to MDS */ 5832 if (last_session != s) { 5833 send_flush_mdlog(s); 5834 ceph_put_mds_session(last_session); 5835 last_session = s; 5836 } else { 5837 ceph_put_mds_session(s); 5838 } 5839 doutc(cl, "wait on %llu (want %llu)\n", 5840 req->r_tid, want_tid); 5841 wait_for_completion(&req->r_safe_completion); 5842 5843 mutex_lock(&mdsc->mutex); 5844 ceph_mdsc_put_request(req); 5845 if (!nextreq) 5846 break; /* next dne before, so we're done! */ 5847 if (RB_EMPTY_NODE(&nextreq->r_node)) { 5848 /* next request was removed from tree */ 5849 ceph_mdsc_put_request(nextreq); 5850 goto restart; 5851 } 5852 ceph_mdsc_put_request(nextreq); /* won't go away */ 5853 } 5854 req = nextreq; 5855 } 5856 mutex_unlock(&mdsc->mutex); 5857 ceph_put_mds_session(last_session); 5858 doutc(cl, "done\n"); 5859 } 5860 5861 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 5862 { 5863 struct ceph_client *cl = mdsc->fsc->client; 5864 u64 want_tid, want_flush; 5865 5866 if (READ_ONCE(mdsc->fsc->mount_state) >= CEPH_MOUNT_SHUTDOWN) 5867 return; 5868 5869 doutc(cl, "sync\n"); 5870 mutex_lock(&mdsc->mutex); 5871 want_tid = mdsc->last_tid; 5872 mutex_unlock(&mdsc->mutex); 5873 5874 ceph_flush_dirty_caps(mdsc); 5875 ceph_flush_cap_releases(mdsc); 5876 spin_lock(&mdsc->cap_dirty_lock); 5877 want_flush = mdsc->last_cap_flush_tid; 5878 if (!list_empty(&mdsc->cap_flush_list)) { 5879 struct ceph_cap_flush *cf = 5880 list_last_entry(&mdsc->cap_flush_list, 5881 struct ceph_cap_flush, g_list); 5882 cf->wake = true; 5883 } 5884 spin_unlock(&mdsc->cap_dirty_lock); 5885 5886 doutc(cl, "sync want tid %lld flush_seq %lld\n", want_tid, want_flush); 5887 5888 flush_mdlog_and_wait_mdsc_unsafe_requests(mdsc, want_tid); 5889 wait_caps_flush(mdsc, want_flush); 5890 } 5891 5892 /* 5893 * true if all sessions are closed, or we force unmount 5894 */ 5895 static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped) 5896 { 5897 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) 5898 return true; 5899 return atomic_read(&mdsc->num_sessions) <= skipped; 5900 } 5901 5902 /* 5903 * called after sb is ro or when metadata corrupted. 5904 */ 5905 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 5906 { 5907 struct ceph_options *opts = mdsc->fsc->client->options; 5908 struct ceph_client *cl = mdsc->fsc->client; 5909 struct ceph_mds_session *session; 5910 int i; 5911 int skipped = 0; 5912 5913 doutc(cl, "begin\n"); 5914 5915 /* close sessions */ 5916 mutex_lock(&mdsc->mutex); 5917 for (i = 0; i < mdsc->max_sessions; i++) { 5918 session = __ceph_lookup_mds_session(mdsc, i); 5919 if (!session) 5920 continue; 5921 mutex_unlock(&mdsc->mutex); 5922 mutex_lock(&session->s_mutex); 5923 if (__close_session(mdsc, session) <= 0) 5924 skipped++; 5925 mutex_unlock(&session->s_mutex); 5926 ceph_put_mds_session(session); 5927 mutex_lock(&mdsc->mutex); 5928 } 5929 mutex_unlock(&mdsc->mutex); 5930 5931 doutc(cl, "waiting for sessions to close\n"); 5932 wait_event_timeout(mdsc->session_close_wq, 5933 done_closing_sessions(mdsc, skipped), 5934 ceph_timeout_jiffies(opts->mount_timeout)); 5935 5936 /* tear down remaining sessions */ 5937 