xref: /linux/fs/ceph/mds_client.c (revision 606b2f490fb80e55d05cf0e6cec0b6c0ff0fc18f)
1 #include "ceph_debug.h"
2 
3 #include <linux/wait.h>
4 #include <linux/slab.h>
5 #include <linux/sched.h>
6 #include <linux/smp_lock.h>
7 
8 #include "mds_client.h"
9 #include "mon_client.h"
10 #include "super.h"
11 #include "messenger.h"
12 #include "decode.h"
13 #include "auth.h"
14 #include "pagelist.h"
15 
16 /*
17  * A cluster of MDS (metadata server) daemons is responsible for
18  * managing the file system namespace (the directory hierarchy and
19  * inodes) and for coordinating shared access to storage.  Metadata is
20  * partitioning hierarchically across a number of servers, and that
21  * partition varies over time as the cluster adjusts the distribution
22  * in order to balance load.
23  *
24  * The MDS client is primarily responsible to managing synchronous
25  * metadata requests for operations like open, unlink, and so forth.
26  * If there is a MDS failure, we find out about it when we (possibly
27  * request and) receive a new MDS map, and can resubmit affected
28  * requests.
29  *
30  * For the most part, though, we take advantage of a lossless
31  * communications channel to the MDS, and do not need to worry about
32  * timing out or resubmitting requests.
33  *
34  * We maintain a stateful "session" with each MDS we interact with.
35  * Within each session, we sent periodic heartbeat messages to ensure
36  * any capabilities or leases we have been issues remain valid.  If
37  * the session times out and goes stale, our leases and capabilities
38  * are no longer valid.
39  */
40 
41 struct ceph_reconnect_state {
42 	struct ceph_pagelist *pagelist;
43 	bool flock;
44 };
45 
46 static void __wake_requests(struct ceph_mds_client *mdsc,
47 			    struct list_head *head);
48 
49 static const struct ceph_connection_operations mds_con_ops;
50 
51 
52 /*
53  * mds reply parsing
54  */
55 
56 /*
57  * parse individual inode info
58  */
59 static int parse_reply_info_in(void **p, void *end,
60 			       struct ceph_mds_reply_info_in *info)
61 {
62 	int err = -EIO;
63 
64 	info->in = *p;
65 	*p += sizeof(struct ceph_mds_reply_inode) +
66 		sizeof(*info->in->fragtree.splits) *
67 		le32_to_cpu(info->in->fragtree.nsplits);
68 
69 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
70 	ceph_decode_need(p, end, info->symlink_len, bad);
71 	info->symlink = *p;
72 	*p += info->symlink_len;
73 
74 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
75 	ceph_decode_need(p, end, info->xattr_len, bad);
76 	info->xattr_data = *p;
77 	*p += info->xattr_len;
78 	return 0;
79 bad:
80 	return err;
81 }
82 
83 /*
84  * parse a normal reply, which may contain a (dir+)dentry and/or a
85  * target inode.
86  */
87 static int parse_reply_info_trace(void **p, void *end,
88 				  struct ceph_mds_reply_info_parsed *info)
89 {
90 	int err;
91 
92 	if (info->head->is_dentry) {
93 		err = parse_reply_info_in(p, end, &info->diri);
94 		if (err < 0)
95 			goto out_bad;
96 
97 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
98 			goto bad;
99 		info->dirfrag = *p;
100 		*p += sizeof(*info->dirfrag) +
101 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
102 		if (unlikely(*p > end))
103 			goto bad;
104 
105 		ceph_decode_32_safe(p, end, info->dname_len, bad);
106 		ceph_decode_need(p, end, info->dname_len, bad);
107 		info->dname = *p;
108 		*p += info->dname_len;
109 		info->dlease = *p;
110 		*p += sizeof(*info->dlease);
111 	}
112 
113 	if (info->head->is_target) {
114 		err = parse_reply_info_in(p, end, &info->targeti);
115 		if (err < 0)
116 			goto out_bad;
117 	}
118 
119 	if (unlikely(*p != end))
120 		goto bad;
121 	return 0;
122 
123 bad:
124 	err = -EIO;
125 out_bad:
126 	pr_err("problem parsing mds trace %d\n", err);
127 	return err;
128 }
129 
130 /*
131  * parse readdir results
132  */
133 static int parse_reply_info_dir(void **p, void *end,
134 				struct ceph_mds_reply_info_parsed *info)
135 {
136 	u32 num, i = 0;
137 	int err;
138 
139 	info->dir_dir = *p;
140 	if (*p + sizeof(*info->dir_dir) > end)
141 		goto bad;
142 	*p += sizeof(*info->dir_dir) +
143 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
144 	if (*p > end)
145 		goto bad;
146 
147 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
148 	num = ceph_decode_32(p);
149 	info->dir_end = ceph_decode_8(p);
150 	info->dir_complete = ceph_decode_8(p);
151 	if (num == 0)
152 		goto done;
153 
154 	/* alloc large array */
155 	info->dir_nr = num;
156 	info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
157 			       sizeof(*info->dir_dname) +
158 			       sizeof(*info->dir_dname_len) +
159 			       sizeof(*info->dir_dlease),
160 			       GFP_NOFS);
161 	if (info->dir_in == NULL) {
162 		err = -ENOMEM;
163 		goto out_bad;
164 	}
165 	info->dir_dname = (void *)(info->dir_in + num);
166 	info->dir_dname_len = (void *)(info->dir_dname + num);
167 	info->dir_dlease = (void *)(info->dir_dname_len + num);
168 
169 	while (num) {
170 		/* dentry */
171 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
172 		info->dir_dname_len[i] = ceph_decode_32(p);
173 		ceph_decode_need(p, end, info->dir_dname_len[i], bad);
174 		info->dir_dname[i] = *p;
175 		*p += info->dir_dname_len[i];
176 		dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
177 		     info->dir_dname[i]);
178 		info->dir_dlease[i] = *p;
179 		*p += sizeof(struct ceph_mds_reply_lease);
180 
181 		/* inode */
182 		err = parse_reply_info_in(p, end, &info->dir_in[i]);
183 		if (err < 0)
184 			goto out_bad;
185 		i++;
186 		num--;
187 	}
188 
189 done:
190 	if (*p != end)
191 		goto bad;
192 	return 0;
193 
194 bad:
195 	err = -EIO;
196 out_bad:
197 	pr_err("problem parsing dir contents %d\n", err);
198 	return err;
199 }
200 
201 /*
202  * parse entire mds reply
203  */
204 static int parse_reply_info(struct ceph_msg *msg,
205 			    struct ceph_mds_reply_info_parsed *info)
206 {
207 	void *p, *end;
208 	u32 len;
209 	int err;
210 
211 	info->head = msg->front.iov_base;
212 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
213 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
214 
215 	/* trace */
216 	ceph_decode_32_safe(&p, end, len, bad);
217 	if (len > 0) {
218 		err = parse_reply_info_trace(&p, p+len, info);
219 		if (err < 0)
220 			goto out_bad;
221 	}
222 
223 	/* dir content */
224 	ceph_decode_32_safe(&p, end, len, bad);
225 	if (len > 0) {
226 		err = parse_reply_info_dir(&p, p+len, info);
227 		if (err < 0)
228 			goto out_bad;
229 	}
230 
231 	/* snap blob */
232 	ceph_decode_32_safe(&p, end, len, bad);
233 	info->snapblob_len = len;
234 	info->snapblob = p;
235 	p += len;
236 
237 	if (p != end)
238 		goto bad;
239 	return 0;
240 
241 bad:
242 	err = -EIO;
243 out_bad:
244 	pr_err("mds parse_reply err %d\n", err);
245 	return err;
246 }
247 
248 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
249 {
250 	kfree(info->dir_in);
251 }
252 
253 
254 /*
255  * sessions
256  */
257 static const char *session_state_name(int s)
258 {
259 	switch (s) {
260 	case CEPH_MDS_SESSION_NEW: return "new";
261 	case CEPH_MDS_SESSION_OPENING: return "opening";
262 	case CEPH_MDS_SESSION_OPEN: return "open";
263 	case CEPH_MDS_SESSION_HUNG: return "hung";
264 	case CEPH_MDS_SESSION_CLOSING: return "closing";
265 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
266 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
267 	default: return "???";
268 	}
269 }
270 
271 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
272 {
273 	if (atomic_inc_not_zero(&s->s_ref)) {
274 		dout("mdsc get_session %p %d -> %d\n", s,
275 		     atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
276 		return s;
277 	} else {
278 		dout("mdsc get_session %p 0 -- FAIL", s);
279 		return NULL;
280 	}
281 }
282 
283 void ceph_put_mds_session(struct ceph_mds_session *s)
284 {
285 	dout("mdsc put_session %p %d -> %d\n", s,
286 	     atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
287 	if (atomic_dec_and_test(&s->s_ref)) {
288 		if (s->s_authorizer)
289 			s->s_mdsc->client->monc.auth->ops->destroy_authorizer(
290 				s->s_mdsc->client->monc.auth, s->s_authorizer);
291 		kfree(s);
292 	}
293 }
294 
295 /*
296  * called under mdsc->mutex
297  */
298 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
299 						   int mds)
300 {
301 	struct ceph_mds_session *session;
302 
303 	if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
304 		return NULL;
305 	session = mdsc->sessions[mds];
306 	dout("lookup_mds_session %p %d\n", session,
307 	     atomic_read(&session->s_ref));
308 	get_session(session);
309 	return session;
310 }
311 
312 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
313 {
314 	if (mds >= mdsc->max_sessions)
315 		return false;
316 	return mdsc->sessions[mds];
317 }
318 
319 static int __verify_registered_session(struct ceph_mds_client *mdsc,
320 				       struct ceph_mds_session *s)
321 {
322 	if (s->s_mds >= mdsc->max_sessions ||
323 	    mdsc->sessions[s->s_mds] != s)
324 		return -ENOENT;
325 	return 0;
326 }
327 
328 /*
329  * create+register a new session for given mds.
330  * called under mdsc->mutex.
331  */
332 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
333 						 int mds)
334 {
335 	struct ceph_mds_session *s;
336 
337 	s = kzalloc(sizeof(*s), GFP_NOFS);
338 	if (!s)
339 		return ERR_PTR(-ENOMEM);
340 	s->s_mdsc = mdsc;
341 	s->s_mds = mds;
342 	s->s_state = CEPH_MDS_SESSION_NEW;
343 	s->s_ttl = 0;
344 	s->s_seq = 0;
345 	mutex_init(&s->s_mutex);
346 
347 	ceph_con_init(mdsc->client->msgr, &s->s_con);
348 	s->s_con.private = s;
349 	s->s_con.ops = &mds_con_ops;
350 	s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS;
351 	s->s_con.peer_name.num = cpu_to_le64(mds);
352 
353 	spin_lock_init(&s->s_cap_lock);
354 	s->s_cap_gen = 0;
355 	s->s_cap_ttl = 0;
356 	s->s_renew_requested = 0;
357 	s->s_renew_seq = 0;
358 	INIT_LIST_HEAD(&s->s_caps);
359 	s->s_nr_caps = 0;
360 	s->s_trim_caps = 0;
361 	atomic_set(&s->s_ref, 1);
362 	INIT_LIST_HEAD(&s->s_waiting);
363 	INIT_LIST_HEAD(&s->s_unsafe);
364 	s->s_num_cap_releases = 0;
365 	s->s_cap_iterator = NULL;
366 	INIT_LIST_HEAD(&s->s_cap_releases);
367 	INIT_LIST_HEAD(&s->s_cap_releases_done);
368 	INIT_LIST_HEAD(&s->s_cap_flushing);
369 	INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
370 
371 	dout("register_session mds%d\n", mds);
372 	if (mds >= mdsc->max_sessions) {
373 		int newmax = 1 << get_count_order(mds+1);
374 		struct ceph_mds_session **sa;
375 
376 		dout("register_session realloc to %d\n", newmax);
377 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
378 		if (sa == NULL)
379 			goto fail_realloc;
380 		if (mdsc->sessions) {
381 			memcpy(sa, mdsc->sessions,
382 			       mdsc->max_sessions * sizeof(void *));
383 			kfree(mdsc->sessions);
384 		}
385 		mdsc->sessions = sa;
386 		mdsc->max_sessions = newmax;
387 	}
388 	mdsc->sessions[mds] = s;
389 	atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
390 
391 	ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
392 
393 	return s;
394 
395 fail_realloc:
396 	kfree(s);
397 	return ERR_PTR(-ENOMEM);
398 }
399 
400 /*
401  * called under mdsc->mutex
402  */
403 static void __unregister_session(struct ceph_mds_client *mdsc,
404 			       struct ceph_mds_session *s)
405 {
406 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
407 	BUG_ON(mdsc->sessions[s->s_mds] != s);
408 	mdsc->sessions[s->s_mds] = NULL;
409 	ceph_con_close(&s->s_con);
410 	ceph_put_mds_session(s);
411 }
412 
413 /*
414  * drop session refs in request.
415  *
416  * should be last request ref, or hold mdsc->mutex
417  */
418 static void put_request_session(struct ceph_mds_request *req)
419 {
420 	if (req->r_session) {
421 		ceph_put_mds_session(req->r_session);
422 		req->r_session = NULL;
423 	}
424 }
425 
426 void ceph_mdsc_release_request(struct kref *kref)
427 {
428 	struct ceph_mds_request *req = container_of(kref,
429 						    struct ceph_mds_request,
430 						    r_kref);
431 	if (req->r_request)
432 		ceph_msg_put(req->r_request);
433 	if (req->r_reply) {
434 		ceph_msg_put(req->r_reply);
435 		destroy_reply_info(&req->r_reply_info);
436 	}
437 	if (req->r_inode) {
438 		ceph_put_cap_refs(ceph_inode(req->r_inode),
439 				  CEPH_CAP_PIN);
440 		iput(req->r_inode);
441 	}
442 	if (req->r_locked_dir)
443 		ceph_put_cap_refs(ceph_inode(req->r_locked_dir),
444 				  CEPH_CAP_PIN);
445 	if (req->r_target_inode)
446 		iput(req->r_target_inode);
447 	if (req->r_dentry)
448 		dput(req->r_dentry);
449 	if (req->r_old_dentry) {
450 		ceph_put_cap_refs(
451 			ceph_inode(req->r_old_dentry->d_parent->d_inode),
452 			CEPH_CAP_PIN);
453 		dput(req->r_old_dentry);
454 	}
455 	kfree(req->r_path1);
456 	kfree(req->r_path2);
457 	put_request_session(req);
458 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
459 	kfree(req);
460 }
461 
462 /*
463  * lookup session, bump ref if found.
