1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/fs.h> 5 #include <linux/wait.h> 6 #include <linux/slab.h> 7 #include <linux/gfp.h> 8 #include <linux/sched.h> 9 #include <linux/debugfs.h> 10 #include <linux/seq_file.h> 11 #include <linux/ratelimit.h> 12 #include <linux/bits.h> 13 #include <linux/ktime.h> 14 #include <linux/bitmap.h> 15 #include <linux/mnt_idmapping.h> 16 17 #include "super.h" 18 #include "mds_client.h" 19 #include "crypto.h" 20 21 #include <linux/ceph/ceph_features.h> 22 #include <linux/ceph/messenger.h> 23 #include <linux/ceph/decode.h> 24 #include <linux/ceph/pagelist.h> 25 #include <linux/ceph/auth.h> 26 #include <linux/ceph/debugfs.h> 27 28 #define RECONNECT_MAX_SIZE (INT_MAX - PAGE_SIZE) 29 30 /* 31 * A cluster of MDS (metadata server) daemons is responsible for 32 * managing the file system namespace (the directory hierarchy and 33 * inodes) and for coordinating shared access to storage. Metadata is 34 * partitioning hierarchically across a number of servers, and that 35 * partition varies over time as the cluster adjusts the distribution 36 * in order to balance load. 37 * 38 * The MDS client is primarily responsible to managing synchronous 39 * metadata requests for operations like open, unlink, and so forth. 40 * If there is a MDS failure, we find out about it when we (possibly 41 * request and) receive a new MDS map, and can resubmit affected 42 * requests. 43 * 44 * For the most part, though, we take advantage of a lossless 45 * communications channel to the MDS, and do not need to worry about 46 * timing out or resubmitting requests. 47 * 48 * We maintain a stateful "session" with each MDS we interact with. 49 * Within each session, we sent periodic heartbeat messages to ensure 50 * any capabilities or leases we have been issues remain valid. If 51 * the session times out and goes stale, our leases and capabilities 52 * are no longer valid. 53 */ 54 55 struct ceph_reconnect_state { 56 struct ceph_mds_session *session; 57 int nr_caps, nr_realms; 58 struct ceph_pagelist *pagelist; 59 unsigned msg_version; 60 bool allow_multi; 61 }; 62 63 static void __wake_requests(struct ceph_mds_client *mdsc, 64 struct list_head *head); 65 static void ceph_cap_release_work(struct work_struct *work); 66 static void ceph_cap_reclaim_work(struct work_struct *work); 67 68 static const struct ceph_connection_operations mds_con_ops; 69 70 71 /* 72 * mds reply parsing 73 */ 74 75 static int parse_reply_info_quota(void **p, void *end, 76 struct ceph_mds_reply_info_in *info) 77 { 78 u8 struct_v, struct_compat; 79 u32 struct_len; 80 81 ceph_decode_8_safe(p, end, struct_v, bad); 82 ceph_decode_8_safe(p, end, struct_compat, bad); 83 /* struct_v is expected to be >= 1. we only 84 * understand encoding with struct_compat == 1. */ 85 if (!struct_v || struct_compat != 1) 86 goto bad; 87 ceph_decode_32_safe(p, end, struct_len, bad); 88 ceph_decode_need(p, end, struct_len, bad); 89 end = *p + struct_len; 90 ceph_decode_64_safe(p, end, info->max_bytes, bad); 91 ceph_decode_64_safe(p, end, info->max_files, bad); 92 *p = end; 93 return 0; 94 bad: 95 return -EIO; 96 } 97 98 /* 99 * parse individual inode info 100 */ 101 static int parse_reply_info_in(void **p, void *end, 102 struct ceph_mds_reply_info_in *info, 103 u64 features) 104 { 105 int err = 0; 106 u8 struct_v = 0; 107 108 if (features == (u64)-1) { 109 u32 struct_len; 110 u8 struct_compat; 111 ceph_decode_8_safe(p, end, struct_v, bad); 112 ceph_decode_8_safe(p, end, struct_compat, bad); 113 /* struct_v is expected to be >= 1. we only understand 114 * encoding with struct_compat == 1. */ 115 if (!struct_v || struct_compat != 1) 116 goto bad; 117 ceph_decode_32_safe(p, end, struct_len, bad); 118 ceph_decode_need(p, end, struct_len, bad); 119 end = *p + struct_len; 120 } 121 122 ceph_decode_need(p, end, sizeof(struct ceph_mds_reply_inode), bad); 123 info->in = *p; 124 *p += sizeof(struct ceph_mds_reply_inode) + 125 sizeof(*info->in->fragtree.splits) * 126 le32_to_cpu(info->in->fragtree.nsplits); 127 128 ceph_decode_32_safe(p, end, info->symlink_len, bad); 129 ceph_decode_need(p, end, info->symlink_len, bad); 130 info->symlink = *p; 131 *p += info->symlink_len; 132 133 ceph_decode_copy_safe(p, end, &info->dir_layout, 134 sizeof(info->dir_layout), bad); 135 ceph_decode_32_safe(p, end, info->xattr_len, bad); 136 ceph_decode_need(p, end, info->xattr_len, bad); 137 info->xattr_data = *p; 138 *p += info->xattr_len; 139 140 if (features == (u64)-1) { 141 /* inline data */ 142 ceph_decode_64_safe(p, end, info->inline_version, bad); 143 ceph_decode_32_safe(p, end, info->inline_len, bad); 144 ceph_decode_need(p, end, info->inline_len, bad); 145 info->inline_data = *p; 146 *p += info->inline_len; 147 /* quota */ 148 err = parse_reply_info_quota(p, end, info); 149 if (err < 0) 150 goto out_bad; 151 /* pool namespace */ 152 ceph_decode_32_safe(p, end, info->pool_ns_len, bad); 153 if (info->pool_ns_len > 0) { 154 ceph_decode_need(p, end, info->pool_ns_len, bad); 155 info->pool_ns_data = *p; 156 *p += info->pool_ns_len; 157 } 158 159 /* btime */ 160 ceph_decode_need(p, end, sizeof(info->btime), bad); 161 ceph_decode_copy(p, &info->btime, sizeof(info->btime)); 162 163 /* change attribute */ 164 ceph_decode_64_safe(p, end, info->change_attr, bad); 165 166 /* dir pin */ 167 if (struct_v >= 2) { 168 ceph_decode_32_safe(p, end, info->dir_pin, bad); 169 } else { 170 info->dir_pin = -ENODATA; 171 } 172 173 /* snapshot birth time, remains zero for v<=2 */ 174 if (struct_v >= 3) { 175 ceph_decode_need(p, end, sizeof(info->snap_btime), bad); 176 ceph_decode_copy(p, &info->snap_btime, 177 sizeof(info->snap_btime)); 178 } else { 179 memset(&info->snap_btime, 0, sizeof(info->snap_btime)); 180 } 181 182 /* snapshot count, remains zero for v<=3 */ 183 if (struct_v >= 4) { 184 ceph_decode_64_safe(p, end, info->rsnaps, bad); 185 } else { 186 info->rsnaps = 0; 187 } 188 189 if (struct_v >= 5) { 190 u32 alen; 191 192 ceph_decode_32_safe(p, end, alen, bad); 193 194 while (alen--) { 195 u32 len; 196 197 /* key */ 198 ceph_decode_32_safe(p, end, len, bad); 199 ceph_decode_skip_n(p, end, len, bad); 200 /* value */ 201 ceph_decode_32_safe(p, end, len, bad); 202 ceph_decode_skip_n(p, end, len, bad); 203 } 204 } 205 206 /* fscrypt flag -- ignore */ 207 if (struct_v >= 6) 208 ceph_decode_skip_8(p, end, bad); 209 210 info->fscrypt_auth = NULL; 211 info->fscrypt_auth_len = 0; 212 info->fscrypt_file = NULL; 213 info->fscrypt_file_len = 0; 214 if (struct_v >= 7) { 215 ceph_decode_32_safe(p, end, info->fscrypt_auth_len, bad); 216 if (info->fscrypt_auth_len) { 217 info->fscrypt_auth = kmalloc(info->fscrypt_auth_len, 218 GFP_KERNEL); 219 if (!info->fscrypt_auth) 220 return -ENOMEM; 221 ceph_decode_copy_safe(p, end, info->fscrypt_auth, 222 info->fscrypt_auth_len, bad); 223 } 224 ceph_decode_32_safe(p, end, info->fscrypt_file_len, bad); 225 if (info->fscrypt_file_len) { 226 info->fscrypt_file = kmalloc(info->fscrypt_file_len, 227 GFP_KERNEL); 228 if (!info->fscrypt_file) 229 return -ENOMEM; 230 ceph_decode_copy_safe(p, end, info->fscrypt_file, 231 info->fscrypt_file_len, bad); 232 } 233 } 234 *p = end; 235 } else { 236 /* legacy (unversioned) struct */ 237 if (features & CEPH_FEATURE_MDS_INLINE_DATA) { 238 ceph_decode_64_safe(p, end, info->inline_version, bad); 239 ceph_decode_32_safe(p, end, info->inline_len, bad); 240 ceph_decode_need(p, end, info->inline_len, bad); 241 info->inline_data = *p; 242 *p += info->inline_len; 243 } else 244 info->inline_version = CEPH_INLINE_NONE; 245 246 if (features & CEPH_FEATURE_MDS_QUOTA) { 247 err = parse_reply_info_quota(p, end, info); 248 if (err < 0) 249 goto out_bad; 250 } else { 251 info->max_bytes = 0; 252 info->max_files = 0; 253 } 254 255 info->pool_ns_len = 0; 256 info->pool_ns_data = NULL; 257 if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) { 258 ceph_decode_32_safe(p, end, info->pool_ns_len, bad); 259 if (info->pool_ns_len > 0) { 260 ceph_decode_need(p, end, info->pool_ns_len, bad); 261 info->pool_ns_data = *p; 262 *p += info->pool_ns_len; 263 } 264 } 265 266 if (features & CEPH_FEATURE_FS_BTIME) { 267 ceph_decode_need(p, end, sizeof(info->btime), bad); 268 ceph_decode_copy(p, &info->btime, sizeof(info->btime)); 269 ceph_decode_64_safe(p, end, info->change_attr, bad); 270 } 271 272 info->dir_pin = -ENODATA; 273 /* info->snap_btime and info->rsnaps remain zero */ 274 } 275 return 0; 276 bad: 277 err = -EIO; 278 out_bad: 279 return err; 280 } 281 282 static int parse_reply_info_dir(void **p, void *end, 283 struct ceph_mds_reply_dirfrag **dirfrag, 284 u64 features) 285 { 286 if (features == (u64)-1) { 287 u8 struct_v, struct_compat; 288 u32 struct_len; 289 ceph_decode_8_safe(p, end, struct_v, bad); 290 ceph_decode_8_safe(p, end, struct_compat, bad); 291 /* struct_v is expected to be >= 1. we only understand 292 * encoding whose struct_compat == 1. */ 293 if (!struct_v || struct_compat != 1) 294 goto bad; 295 ceph_decode_32_safe(p, end, struct_len, bad); 296 ceph_decode_need(p, end, struct_len, bad); 297 end = *p + struct_len; 298 } 299 300 ceph_decode_need(p, end, sizeof(**dirfrag), bad); 301 *dirfrag = *p; 302 *p += sizeof(**dirfrag) + sizeof(u32) * le32_to_cpu((*dirfrag)->ndist); 303 if (unlikely(*p > end)) 304 goto bad; 305 if (features == (u64)-1) 306 *p = end; 307 return 0; 308 bad: 309 return -EIO; 310 } 311 312 static int parse_reply_info_lease(void **p, void *end, 313 struct ceph_mds_reply_lease **lease, 314 u64 features, u32 *altname_len, u8 **altname) 315 { 316 u8 struct_v; 317 u32 struct_len; 318 void *lend; 319 320 if (features == (u64)-1) { 321 u8 struct_compat; 322 323 ceph_decode_8_safe(p, end, struct_v, bad); 324 ceph_decode_8_safe(p, end, struct_compat, bad); 325 326 /* struct_v is expected to be >= 1. we only understand 327 * encoding whose struct_compat == 1. */ 328 if (!struct_v || struct_compat != 1) 329 goto bad; 330 331 ceph_decode_32_safe(p, end, struct_len, bad); 332 } else { 333 struct_len = sizeof(**lease); 334 *altname_len = 0; 335 *altname = NULL; 336 } 337 338 lend = *p + struct_len; 339 ceph_decode_need(p, end, struct_len, bad); 340 *lease = *p; 341 *p += sizeof(**lease); 342 343 if (features == (u64)-1) { 344 if (struct_v >= 2) { 345 ceph_decode_32_safe(p, end, *altname_len, bad); 346 ceph_decode_need(p, end, *altname_len, bad); 347 *altname = *p; 348 *p += *altname_len; 349 } else { 350 *altname = NULL; 351 *altname_len = 0; 352 } 353 } 354 *p = lend; 355 return 0; 356 bad: 357 return -EIO; 358 } 359 360 /* 361 * parse a normal reply, which may contain a (dir+)dentry and/or a 362 * target inode. 363 */ 364 static int parse_reply_info_trace(void **p, void *end, 365 struct ceph_mds_reply_info_parsed *info, 366 u64 features) 367 { 368 int err; 369 370 if (info->head->is_dentry) { 371 err = parse_reply_info_in(p, end, &info->diri, features); 372 if (err < 0) 373 goto out_bad; 374 375 err = parse_reply_info_dir(p, end, &info->dirfrag, features); 376 if (err < 0) 377 goto out_bad; 378 379 ceph_decode_32_safe(p, end, info->dname_len, bad); 380 ceph_decode_need(p, end, info->dname_len, bad); 381 info->dname = *p; 382 *p += info->dname_len; 383 384 err = parse_reply_info_lease(p, end, &info->dlease, features, 385 &info->altname_len, &info->altname); 386 if (err < 0) 387 goto out_bad; 388 } 389 390 if (info->head->is_target) { 391 err = parse_reply_info_in(p, end, &info->targeti, features); 392 if (err < 0) 393 goto out_bad; 394 } 395 396 if (unlikely(*p != end)) 397 goto bad; 398 return 0; 399 400 bad: 401 err = -EIO; 402 out_bad: 403 pr_err("problem parsing mds trace %d\n", err); 404 return err; 405 } 406 407 /* 408 * parse readdir results 409 */ 410 static int parse_reply_info_readdir(void **p, void *end, 411 struct ceph_mds_request *req, 412 u64 features) 413 { 414 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info; 415 struct ceph_client *cl = req->r_mdsc->fsc->client; 416 u32 num, i = 0; 417 int err; 418 419 err = parse_reply_info_dir(p, end, &info->dir_dir, features); 420 if (err < 0) 421 goto out_bad; 422 423 ceph_decode_need(p, end, sizeof(num) + 2, bad); 424 num = ceph_decode_32(p); 425 { 426 u16 flags = ceph_decode_16(p); 427 info->dir_end = !!(flags & CEPH_READDIR_FRAG_END); 428 info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE); 429 info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER); 430 info->offset_hash = !!(flags & CEPH_READDIR_OFFSET_HASH); 431 } 432 if (num == 0) 433 goto done; 434 435 BUG_ON(!info->dir_entries); 436 if ((unsigned long)(info->dir_entries + num) > 437 (unsigned long)info->dir_entries + info->dir_buf_size) { 438 pr_err_client(cl, "dir contents are larger than expected\n"); 439 WARN_ON(1); 440 goto bad; 441 } 442 443 info->dir_nr = num; 444 while (num) { 445 struct inode *inode = d_inode(req->r_dentry); 446 struct ceph_inode_info *ci = ceph_inode(inode); 447 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i; 448 struct fscrypt_str tname = FSTR_INIT(NULL, 0); 449 struct fscrypt_str oname = FSTR_INIT(NULL, 0); 450 struct ceph_fname fname; 451 u32 altname_len, _name_len; 452 u8 *altname, *_name; 453 454 /* dentry */ 455 ceph_decode_32_safe(p, end, _name_len, bad); 456 ceph_decode_need(p, end, _name_len, bad); 457 _name = *p; 458 *p += _name_len; 459 doutc(cl, "parsed dir dname '%.*s'\n", _name_len, _name); 460 461 if (info->hash_order) 462 rde->raw_hash = ceph_str_hash(ci->i_dir_layout.dl_dir_hash, 463 _name, _name_len); 464 465 /* dentry lease */ 466 err = parse_reply_info_lease(p, end, &rde->lease, features, 467 &altname_len, &altname); 468 if (err) 469 goto out_bad; 470 471 /* 472 * Try to dencrypt the dentry names and update them 473 * in the ceph_mds_reply_dir_entry struct. 474 */ 475 fname.dir = inode; 476 fname.name = _name; 477 fname.name_len = _name_len; 478 fname.ctext = altname; 479 fname.ctext_len = altname_len; 480 /* 481 * The _name_len maybe larger than altname_len, such as 482 * when the human readable name length is in range of 483 * (CEPH_NOHASH_NAME_MAX, CEPH_NOHASH_NAME_MAX + SHA256_DIGEST_SIZE), 484 * then the copy in ceph_fname_to_usr will corrupt the 485 * data if there has no encryption key. 486 * 487 * Just set the no_copy flag and then if there has no 488 * encryption key the oname.name will be assigned to 489 * _name always. 490 */ 491 fname.no_copy = true; 492 if (altname_len == 0) { 493 /* 494 * Set tname to _name, and this will be used 495 * to do the base64_decode in-place. It's 496 * safe because the decoded string should 497 * always be shorter, which is 3/4 of origin 498 * string. 499 */ 500 tname.name = _name; 501 502 /* 503 * Set oname to _name too, and this will be 504 * used to do the dencryption in-place. 505 */ 506 oname.name = _name; 507 oname.len = _name_len; 508 } else { 509 /* 510 * This will do the decryption only in-place 511 * from altname cryptext directly. 512 */ 513 oname.name = altname; 514 oname.len = altname_len; 515 } 516 rde->is_nokey = false; 517 err = ceph_fname_to_usr(&fname, &tname, &oname, &rde->is_nokey); 518 if (err) { 519 pr_err_client(cl, "unable to decode %.*s, got %d\n", 520 _name_len, _name, err); 521 goto out_bad; 522 } 523 rde->name = oname.name; 524 rde->name_len = oname.len; 525 526 /* inode */ 527 err = parse_reply_info_in(p, end, &rde->inode, features); 528 if (err < 0) 529 goto out_bad; 530 /* ceph_readdir_prepopulate() will update it */ 531 rde->offset = 0; 532 i++; 533 num--; 534 } 535 536 done: 537 /* Skip over any unrecognized fields */ 538 *p = end; 539 return 0; 540 541 bad: 542 err = -EIO; 543 out_bad: 544 pr_err_client(cl, "problem parsing dir contents %d\n", err); 545 return err; 546 } 547 548 /* 549 * parse fcntl F_GETLK results 550 */ 551 static int parse_reply_info_filelock(void **p, void *end, 552 struct ceph_mds_reply_info_parsed *info, 553 u64 features) 554 { 555 if (*p + sizeof(*info->filelock_reply) > end) 556 goto bad; 557 558 info->filelock_reply = *p; 559 560 /* Skip over any unrecognized fields */ 561 *p = end; 562 return 0; 563 bad: 564 return -EIO; 565 } 566 567 568 #if BITS_PER_LONG == 64 569 570 #define DELEGATED_INO_AVAILABLE xa_mk_value(1) 571 572 static int ceph_parse_deleg_inos(void **p, void *end, 573 struct ceph_mds_session *s) 574 { 575 struct ceph_client *cl = s->s_mdsc->fsc->client; 576 u32 sets; 577 578 ceph_decode_32_safe(p, end, sets, bad); 579 doutc(cl, "got %u sets of delegated inodes\n", sets); 580 while (sets--) { 581 u64 start, len; 582 583 ceph_decode_64_safe(p, end, start, bad); 584 ceph_decode_64_safe(p, end, len, bad); 585 586 /* Don't accept a delegation of system inodes */ 587 if (start < CEPH_INO_SYSTEM_BASE) { 588 pr_warn_ratelimited_client(cl, 589 "ignoring reserved inode range delegation (start=0x%llx len=0x%llx)\n", 590 start, len); 591 continue; 592 } 593 while (len--) { 594 int err = xa_insert(&s->s_delegated_inos, start++, 595 DELEGATED_INO_AVAILABLE, 596 GFP_KERNEL); 597 if (!err) { 598 doutc(cl, "added delegated inode 0x%llx\n", start - 1); 599 } else if (err == -EBUSY) { 600 pr_warn_client(cl, 601 "MDS delegated inode 0x%llx more than once.\n", 602 start - 1); 603 } else { 604 return err; 605 } 606 } 607 } 608 return 0; 609 bad: 610 return -EIO; 611 } 612 613 u64 ceph_get_deleg_ino(struct ceph_mds_session *s) 614 { 615 unsigned long ino; 616 void *val; 617 618 xa_for_each(&s->s_delegated_inos, ino, val) { 619 val = xa_erase(&s->s_delegated_inos, ino); 620 if (val == DELEGATED_INO_AVAILABLE) 621 return ino; 622 } 623 return 0; 624 } 625 626 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino) 627 { 628 return xa_insert(&s->s_delegated_inos, ino, DELEGATED_INO_AVAILABLE, 629 GFP_KERNEL); 630 } 631 #else /* BITS_PER_LONG == 64 */ 632 /* 633 * FIXME: xarrays can't handle 64-bit indexes on a 32-bit arch. For now, just 634 * ignore delegated_inos on 32 bit arch. Maybe eventually add xarrays for top 635 * and bottom words? 636 */ 637 static int ceph_parse_deleg_inos(void **p, void *end, 638 struct ceph_mds_session *s) 639 { 640 u32 sets; 641 642 ceph_decode_32_safe(p, end, sets, bad); 643 if (sets) 644 ceph_decode_skip_n(p, end, sets * 2 * sizeof(__le64), bad); 645 return 0; 646 bad: 647 return -EIO; 648 } 649 650 u64 ceph_get_deleg_ino(struct ceph_mds_session *s) 651 { 652 return 0; 653 } 654 655 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino) 656 { 657 return 0; 658 } 659 #endif /* BITS_PER_LONG == 64 */ 660 661 /* 662 * parse create results 663 */ 664 static int parse_reply_info_create(void **p, void *end, 665 struct ceph_mds_reply_info_parsed *info, 666 u64 features, struct ceph_mds_session *s) 667 { 668 int ret; 669 670 if (features == (u64)-1 || 671 (features & CEPH_FEATURE_REPLY_CREATE_INODE)) { 672 if (*p == end) { 673 /* Malformed reply? */ 674 info->has_create_ino = false; 675 } else if (test_bit(CEPHFS_FEATURE_DELEG_INO, &s->s_features)) { 676 info->has_create_ino = true; 677 /* struct_v, struct_compat, and len */ 678 ceph_decode_skip_n(p, end, 2 + sizeof(u32), bad); 679 ceph_decode_64_safe(p, end, info->ino, bad); 680 ret = ceph_parse_deleg_inos(p, end, s); 681 if (ret) 682 return ret; 683 } else { 684 /* legacy */ 685 ceph_decode_64_safe(p, end, info->ino, bad); 686 info->has_create_ino = true; 687 } 688 } else { 689 if (*p != end) 690 goto bad; 691 } 692 693 /* Skip over any unrecognized fields */ 694 *p = end; 695 return 0; 696 bad: 697 return -EIO; 698 } 699 700 static int parse_reply_info_getvxattr(void **p, void *end, 701 struct ceph_mds_reply_info_parsed *info, 702 u64 features) 703 { 704 u32 value_len; 705 706 ceph_decode_skip_8(p, end, bad); /* skip current version: 1 */ 707 ceph_decode_skip_8(p, end, bad); /* skip first version: 1 */ 708 ceph_decode_skip_32(p, end, bad); /* skip payload length */ 709 710 ceph_decode_32_safe(p, end, value_len, bad); 711 712 if (value_len == end - *p) { 713 info->xattr_info.xattr_value = *p; 714 info->xattr_info.xattr_value_len = value_len; 715 *p = end; 716 return value_len; 717 } 718 bad: 719 return -EIO; 720 } 721 722 /* 723 * parse extra results 724 */ 725 static int parse_reply_info_extra(void **p, void *end, 726 struct ceph_mds_request *req, 727 u64 features, struct ceph_mds_session *s) 728 { 729 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info; 730 u32 op = le32_to_cpu(info->head->op); 731 732 if (op == CEPH_MDS_OP_GETFILELOCK) 733 return parse_reply_info_filelock(p, end, info, features); 734 else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP) 735 return parse_reply_info_readdir(p, end, req, features); 736 else if (op == CEPH_MDS_OP_CREATE) 737 return parse_reply_info_create(p, end, info, features, s); 738 else if (op == CEPH_MDS_OP_GETVXATTR) 739 return parse_reply_info_getvxattr(p, end, info, features); 740 else 741 return -EIO; 742 } 743 744 /* 745 * parse entire mds reply 746 */ 747 static int parse_reply_info(struct ceph_mds_session *s, struct ceph_msg *msg, 748 struct ceph_mds_request *req, u64 features) 749 { 750 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info; 751 struct ceph_client *cl = s->s_mdsc->fsc->client; 752 void *p, *end; 753 u32 len; 754 int err; 755 756 info->head = msg->front.iov_base; 757 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 758 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 759 760 /* trace */ 761 ceph_decode_32_safe(&p, end, len, bad); 762 if (len > 0) { 763 ceph_decode_need(&p, end, len, bad); 764 err = parse_reply_info_trace(&p, p+len, info, features); 765 if (err < 0) 766 goto out_bad; 767 } 768 769 /* extra */ 770 ceph_decode_32_safe(&p, end, len, bad); 771 if (len > 0) { 772 ceph_decode_need(&p, end, len, bad); 773 err = parse_reply_info_extra(&p, p+len, req, features, s); 774 if (err < 0) 775 goto out_bad; 776 } 777 778 /* snap blob */ 779 ceph_decode_32_safe(&p, end, len, bad); 780 info->snapblob_len = len; 781 info->snapblob = p; 782 p += len; 783 784 if (p != end) 785 goto bad; 786 return 0; 787 788 bad: 789 err = -EIO; 790 out_bad: 791 pr_err_client(cl, "mds parse_reply err %d\n", err); 792 ceph_msg_dump(msg); 793 return err; 794 } 795 796 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 797 { 798 int i; 799 800 kfree(info->diri.fscrypt_auth); 801 kfree(info->diri.fscrypt_file); 802 kfree(info->targeti.fscrypt_auth); 803 kfree(info->targeti.fscrypt_file); 804 if (!info->dir_entries) 805 return; 806 807 for (i = 0; i < info->dir_nr; i++) { 808 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i; 809 810 kfree(rde->inode.fscrypt_auth); 811 kfree(rde->inode.fscrypt_file); 812 } 813 free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size)); 814 } 815 816 /* 817 * In async unlink case the kclient won't wait for the first reply 818 * from MDS and just drop all the links and unhash the dentry and then 819 * succeeds immediately. 820 * 821 * For any new create/link/rename,etc requests followed by using the 822 * same file names we must wait for the first reply of the inflight 823 * unlink request, or the MDS possibly will fail these following 824 * requests with -EEXIST if the inflight async unlink request was 825 * delayed for some reasons. 826 * 827 * And the worst case is that for the none async openc request it will 828 * successfully open the file if the CDentry hasn't been unlinked yet, 829 * but later the previous delayed async unlink request will remove the 830 * CDentry. That means the just created file is possibly deleted later 831 * by accident. 832 * 833 * We need to wait for the inflight async unlink requests to finish 834 * when creating new files/directories by using the same file names. 