1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/fs.h> 5 #include <linux/wait.h> 6 #include <linux/slab.h> 7 #include <linux/gfp.h> 8 #include <linux/sched.h> 9 #include <linux/debugfs.h> 10 #include <linux/seq_file.h> 11 #include <linux/ratelimit.h> 12 #include <linux/bits.h> 13 #include <linux/ktime.h> 14 #include <linux/bitmap.h> 15 #include <linux/mnt_idmapping.h> 16 17 #include "super.h" 18 #include "mds_client.h" 19 #include "crypto.h" 20 21 #include <linux/ceph/ceph_features.h> 22 #include <linux/ceph/messenger.h> 23 #include <linux/ceph/decode.h> 24 #include <linux/ceph/pagelist.h> 25 #include <linux/ceph/auth.h> 26 #include <linux/ceph/debugfs.h> 27 28 #define RECONNECT_MAX_SIZE (INT_MAX - PAGE_SIZE) 29 30 /* 31 * A cluster of MDS (metadata server) daemons is responsible for 32 * managing the file system namespace (the directory hierarchy and 33 * inodes) and for coordinating shared access to storage. Metadata is 34 * partitioning hierarchically across a number of servers, and that 35 * partition varies over time as the cluster adjusts the distribution 36 * in order to balance load. 37 * 38 * The MDS client is primarily responsible to managing synchronous 39 * metadata requests for operations like open, unlink, and so forth. 40 * If there is a MDS failure, we find out about it when we (possibly 41 * request and) receive a new MDS map, and can resubmit affected 42 * requests. 43 * 44 * For the most part, though, we take advantage of a lossless 45 * communications channel to the MDS, and do not need to worry about 46 * timing out or resubmitting requests. 47 * 48 * We maintain a stateful "session" with each MDS we interact with. 49 * Within each session, we sent periodic heartbeat messages to ensure 50 * any capabilities or leases we have been issues remain valid. If 51 * the session times out and goes stale, our leases and capabilities 52 * are no longer valid. 53 */ 54 55 struct ceph_reconnect_state { 56 struct ceph_mds_session *session; 57 int nr_caps, nr_realms; 58 struct ceph_pagelist *pagelist; 59 unsigned msg_version; 60 bool allow_multi; 61 }; 62 63 static void __wake_requests(struct ceph_mds_client *mdsc, 64 struct list_head *head); 65 static void ceph_cap_release_work(struct work_struct *work); 66 static void ceph_cap_reclaim_work(struct work_struct *work); 67 68 static const struct ceph_connection_operations mds_con_ops; 69 70 71 /* 72 * mds reply parsing 73 */ 74 75 static int parse_reply_info_quota(void **p, void *end, 76 struct ceph_mds_reply_info_in *info) 77 { 78 u8 struct_v, struct_compat; 79 u32 struct_len; 80 81 ceph_decode_8_safe(p, end, struct_v, bad); 82 ceph_decode_8_safe(p, end, struct_compat, bad); 83 /* struct_v is expected to be >= 1. we only 84 * understand encoding with struct_compat == 1. */ 85 if (!struct_v || struct_compat != 1) 86 goto bad; 87 ceph_decode_32_safe(p, end, struct_len, bad); 88 ceph_decode_need(p, end, struct_len, bad); 89 end = *p + struct_len; 90 ceph_decode_64_safe(p, end, info->max_bytes, bad); 91 ceph_decode_64_safe(p, end, info->max_files, bad); 92 *p = end; 93 return 0; 94 bad: 95 return -EIO; 96 } 97 98 /* 99 * parse individual inode info 100 */ 101 static int parse_reply_info_in(void **p, void *end, 102 struct ceph_mds_reply_info_in *info, 103 u64 features) 104 { 105 int err = 0; 106 u8 struct_v = 0; 107 108 if (features == (u64)-1) { 109 u32 struct_len; 110 u8 struct_compat; 111 ceph_decode_8_safe(p, end, struct_v, bad); 112 ceph_decode_8_safe(p, end, struct_compat, bad); 113 /* struct_v is expected to be >= 1. we only understand 114 * encoding with struct_compat == 1. */ 115 if (!struct_v || struct_compat != 1) 116 goto bad; 117 ceph_decode_32_safe(p, end, struct_len, bad); 118 ceph_decode_need(p, end, struct_len, bad); 119 end = *p + struct_len; 120 } 121 122 ceph_decode_need(p, end, sizeof(struct ceph_mds_reply_inode), bad); 123 info->in = *p; 124 *p += sizeof(struct ceph_mds_reply_inode) + 125 sizeof(*info->in->fragtree.splits) * 126 le32_to_cpu(info->in->fragtree.nsplits); 127 128 ceph_decode_32_safe(p, end, info->symlink_len, bad); 129 ceph_decode_need(p, end, info->symlink_len, bad); 130 info->symlink = *p; 131 *p += info->symlink_len; 132 133 ceph_decode_copy_safe(p, end, &info->dir_layout, 134 sizeof(info->dir_layout), bad); 135 ceph_decode_32_safe(p, end, info->xattr_len, bad); 136 ceph_decode_need(p, end, info->xattr_len, bad); 137 info->xattr_data = *p; 138 *p += info->xattr_len; 139 140 if (features == (u64)-1) { 141 /* inline data */ 142 ceph_decode_64_safe(p, end, info->inline_version, bad); 143 ceph_decode_32_safe(p, end, info->inline_len, bad); 144 ceph_decode_need(p, end, info->inline_len, bad); 145 info->inline_data = *p; 146 *p += info->inline_len; 147 /* quota */ 148 err = parse_reply_info_quota(p, end, info); 149 if (err < 0) 150 goto out_bad; 151 /* pool namespace */ 152 ceph_decode_32_safe(p, end, info->pool_ns_len, bad); 153 if (info->pool_ns_len > 0) { 154 ceph_decode_need(p, end, info->pool_ns_len, bad); 155 info->pool_ns_data = *p; 156 *p += info->pool_ns_len; 157 } 158 159 /* btime */ 160 ceph_decode_need(p, end, sizeof(info->btime), bad); 161 ceph_decode_copy(p, &info->btime, sizeof(info->btime)); 162 163 /* change attribute */ 164 ceph_decode_64_safe(p, end, info->change_attr, bad); 165 166 /* dir pin */ 167 if (struct_v >= 2) { 168 ceph_decode_32_safe(p, end, info->dir_pin, bad); 169 } else { 170 info->dir_pin = -ENODATA; 171 } 172 