464  *
465  * called under mdsc->mutex.
466  */
467 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
468 					     u64 tid)
469 {
470 	struct ceph_mds_request *req;
471 	struct rb_node *n = mdsc->request_tree.rb_node;
472 
473 	while (n) {
474 		req = rb_entry(n, struct ceph_mds_request, r_node);
475 		if (tid < req->r_tid)
476 			n = n->rb_left;
477 		else if (tid > req->r_tid)
478 			n = n->rb_right;
479 		else {
480 			ceph_mdsc_get_request(req);
481 			return req;
482 		}
483 	}
484 	return NULL;
485 }
486 
487 static void __insert_request(struct ceph_mds_client *mdsc,
488 			     struct ceph_mds_request *new)
489 {
490 	struct rb_node **p = &mdsc->request_tree.rb_node;
491 	struct rb_node *parent = NULL;
492 	struct ceph_mds_request *req = NULL;
493 
494 	while (*p) {
495 		parent = *p;
496 		req = rb_entry(parent, struct ceph_mds_request, r_node);
497 		if (new->r_tid < req->r_tid)
498 			p = &(*p)->rb_left;
499 		else if (new->r_tid > req->r_tid)
500 			p = &(*p)->rb_right;
501 		else
502 			BUG();
503 	}
504 
505 	rb_link_node(&new->r_node, parent, p);
506 	rb_insert_color(&new->r_node, &mdsc->request_tree);
507 }
508 
509 /*
510  * Register an in-flight request, and assign a tid.  Link to directory
511  * are modifying (if any).
512  *
513  * Called under mdsc->mutex.
514  */
515 static void __register_request(struct ceph_mds_client *mdsc,
516 			       struct ceph_mds_request *req,
517 			       struct inode *dir)
518 {
519 	req->r_tid = ++mdsc->last_tid;
520 	if (req->r_num_caps)
521 		ceph_reserve_caps(mdsc, &req->r_caps_reservation,
522 				  req->r_num_caps);
523 	dout("__register_request %p tid %lld\n", req, req->r_tid);
524 	ceph_mdsc_get_request(req);
525 	__insert_request(mdsc, req);
526 
527 	if (dir) {
528 		struct ceph_inode_info *ci = ceph_inode(dir);
529 
530 		spin_lock(&ci->i_unsafe_lock);
531 		req->r_unsafe_dir = dir;
532 		list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
533 		spin_unlock(&ci->i_unsafe_lock);
534 	}
535 }
536 
537 static void __unregister_request(struct ceph_mds_client *mdsc,
538 				 struct ceph_mds_request *req)
539 {
540 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
541 	rb_erase(&req->r_node, &mdsc->request_tree);
542 	RB_CLEAR_NODE(&req->r_node);
543 
544 	if (req->r_unsafe_dir) {
545 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
546 
547 		spin_lock(&ci->i_unsafe_lock);
548 		list_del_init(&req->r_unsafe_dir_item);
549 		spin_unlock(&ci->i_unsafe_lock);
550 	}
551 
552 	ceph_mdsc_put_request(req);
553 }
554 
555 /*
556  * Choose mds to send request to next.  If there is a hint set in the
557  * request (e.g., due to a prior forward hint from the mds), use that.
558  * Otherwise, consult frag tree and/or caps to identify the
559  * appropriate mds.  If all else fails, choose randomly.
560  *
561  * Called under mdsc->mutex.
562  */
563 struct dentry *get_nonsnap_parent(struct dentry *dentry)
564 {
565 	while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
566 		dentry = dentry->d_parent;
567 	return dentry;
568 }
569 
570 static int __choose_mds(struct ceph_mds_client *mdsc,
571 			struct ceph_mds_request *req)
572 {
573 	struct inode *inode;
574 	struct ceph_inode_info *ci;
575 	struct ceph_cap *cap;
576 	int mode = req->r_direct_mode;
577 	int mds = -1;
578 	u32 hash = req->r_direct_hash;
579 	bool is_hash = req->r_direct_is_hash;
580 
581 	/*
582 	 * is there a specific mds we should try?  ignore hint if we have
583 	 * no session and the mds is not up (active or recovering).
584 	 */
585 	if (req->r_resend_mds >= 0 &&
586 	    (__have_session(mdsc, req->r_resend_mds) ||
587 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
588 		dout("choose_mds using resend_mds mds%d\n",
589 		     req->r_resend_mds);
590 		return req->r_resend_mds;
591 	}
592 
593 	if (mode == USE_RANDOM_MDS)
594 		goto random;
595 
596 	inode = NULL;
597 	if (req->r_inode) {
598 		inode = req->r_inode;
599 	} else if (req->r_dentry) {
600 		struct inode *dir = req->r_dentry->d_parent->d_inode;
601 
602 		if (dir->i_sb != mdsc->client->sb) {
603 			/* not this fs! */
604 			inode = req->r_dentry->d_inode;
605 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
606 			/* direct snapped/virtual snapdir requests
607 			 * based on parent dir inode */
608 			struct dentry *dn =
609 				get_nonsnap_parent(req->r_dentry->d_parent);
610 			inode = dn->d_inode;
611 			dout("__choose_mds using nonsnap parent %p\n", inode);
612 		} else if (req->r_dentry->d_inode) {
613 			/* dentry target */
614 			inode = req->r_dentry->d_inode;
615 		} else {
616 			/* dir + name */
617 			inode = dir;
618 			hash = req->r_dentry->d_name.hash;
619 			is_hash = true;
620 		}
621 	}
622 
623 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
624 	     (int)hash, mode);
625 	if (!inode)
626 		goto random;
627 	ci = ceph_inode(inode);
628 
629 	if (is_hash && S_ISDIR(inode->i_mode)) {
630 		struct ceph_inode_frag frag;
631 		int found;
632 
633 		ceph_choose_frag(ci, hash, &frag, &found);
634 		if (found) {
635 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
636 				u8 r;
637 
638 				/* choose a random replica */
639 				get_random_bytes(&r, 1);
640 				r %= frag.ndist;
641 				mds = frag.dist[r];
642 				dout("choose_mds %p %llx.%llx "
643 				     "frag %u mds%d (%d/%d)\n",
644 				     inode, ceph_vinop(inode),
645 				     frag.frag, frag.mds,
646 				     (int)r, frag.ndist);
647 				return mds;
648 			}
649 
650 			/* since this file/dir wasn't known to be
651 			 * replicated, then we want to look for the
652 			 * authoritative mds. */
653 			mode = USE_AUTH_MDS;
654 			if (frag.mds >= 0) {
655 				/* choose auth mds */
656 				mds = frag.mds;
657 				dout("choose_mds %p %llx.%llx "
658 				     "frag %u mds%d (auth)\n",
659 				     inode, ceph_vinop(inode), frag.frag, mds);
660 				return mds;
661 			}
662 		}
663 	}
664 
665 	spin_lock(&inode->i_lock);
666 	cap = NULL;
667 	if (mode == USE_AUTH_MDS)
668 		cap = ci->i_auth_cap;
669 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
670 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
671 	if (!cap) {
672 		spin_unlock(&inode->i_lock);
673 		goto random;
674 	}
675 	mds = cap->session->s_mds;
676 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
677 	     inode, ceph_vinop(inode), mds,
678 	     cap == ci->i_auth_cap ? "auth " : "", cap);
679 	spin_unlock(&inode->i_lock);
680 	return mds;
681 
682 random:
683 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
684 	dout("choose_mds chose random mds%d\n", mds);
685 	return mds;
686 }
687 
688 
689 /*
690  * session messages
691  */
692 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
693 {
694 	struct ceph_msg *msg;
695 	struct ceph_mds_session_head *h;
696 
697 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS);
698 	if (!msg) {
699 		pr_err("create_session_msg ENOMEM creating msg\n");
700 		return NULL;
701 	}
702 	h = msg->front.iov_base;
703 	h->op = cpu_to_le32(op);
704 	h->seq = cpu_to_le64(seq);
705 	return msg;
706 }
707 
708 /*
709  * send session open request.
710  *
711  * called under mdsc->mutex
712  */
713 static int __open_session(struct ceph_mds_client *mdsc,
714 			  struct ceph_mds_session *session)
715 {
716 	struct ceph_msg *msg;
717 	int mstate;
718 	int mds = session->s_mds;
719 
720 	/* wait for mds to go active? */
721 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
722 	dout("open_session to mds%d (%s)\n", mds,
723 	     ceph_mds_state_name(mstate));
724 	session->s_state = CEPH_MDS_SESSION_OPENING;
725 	session->s_renew_requested = jiffies;
726 
727 	/* send connect message */
728 	msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
729 	if (!msg)
730 		return -ENOMEM;
731 	ceph_con_send(&session->s_con, msg);
732 	return 0;
733 }
734 
735 /*
736  * open sessions for any export targets for the given mds
737  *
738  * called under mdsc->mutex
739  */
740 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
741 					  struct ceph_mds_session *session)
742 {
743 	struct ceph_mds_info *mi;
744 	struct ceph_mds_session *ts;
745 	int i, mds = session->s_mds;
746 	int target;
747 
748 	if (mds >= mdsc->mdsmap->m_max_mds)
749 		return;
750 	mi = &mdsc->mdsmap->m_info[mds];
751 	dout("open_export_target_sessions for mds%d (%d targets)\n",
752 	     session->s_mds, mi->num_export_targets);
753 
754 	for (i = 0; i < mi->num_export_targets; i++) {
755 		target = mi->export_targets[i];
756 		ts = __ceph_lookup_mds_session(mdsc, target);
757 		if (!ts) {
758 			ts = register_session(mdsc, target);
759 			if (IS_ERR(ts))
760 				return;
761 		}
762 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
763 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
764 			__open_session(mdsc, session);
765 		else
766 			dout(" mds%d target mds%d %p is %s\n", session->s_mds,
767 			     i, ts, session_state_name(ts->s_state));
768 		ceph_put_mds_session(ts);
769 	}
770 }
771 
772 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
773 					   struct ceph_mds_session *session)
774 {
775 	mutex_lock(&mdsc->mutex);
776 	__open_export_target_sessions(mdsc, session);
777 	mutex_unlock(&mdsc->mutex);
778 }
779 
780 /*
781  * session caps
782  */
783 
784 /*
785  * Free preallocated cap messages assigned to this session
786  */
787 static void cleanup_cap_releases(struct ceph_mds_session *session)
788 {
789 	struct ceph_msg *msg;
790 
791 	spin_lock(&session->s_cap_lock);
792 	while (!list_empty(&session->s_cap_releases)) {
793 		msg = list_first_entry(&session->s_cap_releases,
794 				       struct ceph_msg, list_head);
795 		list_del_init(&msg->list_head);
796 		ceph_msg_put(msg);
797 	}
798 	while (!list_empty(&session->s_cap_releases_done)) {
799 		msg = list_first_entry(&session->s_cap_releases_done,
800 				       struct ceph_msg, list_head);
801 		list_del_init(&msg->list_head);
802 		ceph_msg_put(msg);
803 	}
804 	spin_unlock(&session->s_cap_lock);
805 }
806 
807 /*
808  * Helper to safely iterate over all caps associated with a session, with
809  * special care taken to handle a racing __ceph_remove_cap().
810  *
811  * Caller must hold session s_mutex.