mutex_lock(&mdsc->mutex); 5938 for (i = 0; i < mdsc->max_sessions; i++) { 5939 if (mdsc->sessions[i]) { 5940 session = ceph_get_mds_session(mdsc->sessions[i]); 5941 __unregister_session(mdsc, session); 5942 mutex_unlock(&mdsc->mutex); 5943 mutex_lock(&session->s_mutex); 5944 remove_session_caps(session); 5945 mutex_unlock(&session->s_mutex); 5946 ceph_put_mds_session(session); 5947 mutex_lock(&mdsc->mutex); 5948 } 5949 } 5950 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 5951 mutex_unlock(&mdsc->mutex); 5952 5953 ceph_cleanup_snapid_map(mdsc); 5954 ceph_cleanup_global_and_empty_realms(mdsc); 5955 5956 cancel_work_sync(&mdsc->cap_reclaim_work); 5957 cancel_work_sync(&mdsc->cap_unlink_work); 5958 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 5959 5960 doutc(cl, "done\n"); 5961 } 5962 5963 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc) 5964 { 5965 struct ceph_mds_session *session; 5966 int mds; 5967 5968 doutc(mdsc->fsc->client, "force umount\n"); 5969 5970 mutex_lock(&mdsc->mutex); 5971 for (mds = 0; mds < mdsc->max_sessions; mds++) { 5972 session = __ceph_lookup_mds_session(mdsc, mds); 5973 if (!session) 5974 continue; 5975 5976 if (session->s_state == CEPH_MDS_SESSION_REJECTED) 5977 __unregister_session(mdsc, session); 5978 __wake_requests(mdsc, &session->s_waiting); 5979 mutex_unlock(&mdsc->mutex); 5980 5981 mutex_lock(&session->s_mutex); 5982 __close_session(mdsc, session); 5983 if (session->s_state == CEPH_MDS_SESSION_CLOSING) { 5984 cleanup_session_requests(mdsc, session); 5985 remove_session_caps(session); 5986 } 5987 mutex_unlock(&session->s_mutex); 5988 ceph_put_mds_session(session); 5989 5990 mutex_lock(&mdsc->mutex); 5991 kick_requests(mdsc, mds); 5992 } 5993 __wake_requests(mdsc, &mdsc->waiting_for_map); 5994 mutex_unlock(&mdsc->mutex); 5995 } 5996 5997 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 5998 { 5999 doutc(mdsc->fsc->client, "stop\n"); 6000 /* 6001 * Make sure the delayed work stopped before releasing 6002 * the resources. 6003 * 6004 * Because the cancel_delayed_work_sync() will only 6005 * guarantee that the work finishes executing. But the 6006 * delayed work will re-arm itself again after that. 6007 */ 6008 flush_delayed_work(&mdsc->delayed_work); 6009 6010 if (mdsc->mdsmap) 6011 ceph_mdsmap_destroy(mdsc->mdsmap); 6012 kfree(mdsc->sessions); 6013 ceph_caps_finalize(mdsc); 6014 6015 if (mdsc->s_cap_auths) { 6016 int i; 6017 6018 for (i = 0; i < mdsc->s_cap_auths_num; i++) { 6019 kfree(mdsc->s_cap_auths[i].match.gids); 6020 kfree(mdsc->s_cap_auths[i].match.path); 6021 kfree(mdsc->s_cap_auths[i].match.fs_name); 6022 } 6023 kfree(mdsc->s_cap_auths); 6024 } 6025 6026 ceph_pool_perm_destroy(mdsc); 6027 } 6028 6029 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 6030 { 6031 struct ceph_mds_client *mdsc = fsc->mdsc; 6032 doutc(fsc->client, "%p\n", mdsc); 6033 6034 if (!mdsc) 6035 return; 6036 6037 /* flush out any connection work with references to us */ 6038 ceph_msgr_flush(); 6039 6040 ceph_mdsc_stop(mdsc); 6041 6042 ceph_metric_destroy(&mdsc->metric); 6043 6044 fsc->mdsc = NULL; 6045 kfree(mdsc); 6046 doutc(fsc->client, "%p