173 /* snapshot birth time, remains zero for v<=2 */ 174 if (struct_v >= 3) { 175 ceph_decode_need(p, end, sizeof(info->snap_btime), bad); 176 ceph_decode_copy(p, &info->snap_btime, 177 sizeof(info->snap_btime)); 178 } else { 179 memset(&info->snap_btime, 0, sizeof(info->snap_btime)); 180 } 181 182 /* snapshot count, remains zero for v<=3 */ 183 if (struct_v >= 4) { 184 ceph_decode_64_safe(p, end, info->rsnaps, bad); 185 } else { 186 info->rsnaps = 0; 187 } 188 189 if (struct_v >= 5) { 190 u32 alen; 191 192 ceph_decode_32_safe(p, end, alen, bad); 193 194 while (alen--) { 195 u32 len; 196 197 /* key */ 198 ceph_decode_32_safe(p, end, len, bad); 199 ceph_decode_skip_n(p, end, len, bad); 200 /* value */ 201 ceph_decode_32_safe(p, end, len, bad); 202 ceph_decode_skip_n(p, end, len, bad); 203 } 204 } 205 206 /* fscrypt flag -- ignore */ 207 if (struct_v >= 6) 208 ceph_decode_skip_8(p, end, bad); 209 210 info->fscrypt_auth = NULL; 211 info->fscrypt_auth_len = 0; 212 info->fscrypt_file = NULL; 213 info->fscrypt_file_len = 0; 214 if (struct_v >= 7) { 215 ceph_decode_32_safe(p, end, info->fscrypt_auth_len, bad); 216 if (info->fscrypt_auth_len) { 217 info->fscrypt_auth = kmalloc(info->fscrypt_auth_len, 218 GFP_KERNEL); 219 if (!info->fscrypt_auth) 220 return -ENOMEM; 221 ceph_decode_copy_safe(p, end, info->fscrypt_auth, 222 info->fscrypt_auth_len, bad); 223 } 224 ceph_decode_32_safe(p, end, info->fscrypt_file_len, bad); 225 if (info->fscrypt_file_len) { 226 info->fscrypt_file = kmalloc(info->fscrypt_file_len, 227 GFP_KERNEL); 228 if (!info->fscrypt_file) 229 return -ENOMEM; 230 ceph_decode_copy_safe(p, end, info->fscrypt_file, 231 info->fscrypt_file_len, bad); 232 } 233 } 234 *p = end; 235 } else { 236 /* legacy (unversioned) struct */ 237 if (features & CEPH_FEATURE_MDS_INLINE_DATA) { 238 ceph_decode_64_safe(p, end, info->inline_version, bad); 239 ceph_decode_32_safe(p, end, info->inline_len, bad); 240 ceph_decode_need(p, end, info->inline_len, bad); 241 info->inline_data = *p; 242 *p += info->inline_len; 243 } else 244 info->inline_version = CEPH_INLINE_NONE; 245 246 if (features & CEPH_FEATURE_MDS_QUOTA) { 247 err = parse_reply_info_quota(p, end, info); 248 if (err < 0) 249 goto out_bad; 250 } else { 251 info->max_bytes = 0; 252 info->max_files = 0; 253 } 254 255 info->pool_ns_len = 0; 256 info->pool_ns_data = NULL; 257 if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) { 258 ceph_decode_32_safe(p, end, info->pool_ns_len, bad); 259 if (info->pool_ns_len > 0) { 260 ceph_decode_need(p, end, info->pool_ns_len, bad); 261 info->pool_ns_data = *p; 262 *p += info->pool_ns_len; 263 } 264 } 265 266 if (features & CEPH_FEATURE_FS_BTIME) { 267 ceph_decode_need(p, end, sizeof(info->btime), bad); 268 ceph_decode_copy(p, &info->btime, sizeof(info->btime)); 269 ceph_decode_64_safe(p, end, info->change_attr, bad); 270 } 271 272 info->dir_pin = -ENODATA; 273 /* info->snap_btime and info->rsnaps remain zero */ 274 } 275 return 0; 276 bad: 277 err = -EIO; 278 out_bad: 279 return err; 280 } 281 282 static int parse_reply_info_dir(void **p, void *end, 283 struct ceph_mds_reply_dirfrag **dirfrag, 284 u64 features) 285 { 286 if (features == (u64)-1) { 287 u8 struct_v, struct_compat; 288 u32 struct_len; 289 ceph_decode_8_safe(p, end, struct_v, bad); 290 ceph_decode_8_safe(p, end, struct_compat, bad); 291 /* struct_v is expected to be >= 1. we only understand 292 * encoding whose struct_compat == 1. */ 293 if (!struct_v || struct_compat != 1) 294 goto bad; 295 ceph_decode_32_safe(p, end, struct_len, bad); 296 ceph_decode_need(p, end, struct_len, bad); 297 end = *p + struct_len; 298 } 299 300 ceph_decode_need(p, end, sizeof(**dirfrag), bad); 301 *dirfrag = *p; 302 *p += sizeof(**dirfrag) + sizeof(u32) * le32_to_cpu((*dirfrag)->ndist); 303 if (unlikely(*p > end)) 304 goto bad; 305 if (features == (u64)-1) 306 *p = end; 307 return 0; 308 bad: 309 return -EIO; 310 } 311 312 static int parse_reply_info_lease(void **p, void *end, 313 struct ceph_mds_reply_lease **lease, 314 u64 features, u32 *altname_len, u8 **altname) 315 { 316 u8 struct_v; 317 u32 struct_len; 318 void *lend; 319 320 if (features == (u64)-1) { 321 u8 struct_compat; 322 323 ceph_decode_8_safe(p, end, struct_v, bad); 324 ceph_decode_8_safe(p, end, struct_compat, bad); 325 326 /* struct_v is expected to be >= 1. we only understand 327 * encoding whose struct_compat == 1. */ 328 if (!struct_v || struct_compat != 1) 329 goto bad; 330 331 ceph_decode_32_safe(p, end, struct_len, bad); 332 } else { 333 struct_len = sizeof(**lease); 334 *altname_len = 0; 335 *altname = NULL; 336 } 337 338 lend = *p + struct_len; 339 ceph_decode_need(p, end, struct_len, bad); 340 *lease = *p; 341 *p += sizeof(**lease); 342 343 if (features == (u64)-1) { 344 if (struct_v >= 2) { 345 ceph_decode_32_safe(p, end, *altname_len, bad); 346 ceph_decode_need(p, end, *altname_len, bad); 347 *altname = *p; 348 *p += *altname_len; 349 } else { 350 *altname = NULL; 351 *altname_len = 0; 352 } 353 } 354 *p = lend; 355 return 0; 356 bad: 357 return -EIO; 358 } 359 360 /* 361 * parse a normal reply, which may contain a (dir+)dentry and/or a 362 * target inode. 