812  */
813 static int iterate_session_caps(struct ceph_mds_session *session,
814 				 int (*cb)(struct inode *, struct ceph_cap *,
815 					    void *), void *arg)
816 {
817 	struct list_head *p;
818 	struct ceph_cap *cap;
819 	struct inode *inode, *last_inode = NULL;
820 	struct ceph_cap *old_cap = NULL;
821 	int ret;
822 
823 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
824 	spin_lock(&session->s_cap_lock);
825 	p = session->s_caps.next;
826 	while (p != &session->s_caps) {
827 		cap = list_entry(p, struct ceph_cap, session_caps);
828 		inode = igrab(&cap->ci->vfs_inode);
829 		if (!inode) {
830 			p = p->next;
831 			continue;
832 		}
833 		session->s_cap_iterator = cap;
834 		spin_unlock(&session->s_cap_lock);
835 
836 		if (last_inode) {
837 			iput(last_inode);
838 			last_inode = NULL;
839 		}
840 		if (old_cap) {
841 			ceph_put_cap(session->s_mdsc, old_cap);
842 			old_cap = NULL;
843 		}
844 
845 		ret = cb(inode, cap, arg);
846 		last_inode = inode;
847 
848 		spin_lock(&session->s_cap_lock);
849 		p = p->next;
850 		if (cap->ci == NULL) {
851 			dout("iterate_session_caps  finishing cap %p removal\n",
852 			     cap);
853 			BUG_ON(cap->session != session);
854 			list_del_init(&cap->session_caps);
855 			session->s_nr_caps--;
856 			cap->session = NULL;
857 			old_cap = cap;  /* put_cap it w/o locks held */
858 		}
859 		if (ret < 0)
860 			goto out;
861 	}
862 	ret = 0;
863 out:
864 	session->s_cap_iterator = NULL;
865 	spin_unlock(&session->s_cap_lock);
866 
867 	if (last_inode)
868 		iput(last_inode);
869 	if (old_cap)
870 		ceph_put_cap(session->s_mdsc, old_cap);
871 
872 	return ret;
873 }
874 
875 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
876 				  void *arg)
877 {
878 	struct ceph_inode_info *ci = ceph_inode(inode);
879 	int drop = 0;
880 
881 	dout("removing cap %p, ci is %p, inode is %p\n",
882 	     cap, ci, &ci->vfs_inode);
883 	spin_lock(&inode->i_lock);
884 	__ceph_remove_cap(cap);
885 	if (!__ceph_is_any_real_caps(ci)) {
886 		struct ceph_mds_client *mdsc =
887 			&ceph_sb_to_client(inode->i_sb)->mdsc;
888 
889 		spin_lock(&mdsc->cap_dirty_lock);
890 		if (!list_empty(&ci->i_dirty_item)) {
891 			pr_info(" dropping dirty %s state for %p %lld\n",
892 				ceph_cap_string(ci->i_dirty_caps),
893 				inode, ceph_ino(inode));
894 			ci->i_dirty_caps = 0;
895 			list_del_init(&ci->i_dirty_item);
896 			drop = 1;
897 		}
898 		if (!list_empty(&ci->i_flushing_item)) {
899 			pr_info(" dropping dirty+flushing %s state for %p %lld\n",
900 				ceph_cap_string(ci->i_flushing_caps),
901 				inode, ceph_ino(inode));
902 			ci->i_flushing_caps = 0;
903 			list_del_init(&ci->i_flushing_item);
904 			mdsc->num_cap_flushing--;
905 			drop = 1;
906 		}
907 		if (drop && ci->i_wrbuffer_ref) {
908 			pr_info(" dropping dirty data for %p %lld\n",
909 				inode, ceph_ino(inode));
910 			ci->i_wrbuffer_ref = 0;
911 			ci->i_wrbuffer_ref_head = 0;
912 			drop++;
913 		}
914 		spin_unlock(&mdsc->cap_dirty_lock);
915 	}
916 	spin_unlock(&inode->i_lock);
917 	while (drop--)
918 		iput(inode);
919 	return 0;
920 }
921 
922 /*
923  * caller must hold session s_mutex
924  */
925 static void remove_session_caps(struct ceph_mds_session *session)
926 {
927 	dout("remove_session_caps on %p\n", session);
928 	iterate_session_caps(session, remove_session_caps_cb, NULL);
929 	BUG_ON(session->s_nr_caps > 0);
930 	BUG_ON(!list_empty(&session->s_cap_flushing));
931 	cleanup_cap_releases(session);
932 }
933 
934 /*
935  * wake up any threads waiting on this session's caps.  if the cap is
936  * old (didn't get renewed on the client reconnect), remove it now.
937  *
938  * caller must hold s_mutex.
939  */
940 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
941 			      void *arg)
942 {
943 	struct ceph_inode_info *ci = ceph_inode(inode);
944 
945 	wake_up_all(&ci->i_cap_wq);
946 	if (arg) {
947 		spin_lock(&inode->i_lock);
948 		ci->i_wanted_max_size = 0;
949 		ci->i_requested_max_size = 0;
950 		spin_unlock(&inode->i_lock);
951 	}
952 	return 0;
953 }
954 
955 static void wake_up_session_caps(struct ceph_mds_session *session,
956 				 int reconnect)
957 {
958 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
959 	iterate_session_caps(session, wake_up_session_cb,
960 			     (void *)(unsigned long)reconnect);
961 }
962 
963 /*
964  * Send periodic message to MDS renewing all currently held caps.  The
965  * ack will reset the expiration for all caps from this session.
966  *
967  * caller holds s_mutex
968  */
969 static int send_renew_caps(struct ceph_mds_client *mdsc,
970 			   struct ceph_mds_session *session)
971 {
972 	struct ceph_msg *msg;
973 	int state;
974 
975 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
976 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
977 		pr_info("mds%d caps stale\n", session->s_mds);
978 	session->s_renew_requested = jiffies;
979 
980 	/* do not try to renew caps until a recovering mds has reconnected
981 	 * with its clients. */
982 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
983 	if (state < CEPH_MDS_STATE_RECONNECT) {
984 		dout("send_renew_caps ignoring mds%d (%s)\n",
985 		     session->s_mds, ceph_mds_state_name(state));
986 		return 0;
987 	}
988 
989 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
990 		ceph_mds_state_name(state));
991 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
992 				 ++session->s_renew_seq);
993 	if (!msg)
994 		return -ENOMEM;
995 	ceph_con_send(&session->s_con, msg);
996 	return 0;
997 }
998 
999 /*
1000  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1001  *
1002  * Called under session->s_mutex
1003  */
1004 static void renewed_caps(struct ceph_mds_client *mdsc,
1005 			 struct ceph_mds_session *session, int is_renew)
1006 {
1007 	int was_stale;
1008 	int wake = 0;
1009 
1010 	spin_lock(&session->s_cap_lock);
1011 	was_stale = is_renew && (session->s_cap_ttl == 0 ||
1012 				 time_after_eq(jiffies, session->s_cap_ttl));
1013 
1014 	session->s_cap_ttl = session->s_renew_requested +
1015 		mdsc->mdsmap->m_session_timeout*HZ;
1016 
1017 	if (was_stale) {
1018 		if (time_before(jiffies, session->s_cap_ttl)) {
1019 			pr_info("mds%d caps renewed\n", session->s_mds);
1020 			wake = 1;
1021 		} else {
1022 			pr_info("mds%d caps still stale\n", session->s_mds);
1023 		}
1024 	}
1025 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1026 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1027 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1028 	spin_unlock(&session->s_cap_lock);
1029 
1030 	if (wake)
1031 		wake_up_session_caps(session, 0);
1032 }
1033 
1034 /*
1035  * send a session close request
1036  */
1037 static int request_close_session(struct ceph_mds_client *mdsc,
1038 				 struct ceph_mds_session *session)
1039 {
1040 	struct ceph_msg *msg;
1041 
1042 	dout("request_close_session mds%d state %s seq %lld\n",
1043 	     session->s_mds, session_state_name(session->s_state),
1044 	     session->s_seq);
1045 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1046 	if (!msg)
1047 		return -ENOMEM;
1048 	ceph_con_send(&session->s_con, msg);
1049 	return 0;
1050 }
1051 
1052 /*
1053  * Called with s_mutex held.
1054  */
1055 static int __close_session(struct ceph_mds_client *mdsc,
1056 			 struct ceph_mds_session *session)
1057 {
1058 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1059 		return 0;
1060 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1061 	return request_close_session(mdsc, session);
1062 }
1063 
1064 /*
1065  * Trim old(er) caps.
1066  *
1067  * Because we can't cache an inode without one or more caps, we do
1068  * this indirectly: if a cap is unused, we prune its aliases, at which
1069  * point the inode will hopefully get dropped to.
1070  *
1071  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1072  * memory pressure from the MDS, though, so it needn't be perfect.
1073  */
1074 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1075 {
1076 	struct ceph_mds_session *session = arg;
1077 	struct ceph_inode_info *ci = ceph_inode(inode);
1078 	int used, oissued, mine;
1079 
1080 	if (session->s_trim_caps <= 0)
1081 		return -1;
1082 
1083 	spin_lock(&inode->i_lock);
1084 	mine = cap->issued | cap->implemented;
1085 	used = __ceph_caps_used(ci);
1086 	oissued = __ceph_caps_issued_other(ci, cap);
1087 
1088 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1089 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1090 	     ceph_cap_string(used));
1091 	if (ci->i_dirty_caps)
1092 		goto out;   /* dirty caps */
1093 	if ((used & ~oissued) & mine)
1094 		goto out;   /* we need these caps */
1095 
1096 	session->s_trim_caps--;
1097 	if (oissued) {
1098 		/* we aren't the only cap.. just remove us */
1099 		__ceph_remove_cap(cap);
1100 	} else {
1101 		/* try to drop referring dentries */
1102 		spin_unlock(&inode->i_lock);
1103 		d_prune_aliases(inode);
1104 		dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1105 		     inode, cap, atomic_read(&inode->i_count));
1106 		return 0;
1107 	}
1108 
1109 out:
1110 	spin_unlock(&inode->i_lock);
1111 	return 0;
1112 }
1113 
1114 /*
1115  * Trim session cap count down to some max number.
1116  */
1117 static int trim_caps(struct ceph_mds_client *mdsc,
1118 		     struct ceph_mds_session *session,
1119 		     int max_caps)
1120 {
1121 	int trim_caps = session->s_nr_caps - max_caps;
1122 
1123 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1124 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1125 	if (trim_caps > 0) {
1126 		session->s_trim_caps = trim_caps;
1127 		iterate_session_caps(session, trim_caps_cb, session);
1128 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1129 		     session->s_mds, session->s_nr_caps, max_caps,
1130 			trim_caps - session->s_trim_caps);
1131 		session->s_trim_caps = 0;
1132 	}
1133 	return 0;
1134 }
1135 
1136 /*
1137  * Allocate cap_release messages.  If there is a partially full message
1138  * in the queue, try to allocate enough to cover it's remainder, so that
1139  * we can send it immediately.
1140  *
1141  * Called under s_mutex.
1142  */
1143 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1144 			  struct ceph_mds_session *session)
1145 {
1146 	struct ceph_msg *msg, *partial = NULL;
1147 	struct ceph_mds_cap_release *head;
1148 	int err = -ENOMEM;
1149 	int extra = mdsc->client->mount_args->cap_release_safety;
1150 	int num;
1151 
1152 	dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1153 	     extra);
1154 
1155 	spin_lock(&session->s_cap_lock);
1156 
1157 	if (!list_empty(&session->s_cap_releases)) {
1158 		msg = list_first_entry(&session->s_cap_releases,
1159 				       struct ceph_msg,
1160 				 list_head);
1161 		head = msg->front.iov_base;
1162 		num = le32_to_cpu(head->num);
1163 		if (num) {
1164 			dout(" partial %p with (%d/%d)\n", msg, num,
1165 			     (int)CEPH_CAPS_PER_RELEASE);
1166 			extra += CEPH_CAPS_PER_RELEASE - num;
1167 			partial = msg;
1168 		}
1169 	}
1170 	while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1171 		spin_unlock(&session->s_cap_lock);
1172 		msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1173 				   GFP_NOFS);
1174 		if (!msg)
1175 			goto out_unlocked;
1176 		dout("add_cap_releases %p msg %p now %d\n", session, msg,
1177 		     (int)msg->front.iov_len);
1178 		head = msg->front.iov_base;
1179 		head->num = cpu_to_le32(0);
1180 		msg->front.iov_len = sizeof(*head);
1181 		spin_lock(&session->s_cap_lock);
1182 		list_add(&msg->list_head, &session->s_cap_releases);
1183 		session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1184 	}
1185 
1186 	if (partial) {
1187 		head = partial->front.iov_base;
1188 		num = le32_to_cpu(head->num);
1189 		dout(" queueing partial %p with %d/%d\n", partial, num,
1190 		     (int)CEPH_CAPS_PER_RELEASE);
1191 		list_move_tail(&partial->list_head,
1192 			       &session->s_cap_releases_done);
1193 		session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1194 	}
1195 	err = 0;
1196 	spin_unlock(&session->s_cap_lock);
1197 out_unlocked:
1198 	return err;
1199 }
1200 
1201 /*
1202  * flush all dirty inode data to disk.
1203  *
1204  * returns true if we've flushed through want_flush_seq
1205  */
1206 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1207 {
1208 	int mds, ret = 1;
1209 
1210 	dout("check_cap_flush want %lld\n", want_flush_seq);
1211 	mutex_lock(&mdsc->mutex);
1212 	for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1213 		struct ceph_mds_session *session = mdsc->sessions[mds];
1214 
1215 		if (!session)
1216 			continue;
1217 		get_session(session);
1218 		mutex_unlock(&mdsc->mutex);
1219 
1220 		mutex_lock(&session->s_mutex);
1221 		if (!list_empty(&session->s_cap_flushing)) {
1222 			struct ceph_inode_info *ci =
1223 				list_entry(session->s_cap_flushing.next,
1224 					   struct ceph_inode_info,
1225 					   i_flushing_item);
1226 			struct inode *inode = &ci->vfs_inode;
1227 
1228 			spin_lock(&inode->i_lock);
1229 			if (ci->i_cap_flush_seq <= want_flush_seq) {
1230 				dout("check_cap_flush still flushing %p "
1231 				     "seq %lld <= %lld to mds%d\n", inode,
1232 				     ci->i_cap_flush_seq, want_flush_seq,
1233 				     session->s_mds);
1234 				ret = 0;
1235 			}
1236 			spin_unlock(&inode->i_lock);
1237 		}
1238 		mutex_unlock(&session->s_mutex);
1239 		ceph_put_mds_session(session);
1240 
1241 		if (!ret)
1242 			return ret;
1243 		mutex_lock(&mdsc->mutex);
1244 	}
1245 
1246 	mutex_unlock(&mdsc->mutex);
1247 	dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1248 	return ret;
1249 }
1250 
1251 /*
1252  * called under s_mutex
1253  */
1254 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1255 			    struct ceph_mds_session *session)
1256 {
1257 	struct ceph_msg *msg;
1258 
1259 	dout("send_cap_releases mds%d\n", session->s_mds);
1260 	spin_lock(&session->s_cap_lock);
1261 	while (!list_empty(&session->s_cap_releases_done)) {
1262 		msg = list_first_entry(&session->s_cap_releases_done,
1263 				 struct ceph_msg, list_head);
1264 		list_del_init(&msg->list_head);
1265 		spin_unlock(&session->s_cap_lock);
1266 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1267 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1268 		ceph_con_send(&session->s_con, msg);
1269 		spin_lock(&session->s_cap_lock);
1270 	}
1271 	spin_unlock(&session->s_cap_lock);
1272 }
1273 
1274 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1275 				 struct ceph_mds_session *session)
1276 {
1277 	struct ceph_msg *msg;
1278 	struct ceph_mds_cap_release *head;
1279 	unsigned num;
1280 
1281 	dout("discard_cap_releases mds%d\n", session->s_mds);
1282 	spin_lock(&session->s_cap_lock);
1283 
1284 	/* zero out the in-progress message */
1285 	msg = list_first_entry(&session->s_cap_releases,
1286 			       struct ceph_msg, list_head);
1287 	head = msg->front.iov_base;
1288 	num = le32_to_cpu(head->num);
1289 	dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1290 	head->num = cpu_to_le32(0);
1291 	session->s_num_cap_releases += num;
1292 
1293 	/* requeue completed messages */
1294 	while (!list_empty(&session->s_cap_releases_done)) {
1295 		msg = list_first_entry(&session->s_cap_releases_done,
1296 				 struct ceph_msg, list_head);
1297 		list_del_init(&msg->list_head);
1298 
1299 		head = msg->front.iov_base;
1300 		num = le32_to_cpu(head->num);
1301 		dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1302 		     num);
1303 		session->s_num_cap_releases += num;
1304 		head->num = cpu_to_le32(0);
1305 		msg->front.iov_len = sizeof(*head);
1306 		list_add(&msg->list_head, &session->s_cap_releases);
1307 	}
1308 
1309 	spin_unlock(&session->s_cap_lock);
1310 }
1311 
1312 /*
1313  * requests
1314  */
1315 
1316 /*
1317  * Create an mds request.