done\n", mdsc); 6047 } 6048 6049 void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 6050 { 6051 struct ceph_fs_client *fsc = mdsc->fsc; 6052 struct ceph_client *cl = fsc->client; 6053 const char *mds_namespace = fsc->mount_options->mds_namespace; 6054 void *p = msg->front.iov_base; 6055 void *end = p + msg->front.iov_len; 6056 u32 epoch; 6057 u32 num_fs; 6058 u32 mount_fscid = (u32)-1; 6059 int err = -EINVAL; 6060 6061 ceph_decode_need(&p, end, sizeof(u32), bad); 6062 epoch = ceph_decode_32(&p); 6063 6064 doutc(cl, "epoch %u\n", epoch); 6065 6066 /* struct_v, struct_cv, map_len, epoch, legacy_client_fscid */ 6067 ceph_decode_skip_n(&p, end, 2 + sizeof(u32) * 3, bad); 6068 6069 ceph_decode_32_safe(&p, end, num_fs, bad); 6070 while (num_fs-- > 0) { 6071 void *info_p, *info_end; 6072 u32 info_len; 6073 u32 fscid, namelen; 6074 6075 ceph_decode_need(&p, end, 2 + sizeof(u32), bad); 6076 p += 2; // info_v, info_cv 6077 info_len = ceph_decode_32(&p); 6078 ceph_decode_need(&p, end, info_len, bad); 6079 info_p = p; 6080 info_end = p + info_len; 6081 p = info_end; 6082 6083 ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad); 6084 fscid = ceph_decode_32(&info_p); 6085 namelen = ceph_decode_32(&info_p); 6086 ceph_decode_need(&info_p, info_end, namelen, bad); 6087 6088 if (mds_namespace && 6089 strlen(mds_namespace) == namelen && 6090 !strncmp(mds_namespace, (char *)info_p, namelen)) { 6091 mount_fscid = fscid; 6092 break; 6093 } 6094 } 6095 6096 ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch); 6097 if (mount_fscid != (u32)-1) { 6098 fsc->client->monc.fs_cluster_id = mount_fscid; 6099 ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP, 6100 0, true); 6101 ceph_monc_renew_subs(&fsc->client->monc); 6102 } else { 6103 err = -ENOENT; 6104 goto err_out; 6105 } 6106 return; 6107 6108 bad: 6109 pr_err_client(cl, "error decoding fsmap %d. Shutting down mount.\n", 6110 err); 6111 ceph_umount_begin(mdsc->fsc->sb); 6112 ceph_msg_dump(msg); 6113 err_out: 6114 mutex_lock(&mdsc->mutex); 6115 mdsc->mdsmap_err = err; 6116 __wake_requests(mdsc, &mdsc->waiting_for_map); 6117 mutex_unlock(&mdsc->mutex); 6118 } 6119 6120 /* 6121 * handle mds map update. 6122 */ 6123 void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 6124 { 6125 struct ceph_client *cl = mdsc->fsc->client; 6126 u32 epoch; 6127 u32 maplen; 6128 void *p = msg->front.iov_base; 6129 void *end = p + msg->front.iov_len; 6130 struct ceph_mdsmap *newmap, *oldmap; 6131 struct ceph_fsid fsid; 6132 int err = -EINVAL; 6133 6134 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 6135 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 6136 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 6137 return; 6138 epoch = ceph_decode_32(&p); 6139 maplen = ceph_decode_32(&p); 6140 doutc(cl, "epoch %u len %d\n", epoch, (int)maplen); 6141 6142 /* do we need it? */ 6143 mutex_lock(&mdsc->mutex); 6144 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 6145 doutc(cl, "epoch %u <= our %u\n", epoch, mdsc->mdsmap->m_epoch); 6146 mutex_unlock(&mdsc->mutex); 6147 return; 6148 } 6149 6150 newmap = ceph_mdsmap_decode(mdsc, &p, end, ceph_msgr2(mdsc->fsc->client)); 6151 if (IS_ERR(newmap)) { 6152 err = PTR_ERR(newmap); 6153 goto bad_unlock; 6154 } 6155 6156 /* swap into place */ 6157 if (mdsc->mdsmap) { 6158 oldmap = mdsc->mdsmap; 6159 mdsc->mdsmap = newmap; 6160 check_new_map(mdsc, newmap, oldmap); 6161 ceph_mdsmap_destroy(oldmap); 6162 } else { 6163 mdsc->mdsmap = newmap; /* first mds map */ 6164 } 6165 mdsc->fsc->max_file_size = min((loff_t)mdsc->mdsmap->m_max_file_size, 6166 MAX_LFS_FILESIZE); 6167 6168 __wake_requests(mdsc, &mdsc->waiting_for_map); 6169 ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP, 6170 mdsc->mdsmap->m_epoch); 6171 6172 mutex_unlock(&mdsc->mutex); 6173 schedule_delayed(mdsc, 0); 6174 return; 6175 6176 bad_unlock: 6177 mutex_unlock(&mdsc->mutex); 6178 bad: 6179 pr_err_client(cl, "error decoding mdsmap %d. Shutting down mount.\n", 6180 err); 6181 ceph_umount_begin(mdsc->fsc->sb); 6182 ceph_msg_dump(msg); 6183 return; 6184 } 6185 6186 static struct ceph_connection *mds_get_con(struct ceph_connection *con) 6187 { 6188 struct ceph_mds_session *s = con->private; 6189 6190 if (ceph_get_mds_session(s)) 6191 return con; 6192 return NULL; 6193 } 6194 6195 static void mds_put_con(struct ceph_connection *con) 6196 { 6197 struct ceph_mds_session *s = con->private; 6198 6199 ceph_put_mds_session(s); 6200 } 6201 6202 /* 6203 * if the client is unresponsive for long enough, the mds will kill 6204 * the session entirely. 6205 */ 6206 static void mds_peer_reset(struct ceph_connection *con) 6207 { 6208 struct ceph_mds_session *s = con->private; 6209 struct ceph_mds_client *mdsc = s->s_mdsc; 6210 6211 pr_warn_client(mdsc->fsc->client, "mds%d closed our session\n", 6212 s->s_mds); 6213 if (READ_ONCE(mdsc->fsc->mount_state) != CEPH_MOUNT_FENCE_IO && 6214 ceph_mdsmap_get_state(mdsc->mdsmap, s->s_mds) >= CEPH_MDS_STATE_RECONNECT) 6215 send_mds_reconnect(mdsc, s); 6216 } 6217 6218 static void mds_dispatch(struct ceph_connection *con, struct ceph_msg *msg) 6219 { 6220 struct ceph_mds_session *s = con->private; 6221 struct ceph_mds_client *mdsc = s->s_mdsc; 6222 struct ceph_client *cl = mdsc->fsc->client; 6223 int type = le16_to_cpu(msg->hdr.type); 6224 6225 mutex_lock(&mdsc->mutex); 6226 if (__verify_registered_session(mdsc, s) < 0) { 6227 mutex_unlock(&mdsc->mutex); 6228 goto out; 6229 } 6230 mutex_unlock(&mdsc->mutex); 6231 6232 switch (type) { 6233 case CEPH_MSG_MDS_MAP: 6234 ceph_mdsc_handle_mdsmap(mdsc, msg); 6235 break; 6236 case CEPH_MSG_FS_MAP_USER: 6237 ceph_mdsc_handle_fsmap(mdsc, msg); 6238 break; 6239 case CEPH_MSG_CLIENT_SESSION: 6240 handle_session(s, msg); 6241 break; 6242 case CEPH_MSG_CLIENT_REPLY: 6243 handle_reply(s, msg); 6244 break; 6245 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 6246 handle_forward(mdsc, s, msg); 6247 break; 6248 case CEPH_MSG_CLIENT_CAPS: 6249 ceph_handle_caps(s, msg); 6250 break; 6251 case CEPH_MSG_CLIENT_SNAP: 6252 ceph_handle_snap(mdsc, s, msg); 6253 break; 6254 case CEPH_MSG_CLIENT_LEASE: 6255 handle_lease(mdsc, s, msg); 6256 break; 6257 case CEPH_MSG_CLIENT_QUOTA: 6258 ceph_handle_quota(mdsc, s, msg); 6259 break; 6260 6261 default: 