835 */ 836 int ceph_wait_on_conflict_unlink(struct dentry *dentry) 837 { 838 struct ceph_fs_client *fsc = ceph_sb_to_fs_client(dentry->d_sb); 839 struct ceph_client *cl = fsc->client; 840 struct dentry *pdentry = dentry->d_parent; 841 struct dentry *udentry, *found = NULL; 842 struct ceph_dentry_info *di; 843 struct qstr dname; 844 u32 hash = dentry->d_name.hash; 845 int err; 846 847 dname.name = dentry->d_name.name; 848 dname.len = dentry->d_name.len; 849 850 rcu_read_lock(); 851 hash_for_each_possible_rcu(fsc->async_unlink_conflict, di, 852 hnode, hash) { 853 udentry = di->dentry; 854 855 spin_lock(&udentry->d_lock); 856 if (udentry->d_name.hash != hash) 857 goto next; 858 if (unlikely(udentry->d_parent != pdentry)) 859 goto next; 860 if (!hash_hashed(&di->hnode)) 861 goto next; 862 863 if (!test_bit(CEPH_DENTRY_ASYNC_UNLINK_BIT, &di->flags)) 864 pr_warn_client(cl, "dentry %p:%pd async unlink bit is not set\n", 865 dentry, dentry); 866 867 if (!d_same_name(udentry, pdentry, &dname)) 868 goto next; 869 870 found = dget_dlock(udentry); 871 spin_unlock(&udentry->d_lock); 872 break; 873 next: 874 spin_unlock(&udentry->d_lock); 875 } 876 rcu_read_unlock(); 877 878 if (likely(!found)) 879 return 0; 880 881 doutc(cl, "dentry %p:%pd conflict with old %p:%pd\n", dentry, dentry, 882 found, found); 883 884 err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_UNLINK_BIT, 885 TASK_KILLABLE); 886 dput(found); 887 return err; 888 } 889 890 891 /* 892 * sessions 893 */ 894 const char *ceph_session_state_name(int s) 895 { 896 switch (s) { 897 case CEPH_MDS_SESSION_NEW: return "new"; 898 case CEPH_MDS_SESSION_OPENING: return "opening"; 899 case CEPH_MDS_SESSION_OPEN: return "open"; 900 case CEPH_MDS_SESSION_HUNG: return "hung"; 901 case CEPH_MDS_SESSION_CLOSING: return "closing"; 902 case CEPH_MDS_SESSION_CLOSED: return "closed"; 903 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 904 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 905 case CEPH_MDS_SESSION_REJECTED: return "rejected"; 906 default: return "???"; 907 } 908 } 909 910 struct ceph_mds_session *ceph_get_mds_session(struct ceph_mds_session *s) 911 { 912 if (refcount_inc_not_zero(&s->s_ref)) 913 return s; 914 return NULL; 915 } 916 917 void ceph_put_mds_session(struct ceph_mds_session *s) 918 { 919 if (IS_ERR_OR_NULL(s)) 920 return; 921 922 if (refcount_dec_and_test(&s->s_ref)) { 923 if (s->s_auth.authorizer) 924 ceph_auth_destroy_authorizer(s->s_auth.authorizer); 925 WARN_ON(mutex_is_locked(&s->s_mutex)); 926 xa_destroy(&s->s_delegated_inos); 927 kfree(s); 928 } 929 } 930 931 /* 932 * called under mdsc->mutex 933 */ 934 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 935 int mds) 936 { 937 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds]) 938 return NULL; 939 return ceph_get_mds_session(mdsc->sessions[mds]); 940 } 941 942 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 943 { 944 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds]) 945 return false; 946 else 947 return true; 948 } 949 950 static int __verify_registered_session(struct ceph_mds_client *mdsc, 951 struct ceph_mds_session *s) 952 { 953 if (s->s_mds >= mdsc->max_sessions || 954 mdsc->sessions[s->s_mds] != s) 955 return -ENOENT; 956 return 0; 957 } 958 959 /* 960 * create+register a new session for given mds. 961 * called under mdsc->mutex. 962 */ 963 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 964 int mds) 965 { 966 struct ceph_client *cl = mdsc->fsc->client; 967 struct ceph_mds_session *s; 968 969 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) 970 return ERR_PTR(-EIO); 971 972 if (mds >= mdsc->mdsmap->possible_max_rank) 973 return ERR_PTR(-EINVAL); 974 975 s = kzalloc(sizeof(*s), GFP_NOFS); 976 if (!s) 977 return ERR_PTR(-ENOMEM); 978 979 if (mds >= mdsc->max_sessions) { 980 int newmax = 1 << get_count_order(mds + 1); 981 struct ceph_mds_session **sa; 982 983 doutc(cl, "realloc to %d\n", newmax); 984 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 985 if (!sa) 986 goto fail_realloc; 987 if (mdsc->sessions) { 988 memcpy(sa, mdsc->sessions, 989 mdsc->max_sessions * sizeof(void *)); 990 kfree(mdsc->sessions); 991 } 992 mdsc->sessions = sa; 993 mdsc->max_sessions = newmax; 994 } 995 996 doutc(cl, "mds%d\n", mds); 997 s->s_mdsc = mdsc; 998 s->s_mds = mds; 999 s->s_state = CEPH_MDS_SESSION_NEW; 1000 mutex_init(&s->s_mutex); 1001 1002 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 1003 1004 atomic_set(&s->s_cap_gen, 1); 1005 s->s_cap_ttl = jiffies - 1; 1006 1007 spin_lock_init(&s->s_cap_lock); 1008 INIT_LIST_HEAD(&s->s_caps); 1009 refcount_set(&s->s_ref, 1); 1010 INIT_LIST_HEAD(&s->s_waiting); 1011 INIT_LIST_HEAD(&s->s_unsafe); 1012 xa_init(&s->s_delegated_inos); 1013 INIT_LIST_HEAD(&s->s_cap_releases); 1014 INIT_WORK(&s->s_cap_release_work, ceph_cap_release_work); 1015 1016 INIT_LIST_HEAD(&s->s_cap_dirty); 1017 INIT_LIST_HEAD(&s->s_cap_flushing); 1018 1019 mdsc->sessions[mds] = s; 1020 atomic_inc(&mdsc->num_sessions); 1021 refcount_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 1022 1023 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 1024 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 1025 1026 return s; 1027 1028 fail_realloc: 1029 kfree(s); 1030 return ERR_PTR(-ENOMEM); 1031 } 1032 1033 /* 1034 * called under mdsc->mutex 1035 */ 1036 static void __unregister_session(struct ceph_mds_client *mdsc, 1037 struct ceph_mds_session *s) 1038 { 1039 doutc(mdsc->fsc->client, "mds%d %p\n", s->s_mds, s); 1040 BUG_ON(mdsc->sessions[s->s_mds] != s); 1041 mdsc->sessions[s->s_mds] = NULL; 1042 ceph_con_close(&s->s_con); 1043 ceph_put_mds_session(s); 1044 atomic_dec(&mdsc->num_sessions); 1045 } 1046 1047 /* 1048 * drop session refs in request. 1049 * 1050 * should be last request ref, or hold mdsc->mutex 1051 */ 1052 static void put_request_session(struct ceph_mds_request *req) 1053 { 1054 if (req->r_session) { 1055 ceph_put_mds_session(req->r_session); 1056 req->r_session = NULL; 1057 } 1058 } 1059 1060 void ceph_mdsc_iterate_sessions(struct ceph_mds_client *mdsc, 1061 void (*cb)(struct ceph_mds_session *), 1062 bool check_state) 1063 { 1064 int mds; 1065 1066 mutex_lock(&mdsc->mutex); 1067 for (mds = 0; mds < mdsc->max_sessions; ++mds) { 1068 struct ceph_mds_session *s; 1069 1070 s = __ceph_lookup_mds_session(mdsc, mds); 1071 if (!s) 1072 continue; 1073 1074 if (check_state && !check_session_state(s)) { 1075 ceph_put_mds_session(s); 1076 continue; 1077 } 1078 1079 mutex_unlock(&mdsc->mutex); 1080 cb(s); 1081 ceph_put_mds_session(s); 1082 mutex_lock(&mdsc->mutex); 1083 } 1084 mutex_unlock(&mdsc->mutex); 1085 } 1086 1087 void ceph_mdsc_release_request(struct kref *kref) 1088 { 1089 struct ceph_mds_request *req = container_of(kref, 1090 struct ceph_mds_request, 1091 r_kref); 1092 ceph_mdsc_release_dir_caps_async(req); 1093 destroy_reply_info(&req->r_reply_info); 1094 if (req->r_request) 1095 ceph_msg_put(req->r_request); 1096 if (req->r_reply) 1097 ceph_msg_put(req->r_reply); 1098 if (req->r_inode) { 1099 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 1100 iput(req->r_inode); 1101 } 1102 if (req->r_parent) { 1103 ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN); 1104 iput(req->r_parent); 1105 } 1106 iput(req->r_target_inode); 1107 iput(req->r_new_inode); 1108 if (req->r_dentry) 1109 dput(req->r_dentry); 1110 if (req->r_old_dentry) 1111 dput(req->r_old_dentry); 1112 if (req->r_old_dentry_dir) { 1113 /* 1114 * track (and drop pins for) r_old_dentry_dir 1115 * separately, since r_old_dentry's d_parent may have 1116 * changed between the dir mutex being dropped and 1117 * this request being freed. 1118 */ 1119 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 1120 CEPH_CAP_PIN); 1121 iput(req->r_old_dentry_dir); 1122 } 1123 kfree(req->r_path1); 1124 kfree(req->r_path2); 1125 put_cred(req->r_cred); 1126 if (req->r_mnt_idmap) 1127 mnt_idmap_put(req->r_mnt_idmap); 1128 if (req->r_pagelist) 1129 ceph_pagelist_release(req->r_pagelist); 1130 kfree(req->r_fscrypt_auth); 1131 kfree(req->r_altname); 1132 put_request_session(req); 1133 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 1134 WARN_ON_ONCE(!list_empty(&req->r_wait)); 1135 kmem_cache_free(ceph_mds_request_cachep, req); 1136 } 1137 1138 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node) 1139 1140 /* 1141 * lookup session, bump ref if found. 1142 * 1143 * called under mdsc->mutex. 1144 */ 1145 static struct ceph_mds_request * 1146 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid) 1147 { 1148 struct ceph_mds_request *req; 1149 1150 req = lookup_request(&mdsc->request_tree, tid); 1151 if (req) 1152 ceph_mdsc_get_request(req); 1153 1154 return req; 1155 } 1156 1157 /* 1158 * Register an in-flight request, and assign a tid. Link to directory 1159 * are modifying (if any). 1160 * 1161 * Called under mdsc->mutex. 1162 */ 1163 static void __register_request(struct ceph_mds_client *mdsc, 1164 struct ceph_mds_request *req, 1165 struct inode *dir) 1166 { 1167 struct ceph_client *cl = mdsc->fsc->client; 1168 int ret = 0; 1169 1170 req->r_tid = ++mdsc->last_tid; 1171 if (req->r_num_caps) { 1172 ret = ceph_reserve_caps(mdsc, &req->r_caps_reservation, 1173 req->r_num_caps); 1174 if (ret < 0) { 1175 pr_err_client(cl, "%p failed to reserve caps: %d\n", 1176 req, ret); 1177 /* set req->r_err to fail early from __do_request */ 1178 req->r_err = ret; 1179 return; 1180 } 1181 } 1182 doutc(cl, "%p tid %lld\n", req, req->r_tid); 1183 ceph_mdsc_get_request(req); 1184 insert_request(&mdsc->request_tree, req); 1185 1186 req->r_cred = get_current_cred(); 1187 if (!req->r_mnt_idmap) 1188 req->r_mnt_idmap = &nop_mnt_idmap; 1189 1190 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK) 1191 mdsc->oldest_tid = req->r_tid; 1192 1193 if (dir) { 1194 struct ceph_inode_info *ci = ceph_inode(dir); 1195 1196 ihold(dir); 1197 req->r_unsafe_dir = dir; 1198 spin_lock(&ci->i_unsafe_lock); 1199 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 1200 spin_unlock(&ci->i_unsafe_lock); 1201 } 1202 } 1203 1204 static void __unregister_request(struct ceph_mds_client *mdsc, 1205 struct ceph_mds_request *req) 1206 { 1207 doutc(mdsc->fsc->client, "%p tid %lld\n", req, req->r_tid); 1208 1209 /* Never leave an unregistered request on an unsafe list! */ 1210 list_del_init(&req->r_unsafe_item); 1211 1212 if (req->r_tid == mdsc->oldest_tid) { 1213 struct rb_node *p = rb_next(&req->r_node); 1214 mdsc->oldest_tid = 0; 1215 while (p) { 1216 struct ceph_mds_request *next_req = 1217 rb_entry(p, struct ceph_mds_request, r_node); 1218 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) { 1219 mdsc->oldest_tid = next_req->r_tid; 1220 break; 1221 } 1222 p = rb_next(p); 1223 } 1224 } 1225 1226 erase_request(&mdsc->request_tree, req); 1227 1228 if (req->r_unsafe_dir) { 1229 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 1230 spin_lock(&ci->i_unsafe_lock); 1231 list_del_init(&req->r_unsafe_dir_item); 1232 spin_unlock(&ci->i_unsafe_lock); 1233 } 1234 if (req->r_target_inode && 1235 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 1236 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode); 1237 spin_lock(&ci->i_unsafe_lock); 1238 list_del_init(&req->r_unsafe_target_item); 1239 spin_unlock(&ci->i_unsafe_lock); 1240 } 1241 1242 if (req->r_unsafe_dir) { 1243 iput(req->r_unsafe_dir); 1244 req->r_unsafe_dir = NULL; 1245 } 1246 1247 complete_all(&req->r_safe_completion); 1248 1249 ceph_mdsc_put_request(req); 1250 } 1251 1252 /* 1253 * Walk back up the dentry tree until we hit a dentry representing a 1254 * non-snapshot inode. We do this using the rcu_read_lock (which must be held 1255 * when calling this) to ensure that the objects won't disappear while we're 1256 * working with them. Once we hit a candidate dentry, we attempt to take a 1257 * reference to it, and return that as the result. 1258 */ 1259 static struct inode *get_nonsnap_parent(struct dentry *dentry) 1260 { 1261 struct inode *inode = NULL; 1262 1263 while (dentry && !IS_ROOT(dentry)) { 1264 inode = d_inode_rcu(dentry); 1265 if (!inode || ceph_snap(inode) == CEPH_NOSNAP) 1266 break; 1267 dentry = dentry->d_parent; 1268 } 1269 if (inode) 1270 inode = igrab(inode); 1271 return inode; 1272 } 1273 1274 /* 1275 * Choose mds to send request to next. If there is a hint set in the 1276 * request (e.g., due to a prior forward hint from the mds), use that. 1277 * Otherwise, consult frag tree and/or caps to identify the 1278 * appropriate mds. If all else fails, choose randomly. 1279 * 1280 * Called under mdsc->mutex. 1281 */ 1282 static int __choose_mds(struct ceph_mds_client *mdsc, 1283 struct ceph_mds_request *req, 1284 bool *random) 1285 { 1286 struct inode *inode; 1287 struct ceph_inode_info *ci; 1288 struct ceph_cap *cap; 1289 int mode = req->r_direct_mode; 1290 int mds = -1; 1291 u32 hash = req->r_direct_hash; 1292 bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags); 1293 struct ceph_client *cl = mdsc->fsc->client; 1294 1295 if (random) 1296 *random = false; 1297 1298 /* 1299 * is there a specific mds we should try? ignore hint if we have 1300 * no session and the mds is not up (active or recovering). 1301 */ 1302 if (req->r_resend_mds >= 0 && 1303 (__have_session(mdsc, req->r_resend_mds) || 1304 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 1305 doutc(cl, "using resend_mds mds%d\n", req->r_resend_mds); 1306 return req->r_resend_mds; 1307 } 1308 1309 if (mode == USE_RANDOM_MDS) 1310 goto random; 1311 1312 inode = NULL; 1313 if (req->r_inode) { 1314 if (ceph_snap(req->r_inode) != CEPH_SNAPDIR) { 1315 inode = req->r_inode; 1316 ihold(inode); 1317 } else { 1318 /* req->r_dentry is non-null for LSSNAP request */ 1319 rcu_read_lock(); 1320 inode = get_nonsnap_parent(req->r_dentry); 1321 rcu_read_unlock(); 1322 doutc(cl, "using snapdir's parent %p %llx.%llx\n", 1323 inode, ceph_vinop(inode)); 1324 } 1325 } else if (req->r_dentry) { 1326 /* ignore race with rename; old or new d_parent is okay */ 1327 struct dentry *parent; 1328 struct inode *dir; 1329 1330 rcu_read_lock(); 1331 parent = READ_ONCE(req->r_dentry->d_parent); 1332 dir = req->r_parent ? : d_inode_rcu(parent); 1333 1334 if (!dir || dir->i_sb != mdsc->fsc->sb) { 1335 /* not this fs or parent went negative */ 1336 inode = d_inode(req->r_dentry); 1337 if (inode) 1338 ihold(inode); 1339 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 1340 /* direct snapped/virtual snapdir requests 1341 * based on parent dir inode */ 1342 inode = get_nonsnap_parent(parent); 1343 doutc(cl, "using nonsnap parent %p %llx.%llx\n", 1344 inode, ceph_vinop(inode)); 1345 } else { 1346 /* dentry target */ 1347 inode = d_inode(req->r_dentry); 1348 if (!inode || mode == USE_AUTH_MDS) { 1349 /* dir + name */ 1350 inode = igrab(dir); 1351 hash = ceph_dentry_hash(dir, req->r_dentry); 1352 is_hash = true; 1353 } else { 1354 ihold(inode); 1355 } 1356 } 1357 rcu_read_unlock(); 1358 } 1359 1360 if (!inode) 1361 goto random; 1362 1363 doutc(cl, "%p %llx.%llx is_hash=%d (0x%x) mode %d\n", inode, 1364 ceph_vinop(inode), (int)is_hash, hash, mode); 1365 ci = ceph_inode(inode); 1366 1367 if (is_hash && S_ISDIR(inode->i_mode)) { 1368 struct ceph_inode_frag frag; 1369 int found; 1370 1371 ceph_choose_frag(ci, hash, &frag, &found); 1372 if (found) { 1373 if (mode == USE_ANY_MDS && frag.ndist > 0) { 1374 u8 r; 1375 1376 /* choose a random replica */ 1377 get_random_bytes(&r, 1); 1378 r %= frag.ndist; 1379 mds = frag.dist[r]; 1380 doutc(cl, "%p %llx.%llx frag %u mds%d (%d/%d)\n", 1381 inode, ceph_vinop(inode), frag.frag, 1382 mds, (int)r, frag.ndist); 1383 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 1384 CEPH_MDS_STATE_ACTIVE && 1385 !ceph_mdsmap_is_laggy(mdsc->mdsmap, mds)) 1386 goto out; 1387 } 1388 1389 /* since this file/dir wasn't known to be 1390 * replicated, then we want to look for the 1391 * authoritative mds. */ 1392 if (frag.mds >= 0) { 1393 /* choose auth mds */ 1394 mds = frag.mds; 1395 doutc(cl, "%p %llx.%llx frag %u mds%d (auth)\n", 1396 inode, ceph_vinop(inode), frag.frag, mds); 1397 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 1398 CEPH_MDS_STATE_ACTIVE) { 1399 if (!ceph_mdsmap_is_laggy(mdsc->mdsmap, 1400 mds)) 1401 goto out; 1402 } 1403 } 1404 mode = USE_AUTH_MDS; 1405 } 1406 } 1407 1408 spin_lock(&ci->i_ceph_lock); 1409 cap = NULL; 1410 if (mode == USE_AUTH_MDS) 1411 cap = ci->i_auth_cap; 1412 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 1413 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 1414 if (!cap) { 1415 spin_unlock(&ci->i_ceph_lock); 1416 iput(inode); 1417 goto random; 1418 } 1419 mds = cap->session->s_mds; 1420 doutc(cl, "%p %llx.%llx mds%d (%scap %p)\n", inode, 1421 ceph_vinop(inode), mds, 1422 cap == ci->i_auth_cap ? "auth " : "", cap); 1423 spin_unlock(&ci->i_ceph_lock); 1424 out: 1425 iput(inode); 1426 return mds; 1427 1428 random: 1429 if (random) 1430 *random = true; 1431 1432 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 1433 doutc(cl, "chose random mds%d\n", mds); 1434 return mds; 1435 } 1436 1437 1438 /* 1439 * session messages 1440 */ 1441 struct ceph_msg *ceph_create_session_msg(u32 op, u64 seq) 1442 { 1443 struct ceph_msg *msg; 1444 struct ceph_mds_session_head *h; 1445 1446 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 1447 false); 1448 if (!msg) { 1449 pr_err("ENOMEM creating session %s msg\n", 1450 ceph_session_op_name(op)); 1451 return NULL; 1452 } 1453 h = msg->front.iov_base; 1454 h->op = cpu_to_le32(op); 1455 h->seq = cpu_to_le64(seq); 1456 1457 return msg; 1458 } 1459 1460 static const unsigned char feature_bits[] = CEPHFS_FEATURES_CLIENT_SUPPORTED; 1461 #define FEATURE_BYTES(c) (DIV_ROUND_UP((size_t)feature_bits[c - 1] + 1, 64) * 8) 1462 static int encode_supported_features(void **p, void *end) 1463 { 1464 static const size_t count = ARRAY_SIZE(feature_bits); 1465 1466 if (count > 0) { 1467 size_t i; 1468 size_t size = FEATURE_BYTES(count); 1469 unsigned long bit; 1470 1471 if (WARN_ON_ONCE(*p + 4 + size > end)) 1472 return -ERANGE; 1473 1474 ceph_encode_32(p, size); 1475 memset(*p, 0, size); 1476 for (i = 0; i < count; i++) { 1477 bit = feature_bits[i]; 1478 ((unsigned char *)(*p))[bit / 8] |= BIT(bit % 8); 1479 } 1480 *p += size; 1481 } else { 1482 if (WARN_ON_ONCE(*p + 4 > end)) 1483 return -ERANGE; 1484 1485 ceph_encode_32(p, 0); 1486 } 1487 1488 return 0; 1489 } 1490 1491 static const unsigned char metric_bits[] = CEPHFS_METRIC_SPEC_CLIENT_SUPPORTED; 1492 #define METRIC_BYTES(cnt) (DIV_ROUND_UP((size_t)metric_bits[cnt - 1] + 1, 64) * 8) 1493 static int encode_metric_spec(void **p, void *end) 1494 { 1495 static const size_t count = ARRAY_SIZE(metric_bits); 1496 1497 /* header */ 1498 if (WARN_ON_ONCE(*p + 2 > end)) 1499 return -ERANGE; 1500 1501 ceph_encode_8(p, 1); /* version */ 1502 ceph_encode_8(p, 1); /* compat */ 1503 1504 if (count > 0) { 1505 size_t i; 1506 size_t size = METRIC_BYTES(count); 1507 1508 if (WARN_ON_ONCE(*p + 4 + 4 + size > end)) 1509 return -ERANGE; 1510 1511 /* metric spec info length */ 1512 ceph_encode_32(p, 4 + size); 1513 1514 /* metric spec */ 1515 ceph_encode_32(p, size); 1516 memset(*p, 0, size); 1517 for (i = 0; i < count; i++) 1518 ((unsigned char *)(*p))[i / 8] |= BIT(metric_bits[i] % 8); 1519 *p += size; 1520 } else { 1521 if (WARN_ON_ONCE(*p + 4 + 4 > end)) 1522 return -ERANGE; 1523 1524 /* metric spec info length */ 1525 ceph_encode_32(p, 4); 1526 /* metric spec */ 1527 ceph_encode_32(p, 0); 1528 } 1529 1530 return 0; 1531 } 1532 1533 /* 1534 * session message, specialization for CEPH_SESSION_REQUEST_OPEN 1535 * to include additional client metadata fields. 1536 */ 1537 static struct ceph_msg * 1538 create_session_full_msg(struct ceph_mds_client *mdsc, int op, u64 seq) 1539 { 1540 struct ceph_msg *msg; 1541 struct ceph_mds_session_head *h; 1542 int i; 1543 int extra_bytes = 0; 1544 int metadata_key_count = 0; 1545 struct ceph_options *opt = mdsc->fsc->client->options; 1546 struct ceph_mount_options *fsopt = mdsc->fsc->mount_options; 1547 struct ceph_client *cl = mdsc->fsc->client; 1548 size_t size, count; 1549 void *p, *end; 1550 int ret; 1551 1552 const char* metadata[][2] = { 1553 {"hostname", mdsc->nodename}, 1554 {"kernel_version", init_utsname()->release}, 1555 {"entity_id", opt->name ? : ""}, 1556 {"root", fsopt->server_path ? : "/"}, 1557 {NULL, NULL} 1558 }; 1559 1560 /* Calculate serialized length of metadata */ 1561 extra_bytes = 4; /* map length */ 1562 for (i = 0; metadata[i][0]; ++i) { 1563 extra_bytes += 8 + strlen(metadata[i][0]) + 1564 strlen(metadata[i][1]); 1565 metadata_key_count++; 1566 } 1567 1568 /* supported feature */ 1569 size = 0; 1570 count = ARRAY_SIZE(feature_bits); 1571 if (count > 0) 1572 size = FEATURE_BYTES(count); 1573 extra_bytes += 4 + size; 1574 1575 /* metric spec */ 1576 size = 0; 1577 count = ARRAY_SIZE(metric_bits); 1578 if (count > 0) 1579 size = METRIC_BYTES(count); 1580 extra_bytes += 2 + 4 + 4 + size; 1581 1582 /* flags, mds auth caps and oldest_client_tid */ 1583 extra_bytes += 4 + 4 + 8; 1584 1585 /* Allocate the message */ 1586 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + extra_bytes, 1587 GFP_NOFS, false); 1588 if (!msg) { 1589 pr_err_client(cl, "ENOMEM creating session open msg\n"); 1590 return ERR_PTR(-ENOMEM); 1591 } 1592 p = msg->front.iov_base; 1593 end = p + msg->front.iov_len; 1594 1595 h = p; 1596 h->op = cpu_to_le32(op); 1597 h->seq = cpu_to_le64(seq); 1598 1599 /* 1600 * Serialize client metadata into waiting buffer space, using 1601 * the format that userspace expects for map<string, string> 1602 * 1603 * ClientSession messages with metadata are v7 1604 */ 1605 msg->hdr.version = cpu_to_le16(7); 1606 msg->hdr.compat_version = cpu_to_le16(1); 1607 1608 /* The write pointer, following the session_head structure */ 1609 p += sizeof(*h); 1610 1611 /* Number of entries in the map */ 1612 ceph_encode_32(&p, metadata_key_count); 1613 1614 /* Two length-prefixed strings for each entry in the map */ 1615 for (i = 0; metadata[i][0]; ++i) { 1616 size_t const key_len = strlen(metadata[i][0]); 1617 size_t const val_len = strlen(metadata[i][1]); 1618 1619 ceph_encode_32(&p, key_len); 1620 memcpy(p, metadata[i][0], key_len); 1621 p += key_len; 1622 ceph_encode_32(&p, val_len); 1623 memcpy(p, metadata[i][1], val_len); 1624 p += val_len; 1625 } 1626 1627 ret = encode_supported_features(&p, end); 1628 if (ret) { 1629 pr_err_client(cl, "encode_supported_features failed!\n"); 1630 ceph_msg_put(msg); 1631 return ERR_PTR(ret); 1632 } 1633 1634 ret = encode_metric_spec(&p, end); 1635 if (ret) { 1636 pr_err_client(cl, "encode_metric_spec failed!\n"); 1637 ceph_msg_put(msg); 1638 return ERR_PTR(ret); 1639 } 1640 1641 /* version == 5, flags */ 1642 ceph_encode_32(&p, 0); 1643 1644 /* version == 6, mds auth caps */ 1645 ceph_encode_32(&p, 0); 1646 1647 /* version == 7, oldest_client_tid */ 1648 ceph_encode_64(&p, mdsc->oldest_tid); 1649 1650 msg->front.iov_len = p - msg->front.iov_base; 1651 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1652 1653 return msg; 1654 } 1655 1656 /* 1657 * send session open request. 