1318  */
1319 struct ceph_mds_request *
1320 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1321 {
1322 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1323 
1324 	if (!req)
1325 		return ERR_PTR(-ENOMEM);
1326 
1327 	mutex_init(&req->r_fill_mutex);
1328 	req->r_mdsc = mdsc;
1329 	req->r_started = jiffies;
1330 	req->r_resend_mds = -1;
1331 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1332 	req->r_fmode = -1;
1333 	kref_init(&req->r_kref);
1334 	INIT_LIST_HEAD(&req->r_wait);
1335 	init_completion(&req->r_completion);
1336 	init_completion(&req->r_safe_completion);
1337 	INIT_LIST_HEAD(&req->r_unsafe_item);
1338 
1339 	req->r_op = op;
1340 	req->r_direct_mode = mode;
1341 	return req;
1342 }
1343 
1344 /*
1345  * return oldest (lowest) request, tid in request tree, 0 if none.
1346  *
1347  * called under mdsc->mutex.
1348  */
1349 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1350 {
1351 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1352 		return NULL;
1353 	return rb_entry(rb_first(&mdsc->request_tree),
1354 			struct ceph_mds_request, r_node);
1355 }
1356 
1357 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1358 {
1359 	struct ceph_mds_request *req = __get_oldest_req(mdsc);
1360 
1361 	if (req)
1362 		return req->r_tid;
1363 	return 0;
1364 }
1365 
1366 /*
1367  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1368  * on build_path_from_dentry in fs/cifs/dir.c.
1369  *
1370  * If @stop_on_nosnap, generate path relative to the first non-snapped
1371  * inode.
1372  *
1373  * Encode hidden .snap dirs as a double /, i.e.
1374  *   foo/.snap/bar -> foo//bar
1375  */
1376 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1377 			   int stop_on_nosnap)
1378 {
1379 	struct dentry *temp;
1380 	char *path;
1381 	int len, pos;
1382 
1383 	if (dentry == NULL)
1384 		return ERR_PTR(-EINVAL);
1385 
1386 retry:
1387 	len = 0;
1388 	for (temp = dentry; !IS_ROOT(temp);) {
1389 		struct inode *inode = temp->d_inode;
1390 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1391 			len++;  /* slash only */
1392 		else if (stop_on_nosnap && inode &&
1393 			 ceph_snap(inode) == CEPH_NOSNAP)
1394 			break;
1395 		else
1396 			len += 1 + temp->d_name.len;
1397 		temp = temp->d_parent;
1398 		if (temp == NULL) {
1399 			pr_err("build_path corrupt dentry %p\n", dentry);
1400 			return ERR_PTR(-EINVAL);
1401 		}
1402 	}
1403 	if (len)
1404 		len--;  /* no leading '/' */
1405 
1406 	path = kmalloc(len+1, GFP_NOFS);
1407 	if (path == NULL)
1408 		return ERR_PTR(-ENOMEM);
1409 	pos = len;
1410 	path[pos] = 0;	/* trailing null */
1411 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1412 		struct inode *inode = temp->d_inode;
1413 
1414 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1415 			dout("build_path path+%d: %p SNAPDIR\n",
1416 			     pos, temp);
1417 		} else if (stop_on_nosnap && inode &&
1418 			   ceph_snap(inode) == CEPH_NOSNAP) {
1419 			break;
1420 		} else {
1421 			pos -= temp->d_name.len;
1422 			if (pos < 0)
1423 				break;
1424 			strncpy(path + pos, temp->d_name.name,
1425 				temp->d_name.len);
1426 		}
1427 		if (pos)
1428 			path[--pos] = '/';
1429 		temp = temp->d_parent;
1430 		if (temp == NULL) {
1431 			pr_err("build_path corrupt dentry\n");
1432 			kfree(path);
1433 			return ERR_PTR(-EINVAL);
1434 		}
1435 	}
1436 	if (pos != 0) {
1437 		pr_err("build_path did not end path lookup where "
1438 		       "expected, namelen is %d, pos is %d\n", len, pos);
1439 		/* presumably this is only possible if racing with a
1440 		   rename of one of the parent directories (we can not
1441 		   lock the dentries above us to prevent this, but
1442 		   retrying should be harmless) */
1443 		kfree(path);
1444 		goto retry;
1445 	}
1446 
1447 	*base = ceph_ino(temp->d_inode);
1448 	*plen = len;
1449 	dout("build_path on %p %d built %llx '%.*s'\n",
1450 	     dentry, atomic_read(&dentry->d_count), *base, len, path);
1451 	return path;
1452 }
1453 
1454 static int build_dentry_path(struct dentry *dentry,
1455 			     const char **ppath, int *ppathlen, u64 *pino,
1456 			     int *pfreepath)
1457 {
1458 	char *path;
1459 
1460 	if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1461 		*pino = ceph_ino(dentry->d_parent->d_inode);
1462 		*ppath = dentry->d_name.name;
1463 		*ppathlen = dentry->d_name.len;
1464 		return 0;
1465 	}
1466 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1467 	if (IS_ERR(path))
1468 		return PTR_ERR(path);
1469 	*ppath = path;
1470 	*pfreepath = 1;
1471 	return 0;
1472 }
1473 
1474 static int build_inode_path(struct inode *inode,
1475 			    const char **ppath, int *ppathlen, u64 *pino,
1476 			    int *pfreepath)
1477 {
1478 	struct dentry *dentry;
1479 	char *path;
1480 
1481 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1482 		*pino = ceph_ino(inode);
1483 		*ppathlen = 0;
1484 		return 0;
1485 	}
1486 	dentry = d_find_alias(inode);
1487 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1488 	dput(dentry);
1489 	if (IS_ERR(path))
1490 		return PTR_ERR(path);
1491 	*ppath = path;
1492 	*pfreepath = 1;
1493 	return 0;
1494 }
1495 
1496 /*
1497  * request arguments may be specified via an inode *, a dentry *, or
1498  * an explicit ino+path.
1499  */
1500 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1501 				  const char *rpath, u64 rino,
1502 				  const char **ppath, int *pathlen,
1503 				  u64 *ino, int *freepath)
1504 {
1505 	int r = 0;
1506 
1507 	if (rinode) {
1508 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1509 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1510 		     ceph_snap(rinode));
1511 	} else if (rdentry) {
1512 		r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1513 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1514 		     *ppath);
1515 	} else if (rpath) {
1516 		*ino = rino;
1517 		*ppath = rpath;
1518 		*pathlen = strlen(rpath);
1519 		dout(" path %.*s\n", *pathlen, rpath);
1520 	}
1521 
1522 	return r;
1523 }
1524 
1525 /*
1526  * called under mdsc->mutex
1527  */
1528 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1529 					       struct ceph_mds_request *req,
1530 					       int mds)
1531 {
1532 	struct ceph_msg *msg;
1533 	struct ceph_mds_request_head *head;
1534 	const char *path1 = NULL;
1535 	const char *path2 = NULL;
1536 	u64 ino1 = 0, ino2 = 0;
1537 	int pathlen1 = 0, pathlen2 = 0;
1538 	int freepath1 = 0, freepath2 = 0;
1539 	int len;
1540 	u16 releases;
1541 	void *p, *end;
1542 	int ret;
1543 
1544 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
1545 			      req->r_path1, req->r_ino1.ino,
1546 			      &path1, &pathlen1, &ino1, &freepath1);
1547 	if (ret < 0) {
1548 		msg = ERR_PTR(ret);
1549 		goto out;
1550 	}
1551 
1552 	ret = set_request_path_attr(NULL, req->r_old_dentry,
1553 			      req->r_path2, req->r_ino2.ino,
1554 			      &path2, &pathlen2, &ino2, &freepath2);
1555 	if (ret < 0) {
1556 		msg = ERR_PTR(ret);
1557 		goto out_free1;
1558 	}
1559 
1560 	len = sizeof(*head) +
1561 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1562 
1563 	/* calculate (max) length for cap releases */
1564 	len += sizeof(struct ceph_mds_request_release) *
1565 		(!!req->r_inode_drop + !!req->r_dentry_drop +
1566 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1567 	if (req->r_dentry_drop)
1568 		len += req->r_dentry->d_name.len;
1569 	if (req->r_old_dentry_drop)
1570 		len += req->r_old_dentry->d_name.len;
1571 
1572 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS);
1573 	if (!msg) {
1574 		msg = ERR_PTR(-ENOMEM);
1575 		goto out_free2;
1576 	}
1577 
1578 	msg->hdr.tid = cpu_to_le64(req->r_tid);
1579 
1580 	head = msg->front.iov_base;
1581 	p = msg->front.iov_base + sizeof(*head);
1582 	end = msg->front.iov_base + msg->front.iov_len;
1583 
1584 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1585 	head->op = cpu_to_le32(req->r_op);
1586 	head->caller_uid = cpu_to_le32(current_fsuid());
1587 	head->caller_gid = cpu_to_le32(current_fsgid());
1588 	head->args = req->r_args;
1589 
1590 	ceph_encode_filepath(&p, end, ino1, path1);
1591 	ceph_encode_filepath(&p, end, ino2, path2);
1592 
1593 	/* make note of release offset, in case we need to replay */
1594 	req->r_request_release_offset = p - msg->front.iov_base;
1595 
1596 	/* cap releases */
1597 	releases = 0;
1598 	if (req->r_inode_drop)
1599 		releases += ceph_encode_inode_release(&p,
1600 		      req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1601 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
1602 	if (req->r_dentry_drop)
1603 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
1604 		       mds, req->r_dentry_drop, req->r_dentry_unless);
1605 	if (req->r_old_dentry_drop)
1606 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1607 		       mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1608 	if (req->r_old_inode_drop)
1609 		releases += ceph_encode_inode_release(&p,
1610 		      req->r_old_dentry->d_inode,
1611 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1612 	head->num_releases = cpu_to_le16(releases);
1613 
1614 	BUG_ON(p > end);
1615 	msg->front.iov_len = p - msg->front.iov_base;
1616 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1617 
1618 	msg->pages = req->r_pages;
1619 	msg->nr_pages = req->r_num_pages;
1620 	msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1621 	msg->hdr.data_off = cpu_to_le16(0);
1622 
1623 out_free2:
1624 	if (freepath2)
1625 		kfree((char *)path2);
1626 out_free1:
1627 	if (freepath1)
1628 		kfree((char *)path1);
1629 out:
1630 	return msg;
1631 }
1632 
1633 /*
1634  * called under mdsc->mutex if error, under no mutex if
1635  * success.
1636  */
1637 static void complete_request(struct ceph_mds_client *mdsc,
1638 			     struct ceph_mds_request *req)
1639 {
1640 	if (req->r_callback)
1641 		req->r_callback(mdsc, req);
1642 	else
1643 		complete_all(&req->r_completion);
1644 }
1645 
1646 /*
1647  * called under mdsc->mutex
1648  */
1649 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1650 				  struct ceph_mds_request *req,
1651 				  int mds)
1652 {
1653 	struct ceph_mds_request_head *rhead;
1654 	struct ceph_msg *msg;
1655 	int flags = 0;
1656 
1657 	req->r_mds = mds;
1658 	req->r_attempts++;
1659 	if (req->r_inode) {
1660 		struct ceph_cap *cap =
1661 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1662 
1663 		if (cap)
1664 			req->r_sent_on_mseq = cap->mseq;
1665 		else
1666 			req->r_sent_on_mseq = -1;
1667 	}
1668 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1669 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1670 
1671 	if (req->r_got_unsafe) {
1672 		/*
1673 		 * Replay.  Do not regenerate message (and rebuild
1674 		 * paths, etc.); just use the original message.
1675 		 * Rebuilding paths will break for renames because
1676 		 * d_move mangles the src name.
1677 		 */
1678 		msg = req->r_request;
1679 		rhead = msg->front.iov_base;
1680 
1681 		flags = le32_to_cpu(rhead->flags);
1682 		flags |= CEPH_MDS_FLAG_REPLAY;
1683 		rhead->flags = cpu_to_le32(flags);
1684 
1685 		if (req->r_target_inode)
1686 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1687 
1688 		rhead->num_retry = req->r_attempts - 1;
1689 
1690 		/* remove cap/dentry releases from message */
1691 		rhead->num_releases = 0;
1692 		msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1693 		msg->front.iov_len = req->r_request_release_offset;
1694 		return 0;
1695 	}
1696 
1697 	if (req->r_request) {
1698 		ceph_msg_put(req->r_request);
1699 		req->r_request = NULL;
1700 	}
1701 	msg = create_request_message(mdsc, req, mds);
1702 	if (IS_ERR(msg)) {
1703 		req->r_err = PTR_ERR(msg);
1704 		complete_request(mdsc, req);
1705 		return PTR_ERR(msg);
1706 	}
1707 	req->r_request = msg;
1708 
1709 	rhead = msg->front.iov_base;
1710 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1711 	if (req->r_got_unsafe)
1712 		flags |= CEPH_MDS_FLAG_REPLAY;
1713 	if (req->r_locked_dir)
1714 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1715 	rhead->flags = cpu_to_le32(flags);
1716 	rhead->num_fwd = req->r_num_fwd;
1717 	rhead->num_retry = req->r_attempts - 1;
1718 	rhead->ino = 0;
1719 
1720 	dout(" r_locked_dir = %p\n", req->r_locked_dir);
1721 	return 0;
1722 }
1723 
1724 /*
1725  * send request, or put it on the appropriate wait list.