363 */ 364 static int parse_reply_info_trace(void **p, void *end, 365 struct ceph_mds_reply_info_parsed *info, 366 u64 features) 367 { 368 int err; 369 370 if (info->head->is_dentry) { 371 err = parse_reply_info_in(p, end, &info->diri, features); 372 if (err < 0) 373 goto out_bad; 374 375 err = parse_reply_info_dir(p, end, &info->dirfrag, features); 376 if (err < 0) 377 goto out_bad; 378 379 ceph_decode_32_safe(p, end, info->dname_len, bad); 380 ceph_decode_need(p, end, info->dname_len, bad); 381 info->dname = *p; 382 *p += info->dname_len; 383 384 err = parse_reply_info_lease(p, end, &info->dlease, features, 385 &info->altname_len, &info->altname); 386 if (err < 0) 387 goto out_bad; 388 } 389 390 if (info->head->is_target) { 391 err = parse_reply_info_in(p, end, &info->targeti, features); 392 if (err < 0) 393 goto out_bad; 394 } 395 396 if (unlikely(*p != end)) 397 goto bad; 398 return 0; 399 400 bad: 401 err = -EIO; 402 out_bad: 403 pr_err("problem parsing mds trace %d\n", err); 404 return err; 405 } 406 407 /* 408 * parse readdir results 409 */ 410 static int parse_reply_info_readdir(void **p, void *end, 411 struct ceph_mds_request *req, 412 u64 features) 413 { 414 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info; 415 struct ceph_client *cl = req->r_mdsc->fsc->client; 416 u32 num, i = 0; 417 int err; 418 419 err = parse_reply_info_dir(p, end, &info->dir_dir, features); 420 if (err < 0) 421 goto out_bad; 422 423 ceph_decode_need(p, end, sizeof(num) + 2, bad); 424 num = ceph_decode_32(p); 425 { 426 u16 flags = ceph_decode_16(p); 427 info->dir_end = !!(flags & CEPH_READDIR_FRAG_END); 428 info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE); 429 info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER); 430 info->offset_hash = !!(flags & CEPH_READDIR_OFFSET_HASH); 431 } 432 if (num == 0) 433 goto done; 434 435 BUG_ON(!info->dir_entries); 436 if ((unsigned long)(info->dir_entries + num) > 437 (unsigned long)info->dir_entries + info->dir_buf_size) { 438 pr_err_client(cl, "dir contents are larger than expected\n"); 439 WARN_ON(1); 440 goto bad; 441 } 442 443 info->dir_nr = num; 444 while (num) { 445 struct inode *inode = d_inode(req->r_dentry); 446 struct ceph_inode_info *ci = ceph_inode(inode); 447 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i; 448 struct fscrypt_str tname = FSTR_INIT(NULL, 0); 449 struct fscrypt_str oname = FSTR_INIT(NULL, 0); 450 struct ceph_fname fname; 451 u32 altname_len, _name_len; 452 u8 *altname, *_name; 453 454 /* dentry */ 455 ceph_decode_32_safe(p, end, _name_len, bad); 456 ceph_decode_need(p, end, _name_len, bad); 457 _name = *p; 458 *p += _name_len; 459 doutc(cl, "parsed dir dname '%.*s'\n", _name_len, _name); 460 461 if (info->hash_order) 462 rde->raw_hash = ceph_str_hash(ci->i_dir_layout.dl_dir_hash, 463 _name, _name_len); 464 465 /* dentry lease */ 466 err = parse_reply_info_lease(p, end, &rde->lease, features, 467 &altname_len, &altname); 468 if (err) 469 goto out_bad; 470 471 /* 472 * Try to dencrypt the dentry names and update them 473 * in the ceph_mds_reply_dir_entry struct. 474 */ 475 fname.dir = inode; 476 fname.name = _name; 477 fname.name_len = _name_len; 478 fname.ctext = altname; 479 fname.ctext_len = altname_len; 480 /* 481 * The _name_len maybe larger than altname_len, such as 482 * when the human readable name length is in range of 483 * (CEPH_NOHASH_NAME_MAX, CEPH_NOHASH_NAME_MAX + SHA256_DIGEST_SIZE), 484 * then the copy in ceph_fname_to_usr will corrupt the 485 * data if there has no encryption key. 486 * 487 * Just set the no_copy flag and then if there has no 488 * encryption key the oname.name will be assigned to 489 * _name always. 490 */ 491 fname.no_copy = true; 492 if (altname_len == 0) { 493 /* 494 * Set tname to _name, and this will be used 495 * to do the base64_decode in-place. It's 496 * safe because the decoded string should 497 * always be shorter, which is 3/4 of origin 498 * string. 499 */ 500 tname.name = _name; 501 502 /* 503 * Set oname to _name too, and this will be 504 * used to do the dencryption in-place. 505 */ 506 oname.name = _name; 507 oname.len = _name_len; 508 } else { 509 /* 510 * This will do the decryption only in-place 511 * from altname cryptext directly. 512 */ 513 oname.name = altname; 514 oname.len = altname_len; 515 } 516 rde->is_nokey = false; 517 err = ceph_fname_to_usr(&fname, &tname, &oname, &rde->is_nokey); 518 if (err) { 519 pr_err_client(cl, "unable to decode %.*s, got %d\n", 520 _name_len, _name, err); 521 goto out_bad; 522 } 523 rde->name = oname.name; 524 rde->name_len = oname.len; 525 526 /* inode */ 527 err = parse_reply_info_in(p, end, &rde->inode, features); 528 if (err < 0) 529 goto out_bad; 530 /* ceph_readdir_prepopulate() will update it */ 531 rde->offset = 0; 532 i++; 533 num--; 534 } 535 536 done: 537 /* Skip over any unrecognized fields */ 538 *p = end; 539 return 0; 540 541 bad: 542 err = -EIO; 543 out_bad: 544 pr_err_client(cl, "problem parsing dir contents %d\n", err); 545 return err; 546 } 547 548 /* 549 * parse fcntl F_GETLK results 550 */ 551 static int parse_reply_info_filelock(void **p, void *end, 552 struct ceph_mds_reply_info_parsed *info, 553 u64 features) 554 { 555 if (*p + sizeof(*info->filelock_reply) > end) 556 goto bad; 557 558 info->filelock_reply = *p; 559 560 /* Skip over any unrecognized fields */ 561 *p = end; 562 return 0; 563 bad: 564 return -EIO; 565 } 566 567 568 #if BITS_PER_LONG == 64 569 570 #define DELEGATED_INO_AVAILABLE xa_mk_value(1) 571 572 static int ceph_parse_deleg_inos(void **p, void *end, 573 struct ceph_mds_session *s) 574 { 575 struct ceph_client *cl = s->s_mdsc->fsc->client; 576 u32 sets; 577 578 ceph_decode_32_safe(p, end, sets, bad); 579 doutc(cl, "got %u sets of delegated inodes\n", sets); 580 while (sets--) { 581 u64 start, len; 582 583 ceph_decode_64_safe(p, end, start, bad); 584 ceph_decode_64_safe(p, end, len, bad); 585 586 /* Don't accept a delegation of system inodes */ 587 if (start < CEPH_INO_SYSTEM_BASE) { 588 pr_warn_ratelimited_client(cl, 589 "ignoring reserved inode range delegation (start=0x%llx len=0x%llx)\n", 590 start, len); 591 continue; 592 } 593 while (len--) { 594 int err = xa_insert(&s->s_delegated_inos, start++, 595 DELEGATED_INO_AVAILABLE, 596 GFP_KERNEL); 597 if (!err) { 598 doutc(cl, "added delegated inode 0x%llx\n", start - 1); 599 } else if (err == -EBUSY) { 600 pr_warn_client(cl, 601 "MDS delegated inode 0x%llx more than once.