6262 pr_err_client(cl, "received unknown message type %d %s\n", 6263 type, ceph_msg_type_name(type)); 6264 } 6265 out: 6266 ceph_msg_put(msg); 6267 } 6268 6269 /* 6270 * authentication 6271 */ 6272 6273 /* 6274 * Note: returned pointer is the address of a structure that's 6275 * managed separately. Caller must *not* attempt to free it. 6276 */ 6277 static struct ceph_auth_handshake * 6278 mds_get_authorizer(struct ceph_connection *con, int *proto, int force_new) 6279 { 6280 struct ceph_mds_session *s = con->private; 6281 struct ceph_mds_client *mdsc = s->s_mdsc; 6282 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 6283 struct ceph_auth_handshake *auth = &s->s_auth; 6284 int ret; 6285 6286 ret = __ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS, 6287 force_new, proto, NULL, NULL); 6288 if (ret) 6289 return ERR_PTR(ret); 6290 6291 return auth; 6292 } 6293 6294 static int mds_add_authorizer_challenge(struct ceph_connection *con, 6295 void *challenge_buf, int challenge_buf_len) 6296 { 6297 struct ceph_mds_session *s = con->private; 6298 struct ceph_mds_client *mdsc = s->s_mdsc; 6299 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 6300 6301 return ceph_auth_add_authorizer_challenge(ac, s->s_auth.authorizer, 6302 challenge_buf, challenge_buf_len); 6303 } 6304 6305 static int mds_verify_authorizer_reply(struct ceph_connection *con) 6306 { 6307 struct ceph_mds_session *s = con->private; 6308 struct ceph_mds_client *mdsc = s->s_mdsc; 6309 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 6310 struct ceph_auth_handshake *auth = &s->s_auth; 6311 6312 return ceph_auth_verify_authorizer_reply(ac, auth->authorizer, 6313 auth->authorizer_reply_buf, auth->authorizer_reply_buf_len, 6314 NULL, NULL, NULL, NULL); 6315 } 6316 6317 static int mds_invalidate_authorizer(struct ceph_connection *con) 6318 { 6319 struct ceph_mds_session *s = con->private; 6320 struct ceph_mds_client *mdsc = s->s_mdsc; 6321 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 6322 6323 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 6324 6325 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 6326 } 6327 6328 static int mds_get_auth_request(struct ceph_connection *con, 6329 void *buf, int *buf_len, 6330 void **authorizer, int *authorizer_len) 6331 { 6332 struct ceph_mds_session *s = con->private; 6333 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 6334 struct ceph_auth_handshake *auth = &s->s_auth; 6335 int ret; 6336 6337 ret = ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS, 6338 buf, buf_len); 6339 if (ret) 6340 return ret; 6341 6342 *authorizer = auth->authorizer_buf; 6343 *authorizer_len = auth->authorizer_buf_len; 6344 return 0; 6345 } 6346 6347 static int mds_handle_auth_reply_more(struct ceph_connection *con, 6348 void *reply, int reply_len, 6349 void *buf, int *buf_len, 6350 void **authorizer, int *authorizer_len) 6351 { 6352 struct ceph_mds_session *s = con->private; 6353 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 6354 struct ceph_auth_handshake *auth = &s->s_auth; 6355 int ret; 6356 6357 ret = ceph_auth_handle_svc_reply_more(ac, auth, reply, reply_len, 