1726  */
1727 static int __do_request(struct ceph_mds_client *mdsc,
1728 			struct ceph_mds_request *req)
1729 {
1730 	struct ceph_mds_session *session = NULL;
1731 	int mds = -1;
1732 	int err = -EAGAIN;
1733 
1734 	if (req->r_err || req->r_got_result)
1735 		goto out;
1736 
1737 	if (req->r_timeout &&
1738 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1739 		dout("do_request timed out\n");
1740 		err = -EIO;
1741 		goto finish;
1742 	}
1743 
1744 	mds = __choose_mds(mdsc, req);
1745 	if (mds < 0 ||
1746 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1747 		dout("do_request no mds or not active, waiting for map\n");
1748 		list_add(&req->r_wait, &mdsc->waiting_for_map);
1749 		goto out;
1750 	}
1751 
1752 	/* get, open session */
1753 	session = __ceph_lookup_mds_session(mdsc, mds);
1754 	if (!session) {
1755 		session = register_session(mdsc, mds);
1756 		if (IS_ERR(session)) {
1757 			err = PTR_ERR(session);
1758 			goto finish;
1759 		}
1760 	}
1761 	dout("do_request mds%d session %p state %s\n", mds, session,
1762 	     session_state_name(session->s_state));
1763 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1764 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
1765 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
1766 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
1767 			__open_session(mdsc, session);
1768 		list_add(&req->r_wait, &session->s_waiting);
1769 		goto out_session;
1770 	}
1771 
1772 	/* send request */
1773 	req->r_session = get_session(session);
1774 	req->r_resend_mds = -1;   /* forget any previous mds hint */
1775 
1776 	if (req->r_request_started == 0)   /* note request start time */
1777 		req->r_request_started = jiffies;
1778 
1779 	err = __prepare_send_request(mdsc, req, mds);
1780 	if (!err) {
1781 		ceph_msg_get(req->r_request);
1782 		ceph_con_send(&session->s_con, req->r_request);
1783 	}
1784 
1785 out_session:
1786 	ceph_put_mds_session(session);
1787 out:
1788 	return err;
1789 
1790 finish:
1791 	req->r_err = err;
1792 	complete_request(mdsc, req);
1793 	goto out;
1794 }
1795 
1796 /*
1797  * called under mdsc->mutex
1798  */
1799 static void __wake_requests(struct ceph_mds_client *mdsc,
1800 			    struct list_head *head)
1801 {
1802 	struct ceph_mds_request *req, *nreq;
1803 
1804 	list_for_each_entry_safe(req, nreq, head, r_wait) {
1805 		list_del_init(&req->r_wait);
1806 		__do_request(mdsc, req);
1807 	}
1808 }
1809 
1810 /*
1811  * Wake up threads with requests pending for @mds, so that they can
1812  * resubmit their requests to a possibly different mds.
1813  */
1814 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1815 {
1816 	struct ceph_mds_request *req;
1817 	struct rb_node *p;
1818 
1819 	dout("kick_requests mds%d\n", mds);
1820 	for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1821 		req = rb_entry(p, struct ceph_mds_request, r_node);
1822 		if (req->r_got_unsafe)
1823 			continue;
1824 		if (req->r_session &&
1825 		    req->r_session->s_mds == mds) {
1826 			dout(" kicking tid %llu\n", req->r_tid);
1827 			put_request_session(req);
1828 			__do_request(mdsc, req);
1829 		}
1830 	}
1831 }
1832 
1833 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1834 			      struct ceph_mds_request *req)
1835 {
1836 	dout("submit_request on %p\n", req);
1837 	mutex_lock(&mdsc->mutex);
1838 	__register_request(mdsc, req, NULL);
1839 	__do_request(mdsc, req);
1840 	mutex_unlock(&mdsc->mutex);
1841 }
1842 
1843 /*
1844  * Synchrously perform an mds request.  Take care of all of the
1845  * session setup, forwarding, retry details.
1846  */
1847 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1848 			 struct inode *dir,
1849 			 struct ceph_mds_request *req)
1850 {
1851 	int err;
1852 
1853 	dout("do_request on %p\n", req);
1854 
1855 	/* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1856 	if (req->r_inode)
1857 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1858 	if (req->r_locked_dir)
1859 		ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1860 	if (req->r_old_dentry)
1861 		ceph_get_cap_refs(
1862 			ceph_inode(req->r_old_dentry->d_parent->d_inode),
1863 			CEPH_CAP_PIN);
1864 
1865 	/* issue */
1866 	mutex_lock(&mdsc->mutex);
1867 	__register_request(mdsc, req, dir);
1868 	__do_request(mdsc, req);
1869 
1870 	if (req->r_err) {
1871 		err = req->r_err;
1872 		__unregister_request(mdsc, req);
1873 		dout("do_request early error %d\n", err);
1874 		goto out;
1875 	}
1876 
1877 	/* wait */
1878 	mutex_unlock(&mdsc->mutex);
1879 	dout("do_request waiting\n");
1880 	if (req->r_timeout) {
1881 		err = (long)wait_for_completion_killable_timeout(
1882 			&req->r_completion, req->r_timeout);
1883 		if (err == 0)
1884 			err = -EIO;
1885 	} else {
1886 		err = wait_for_completion_killable(&req->r_completion);
1887 	}
1888 	dout("do_request waited, got %d\n", err);
1889 	mutex_lock(&mdsc->mutex);
1890 
1891 	/* only abort if we didn't race with a real reply */
1892 	if (req->r_got_result) {
1893 		err = le32_to_cpu(req->r_reply_info.head->result);
1894 	} else if (err < 0) {
1895 		dout("aborted request %lld with %d\n", req->r_tid, err);
1896 
1897 		/*
1898 		 * ensure we aren't running concurrently with
1899 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
1900 		 * rely on locks (dir mutex) held by our caller.
1901 		 */
1902 		mutex_lock(&req->r_fill_mutex);
1903 		req->r_err = err;
1904 		req->r_aborted = true;
1905 		mutex_unlock(&req->r_fill_mutex);
1906 
1907 		if (req->r_locked_dir &&
1908 		    (req->r_op & CEPH_MDS_OP_WRITE))
1909 			ceph_invalidate_dir_request(req);
1910 	} else {
1911 		err = req->r_err;
1912 	}
1913 
1914 out:
1915 	mutex_unlock(&mdsc->mutex);
1916 	dout("do_request %p done, result %d\n", req, err);
1917 	return err;
1918 }
1919 
1920 /*
1921  * Invalidate dir I_COMPLETE, dentry lease state on an aborted MDS
1922  * namespace request.
1923  */
1924 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
1925 {
1926 	struct inode *inode = req->r_locked_dir;
1927 	struct ceph_inode_info *ci = ceph_inode(inode);
1928 
1929 	dout("invalidate_dir_request %p (I_COMPLETE, lease(s))\n", inode);
1930 	spin_lock(&inode->i_lock);
1931 	ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
1932 	ci->i_release_count++;
1933 	spin_unlock(&inode->i_lock);
1934 
1935 	if (req->r_dentry)
1936 		ceph_invalidate_dentry_lease(req->r_dentry);
1937 	if (req->r_old_dentry)
1938 		ceph_invalidate_dentry_lease(req->r_old_dentry);
1939 }
1940 
1941 /*
1942  * Handle mds reply.
1943  *
1944  * We take the session mutex and parse and process the reply immediately.
1945  * This preserves the logical ordering of replies, capabilities, etc., sent
1946  * by the MDS as they are applied to our local cache.
1947  */
1948 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
1949 {
1950 	struct ceph_mds_client *mdsc = session->s_mdsc;
1951 	struct ceph_mds_request *req;
1952 	struct ceph_mds_reply_head *head = msg->front.iov_base;
1953 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
1954 	u64 tid;
1955 	int err, result;
1956 	int mds = session->s_mds;
1957 
1958 	if (msg->front.iov_len < sizeof(*head)) {
1959 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
1960 		ceph_msg_dump(msg);
1961 		return;
1962 	}
1963 
1964 	/* get request, session */
1965 	tid = le64_to_cpu(msg->hdr.tid);
1966 	mutex_lock(&mdsc->mutex);
1967 	req = __lookup_request(mdsc, tid);
1968 	if (!req) {
1969 		dout("handle_reply on unknown tid %llu\n", tid);
1970 		mutex_unlock(&mdsc->mutex);
1971 		return;
1972 	}
1973 	dout("handle_reply %p\n", req);
1974 
1975 	/* correct session? */
1976 	if (req->r_session != session) {
1977 		pr_err("mdsc_handle_reply got %llu on session mds%d"
1978 		       " not mds%d\n", tid, session->s_mds,
1979 		       req->r_session ? req->r_session->s_mds : -1);
1980 		mutex_unlock(&mdsc->mutex);
1981 		goto out;
1982 	}
1983 
1984 	/* dup? */
1985 	if ((req->r_got_unsafe && !head->safe) ||
1986 	    (req->r_got_safe && head->safe)) {
1987 		pr_warning("got a dup %s reply on %llu from mds%d\n",
1988 			   head->safe ? "safe" : "unsafe", tid, mds);
1989 		mutex_unlock(&mdsc->mutex);
1990 		goto out;
1991 	}
1992 	if (req->r_got_safe && !head->safe) {
1993 		pr_warning("got unsafe after safe on %llu from mds%d\n",
1994 			   tid, mds);
1995 		mutex_unlock(&mdsc->mutex);
1996 		goto out;
1997 	}
1998 
1999 	result = le32_to_cpu(head->result);
2000 
2001 	/*
2002 	 * Handle an ESTALE
2003 	 * if we're not talking to the authority, send to them
2004 	 * if the authority has changed while we weren't looking,
2005 	 * send to new authority
2006 	 * Otherwise we just have to return an ESTALE
2007 	 */
2008 	if (result == -ESTALE) {
2009 		dout("got ESTALE on request %llu", req->r_tid);
2010 		if (!req->r_inode) {
2011 			/* do nothing; not an authority problem */
2012 		} else if (req->r_direct_mode != USE_AUTH_MDS) {
2013 			dout("not using auth, setting for that now");
2014 			req->r_direct_mode = USE_AUTH_MDS;
2015 			__do_request(mdsc, req);
2016 			mutex_unlock(&mdsc->mutex);
2017 			goto out;
2018 		} else  {
2019 			struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2020 			struct ceph_cap *cap =
2021 				ceph_get_cap_for_mds(ci, req->r_mds);;
2022 
2023 			dout("already using auth");
2024 			if ((!cap || cap != ci->i_auth_cap) ||
2025 			    (cap->mseq != req->r_sent_on_mseq)) {
2026 				dout("but cap changed, so resending");
2027 				__do_request(mdsc, req);
2028 				mutex_unlock(&mdsc->mutex);
2029 				goto out;
2030 			}
2031 		}
2032 		dout("have to return ESTALE on request %llu", req->r_tid);
2033 	}
2034 
2035 
2036 	if (head->safe) {
2037 		req->r_got_safe = true;
2038 		__unregister_request(mdsc, req);
2039 		complete_all(&req->r_safe_completion);
2040 
2041 		if (req->r_got_unsafe) {
2042 			/*
2043 			 * We already handled the unsafe response, now do the
2044 			 * cleanup.  No need to examine the response; the MDS
2045 			 * doesn't include any result info in the safe
2046 			 * response.  And even if it did, there is nothing
2047 			 * useful we could do with a revised return value.
2048 			 */
2049 			dout("got safe reply %llu, mds%d\n", tid, mds);
2050 			list_del_init(&req->r_unsafe_item);
2051 
2052 			/* last unsafe request during umount? */
2053 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2054 				complete_all(&mdsc->safe_umount_waiters);
2055 			mutex_unlock(&mdsc->mutex);
2056 			goto out;
2057 		}
2058 	} else {
2059 		req->r_got_unsafe = true;
2060 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2061 	}
2062 
2063 	dout("handle_reply tid %lld result %d\n", tid, result);
2064 	rinfo = &req->r_reply_info;
2065 	err = parse_reply_info(msg, rinfo);
2066 	mutex_unlock(&mdsc->mutex);
2067 
2068 	mutex_lock(&session->s_mutex);
2069 	if (err < 0) {
2070 		pr_err("mdsc_handle_reply got corrupt reply mds%d\n", mds);
2071 		ceph_msg_dump(msg);
2072 		goto out_err;
2073 	}
2074 
2075 	/* snap trace */
2076 	if (rinfo->snapblob_len) {
2077 		down_write(&mdsc->snap_rwsem);
2078 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2079 			       rinfo->snapblob + rinfo->snapblob_len,
2080 			       le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2081 		downgrade_write(&mdsc->snap_rwsem);
2082 	} else {
2083 		down_read(&mdsc->snap_rwsem);
2084 	}
2085 
2086 	/* insert trace into our cache */
2087 	mutex_lock(&req->r_fill_mutex);
2088 	err = ceph_fill_trace(mdsc->client->sb, req, req->r_session);
2089 	if (err == 0) {
2090 		if (result == 0 && rinfo->dir_nr)
2091 			ceph_readdir_prepopulate(req, req->r_session);
2092 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2093 	}
2094 	mutex_unlock(&req->r_fill_mutex);
2095 
2096 	up_read(&mdsc->snap_rwsem);
2097 out_err:
2098 	mutex_lock(&mdsc->mutex);
2099 	if (!req->r_aborted) {
2100 		if (err) {
2101 			req->r_err = err;
2102 		} else {
2103 			req->r_reply = msg;
2104 			ceph_msg_get(msg);
2105 			req->r_got_result = true;
2106 		}
2107 	} else {
2108 		dout("reply arrived after request %lld was aborted\n", tid);
2109 	}
2110 	mutex_unlock(&mdsc->mutex);
2111 
2112 	ceph_add_cap_releases(mdsc, req->r_session);
2113 	mutex_unlock(&session->s_mutex);
2114 
2115 	/* kick calling process */
2116 	complete_request(mdsc, req);
2117 out:
2118 	ceph_mdsc_put_request(req);
2119 	return;
2120 }
2121 
2122 
2123 
2124 /*
2125  * handle mds notification that our request has been forwarded.