\n", 602 start - 1); 603 } else { 604 return err; 605 } 606 } 607 } 608 return 0; 609 bad: 610 return -EIO; 611 } 612 613 u64 ceph_get_deleg_ino(struct ceph_mds_session *s) 614 { 615 unsigned long ino; 616 void *val; 617 618 xa_for_each(&s->s_delegated_inos, ino, val) { 619 val = xa_erase(&s->s_delegated_inos, ino); 620 if (val == DELEGATED_INO_AVAILABLE) 621 return ino; 622 } 623 return 0; 624 } 625 626 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino) 627 { 628 return xa_insert(&s->s_delegated_inos, ino, DELEGATED_INO_AVAILABLE, 629 GFP_KERNEL); 630 } 631 #else /* BITS_PER_LONG == 64 */ 632 /* 633 * FIXME: xarrays can't handle 64-bit indexes on a 32-bit arch. For now, just 634 * ignore delegated_inos on 32 bit arch. Maybe eventually add xarrays for top 635 * and bottom words? 636 */ 637 static int ceph_parse_deleg_inos(void **p, void *end, 638 struct ceph_mds_session *s) 639 { 640 u32 sets; 641 642 ceph_decode_32_safe(p, end, sets, bad); 643 if (sets) 644 ceph_decode_skip_n(p, end, sets * 2 * sizeof(__le64), bad); 645 return 0; 646 bad: 647 return -EIO; 648 } 649 650 u64 ceph_get_deleg_ino(struct ceph_mds_session *s) 651 { 652 return 0; 653 } 654 655 int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino) 656 { 657 return 0; 658 } 659 #endif /* BITS_PER_LONG == 64 */ 660 661 /* 662 * parse create results 663 */ 664 static int parse_reply_info_create(void **p, void *end, 665 struct ceph_mds_reply_info_parsed *info, 666 u64 features, struct ceph_mds_session *s) 667 { 668 int ret; 669 670 if (features == (u64)-1 || 671 (features & CEPH_FEATURE_REPLY_CREATE_INODE)) { 672 if (*p == end) { 673 /* Malformed reply? */ 674 info->has_create_ino = false; 675 } else if (test_bit(CEPHFS_FEATURE_DELEG_INO, &s->s_features)) { 676 info->has_create_ino = true; 677 /* struct_v, struct_compat, and len */ 678 ceph_decode_skip_n(p, end, 2 + sizeof(u32), bad); 679 ceph_decode_64_safe(p, end, info->ino, bad); 680 ret = ceph_parse_deleg_inos(p, end, s); 681 if (ret) 682 return ret; 683 } else { 684 /* legacy */ 685 ceph_decode_64_safe(p, end, info->ino, bad); 686 info->has_create_ino = true; 687 } 688 } else { 689 if (*p != end) 690 goto bad; 691 } 692 693 /* Skip over any unrecognized fields */ 694 *p = end; 695 return 0; 696 bad: 697 return -EIO; 698 } 699 700 static int parse_reply_info_getvxattr(void **p, void *end, 701 struct ceph_mds_reply_info_parsed *info, 702 u64 features) 703 { 704 u32 value_len; 705 706 ceph_decode_skip_8(p, end, bad); /* skip current version: 1 */ 707 ceph_decode_skip_8(p, end, bad); /* skip first version: 1 */ 708 ceph_decode_skip_32(p, end, bad); /* skip payload length */ 709 710 ceph_decode_32_safe(p, end, value_len, bad); 711 712 if (value_len == end - *p) { 713 info->xattr_info.xattr_value = *p; 714 info->xattr_info.xattr_value_len = value_len; 715 *p = end; 716 return value_len; 717 } 718 bad: 719 return -EIO; 720 } 721 722 /* 723 * parse extra results 724 */ 725 static int parse_reply_info_extra(void **p, void *end, 726 struct ceph_mds_request *req, 727 u64 features, struct ceph_mds_session *s) 728 { 729 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info; 730 u32 op = le32_to_cpu(info->head->op); 731 732 if (op == CEPH_MDS_OP_GETFILELOCK) 733 return parse_reply_info_filelock(p, end, info, features); 734 else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP) 735 return parse_reply_info_readdir(p, end, req, features); 736 else if (op == CEPH_MDS_OP_CREATE) 737 return parse_reply_info_create(p, end, info, features, s); 738 else if (op == CEPH_MDS_OP_GETVXATTR) 739 return parse_reply_info_getvxattr(p, end, info, features); 740 else 741 return -EIO; 742 } 743 744 /* 745 * parse entire mds reply 746 */ 747 static int parse_reply_info(struct ceph_mds_session *s, struct ceph_msg *msg, 748 struct ceph_mds_request *req, u64 features) 749 { 750 struct ceph_mds_reply_info_parsed *info = &req->r_reply_info; 751 struct ceph_client *cl = s->s_mdsc->fsc->client; 752 void *p, *end; 753 u32 len; 754 int err; 755 756 info->head = msg->front.iov_base; 757 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 758 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 759 760 /* trace */ 761 ceph_decode_32_safe(&p, end, len, bad); 762 if (len > 0) { 763 ceph_decode_need(&p, end, len, bad); 764 err = parse_reply_info_trace(&p, p+len, info, features); 765 if (err < 0) 766 goto out_bad; 767 } 768 769 /* extra */ 770 ceph_decode_32_safe(&p, end, len, bad); 771 if (len > 0) { 772 ceph_decode_need(&p, end, len, bad); 773 err = parse_reply_info_extra(&p, p+len, req, features, s); 774 if (err < 0) 775 goto out_bad; 776 } 777 778 /* snap blob */ 779 ceph_decode_32_safe(&p, end, len, bad); 780 info->snapblob_len = len; 781 info->snapblob = p; 782 p += len; 783 784 if (p != end) 785 goto bad; 786 return 0; 787 788 bad: 789 err = -EIO; 790 out_bad: 791 pr_err_client(cl, "mds parse_reply err %d\n", err); 792 ceph_msg_dump(msg); 793 return err; 794 } 795 796 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 797 { 798 int i; 799 800 kfree(info->diri.fscrypt_auth); 801 kfree(info->diri.fscrypt_file); 802 kfree(info->targeti.fscrypt_auth); 803 kfree(info->targeti.fscrypt_file); 804 if (!info->dir_entries) 805 return; 806 807 for (i = 0; i < info->dir_nr; i++) { 808 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i; 809 810 kfree(rde->inode.fscrypt_auth); 811 kfree(rde->inode.fscrypt_file); 812 } 813 free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size)); 814 } 815 816 /* 817 * In async unlink case the kclient won't wait for the first reply 818 * from MDS and just drop all the links and unhash the dentry and then 819 * succeeds immediately. 820 * 821 * For any new create/link/rename,etc requests followed by using the 822 * same file names we must wait for the first reply of the inflight 823 * unlink request, or the MDS possibly will fail these following 824 * requests with -EEXIST if the inflight async unlink request was 825 * delayed for some reasons. 826 * 827 * And the worst case is that for the none async openc request it will 828 * successfully open the file if the CDentry hasn't been unlinked yet, 829 * but later the previous delayed async unlink request will remove the 830 * CDenty. That means the just created file is possiblly deleted later 831 * by accident. 832 * 833 * We need to wait for the inflight async unlink requests to finish 834 * when creating new files/directories by using the same file names. 835 */ 836 int ceph_wait_on_conflict_unlink(struct dentry *dentry) 837 { 838 struct ceph_fs_client *fsc = ceph_sb_to_fs_client(dentry->d_sb); 839 struct ceph_client *cl = fsc->client; 840 struct dentry *pdentry = dentry->d_parent; 841 struct dentry *udentry, *found = NULL; 842 struct ceph_dentry_info *di; 843 struct qstr dname; 844 u32 hash = dentry->d_name.hash; 845 int err; 846 847 dname.name = dentry->d_name.name; 848 dname.len = dentry->d_name.len; 849 850 rcu_read_lock(); 851 hash_for_each_possible_rcu(fsc->async_unlink_conflict, di, 852 hnode, hash) { 853 udentry = di->dentry; 854 855 spin_lock(&udentry->d_lock); 856 if (udentry->d_name.hash != hash) 857 goto next; 858 if (unlikely(udentry->d_parent != pdentry)) 859 goto next; 860 if (!hash_hashed(&di->hnode)) 861 goto next; 862 863 if (!test_bit(CEPH_DENTRY_ASYNC_UNLINK_BIT, &di->flags)) 864 pr_warn_client(cl, "dentry %p:%pd async unlink bit is not set\n", 865 dentry, dentry); 866 867 if (!d_same_name(udentry, pdentry, &dname)) 868 goto next; 869 870 found = dget_dlock(udentry); 871 spin_unlock(&udentry->d_lock); 872 break; 873 next: 874 spin_unlock(&udentry->d_lock); 875 } 876 rcu_read_unlock(); 877 878 if (likely(!found)) 879 return 0; 880 881 doutc(cl, "dentry %p:%pd conflict with old %p:%pd\n", dentry, dentry, 882 found, found); 883 884 err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_UNLINK_BIT, 885 TASK_KILLABLE); 886 dput(found); 887 return err; 888 } 889 890 891 /* 892 * sessions 893 */ 894 const char *ceph_session_state_name(int s) 895 { 896 switch (s) { 897 case CEPH_MDS_SESSION_NEW: return "new"; 898 case CEPH_MDS_SESSION_OPENING: return "opening"; 899 case CEPH_MDS_SESSION_OPEN: return "open"; 900 case CEPH_MDS_SESSION_HUNG: return "hung"; 901 case CEPH_MDS_SESSION_CLOSING: return "closing"; 902 case CEPH_MDS_SESSION_CLOSED: return "closed"; 903 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 904 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 905 case CEPH_MDS_SESSION_REJECTED: return "rejected"; 906 default: return "???"; 907 } 908 } 909 910 struct ceph_mds_session *ceph_get_mds_session(struct ceph_mds_session *s) 911 { 912 if (refcount_inc_not_zero(&s->s_ref)) 913 return s; 914 return NULL; 915 } 916 917 void ceph_put_mds_session(struct ceph_mds_session *s) 918 { 919 if (IS_ERR_OR_NULL(s)) 920 return; 921 922 if (refcount_dec_and_test(&s->s_ref)) { 923 if (s->s_auth.authorizer) 924 ceph_auth_destroy_authorizer(s->s_auth.authorizer); 925 WARN_ON(mutex_is_locked(&s->s_mutex)); 926 xa_destroy(&s->s_delegated_inos); 927 kfree(s); 928 } 929 } 930 931 /* 932 * called under mdsc->mutex 933 */ 934 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 935 int mds) 936 { 937 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds]) 938 return NULL; 939 return ceph_get_mds_session(mdsc->sessions[mds]); 940 } 941 942 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 943 { 944 if (mds >= mdsc->max_sessions || !mdsc->sessions[mds]) 945 return false; 946 else 947 return true; 948 } 949 950 static int __verify_registered_session(struct ceph_mds_client *mdsc, 951 struct ceph_mds_session *s) 952 { 953 if (s->s_mds >= mdsc->max_sessions || 954 mdsc->sessions[s->s_mds] != s) 955 return -ENOENT; 956 return 0; 957 } 958 959 /* 960 * create+register a new session for given mds. 961 * called under mdsc->mutex. 