1658 * 1659 * called under mdsc->mutex 1660 */ 1661 static int __open_session(struct ceph_mds_client *mdsc, 1662 struct ceph_mds_session *session) 1663 { 1664 struct ceph_msg *msg; 1665 int mstate; 1666 int mds = session->s_mds; 1667 1668 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) 1669 return -EIO; 1670 1671 /* wait for mds to go active? */ 1672 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 1673 doutc(mdsc->fsc->client, "open_session to mds%d (%s)\n", mds, 1674 ceph_mds_state_name(mstate)); 1675 session->s_state = CEPH_MDS_SESSION_OPENING; 1676 session->s_renew_requested = jiffies; 1677 1678 /* send connect message */ 1679 msg = create_session_full_msg(mdsc, CEPH_SESSION_REQUEST_OPEN, 1680 session->s_seq); 1681 if (IS_ERR(msg)) 1682 return PTR_ERR(msg); 1683 ceph_con_send(&session->s_con, msg); 1684 return 0; 1685 } 1686 1687 /* 1688 * open sessions for any export targets for the given mds 1689 * 1690 * called under mdsc->mutex 1691 */ 1692 static struct ceph_mds_session * 1693 __open_export_target_session(struct ceph_mds_client *mdsc, int target) 1694 { 1695 struct ceph_mds_session *session; 1696 int ret; 1697 1698 session = __ceph_lookup_mds_session(mdsc, target); 1699 if (!session) { 1700 session = register_session(mdsc, target); 1701 if (IS_ERR(session)) 1702 return session; 1703 } 1704 if (session->s_state == CEPH_MDS_SESSION_NEW || 1705 session->s_state == CEPH_MDS_SESSION_CLOSING) { 1706 ret = __open_session(mdsc, session); 1707 if (ret) 1708 return ERR_PTR(ret); 1709 } 1710 1711 return session; 1712 } 1713 1714 struct ceph_mds_session * 1715 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target) 1716 { 1717 struct ceph_mds_session *session; 1718 struct ceph_client *cl = mdsc->fsc->client; 1719 1720 doutc(cl, "to mds%d\n", target); 1721 1722 mutex_lock(&mdsc->mutex); 1723 session = __open_export_target_session(mdsc, target); 1724 mutex_unlock(&mdsc->mutex); 1725 1726 return session; 1727 } 1728 1729 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 1730 struct ceph_mds_session *session) 1731 { 1732 struct ceph_mds_info *mi; 1733 struct ceph_mds_session *ts; 1734 int i, mds = session->s_mds; 1735 struct ceph_client *cl = mdsc->fsc->client; 1736 1737 if (mds >= mdsc->mdsmap->possible_max_rank) 1738 return; 1739 1740 mi = &mdsc->mdsmap->m_info[mds]; 1741 doutc(cl, "for mds%d (%d targets)\n", session->s_mds, 1742 mi->num_export_targets); 1743 1744 for (i = 0; i < mi->num_export_targets; i++) { 1745 ts = __open_export_target_session(mdsc, mi->export_targets[i]); 1746 ceph_put_mds_session(ts); 1747 } 1748 } 1749 1750 /* 1751 * session caps 1752 */ 1753 1754 static void detach_cap_releases(struct ceph_mds_session *session, 1755 struct list_head *target) 1756 { 1757 struct ceph_client *cl = session->s_mdsc->fsc->client; 1758 1759 lockdep_assert_held(&session->s_cap_lock); 1760 1761 list_splice_init(&session->s_cap_releases, target); 1762 session->s_num_cap_releases = 0; 1763 doutc(cl, "mds%d\n", session->s_mds); 1764 } 1765 1766 static void dispose_cap_releases(struct ceph_mds_client *mdsc, 1767 struct list_head *dispose) 1768 { 1769 while (!list_empty(dispose)) { 1770 struct ceph_cap *cap; 1771 /* zero out the in-progress message */ 1772 cap = list_first_entry(dispose, struct ceph_cap, session_caps); 1773 list_del(&cap->session_caps); 1774 ceph_put_cap(mdsc, cap); 1775 } 1776 } 1777 1778 static void cleanup_session_requests(struct ceph_mds_client *mdsc, 1779 struct ceph_mds_session *session) 1780 { 1781 struct ceph_client *cl = mdsc->fsc->client; 1782 struct ceph_mds_request *req; 1783 struct rb_node *p; 1784 1785 doutc(cl, "mds%d\n", session->s_mds); 1786 mutex_lock(&mdsc->mutex); 1787 while (!list_empty(&session->s_unsafe)) { 1788 req = list_first_entry(&session->s_unsafe, 1789 struct ceph_mds_request, r_unsafe_item); 1790 pr_warn_ratelimited_client(cl, " dropping unsafe request %llu\n", 1791 req->r_tid); 1792 if (req->r_target_inode) 1793 mapping_set_error(req->r_target_inode->i_mapping, -EIO); 1794 if (req->r_unsafe_dir) 1795 mapping_set_error(req->r_unsafe_dir->i_mapping, -EIO); 1796 __unregister_request(mdsc, req); 1797 } 1798 /* zero r_attempts, so kick_requests() will re-send requests */ 1799 p = rb_first(&mdsc->request_tree); 1800 while (p) { 1801 req = rb_entry(p, struct ceph_mds_request, r_node); 1802 p = rb_next(p); 1803 if (req->r_session && 1804 req->r_session->s_mds == session->s_mds) 1805 req->r_attempts = 0; 1806 } 1807 mutex_unlock(&mdsc->mutex); 1808 } 1809 1810 /* 1811 * Helper to safely iterate over all caps associated with a session, with 1812 * special care taken to handle a racing __ceph_remove_cap(). 1813 * 1814 * Caller must hold session s_mutex. 1815 */ 1816 int ceph_iterate_session_caps(struct ceph_mds_session *session, 1817 int (*cb)(struct inode *, int mds, void *), 1818 void *arg) 1819 { 1820 struct ceph_client *cl = session->s_mdsc->fsc->client; 1821 struct list_head *p; 1822 struct ceph_cap *cap; 1823 struct inode *inode, *last_inode = NULL; 1824 struct ceph_cap *old_cap = NULL; 1825 int ret; 1826 1827 doutc(cl, "%p mds%d\n", session, session->s_mds); 1828 spin_lock(&session->s_cap_lock); 1829 p = session->s_caps.next; 1830 while (p != &session->s_caps) { 1831 int mds; 1832 1833 cap = list_entry(p, struct ceph_cap, session_caps); 1834 inode = igrab(&cap->ci->netfs.inode); 1835 if (!inode) { 1836 p = p->next; 1837 continue; 1838 } 1839 session->s_cap_iterator = cap; 1840 mds = cap->mds; 1841 spin_unlock(&session->s_cap_lock); 1842 1843 if (last_inode) { 1844 iput(last_inode); 1845 last_inode = NULL; 1846 } 1847 if (old_cap) { 1848 ceph_put_cap(session->s_mdsc, old_cap); 1849 old_cap = NULL; 1850 } 1851 1852 ret = cb(inode, mds, arg); 1853 last_inode = inode; 1854 1855 spin_lock(&session->s_cap_lock); 1856 p = p->next; 1857 if (!cap->ci) { 1858 doutc(cl, "finishing cap %p removal\n", cap); 1859 BUG_ON(cap->session != session); 1860 cap->session = NULL; 1861 list_del_init(&cap->session_caps); 1862 session->s_nr_caps--; 1863 atomic64_dec(&session->s_mdsc->metric.total_caps); 1864 if (cap->queue_release) 1865 __ceph_queue_cap_release(session, cap); 1866 else 1867 old_cap = cap; /* put_cap it w/o locks held */ 1868 } 1869 if (ret < 0) 1870 goto out; 1871 } 1872 ret = 0; 1873 out: 1874 session->s_cap_iterator = NULL; 1875 spin_unlock(&session->s_cap_lock); 1876 1877 iput(last_inode); 1878 if (old_cap) 1879 ceph_put_cap(session->s_mdsc, old_cap); 1880 1881 return ret; 1882 } 1883 1884 static int remove_session_caps_cb(struct inode *inode, int mds, void *arg) 1885 { 1886 struct ceph_inode_info *ci = ceph_inode(inode); 1887 struct ceph_client *cl = ceph_inode_to_client(inode); 1888 bool invalidate = false; 1889 struct ceph_cap *cap; 1890 int iputs = 0; 1891 1892 spin_lock(&ci->i_ceph_lock); 1893 cap = __get_cap_for_mds(ci, mds); 1894 if (cap) { 1895 doutc(cl, " removing cap %p, ci is %p, inode is %p\n", 1896 cap, ci, &ci->netfs.inode); 1897 1898 iputs = ceph_purge_inode_cap(inode, cap, &invalidate); 1899 } 1900 spin_unlock(&ci->i_ceph_lock); 1901 1902 if (cap) 1903 wake_up_all(&ci->i_cap_wq); 1904 if (invalidate) 1905 ceph_queue_invalidate(inode); 1906 while (iputs--) 1907 iput(inode); 1908 return 0; 1909 } 1910 1911 /* 1912 * caller must hold session s_mutex 1913 */ 1914 static void remove_session_caps(struct ceph_mds_session *session) 1915 { 1916 struct ceph_fs_client *fsc = session->s_mdsc->fsc; 1917 struct super_block *sb = fsc->sb; 1918 LIST_HEAD(dispose); 1919 1920 doutc(fsc->client, "on %p\n", session); 1921 ceph_iterate_session_caps(session, remove_session_caps_cb, fsc); 1922 1923 wake_up_all(&fsc->mdsc->cap_flushing_wq); 1924 1925 spin_lock(&session->s_cap_lock); 1926 if (session->s_nr_caps > 0) { 1927 struct inode *inode; 1928 struct ceph_cap *cap, *prev = NULL; 1929 struct ceph_vino vino; 1930 /* 1931 * iterate_session_caps() skips inodes that are being 1932 * deleted, we need to wait until deletions are complete. 1933 * __wait_on_freeing_inode() is designed for the job, 1934 * but it is not exported, so use lookup inode function 1935 * to access it. 1936 */ 1937 while (!list_empty(&session->s_caps)) { 1938 cap = list_entry(session->s_caps.next, 1939 struct ceph_cap, session_caps); 1940 if (cap == prev) 1941 break; 1942 prev = cap; 1943 vino = cap->ci->i_vino; 1944 spin_unlock(&session->s_cap_lock); 1945 1946 inode = ceph_find_inode(sb, vino); 1947 iput(inode); 1948 1949 spin_lock(&session->s_cap_lock); 1950 } 1951 } 1952 1953 // drop cap expires and unlock s_cap_lock 1954 detach_cap_releases(session, &dispose); 1955 1956 BUG_ON(session->s_nr_caps > 0); 1957 BUG_ON(!list_empty(&session->s_cap_flushing)); 1958 spin_unlock(&session->s_cap_lock); 1959 dispose_cap_releases(session->s_mdsc, &dispose); 1960 } 1961 1962 enum { 1963 RECONNECT, 1964 RENEWCAPS, 1965 FORCE_RO, 1966 }; 1967 1968 /* 1969 * wake up any threads waiting on this session's caps. if the cap is 1970 * old (didn't get renewed on the client reconnect), remove it now. 1971 * 1972 * caller must hold s_mutex. 1973 */ 1974 static int wake_up_session_cb(struct inode *inode, int mds, void *arg) 1975 { 1976 struct ceph_inode_info *ci = ceph_inode(inode); 1977 unsigned long ev = (unsigned long)arg; 1978 1979 if (ev == RECONNECT) { 1980 spin_lock(&ci->i_ceph_lock); 1981 ci->i_wanted_max_size = 0; 1982 ci->i_requested_max_size = 0; 1983 spin_unlock(&ci->i_ceph_lock); 1984 } else if (ev == RENEWCAPS) { 1985 struct ceph_cap *cap; 1986 1987 spin_lock(&ci->i_ceph_lock); 1988 cap = __get_cap_for_mds(ci, mds); 1989 /* mds did not re-issue stale cap */ 1990 if (cap && cap->cap_gen < atomic_read(&cap->session->s_cap_gen)) 1991 cap->issued = cap->implemented = CEPH_CAP_PIN; 1992 spin_unlock(&ci->i_ceph_lock); 1993 } else if (ev == FORCE_RO) { 1994 } 1995 wake_up_all(&ci->i_cap_wq); 1996 return 0; 1997 } 1998 1999 static void wake_up_session_caps(struct ceph_mds_session *session, int ev) 2000 { 2001 struct ceph_client *cl = session->s_mdsc->fsc->client; 2002 2003 doutc(cl, "session %p mds%d\n", session, session->s_mds); 2004 ceph_iterate_session_caps(session, wake_up_session_cb, 2005 (void *)(unsigned long)ev); 2006 } 2007 2008 /* 2009 * Send periodic message to MDS renewing all currently held caps. The 2010 * ack will reset the expiration for all caps from this session. 2011 * 2012 * caller holds s_mutex 2013 */ 2014 static int send_renew_caps(struct ceph_mds_client *mdsc, 2015 struct ceph_mds_session *session) 2016 { 2017 struct ceph_client *cl = mdsc->fsc->client; 2018 struct ceph_msg *msg; 2019 int state; 2020 2021 if (time_after_eq(jiffies, session->s_cap_ttl) && 2022 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 2023 pr_info_client(cl, "mds%d caps stale\n", session->s_mds); 2024 session->s_renew_requested = jiffies; 2025 2026 /* do not try to renew caps until a recovering mds has reconnected 2027 * with its clients. */ 2028 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 2029 if (state < CEPH_MDS_STATE_RECONNECT) { 2030 doutc(cl, "ignoring mds%d (%s)\n", session->s_mds, 2031 ceph_mds_state_name(state)); 2032 return 0; 2033 } 2034 2035 doutc(cl, "to mds%d (%s)\n", session->s_mds, 2036 ceph_mds_state_name(state)); 2037 msg = create_session_full_msg(mdsc, CEPH_SESSION_REQUEST_RENEWCAPS, 2038 ++session->s_renew_seq); 2039 if (IS_ERR(msg)) 2040 return PTR_ERR(msg); 2041 ceph_con_send(&session->s_con, msg); 2042 return 0; 2043 } 2044 2045 static int send_flushmsg_ack(struct ceph_mds_client *mdsc, 2046 struct ceph_mds_session *session, u64 seq) 2047 { 2048 struct ceph_client *cl = mdsc->fsc->client; 2049 struct ceph_msg *msg; 2050 2051 doutc(cl, "to mds%d (%s)s seq %lld\n", session->s_mds, 2052 ceph_session_state_name(session->s_state), seq); 2053 msg = ceph_create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq); 2054 if (!msg) 2055 return -ENOMEM; 2056 ceph_con_send(&session->s_con, msg); 2057 return 0; 2058 } 2059 2060 2061 /* 2062 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 2063 * 2064 * Called under session->s_mutex 2065 */ 2066 static void renewed_caps(struct ceph_mds_client *mdsc, 2067 struct ceph_mds_session *session, int is_renew) 2068 { 2069 struct ceph_client *cl = mdsc->fsc->client; 2070 int was_stale; 2071 int wake = 0; 2072 2073 spin_lock(&session->s_cap_lock); 2074 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 2075 2076 session->s_cap_ttl = session->s_renew_requested + 2077 mdsc->mdsmap->m_session_timeout*HZ; 2078 2079 if (was_stale) { 2080 if (time_before(jiffies, session->s_cap_ttl)) { 2081 pr_info_client(cl, "mds%d caps renewed\n", 2082 session->s_mds); 2083 wake = 1; 2084 } else { 2085 pr_info_client(cl, "mds%d caps still stale\n", 2086 session->s_mds); 2087 } 2088 } 2089 doutc(cl, "mds%d ttl now %lu, was %s, now %s\n", session->s_mds, 2090 session->s_cap_ttl, was_stale ? "stale" : "fresh", 2091 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 2092 spin_unlock(&session->s_cap_lock); 2093 2094 if (wake) 2095 wake_up_session_caps(session, RENEWCAPS); 2096 } 2097 2098 /* 2099 * send a session close request 2100 */ 2101 static int request_close_session(struct ceph_mds_session *session) 2102 { 2103 struct ceph_client *cl = session->s_mdsc->fsc->client; 2104 struct ceph_msg *msg; 2105 2106 doutc(cl, "mds%d state %s seq %lld\n", session->s_mds, 2107 ceph_session_state_name(session->s_state), session->s_seq); 2108 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_CLOSE, 2109 session->s_seq); 2110 if (!msg) 2111 return -ENOMEM; 2112 ceph_con_send(&session->s_con, msg); 2113 return 1; 2114 } 2115 2116 /* 2117 * Called with s_mutex held. 2118 */ 2119 static int __close_session(struct ceph_mds_client *mdsc, 2120 struct ceph_mds_session *session) 2121 { 2122 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 2123 return 0; 2124 session->s_state = CEPH_MDS_SESSION_CLOSING; 2125 return request_close_session(session); 2126 } 2127 2128 static bool drop_negative_children(struct dentry *dentry) 2129 { 2130 struct dentry *child; 2131 bool all_negative = true; 2132 2133 if (!d_is_dir(dentry)) 2134 goto out; 2135 2136 spin_lock(&dentry->d_lock); 2137 hlist_for_each_entry(child, &dentry->d_children, d_sib) { 2138 if (d_really_is_positive(child)) { 2139 all_negative = false; 2140 break; 2141 } 2142 } 2143 spin_unlock(&dentry->d_lock); 2144 2145 if (all_negative) 2146 shrink_dcache_parent(dentry); 2147 out: 2148 return all_negative; 2149 } 2150 2151 /* 2152 * Trim old(er) caps. 2153 * 2154 * Because we can't cache an inode without one or more caps, we do 2155 * this indirectly: if a cap is unused, we prune its aliases, at which 2156 * point the inode will hopefully get dropped to. 2157 * 2158 * Yes, this is a bit sloppy. Our only real goal here is to respond to 2159 * memory pressure from the MDS, though, so it needn't be perfect. 2160 */ 2161 static int trim_caps_cb(struct inode *inode, int mds, void *arg) 2162 { 2163 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 2164 struct ceph_client *cl = mdsc->fsc->client; 2165 int *remaining = arg; 2166 struct ceph_inode_info *ci = ceph_inode(inode); 2167 int used, wanted, oissued, mine; 2168 struct ceph_cap *cap; 2169 2170 if (*remaining <= 0) 2171 return -1; 2172 2173 spin_lock(&ci->i_ceph_lock); 2174 cap = __get_cap_for_mds(ci, mds); 2175 if (!cap) { 2176 spin_unlock(&ci->i_ceph_lock); 2177 return 0; 2178 } 2179 mine = cap->issued | cap->implemented; 2180 used = __ceph_caps_used(ci); 2181 wanted = __ceph_caps_file_wanted(ci); 2182 oissued = __ceph_caps_issued_other(ci, cap); 2183 2184 doutc(cl, "%p %llx.%llx cap %p mine %s oissued %s used %s wanted %s\n", 2185 inode, ceph_vinop(inode), cap, ceph_cap_string(mine), 2186 ceph_cap_string(oissued), ceph_cap_string(used), 2187 ceph_cap_string(wanted)); 2188 if (cap == ci->i_auth_cap) { 2189 if (ci->i_dirty_caps || ci->i_flushing_caps || 2190 !list_empty(&ci->i_cap_snaps)) 2191 goto out; 2192 if ((used | wanted) & CEPH_CAP_ANY_WR) 2193 goto out; 2194 /* Note: it's possible that i_filelock_ref becomes non-zero 2195 * after dropping auth caps. It doesn't hurt because reply 2196 * of lock mds request will re-add auth caps. */ 2197 if (atomic_read(&ci->i_filelock_ref) > 0) 2198 goto out; 2199 } 2200 /* The inode has cached pages, but it's no longer used. 2201 * we can safely drop it */ 2202 if (S_ISREG(inode->i_mode) && 2203 wanted == 0 && used == CEPH_CAP_FILE_CACHE && 2204 !(oissued & CEPH_CAP_FILE_CACHE)) { 2205 used = 0; 2206 oissued = 0; 2207 } 2208 if ((used | wanted) & ~oissued & mine) 2209 goto out; /* we need these caps */ 2210 2211 if (oissued) { 2212 /* we aren't the only cap.. just remove us */ 2213 ceph_remove_cap(mdsc, cap, true); 2214 (*remaining)--; 2215 } else { 2216 struct dentry *dentry; 2217 /* try dropping referring dentries */ 2218 spin_unlock(&ci->i_ceph_lock); 2219 dentry = d_find_any_alias(inode); 2220 if (dentry && drop_negative_children(dentry)) { 2221 int count; 2222 dput(dentry); 2223 d_prune_aliases(inode); 2224 count = atomic_read(&inode->i_count); 2225 if (count == 1) 2226 (*remaining)--; 2227 doutc(cl, "%p %llx.%llx cap %p pruned, count now %d\n", 2228 inode, ceph_vinop(inode), cap, count); 2229 } else { 2230 dput(dentry); 2231 } 2232 return 0; 2233 } 2234 2235 out: 2236 spin_unlock(&ci->i_ceph_lock); 2237 return 0; 2238 } 2239 2240 /* 2241 * Trim session cap count down to some max number. 2242 */ 2243 int ceph_trim_caps(struct ceph_mds_client *mdsc, 2244 struct ceph_mds_session *session, 2245 int max_caps) 2246 { 2247 struct ceph_client *cl = mdsc->fsc->client; 2248 int trim_caps = session->s_nr_caps - max_caps; 2249 2250 doutc(cl, "mds%d start: %d / %d, trim %d\n", session->s_mds, 2251 session->s_nr_caps, max_caps, trim_caps); 2252 if (trim_caps > 0) { 2253 int remaining = trim_caps; 2254 2255 ceph_iterate_session_caps(session, trim_caps_cb, &remaining); 2256 doutc(cl, "mds%d done: %d / %d, trimmed %d\n", 2257 session->s_mds, session->s_nr_caps, max_caps, 2258 trim_caps - remaining); 2259 } 2260 2261 ceph_flush_session_cap_releases(mdsc, session); 2262 return 0; 2263 } 2264 2265 static int check_caps_flush(struct ceph_mds_client *mdsc, 2266 u64 want_flush_tid) 2267 { 2268 struct ceph_client *cl = mdsc->fsc->client; 2269 int ret = 1; 2270 2271 spin_lock(&mdsc->cap_dirty_lock); 2272 if (!list_empty(&mdsc->cap_flush_list)) { 2273 struct ceph_cap_flush *cf = 2274 list_first_entry(&mdsc->cap_flush_list, 2275 struct ceph_cap_flush, g_list); 2276 if (cf->tid <= want_flush_tid) { 2277 doutc(cl, "still flushing tid %llu <= %llu\n", 2278 cf->tid, want_flush_tid); 2279 ret = 0; 2280 } 2281 } 2282 spin_unlock(&mdsc->cap_dirty_lock); 2283 return ret; 2284 } 2285 2286 /* 2287 * flush all dirty inode data to disk. 2288 * 2289 * returns true if we've flushed through want_flush_tid 2290 */ 2291 static void wait_caps_flush(struct ceph_mds_client *mdsc, 2292 u64 want_flush_tid) 2293 { 2294 struct ceph_client *cl = mdsc->fsc->client; 2295 2296 doutc(cl, "want %llu\n", want_flush_tid); 2297 2298 wait_event(mdsc->cap_flushing_wq, 2299 check_caps_flush(mdsc, want_flush_tid)); 2300 2301 doutc(cl, "ok, flushed thru %llu\n", want_flush_tid); 2302 } 2303 2304 /* 2305 * called under s_mutex 2306 */ 2307 static void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 2308 struct ceph_mds_session *session) 2309 { 2310 struct ceph_client *cl = mdsc->fsc->client; 2311 struct ceph_msg *msg = NULL; 2312 struct ceph_mds_cap_release *head; 2313 struct ceph_mds_cap_item *item; 2314 struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc; 2315 struct ceph_cap *cap; 2316 LIST_HEAD(tmp_list); 2317 int num_cap_releases; 2318 __le32 barrier, *cap_barrier; 2319 2320 down_read(&osdc->lock); 2321 barrier = cpu_to_le32(osdc->epoch_barrier); 2322 up_read(&osdc->lock); 2323 2324 spin_lock(&session->s_cap_lock); 2325 again: 2326 list_splice_init(&session->s_cap_releases, &tmp_list); 2327 num_cap_releases = session->s_num_cap_releases; 2328 session->s_num_cap_releases = 0; 2329 spin_unlock(&session->s_cap_lock); 2330 2331 while (!list_empty(&tmp_list)) { 2332 if (!msg) { 2333 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, 2334 PAGE_SIZE, GFP_NOFS, false); 2335 if (!msg) 2336 goto out_err; 2337 head = msg->front.iov_base; 2338 head->num = cpu_to_le32(0); 2339 msg->front.iov_len = sizeof(*head); 2340 2341 msg->hdr.version = cpu_to_le16(2); 2342 msg->hdr.compat_version = cpu_to_le16(1); 2343 } 2344 2345 cap = list_first_entry(&tmp_list, struct ceph_cap, 2346 session_caps); 2347 list_del(&cap->session_caps); 2348 num_cap_releases--; 2349 2350 head = msg->front.iov_base; 2351 put_unaligned_le32(get_unaligned_le32(&head->num) + 1, 2352 &head->num); 2353 item = msg->front.iov_base + msg->front.iov_len; 2354 item->ino = cpu_to_le64(cap->cap_ino); 2355 item->cap_id = cpu_to_le64(cap->cap_id); 2356 item->migrate_seq = cpu_to_le32(cap->mseq); 2357 item->issue_seq = cpu_to_le32(cap->issue_seq); 2358 msg->front.iov_len += sizeof(*item); 2359 2360 ceph_put_cap(mdsc, cap); 2361 2362 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 2363 // Append cap_barrier field 2364 cap_barrier = msg->front.iov_base + msg->front.iov_len; 2365 *cap_barrier = barrier; 2366 msg->front.iov_len += sizeof(*cap_barrier); 2367 2368 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2369 doutc(cl, "mds%d %p\n", session->s_mds, msg); 2370 ceph_con_send(&session->s_con, msg); 2371 msg = NULL; 2372 } 2373 } 2374 2375 BUG_ON(num_cap_releases != 0); 2376 2377 spin_lock(&session->s_cap_lock); 2378 if (!list_empty(&session->s_cap_releases)) 2379 goto again; 2380 spin_unlock(&session->s_cap_lock); 2381 2382 if (msg) { 2383 // Append cap_barrier field 2384 cap_barrier = msg->front.iov_base + msg->front.iov_len; 2385 *cap_barrier = barrier; 2386 msg->front.iov_len += sizeof(*cap_barrier); 2387 2388 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2389 doutc(cl, "mds%d %p\n", session->s_mds, msg); 2390 ceph_con_send(&session->s_con, msg); 2391 } 2392 return; 2393 out_err: 2394 pr_err_client(cl, "mds%d, failed to allocate message\n", 2395 session->s_mds); 2396 spin_lock(&session->s_cap_lock); 2397 list_splice(&tmp_list, &session->s_cap_releases); 2398 session->s_num_cap_releases += num_cap_releases; 2399 spin_unlock(&session->s_cap_lock); 2400 } 2401 2402 static void ceph_cap_release_work(struct work_struct *work) 2403 { 2404 struct ceph_mds_session *session = 2405 container_of(work, struct ceph_mds_session, s_cap_release_work); 2406 2407 mutex_lock(&session->s_mutex); 2408 if (session->s_state == CEPH_MDS_SESSION_OPEN || 2409 session->s_state == CEPH_MDS_SESSION_HUNG) 2410 ceph_send_cap_releases(session->s_mdsc, session); 2411 mutex_unlock(&session->s_mutex); 2412 ceph_put_mds_session(session); 2413 } 2414 2415 void ceph_flush_session_cap_releases(struct ceph_mds_client *mdsc, 2416 struct ceph_mds_session *session) 2417 { 2418 struct ceph_client *cl = mdsc->fsc->client; 2419 if (mdsc->stopping) 2420 return; 2421 2422 ceph_get_mds_session(session); 2423 if (queue_work(mdsc->fsc->cap_wq, 2424 &session->s_cap_release_work)) { 2425 doutc(cl, "cap release work queued\n"); 2426 } else { 2427 ceph_put_mds_session(session); 2428 doutc(cl, "failed to queue cap release work\n"); 2429 } 2430 } 2431 2432 /* 2433 * caller holds session->s_cap_lock 2434 */ 2435 void __ceph_queue_cap_release(struct ceph_mds_session *session, 2436 struct ceph_cap *cap) 2437 { 2438 list_add_tail(&cap->session_caps, &session->s_cap_releases); 2439 session->s_num_cap_releases++; 2440 2441 if (!(session->s_num_cap_releases % CEPH_CAPS_PER_RELEASE)) 2442 ceph_flush_session_cap_releases(session->s_mdsc, session); 2443 } 2444 2445 static void ceph_cap_reclaim_work(struct work_struct *work) 2446 { 2447 struct ceph_mds_client *mdsc = 2448 container_of(work, struct ceph_mds_client, cap_reclaim_work); 2449 int ret = ceph_trim_dentries(mdsc); 2450 if (ret == -EAGAIN) 2451 ceph_queue_cap_reclaim_work(mdsc); 2452 } 2453 2454 void ceph_queue_cap_reclaim_work(struct ceph_mds_client *mdsc) 2455 { 2456 struct ceph_client *cl = mdsc->fsc->client; 2457 if (mdsc->stopping) 2458 return; 2459 2460 if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_reclaim_work)) { 2461 doutc(cl, "caps reclaim work queued\n"); 2462 } else { 2463 doutc(cl, "failed to queue caps release work\n"); 2464 } 2465 } 2466 2467 void ceph_reclaim_caps_nr(struct ceph_mds_client *mdsc, int nr) 2468 { 2469 int val; 2470 if (!nr) 2471 return; 2472 val = atomic_add_return(nr, &mdsc->cap_reclaim_pending); 2473 if ((val % CEPH_CAPS_PER_RELEASE) < nr) { 2474 atomic_set(&mdsc->cap_reclaim_pending, 0); 2475 ceph_queue_cap_reclaim_work(mdsc); 2476 } 2477 } 2478 2479 void ceph_queue_cap_unlink_work(struct ceph_mds_client *mdsc) 2480 { 2481 struct ceph_client *cl = mdsc->fsc->client; 2482 if (mdsc->stopping) 2483 return; 2484 2485 if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_unlink_work)) { 2486 doutc(cl, "caps unlink work queued\n"); 2487 } else { 2488 doutc(cl, "failed to queue caps unlink work\n"); 2489 } 2490 } 2491 2492 static void ceph_cap_unlink_work(struct work_struct *work) 2493 { 2494 struct ceph_mds_client *mdsc = 2495 container_of(work, struct ceph_mds_client, cap_unlink_work); 2496 struct ceph_client *cl = mdsc->fsc->client; 2497 2498 doutc(cl, "begin\n"); 2499 spin_lock(&mdsc->cap_delay_lock); 2500 while (!list_empty(&mdsc->cap_unlink_delay_list)) { 2501 struct ceph_inode_info *ci; 2502 struct inode *inode; 2503 2504 ci = list_first_entry(&mdsc->cap_unlink_delay_list, 2505 struct ceph_inode_info, 2506 i_cap_delay_list); 2507 list_del_init(&ci->i_cap_delay_list); 2508 2509 inode = igrab(&ci->netfs.inode); 2510 if (inode) { 2511 spin_unlock(&mdsc->cap_delay_lock); 2512 doutc(cl, "on %p %llx.