2126  */
2127 static void handle_forward(struct ceph_mds_client *mdsc,
2128 			   struct ceph_mds_session *session,
2129 			   struct ceph_msg *msg)
2130 {
2131 	struct ceph_mds_request *req;
2132 	u64 tid = le64_to_cpu(msg->hdr.tid);
2133 	u32 next_mds;
2134 	u32 fwd_seq;
2135 	int err = -EINVAL;
2136 	void *p = msg->front.iov_base;
2137 	void *end = p + msg->front.iov_len;
2138 
2139 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2140 	next_mds = ceph_decode_32(&p);
2141 	fwd_seq = ceph_decode_32(&p);
2142 
2143 	mutex_lock(&mdsc->mutex);
2144 	req = __lookup_request(mdsc, tid);
2145 	if (!req) {
2146 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2147 		goto out;  /* dup reply? */
2148 	}
2149 
2150 	if (req->r_aborted) {
2151 		dout("forward tid %llu aborted, unregistering\n", tid);
2152 		__unregister_request(mdsc, req);
2153 	} else if (fwd_seq <= req->r_num_fwd) {
2154 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2155 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2156 	} else {
2157 		/* resend. forward race not possible; mds would drop */
2158 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2159 		BUG_ON(req->r_err);
2160 		BUG_ON(req->r_got_result);
2161 		req->r_num_fwd = fwd_seq;
2162 		req->r_resend_mds = next_mds;
2163 		put_request_session(req);
2164 		__do_request(mdsc, req);
2165 	}
2166 	ceph_mdsc_put_request(req);
2167 out:
2168 	mutex_unlock(&mdsc->mutex);
2169 	return;
2170 
2171 bad:
2172 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2173 }
2174 
2175 /*
2176  * handle a mds session control message
2177  */
2178 static void handle_session(struct ceph_mds_session *session,
2179 			   struct ceph_msg *msg)
2180 {
2181 	struct ceph_mds_client *mdsc = session->s_mdsc;
2182 	u32 op;
2183 	u64 seq;
2184 	int mds = session->s_mds;
2185 	struct ceph_mds_session_head *h = msg->front.iov_base;
2186 	int wake = 0;
2187 
2188 	/* decode */
2189 	if (msg->front.iov_len != sizeof(*h))
2190 		goto bad;
2191 	op = le32_to_cpu(h->op);
2192 	seq = le64_to_cpu(h->seq);
2193 
2194 	mutex_lock(&mdsc->mutex);
2195 	if (op == CEPH_SESSION_CLOSE)
2196 		__unregister_session(mdsc, session);
2197 	/* FIXME: this ttl calculation is generous */
2198 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2199 	mutex_unlock(&mdsc->mutex);
2200 
2201 	mutex_lock(&session->s_mutex);
2202 
2203 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2204 	     mds, ceph_session_op_name(op), session,
2205 	     session_state_name(session->s_state), seq);
2206 
2207 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2208 		session->s_state = CEPH_MDS_SESSION_OPEN;
2209 		pr_info("mds%d came back\n", session->s_mds);
2210 	}
2211 
2212 	switch (op) {
2213 	case CEPH_SESSION_OPEN:
2214 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2215 			pr_info("mds%d reconnect success\n", session->s_mds);
2216 		session->s_state = CEPH_MDS_SESSION_OPEN;
2217 		renewed_caps(mdsc, session, 0);
2218 		wake = 1;
2219 		if (mdsc->stopping)
2220 			__close_session(mdsc, session);
2221 		break;
2222 
2223 	case CEPH_SESSION_RENEWCAPS:
2224 		if (session->s_renew_seq == seq)
2225 			renewed_caps(mdsc, session, 1);
2226 		break;
2227 
2228 	case CEPH_SESSION_CLOSE:
2229 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2230 			pr_info("mds%d reconnect denied\n", session->s_mds);
2231 		remove_session_caps(session);
2232 		wake = 1; /* for good measure */
2233 		wake_up_all(&mdsc->session_close_wq);
2234 		kick_requests(mdsc, mds);
2235 		break;
2236 
2237 	case CEPH_SESSION_STALE:
2238 		pr_info("mds%d caps went stale, renewing\n",
2239 			session->s_mds);
2240 		spin_lock(&session->s_cap_lock);
2241 		session->s_cap_gen++;
2242 		session->s_cap_ttl = 0;
2243 		spin_unlock(&session->s_cap_lock);
2244 		send_renew_caps(mdsc, session);
2245 		break;
2246 
2247 	case CEPH_SESSION_RECALL_STATE:
2248 		trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2249 		break;
2250 
2251 	default:
2252 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2253 		WARN_ON(1);
2254 	}
2255 
2256 	mutex_unlock(&session->s_mutex);
2257 	if (wake) {
2258 		mutex_lock(&mdsc->mutex);
2259 		__wake_requests(mdsc, &session->s_waiting);
2260 		mutex_unlock(&mdsc->mutex);
2261 	}
2262 	return;
2263 
2264 bad:
2265 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2266 	       (int)msg->front.iov_len);
2267 	ceph_msg_dump(msg);
2268 	return;
2269 }
2270 
2271 
2272 /*
2273  * called under session->mutex.
2274  */
2275 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2276 				   struct ceph_mds_session *session)
2277 {
2278 	struct ceph_mds_request *req, *nreq;
2279 	int err;
2280 
2281 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2282 
2283 	mutex_lock(&mdsc->mutex);
2284 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2285 		err = __prepare_send_request(mdsc, req, session->s_mds);
2286 		if (!err) {
2287 			ceph_msg_get(req->r_request);
2288 			ceph_con_send(&session->s_con, req->r_request);
2289 		}
2290 	}
2291 	mutex_unlock(&mdsc->mutex);
2292 }
2293 
2294 /*
2295  * Encode information about a cap for a reconnect with the MDS.
2296  */
2297 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2298 			  void *arg)
2299 {
2300 	union {
2301 		struct ceph_mds_cap_reconnect v2;
2302 		struct ceph_mds_cap_reconnect_v1 v1;
2303 	} rec;
2304 	size_t reclen;
2305 	struct ceph_inode_info *ci;
2306 	struct ceph_reconnect_state *recon_state = arg;
2307 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2308 	char *path;
2309 	int pathlen, err;
2310 	u64 pathbase;
2311 	struct dentry *dentry;
2312 
2313 	ci = cap->ci;
2314 
2315 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2316 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2317 	     ceph_cap_string(cap->issued));
2318 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2319 	if (err)
2320 		return err;
2321 
2322 	dentry = d_find_alias(inode);
2323 	if (dentry) {
2324 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2325 		if (IS_ERR(path)) {
2326 			err = PTR_ERR(path);
2327 			goto out_dput;
2328 		}
2329 	} else {
2330 		path = NULL;
2331 		pathlen = 0;
2332 	}
2333 	err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2334 	if (err)
2335 		goto out_free;
2336 
2337 	spin_lock(&inode->i_lock);
2338 	cap->seq = 0;        /* reset cap seq */
2339 	cap->issue_seq = 0;  /* and issue_seq */
2340 
2341 	if (recon_state->flock) {
2342 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2343 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2344 		rec.v2.issued = cpu_to_le32(cap->issued);
2345 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2346 		rec.v2.pathbase = cpu_to_le64(pathbase);
2347 		rec.v2.flock_len = 0;
2348 		reclen = sizeof(rec.v2);
2349 	} else {
2350 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2351 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2352 		rec.v1.issued = cpu_to_le32(cap->issued);
2353 		rec.v1.size = cpu_to_le64(inode->i_size);
2354 		ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2355 		ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2356 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2357 		rec.v1.pathbase = cpu_to_le64(pathbase);
2358 		reclen = sizeof(rec.v1);
2359 	}
2360 	spin_unlock(&inode->i_lock);
2361 
2362 	if (recon_state->flock) {
2363 		int num_fcntl_locks, num_flock_locks;
2364 
2365 		lock_kernel();
2366 		ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2367 		rec.v2.flock_len = (2*sizeof(u32) +
2368 				    (num_fcntl_locks+num_flock_locks) *
2369 				    sizeof(struct ceph_filelock));
2370 
2371 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2372 		if (!err)
2373 			err = ceph_encode_locks(inode, pagelist,
2374 						num_fcntl_locks,
2375 						num_flock_locks);
2376 		unlock_kernel();
2377 	}
2378 
2379 out_free:
2380 	kfree(path);
2381 out_dput:
2382 	dput(dentry);
2383 	return err;
2384 }
2385 
2386 
2387 /*
2388  * If an MDS fails and recovers, clients need to reconnect in order to
2389  * reestablish shared state.  This includes all caps issued through
2390  * this session _and_ the snap_realm hierarchy.  Because it's not
2391  * clear which snap realms the mds cares about, we send everything we
2392  * know about.. that ensures we'll then get any new info the
2393  * recovering MDS might have.
2394  *
2395  * This is a relatively heavyweight operation, but it's rare.
2396  *
2397  * called with mdsc->mutex held.
2398  */
2399 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2400 			       struct ceph_mds_session *session)
2401 {
2402 	struct ceph_msg *reply;
2403 	struct rb_node *p;
2404 	int mds = session->s_mds;
2405 	int err = -ENOMEM;
2406 	struct ceph_pagelist *pagelist;
2407 	struct ceph_reconnect_state recon_state;
2408 
2409 	pr_info("mds%d reconnect start\n", mds);
2410 
2411 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2412 	if (!pagelist)
2413 		goto fail_nopagelist;
2414 	ceph_pagelist_init(pagelist);
2415 
2416 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS);
2417 	if (!reply)
2418 		goto fail_nomsg;
2419 
2420 	mutex_lock(&session->s_mutex);
2421 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2422 	session->s_seq = 0;
2423 
2424 	ceph_con_open(&session->s_con,
2425 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2426 
2427 	/* replay unsafe requests */
2428 	replay_unsafe_requests(mdsc, session);
2429 
2430 	down_read(&mdsc->snap_rwsem);
2431 
2432 	dout("session %p state %s\n", session,
2433 	     session_state_name(session->s_state));
2434 
2435 	/* drop old cap expires; we're about to reestablish that state */
2436 	discard_cap_releases(mdsc, session);
2437 
2438 	/* traverse this session's caps */
2439 	err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2440 	if (err)
2441 		goto fail;
2442 
2443 	recon_state.pagelist = pagelist;
2444 	recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2445 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2446 	if (err < 0)
2447 		goto fail;
2448 
2449 	/*
2450 	 * snaprealms.  we provide mds with the ino, seq (version), and
2451 	 * parent for all of our realms.  If the mds has any newer info,
2452 	 * it will tell us.
2453 	 */
2454 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2455 		struct ceph_snap_realm *realm =
2456 			rb_entry(p, struct ceph_snap_realm, node);
2457 		struct ceph_mds_snaprealm_reconnect sr_rec;
2458 
2459 		dout(" adding snap realm %llx seq %lld parent %llx\n",
2460 		     realm->ino, realm->seq, realm->parent_ino);
2461 		sr_rec.ino = cpu_to_le64(realm->ino);
2462 		sr_rec.seq = cpu_to_le64(realm->seq);
2463 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
2464 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2465 		if (err)
2466 			goto fail;
2467 	}
2468 
2469 	reply->pagelist = pagelist;
2470 	if (recon_state.flock)
2471 		reply->hdr.version = cpu_to_le16(2);
2472 	reply->hdr.data_len = cpu_to_le32(pagelist->length);
2473 	reply->nr_pages = calc_pages_for(0, pagelist->length);
2474 	ceph_con_send(&session->s_con, reply);
2475 
2476 	mutex_unlock(&session->s_mutex);
2477 
2478 	mutex_lock(&mdsc->mutex);
2479 	__wake_requests(mdsc, &session->s_waiting);
2480 	mutex_unlock(&mdsc->mutex);
2481 
2482 	up_read(&mdsc->snap_rwsem);
2483 	return;
2484 
2485 fail:
2486 	ceph_msg_put(reply);
2487 	up_read(&mdsc->snap_rwsem);
2488 	mutex_unlock(&session->s_mutex);
2489 fail_nomsg:
2490 	ceph_pagelist_release(pagelist);
2491 	kfree(pagelist);
2492 fail_nopagelist:
2493 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2494 	return;
2495 }
2496 
2497 
2498 /*
2499  * compare old and new mdsmaps, kicking requests
2500  * and closing out old connections as necessary
2501  *
2502  * called under mdsc->mutex.
2503  */
2504 static void check_new_map(struct ceph_mds_client *mdsc,
2505 			  struct ceph_mdsmap *newmap,
2506 			  struct ceph_mdsmap *oldmap)
2507 {
2508 	int i;
2509 	int oldstate, newstate;
2510 	struct ceph_mds_session *s;
2511 
2512 	dout("check_new_map new %u old %u\n",
2513 	     newmap->m_epoch, oldmap->m_epoch);
2514 
2515 	for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2516 		if (mdsc->sessions[i] == NULL)
2517 			continue;
2518 		s = mdsc->sessions[i];
2519 		oldstate = ceph_mdsmap_get_state(oldmap, i);
2520 		newstate = ceph_mdsmap_get_state(newmap, i);
2521 
2522 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2523 		     i, ceph_mds_state_name(oldstate),
2524 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2525 		     ceph_mds_state_name(newstate),
2526 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2527 		     session_state_name(s->s_state));
2528 
2529 		if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
2530 			   ceph_mdsmap_get_addr(newmap, i),
2531 			   sizeof(struct ceph_entity_addr))) {
2532 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2533 				/* the session never opened, just close it
2534 				 * out now */
2535 				__wake_requests(mdsc, &s->s_waiting);
2536 				__unregister_session(mdsc, s);
2537 			} else {
2538 				/* just close it */
2539 				mutex_unlock(&mdsc->mutex);
2540 				mutex_lock(&s->s_mutex);
2541 				mutex_lock(&mdsc->mutex);
2542 				ceph_con_close(&s->s_con);
2543 				mutex_unlock(&s->s_mutex);
2544 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
2545 			}
2546 
2547 			/* kick any requests waiting on the recovering mds */
2548 			kick_requests(mdsc, i);
2549 		} else if (oldstate == newstate) {
2550 			continue;  /* nothing new with this mds */
2551 		}
2552 
2553 		/*
2554 		 * send reconnect?