962 */ 963 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 964 int mds) 965 { 966 struct ceph_client *cl = mdsc->fsc->client; 967 struct ceph_mds_session *s; 968 969 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) 970 return ERR_PTR(-EIO); 971 972 if (mds >= mdsc->mdsmap->possible_max_rank) 973 return ERR_PTR(-EINVAL); 974 975 s = kzalloc(sizeof(*s), GFP_NOFS); 976 if (!s) 977 return ERR_PTR(-ENOMEM); 978 979 if (mds >= mdsc->max_sessions) { 980 int newmax = 1 << get_count_order(mds + 1); 981 struct ceph_mds_session **sa; 982 983 doutc(cl, "realloc to %d\n", newmax); 984 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 985 if (!sa) 986 goto fail_realloc; 987 if (mdsc->sessions) { 988 memcpy(sa, mdsc->sessions, 989 mdsc->max_sessions * sizeof(void *)); 990 kfree(mdsc->sessions); 991 } 992 mdsc->sessions = sa; 993 mdsc->max_sessions = newmax; 994 } 995 996 doutc(cl, "mds%d\n", mds); 997 s->s_mdsc = mdsc; 998 s->s_mds = mds; 999 s->s_state = CEPH_MDS_SESSION_NEW; 1000 mutex_init(&s->s_mutex); 1001 1002 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 1003 1004 atomic_set(&s->s_cap_gen, 1); 1005 s->s_cap_ttl = jiffies - 1; 1006 1007 spin_lock_init(&s->s_cap_lock); 1008 INIT_LIST_HEAD(&s->s_caps); 1009 refcount_set(&s->s_ref, 1); 1010 INIT_LIST_HEAD(&s->s_waiting); 1011 INIT_LIST_HEAD(&s->s_unsafe); 1012 xa_init(&s->s_delegated_inos); 1013 INIT_LIST_HEAD(&s->s_cap_releases); 1014 INIT_WORK(&s->s_cap_release_work, ceph_cap_release_work); 1015 1016 INIT_LIST_HEAD(&s->s_cap_dirty); 1017 INIT_LIST_HEAD(&s->s_cap_flushing); 1018 1019 mdsc->sessions[mds] = s; 1020 atomic_inc(&mdsc->num_sessions); 1021 refcount_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 1022 1023 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 1024 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 1025 1026 return s; 1027 1028 fail_realloc: 1029 kfree(s); 1030 return ERR_PTR(-ENOMEM); 1031 } 1032 1033 /* 1034 * called under mdsc->mutex 1035 */ 1036 static void __unregister_session(struct ceph_mds_client *mdsc, 1037 struct ceph_mds_session *s) 1038 { 1039 doutc(mdsc->fsc->client, "mds%d %p\n", s->s_mds, s); 1040 BUG_ON(mdsc->sessions[s->s_mds] != s); 1041 mdsc->sessions[s->s_mds] = NULL; 1042 ceph_con_close(&s->s_con); 1043 ceph_put_mds_session(s); 1044 atomic_dec(&mdsc->num_sessions); 1045 } 1046 1047 /* 1048 * drop session refs in request. 1049 * 1050 * should be last request ref, or hold mdsc->mutex 1051 */ 1052 static void put_request_session(struct ceph_mds_request *req) 1053 { 1054 if (req->r_session) { 1055 ceph_put_mds_session(req->r_session); 1056 req->r_session = NULL; 1057 } 1058 } 1059 1060 void ceph_mdsc_iterate_sessions(struct ceph_mds_client *mdsc, 1061 void (*cb)(struct ceph_mds_session *), 1062 bool check_state) 1063 { 1064 int mds; 1065 1066 mutex_lock(&mdsc->mutex); 1067 for (mds = 0; mds < mdsc->max_sessions; ++mds) { 1068 struct ceph_mds_session *s; 1069 1070 s = __ceph_lookup_mds_session(mdsc, mds); 1071 if (!s) 1072 continue; 1073 1074 if (check_state && !check_session_state(s)) { 1075 ceph_put_mds_session(s); 1076 continue; 1077 } 1078 1079 mutex_unlock(&mdsc->mutex); 1080 cb(s); 1081 ceph_put_mds_session(s); 1082 mutex_lock(&mdsc->mutex); 1083 } 1084 mutex_unlock(&mdsc->mutex); 1085 } 1086 1087 void ceph_mdsc_release_request(struct kref *kref) 1088 { 1089 struct ceph_mds_request *req = container_of(kref, 1090 struct ceph_mds_request, 1091 r_kref); 1092 ceph_mdsc_release_dir_caps_no_check(req); 1093 destroy_reply_info(&req->r_reply_info); 1094 if (req->r_request) 1095 ceph_msg_put(req->r_request); 1096 if (req->r_reply) 1097 ceph_msg_put(req->r_reply); 1098 if (req->r_inode) { 1099 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 1100 iput(req->r_inode); 1101 } 1102 if (req->r_parent) { 1103 ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN); 1104 iput(req->r_parent); 1105 } 1106 iput(req->r_target_inode); 1107 iput(req->r_new_inode); 1108 if (req->r_dentry) 1109 dput(req->r_dentry); 1110 if (req->r_old_dentry) 1111 dput(req->r_old_dentry); 1112 if (req->r_old_dentry_dir) { 1113 /* 1114 * track (and drop pins for) r_old_dentry_dir 1115 * separately, since r_old_dentry's d_parent may have 1116 * changed between the dir mutex being dropped and 1117 * this request being freed. 1118 */ 1119 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 1120 CEPH_CAP_PIN); 1121 iput(req->r_old_dentry_dir); 1122 } 1123 kfree(req->r_path1); 1124 kfree(req->r_path2); 1125 put_cred(req->r_cred); 1126 if (req->r_mnt_idmap) 1127 mnt_idmap_put(req->r_mnt_idmap); 1128 if (req->r_pagelist) 1129 ceph_pagelist_release(req->r_pagelist); 1130 kfree(req->r_fscrypt_auth); 1131 kfree(req->r_altname); 1132 put_request_session(req); 1133 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 1134 WARN_ON_ONCE(!list_empty(&req->r_wait)); 1135 kmem_cache_free(ceph_mds_request_cachep, req); 1136 } 1137 1138 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node) 1139 1140 /* 1141 * lookup session, bump ref if found. 1142 * 1143 * called under mdsc->mutex. 1144 */ 1145 static struct ceph_mds_request * 1146 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid) 1147 { 1148 struct ceph_mds_request *req; 1149 1150 req = lookup_request(&mdsc->request_tree, tid); 1151 if (req) 1152 ceph_mdsc_get_request(req); 1153 1154 return req; 1155 } 1156 1157 /* 1158 * Register an in-flight request, and assign a tid. Link to directory 1159 * are modifying (if any). 1160 * 1161 * Called under mdsc->mutex. 