%llx\n", inode, 2513 ceph_vinop(inode)); 2514 ceph_check_caps(ci, CHECK_CAPS_FLUSH); 2515 iput(inode); 2516 spin_lock(&mdsc->cap_delay_lock); 2517 } 2518 } 2519 spin_unlock(&mdsc->cap_delay_lock); 2520 doutc(cl, "done\n"); 2521 } 2522 2523 /* 2524 * requests 2525 */ 2526 2527 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req, 2528 struct inode *dir) 2529 { 2530 struct ceph_inode_info *ci = ceph_inode(dir); 2531 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; 2532 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options; 2533 size_t size = sizeof(struct ceph_mds_reply_dir_entry); 2534 unsigned int num_entries; 2535 int order; 2536 2537 spin_lock(&ci->i_ceph_lock); 2538 num_entries = ci->i_files + ci->i_subdirs; 2539 spin_unlock(&ci->i_ceph_lock); 2540 num_entries = max(num_entries, 1U); 2541 num_entries = min(num_entries, opt->max_readdir); 2542 2543 order = get_order(size * num_entries); 2544 while (order >= 0) { 2545 rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL | 2546 __GFP_NOWARN | 2547 __GFP_ZERO, 2548 order); 2549 if (rinfo->dir_entries) 2550 break; 2551 order--; 2552 } 2553 if (!rinfo->dir_entries) 2554 return -ENOMEM; 2555 2556 num_entries = (PAGE_SIZE << order) / size; 2557 num_entries = min(num_entries, opt->max_readdir); 2558 2559 rinfo->dir_buf_size = PAGE_SIZE << order; 2560 req->r_num_caps = num_entries + 1; 2561 req->r_args.readdir.max_entries = cpu_to_le32(num_entries); 2562 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes); 2563 return 0; 2564 } 2565 2566 /* 2567 * Create an mds request. 2568 */ 2569 struct ceph_mds_request * 2570 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 2571 { 2572 struct ceph_mds_request *req; 2573 2574 req = kmem_cache_zalloc(ceph_mds_request_cachep, GFP_NOFS); 2575 if (!req) 2576 return ERR_PTR(-ENOMEM); 2577 2578 mutex_init(&req->r_fill_mutex); 2579 req->r_mdsc = mdsc; 2580 req->r_started = jiffies; 2581 req->r_start_latency = ktime_get(); 2582 req->r_resend_mds = -1; 2583 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 2584 INIT_LIST_HEAD(&req->r_unsafe_target_item); 2585 req->r_fmode = -1; 2586 req->r_feature_needed = -1; 2587 kref_init(&req->r_kref); 2588 RB_CLEAR_NODE(&req->r_node); 2589 INIT_LIST_HEAD(&req->r_wait); 2590 init_completion(&req->r_completion); 2591 init_completion(&req->r_safe_completion); 2592 INIT_LIST_HEAD(&req->r_unsafe_item); 2593 2594 ktime_get_coarse_real_ts64(&req->r_stamp); 2595 2596 req->r_op = op; 2597 req->r_direct_mode = mode; 2598 return req; 2599 } 2600 2601 /* 2602 * return oldest (lowest) request, tid in request tree, 0 if none. 2603 * 2604 * called under mdsc->mutex. 2605 */ 2606 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 2607 { 2608 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 2609 return NULL; 2610 return rb_entry(rb_first(&mdsc->request_tree), 2611 struct ceph_mds_request, r_node); 2612 } 2613 2614 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 2615 { 2616 return mdsc->oldest_tid; 2617 } 2618 2619 #if IS_ENABLED(CONFIG_FS_ENCRYPTION) 2620 static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen) 2621 { 2622 struct inode *dir = req->r_parent; 2623 struct dentry *dentry = req->r_dentry; 2624 u8 *cryptbuf = NULL; 2625 u32 len = 0; 2626 int ret = 0; 2627 2628 /* only encode if we have parent and dentry */ 2629 if (!dir || !dentry) 2630 goto success; 2631 2632 /* No-op unless this is encrypted */ 2633 if (!IS_ENCRYPTED(dir)) 2634 goto success; 2635 2636 ret = ceph_fscrypt_prepare_readdir(dir); 2637 if (ret < 0) 2638 return ERR_PTR(ret); 2639 2640 /* No key? Just ignore it. */ 2641 if (!fscrypt_has_encryption_key(dir)) 2642 goto success; 2643 2644 if (!fscrypt_fname_encrypted_size(dir, dentry->d_name.len, NAME_MAX, 2645 &len)) { 2646 WARN_ON_ONCE(1); 2647 return ERR_PTR(-ENAMETOOLONG); 2648 } 2649 2650 /* No need to append altname if name is short enough */ 2651 if (len <= CEPH_NOHASH_NAME_MAX) { 2652 len = 0; 2653 goto success; 2654 } 2655 2656 cryptbuf = kmalloc(len, GFP_KERNEL); 2657 if (!cryptbuf) 2658 return ERR_PTR(-ENOMEM); 2659 2660 ret = fscrypt_fname_encrypt(dir, &dentry->d_name, cryptbuf, len); 2661 if (ret) { 2662 kfree(cryptbuf); 2663 return ERR_PTR(ret); 2664 } 2665 success: 2666 *plen = len; 2667 return cryptbuf; 2668 } 2669 #else 2670 static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen) 2671 { 2672 *plen = 0; 2673 return NULL; 2674 } 2675 #endif 2676 2677 /** 2678 * ceph_mdsc_build_path - build a path string to a given dentry 2679 * @mdsc: mds client 2680 * @dentry: dentry to which path should be built 2681 * @plen: returned length of string 2682 * @pbase: returned base inode number 2683 * @for_wire: is this path going to be sent to the MDS? 2684 * 2685 * Build a string that represents the path to the dentry. This is mostly called 2686 * for two different purposes: 2687 * 2688 * 1) we need to build a path string to send to the MDS (for_wire == true) 2689 * 2) we need a path string for local presentation (e.g. debugfs) 2690 * (for_wire == false) 2691 * 2692 * The path is built in reverse, starting with the dentry. Walk back up toward 2693 * the root, building the path until the first non-snapped inode is reached 2694 * (for_wire) or the root inode is reached (!for_wire). 2695 * 2696 * Encode hidden .snap dirs as a double /, i.e. 2697 * foo/.snap/bar -> foo//bar 2698 */ 2699 char *ceph_mdsc_build_path(struct ceph_mds_client *mdsc, struct dentry *dentry, 2700 int *plen, u64 *pbase, int for_wire) 2701 { 2702 struct ceph_client *cl = mdsc->fsc->client; 2703 struct dentry *cur; 2704 struct inode *inode; 2705 char *path; 2706 int pos; 2707 unsigned seq; 2708 u64 base; 2709 2710 if (!dentry) 2711 return ERR_PTR(-EINVAL); 2712 2713 path = __getname(); 2714 if (!path) 2715 return ERR_PTR(-ENOMEM); 2716 retry: 2717 pos = PATH_MAX - 1; 2718 path[pos] = '\0'; 2719 2720 seq = read_seqbegin(&rename_lock); 2721 cur = dget(dentry); 2722 for (;;) { 2723 struct dentry *parent; 2724 2725 spin_lock(&cur->d_lock); 2726 inode = d_inode(cur); 2727 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 2728 doutc(cl, "path+%d: %p SNAPDIR\n", pos, cur); 2729 spin_unlock(&cur->d_lock); 2730 parent = dget_parent(cur); 2731 } else if (for_wire && inode && dentry != cur && 2732 ceph_snap(inode) == CEPH_NOSNAP) { 2733 spin_unlock(&cur->d_lock); 2734 pos++; /* get rid of any prepended '/' */ 2735 break; 2736 } else if (!for_wire || !IS_ENCRYPTED(d_inode(cur->d_parent))) { 2737 pos -= cur->d_name.len; 2738 if (pos < 0) { 2739 spin_unlock(&cur->d_lock); 2740 break; 2741 } 2742 memcpy(path + pos, cur->d_name.name, cur->d_name.len); 2743 spin_unlock(&cur->d_lock); 2744 parent = dget_parent(cur); 2745 } else { 2746 int len, ret; 2747 char buf[NAME_MAX]; 2748 2749 /* 2750 * Proactively copy name into buf, in case we need to 2751 * present it as-is. 2752 */ 2753 memcpy(buf, cur->d_name.name, cur->d_name.len); 2754 len = cur->d_name.len; 2755 spin_unlock(&cur->d_lock); 2756 parent = dget_parent(cur); 2757 2758 ret = ceph_fscrypt_prepare_readdir(d_inode(parent)); 2759 if (ret < 0) { 2760 dput(parent); 2761 dput(cur); 2762 return ERR_PTR(ret); 2763 } 2764 2765 if (fscrypt_has_encryption_key(d_inode(parent))) { 2766 len = ceph_encode_encrypted_fname(d_inode(parent), 2767 cur, buf); 2768 if (len < 0) { 2769 dput(parent); 2770 dput(cur); 2771 return ERR_PTR(len); 2772 } 2773 } 2774 pos -= len; 2775 if (pos < 0) { 2776 dput(parent); 2777 break; 2778 } 2779 memcpy(path + pos, buf, len); 2780 } 2781 dput(cur); 2782 cur = parent; 2783 2784 /* Are we at the root? */ 2785 if (IS_ROOT(cur)) 2786 break; 2787 2788 /* Are we out of buffer? */ 2789 if (--pos < 0) 2790 break; 2791 2792 path[pos] = '/'; 2793 } 2794 inode = d_inode(cur); 2795 base = inode ? ceph_ino(inode) : 0; 2796 dput(cur); 2797 2798 if (read_seqretry(&rename_lock, seq)) 2799 goto retry; 2800 2801 if (pos < 0) { 2802 /* 2803 * The path is longer than PATH_MAX and this function 2804 * cannot ever succeed. Creating paths that long is 2805 * possible with Ceph, but Linux cannot use them. 2806 */ 2807 return ERR_PTR(-ENAMETOOLONG); 2808 } 2809 2810 *pbase = base; 2811 *plen = PATH_MAX - 1 - pos; 2812 doutc(cl, "on %p %d built %llx '%.*s'\n", dentry, d_count(dentry), 2813 base, *plen, path + pos); 2814 return path + pos; 2815 } 2816 2817 static int build_dentry_path(struct ceph_mds_client *mdsc, struct dentry *dentry, 2818 struct inode *dir, const char **ppath, int *ppathlen, 2819 u64 *pino, bool *pfreepath, bool parent_locked) 2820 { 2821 char *path; 2822 2823 rcu_read_lock(); 2824 if (!dir) 2825 dir = d_inode_rcu(dentry->d_parent); 2826 if (dir && parent_locked && ceph_snap(dir) == CEPH_NOSNAP && 2827 !IS_ENCRYPTED(dir)) { 2828 *pino = ceph_ino(dir); 2829 rcu_read_unlock(); 2830 *ppath = dentry->d_name.name; 2831 *ppathlen = dentry->d_name.len; 2832 return 0; 2833 } 2834 rcu_read_unlock(); 2835 path = ceph_mdsc_build_path(mdsc, dentry, ppathlen, pino, 1); 2836 if (IS_ERR(path)) 2837 return PTR_ERR(path); 2838 *ppath = path; 2839 *pfreepath = true; 2840 return 0; 2841 } 2842 2843 static int build_inode_path(struct inode *inode, 2844 const char **ppath, int *ppathlen, u64 *pino, 2845 bool *pfreepath) 2846 { 2847 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 2848 struct dentry *dentry; 2849 char *path; 2850 2851 if (ceph_snap(inode) == CEPH_NOSNAP) { 2852 *pino = ceph_ino(inode); 2853 *ppathlen = 0; 2854 return 0; 2855 } 2856 dentry = d_find_alias(inode); 2857 path = ceph_mdsc_build_path(mdsc, dentry, ppathlen, pino, 1); 2858 dput(dentry); 2859 if (IS_ERR(path)) 2860 return PTR_ERR(path); 2861 *ppath = path; 2862 *pfreepath = true; 2863 return 0; 2864 } 2865 2866 /* 2867 * request arguments may be specified via an inode *, a dentry *, or 2868 * an explicit ino+path. 2869 */ 2870 static int set_request_path_attr(struct ceph_mds_client *mdsc, struct inode *rinode, 2871 struct dentry *rdentry, struct inode *rdiri, 2872 const char *rpath, u64 rino, const char **ppath, 2873 int *pathlen, u64 *ino, bool *freepath, 2874 bool parent_locked) 2875 { 2876 struct ceph_client *cl = mdsc->fsc->client; 2877 int r = 0; 2878 2879 if (rinode) { 2880 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 2881 doutc(cl, " inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 2882 ceph_snap(rinode)); 2883 } else if (rdentry) { 2884 r = build_dentry_path(mdsc, rdentry, rdiri, ppath, pathlen, ino, 2885 freepath, parent_locked); 2886 doutc(cl, " dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, *ppath); 2887 } else if (rpath || rino) { 2888 *ino = rino; 2889 *ppath = rpath; 2890 *pathlen = rpath ? strlen(rpath) : 0; 2891 doutc(cl, " path %.*s\n", *pathlen, rpath); 2892 } 2893 2894 return r; 2895 } 2896 2897 static void encode_mclientrequest_tail(void **p, 2898 const struct ceph_mds_request *req) 2899 { 2900 struct ceph_timespec ts; 2901 int i; 2902 2903 ceph_encode_timespec64(&ts, &req->r_stamp); 2904 ceph_encode_copy(p, &ts, sizeof(ts)); 2905 2906 /* v4: gid_list */ 2907 ceph_encode_32(p, req->r_cred->group_info->ngroups); 2908 for (i = 0; i < req->r_cred->group_info->ngroups; i++) 2909 ceph_encode_64(p, from_kgid(&init_user_ns, 2910 req->r_cred->group_info->gid[i])); 2911 2912 /* v5: altname */ 2913 ceph_encode_32(p, req->r_altname_len); 2914 ceph_encode_copy(p, req->r_altname, req->r_altname_len); 2915 2916 /* v6: fscrypt_auth and fscrypt_file */ 2917 if (req->r_fscrypt_auth) { 2918 u32 authlen = ceph_fscrypt_auth_len(req->r_fscrypt_auth); 2919 2920 ceph_encode_32(p, authlen); 2921 ceph_encode_copy(p, req->r_fscrypt_auth, authlen); 2922 } else { 2923 ceph_encode_32(p, 0); 2924 } 2925 if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags)) { 2926 ceph_encode_32(p, sizeof(__le64)); 2927 ceph_encode_64(p, req->r_fscrypt_file); 2928 } else { 2929 ceph_encode_32(p, 0); 2930 } 2931 } 2932 2933 static inline u16 mds_supported_head_version(struct ceph_mds_session *session) 2934 { 2935 if (!test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD, &session->s_features)) 2936 return 1; 2937 2938 if (!test_bit(CEPHFS_FEATURE_HAS_OWNER_UIDGID, &session->s_features)) 2939 return 2; 2940 2941 return CEPH_MDS_REQUEST_HEAD_VERSION; 2942 } 2943 2944 static struct ceph_mds_request_head_legacy * 2945 find_legacy_request_head(void *p, u64 features) 2946 { 2947 bool legacy = !(features & CEPH_FEATURE_FS_BTIME); 2948 struct ceph_mds_request_head_old *ohead; 2949 2950 if (legacy) 2951 return (struct ceph_mds_request_head_legacy *)p; 2952 ohead = (struct ceph_mds_request_head_old *)p; 2953 return (struct ceph_mds_request_head_legacy *)&ohead->oldest_client_tid; 2954 } 2955 2956 /* 2957 * called under mdsc->mutex 2958 */ 2959 static struct ceph_msg *create_request_message(struct ceph_mds_session *session, 2960 struct ceph_mds_request *req, 2961 bool drop_cap_releases) 2962 { 2963 int mds = session->s_mds; 2964 struct ceph_mds_client *mdsc = session->s_mdsc; 2965 struct ceph_client *cl = mdsc->fsc->client; 2966 struct ceph_msg *msg; 2967 struct ceph_mds_request_head_legacy *lhead; 2968 const char *path1 = NULL; 2969 const char *path2 = NULL; 2970 u64 ino1 = 0, ino2 = 0; 2971 int pathlen1 = 0, pathlen2 = 0; 2972 bool freepath1 = false, freepath2 = false; 2973 struct dentry *old_dentry = NULL; 2974 int len; 2975 u16 releases; 2976 void *p, *end; 2977 int ret; 2978 bool legacy = !(session->s_con.peer_features & CEPH_FEATURE_FS_BTIME); 2979 u16 request_head_version = mds_supported_head_version(session); 2980 kuid_t caller_fsuid = req->r_cred->fsuid; 2981 kgid_t caller_fsgid = req->r_cred->fsgid; 2982 2983 ret = set_request_path_attr(mdsc, req->r_inode, req->r_dentry, 2984 req->r_parent, req->r_path1, req->r_ino1.ino, 2985 &path1, &pathlen1, &ino1, &freepath1, 2986 test_bit(CEPH_MDS_R_PARENT_LOCKED, 2987 &req->r_req_flags)); 2988 if (ret < 0) { 2989 msg = ERR_PTR(ret); 2990 goto out; 2991 } 2992 2993 /* If r_old_dentry is set, then assume that its parent is locked */ 2994 if (req->r_old_dentry && 2995 !(req->r_old_dentry->d_flags & DCACHE_DISCONNECTED)) 2996 old_dentry = req->r_old_dentry; 2997 ret = set_request_path_attr(mdsc, NULL, old_dentry, 2998 req->r_old_dentry_dir, 2999 req->r_path2, req->r_ino2.ino, 3000 &path2, &pathlen2, &ino2, &freepath2, true); 3001 if (ret < 0) { 3002 msg = ERR_PTR(ret); 3003 goto out_free1; 3004 } 3005 3006 req->r_altname = get_fscrypt_altname(req, &req->r_altname_len); 3007 if (IS_ERR(req->r_altname)) { 3008 msg = ERR_CAST(req->r_altname); 3009 req->r_altname = NULL; 3010 goto out_free2; 3011 } 3012 3013 /* 3014 * For old cephs without supporting the 32bit retry/fwd feature 3015 * it will copy the raw memories directly when decoding the 3016 * requests. While new cephs will decode the head depending the 3017 * version member, so we need to make sure it will be compatible 3018 * with them both. 3019 */ 3020 if (legacy) 3021 len = sizeof(struct ceph_mds_request_head_legacy); 3022 else if (request_head_version == 1) 3023 len = sizeof(struct ceph_mds_request_head_old); 3024 else if (request_head_version == 2) 3025 len = offsetofend(struct ceph_mds_request_head, ext_num_fwd); 3026 else 3027 len = sizeof(struct ceph_mds_request_head); 3028 3029 /* filepaths */ 3030 len += 2 * (1 + sizeof(u32) + sizeof(u64)); 3031 len += pathlen1 + pathlen2; 3032 3033 /* cap releases */ 3034 len += sizeof(struct ceph_mds_request_release) * 3035 (!!req->r_inode_drop + !!req->r_dentry_drop + 3036 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 3037 3038 if (req->r_dentry_drop) 3039 len += pathlen1; 3040 if (req->r_old_dentry_drop) 3041 len += pathlen2; 3042 3043 /* MClientRequest tail */ 3044 3045 /* req->r_stamp */ 3046 len += sizeof(struct ceph_timespec); 3047 3048 /* gid list */ 3049 len += sizeof(u32) + (sizeof(u64) * req->r_cred->group_info->ngroups); 3050 3051 /* alternate name */ 3052 len += sizeof(u32) + req->r_altname_len; 3053 3054 /* fscrypt_auth */ 3055 len += sizeof(u32); // fscrypt_auth 3056 if (req->r_fscrypt_auth) 3057 len += ceph_fscrypt_auth_len(req->r_fscrypt_auth); 3058 3059 /* fscrypt_file */ 3060 len += sizeof(u32); 3061 if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags)) 3062 len += sizeof(__le64); 3063 3064 msg = ceph_msg_new2(CEPH_MSG_CLIENT_REQUEST, len, 1, GFP_NOFS, false); 3065 if (!msg) { 3066 msg = ERR_PTR(-ENOMEM); 3067 goto out_free2; 3068 } 3069 3070 msg->hdr.tid = cpu_to_le64(req->r_tid); 3071 3072 lhead = find_legacy_request_head(msg->front.iov_base, 3073 session->s_con.peer_features); 3074 3075 if ((req->r_mnt_idmap != &nop_mnt_idmap) && 3076 !test_bit(CEPHFS_FEATURE_HAS_OWNER_UIDGID, &session->s_features)) { 3077 WARN_ON_ONCE(!IS_CEPH_MDS_OP_NEWINODE(req->r_op)); 3078 3079 if (enable_unsafe_idmap) { 3080 pr_warn_once_client(cl, 3081 "idmapped mount is used and CEPHFS_FEATURE_HAS_OWNER_UIDGID" 3082 " is not supported by MDS. UID/GID-based restrictions may" 3083 " not work properly.\n"); 3084 3085 caller_fsuid = from_vfsuid(req->r_mnt_idmap, &init_user_ns, 3086 VFSUIDT_INIT(req->r_cred->fsuid)); 3087 caller_fsgid = from_vfsgid(req->r_mnt_idmap, &init_user_ns, 3088 VFSGIDT_INIT(req->r_cred->fsgid)); 3089 } else { 3090 pr_err_ratelimited_client(cl, 3091 "idmapped mount is used and CEPHFS_FEATURE_HAS_OWNER_UIDGID" 3092 " is not supported by MDS. Fail request with -EIO.\n"); 3093 3094 ret = -EIO; 3095 goto out_err; 3096 } 3097 } 3098 3099 /* 3100 * The ceph_mds_request_head_legacy didn't contain a version field, and 3101 * one was added when we moved the message version from 3->4. 3102 */ 3103 if (legacy) { 3104 msg->hdr.version = cpu_to_le16(3); 3105 p = msg->front.iov_base + sizeof(*lhead); 3106 } else if (request_head_version == 1) { 3107 struct ceph_mds_request_head_old *ohead = msg->front.iov_base; 3108 3109 msg->hdr.version = cpu_to_le16(4); 3110 ohead->version = cpu_to_le16(1); 3111 p = msg->front.iov_base + sizeof(*ohead); 3112 } else if (request_head_version == 2) { 3113 struct ceph_mds_request_head *nhead = msg->front.iov_base; 3114 3115 msg->hdr.version = cpu_to_le16(6); 3116 nhead->version = cpu_to_le16(2); 3117 3118 p = msg->front.iov_base + offsetofend(struct ceph_mds_request_head, ext_num_fwd); 3119 } else { 3120 struct ceph_mds_request_head *nhead = msg->front.iov_base; 3121 kuid_t owner_fsuid; 3122 kgid_t owner_fsgid; 3123 3124 msg->hdr.version = cpu_to_le16(6); 3125 nhead->version = cpu_to_le16(CEPH_MDS_REQUEST_HEAD_VERSION); 3126 nhead->struct_len = cpu_to_le32(sizeof(struct ceph_mds_request_head)); 3127 3128 if (IS_CEPH_MDS_OP_NEWINODE(req->r_op)) { 3129 owner_fsuid = from_vfsuid(req->r_mnt_idmap, &init_user_ns, 3130 VFSUIDT_INIT(req->r_cred->fsuid)); 3131 owner_fsgid = from_vfsgid(req->r_mnt_idmap, &init_user_ns, 3132 VFSGIDT_INIT(req->r_cred->fsgid)); 3133 nhead->owner_uid = cpu_to_le32(from_kuid(&init_user_ns, owner_fsuid)); 3134 nhead->owner_gid = cpu_to_le32(from_kgid(&init_user_ns, owner_fsgid)); 3135 } else { 3136 nhead->owner_uid = cpu_to_le32(-1); 3137 nhead->owner_gid = cpu_to_le32(-1); 3138 } 3139 3140 p = msg->front.iov_base + sizeof(*nhead); 3141 } 3142 3143 end = msg->front.iov_base + msg->front.iov_len; 3144 3145 lhead->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 3146 lhead->op = cpu_to_le32(req->r_op); 3147 lhead->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, 3148 caller_fsuid)); 3149 lhead->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, 3150 caller_fsgid)); 3151 lhead->ino = cpu_to_le64(req->r_deleg_ino); 3152 lhead->args = req->r_args; 3153 3154 ceph_encode_filepath(&p, end, ino1, path1); 3155 ceph_encode_filepath(&p, end, ino2, path2); 3156 3157 /* make note of release offset, in case we need to replay */ 3158 req->r_request_release_offset = p - msg->front.iov_base; 3159 3160 /* cap releases */ 3161 releases = 0; 3162 if (req->r_inode_drop) 3163 releases += ceph_encode_inode_release(&p, 3164 req->r_inode ? req->r_inode : d_inode(req->r_dentry), 3165 mds, req->r_inode_drop, req->r_inode_unless, 3166 req->r_op == CEPH_MDS_OP_READDIR); 3167 if (req->r_dentry_drop) { 3168 ret = ceph_encode_dentry_release(&p, req->r_dentry, 3169 req->r_parent, mds, req->r_dentry_drop, 3170 req->r_dentry_unless); 3171 if (ret < 0) 3172 goto out_err; 3173 releases += ret; 3174 } 3175 if (req->r_old_dentry_drop) { 3176 ret = ceph_encode_dentry_release(&p, req->r_old_dentry, 3177 req->r_old_dentry_dir, mds, 3178 req->r_old_dentry_drop, 3179 req->r_old_dentry_unless); 3180 if (ret < 0) 3181 goto out_err; 3182 releases += ret; 3183 } 3184 if (req->r_old_inode_drop) 3185 releases += ceph_encode_inode_release(&p, 3186 d_inode(req->r_old_dentry), 3187 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 3188 3189 if (drop_cap_releases) { 3190 releases = 0; 3191 p = msg->front.iov_base + req->r_request_release_offset; 3192 } 3193 3194 lhead->num_releases = cpu_to_le16(releases); 3195 3196 encode_mclientrequest_tail(&p, req); 3197 3198 if (WARN_ON_ONCE(p > end)) { 3199 ceph_msg_put(msg); 3200 msg = ERR_PTR(-ERANGE); 3201 goto out_free2; 3202 } 3203 3204 msg->front.iov_len = p - msg->front.iov_base; 3205 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 3206 3207 if (req->r_pagelist) { 3208 struct ceph_pagelist *pagelist = req->r_pagelist; 3209 ceph_msg_data_add_pagelist(msg, pagelist); 3210 msg->hdr.data_len = cpu_to_le32(pagelist->length); 3211 } else { 3212 msg->hdr.data_len = 0; 3213 } 3214 3215 msg->hdr.data_off = cpu_to_le16(0); 3216 3217 out_free2: 3218 if (freepath2) 3219 ceph_mdsc_free_path((char *)path2, pathlen2); 3220 out_free1: 3221 if (freepath1) 3222 ceph_mdsc_free_path((char *)path1, pathlen1); 3223 out: 3224 return msg; 3225 out_err: 3226 ceph_msg_put(msg); 3227 msg = ERR_PTR(ret); 3228 goto out_free2; 3229 } 3230 3231 /* 3232 * called under mdsc->mutex if error, under no mutex if 3233 * success. 3234 */ 3235 static void complete_request(struct ceph_mds_client *mdsc, 3236 struct ceph_mds_request *req) 3237 { 3238 req->r_end_latency = ktime_get(); 3239 3240 if (req->r_callback) 3241 req->r_callback(mdsc, req); 3242 complete_all(&req->r_completion); 3243 } 3244 3245 /* 3246 * called under mdsc->mutex 3247 */ 3248 static int __prepare_send_request(struct ceph_mds_session *session, 3249 struct ceph_mds_request *req, 3250 bool drop_cap_releases) 3251 { 3252 int mds = session->s_mds; 3253 struct ceph_mds_client *mdsc = session->s_mdsc; 3254 struct ceph_client *cl = mdsc->fsc->client; 3255 struct ceph_mds_request_head_legacy *lhead; 3256 struct ceph_mds_request_head *nhead; 3257 struct ceph_msg *msg; 3258 int flags = 0, old_max_retry; 3259 bool old_version = !test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD, 3260 &session->s_features); 3261 3262 /* 3263 * Avoid infinite retrying after overflow. The client will 3264 * increase the retry count and if the MDS is old version, 3265 * so we limit to retry at most 256 times. 3266 */ 3267 if (req->r_attempts) { 3268 old_max_retry = sizeof_field(struct ceph_mds_request_head_old, 3269 num_retry); 3270 old_max_retry = 1 << (old_max_retry * BITS_PER_BYTE); 3271 if ((old_version && req->r_attempts >= old_max_retry) || 3272 ((uint32_t)req->r_attempts >= U32_MAX)) { 3273 pr_warn_ratelimited_client(cl, "request tid %llu seq overflow\n", 3274 req->r_tid); 3275 return -EMULTIHOP; 3276 } 3277 } 3278 3279 req->r_attempts++; 3280 if (req->r_inode) { 3281 struct ceph_cap *cap = 3282 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 3283 3284 if (cap) 3285 req->r_sent_on_mseq = cap->mseq; 3286 else 3287 req->r_sent_on_mseq = -1; 3288 } 3289 doutc(cl, "%p tid %lld %s (attempt %d)\n", req, req->r_tid, 3290 ceph_mds_op_name(req->r_op), req->r_attempts); 3291 3292 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3293 void *p; 3294 3295 /* 3296 * Replay. Do not regenerate message (and rebuild 3297 * paths, etc.); just use the original message. 