2555 		 */
2556 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2557 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
2558 			mutex_unlock(&mdsc->mutex);
2559 			send_mds_reconnect(mdsc, s);
2560 			mutex_lock(&mdsc->mutex);
2561 		}
2562 
2563 		/*
2564 		 * kick request on any mds that has gone active.
2565 		 */
2566 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2567 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
2568 			if (oldstate != CEPH_MDS_STATE_CREATING &&
2569 			    oldstate != CEPH_MDS_STATE_STARTING)
2570 				pr_info("mds%d recovery completed\n", s->s_mds);
2571 			kick_requests(mdsc, i);
2572 			ceph_kick_flushing_caps(mdsc, s);
2573 			wake_up_session_caps(s, 1);
2574 		}
2575 	}
2576 
2577 	for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2578 		s = mdsc->sessions[i];
2579 		if (!s)
2580 			continue;
2581 		if (!ceph_mdsmap_is_laggy(newmap, i))
2582 			continue;
2583 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2584 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
2585 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
2586 			dout(" connecting to export targets of laggy mds%d\n",
2587 			     i);
2588 			__open_export_target_sessions(mdsc, s);
2589 		}
2590 	}
2591 }
2592 
2593 
2594 
2595 /*
2596  * leases
2597  */
2598 
2599 /*
2600  * caller must hold session s_mutex, dentry->d_lock
2601  */
2602 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2603 {
2604 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2605 
2606 	ceph_put_mds_session(di->lease_session);
2607 	di->lease_session = NULL;
2608 }
2609 
2610 static void handle_lease(struct ceph_mds_client *mdsc,
2611 			 struct ceph_mds_session *session,
2612 			 struct ceph_msg *msg)
2613 {
2614 	struct super_block *sb = mdsc->client->sb;
2615 	struct inode *inode;
2616 	struct ceph_inode_info *ci;
2617 	struct dentry *parent, *dentry;
2618 	struct ceph_dentry_info *di;
2619 	int mds = session->s_mds;
2620 	struct ceph_mds_lease *h = msg->front.iov_base;
2621 	u32 seq;
2622 	struct ceph_vino vino;
2623 	int mask;
2624 	struct qstr dname;
2625 	int release = 0;
2626 
2627 	dout("handle_lease from mds%d\n", mds);
2628 
2629 	/* decode */
2630 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2631 		goto bad;
2632 	vino.ino = le64_to_cpu(h->ino);
2633 	vino.snap = CEPH_NOSNAP;
2634 	mask = le16_to_cpu(h->mask);
2635 	seq = le32_to_cpu(h->seq);
2636 	dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2637 	dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2638 	if (dname.len != get_unaligned_le32(h+1))
2639 		goto bad;
2640 
2641 	mutex_lock(&session->s_mutex);
2642 	session->s_seq++;
2643 
2644 	/* lookup inode */
2645 	inode = ceph_find_inode(sb, vino);
2646 	dout("handle_lease %s, mask %d, ino %llx %p %.*s\n",
2647 	     ceph_lease_op_name(h->action), mask, vino.ino, inode,
2648 	     dname.len, dname.name);
2649 	if (inode == NULL) {
2650 		dout("handle_lease no inode %llx\n", vino.ino);
2651 		goto release;
2652 	}
2653 	ci = ceph_inode(inode);
2654 
2655 	/* dentry */
2656 	parent = d_find_alias(inode);
2657 	if (!parent) {
2658 		dout("no parent dentry on inode %p\n", inode);
2659 		WARN_ON(1);
2660 		goto release;  /* hrm... */
2661 	}
2662 	dname.hash = full_name_hash(dname.name, dname.len);
2663 	dentry = d_lookup(parent, &dname);
2664 	dput(parent);
2665 	if (!dentry)
2666 		goto release;
2667 
2668 	spin_lock(&dentry->d_lock);
2669 	di = ceph_dentry(dentry);
2670 	switch (h->action) {
2671 	case CEPH_MDS_LEASE_REVOKE:
2672 		if (di && di->lease_session == session) {
2673 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2674 				h->seq = cpu_to_le32(di->lease_seq);
2675 			__ceph_mdsc_drop_dentry_lease(dentry);
2676 		}
2677 		release = 1;
2678 		break;
2679 
2680 	case CEPH_MDS_LEASE_RENEW:
2681 		if (di && di->lease_session == session &&
2682 		    di->lease_gen == session->s_cap_gen &&
2683 		    di->lease_renew_from &&
2684 		    di->lease_renew_after == 0) {
2685 			unsigned long duration =
2686 				le32_to_cpu(h->duration_ms) * HZ / 1000;
2687 
2688 			di->lease_seq = seq;
2689 			dentry->d_time = di->lease_renew_from + duration;
2690 			di->lease_renew_after = di->lease_renew_from +
2691 				(duration >> 1);
2692 			di->lease_renew_from = 0;
2693 		}
2694 		break;
2695 	}
2696 	spin_unlock(&dentry->d_lock);
2697 	dput(dentry);
2698 
2699 	if (!release)
2700 		goto out;
2701 
2702 release:
2703 	/* let's just reuse the same message */
2704 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2705 	ceph_msg_get(msg);
2706 	ceph_con_send(&session->s_con, msg);
2707 
2708 out:
2709 	iput(inode);
2710 	mutex_unlock(&session->s_mutex);
2711 	return;
2712 
2713 bad:
2714 	pr_err("corrupt lease message\n");
2715 	ceph_msg_dump(msg);
2716 }
2717 
2718 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2719 			      struct inode *inode,
2720 			      struct dentry *dentry, char action,
2721 			      u32 seq)
2722 {
2723 	struct ceph_msg *msg;
2724 	struct ceph_mds_lease *lease;
2725 	int len = sizeof(*lease) + sizeof(u32);
2726 	int dnamelen = 0;
2727 
2728 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2729 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
2730 	dnamelen = dentry->d_name.len;
2731 	len += dnamelen;
2732 
2733 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS);
2734 	if (!msg)
2735 		return;
2736 	lease = msg->front.iov_base;
2737 	lease->action = action;
2738 	lease->mask = cpu_to_le16(1);
2739 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2740 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2741 	lease->seq = cpu_to_le32(seq);
2742 	put_unaligned_le32(dnamelen, lease + 1);
2743 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2744 
2745 	/*
2746 	 * if this is a preemptive lease RELEASE, no need to
2747 	 * flush request stream, since the actual request will
2748 	 * soon follow.
2749 	 */
2750 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2751 
2752 	ceph_con_send(&session->s_con, msg);
2753 }
2754 
2755 /*
2756  * Preemptively release a lease we expect to invalidate anyway.
2757  * Pass @inode always, @dentry is optional.
2758  */
2759 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2760 			     struct dentry *dentry, int mask)
2761 {
2762 	struct ceph_dentry_info *di;
2763 	struct ceph_mds_session *session;
2764 	u32 seq;
2765 
2766 	BUG_ON(inode == NULL);
2767 	BUG_ON(dentry == NULL);
2768 	BUG_ON(mask == 0);
2769 
2770 	/* is dentry lease valid? */
2771 	spin_lock(&dentry->d_lock);
2772 	di = ceph_dentry(dentry);
2773 	if (!di || !di->lease_session ||
2774 	    di->lease_session->s_mds < 0 ||
2775 	    di->lease_gen != di->lease_session->s_cap_gen ||
2776 	    !time_before(jiffies, dentry->d_time)) {
2777 		dout("lease_release inode %p dentry %p -- "
2778 		     "no lease on %d\n",
2779 		     inode, dentry, mask);
2780 		spin_unlock(&dentry->d_lock);
2781 		return;
2782 	}
2783 
2784 	/* we do have a lease on this dentry; note mds and seq */
2785 	session = ceph_get_mds_session(di->lease_session);
2786 	seq = di->lease_seq;
2787 	__ceph_mdsc_drop_dentry_lease(dentry);
2788 	spin_unlock(&dentry->d_lock);
2789 
2790 	dout("lease_release inode %p dentry %p mask %d to mds%d\n",
2791 	     inode, dentry, mask, session->s_mds);
2792 	ceph_mdsc_lease_send_msg(session, inode, dentry,
2793 				 CEPH_MDS_LEASE_RELEASE, seq);
2794 	ceph_put_mds_session(session);
2795 }
2796 
2797 /*
2798  * drop all leases (and dentry refs) in preparation for umount
2799  */
2800 static void drop_leases(struct ceph_mds_client *mdsc)
2801 {
2802 	int i;
2803 
2804 	dout("drop_leases\n");
2805 	mutex_lock(&mdsc->mutex);
2806 	for (i = 0; i < mdsc->max_sessions; i++) {
2807 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2808 		if (!s)
2809 			continue;
2810 		mutex_unlock(&mdsc->mutex);
2811 		mutex_lock(&s->s_mutex);
2812 		mutex_unlock(&s->s_mutex);
2813 		ceph_put_mds_session(s);
2814 		mutex_lock(&mdsc->mutex);
2815 	}
2816 	mutex_unlock(&mdsc->mutex);
2817 }
2818 
2819 
2820 
2821 /*
2822  * delayed work -- periodically trim expired leases, renew caps with mds
2823  */
2824 static void schedule_delayed(struct ceph_mds_client *mdsc)
2825 {
2826 	int delay = 5;
2827 	unsigned hz = round_jiffies_relative(HZ * delay);
2828 	schedule_delayed_work(&mdsc->delayed_work, hz);
2829 }
2830 
2831 static void delayed_work(struct work_struct *work)
2832 {
2833 	int i;
2834 	struct ceph_mds_client *mdsc =
2835 		container_of(work, struct ceph_mds_client, delayed_work.work);
2836 	int renew_interval;
2837 	int renew_caps;
2838 
2839 	dout("mdsc delayed_work\n");
2840 	ceph_check_delayed_caps(mdsc);
2841 
2842 	mutex_lock(&mdsc->mutex);
2843 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2844 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2845 				   mdsc->last_renew_caps);
2846 	if (renew_caps)
2847 		mdsc->last_renew_caps = jiffies;
2848 
2849 	for (i = 0; i < mdsc->max_sessions; i++) {
2850 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2851 		if (s == NULL)
2852 			continue;
2853 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2854 			dout("resending session close request for mds%d\n",
2855 			     s->s_mds);
2856 			request_close_session(mdsc, s);
2857 			ceph_put_mds_session(s);
2858 			continue;
2859 		}
2860 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2861 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2862 				s->s_state = CEPH_MDS_SESSION_HUNG;
2863 				pr_info("mds%d hung\n", s->s_mds);
2864 			}
2865 		}
2866 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2867 			/* this mds is failed or recovering, just wait */
2868 			ceph_put_mds_session(s);
2869 			continue;
2870 		}
2871 		mutex_unlock(&mdsc->mutex);
2872 
2873 		mutex_lock(&s->s_mutex);
2874 		if (renew_caps)
2875 			send_renew_caps(mdsc, s);
2876 		else
2877 			ceph_con_keepalive(&s->s_con);
2878 		ceph_add_cap_releases(mdsc, s);
2879 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2880 		    s->s_state == CEPH_MDS_SESSION_HUNG)
2881 			ceph_send_cap_releases(mdsc, s);
2882 		mutex_unlock(&s->s_mutex);
2883 		ceph_put_mds_session(s);
2884 
2885 		mutex_lock(&mdsc->mutex);
2886 	}
2887 	mutex_unlock(&mdsc->mutex);
2888 
2889 	schedule_delayed(mdsc);
2890 }
2891 
2892 
2893 int ceph_mdsc_init(struct ceph_mds_client *mdsc, struct ceph_client *client)
2894 {
2895 	mdsc->client = client;
2896 	mutex_init(&mdsc->mutex);
2897 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
2898 	if (mdsc->mdsmap == NULL)
2899 		return -ENOMEM;
2900 
2901 	init_completion(&mdsc->safe_umount_waiters);
2902 	init_waitqueue_head(&mdsc->session_close_wq);
2903 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
2904 	mdsc->sessions = NULL;
2905 	mdsc->max_sessions = 0;
2906 	mdsc->stopping = 0;
2907 	init_rwsem(&mdsc->snap_rwsem);
2908 	mdsc->snap_realms = RB_ROOT;
2909 	INIT_LIST_HEAD(&mdsc->snap_empty);
2910 	spin_lock_init(&mdsc->snap_empty_lock);
2911 	mdsc->last_tid = 0;
2912 	mdsc->request_tree = RB_ROOT;
2913 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
2914 	mdsc->last_renew_caps = jiffies;
2915 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
2916 	spin_lock_init(&mdsc->cap_delay_lock);
2917 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
2918 	spin_lock_init(&mdsc->snap_flush_lock);
2919 	mdsc->cap_flush_seq = 0;
2920 	INIT_LIST_HEAD(&mdsc->cap_dirty);
2921 	mdsc->num_cap_flushing = 0;
2922 	spin_lock_init(&mdsc->cap_dirty_lock);
2923 	init_waitqueue_head(&mdsc->cap_flushing_wq);
2924 	spin_lock_init(&mdsc->dentry_lru_lock);
2925 	INIT_LIST_HEAD(&mdsc->dentry_lru);
2926 
2927 	ceph_caps_init(mdsc);
2928 	ceph_adjust_min_caps(mdsc, client->min_caps);
2929 
2930 	return 0;
2931 }
2932 
2933 /*
2934  * Wait for safe replies on open mds requests.  If we time out, drop
2935  * all requests from the tree to avoid dangling dentry refs.