1162 */ 1163 static void __register_request(struct ceph_mds_client *mdsc, 1164 struct ceph_mds_request *req, 1165 struct inode *dir) 1166 { 1167 struct ceph_client *cl = mdsc->fsc->client; 1168 int ret = 0; 1169 1170 req->r_tid = ++mdsc->last_tid; 1171 if (req->r_num_caps) { 1172 ret = ceph_reserve_caps(mdsc, &req->r_caps_reservation, 1173 req->r_num_caps); 1174 if (ret < 0) { 1175 pr_err_client(cl, "%p failed to reserve caps: %d\n", 1176 req, ret); 1177 /* set req->r_err to fail early from __do_request */ 1178 req->r_err = ret; 1179 return; 1180 } 1181 } 1182 doutc(cl, "%p tid %lld\n", req, req->r_tid); 1183 ceph_mdsc_get_request(req); 1184 insert_request(&mdsc->request_tree, req); 1185 1186 req->r_cred = get_current_cred(); 1187 if (!req->r_mnt_idmap) 1188 req->r_mnt_idmap = &nop_mnt_idmap; 1189 1190 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK) 1191 mdsc->oldest_tid = req->r_tid; 1192 1193 if (dir) { 1194 struct ceph_inode_info *ci = ceph_inode(dir); 1195 1196 ihold(dir); 1197 req->r_unsafe_dir = dir; 1198 spin_lock(&ci->i_unsafe_lock); 1199 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 1200 spin_unlock(&ci->i_unsafe_lock); 1201 } 1202 } 1203 1204 static void __unregister_request(struct ceph_mds_client *mdsc, 1205 struct ceph_mds_request *req) 1206 { 1207 doutc(mdsc->fsc->client, "%p tid %lld\n", req, req->r_tid); 1208 1209 /* Never leave an unregistered request on an unsafe list! */ 1210 list_del_init(&req->r_unsafe_item); 1211 1212 if (req->r_tid == mdsc->oldest_tid) { 1213 struct rb_node *p = rb_next(&req->r_node); 1214 mdsc->oldest_tid = 0; 1215 while (p) { 1216 struct ceph_mds_request *next_req = 1217 rb_entry(p, struct ceph_mds_request, r_node); 1218 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) { 1219 mdsc->oldest_tid = next_req->r_tid; 1220 break; 1221 } 1222 p = rb_next(p); 1223 } 1224 } 1225 1226 erase_request(&mdsc->request_tree, req); 1227 1228 if (req->r_unsafe_dir) { 1229 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 1230 spin_lock(&ci->i_unsafe_lock); 1231 list_del_init(&req->r_unsafe_dir_item); 1232 spin_unlock(&ci->i_unsafe_lock); 1233 } 1234 if (req->r_target_inode && 1235 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 1236 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode); 1237 spin_lock(&ci->i_unsafe_lock); 1238 list_del_init(&req->r_unsafe_target_item); 1239 spin_unlock(&ci->i_unsafe_lock); 1240 } 1241 1242 if (req->r_unsafe_dir) { 1243 iput(req->r_unsafe_dir); 1244 req->r_unsafe_dir = NULL; 1245 } 1246 1247 complete_all(&req->r_safe_completion); 1248 1249 ceph_mdsc_put_request(req); 1250 } 1251 1252 /* 1253 * Walk back up the dentry tree until we hit a dentry representing a 1254 * non-snapshot inode. We do this using the rcu_read_lock (which must be held 1255 * when calling this) to ensure that the objects won't disappear while we're 1256 * working with them. Once we hit a candidate dentry, we attempt to take a 1257 * reference to it, and return that as the result. 1258 */ 1259 static struct inode *get_nonsnap_parent(struct dentry *dentry) 1260 { 1261 struct inode *inode = NULL; 1262 1263 while (dentry && !IS_ROOT(dentry)) { 1264 inode = d_inode_rcu(dentry); 1265 if (!inode || ceph_snap(inode) == CEPH_NOSNAP) 1266 break; 1267 dentry = dentry->d_parent; 1268 } 1269 if (inode) 1270 inode = igrab(inode); 1271 return inode; 1272 } 1273 1274 /* 1275 * Choose mds to send request to next. If there is a hint set in the 1276 * request (e.g., due to a prior forward hint from the mds), use that. 1277 * Otherwise, consult frag tree and/or caps to identify the 1278 * appropriate mds. If all else fails, choose randomly. 1279 * 1280 * Called under mdsc->mutex. 1281 */ 1282 static int __choose_mds(struct ceph_mds_client *mdsc, 1283 struct ceph_mds_request *req, 1284 bool *random) 1285 { 1286 struct inode *inode; 1287 struct ceph_inode_info *ci; 1288 struct ceph_cap *cap; 1289 int mode = req->r_direct_mode; 1290 int mds = -1; 1291 u32 hash = req->r_direct_hash; 1292 bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags); 1293 struct ceph_client *cl = mdsc->fsc->client; 1294 1295 if (random) 1296 *random = false; 1297 1298 /* 1299 * is there a specific mds we should try? ignore hint if we have 1300 * no session and the mds is not up (active or recovering). 1301 */ 1302 if (req->r_resend_mds >= 0 && 1303 (__have_session(mdsc, req->r_resend_mds) || 1304 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 1305 doutc(cl, "using resend_mds mds%d\n", req->r_resend_mds); 1306 return req->r_resend_mds; 1307 } 1308 1309 if (mode == USE_RANDOM_MDS) 1310 goto random; 1311 1312 inode = NULL; 1313 if (req->r_inode) { 1314 if (ceph_snap(req->r_inode) != CEPH_SNAPDIR) { 1315 inode = req->r_inode; 1316 ihold(inode); 1317 } else { 1318 /* req->r_dentry is non-null for LSSNAP request */ 1319 rcu_read_lock(); 1320 inode = get_nonsnap_parent(req->r_dentry); 1321 rcu_read_unlock(); 1322 doutc(cl, "using snapdir's parent %p %llx.%llx\n", 1323 inode, ceph_vinop(inode)); 1324 } 1325 } else if (req->r_dentry) { 1326 /* ignore race with rename; old or new d_parent is okay */ 1327 struct dentry *parent; 1328 struct inode *dir; 1329 1330 rcu_read_lock(); 1331 parent = READ_ONCE(req->r_dentry->d_parent); 1332 dir = req->r_parent ? : d_inode_rcu(parent); 1333 1334 if (!dir || dir->i_sb != mdsc->fsc->sb) { 1335 /* not this fs or parent went negative */ 1336 inode = d_inode(req->r_dentry); 1337 if (inode) 1338 ihold(inode); 1339 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 1340 /* direct snapped/virtual snapdir requests 1341 * based on parent dir inode */ 1342 inode = get_nonsnap_parent(parent); 1343 doutc(cl, "using nonsnap parent %p %llx.