3298 * Rebuilding paths will break for renames because 3299 * d_move mangles the src name. 3300 */ 3301 msg = req->r_request; 3302 lhead = find_legacy_request_head(msg->front.iov_base, 3303 session->s_con.peer_features); 3304 3305 flags = le32_to_cpu(lhead->flags); 3306 flags |= CEPH_MDS_FLAG_REPLAY; 3307 lhead->flags = cpu_to_le32(flags); 3308 3309 if (req->r_target_inode) 3310 lhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 3311 3312 lhead->num_retry = req->r_attempts - 1; 3313 if (!old_version) { 3314 nhead = (struct ceph_mds_request_head*)msg->front.iov_base; 3315 nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1); 3316 } 3317 3318 /* remove cap/dentry releases from message */ 3319 lhead->num_releases = 0; 3320 3321 p = msg->front.iov_base + req->r_request_release_offset; 3322 encode_mclientrequest_tail(&p, req); 3323 3324 msg->front.iov_len = p - msg->front.iov_base; 3325 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 3326 return 0; 3327 } 3328 3329 if (req->r_request) { 3330 ceph_msg_put(req->r_request); 3331 req->r_request = NULL; 3332 } 3333 msg = create_request_message(session, req, drop_cap_releases); 3334 if (IS_ERR(msg)) { 3335 req->r_err = PTR_ERR(msg); 3336 return PTR_ERR(msg); 3337 } 3338 req->r_request = msg; 3339 3340 lhead = find_legacy_request_head(msg->front.iov_base, 3341 session->s_con.peer_features); 3342 lhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 3343 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 3344 flags |= CEPH_MDS_FLAG_REPLAY; 3345 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) 3346 flags |= CEPH_MDS_FLAG_ASYNC; 3347 if (req->r_parent) 3348 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 3349 lhead->flags = cpu_to_le32(flags); 3350 lhead->num_fwd = req->r_num_fwd; 3351 lhead->num_retry = req->r_attempts - 1; 3352 if (!old_version) { 3353 nhead = (struct ceph_mds_request_head*)msg->front.iov_base; 3354 nhead->ext_num_fwd = cpu_to_le32(req->r_num_fwd); 3355 nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1); 3356 } 3357 3358 doutc(cl, " r_parent = %p\n", req->r_parent); 3359 return 0; 3360 } 3361 3362 /* 3363 * called under mdsc->mutex 3364 */ 3365 static int __send_request(struct ceph_mds_session *session, 3366 struct ceph_mds_request *req, 3367 bool drop_cap_releases) 3368 { 3369 int err; 3370 3371 err = __prepare_send_request(session, req, drop_cap_releases); 3372 if (!err) { 3373 ceph_msg_get(req->r_request); 3374 ceph_con_send(&session->s_con, req->r_request); 3375 } 3376 3377 return err; 3378 } 3379 3380 /* 3381 * send request, or put it on the appropriate wait list. 3382 */ 3383 static void __do_request(struct ceph_mds_client *mdsc, 3384 struct ceph_mds_request *req) 3385 { 3386 struct ceph_client *cl = mdsc->fsc->client; 3387 struct ceph_mds_session *session = NULL; 3388 int mds = -1; 3389 int err = 0; 3390 bool random; 3391 3392 if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { 3393 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) 3394 __unregister_request(mdsc, req); 3395 return; 3396 } 3397 3398 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) { 3399 doutc(cl, "metadata corrupted\n"); 3400 err = -EIO; 3401 goto finish; 3402 } 3403 if (req->r_timeout && 3404 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 3405 doutc(cl, "timed out\n"); 3406 err = -ETIMEDOUT; 3407 goto finish; 3408 } 3409 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) { 3410 doutc(cl, "forced umount\n"); 3411 err = -EIO; 3412 goto finish; 3413 } 3414 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) { 3415 if (mdsc->mdsmap_err) { 3416 err = mdsc->mdsmap_err; 3417 doutc(cl, "mdsmap err %d\n", err); 3418 goto finish; 3419 } 3420 if (mdsc->mdsmap->m_epoch == 0) { 3421 doutc(cl, "no mdsmap, waiting for map\n"); 3422 list_add(&req->r_wait, &mdsc->waiting_for_map); 3423 return; 3424 } 3425 if (!(mdsc->fsc->mount_options->flags & 3426 CEPH_MOUNT_OPT_MOUNTWAIT) && 3427 !ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) { 3428 err = -EHOSTUNREACH; 3429 goto finish; 3430 } 3431 } 3432 3433 put_request_session(req); 3434 3435 mds = __choose_mds(mdsc, req, &random); 3436 if (mds < 0 || 3437 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 3438 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) { 3439 err = -EJUKEBOX; 3440 goto finish; 3441 } 3442 doutc(cl, "no mds or not active, waiting for map\n"); 3443 list_add(&req->r_wait, &mdsc->waiting_for_map); 3444 return; 3445 } 3446 3447 /* get, open session */ 3448 session = __ceph_lookup_mds_session(mdsc, mds); 3449 if (!session) { 3450 session = register_session(mdsc, mds); 3451 if (IS_ERR(session)) { 3452 err = PTR_ERR(session); 3453 goto finish; 3454 } 3455 } 3456 req->r_session = ceph_get_mds_session(session); 3457 3458 doutc(cl, "mds%d session %p state %s\n", mds, session, 3459 ceph_session_state_name(session->s_state)); 3460 3461 /* 3462 * The old ceph will crash the MDSs when see unknown OPs 3463 */ 3464 if (req->r_feature_needed > 0 && 3465 !test_bit(req->r_feature_needed, &session->s_features)) { 3466 err = -EOPNOTSUPP; 3467 goto out_session; 3468 } 3469 3470 if (session->s_state != CEPH_MDS_SESSION_OPEN && 3471 session->s_state != CEPH_MDS_SESSION_HUNG) { 3472 /* 3473 * We cannot queue async requests since the caps and delegated 3474 * inodes are bound to the session. Just return -EJUKEBOX and 3475 * let the caller retry a sync request in that case. 3476 */ 3477 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) { 3478 err = -EJUKEBOX; 3479 goto out_session; 3480 } 3481 3482 /* 3483 * If the session has been REJECTED, then return a hard error, 3484 * unless it's a CLEANRECOVER mount, in which case we'll queue 3485 * it to the mdsc queue. 3486 */ 3487 if (session->s_state == CEPH_MDS_SESSION_REJECTED) { 3488 if (ceph_test_mount_opt(mdsc->fsc, CLEANRECOVER)) 3489 list_add(&req->r_wait, &mdsc->waiting_for_map); 3490 else 3491 err = -EACCES; 3492 goto out_session; 3493 } 3494 3495 if (session->s_state == CEPH_MDS_SESSION_NEW || 3496 session->s_state == CEPH_MDS_SESSION_CLOSING) { 3497 err = __open_session(mdsc, session); 3498 if (err) 3499 goto out_session; 3500 /* retry the same mds later */ 3501 if (random) 3502 req->r_resend_mds = mds; 3503 } 3504 list_add(&req->r_wait, &session->s_waiting); 3505 goto out_session; 3506 } 3507 3508 /* send request */ 3509 req->r_resend_mds = -1; /* forget any previous mds hint */ 3510 3511 if (req->r_request_started == 0) /* note request start time */ 3512 req->r_request_started = jiffies; 3513 3514 /* 3515 * For async create we will choose the auth MDS of frag in parent 3516 * directory to send the request and usually this works fine, but 3517 * if the migrated the dirtory to another MDS before it could handle 3518 * it the request will be forwarded. 3519 * 3520 * And then the auth cap will be changed. 3521 */ 3522 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags) && req->r_num_fwd) { 3523 struct ceph_dentry_info *di = ceph_dentry(req->r_dentry); 3524 struct ceph_inode_info *ci; 3525 struct ceph_cap *cap; 3526 3527 /* 3528 * The request maybe handled very fast and the new inode 3529 * hasn't been linked to the dentry yet. We need to wait 3530 * for the ceph_finish_async_create(), which shouldn't be 3531 * stuck too long or fail in thoery, to finish when forwarding 3532 * the request. 3533 */ 3534 if (!d_inode(req->r_dentry)) { 3535 err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_CREATE_BIT, 3536 TASK_KILLABLE); 3537 if (err) { 3538 mutex_lock(&req->r_fill_mutex); 3539 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 3540 mutex_unlock(&req->r_fill_mutex); 3541 goto out_session; 3542 } 3543 } 3544 3545 ci = ceph_inode(d_inode(req->r_dentry)); 3546 3547 spin_lock(&ci->i_ceph_lock); 3548 cap = ci->i_auth_cap; 3549 if (ci->i_ceph_flags & CEPH_I_ASYNC_CREATE && mds != cap->mds) { 3550 doutc(cl, "session changed for auth cap %d -> %d\n", 3551 cap->session->s_mds, session->s_mds); 3552 3553 /* Remove the auth cap from old session */ 3554 spin_lock(&cap->session->s_cap_lock); 3555 cap->session->s_nr_caps--; 3556 list_del_init(&cap->session_caps); 3557 spin_unlock(&cap->session->s_cap_lock); 3558 3559 /* Add the auth cap to the new session */ 3560 cap->mds = mds; 3561 cap->session = session; 3562 spin_lock(&session->s_cap_lock); 3563 session->s_nr_caps++; 3564 list_add_tail(&cap->session_caps, &session->s_caps); 3565 spin_unlock(&session->s_cap_lock); 3566 3567 change_auth_cap_ses(ci, session); 3568 } 3569 spin_unlock(&ci->i_ceph_lock); 3570 } 3571 3572 err = __send_request(session, req, false); 3573 3574 out_session: 3575 ceph_put_mds_session(session); 3576 finish: 3577 if (err) { 3578 doutc(cl, "early error %d\n", err); 3579 req->r_err = err; 3580 complete_request(mdsc, req); 3581 __unregister_request(mdsc, req); 3582 } 3583 return; 3584 } 3585 3586 /* 3587 * called under mdsc->mutex 3588 */ 3589 static void __wake_requests(struct ceph_mds_client *mdsc, 3590 struct list_head *head) 3591 { 3592 struct ceph_client *cl = mdsc->fsc->client; 3593 struct ceph_mds_request *req; 3594 LIST_HEAD(tmp_list); 3595 3596 list_splice_init(head, &tmp_list); 3597 3598 while (!list_empty(&tmp_list)) { 3599 req = list_entry(tmp_list.next, 3600 struct ceph_mds_request, r_wait); 3601 list_del_init(&req->r_wait); 3602 doutc(cl, " wake request %p tid %llu\n", req, 3603 req->r_tid); 3604 __do_request(mdsc, req); 3605 } 3606 } 3607 3608 /* 3609 * Wake up threads with requests pending for @mds, so that they can 3610 * resubmit their requests to a possibly different mds. 3611 */ 3612 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 3613 { 3614 struct ceph_client *cl = mdsc->fsc->client; 3615 struct ceph_mds_request *req; 3616 struct rb_node *p = rb_first(&mdsc->request_tree); 3617 3618 doutc(cl, "kick_requests mds%d\n", mds); 3619 while (p) { 3620 req = rb_entry(p, struct ceph_mds_request, r_node); 3621 p = rb_next(p); 3622 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 3623 continue; 3624 if (req->r_attempts > 0) 3625 continue; /* only new requests */ 3626 if (req->r_session && 3627 req->r_session->s_mds == mds) { 3628 doutc(cl, " kicking tid %llu\n", req->r_tid); 3629 list_del_init(&req->r_wait); 3630 __do_request(mdsc, req); 3631 } 3632 } 3633 } 3634 3635 int ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, struct inode *dir, 3636 struct ceph_mds_request *req) 3637 { 3638 struct ceph_client *cl = mdsc->fsc->client; 3639 int err = 0; 3640 3641 /* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */ 3642 if (req->r_inode) 3643 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 3644 if (req->r_parent) { 3645 struct ceph_inode_info *ci = ceph_inode(req->r_parent); 3646 int fmode = (req->r_op & CEPH_MDS_OP_WRITE) ? 3647 CEPH_FILE_MODE_WR : CEPH_FILE_MODE_RD; 3648 spin_lock(&ci->i_ceph_lock); 3649 ceph_take_cap_refs(ci, CEPH_CAP_PIN, false); 3650 __ceph_touch_fmode(ci, mdsc, fmode); 3651 spin_unlock(&ci->i_ceph_lock); 3652 } 3653 if (req->r_old_dentry_dir) 3654 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 3655 CEPH_CAP_PIN); 3656 3657 if (req->r_inode) { 3658 err = ceph_wait_on_async_create(req->r_inode); 3659 if (err) { 3660 doutc(cl, "wait for async create returned: %d\n", err); 3661 return err; 3662 } 3663 } 3664 3665 if (!err && req->r_old_inode) { 3666 err = ceph_wait_on_async_create(req->r_old_inode); 3667 if (err) { 3668 doutc(cl, "wait for async create returned: %d\n", err); 3669 return err; 3670 } 3671 } 3672 3673 doutc(cl, "submit_request on %p for inode %p\n", req, dir); 3674 mutex_lock(&mdsc->mutex); 3675 __register_request(mdsc, req, dir); 3676 __do_request(mdsc, req); 3677 err = req->r_err; 3678 mutex_unlock(&mdsc->mutex); 3679 return err; 3680 } 3681 3682 int ceph_mdsc_wait_request(struct ceph_mds_client *mdsc, 3683 struct ceph_mds_request *req, 3684 ceph_mds_request_wait_callback_t wait_func) 3685 { 3686 struct ceph_client *cl = mdsc->fsc->client; 3687 int err; 3688 3689 /* wait */ 3690 doutc(cl, "do_request waiting\n"); 3691 if (wait_func) { 3692 err = wait_func(mdsc, req); 3693 } else { 3694 long timeleft = wait_for_completion_killable_timeout( 3695 &req->r_completion, 3696 ceph_timeout_jiffies(req->r_timeout)); 3697 if (timeleft > 0) 3698 err = 0; 3699 else if (!timeleft) 3700 err = -ETIMEDOUT; /* timed out */ 3701 else 3702 err = timeleft; /* killed */ 3703 } 3704 doutc(cl, "do_request waited, got %d\n", err); 3705 mutex_lock(&mdsc->mutex); 3706 3707 /* only abort if we didn't race with a real reply */ 3708 if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { 3709 err = le32_to_cpu(req->r_reply_info.head->result); 3710 } else if (err < 0) { 3711 doutc(cl, "aborted request %lld with %d\n", req->r_tid, err); 3712 3713 /* 3714 * ensure we aren't running concurrently with 3715 * ceph_fill_trace or ceph_readdir_prepopulate, which 3716 * rely on locks (dir mutex) held by our caller. 3717 */ 3718 mutex_lock(&req->r_fill_mutex); 3719 req->r_err = err; 3720 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 3721 mutex_unlock(&req->r_fill_mutex); 3722 3723 if (req->r_parent && 3724 (req->r_op & CEPH_MDS_OP_WRITE)) 3725 ceph_invalidate_dir_request(req); 3726 } else { 3727 err = req->r_err; 3728 } 3729 3730 mutex_unlock(&mdsc->mutex); 3731 return err; 3732 } 3733 3734 /* 3735 * Synchrously perform an mds request. Take care of all of the 3736 * session setup, forwarding, retry details. 3737 */ 3738 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 3739 struct inode *dir, 3740 struct ceph_mds_request *req) 3741 { 3742 struct ceph_client *cl = mdsc->fsc->client; 3743 int err; 3744 3745 doutc(cl, "do_request on %p\n", req); 3746 3747 /* issue */ 3748 err = ceph_mdsc_submit_request(mdsc, dir, req); 3749 if (!err) 3750 err = ceph_mdsc_wait_request(mdsc, req, NULL); 3751 doutc(cl, "do_request %p done, result %d\n", req, err); 3752 return err; 3753 } 3754 3755 /* 3756 * Invalidate dir's completeness, dentry lease state on an aborted MDS 3757 * namespace request. 3758 */ 3759 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 3760 { 3761 struct inode *dir = req->r_parent; 3762 struct inode *old_dir = req->r_old_dentry_dir; 3763 struct ceph_client *cl = req->r_mdsc->fsc->client; 3764 3765 doutc(cl, "invalidate_dir_request %p %p (complete, lease(s))\n", 3766 dir, old_dir); 3767 3768 ceph_dir_clear_complete(dir); 3769 if (old_dir) 3770 ceph_dir_clear_complete(old_dir); 3771 if (req->r_dentry) 3772 ceph_invalidate_dentry_lease(req->r_dentry); 3773 if (req->r_old_dentry) 3774 ceph_invalidate_dentry_lease(req->r_old_dentry); 3775 } 3776 3777 /* 3778 * Handle mds reply. 3779 * 3780 * We take the session mutex and parse and process the reply immediately. 3781 * This preserves the logical ordering of replies, capabilities, etc., sent 3782 * by the MDS as they are applied to our local cache. 3783 */ 3784 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 3785 { 3786 struct ceph_mds_client *mdsc = session->s_mdsc; 3787 struct ceph_client *cl = mdsc->fsc->client; 3788 struct ceph_mds_request *req; 3789 struct ceph_mds_reply_head *head = msg->front.iov_base; 3790 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 3791 struct ceph_snap_realm *realm; 3792 u64 tid; 3793 int err, result; 3794 int mds = session->s_mds; 3795 bool close_sessions = false; 3796 3797 if (msg->front.iov_len < sizeof(*head)) { 3798 pr_err_client(cl, "got corrupt (short) reply\n"); 3799 ceph_msg_dump(msg); 3800 return; 3801 } 3802 3803 /* get request, session */ 3804 tid = le64_to_cpu(msg->hdr.tid); 3805 mutex_lock(&mdsc->mutex); 3806 req = lookup_get_request(mdsc, tid); 3807 if (!req) { 3808 doutc(cl, "on unknown tid %llu\n", tid); 3809 mutex_unlock(&mdsc->mutex); 3810 return; 3811 } 3812 doutc(cl, "handle_reply %p\n", req); 3813 3814 /* correct session? */ 3815 if (req->r_session != session) { 3816 pr_err_client(cl, "got %llu on session mds%d not mds%d\n", 3817 tid, session->s_mds, 3818 req->r_session ? req->r_session->s_mds : -1); 3819 mutex_unlock(&mdsc->mutex); 3820 goto out; 3821 } 3822 3823 /* dup? */ 3824 if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) || 3825 (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) { 3826 pr_warn_client(cl, "got a dup %s reply on %llu from mds%d\n", 3827 head->safe ? "safe" : "unsafe", tid, mds); 3828 mutex_unlock(&mdsc->mutex); 3829 goto out; 3830 } 3831 if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) { 3832 pr_warn_client(cl, "got unsafe after safe on %llu from mds%d\n", 3833 tid, mds); 3834 mutex_unlock(&mdsc->mutex); 3835 goto out; 3836 } 3837 3838 result = le32_to_cpu(head->result); 3839 3840 if (head->safe) { 3841 set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags); 3842 __unregister_request(mdsc, req); 3843 3844 /* last request during umount? */ 3845 if (mdsc->stopping && !__get_oldest_req(mdsc)) 3846 complete_all(&mdsc->safe_umount_waiters); 3847 3848 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3849 /* 3850 * We already handled the unsafe response, now do the 3851 * cleanup. No need to examine the response; the MDS 3852 * doesn't include any result info in the safe 3853 * response. And even if it did, there is nothing 3854 * useful we could do with a revised return value. 3855 */ 3856 doutc(cl, "got safe reply %llu, mds%d\n", tid, mds); 3857 3858 mutex_unlock(&mdsc->mutex); 3859 goto out; 3860 } 3861 } else { 3862 set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags); 3863 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 3864 } 3865 3866 doutc(cl, "tid %lld result %d\n", tid, result); 3867 if (test_bit(CEPHFS_FEATURE_REPLY_ENCODING, &session->s_features)) 3868 err = parse_reply_info(session, msg, req, (u64)-1); 3869 else 3870 err = parse_reply_info(session, msg, req, 3871 session->s_con.peer_features); 3872 mutex_unlock(&mdsc->mutex); 3873 3874 /* Must find target inode outside of mutexes to avoid deadlocks */ 3875 rinfo = &req->r_reply_info; 3876 if ((err >= 0) && rinfo->head->is_target) { 3877 struct inode *in = xchg(&req->r_new_inode, NULL); 3878 struct ceph_vino tvino = { 3879 .ino = le64_to_cpu(rinfo->targeti.in->ino), 3880 .snap = le64_to_cpu(rinfo->targeti.in->snapid) 3881 }; 3882 3883 /* 3884 * If we ended up opening an existing inode, discard 3885 * r_new_inode 3886 */ 3887 if (req->r_op == CEPH_MDS_OP_CREATE && 3888 !req->r_reply_info.has_create_ino) { 3889 /* This should never happen on an async create */ 3890 WARN_ON_ONCE(req->r_deleg_ino); 3891 iput(in); 3892 in = NULL; 3893 } 3894 3895 in = ceph_get_inode(mdsc->fsc->sb, tvino, in); 3896 if (IS_ERR(in)) { 3897 err = PTR_ERR(in); 3898 mutex_lock(&session->s_mutex); 3899 goto out_err; 3900 } 3901 req->r_target_inode = in; 3902 } 3903 3904 mutex_lock(&session->s_mutex); 3905 if (err < 0) { 3906 pr_err_client(cl, "got corrupt reply mds%d(tid:%lld)\n", 3907 mds, tid); 3908 ceph_msg_dump(msg); 3909 goto out_err; 3910 } 3911 3912 /* snap trace */ 3913 realm = NULL; 3914 if (rinfo->snapblob_len) { 3915 down_write(&mdsc->snap_rwsem); 3916 err = ceph_update_snap_trace(mdsc, rinfo->snapblob, 3917 rinfo->snapblob + rinfo->snapblob_len, 3918 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP, 3919 &realm); 3920 if (err) { 3921 up_write(&mdsc->snap_rwsem); 3922 close_sessions = true; 3923 if (err == -EIO) 3924 ceph_msg_dump(msg); 3925 goto out_err; 3926 } 3927 downgrade_write(&mdsc->snap_rwsem); 3928 } else { 3929 down_read(&mdsc->snap_rwsem); 3930 } 3931 3932 /* insert trace into our cache */ 3933 mutex_lock(&req->r_fill_mutex); 3934 current->journal_info = req; 3935 err = ceph_fill_trace(mdsc->fsc->sb, req); 3936 if (err == 0) { 3937 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || 3938 req->r_op == CEPH_MDS_OP_LSSNAP)) 3939 err = ceph_readdir_prepopulate(req, req->r_session); 3940 } 3941 current->journal_info = NULL; 3942 mutex_unlock(&req->r_fill_mutex); 3943 3944 up_read(&mdsc->snap_rwsem); 3945 if (realm) 3946 ceph_put_snap_realm(mdsc, realm); 3947 3948 if (err == 0) { 3949 if (req->r_target_inode && 3950 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3951 struct ceph_inode_info *ci = 3952 ceph_inode(req->r_target_inode); 3953 spin_lock(&ci->i_unsafe_lock); 3954 list_add_tail(&req->r_unsafe_target_item, 3955 &ci->i_unsafe_iops); 3956 spin_unlock(&ci->i_unsafe_lock); 3957 } 3958 3959 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 3960 } 3961 out_err: 3962 mutex_lock(&mdsc->mutex); 3963 if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { 3964 if (err) { 3965 req->r_err = err; 3966 } else { 3967 req->r_reply = ceph_msg_get(msg); 3968 set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags); 3969 } 3970 } else { 3971 doutc(cl, "reply arrived after request %lld was aborted\n", tid); 3972 } 3973 mutex_unlock(&mdsc->mutex); 3974 3975 mutex_unlock(&session->s_mutex); 3976 3977 /* kick calling process */ 3978 complete_request(mdsc, req); 3979 3980 ceph_update_metadata_metrics(&mdsc->metric, req->r_start_latency, 3981 req->r_end_latency, err); 3982 out: 3983 ceph_mdsc_put_request(req); 3984 3985 /* Defer closing the sessions after s_mutex lock being released */ 3986 if (close_sessions) 3987 ceph_mdsc_close_sessions(mdsc); 3988 return; 3989 } 3990 3991 3992 3993 /* 3994 * handle mds notification that our request has been forwarded. 3995 */ 3996 static void handle_forward(struct ceph_mds_client *mdsc, 3997 struct ceph_mds_session *session, 3998 struct ceph_msg *msg) 3999 { 4000 struct ceph_client *cl = mdsc->fsc->client; 4001 struct ceph_mds_request *req; 4002 u64 tid = le64_to_cpu(msg->hdr.tid); 4003 u32 next_mds; 4004 u32 fwd_seq; 4005 int err = -EINVAL; 4006 void *p = msg->front.iov_base; 4007 void *end = p + msg->front.iov_len; 4008 bool aborted = false; 4009 4010 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 4011 next_mds = ceph_decode_32(&p); 4012 fwd_seq = ceph_decode_32(&p); 4013 4014 mutex_lock(&mdsc->mutex); 4015 req = lookup_get_request(mdsc, tid); 4016 if (!req) { 4017 mutex_unlock(&mdsc->mutex); 4018 doutc(cl, "forward tid %llu to mds%d - req dne\n", tid, next_mds); 4019 return; /* dup reply? */ 4020 } 4021 4022 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { 4023 doutc(cl, "forward tid %llu aborted, unregistering\n", tid); 4024 __unregister_request(mdsc, req); 4025 } else if (fwd_seq <= req->r_num_fwd || (uint32_t)fwd_seq >= U32_MAX) { 4026 /* 4027 * Avoid infinite retrying after overflow. 4028 * 4029 * The MDS will increase the fwd count and in client side 4030 * if the num_fwd is less than the one saved in request 4031 * that means the MDS is an old version and overflowed of 4032 * 8 bits. 4033 */ 4034 mutex_lock(&req->r_fill_mutex); 4035 req->r_err = -EMULTIHOP; 4036 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 4037 mutex_unlock(&req->r_fill_mutex); 4038 aborted = true; 4039 pr_warn_ratelimited_client(cl, "forward tid %llu seq overflow\n", 4040 tid); 4041 } else { 4042 /* resend. forward race not possible; mds would drop */ 4043 doutc(cl, "forward tid %llu to mds%d (we resend)\n", tid, next_mds); 4044 BUG_ON(req->r_err); 4045 BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)); 4046 req->r_attempts = 0; 4047 req->r_num_fwd = fwd_seq; 4048 req->r_resend_mds = next_mds; 4049 put_request_session(req); 4050 __do_request(mdsc, req); 4051 } 4052 mutex_unlock(&mdsc->mutex); 4053 4054 /* kick calling process */ 4055 if (aborted) 4056 complete_request(mdsc, req); 4057 ceph_mdsc_put_request(req); 4058 return; 4059 4060 bad: 4061 pr_err_client(cl, "decode error err=%d\n", err); 4062 ceph_msg_dump(msg); 4063 } 4064 4065 static int __decode_session_metadata(void **p, void *end, 4066 bool *blocklisted) 4067 { 4068 /* map<string,string> */ 4069 u32 n; 4070 bool err_str; 4071 ceph_decode_32_safe(p, end, n, bad); 4072 while (n-- > 0) { 4073 u32 len; 4074 ceph_decode_32_safe(p, end, len, bad); 4075 ceph_decode_need(p, end, len, bad); 4076 err_str = !strncmp(*p, "error_string", len); 4077 *p += len; 4078 ceph_decode_32_safe(p, end, len, bad); 4079 ceph_decode_need(p, end, len, bad); 4080 /* 4081 * Match "blocklisted (blacklisted)" from newer MDSes, 4082 * or "blacklisted" from older MDSes. 