2936  */
2937 static void wait_requests(struct ceph_mds_client *mdsc)
2938 {
2939 	struct ceph_mds_request *req;
2940 	struct ceph_client *client = mdsc->client;
2941 
2942 	mutex_lock(&mdsc->mutex);
2943 	if (__get_oldest_req(mdsc)) {
2944 		mutex_unlock(&mdsc->mutex);
2945 
2946 		dout("wait_requests waiting for requests\n");
2947 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
2948 				    client->mount_args->mount_timeout * HZ);
2949 
2950 		/* tear down remaining requests */
2951 		mutex_lock(&mdsc->mutex);
2952 		while ((req = __get_oldest_req(mdsc))) {
2953 			dout("wait_requests timed out on tid %llu\n",
2954 			     req->r_tid);
2955 			__unregister_request(mdsc, req);
2956 		}
2957 	}
2958 	mutex_unlock(&mdsc->mutex);
2959 	dout("wait_requests done\n");
2960 }
2961 
2962 /*
2963  * called before mount is ro, and before dentries are torn down.
2964  * (hmm, does this still race with new lookups?)
2965  */
2966 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
2967 {
2968 	dout("pre_umount\n");
2969 	mdsc->stopping = 1;
2970 
2971 	drop_leases(mdsc);
2972 	ceph_flush_dirty_caps(mdsc);
2973 	wait_requests(mdsc);
2974 
2975 	/*
2976 	 * wait for reply handlers to drop their request refs and
2977 	 * their inode/dcache refs
2978 	 */
2979 	ceph_msgr_flush();
2980 }
2981 
2982 /*
2983  * wait for all write mds requests to flush.
2984  */
2985 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
2986 {
2987 	struct ceph_mds_request *req = NULL, *nextreq;
2988 	struct rb_node *n;
2989 
2990 	mutex_lock(&mdsc->mutex);
2991 	dout("wait_unsafe_requests want %lld\n", want_tid);
2992 restart:
2993 	req = __get_oldest_req(mdsc);
2994 	while (req && req->r_tid <= want_tid) {
2995 		/* find next request */
2996 		n = rb_next(&req->r_node);
2997 		if (n)
2998 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
2999 		else
3000 			nextreq = NULL;
3001 		if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3002 			/* write op */
3003 			ceph_mdsc_get_request(req);
3004 			if (nextreq)
3005 				ceph_mdsc_get_request(nextreq);
3006 			mutex_unlock(&mdsc->mutex);
3007 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3008 			     req->r_tid, want_tid);
3009 			wait_for_completion(&req->r_safe_completion);
3010 			mutex_lock(&mdsc->mutex);
3011 			ceph_mdsc_put_request(req);
3012 			if (!nextreq)
3013 				break;  /* next dne before, so we're done! */
3014 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3015 				/* next request was removed from tree */
3016 				ceph_mdsc_put_request(nextreq);
3017 				goto restart;
3018 			}
3019 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3020 		}
3021 		req = nextreq;
3022 	}
3023 	mutex_unlock(&mdsc->mutex);
3024 	dout("wait_unsafe_requests done\n");
3025 }
3026 
3027 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3028 {
3029 	u64 want_tid, want_flush;
3030 
3031 	if (mdsc->client->mount_state == CEPH_MOUNT_SHUTDOWN)
3032 		return;
3033 
3034 	dout("sync\n");
3035 	mutex_lock(&mdsc->mutex);
3036 	want_tid = mdsc->last_tid;
3037 	want_flush = mdsc->cap_flush_seq;
3038 	mutex_unlock(&mdsc->mutex);
3039 	dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3040 
3041 	ceph_flush_dirty_caps(mdsc);
3042 
3043 	wait_unsafe_requests(mdsc, want_tid);
3044 	wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3045 }
3046 
3047 /*
3048  * true if all sessions are closed, or we force unmount
3049  */
3050 bool done_closing_sessions(struct ceph_mds_client *mdsc)
3051 {
3052 	int i, n = 0;
3053 
3054 	if (mdsc->client->mount_state == CEPH_MOUNT_SHUTDOWN)
3055 		return true;
3056 
3057 	mutex_lock(&mdsc->mutex);
3058 	for (i = 0; i < mdsc->max_sessions; i++)
3059 		if (mdsc->sessions[i])
3060 			n++;
3061 	mutex_unlock(&mdsc->mutex);
3062 	return n == 0;
3063 }
3064 
3065 /*
3066  * called after sb is ro.
3067  */
3068 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3069 {
3070 	struct ceph_mds_session *session;
3071 	int i;
3072 	struct ceph_client *client = mdsc->client;
3073 	unsigned long timeout = client->mount_args->mount_timeout * HZ;
3074 
3075 	dout("close_sessions\n");
3076 
3077 	/* close sessions */
3078 	mutex_lock(&mdsc->mutex);
3079 	for (i = 0; i < mdsc->max_sessions; i++) {
3080 		session = __ceph_lookup_mds_session(mdsc, i);
3081 		if (!session)
3082 			continue;
3083 		mutex_unlock(&mdsc->mutex);
3084 		mutex_lock(&session->s_mutex);
3085 		__close_session(mdsc, session);
3086 		mutex_unlock(&session->s_mutex);
3087 		ceph_put_mds_session(session);
3088 		mutex_lock(&mdsc->mutex);
3089 	}
3090 	mutex_unlock(&mdsc->mutex);
3091 
3092 	dout("waiting for sessions to close\n");
3093 	wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3094 			   timeout);
3095 
3096 	/* tear down remaining sessions */
3097 	mutex_lock(&mdsc->mutex);
3098 	for (i = 0; i < mdsc->max_sessions; i++) {
3099 		if (mdsc->sessions[i]) {
3100 			session = get_session(mdsc->sessions[i]);
3101 			__unregister_session(mdsc, session);
3102 			mutex_unlock(&mdsc->mutex);
3103 			mutex_lock(&session->s_mutex);
3104 			remove_session_caps(session);
3105 			mutex_unlock(&session->s_mutex);
3106 			ceph_put_mds_session(session);
3107 			mutex_lock(&mdsc->mutex);
3108 		}
3109 	}
3110 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3111 	mutex_unlock(&mdsc->mutex);
3112 
3113 	ceph_cleanup_empty_realms(mdsc);
3114 
3115 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3116 
3117 	dout("stopped\n");
3118 }
3119 
3120 void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3121 {
3122 	dout("stop\n");
3123 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3124 	if (mdsc->mdsmap)
3125 		ceph_mdsmap_destroy(mdsc->mdsmap);
3126 	kfree(mdsc->sessions);
3127 	ceph_caps_finalize(mdsc);
3128 }
3129 
3130 
3131 /*
3132  * handle mds map update.
3133  */
3134 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3135 {
3136 	u32 epoch;
3137 	u32 maplen;
3138 	void *p = msg->front.iov_base;
3139 	void *end = p + msg->front.iov_len;
3140 	struct ceph_mdsmap *newmap, *oldmap;
3141 	struct ceph_fsid fsid;
3142 	int err = -EINVAL;
3143 
3144 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3145 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
3146 	if (ceph_check_fsid(mdsc->client, &fsid) < 0)
3147 		return;
3148 	epoch = ceph_decode_32(&p);
3149 	maplen = ceph_decode_32(&p);
3150 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3151 
3152 	/* do we need it? */
3153 	ceph_monc_got_mdsmap(&mdsc->client->monc, epoch);
3154 	mutex_lock(&mdsc->mutex);
3155 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3156 		dout("handle_map epoch %u <= our %u\n",
3157 		     epoch, mdsc->mdsmap->m_epoch);
3158 		mutex_unlock(&mdsc->mutex);
3159 		return;
3160 	}
3161 
3162 	newmap = ceph_mdsmap_decode(&p, end);
3163 	if (IS_ERR(newmap)) {
3164 		err = PTR_ERR(newmap);
3165 		goto bad_unlock;
3166 	}
3167 
3168 	/* swap into place */
3169 	if (mdsc->mdsmap) {
3170 		oldmap = mdsc->mdsmap;
3171 		mdsc->mdsmap = newmap;
3172 		check_new_map(mdsc, newmap, oldmap);
3173 		ceph_mdsmap_destroy(oldmap);
3174 	} else {
3175 		mdsc->mdsmap = newmap;  /* first mds map */
3176 	}
3177 	mdsc->client->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3178 
3179 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3180 
3181 	mutex_unlock(&mdsc->mutex);
3182 	schedule_delayed(mdsc);
3183 	return;
3184 
3185 bad_unlock:
3186 	mutex_unlock(&mdsc->mutex);
3187 bad:
3188 	pr_err("error decoding mdsmap %d\n", err);
3189 	return;
3190 }
3191 
3192 static struct ceph_connection *con_get(struct ceph_connection *con)
3193 {
3194 	struct ceph_mds_session *s = con->private;
3195 
3196 	if (get_session(s)) {
3197 		dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3198 		return con;
3199 	}
3200 	dout("mdsc con_get %p FAIL\n", s);
3201 	return NULL;
3202 }
3203 
3204 static void con_put(struct ceph_connection *con)
3205 {
3206 	struct ceph_mds_session *s = con->private;
3207 
3208 	ceph_put_mds_session(s);
3209 	dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref));
3210 }
3211 
3212 /*
3213  * if the client is unresponsive for long enough, the mds will kill
3214  * the session entirely.
3215  */
3216 static void peer_reset(struct ceph_connection *con)
3217 {
3218 	struct ceph_mds_session *s = con->private;
3219 	struct ceph_mds_client *mdsc = s->s_mdsc;
3220 
3221 	pr_warning("mds%d closed our session\n", s->s_mds);
3222 	send_mds_reconnect(mdsc, s);
3223 }
3224 
3225 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3226 {
3227 	struct ceph_mds_session *s = con->private;
3228 	struct ceph_mds_client *mdsc = s->s_mdsc;
3229 	int type = le16_to_cpu(msg->hdr.type);
3230 
3231 	mutex_lock(&mdsc->mutex);
3232 	if (__verify_registered_session(mdsc, s) < 0) {
3233 		mutex_unlock(&mdsc->mutex);
3234 		goto out;
3235 	}
3236 	mutex_unlock(&mdsc->mutex);
3237 
3238 	switch (type) {
3239 	case CEPH_MSG_MDS_MAP:
3240 		ceph_mdsc_handle_map(mdsc, msg);
3241 		break;
3242 	case CEPH_MSG_CLIENT_SESSION:
3243 		handle_session(s, msg);
3244 		break;
3245 	case CEPH_MSG_CLIENT_REPLY:
3246 		handle_reply(s, msg);
3247 		break;
3248 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3249 		handle_forward(mdsc, s, msg);
3250 		break;
3251 	case CEPH_MSG_CLIENT_CAPS:
3252 		ceph_handle_caps(s, msg);
3253 		break;
3254 	case CEPH_MSG_CLIENT_SNAP:
3255 		ceph_handle_snap(mdsc, s, msg);
3256 		break;
3257 	case CEPH_MSG_CLIENT_LEASE:
3258 		handle_lease(mdsc, s, msg);
3259 		break;
3260 
3261 	default:
3262 		pr_err("received unknown message type %d %s\n", type,
3263 		       ceph_msg_type_name(type));
3264 	}
3265 out:
3266 	ceph_msg_put(msg);
3267 }
3268 
3269 /*
3270  * authentication
3271  */
3272 static int get_authorizer(struct ceph_connection *con,
3273 			  void **buf, int *len, int *proto,
3274 			  void **reply_buf, int *reply_len, int force_new)
3275 {
3276 	struct ceph_mds_session *s = con->private;
3277 	struct ceph_mds_client *mdsc = s->s_mdsc;
3278 	struct ceph_auth_client *ac = mdsc->client->monc.auth;
3279 	int ret = 0;
3280 
3281 	if (force_new && s->s_authorizer) {
3282 		ac->ops->destroy_authorizer(ac, s->s_authorizer);
3283 		s->s_authorizer = NULL;
3284 	}
3285 	if (s->s_authorizer == NULL) {
3286 		if (ac->ops->create_authorizer) {
3287 			ret = ac->ops->create_authorizer(
3288 				ac, CEPH_ENTITY_TYPE_MDS,
3289 				&s->s_authorizer,
3290 				&s->s_authorizer_buf,
3291 				&s->s_authorizer_buf_len,
3292 				&s->s_authorizer_reply_buf,
3293 				&s->s_authorizer_reply_buf_len);
3294 			if (ret)
3295 				return ret;
3296 		}
3297 	}
3298 
3299 	*proto = ac->protocol;
3300 	*buf = s->s_authorizer_buf;
3301 	*len = s->s_authorizer_buf_len;
3302 	*reply_buf = s->s_authorizer_reply_buf;
3303 	*reply_len = s->s_authorizer_reply_buf_len;
3304 	return 0;
3305 }
3306 
3307 
3308 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3309 {
3310 	struct ceph_mds_session *s = con->private;
3311 	struct ceph_mds_client *mdsc = s->s_mdsc;
3312 	struct ceph_auth_client *ac = mdsc->client->monc.auth;
3313 
3314 	return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len);
3315 }
3316 
3317 static int invalidate_authorizer(struct ceph_connection *con)
3318 {
3319 	struct ceph_mds_session *s = con->private;
3320 	struct ceph_mds_client *mdsc = s->s_mdsc;
3321 	struct ceph_auth_client *ac = mdsc->client->monc.auth;
3322 
3323 	if (ac->ops->invalidate_authorizer)
3324 		ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3325 
3326 	return ceph_monc_validate_auth(&mdsc->client->monc);
3327 }
3328 
3329 static const struct ceph_connection_operations mds_con_ops = {
3330 	.get = con_get,
3331 	.put = con_put,
3332 	.dispatch = dispatch,
3333 	.get_authorizer = get_authorizer,
3334 	.verify_authorizer_reply = verify_authorizer_reply,
3335 	.invalidate_authorizer = invalidate_authorizer,
3336 	.peer_reset = peer_reset,
3337 };
3338 
3339 
3340 
3341 
3342 /* eof */
3343