6358 buf, buf_len); 6359 if (ret) 6360 return ret; 6361 6362 *authorizer = auth->authorizer_buf; 6363 *authorizer_len = auth->authorizer_buf_len; 6364 return 0; 6365 } 6366 6367 static int mds_handle_auth_done(struct ceph_connection *con, 6368 u64 global_id, void *reply, int reply_len, 6369 u8 *session_key, int *session_key_len, 6370 u8 *con_secret, int *con_secret_len) 6371 { 6372 struct ceph_mds_session *s = con->private; 6373 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 6374 struct ceph_auth_handshake *auth = &s->s_auth; 6375 6376 return ceph_auth_handle_svc_reply_done(ac, auth, reply, reply_len, 6377 session_key, session_key_len, 6378 con_secret, con_secret_len); 6379 } 6380 6381 static int mds_handle_auth_bad_method(struct ceph_connection *con, 6382 int used_proto, int result, 6383 const int *allowed_protos, int proto_cnt, 6384 const int *allowed_modes, int mode_cnt) 6385 { 6386 struct ceph_mds_session *s = con->private; 6387 struct ceph_mon_client *monc = &s->s_mdsc->fsc->client->monc; 6388 int ret; 6389 6390 if (ceph_auth_handle_bad_authorizer(monc->auth, CEPH_ENTITY_TYPE_MDS, 6391 used_proto, result, 6392 allowed_protos, proto_cnt, 6393 allowed_modes, mode_cnt)) { 6394 ret = ceph_monc_validate_auth(monc); 6395 if (ret) 6396 return ret; 6397 } 6398 6399 return -EACCES; 6400 } 6401 6402 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, 6403 struct ceph_msg_header *hdr, int *skip) 6404 { 6405 struct ceph_msg *msg; 6406 int type = (int) le16_to_cpu(hdr->type); 6407 int front_len = (int) le32_to_cpu(hdr->front_len); 6408 6409 if (con->in_msg) 6410 return con->in_msg; 6411 6412 *skip = 0; 6413 msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 6414 if (!msg) { 6415 pr_err("unable to allocate msg type %d len %d\n", 6416 type, front_len); 6417 return NULL; 6418 } 6419 6420 return msg; 6421 } 6422 6423 static int mds_sign_message(struct ceph_msg *msg) 6424 { 6425 struct ceph_mds_session *s = msg->con->private; 6426 struct ceph_auth_handshake *auth = &s->s_auth; 6427 6428 return ceph_auth_sign_message(auth, msg); 6429 } 6430 6431 static int mds_check_message_signature(struct ceph_msg *msg) 6432 { 6433 struct ceph_mds_session *s = msg->con->private; 6434 struct ceph_auth_handshake *auth = &s->s_auth; 6435 6436 return ceph_auth_check_message_signature(auth, msg); 6437 } 6438 6439 static const struct ceph_connection_operations mds_con_ops = { 6440 .get = mds_get_con, 6441 .put = mds_put_con, 6442 .alloc_msg = mds_alloc_msg, 6443 .dispatch = mds_dispatch, 6444 .peer_reset = mds_peer_reset, 6445 .get_authorizer = mds_get_authorizer, 6446 .add_authorizer_challenge = mds_add_authorizer_challenge, 6447 .verify_authorizer_reply = mds_verify_authorizer_reply, 6448 .invalidate_authorizer = mds_invalidate_authorizer, 6449 .sign_message = mds_sign_message, 6450 .check_message_signature = mds_check_message_signature, 6451 .get_auth_request = mds_get_auth_request, 6452 .handle_auth_reply_more = mds_handle_auth_reply_more, 6453 .handle_auth_done = mds_handle_auth_done, 6454 .handle_auth_bad_method = mds_handle_auth_bad_method, 6455 }; 6456 6457 /* eof */ 6458