4083 */ 4084 if (err_str && strnstr(*p, "blacklisted", len)) 4085 *blocklisted = true; 4086 *p += len; 4087 } 4088 return 0; 4089 bad: 4090 return -1; 4091 } 4092 4093 /* 4094 * handle a mds session control message 4095 */ 4096 static void handle_session(struct ceph_mds_session *session, 4097 struct ceph_msg *msg) 4098 { 4099 struct ceph_mds_client *mdsc = session->s_mdsc; 4100 struct ceph_client *cl = mdsc->fsc->client; 4101 int mds = session->s_mds; 4102 int msg_version = le16_to_cpu(msg->hdr.version); 4103 void *p = msg->front.iov_base; 4104 void *end = p + msg->front.iov_len; 4105 struct ceph_mds_session_head *h; 4106 struct ceph_mds_cap_auth *cap_auths = NULL; 4107 u32 op, cap_auths_num = 0; 4108 u64 seq, features = 0; 4109 int wake = 0; 4110 bool blocklisted = false; 4111 u32 i; 4112 4113 4114 /* decode */ 4115 ceph_decode_need(&p, end, sizeof(*h), bad); 4116 h = p; 4117 p += sizeof(*h); 4118 4119 op = le32_to_cpu(h->op); 4120 seq = le64_to_cpu(h->seq); 4121 4122 if (msg_version >= 3) { 4123 u32 len; 4124 /* version >= 2 and < 5, decode metadata, skip otherwise 4125 * as it's handled via flags. 4126 */ 4127 if (msg_version >= 5) 4128 ceph_decode_skip_map(&p, end, string, string, bad); 4129 else if (__decode_session_metadata(&p, end, &blocklisted) < 0) 4130 goto bad; 4131 4132 /* version >= 3, feature bits */ 4133 ceph_decode_32_safe(&p, end, len, bad); 4134 if (len) { 4135 ceph_decode_64_safe(&p, end, features, bad); 4136 p += len - sizeof(features); 4137 } 4138 } 4139 4140 if (msg_version >= 5) { 4141 u32 flags, len; 4142 4143 /* version >= 4 */ 4144 ceph_decode_skip_16(&p, end, bad); /* struct_v, struct_cv */ 4145 ceph_decode_32_safe(&p, end, len, bad); /* len */ 4146 ceph_decode_skip_n(&p, end, len, bad); /* metric_spec */ 4147 4148 /* version >= 5, flags */ 4149 ceph_decode_32_safe(&p, end, flags, bad); 4150 if (flags & CEPH_SESSION_BLOCKLISTED) { 4151 pr_warn_client(cl, "mds%d session blocklisted\n", 4152 session->s_mds); 4153 blocklisted = true; 4154 } 4155 } 4156 4157 if (msg_version >= 6) { 4158 ceph_decode_32_safe(&p, end, cap_auths_num, bad); 4159 doutc(cl, "cap_auths_num %d\n", cap_auths_num); 4160 4161 if (cap_auths_num && op != CEPH_SESSION_OPEN) { 4162 WARN_ON_ONCE(op != CEPH_SESSION_OPEN); 4163 goto skip_cap_auths; 4164 } 4165 4166 cap_auths = kcalloc(cap_auths_num, 4167 sizeof(struct ceph_mds_cap_auth), 4168 GFP_KERNEL); 4169 if (!cap_auths) { 4170 pr_err_client(cl, "No memory for cap_auths\n"); 4171 return; 4172 } 4173 4174 for (i = 0; i < cap_auths_num; i++) { 4175 u32 _len, j; 4176 4177 /* struct_v, struct_compat, and struct_len in MDSCapAuth */ 4178 ceph_decode_skip_n(&p, end, 2 + sizeof(u32), bad); 4179 4180 /* struct_v, struct_compat, and struct_len in MDSCapMatch */ 4181 ceph_decode_skip_n(&p, end, 2 + sizeof(u32), bad); 4182 ceph_decode_64_safe(&p, end, cap_auths[i].match.uid, bad); 4183 ceph_decode_32_safe(&p, end, _len, bad); 4184 if (_len) { 4185 cap_auths[i].match.gids = kcalloc(_len, sizeof(u32), 4186 GFP_KERNEL); 4187 if (!cap_auths[i].match.gids) { 4188 pr_err_client(cl, "No memory for gids\n"); 4189 goto fail; 4190 } 4191 4192 cap_auths[i].match.num_gids = _len; 4193 for (j = 0; j < _len; j++) 4194 ceph_decode_32_safe(&p, end, 4195 cap_auths[i].match.gids[j], 4196 bad); 4197 } 4198 4199 ceph_decode_32_safe(&p, end, _len, bad); 4200 if (_len) { 4201 cap_auths[i].match.path = kcalloc(_len + 1, sizeof(char), 4202 GFP_KERNEL); 4203 if (!cap_auths[i].match.path) { 4204 pr_err_client(cl, "No memory for path\n"); 4205 goto fail; 4206 } 4207 ceph_decode_copy(&p, cap_auths[i].match.path, _len); 4208 4209 /* Remove the tailing '/' */ 4210 while (_len && cap_auths[i].match.path[_len - 1] == '/') { 4211 cap_auths[i].match.path[_len - 1] = '\0'; 4212 _len -= 1; 4213 } 4214 } 4215 4216 ceph_decode_32_safe(&p, end, _len, bad); 4217 if (_len) { 4218 cap_auths[i].match.fs_name = kcalloc(_len + 1, sizeof(char), 4219 GFP_KERNEL); 4220 if (!cap_auths[i].match.fs_name) { 4221 pr_err_client(cl, "No memory for fs_name\n"); 4222 goto fail; 4223 } 4224 ceph_decode_copy(&p, cap_auths[i].match.fs_name, _len); 4225 } 4226 4227 ceph_decode_8_safe(&p, end, cap_auths[i].match.root_squash, bad); 4228 ceph_decode_8_safe(&p, end, cap_auths[i].readable, bad); 4229 ceph_decode_8_safe(&p, end, cap_auths[i].writeable, bad); 4230 doutc(cl, "uid %lld, num_gids %u, path %s, fs_name %s, root_squash %d, readable %d, writeable %d\n", 4231 cap_auths[i].match.uid, cap_auths[i].match.num_gids, 4232 cap_auths[i].match.path, cap_auths[i].match.fs_name, 4233 cap_auths[i].match.root_squash, 4234 cap_auths[i].readable, cap_auths[i].writeable); 4235 } 4236 } 4237 4238 skip_cap_auths: 4239 mutex_lock(&mdsc->mutex); 4240 if (op == CEPH_SESSION_OPEN) { 4241 if (mdsc->s_cap_auths) { 4242 for (i = 0; i < mdsc->s_cap_auths_num; i++) { 4243 kfree(mdsc->s_cap_auths[i].match.gids); 4244 kfree(mdsc->s_cap_auths[i].match.path); 4245 kfree(mdsc->s_cap_auths[i].match.fs_name); 4246 } 4247 kfree(mdsc->s_cap_auths); 4248 } 4249 mdsc->s_cap_auths_num = cap_auths_num; 4250 mdsc->s_cap_auths = cap_auths; 4251 } 4252 if (op == CEPH_SESSION_CLOSE) { 4253 ceph_get_mds_session(session); 4254 __unregister_session(mdsc, session); 4255 } 4256 /* FIXME: this ttl calculation is generous */ 4257 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 4258 mutex_unlock(&mdsc->mutex); 4259 4260 mutex_lock(&session->s_mutex); 4261 4262 doutc(cl, "mds%d %s %p state %s seq %llu\n", mds, 4263 ceph_session_op_name(op), session, 4264 ceph_session_state_name(session->s_state), seq); 4265 4266 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 4267 session->s_state = CEPH_MDS_SESSION_OPEN; 4268 pr_info_client(cl, "mds%d came back\n", session->s_mds); 4269 } 4270 4271 switch (op) { 4272 case CEPH_SESSION_OPEN: 4273 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 4274 pr_info_client(cl, "mds%d reconnect success\n", 4275 session->s_mds); 4276 4277 session->s_features = features; 4278 if (session->s_state == CEPH_MDS_SESSION_OPEN) { 4279 pr_notice_client(cl, "mds%d is already opened\n", 4280 session->s_mds); 4281 } else { 4282 session->s_state = CEPH_MDS_SESSION_OPEN; 4283 renewed_caps(mdsc, session, 0); 4284 if (test_bit(CEPHFS_FEATURE_METRIC_COLLECT, 4285 &session->s_features)) 4286 metric_schedule_delayed(&mdsc->metric); 4287 } 4288 4289 /* 4290 * The connection maybe broken and the session in client 4291 * side has been reinitialized, need to update the seq 4292 * anyway. 4293 */ 4294 if (!session->s_seq && seq) 4295 session->s_seq = seq; 4296 4297 wake = 1; 4298 if (mdsc->stopping) 4299 __close_session(mdsc, session); 4300 break; 4301 4302 case CEPH_SESSION_RENEWCAPS: 4303 if (session->s_renew_seq == seq) 4304 renewed_caps(mdsc, session, 1); 4305 break; 4306 4307 case CEPH_SESSION_CLOSE: 4308 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 4309 pr_info_client(cl, "mds%d reconnect denied\n", 4310 session->s_mds); 4311 session->s_state = CEPH_MDS_SESSION_CLOSED; 4312 cleanup_session_requests(mdsc, session); 4313 remove_session_caps(session); 4314 wake = 2; /* for good measure */ 4315 wake_up_all(&mdsc->session_close_wq); 4316 break; 4317 4318 case CEPH_SESSION_STALE: 4319 pr_info_client(cl, "mds%d caps went stale, renewing\n", 4320 session->s_mds); 4321 atomic_inc(&session->s_cap_gen); 4322 session->s_cap_ttl = jiffies - 1; 4323 send_renew_caps(mdsc, session); 4324 break; 4325 4326 case CEPH_SESSION_RECALL_STATE: 4327 ceph_trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 4328 break; 4329 4330 case CEPH_SESSION_FLUSHMSG: 4331 /* flush cap releases */ 4332 spin_lock(&session->s_cap_lock); 4333 if (session->s_num_cap_releases) 4334 ceph_flush_session_cap_releases(mdsc, session); 4335 spin_unlock(&session->s_cap_lock); 4336 4337 send_flushmsg_ack(mdsc, session, seq); 4338 break; 4339 4340 case CEPH_SESSION_FORCE_RO: 4341 doutc(cl, "force_session_readonly %p\n", session); 4342 spin_lock(&session->s_cap_lock); 4343 session->s_readonly = true; 4344 spin_unlock(&session->s_cap_lock); 4345 wake_up_session_caps(session, FORCE_RO); 4346 break; 4347 4348 case CEPH_SESSION_REJECT: 4349 WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING); 4350 pr_info_client(cl, "mds%d rejected session\n", 4351 session->s_mds); 4352 session->s_state = CEPH_MDS_SESSION_REJECTED; 4353 cleanup_session_requests(mdsc, session); 4354 remove_session_caps(session); 4355 if (blocklisted) 4356 mdsc->fsc->blocklisted = true; 4357 wake = 2; /* for good measure */ 4358 break; 4359 4360 default: 4361 pr_err_client(cl, "bad op %d mds%d\n", op, mds); 4362 WARN_ON(1); 4363 } 4364 4365 mutex_unlock(&session->s_mutex); 4366 if (wake) { 4367 mutex_lock(&mdsc->mutex); 4368 __wake_requests(mdsc, &session->s_waiting); 4369 if (wake == 2) 4370 kick_requests(mdsc, mds); 4371 mutex_unlock(&mdsc->mutex); 4372 } 4373 if (op == CEPH_SESSION_CLOSE) 4374 ceph_put_mds_session(session); 4375 return; 4376 4377 bad: 4378 pr_err_client(cl, "corrupt message mds%d len %d\n", mds, 4379 (int)msg->front.iov_len); 4380 ceph_msg_dump(msg); 4381 fail: 4382 for (i = 0; i < cap_auths_num; i++) { 4383 kfree(cap_auths[i].match.gids); 4384 kfree(cap_auths[i].match.path); 4385 kfree(cap_auths[i].match.fs_name); 4386 } 4387 kfree(cap_auths); 4388 return; 4389 } 4390 4391 void ceph_mdsc_release_dir_caps(struct ceph_mds_request *req) 4392 { 4393 struct ceph_client *cl = req->r_mdsc->fsc->client; 4394 int dcaps; 4395 4396 dcaps = xchg(&req->r_dir_caps, 0); 4397 if (dcaps) { 4398 doutc(cl, "releasing r_dir_caps=%s\n", ceph_cap_string(dcaps)); 4399 ceph_put_cap_refs(ceph_inode(req->r_parent), dcaps); 4400 } 4401 } 4402 4403 void ceph_mdsc_release_dir_caps_async(struct ceph_mds_request *req) 4404 { 4405 struct ceph_client *cl = req->r_mdsc->fsc->client; 4406 int dcaps; 4407 4408 dcaps = xchg(&req->r_dir_caps, 0); 4409 if (dcaps) { 4410 doutc(cl, "releasing r_dir_caps=%s\n", ceph_cap_string(dcaps)); 4411 ceph_put_cap_refs_async(ceph_inode(req->r_parent), dcaps); 4412 } 4413 } 4414 4415 /* 4416 * called under session->mutex. 4417 */ 4418 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 4419 struct ceph_mds_session *session) 4420 { 4421 struct ceph_mds_request *req, *nreq; 4422 struct rb_node *p; 4423 4424 doutc(mdsc->fsc->client, "mds%d\n", session->s_mds); 4425 4426 mutex_lock(&mdsc->mutex); 4427 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) 4428 __send_request(session, req, true); 4429 4430 /* 4431 * also re-send old requests when MDS enters reconnect stage. So that MDS 4432 * can process completed request in clientreplay stage. 4433 */ 4434 p = rb_first(&mdsc->request_tree); 4435 while (p) { 4436 req = rb_entry(p, struct ceph_mds_request, r_node); 4437 p = rb_next(p); 4438 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 4439 continue; 4440 if (req->r_attempts == 0) 4441 continue; /* only old requests */ 4442 if (!req->r_session) 4443 continue; 4444 if (req->r_session->s_mds != session->s_mds) 4445 continue; 4446 4447 ceph_mdsc_release_dir_caps_async(req); 4448 4449 __send_request(session, req, true); 4450 } 4451 mutex_unlock(&mdsc->mutex); 4452 } 4453 4454 static int send_reconnect_partial(struct ceph_reconnect_state *recon_state) 4455 { 4456 struct ceph_msg *reply; 4457 struct ceph_pagelist *_pagelist; 4458 struct page *page; 4459 __le32 *addr; 4460 int err = -ENOMEM; 4461 4462 if (!recon_state->allow_multi) 4463 return -ENOSPC; 4464 4465 /* can't handle message that contains both caps and realm */ 4466 BUG_ON(!recon_state->nr_caps == !recon_state->nr_realms); 4467 4468 /* pre-allocate new pagelist */ 4469 _pagelist = ceph_pagelist_alloc(GFP_NOFS); 4470 if (!_pagelist) 4471 return -ENOMEM; 4472 4473 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false); 4474 if (!reply) 4475 goto fail_msg; 4476 4477 /* placeholder for nr_caps */ 4478 err = ceph_pagelist_encode_32(_pagelist, 0); 4479 if (err < 0) 4480 goto fail; 4481 4482 if (recon_state->nr_caps) { 4483 /* currently encoding caps */ 4484 err = ceph_pagelist_encode_32(recon_state->pagelist, 0); 4485 if (err) 4486 goto fail; 4487 } else { 4488 /* placeholder for nr_realms (currently encoding relams) */ 4489 err = ceph_pagelist_encode_32(_pagelist, 0); 4490 if (err < 0) 4491 goto fail; 4492 } 4493 4494 err = ceph_pagelist_encode_8(recon_state->pagelist, 1); 4495 if (err) 4496 goto fail; 4497 4498 page = list_first_entry(&recon_state->pagelist->head, struct page, lru); 4499 addr = kmap_atomic(page); 4500 if (recon_state->nr_caps) { 4501 /* currently encoding caps */ 4502 *addr = cpu_to_le32(recon_state->nr_caps); 4503 } else { 4504 /* currently encoding relams */ 4505 *(addr + 1) = cpu_to_le32(recon_state->nr_realms); 4506 } 4507 kunmap_atomic(addr); 4508 4509 reply->hdr.version = cpu_to_le16(5); 4510 reply->hdr.compat_version = cpu_to_le16(4); 4511 4512 reply->hdr.data_len = cpu_to_le32(recon_state->pagelist->length); 4513 ceph_msg_data_add_pagelist(reply, recon_state->pagelist); 4514 4515 ceph_con_send(&recon_state->session->s_con, reply); 4516 ceph_pagelist_release(recon_state->pagelist); 4517 4518 recon_state->pagelist = _pagelist; 4519 recon_state->nr_caps = 0; 4520 recon_state->nr_realms = 0; 4521 recon_state->msg_version = 5; 4522 return 0; 4523 fail: 4524 ceph_msg_put(reply); 4525 fail_msg: 4526 ceph_pagelist_release(_pagelist); 4527 return err; 4528 } 4529 4530 static struct dentry* d_find_primary(struct inode *inode) 4531 { 4532 struct dentry *alias, *dn = NULL; 4533 4534 if (hlist_empty(&inode->i_dentry)) 4535 return NULL; 4536 4537 spin_lock(&inode->i_lock); 4538 if (hlist_empty(&inode->i_dentry)) 4539 goto out_unlock; 4540 4541 if (S_ISDIR(inode->i_mode)) { 4542 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 4543 if (!IS_ROOT(alias)) 4544 dn = dget(alias); 4545 goto out_unlock; 4546 } 4547 4548 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 4549 spin_lock(&alias->d_lock); 4550 if (!d_unhashed(alias) && 4551 (ceph_dentry(alias)->flags & CEPH_DENTRY_PRIMARY_LINK)) { 4552 dn = dget_dlock(alias); 4553 } 4554 spin_unlock(&alias->d_lock); 4555 if (dn) 4556 break; 4557 } 4558 out_unlock: 4559 spin_unlock(&inode->i_lock); 4560 return dn; 4561 } 4562 4563 /* 4564 * Encode information about a cap for a reconnect with the MDS. 4565 */ 4566 static int reconnect_caps_cb(struct inode *inode, int mds, void *arg) 4567 { 4568 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 4569 struct ceph_client *cl = ceph_inode_to_client(inode); 4570 union { 4571 struct ceph_mds_cap_reconnect v2; 4572 struct ceph_mds_cap_reconnect_v1 v1; 4573 } rec; 4574 struct ceph_inode_info *ci = ceph_inode(inode); 4575 struct ceph_reconnect_state *recon_state = arg; 4576 struct ceph_pagelist *pagelist = recon_state->pagelist; 4577 struct dentry *dentry; 4578 struct ceph_cap *cap; 4579 char *path; 4580 int pathlen = 0, err; 4581 u64 pathbase; 4582 u64 snap_follows; 4583 4584 dentry = d_find_primary(inode); 4585 if (dentry) { 4586 /* set pathbase to parent dir when msg_version >= 2 */ 4587 path = ceph_mdsc_build_path(mdsc, dentry, &pathlen, &pathbase, 4588 recon_state->msg_version >= 2); 4589 dput(dentry); 4590 if (IS_ERR(path)) { 4591 err = PTR_ERR(path); 4592 goto out_err; 4593 } 4594 } else { 4595 path = NULL; 4596 pathbase = 0; 4597 } 4598 4599 spin_lock(&ci->i_ceph_lock); 4600 cap = __get_cap_for_mds(ci, mds); 4601 if (!cap) { 4602 spin_unlock(&ci->i_ceph_lock); 4603 err = 0; 4604 goto out_err; 4605 } 4606 doutc(cl, " adding %p ino %llx.%llx cap %p %lld %s\n", inode, 4607 ceph_vinop(inode), cap, cap->cap_id, 4608 ceph_cap_string(cap->issued)); 4609 4610 cap->seq = 0; /* reset cap seq */ 4611 cap->issue_seq = 0; /* and issue_seq */ 4612 cap->mseq = 0; /* and migrate_seq */ 4613 cap->cap_gen = atomic_read(&cap->session->s_cap_gen); 4614 4615 /* These are lost when the session goes away */ 4616 if (S_ISDIR(inode->i_mode)) { 4617 if (cap->issued & CEPH_CAP_DIR_CREATE) { 4618 ceph_put_string(rcu_dereference_raw(ci->i_cached_layout.pool_ns)); 4619 memset(&ci->i_cached_layout, 0, sizeof(ci->i_cached_layout)); 4620 } 4621 cap->issued &= ~CEPH_CAP_ANY_DIR_OPS; 4622 } 4623 4624 if (recon_state->msg_version >= 2) { 4625 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 4626 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 4627 rec.v2.issued = cpu_to_le32(cap->issued); 4628 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 4629 rec.v2.pathbase = cpu_to_le64(pathbase); 4630 rec.v2.flock_len = (__force __le32) 4631 ((ci->i_ceph_flags & CEPH_I_ERROR_FILELOCK) ? 0 : 1); 4632 } else { 4633 struct timespec64 ts; 4634 4635 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 4636 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 4637 rec.v1.issued = cpu_to_le32(cap->issued); 4638 rec.v1.size = cpu_to_le64(i_size_read(inode)); 4639 ts = inode_get_mtime(inode); 4640 ceph_encode_timespec64(&rec.v1.mtime, &ts); 4641 ts = inode_get_atime(inode); 4642 ceph_encode_timespec64(&rec.v1.atime, &ts); 4643 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 4644 rec.v1.pathbase = cpu_to_le64(pathbase); 4645 } 4646 4647 if (list_empty(&ci->i_cap_snaps)) { 4648 snap_follows = ci->i_head_snapc ? ci->i_head_snapc->seq : 0; 4649 } else { 4650 struct ceph_cap_snap *capsnap = 4651 list_first_entry(&ci->i_cap_snaps, 4652 struct ceph_cap_snap, ci_item); 4653 snap_follows = capsnap->follows; 4654 } 4655 spin_unlock(&ci->i_ceph_lock); 4656 4657 if (recon_state->msg_version >= 2) { 4658 int num_fcntl_locks, num_flock_locks; 4659 struct ceph_filelock *flocks = NULL; 4660 size_t struct_len, total_len = sizeof(u64); 4661 u8 struct_v = 0; 4662 4663 encode_again: 4664 if (rec.v2.flock_len) { 4665 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); 4666 } else { 4667 num_fcntl_locks = 0; 4668 num_flock_locks = 0; 4669 } 4670 if (num_fcntl_locks + num_flock_locks > 0) { 4671 flocks = kmalloc_array(num_fcntl_locks + num_flock_locks, 4672 sizeof(struct ceph_filelock), 4673 GFP_NOFS); 4674 if (!flocks) { 4675 err = -ENOMEM; 4676 goto out_err; 4677 } 4678 err = ceph_encode_locks_to_buffer(inode, flocks, 4679 num_fcntl_locks, 4680 num_flock_locks); 4681 if (err) { 4682 kfree(flocks); 4683 flocks = NULL; 4684 if (err == -ENOSPC) 4685 goto encode_again; 4686 goto out_err; 4687 } 4688 } else { 4689 kfree(flocks); 4690 flocks = NULL; 4691 } 4692 4693 if (recon_state->msg_version >= 3) { 4694 /* version, compat_version and struct_len */ 4695 total_len += 2 * sizeof(u8) + sizeof(u32); 4696 struct_v = 2; 4697 } 4698 /* 4699 * number of encoded locks is stable, so copy to pagelist 4700 */ 4701 struct_len = 2 * sizeof(u32) + 4702 (num_fcntl_locks + num_flock_locks) * 4703 sizeof(struct ceph_filelock); 4704 rec.v2.flock_len = cpu_to_le32(struct_len); 4705 4706 struct_len += sizeof(u32) + pathlen + sizeof(rec.v2); 4707 4708 if (struct_v >= 2) 4709 struct_len += sizeof(u64); /* snap_follows */ 4710 4711 total_len += struct_len; 4712 4713 if (pagelist->length + total_len > RECONNECT_MAX_SIZE) { 4714 err = send_reconnect_partial(recon_state); 4715 if (err) 4716 goto out_freeflocks; 4717 pagelist = recon_state->pagelist; 4718 } 4719 4720 err = ceph_pagelist_reserve(pagelist, total_len); 4721 if (err) 4722 goto out_freeflocks; 4723 4724 ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 4725 if (recon_state->msg_version >= 3) { 4726 ceph_pagelist_encode_8(pagelist, struct_v); 4727 ceph_pagelist_encode_8(pagelist, 1); 4728 ceph_pagelist_encode_32(pagelist, struct_len); 4729 } 4730 ceph_pagelist_encode_string(pagelist, path, pathlen); 4731 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2)); 4732 ceph_locks_to_pagelist(flocks, pagelist, 4733 num_fcntl_locks, num_flock_locks); 4734 if (struct_v >= 2) 4735 ceph_pagelist_encode_64(pagelist, snap_follows); 4736 out_freeflocks: 4737 kfree(flocks); 4738 } else { 4739 err = ceph_pagelist_reserve(pagelist, 4740 sizeof(u64) + sizeof(u32) + 4741 pathlen + sizeof(rec.v1)); 4742 if (err) 4743 goto out_err; 4744 4745 ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 4746 ceph_pagelist_encode_string(pagelist, path, pathlen); 4747 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1)); 4748 } 4749 4750 out_err: 4751 ceph_mdsc_free_path(path, pathlen); 4752 if (!err) 4753 recon_state->nr_caps++; 4754 return err; 4755 } 4756 4757 static int encode_snap_realms(struct ceph_mds_client *mdsc, 4758 struct ceph_reconnect_state *recon_state) 4759 { 4760 struct rb_node *p; 4761 struct ceph_pagelist *pagelist = recon_state->pagelist; 4762 struct ceph_client *cl = mdsc->fsc->client; 4763 int err = 0; 4764 4765 if (recon_state->msg_version >= 4) { 4766 err = ceph_pagelist_encode_32(pagelist, mdsc->num_snap_realms); 4767 if (err < 0) 4768 goto fail; 4769 } 4770 4771 /* 4772 * snaprealms. we provide mds with the ino, seq (version), and 4773 * parent for all of our realms. If the mds has any newer info, 4774 * it will tell us. 4775 */ 4776 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 4777 struct ceph_snap_realm *realm = 4778 rb_entry(p, struct ceph_snap_realm, node); 4779 struct ceph_mds_snaprealm_reconnect sr_rec; 4780 4781 if (recon_state->msg_version >= 4) { 4782 size_t need = sizeof(u8) * 2 + sizeof(u32) + 4783 sizeof(sr_rec); 4784 4785 if (pagelist->length + need > RECONNECT_MAX_SIZE) { 4786 err = send_reconnect_partial(recon_state); 4787 if (err) 4788 goto fail; 4789 pagelist = recon_state->pagelist; 4790 } 4791 4792 err = ceph_pagelist_reserve(pagelist, need); 4793 if (err) 4794 goto fail; 4795 4796 ceph_pagelist_encode_8(pagelist, 1); 4797 ceph_pagelist_encode_8(pagelist, 1); 4798 ceph_pagelist_encode_32(pagelist, sizeof(sr_rec)); 4799 } 4800 4801 doutc(cl, " adding snap realm %llx seq %lld parent %llx\n", 4802 realm->ino, realm->seq, realm->parent_ino); 4803 sr_rec.ino = cpu_to_le64(realm->ino); 4804 sr_rec.seq = cpu_to_le64(realm->seq); 4805 sr_rec.parent = cpu_to_le64(realm->parent_ino); 4806 4807 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 4808 if (err) 4809 goto fail; 4810 4811 recon_state->nr_realms++; 4812 } 4813 fail: 4814 return err; 4815 } 4816 4817 4818 /* 4819 * If an MDS fails and recovers, clients need to reconnect in order to 4820 * reestablish shared state. This includes all caps issued through 4821 * this session _and_ the snap_realm hierarchy. Because it's not 4822 * clear which snap realms the mds cares about, we send everything we 4823 * know about.. that ensures we'll then get any new info the 4824 * recovering MDS might have. 4825 * 4826 * This is a relatively heavyweight operation, but it's rare. 4827 */ 4828 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 4829 struct ceph_mds_session *session) 4830 { 4831 struct ceph_client *cl = mdsc->fsc->client; 4832 struct ceph_msg *reply; 4833 int mds = session->s_mds; 4834 int err = -ENOMEM; 4835 struct ceph_reconnect_state recon_state = { 4836 .session = session, 4837 }; 4838 LIST_HEAD(dispose); 4839 4840 pr_info_client(cl, "mds%d reconnect start\n", mds); 4841 4842 recon_state.pagelist = ceph_pagelist_alloc(GFP_NOFS); 4843 if (!recon_state.pagelist) 4844 goto fail_nopagelist; 4845 4846 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false); 4847 if (!reply) 4848 goto fail_nomsg; 4849 4850 xa_destroy(&session->s_delegated_inos); 4851 4852 mutex_lock(&session->s_mutex); 4853 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 4854 session->s_seq = 0; 4855 4856 doutc(cl, "session %p state %s\n", session, 4857 ceph_session_state_name(session->s_state)); 4858 4859 atomic_inc(&session->s_cap_gen); 4860 4861 spin_lock(&session->s_cap_lock); 4862 /* don't know if session is readonly */ 4863 session->s_readonly = 0; 4864 /* 4865 * notify __ceph_remove_cap() that we are composing cap reconnect. 4866 * If a cap get released before being added to the cap reconnect, 4867 * __ceph_remove_cap() should skip queuing cap release. 4868 */ 4869 session->s_cap_reconnect = 1; 4870 /* drop old cap expires; we're about to reestablish that state */ 4871 detach_cap_releases(session, &dispose); 4872 spin_unlock(&session->s_cap_lock); 4873 dispose_cap_releases(mdsc, &dispose); 4874 4875 /* trim unused caps to reduce MDS's cache rejoin time */ 4876 if (mdsc->fsc->sb->s_root) 4877 shrink_dcache_parent(mdsc->fsc->sb->s_root); 4878 4879 ceph_con_close(&session->s_con); 4880 ceph_con_open(&session->s_con, 4881 CEPH_ENTITY_TYPE_MDS, mds, 4882 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 4883 4884 /* replay unsafe requests */ 4885 replay_unsafe_requests(mdsc, session); 4886 4887 ceph_early_kick_flushing_caps(mdsc, session); 4888 4889 down_read(&mdsc->snap_rwsem); 4890 4891 /* placeholder for nr_caps */ 4892 err = ceph_pagelist_encode_32(recon_state.pagelist, 0); 4893 if (err) 4894 goto fail; 4895 4896 if (test_bit(CEPHFS_FEATURE_MULTI_RECONNECT, &session->s_features)) { 4897 recon_state.msg_version = 3; 4898 recon_state.allow_multi = true; 4899 } else if (session->s_con.peer_features & CEPH_FEATURE_MDSENC) { 4900 recon_state.msg_version = 3; 4901 } else { 4902 recon_state.msg_version = 2; 4903 } 4904 /* traverse this session's caps */ 4905 err = ceph_iterate_session_caps(session, reconnect_caps_cb, &recon_state); 4906 4907 spin_lock(&session->s_cap_lock); 4908 session->s_cap_reconnect = 0; 4909 spin_unlock(&session->s_cap_lock); 4910 4911 if (err < 0) 4912 goto fail; 4913 4914 /* check if all realms can be encoded into current message */ 4915 if (mdsc->num_snap_realms) { 4916 size_t total_len = 4917 recon_state.pagelist->length + 4918 mdsc->num_snap_realms * 4919 sizeof(struct ceph_mds_snaprealm_reconnect); 4920 if (recon_state.msg_version >= 4) { 4921 /* number of realms */ 4922 total_len += sizeof(u32); 4923 /* version, compat_version and struct_len */ 4924 total_len += mdsc->num_snap_realms * 4925 (2 * sizeof(u8) + sizeof(u32)); 4926 } 4927 if (total_len > RECONNECT_MAX_SIZE) { 4928 if (!recon_state.allow_multi) { 4929 err = -ENOSPC; 4930 goto fail; 4931 } 4932 if (recon_state.nr_caps) { 4933 err = send_reconnect_partial(&recon_state); 4934 if (err) 4935 goto fail; 4936 } 4937 recon_state.msg_version = 5; 4938 } 4939 } 4940 4941 err = encode_snap_realms(mdsc, &recon_state); 4942 if (err < 0) 4943 goto fail; 4944 4945 if (recon_state.msg_version >= 5) { 4946 err = ceph_pagelist_encode_8(recon_state.pagelist, 0); 4947 if (err < 0) 4948 goto fail; 4949 } 4950 4951 if (recon_state.nr_caps || recon_state.nr_realms) { 4952 struct page *page = 4953 list_first_entry(&recon_state.pagelist->head, 4954 struct page, lru); 4955 __le32 *addr = kmap_atomic(page); 4956 if (recon_state.nr_caps) { 4957 WARN_ON(recon_state.nr_realms != mdsc->num_snap_realms); 4958 *addr = cpu_to_le32(recon_state.nr_caps); 4959 } else if (recon_state.msg_version >= 4) { 4960 *(addr + 1) = cpu_to_le32(recon_state.nr_realms); 4961 } 4962 kunmap_atomic(addr); 4963 } 4964 4965 reply->hdr.version = cpu_to_le16(recon_state.msg_version); 4966 if (recon_state.msg_version >= 4) 4967 reply->hdr.compat_version = cpu_to_le16(4); 4968 4969 reply->hdr.data_len = cpu_to_le32(recon_state.pagelist->length); 4970 ceph_msg_data_add_pagelist(reply, recon_state.pagelist); 4971 4972 ceph_con_send(&session->s_con, reply); 4973 4974 mutex_unlock(&session->s_mutex); 4975 4976 mutex_lock(&mdsc->mutex); 4977 __wake_requests(mdsc, &session->s_waiting); 4978 mutex_unlock(&mdsc->mutex); 4979 4980 up_read(&mdsc->snap_rwsem); 4981 ceph_pagelist_release(recon_state.pagelist); 4982 return; 4983 4984 fail: 4985 ceph_msg_put(reply); 4986 up_read(&mdsc->snap_rwsem); 4987 mutex_unlock(&session->s_mutex); 4988 fail_nomsg: 4989 ceph_pagelist_release(recon_state.pagelist); 4990 fail_nopagelist: 4991 pr_err_client(cl, "error %d preparing reconnect for mds%d\n", 4992 err, mds); 4993 return; 4994 } 4995 4996 4997 /* 4998 * compare old and new mdsmaps, kicking requests 4999 * and closing out old connections as necessary 5000 * 5001 * called under mdsc->mutex. 5002 */ 5003 static void check_new_map(struct ceph_mds_client *mdsc, 5004 struct ceph_mdsmap *newmap, 5005 struct ceph_mdsmap *oldmap) 5006 { 5007 int i, j, err; 5008 int oldstate, newstate; 5009 struct ceph_mds_session *s; 5010 unsigned long targets[DIV_ROUND_UP(CEPH_MAX_MDS, sizeof(unsigned long))] = {0}; 5011 struct ceph_client *cl = mdsc->fsc->client; 5012 5013 doutc(cl, "new %u old %u\n", newmap->m_epoch, oldmap->m_epoch); 5014 5015 if (newmap->m_info) { 5016 for (i = 0; i < newmap->possible_max_rank; i++) { 5017 for (j = 0; j < newmap->m_info[i].num_export_targets; j++) 5018 set_bit(newmap->m_info[i].export_targets[j], targets); 5019 } 5020 } 5021 5022 for (i = 0; i < oldmap->possible_max_rank && i < mdsc->max_sessions; i++) { 5023 if (!mdsc->sessions[i]) 5024 continue; 5025 s = mdsc->sessions[i]; 5026 oldstate = ceph_mdsmap_get_state(oldmap, i); 5027 newstate = ceph_mdsmap_get_state(newmap, i); 5028 5029 doutc(cl, "mds%d state %s%s -> %s%s (session %s)\n", 5030 i, ceph_mds_state_name(oldstate), 5031 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 5032 ceph_mds_state_name(newstate), 5033 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 5034 ceph_session_state_name(s->s_state)); 5035 5036 if (i >= newmap->possible_max_rank) { 5037 /* force close session for stopped mds */ 5038 ceph_get_mds_session(s); 5039 __unregister_session(mdsc, s); 5040 __wake_requests(mdsc, &s->s_waiting); 5041 mutex_unlock(&mdsc->mutex); 5042 5043 mutex_lock(&s->s_mutex); 5044 cleanup_session_requests(mdsc, s); 5045 remove_session_caps(s); 5046 mutex_unlock(&s->s_mutex); 5047 5048 ceph_put_mds_session(s); 5049 5050 mutex_lock(&mdsc->mutex); 5051 kick_requests(mdsc, i); 5052 continue; 5053 } 5054 5055 if (memcmp(ceph_mdsmap_get_addr(oldmap, i), 5056 ceph_mdsmap_get_addr(newmap, i), 5057 sizeof(struct ceph_entity_addr))) { 5058 /* just close it */ 5059 mutex_unlock(&mdsc->mutex); 5060 mutex_lock(&s->s_mutex); 5061 mutex_lock(&mdsc->mutex); 5062 ceph_con_close(&s->s_con); 5063 mutex_unlock(&s->s_mutex); 5064 s->s_state = CEPH_MDS_SESSION_RESTARTING; 5065 } else if (oldstate == newstate) { 5066 continue; /* nothing new with this mds */ 5067 } 5068 5069 /* 5070 * send reconnect? 5071 */ 5072 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 5073 newstate >= CEPH_MDS_STATE_RECONNECT) { 5074 mutex_unlock(&mdsc->mutex); 5075 clear_bit(i, targets); 5076 send_mds_reconnect(mdsc, s); 5077 mutex_lock(&mdsc->mutex); 5078 } 5079 5080 /* 5081 * kick request on any mds that has gone active. 5082 */ 5083 if (oldstate < CEPH_MDS_STATE_ACTIVE && 5084 newstate >= CEPH_MDS_STATE_ACTIVE) { 5085 if (oldstate != CEPH_MDS_STATE_CREATING && 5086 oldstate != CEPH_MDS_STATE_STARTING) 5087 pr_info_client(cl, "mds%d recovery completed\n", 5088 s->s_mds); 5089 kick_requests(mdsc, i); 5090 mutex_unlock(&mdsc->mutex); 5091 mutex_lock(&s->s_mutex); 5092 mutex_lock(&mdsc->mutex); 5093 ceph_kick_flushing_caps(mdsc, s); 5094 mutex_unlock(&s->s_mutex); 5095 wake_up_session_caps(s, RECONNECT); 5096 } 5097 } 5098 5099 /* 5100 * Only open and reconnect sessions that don't exist yet. 5101 */ 5102 for (i = 0; i < newmap->possible_max_rank; i++) { 5103 /* 5104 * In case the import MDS is crashed just after 5105 * the EImportStart journal is flushed, so when 5106 * a standby MDS takes over it and is replaying 5107 * the EImportStart journal the new MDS daemon 5108 * will wait the client to reconnect it, but the 5109 * client may never register/open the session yet. 5110 * 5111 * Will try to reconnect that MDS daemon if the 5112 * rank number is in the export targets array and 5113 * is the up:reconnect state. 5114 */ 5115 newstate = ceph_mdsmap_get_state(newmap, i); 5116 if (!test_bit(i, targets) || newstate != CEPH_MDS_STATE_RECONNECT) 5117 continue; 5118 5119 /* 5120 * The session maybe registered and opened by some 5121 * requests which were choosing random MDSes during 5122 * the mdsc->mutex's unlock/lock gap below in rare 5123 * case. But the related MDS daemon will just queue 5124 * that requests and be still waiting for the client's 5125 * reconnection request in up:reconnect state. 5126 */ 5127 s = __ceph_lookup_mds_session(mdsc, i); 5128 if (likely(!s)) { 5129 s = __open_export_target_session(mdsc, i); 5130 if (IS_ERR(s)) { 5131 err = PTR_ERR(s); 5132 pr_err_client(cl, 5133 "failed to open export target session, err %d\n", 5134 err); 5135 continue; 5136 } 5137 } 5138 doutc(cl, "send reconnect to export target mds.%d\n", i); 5139 mutex_unlock(&mdsc->mutex); 5140 send_mds_reconnect(mdsc, s); 5141 ceph_put_mds_session(s); 5142 mutex_lock(&mdsc->mutex); 5143 } 5144 5145 for (i = 0; i < newmap->possible_max_rank && i < mdsc->max_sessions; i++) { 5146 s = mdsc->sessions[i]; 5147 if (!s) 5148 continue; 5149 if (!ceph_mdsmap_is_laggy(newmap, i)) 5150 continue; 5151 if (s->s_state == CEPH_MDS_SESSION_OPEN || 5152 s->s_state == CEPH_MDS_SESSION_HUNG || 5153 s->s_state == CEPH_MDS_SESSION_CLOSING) { 5154 doutc(cl, " connecting to export targets of laggy mds%d\n", i); 5155 __open_export_target_sessions(mdsc, s); 5156 } 5157 } 5158 } 5159 5160 5161 5162 /* 5163 * leases 5164 */ 5165 5166 /* 5167 * caller must hold session s_mutex, dentry->d_lock 5168 */ 5169 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 5170 { 5171 struct ceph_dentry_info *di = ceph_dentry(dentry); 5172 5173 ceph_put_mds_session(di->lease_session); 5174 di->lease_session = NULL; 5175 } 5176 5177 static void handle_lease(struct ceph_mds_client *mdsc, 5178 struct ceph_mds_session *session, 5179 struct ceph_msg *msg) 5180 { 5181 struct ceph_client *cl = mdsc->fsc->client; 5182 struct super_block *sb = mdsc->fsc->sb; 5183 struct inode *inode; 5184 struct dentry *parent, *dentry; 5185 struct ceph_dentry_info *di; 5186 int mds = session->s_mds; 5187 struct ceph_mds_lease *h = msg->front.iov_base; 5188 u32 seq; 5189 struct ceph_vino vino; 5190 struct qstr dname; 5191 int release = 0; 5192 5193 doutc(cl, "from mds%d\n", mds); 5194 5195 if (!ceph_inc_mds_stopping_blocker(mdsc, session)) 5196 return; 5197 5198 /* decode */ 5199 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 5200 goto bad; 5201 vino.ino = le64_to_cpu(h->ino); 5202 vino.snap = CEPH_NOSNAP; 5203 seq = le32_to_cpu(h->seq); 5204 dname.len = get_unaligned_le32(h + 1); 5205 if (msg->front.iov_len < sizeof(*h) + sizeof(u32) + dname.len) 5206 goto bad; 5207 dname.name = (void *)(h + 1) + sizeof(u32); 5208 5209 /* lookup inode */ 5210 inode = ceph_find_inode(sb, vino); 5211 doutc(cl, "%s, ino %llx %p %.*s\n", ceph_lease_op_name(h->action), 5212 vino.ino, inode, dname.len, dname.name); 5213 5214 mutex_lock(&session->s_mutex); 5215 if (!inode) { 5216 doutc(cl, "no inode %llx\n", vino.ino); 5217 goto release; 5218 } 5219 5220 /* dentry */ 5221 parent = d_find_alias(inode); 5222 if (!parent) { 5223 doutc(cl, "no parent dentry on inode %p\n", inode); 5224 WARN_ON(1); 5225 goto release; /* hrm... */ 5226 } 5227 dname.hash = full_name_hash(parent, dname.name, dname.len); 5228 dentry = d_lookup(parent, &dname); 5229 dput(parent); 5230 if (!dentry) 5231 goto release; 5232 5233 spin_lock(&dentry->d_lock); 5234 di = ceph_dentry(dentry); 5235 switch (h->action) { 5236 case CEPH_MDS_LEASE_REVOKE: 5237 if (di->lease_session == session) { 5238 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 5239 h->seq = cpu_to_le32(di->lease_seq); 5240 __ceph_mdsc_drop_dentry_lease(dentry); 5241 } 5242 release = 1; 5243 break; 5244 5245 case CEPH_MDS_LEASE_RENEW: 5246 if (di->lease_session == session && 5247 di->lease_gen == atomic_read(&session->s_cap_gen) && 5248 di->lease_renew_from && 5249 di->lease_renew_after == 0) { 5250 unsigned long duration = 5251 msecs_to_jiffies(le32_to_cpu(h->duration_ms)); 5252 5253 di->lease_seq = seq; 5254 di->time = di->lease_renew_from + duration; 5255 di->lease_renew_after = di->lease_renew_from + 5256 (duration >> 1); 5257 di->lease_renew_from = 0; 5258 } 5259 break; 5260 } 5261 spin_unlock(&dentry->d_lock); 5262 dput(dentry); 5263 5264 if (!release) 5265 goto out; 5266 5267 release: 5268 /* let's just reuse the same message */ 5269 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 5270 ceph_msg_get(msg); 5271 ceph_con_send(&session->s_con, msg); 5272 5273 out: 5274 mutex_unlock(&session->s_mutex); 5275 iput(inode); 5276 5277 ceph_dec_mds_stopping_blocker(mdsc); 5278 return; 5279 5280 bad: 5281 ceph_dec_mds_stopping_blocker(mdsc); 5282 5283 pr_err_client(cl, "corrupt lease message\n"); 5284 ceph_msg_dump(msg); 5285 } 5286 5287 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 5288 struct dentry *dentry, char action, 5289 u32 seq) 5290 { 5291 struct ceph_client *cl = session->s_mdsc->fsc->client; 5292 struct ceph_msg *msg; 5293 struct ceph_mds_lease *lease; 5294 struct inode *dir; 5295 int len = sizeof(*lease) + sizeof(u32) + NAME_MAX; 5296 5297 doutc(cl, "identry %p %s to mds%d\n", dentry, ceph_lease_op_name(action), 5298 session->s_mds); 5299 5300 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 5301 if (!msg) 5302 return; 5303 lease = msg->front.iov_base; 5304 lease->action = action; 5305 lease->seq = cpu_to_le32(seq); 5306 5307 spin_lock(&dentry->d_lock); 5308 dir = d_inode(dentry->d_parent); 5309 lease->ino = cpu_to_le64(ceph_ino(dir)); 5310 lease->first = lease->last = cpu_to_le64(ceph_snap(dir)); 5311 5312 put_unaligned_le32(dentry->d_name.len, lease + 1); 5313 memcpy((void *)(lease + 1) + 4, 5314 dentry->d_name.name, dentry->d_name.len); 5315 spin_unlock(&dentry->d_lock); 5316 5317 ceph_con_send(&session->s_con, msg); 5318 } 5319 5320 /* 5321 * lock unlock the session, to wait ongoing session activities 5322 */ 5323 static void lock_unlock_session(struct ceph_mds_session *s) 5324 { 5325 mutex_lock(&s->s_mutex); 5326 mutex_unlock(&s->s_mutex); 5327 } 5328 5329 static void maybe_recover_session(struct ceph_mds_client *mdsc) 5330 { 5331 struct ceph_client *cl = mdsc->fsc->client; 5332 struct ceph_fs_client *fsc = mdsc->fsc; 5333 5334 if (!ceph_test_mount_opt(fsc, CLEANRECOVER)) 5335 return; 5336 5337 if (READ_ONCE(fsc->mount_state) != CEPH_MOUNT_MOUNTED) 5338 return; 5339 5340 if (!READ_ONCE(fsc->blocklisted)) 5341 return; 5342 5343 pr_info_client(cl, "auto reconnect after blocklisted\n"); 5344 ceph_force_reconnect(fsc->sb); 5345 } 5346 5347 bool check_session_state(struct ceph_mds_session *s) 5348 { 5349 struct ceph_client *cl = s->s_mdsc->fsc->client; 5350 5351 switch (s->s_state) { 5352 case CEPH_MDS_SESSION_OPEN: 5353 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 5354 s->s_state = CEPH_MDS_SESSION_HUNG; 5355 pr_info_client(cl, "mds%d hung\n", s->s_mds); 5356 } 5357 break; 5358 case CEPH_MDS_SESSION_CLOSING: 5359 case CEPH_MDS_SESSION_NEW: 5360 case CEPH_MDS_SESSION_RESTARTING: 5361 case CEPH_MDS_SESSION_CLOSED: 5362 case CEPH_MDS_SESSION_REJECTED: 5363 return false; 5364 } 5365 5366 return true; 5367 } 5368 5369 /* 5370 * If the sequence is incremented while we're waiting on a REQUEST_CLOSE reply, 5371 * then we need to retransmit that request. 5372 */ 5373 void inc_session_sequence(struct ceph_mds_session *s) 5374 { 5375 struct ceph_client *cl = s->s_mdsc->fsc->client; 5376 5377 lockdep_assert_held(&s->s_mutex); 5378 5379 s->s_seq++; 5380 5381 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 5382 int ret; 5383 5384 doutc(cl, "resending session close request for mds%d\n", s->s_mds); 5385 ret = request_close_session(s); 5386 if (ret < 0) 5387 pr_err_client(cl, "unable to close session to mds%d: %d\n", 5388 s->s_mds, ret); 5389 } 5390 } 5391 5392 /* 5393 * delayed work -- periodically trim expired leases, renew caps with mds. If 5394 * the @delay parameter is set to 0 or if it's more than 5 secs, the default 5395 * workqueue delay value of 5 secs will be used. 5396 */ 5397 static void schedule_delayed(struct ceph_mds_client *mdsc, unsigned long delay) 5398 { 5399 unsigned long max_delay = HZ * 5; 5400 5401 /* 5 secs default delay */ 5402 if (!delay || (delay > max_delay)) 5403 delay = max_delay; 5404 schedule_delayed_work(&mdsc->delayed_work, 5405 round_jiffies_relative(delay)); 5406 } 5407 5408 static void delayed_work(struct work_struct *work) 5409 { 5410 struct ceph_mds_client *mdsc = 5411 container_of(work, struct ceph_mds_client, delayed_work.work); 5412 unsigned long delay; 5413 int renew_interval; 5414 int renew_caps; 5415 int i; 5416 5417 doutc(mdsc->fsc->client, "mdsc delayed_work\n"); 5418 5419 if (mdsc->stopping >= CEPH_MDSC_STOPPING_FLUSHED) 5420 return; 5421 5422 mutex_lock(&mdsc->mutex); 5423 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 5424 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 5425 mdsc->last_renew_caps); 5426 if (renew_caps) 5427 mdsc->last_renew_caps = jiffies; 5428 5429 for (i = 0; i < mdsc->max_sessions; i++) { 5430 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 5431 if (!s) 5432 continue; 5433 5434 if (!check_session_state(s)) { 5435 ceph_put_mds_session(s); 5436 continue; 5437 } 5438 mutex_unlock(&mdsc->mutex); 5439 5440 ceph_flush_session_cap_releases(mdsc, s); 5441 5442 mutex_lock(&s->s_mutex); 5443 if (renew_caps) 5444 send_renew_caps(mdsc, s); 5445 else 5446 ceph_con_keepalive(&s->s_con); 5447 if (s->s_state == CEPH_MDS_SESSION_OPEN || 5448 s->s_state == CEPH_MDS_SESSION_HUNG) 5449 ceph_send_cap_releases(mdsc, s); 5450 mutex_unlock(&s->s_mutex); 5451 ceph_put_mds_session(s); 5452 5453 mutex_lock(&mdsc->mutex); 5454 } 5455 mutex_unlock(&mdsc->mutex); 5456 5457 delay = ceph_check_delayed_caps(mdsc); 5458 5459 ceph_queue_cap_reclaim_work(mdsc); 5460 5461 ceph_trim_snapid_map(mdsc); 5462 5463 maybe_recover_session(mdsc); 5464 5465 schedule_delayed(mdsc, delay); 5466 } 5467 5468 int ceph_mdsc_init(struct ceph_fs_client *fsc) 5469 5470 { 5471 struct ceph_mds_client *mdsc; 5472 int err; 5473 5474 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 5475 if (!mdsc) 5476 return -ENOMEM; 5477 mdsc->fsc = fsc; 5478 mutex_init(&mdsc->mutex); 5479 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 5480 if (!mdsc->mdsmap) { 5481 err = -ENOMEM; 5482 goto err_mdsc; 5483 } 5484 5485 init_completion(&mdsc->safe_umount_waiters); 5486 spin_lock_init(&mdsc->stopping_lock); 5487 atomic_set(&mdsc->stopping_blockers, 0); 5488 init_completion(&mdsc->stopping_waiter); 5489 init_waitqueue_head(&mdsc->session_close_wq); 5490 INIT_LIST_HEAD(&mdsc->waiting_for_map); 5491 mdsc->quotarealms_inodes = RB_ROOT; 5492 mutex_init(&mdsc->quotarealms_inodes_mutex); 5493 init_rwsem(&mdsc->snap_rwsem); 5494 mdsc->snap_realms = RB_ROOT; 5495 INIT_LIST_HEAD(&mdsc->snap_empty); 5496 spin_lock_init(&mdsc->snap_empty_lock); 5497 mdsc->request_tree = RB_ROOT; 5498 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 5499 mdsc->last_renew_caps = jiffies; 5500 INIT_LIST_HEAD(&mdsc->cap_delay_list); 5501 #ifdef CONFIG_DEBUG_FS 5502 INIT_LIST_HEAD(&mdsc->cap_wait_list); 5503 #endif 5504 spin_lock_init(&mdsc->cap_delay_lock); 5505 INIT_LIST_HEAD(&mdsc->cap_unlink_delay_list); 5506 INIT_LIST_HEAD(&mdsc->snap_flush_list); 5507 spin_lock_init(&mdsc->snap_flush_lock); 5508 mdsc->last_cap_flush_tid = 1; 5509 INIT_LIST_HEAD(&mdsc->cap_flush_list); 5510 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 5511 spin_lock_init(&mdsc->cap_dirty_lock); 5512 init_waitqueue_head(&mdsc->cap_flushing_wq); 5513 INIT_WORK(&mdsc->cap_reclaim_work, ceph_cap_reclaim_work); 5514 INIT_WORK(&mdsc->cap_unlink_work, ceph_cap_unlink_work); 5515 err = ceph_metric_init(&mdsc->metric); 5516 if (err) 5517 goto err_mdsmap; 5518 5519 spin_lock_init(&mdsc->dentry_list_lock); 5520 INIT_LIST_HEAD(&mdsc->dentry_leases); 5521 INIT_LIST_HEAD(&mdsc->dentry_dir_leases); 5522 5523 ceph_caps_init(mdsc); 5524 ceph_adjust_caps_max_min(mdsc, fsc->mount_options); 5525 5526 spin_lock_init(&mdsc->snapid_map_lock); 5527 mdsc->snapid_map_tree = RB_ROOT; 5528 INIT_LIST_HEAD(&mdsc->snapid_map_lru); 5529 5530 init_rwsem(&mdsc->pool_perm_rwsem); 5531 mdsc->pool_perm_tree = RB_ROOT; 5532 5533 strscpy(mdsc->nodename, utsname()->nodename, 5534 sizeof(mdsc->nodename)); 5535 5536 fsc->mdsc = mdsc; 5537 return 0; 5538 5539 err_mdsmap: 5540 kfree(mdsc->mdsmap); 5541 err_mdsc: 5542 kfree(mdsc); 5543 return err; 5544 } 5545 5546 /* 5547 * Wait for safe replies on open mds requests. If we time out, drop 5548 * all requests from the tree to avoid dangling dentry refs. 5549 */ 5550 static void wait_requests(struct ceph_mds_client *mdsc) 5551 { 5552 struct ceph_client *cl = mdsc->fsc->client; 5553 struct ceph_options *opts = mdsc->fsc->client->options; 5554 struct ceph_mds_request *req; 5555 5556 mutex_lock(&mdsc->mutex); 5557 if (__get_oldest_req(mdsc)) { 5558 mutex_unlock(&mdsc->mutex); 5559 5560 doutc(cl, "waiting for requests\n"); 5561 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 5562 ceph_timeout_jiffies(opts->mount_timeout)); 5563 5564 /* tear down remaining requests */ 5565 mutex_lock(&mdsc->mutex); 5566 while ((req = __get_oldest_req(mdsc))) { 5567 doutc(cl, "timed out on tid %llu\n", req->r_tid); 5568 list_del_init(&req->r_wait); 5569 __unregister_request(mdsc, req); 5570 } 5571 } 5572 mutex_unlock(&mdsc->mutex); 5573 doutc(cl, "done\n"); 5574 } 5575 5576 void send_flush_mdlog(struct ceph_mds_session *s) 5577 { 5578 struct ceph_client *cl = s->s_mdsc->fsc->client; 5579 struct ceph_msg *msg; 5580 5581 /* 5582 * Pre-luminous MDS crashes when it sees an unknown session request 5583 */ 5584 if (!CEPH_HAVE_FEATURE(s->s_con.peer_features, SERVER_LUMINOUS)) 5585 return; 5586 5587 mutex_lock(&s->s_mutex); 5588 doutc(cl, "request mdlog flush to mds%d (%s)s seq %lld\n", 5589 s->s_mds, ceph_session_state_name(s->s_state), s->s_seq); 5590 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_FLUSH_MDLOG, 5591 s->s_seq); 5592 if (!msg) { 5593 pr_err_client(cl, "failed to request mdlog flush to mds%d (%s) seq %lld\n", 5594 s->s_mds, ceph_session_state_name(s->s_state), s->s_seq); 5595 } else { 5596 ceph_con_send(&s->s_con, msg); 5597 } 5598 mutex_unlock(&s->s_mutex); 5599 } 5600 5601 static int ceph_mds_auth_match(struct ceph_mds_client *mdsc, 5602 struct ceph_mds_cap_auth *auth, 5603 const struct cred *cred, 5604 char *tpath) 5605 { 5606 u32 caller_uid = from_kuid(&init_user_ns, cred->fsuid); 5607 u32 caller_gid = from_kgid(&init_user_ns, cred->fsgid); 5608 struct ceph_client *cl = mdsc->fsc->client; 5609 const char *spath = mdsc->fsc->mount_options->server_path; 5610 bool gid_matched = false; 5611 u32 gid, tlen, len; 5612 int i, j; 5613 5614 doutc(cl, "match.uid %lld\n", auth->match.uid); 5615 if (auth->match.uid != MDS_AUTH_UID_ANY) { 5616 if (auth->match.uid != caller_uid) 5617 return 0; 5618 if (auth->match.num_gids) { 5619 for (i = 0; i < auth->match.num_gids; i++) { 5620 if (caller_gid == auth->match.gids[i]) 5621 gid_matched = true; 5622 } 5623 if (!gid_matched && cred->group_info->ngroups) { 5624 for (i = 0; i < cred->group_info->ngroups; i++) { 5625 gid = from_kgid(&init_user_ns, 5626 cred->group_info->gid[i]); 5627 for (j = 0; j < auth->match.num_gids; j++) { 5628 if (gid == auth->match.gids[j]) { 5629 gid_matched = true; 5630 break; 5631 } 5632 } 5633 if (gid_matched) 5634 break; 5635 } 5636 } 5637 if (!gid_matched) 5638 return 0; 5639 } 5640 } 5641 5642 /* path match */ 5643 if (auth->match.path) { 5644 if (!tpath) 5645 return 0; 5646 5647 tlen = strlen(tpath); 5648 len = strlen(auth->match.path); 5649 if (len) { 5650 char *_tpath = tpath; 5651 bool free_tpath = false; 5652 int m, n; 5653 5654 doutc(cl, "server path %s, tpath %s, match.path %s\n", 5655 spath, tpath, auth->match.path); 5656 if (spath && (m = strlen(spath)) != 1) { 5657 /* mount path + '/' + tpath + an extra space */ 5658 n = m + 1 + tlen + 1; 5659 _tpath = kmalloc(n, GFP_NOFS); 5660 if (!_tpath) 5661 return -ENOMEM; 5662 /* remove the leading '/' */ 5663 snprintf(_tpath, n, "%s/%s", spath + 1, tpath); 5664 free_tpath = true; 5665 tlen = strlen(_tpath); 5666 } 5667 5668 /* 5669 * Please note the tailing '/' for match.path has already 5670 * been removed when parsing. 5671 * 5672 * Remove the tailing '/' for the target path. 5673 */ 5674 while (tlen && _tpath[tlen - 1] == '/') { 5675 _tpath[tlen - 1] = '\0'; 5676 tlen -= 1; 5677 } 5678 doutc(cl, "_tpath %s\n", _tpath); 5679 5680 /* 5681 * In case first == _tpath && tlen == len: 5682 * match.path=/foo --> /foo _path=/foo --> match 5683 * match.path=/foo/ --> /foo _path=/foo --> match 5684 * 5685 * In case first == _tmatch.path && tlen > len: 5686 * match.path=/foo/ --> /foo _path=/foo/ --> match 5687 * match.path=/foo --> /foo _path=/foo/ --> match 5688 * match.path=/foo/ --> /foo _path=/foo/d --> match 5689 * match.path=/foo --> /foo _path=/food --> mismatch 5690 * 5691 * All the other cases --> mismatch 5692 */ 5693 char *first = strstr(_tpath, auth->match.path); 5694 if (first != _tpath) { 5695 if (free_tpath) 5696 kfree(_tpath); 5697 return 0; 5698 } 5699 5700 if (tlen > len && _tpath[len] != '/') { 5701 if (free_tpath) 5702 kfree(_tpath); 5703 return 0; 5704 } 5705 } 5706 } 5707 5708 doutc(cl, "matched\n"); 5709 return 1; 5710 } 5711 5712 int ceph_mds_check_access(struct ceph_mds_client *mdsc, char *tpath, int mask) 5713 { 5714 const struct cred *cred = get_current_cred(); 5715 u32 caller_uid = from_kuid(&init_user_ns, cred->fsuid); 5716 u32 caller_gid = from_kgid(&init_user_ns, cred->fsgid); 5717 struct ceph_mds_cap_auth *rw_perms_s = NULL; 5718 struct ceph_client *cl = mdsc->fsc->client; 5719 bool root_squash_perms = true; 5720 int i, err; 5721 5722 doutc(cl, "tpath '%s', mask %d, caller_uid %d, caller_gid %d\n", 5723 tpath, mask, caller_uid, caller_gid); 5724 5725 for (i = 0; i < mdsc->s_cap_auths_num; i++) { 5726 struct ceph_mds_cap_auth *s = &mdsc->s_cap_auths[i]; 5727 5728 err = ceph_mds_auth_match(mdsc, s, cred, tpath); 5729 if (err < 0) { 5730 put_cred(cred); 5731 return err; 5732 } else if (err > 0) { 5733 /* always follow the last auth caps' permission */ 5734 root_squash_perms = true; 5735 rw_perms_s = NULL; 5736 if ((mask & MAY_WRITE) && s->writeable && 5737 s->match.root_squash && (!caller_uid || !caller_gid)) 5738 root_squash_perms = false; 5739 5740 if (((mask & MAY_WRITE) && !s->writeable) || 5741 ((mask & MAY_READ) && !s->readable)) 5742 rw_perms_s = s; 5743 } 5744 } 5745 5746 put_cred(cred); 5747 5748 doutc(cl, "root_squash_perms %d, rw_perms_s %p\n", root_squash_perms, 5749 rw_perms_s); 5750 if (root_squash_perms && rw_perms_s == NULL) { 5751 doutc(cl, "access allowed\n"); 5752 return 0; 5753 } 5754 5755 if (!root_squash_perms) { 5756 doutc(cl, "root_squash is enabled and user(%d %d) isn't allowed to write", 5757 caller_uid, caller_gid); 5758 } 5759 if (rw_perms_s) { 5760 doutc(cl, "mds auth caps readable/writeable %d/%d while request r/w %d/%d", 5761 rw_perms_s->readable, rw_perms_s->writeable, 5762 !!(mask & MAY_READ), !!(mask & MAY_WRITE)); 5763 } 5764 doutc(cl, "access denied\n"); 5765 return -EACCES; 5766 } 5767 5768 /* 5769 * called before mount is ro, and before dentries are torn down. 5770 * (hmm, does this still race with new lookups?) 5771 */ 5772 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 5773 { 5774 doutc(mdsc->fsc->client, "begin\n"); 5775 mdsc->stopping = CEPH_MDSC_STOPPING_BEGIN; 5776 5777 ceph_mdsc_iterate_sessions(mdsc, send_flush_mdlog, true); 5778 ceph_mdsc_iterate_sessions(mdsc, lock_unlock_session, false); 5779 ceph_flush_dirty_caps(mdsc); 5780 wait_requests(mdsc); 5781 5782 /* 5783 * wait for reply handlers to drop their request refs and 5784 * their inode/dcache refs 5785 */ 5786 ceph_msgr_flush(); 5787 5788 ceph_cleanup_quotarealms_inodes(mdsc); 5789 doutc(mdsc->fsc->client, "done\n"); 5790 } 5791 5792 /* 5793 * flush the mdlog and wait for all write mds requests to flush. 5794 */ 5795 static void flush_mdlog_and_wait_mdsc_unsafe_requests(struct ceph_mds_client *mdsc, 5796 u64 want_tid) 5797 { 5798 struct ceph_client *cl = mdsc->fsc->client; 5799 struct ceph_mds_request *req = NULL, *nextreq; 5800 struct ceph_mds_session *last_session = NULL; 5801 struct rb_node *n; 5802 5803 mutex_lock(&mdsc->mutex); 5804 doutc(cl, "want %lld\n", want_tid); 5805 restart: 5806 req = __get_oldest_req(mdsc); 5807 while (req && req->r_tid <= want_tid) { 5808 /* find next request */ 5809 n = rb_next(&req->r_node); 5810 if (n) 5811 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 5812 else 5813 nextreq = NULL; 5814 if (req->r_op != CEPH_MDS_OP_SETFILELOCK && 5815 (req->r_op & CEPH_MDS_OP_WRITE)) { 5816 struct ceph_mds_session *s = req->r_session; 5817 5818 if (!s) { 5819 req = nextreq; 5820 continue; 5821 } 5822 5823 /* write op */ 5824 ceph_mdsc_get_request(req); 5825 if (nextreq) 5826 ceph_mdsc_get_request(nextreq); 5827 s = ceph_get_mds_session(s); 5828 mutex_unlock(&mdsc->mutex); 5829 5830 /* send flush mdlog request to MDS */ 5831 if (last_session != s) { 5832 send_flush_mdlog(s); 5833 ceph_put_mds_session(last_session); 5834 last_session = s; 5835 } else { 5836 ceph_put_mds_session(s); 5837 } 5838 doutc(cl, "wait on %llu (want %llu)\n", 5839 req->r_tid, want_tid); 5840 wait_for_completion(&req->r_safe_completion); 5841 5842 mutex_lock(&mdsc->mutex); 5843 ceph_mdsc_put_request(req); 5844 if (!nextreq) 5845 break; /* next dne before, so we're done! */ 5846 if (RB_EMPTY_NODE(&nextreq->r_node)) { 5847 /* next request was removed from tree */ 5848 ceph_mdsc_put_request(nextreq); 5849 goto restart; 5850 } 5851 ceph_mdsc_put_request(nextreq); /* won't go away */ 5852 } 5853 req = nextreq; 5854 } 5855 mutex_unlock(&mdsc->mutex); 5856 ceph_put_mds_session(last_session); 5857 doutc(cl, "done\n"); 5858 } 5859 5860 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 5861 { 5862 struct ceph_client *cl = mdsc->fsc->client; 5863 u64 want_tid, want_flush; 5864 5865 if (READ_ONCE(mdsc->fsc->mount_state) >= CEPH_MOUNT_SHUTDOWN) 5866 return; 5867 5868 doutc(cl, "sync\n"); 5869 mutex_lock(&mdsc->mutex); 5870 want_tid = mdsc->last_tid; 5871 mutex_unlock(&mdsc->mutex); 5872 5873 ceph_flush_dirty_caps(mdsc); 5874 ceph_flush_cap_releases(mdsc); 5875 spin_lock(&mdsc->cap_dirty_lock); 5876 want_flush = mdsc->last_cap_flush_tid; 5877 if (!list_empty(&mdsc->cap_flush_list)) { 5878 struct ceph_cap_flush *cf = 5879 list_last_entry(&mdsc->cap_flush_list, 5880 struct ceph_cap_flush, g_list); 5881 cf->wake = true; 5882 } 5883 spin_unlock(&mdsc->cap_dirty_lock); 5884 5885 doutc(cl, "sync want tid %lld flush_seq %lld\n", want_tid, want_flush); 5886 5887 flush_mdlog_and_wait_mdsc_unsafe_requests(mdsc, want_tid); 5888 wait_caps_flush(mdsc, want_flush); 5889 } 5890 5891 /* 5892 * true if all sessions are closed, or we force unmount 5893 */ 5894 static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped) 5895 { 5896 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) 5897 return true; 5898 return atomic_read(&mdsc->num_sessions) <= skipped; 5899 } 5900 5901 /* 5902 * called after sb is ro or when metadata corrupted. 5903 */ 5904 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 5905 { 5906 struct ceph_options *opts = mdsc->fsc->client->options; 5907 struct ceph_client *cl = mdsc->fsc->client; 5908 struct ceph_mds_session *session; 5909 int i; 5910 int skipped = 0; 5911 5912 doutc(cl, "begin\n"); 5913 5914 /* close sessions */ 5915 mutex_lock(&mdsc->mutex); 5916 for (i = 0; i < mdsc->max_sessions; i++) { 5917 session = __ceph_lookup_mds_session(mdsc, i); 5918 if (!session) 5919 continue; 5920 mutex_unlock(&mdsc->mutex); 5921 mutex_lock(&session->s_mutex); 5922 if (__close_session(mdsc, session) <= 0) 5923 skipped++; 5924 mutex_unlock(&session->s_mutex); 5925 ceph_put_mds_session(session); 5926 mutex_lock(&mdsc->mutex); 5927 } 5928 mutex_unlock(&mdsc->mutex); 5929 5930 doutc(cl, "waiting for sessions to close\n"); 5931 wait_event_timeout(mdsc->session_close_wq, 5932 done_closing_sessions(mdsc, skipped), 5933 ceph_timeout_jiffies(opts->mount_timeout)); 5934 5935 /* tear down remaining sessions */ 5936 mutex_lock(&mdsc->mutex); 5937 for (i = 0; i < mdsc->max_sessions; i++) { 5938 if (mdsc->sessions[i]) { 5939 session = ceph_get_mds_session(mdsc->sessions[i]); 5940 __unregister_session(mdsc, session); 5941 mutex_unlock(&mdsc->mutex); 5942 mutex_lock(&session->s_mutex); 5943 remove_session_caps(session); 5944 mutex_unlock(&session->s_mutex); 5945 ceph_put_mds_session(session); 5946 mutex_lock(&mdsc->mutex); 5947 } 5948 } 5949 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 5950 mutex_unlock(&mdsc->mutex); 5951 5952 ceph_cleanup_snapid_map(mdsc); 5953 ceph_cleanup_global_and_empty_realms(mdsc); 5954 5955 cancel_work_sync(&mdsc->cap_reclaim_work); 5956 cancel_work_sync(&mdsc->cap_unlink_work); 5957 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 5958 5959 doutc(cl, "done\n"); 5960 } 5961 5962 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc) 5963 { 5964 struct ceph_mds_session *session; 5965 int mds; 5966 5967 doutc(mdsc->fsc->client, "force umount\n"); 5968 5969 mutex_lock(&mdsc->mutex); 5970 for (mds = 0; mds < mdsc->max_sessions; mds++) { 5971 session = __ceph_lookup_mds_session(mdsc, mds); 5972 if (!session) 5973 continue; 5974 5975 if (session->s_state == CEPH_MDS_SESSION_REJECTED) 5976 __unregister_session(mdsc, session); 5977 __wake_requests(mdsc, &session->s_waiting); 5978 mutex_unlock(&mdsc->mutex); 5979 5980 mutex_lock(&session->s_mutex); 5981 __close_session(mdsc, session); 5982 if (session->s_state == CEPH_MDS_SESSION_CLOSING) { 5983 cleanup_session_requests(mdsc, session); 5984 remove_session_caps(session); 5985 } 5986 mutex_unlock(&session->s_mutex); 5987 ceph_put_mds_session(session); 5988 5989 mutex_lock(&mdsc->mutex); 5990 kick_requests(mdsc, mds); 5991 } 5992 __wake_requests(mdsc, &mdsc->waiting_for_map); 5993 mutex_unlock(&mdsc->mutex); 5994 } 5995 5996 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 5997 { 5998 doutc(mdsc->fsc->client, "stop\n"); 5999 /* 6000 * Make sure the delayed work stopped before releasing 6001 * the resources. 6002 * 6003 * Because the cancel_delayed_work_sync() will only 6004 * guarantee that the work finishes executing. But the 6005 * delayed work will re-arm itself again after that. 6006 */ 6007 flush_delayed_work(&mdsc->delayed_work); 6008 6009 if (mdsc->mdsmap) 6010 ceph_mdsmap_destroy(mdsc->mdsmap); 6011 kfree(mdsc->sessions); 6012 ceph_caps_finalize(mdsc); 6013 6014 if (mdsc->s_cap_auths) { 6015 int i; 6016 6017 for (i = 0; i < mdsc->s_cap_auths_num; i++) { 6018 kfree(mdsc->s_cap_auths[i].match.gids); 6019 kfree(mdsc->s_cap_auths[i].match.path); 6020 kfree(mdsc->s_cap_auths[i].match.fs_name); 6021 } 6022 kfree(mdsc->s_cap_auths); 6023 } 6024 6025 ceph_pool_perm_destroy(mdsc); 6026 } 6027 6028 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 6029 { 6030 struct ceph_mds_client *mdsc = fsc->mdsc; 6031 doutc(fsc->client, "%p\n", mdsc); 6032 6033 if (!mdsc) 6034 return; 6035 6036 /* flush out any connection work with references to us */ 6037 ceph_msgr_flush(); 6038 6039 ceph_mdsc_stop(mdsc); 6040 6041 ceph_metric_destroy(&mdsc->metric); 6042 6043 fsc->mdsc = NULL; 6044 kfree(mdsc); 6045 doutc(fsc->client, "%p done\n", mdsc); 6046 } 6047 6048 void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 6049 { 6050 struct ceph_fs_client *fsc = mdsc->fsc; 6051 struct ceph_client *cl = fsc->client; 6052 const char *mds_namespace = fsc->mount_options->mds_namespace; 6053 void *p = msg->front.iov_base; 6054 void *end = p + msg->front.iov_len; 6055 u32 epoch; 6056 u32 num_fs; 6057 u32 mount_fscid = (u32)-1; 6058 int err = -EINVAL; 6059 6060 ceph_decode_need(&p, end, sizeof(u32), bad); 6061 epoch = ceph_decode_32(&p); 6062 6063 doutc(cl, "epoch %u\n", epoch); 6064 6065 /* struct_v, struct_cv, map_len, epoch, legacy_client_fscid */ 6066 ceph_decode_skip_n(&p, end, 2 + sizeof(u32) * 3, bad); 6067 6068 ceph_decode_32_safe(&p, end, num_fs, bad); 6069 while (num_fs-- > 0) { 6070 void *info_p, *info_end; 6071 u32 info_len; 6072 u32 fscid, namelen; 6073 6074 ceph_decode_need(&p, end, 2 + sizeof(u32), bad); 6075 p += 2; // info_v, info_cv 6076 info_len = ceph_decode_32(&p); 6077 ceph_decode_need(&p, end, info_len, bad); 6078 info_p = p; 6079 info_end = p + info_len; 6080 p = info_end; 6081 6082 ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad); 6083 fscid = ceph_decode_32(&info_p); 6084 namelen = ceph_decode_32(&info_p); 6085 ceph_decode_need(&info_p, info_end, namelen, bad); 6086 6087 if (mds_namespace && 6088 strlen(mds_namespace) == namelen && 6089 !strncmp(mds_namespace, (char *)info_p, namelen)) { 6090 mount_fscid = fscid; 6091 break; 6092 } 6093 } 6094 6095 ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch); 6096 if (mount_fscid != (u32)-1) { 6097 fsc->client->monc.fs_cluster_id = mount_fscid; 6098 ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP, 6099 0, true); 6100 ceph_monc_renew_subs(&fsc->client->monc); 6101 } else { 6102 err = -ENOENT; 6103 goto err_out; 6104 } 6105 return; 6106 6107 bad: 6108 pr_err_client(cl, "error decoding fsmap %d. Shutting down mount.\n", 6109 err); 6110 ceph_umount_begin(mdsc->fsc->sb); 6111 ceph_msg_dump(msg); 6112 err_out: 6113 mutex_lock(&mdsc->mutex); 6114 mdsc->mdsmap_err = err; 6115 __wake_requests(mdsc, &mdsc->waiting_for_map); 6116 mutex_unlock(&mdsc->mutex); 6117 } 6118 6119 /* 6120 * handle mds map update. 6121 */ 6122 void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 6123 { 6124 struct ceph_client *cl = mdsc->fsc->client; 6125 u32 epoch; 6126 u32 maplen; 6127 void *p = msg->front.iov_base; 6128 void *end = p + msg->front.iov_len; 6129 struct ceph_mdsmap *newmap, *oldmap; 6130 struct ceph_fsid fsid; 6131 int err = -EINVAL; 6132 6133 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 6134 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 6135 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 6136 return; 6137 epoch = ceph_decode_32(&p); 6138 maplen = ceph_decode_32(&p); 6139 doutc(cl, "epoch %u len %d\n", epoch, (int)maplen); 6140 6141 /* do we need it? */ 6142 mutex_lock(&mdsc->mutex); 6143 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 6144 doutc(cl, "epoch %u <= our %u\n", epoch, mdsc->mdsmap->m_epoch); 6145 mutex_unlock(&mdsc->mutex); 6146 return; 6147 } 6148 6149 newmap = ceph_mdsmap_decode(mdsc, &p, end, ceph_msgr2(mdsc->fsc->client)); 6150 if (IS_ERR(newmap)) { 6151 err = PTR_ERR(newmap); 6152 goto bad_unlock; 6153 } 6154 6155 /* swap into place */ 6156 if (mdsc->mdsmap) { 6157 oldmap = mdsc->mdsmap; 6158 mdsc->mdsmap = newmap; 6159 check_new_map(mdsc, newmap, oldmap); 6160 ceph_mdsmap_destroy(oldmap); 6161 } else { 6162 mdsc->mdsmap = newmap; /* first mds map */ 6163 } 6164 mdsc->fsc->max_file_size = min((loff_t)mdsc->mdsmap->m_max_file_size, 6165 MAX_LFS_FILESIZE); 6166 6167 __wake_requests(mdsc, &mdsc->waiting_for_map); 6168 ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP, 6169 mdsc->mdsmap->m_epoch); 6170 6171 mutex_unlock(&mdsc->mutex); 6172 schedule_delayed(mdsc, 0); 6173 return; 6174 6175 bad_unlock: 6176 mutex_unlock(&mdsc->mutex); 6177 bad: 6178 pr_err_client(cl, "error decoding mdsmap %d. Shutting down mount.\n", 6179 err); 6180 ceph_umount_begin(mdsc->fsc->sb); 6181 ceph_msg_dump(msg); 6182 return; 6183 } 6184 6185 static struct ceph_connection *mds_get_con(struct ceph_connection *con) 6186 { 6187 struct ceph_mds_session *s = con->private; 6188 6189 if (ceph_get_mds_session(s)) 6190 return con; 6191 return NULL; 6192 } 6193 6194 static void mds_put_con(struct ceph_connection *con) 6195 { 6196 struct ceph_mds_session *s = con->private; 6197 6198 ceph_put_mds_session(s); 6199 } 6200 6201 /* 6202 * if the client is unresponsive for long enough, the mds will kill 6203 * the session entirely. 6204 */ 6205 static void mds_peer_reset(struct ceph_connection *con) 6206 { 6207 struct ceph_mds_session *s = con->private; 6208 struct ceph_mds_client *mdsc = s->s_mdsc; 6209 6210 pr_warn_client(mdsc->fsc->client, "mds%d closed our session\n", 6211 s->s_mds); 6212 if (READ_ONCE(mdsc->fsc->mount_state) != CEPH_MOUNT_FENCE_IO && 6213 ceph_mdsmap_get_state(mdsc->mdsmap, s->s_mds) >= CEPH_MDS_STATE_RECONNECT) 6214 send_mds_reconnect(mdsc, s); 6215 } 6216 6217 static void mds_dispatch(struct ceph_connection *con, struct ceph_msg *msg) 6218 { 6219 struct ceph_mds_session *s = con->private; 6220 struct ceph_mds_client *mdsc = s->s_mdsc; 6221 struct ceph_client *cl = mdsc->fsc->client; 6222 int type = le16_to_cpu(msg->hdr.type); 6223 6224 mutex_lock(&mdsc->mutex); 6225 if (__verify_registered_session(mdsc, s) < 0) { 6226 mutex_unlock(&mdsc->mutex); 6227 goto out; 6228 } 6229 mutex_unlock(&mdsc->mutex); 6230 6231 switch (type) { 6232 case CEPH_MSG_MDS_MAP: 6233 ceph_mdsc_handle_mdsmap(mdsc, msg); 6234 break; 6235 case CEPH_MSG_FS_MAP_USER: 6236 ceph_mdsc_handle_fsmap(mdsc, msg); 6237 break; 6238 case CEPH_MSG_CLIENT_SESSION: 6239 handle_session(s, msg); 6240 break; 6241 case CEPH_MSG_CLIENT_REPLY: 6242 handle_reply(s, msg); 6243 break; 6244 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 6245 handle_forward(mdsc, s, msg); 6246 break; 6247 case CEPH_MSG_CLIENT_CAPS: 6248 ceph_handle_caps(s, msg); 6249 break; 6250 case CEPH_MSG_CLIENT_SNAP: 6251 ceph_handle_snap(mdsc, s, msg); 6252 break; 6253 case CEPH_MSG_CLIENT_LEASE: 6254 handle_lease(mdsc, s, msg); 6255 break; 6256 case CEPH_MSG_CLIENT_QUOTA: 6257 ceph_handle_quota(mdsc, s, msg); 6258 break; 6259 6260 default: 6261 pr_err_client(cl, "received unknown message type %d %s\n", 6262 type, ceph_msg_type_name(type)); 6263 } 6264 out: 6265 ceph_msg_put(msg); 6266 } 6267 6268 /* 6269 * authentication 6270 */ 6271 6272 /* 6273 * Note: returned pointer is the address of a structure that's 6274 * managed separately. Caller must *not* attempt to free it. 6275 */ 6276 static struct ceph_auth_handshake * 6277 mds_get_authorizer(struct ceph_connection *con, int *proto, int force_new) 6278 { 6279 struct ceph_mds_session *s = con->private; 6280 struct ceph_mds_client *mdsc = s->s_mdsc; 6281 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 6282 struct ceph_auth_handshake *auth = &s->s_auth; 6283 int ret; 6284 6285 ret = __ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS, 6286 force_new, proto, NULL, NULL); 6287 if (ret) 6288 return ERR_PTR(ret); 6289 6290 return auth; 6291 } 6292 6293 static int mds_add_authorizer_challenge(struct ceph_connection *con, 6294 void *challenge_buf, int challenge_buf_len) 6295 { 6296 struct ceph_mds_session *s = con->private; 6297 struct ceph_mds_client *mdsc = s->s_mdsc; 6298 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 6299 6300 return ceph_auth_add_authorizer_challenge(ac, s->s_auth.authorizer, 6301 challenge_buf, challenge_buf_len); 6302 } 6303 6304 static int mds_verify_authorizer_reply(struct ceph_connection *con) 6305 { 6306 struct ceph_mds_session *s = con->private; 6307 struct ceph_mds_client *mdsc = s->s_mdsc; 6308 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 6309 struct ceph_auth_handshake *auth = &s->s_auth; 6310 6311 return ceph_auth_verify_authorizer_reply(ac, auth->authorizer, 6312 auth->authorizer_reply_buf, auth->authorizer_reply_buf_len, 6313 NULL, NULL, NULL, NULL); 6314 } 6315 6316 static int mds_invalidate_authorizer(struct ceph_connection *con) 6317 { 6318 struct ceph_mds_session *s = con->private; 6319 struct ceph_mds_client *mdsc = s->s_mdsc; 6320 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 6321 6322 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 6323 6324 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 6325 } 6326 6327 static int mds_get_auth_request(struct ceph_connection *con, 6328 void *buf, int *buf_len, 6329 void **authorizer, int *authorizer_len) 6330 { 6331 struct ceph_mds_session *s = con->private; 6332 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 6333 struct ceph_auth_handshake *auth = &s->s_auth; 6334 int ret; 6335 6336 ret = ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS, 6337 buf, buf_len); 6338 if (ret) 6339 return ret; 6340 6341 *authorizer = auth->authorizer_buf; 6342 *authorizer_len = auth->authorizer_buf_len; 6343 return 0; 6344 } 6345 6346 static int mds_handle_auth_reply_more(struct ceph_connection *con, 6347 void *reply, int reply_len, 6348 void *buf, int *buf_len, 6349 void **authorizer, int *authorizer_len) 6350 { 6351 struct ceph_mds_session *s = con->private; 6352 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 6353 struct ceph_auth_handshake *auth = &s->s_auth; 6354 int ret; 6355 6356 ret = ceph_auth_handle_svc_reply_more(ac, auth, reply, reply_len, 6357 buf, buf_len); 6358 if (ret) 6359 return ret; 6360 6361 *authorizer = auth->authorizer_buf; 6362 *authorizer_len = auth->authorizer_buf_len; 6363 return 0; 6364 } 6365 6366 static int mds_handle_auth_done(struct ceph_connection *con, 6367 u64 global_id, void *reply, int reply_len, 6368 u8 *session_key, int *session_key_len, 6369 u8 *con_secret, int *con_secret_len) 6370 { 6371 struct ceph_mds_session *s = con->private; 6372 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 6373 struct ceph_auth_handshake *auth = &s->s_auth; 6374 6375 return ceph_auth_handle_svc_reply_done(ac, auth, reply, reply_len, 6376 session_key, session_key_len, 6377 con_secret, con_secret_len); 6378 } 6379 6380 static int mds_handle_auth_bad_method(struct ceph_connection *con, 6381 int used_proto, int result, 6382 const int *allowed_protos, int proto_cnt, 6383 const int *allowed_modes, int mode_cnt) 6384 { 6385 struct ceph_mds_session *s = con->private; 6386 struct ceph_mon_client *monc = &s->s_mdsc->fsc->client->monc; 6387 int ret; 6388 6389 if (ceph_auth_handle_bad_authorizer(monc->auth, CEPH_ENTITY_TYPE_MDS, 6390 used_proto, result, 6391 allowed_protos, proto_cnt, 6392 allowed_modes, mode_cnt)) { 6393 ret = ceph_monc_validate_auth(monc); 6394 if (ret) 6395 return ret; 6396 } 6397 6398 return -EACCES; 6399 } 6400 6401 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, 6402 struct ceph_msg_header *hdr, int *skip) 6403 { 6404 struct ceph_msg *msg; 6405 int type = (int) le16_to_cpu(hdr->type); 6406 int front_len = (int) le32_to_cpu(hdr->front_len); 6407 6408 if (con->in_msg) 6409 return con->in_msg; 6410 6411 *skip = 0; 6412 msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 6413 if (!msg) { 6414 pr_err("unable to allocate msg type %d len %d\n", 6415 type, front_len); 6416 return NULL; 6417 } 6418 6419 return msg; 6420 } 6421 6422 static int mds_sign_message(struct ceph_msg *msg) 6423 { 6424 struct ceph_mds_session *s = msg->con->private; 6425 struct ceph_auth_handshake *auth = &s->s_auth; 6426 6427 return ceph_auth_sign_message(auth, msg); 6428 } 6429 6430 static int mds_check_message_signature(struct ceph_msg *msg) 6431 { 6432 struct ceph_mds_session *s = msg->con->private; 6433 struct ceph_auth_handshake *auth = &s->s_auth; 6434 6435 return ceph_auth_check_message_signature(auth, msg); 6436 } 6437 6438 static const struct ceph_connection_operations mds_con_ops = { 6439 .get = mds_get_con, 6440 .put = mds_put_con, 6441 .alloc_msg = mds_alloc_msg, 6442 .dispatch = mds_dispatch, 6443 .peer_reset = mds_peer_reset, 6444 .get_authorizer = mds_get_authorizer, 6445 .add_authorizer_challenge = mds_add_authorizer_challenge, 6446 .verify_authorizer_reply = mds_verify_authorizer_reply, 6447 .invalidate_authorizer = mds_invalidate_authorizer, 6448 .sign_message = mds_sign_message, 6449 .check_message_signature = mds_check_message_signature, 6450 .get_auth_request = mds_get_auth_request, 6451 .handle_auth_reply_more = mds_handle_auth_reply_more, 6452 .handle_auth_done = mds_handle_auth_done, 6453 .handle_auth_bad_method = mds_handle_auth_bad_method, 6454 }; 6455 6456 /* eof */ 6457