%llx\n", 1344 inode, ceph_vinop(inode)); 1345 } else { 1346 /* dentry target */ 1347 inode = d_inode(req->r_dentry); 1348 if (!inode || mode == USE_AUTH_MDS) { 1349 /* dir + name */ 1350 inode = igrab(dir); 1351 hash = ceph_dentry_hash(dir, req->r_dentry); 1352 is_hash = true; 1353 } else { 1354 ihold(inode); 1355 } 1356 } 1357 rcu_read_unlock(); 1358 } 1359 1360 if (!inode) 1361 goto random; 1362 1363 doutc(cl, "%p %llx.%llx is_hash=%d (0x%x) mode %d\n", inode, 1364 ceph_vinop(inode), (int)is_hash, hash, mode); 1365 ci = ceph_inode(inode); 1366 1367 if (is_hash && S_ISDIR(inode->i_mode)) { 1368 struct ceph_inode_frag frag; 1369 int found; 1370 1371 ceph_choose_frag(ci, hash, &frag, &found); 1372 if (found) { 1373 if (mode == USE_ANY_MDS && frag.ndist > 0) { 1374 u8 r; 1375 1376 /* choose a random replica */ 1377 get_random_bytes(&r, 1); 1378 r %= frag.ndist; 1379 mds = frag.dist[r]; 1380 doutc(cl, "%p %llx.%llx frag %u mds%d (%d/%d)\n", 1381 inode, ceph_vinop(inode), frag.frag, 1382 mds, (int)r, frag.ndist); 1383 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 1384 CEPH_MDS_STATE_ACTIVE && 1385 !ceph_mdsmap_is_laggy(mdsc->mdsmap, mds)) 1386 goto out; 1387 } 1388 1389 /* since this file/dir wasn't known to be 1390 * replicated, then we want to look for the 1391 * authoritative mds. */ 1392 if (frag.mds >= 0) { 1393 /* choose auth mds */ 1394 mds = frag.mds; 1395 doutc(cl, "%p %llx.%llx frag %u mds%d (auth)\n", 1396 inode, ceph_vinop(inode), frag.frag, mds); 1397 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 1398 CEPH_MDS_STATE_ACTIVE) { 1399 if (!ceph_mdsmap_is_laggy(mdsc->mdsmap, 1400 mds)) 1401 goto out; 1402 } 1403 } 1404 mode = USE_AUTH_MDS; 1405 } 1406 } 1407 1408 spin_lock(&ci->i_ceph_lock); 1409 cap = NULL; 1410 if (mode == USE_AUTH_MDS) 1411 cap = ci->i_auth_cap; 1412 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 1413 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 1414 if (!cap) { 1415 spin_unlock(&ci->i_ceph_lock); 1416 iput(inode); 1417 goto random; 1418 } 1419 mds = cap->session->s_mds; 1420 doutc(cl, "%p %llx.%llx mds%d (%scap %p)\n", inode, 1421 ceph_vinop(inode), mds, 1422 cap == ci->i_auth_cap ? "auth " : "", cap); 1423 spin_unlock(&ci->i_ceph_lock); 1424 out: 1425 iput(inode); 1426 return mds; 1427 1428 random: 1429 if (random) 1430 *random = true; 1431 1432 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 1433 doutc(cl, "chose random mds%d\n", mds); 1434 return mds; 1435 } 1436 1437 1438 /* 1439 * session messages 1440 */ 1441 struct ceph_msg *ceph_create_session_msg(u32 op, u64 seq) 1442 { 1443 struct ceph_msg *msg; 1444 struct ceph_mds_session_head *h; 1445 1446 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 1447 false); 1448 if (!msg) { 1449 pr_err("ENOMEM creating session %s msg\n", 1450 ceph_session_op_name(op)); 1451 return NULL; 1452 } 1453 h = msg->front.iov_base; 1454 h->op = cpu_to_le32(op); 1455 h->seq = cpu_to_le64(seq); 1456 1457 return msg; 1458 } 1459 1460 static const unsigned char feature_bits[] = CEPHFS_FEATURES_CLIENT_SUPPORTED; 1461 #define FEATURE_BYTES(c) (DIV_ROUND_UP((size_t)feature_bits[c - 1] + 1, 64) * 8) 1462 static int encode_supported_features(void **p, void *end) 1463 { 1464 static const size_t count = ARRAY_SIZE(feature_bits); 1465 1466 if (count > 0) { 1467 size_t i; 1468 size_t size = FEATURE_BYTES(count); 1469 unsigned long bit; 1470 1471 if (WARN_ON_ONCE(*p + 4 + size > end)) 1472 return -ERANGE; 1473 1474 ceph_encode_32(p, size); 1475 memset(*p, 0, size); 1476 for (i = 0; i < count; i++) { 1477 bit = feature_bits[i]; 1478 ((unsigned char *)(*p))[bit / 8] |= BIT(bit % 8); 1479 } 1480 *p += size; 1481 } else { 1482 if (WARN_ON_ONCE(*p + 4 > end)) 1483 return -ERANGE; 1484 1485 ceph_encode_32(p, 0); 1486 } 1487 1488 return 0; 1489 } 1490 1491 static const unsigned char metric_bits[] = CEPHFS_METRIC_SPEC_CLIENT_SUPPORTED; 1492 #define METRIC_BYTES(cnt) (DIV_ROUND_UP((size_t)metric_bits[cnt - 1] + 1, 64) * 8) 1493 static int encode_metric_spec(void **p, void *end) 1494 { 1495 static const size_t count = ARRAY_SIZE(metric_bits); 1496 1497 /* header */ 1498 if (WARN_ON_ONCE(*p + 2 > end)) 1499 return -ERANGE; 1500 1501 ceph_encode_8(p, 1); /* version */ 1502 ceph_encode_8(p, 1); /* compat */ 1503 1504 if (count > 0) { 1505 size_t i; 1506 size_t size = METRIC_BYTES(count); 1507 1508 if (WARN_ON_ONCE(*p + 4 + 4 + size > end)) 1509 return -ERANGE; 1510 1511 /* metric spec info length */ 1512 ceph_encode_32(p, 4 + size); 1513 1514 /* metric spec */ 1515 ceph_encode_32(p, size); 1516 memset(*p, 0, size); 1517 for (i = 0; i < count; i++) 1518 ((unsigned char *)(*p))[i / 8] |= BIT(metric_bits[i] % 8); 1519 *p += size; 1520 } else { 1521 if (WARN_ON_ONCE(*p + 4 + 4 > end)) 1522 return -ERANGE; 1523 1524 /* metric spec info length */ 1525 ceph_encode_32(p, 4); 1526 /* metric spec */ 1527 ceph_encode_32(p, 0); 1528 } 1529 1530 return 0; 1531 } 1532 1533 /* 1534 * session message, specialization for CEPH_SESSION_REQUEST_OPEN 1535 * to include additional client metadata fields. 1536 */ 1537 static struct ceph_msg * 1538 create_session_full_msg(struct ceph_mds_client *mdsc, int op, u64 seq) 1539 { 1540 struct ceph_msg *msg; 1541 struct ceph_mds_session_head *h; 1542 int i; 1543 int extra_bytes = 0; 1544 int metadata_key_count = 0; 1545 struct ceph_options *opt = mdsc->fsc->client->options; 1546 struct ceph_mount_options *fsopt = mdsc->fsc->mount_options; 1547 struct ceph_client *cl = mdsc->fsc->client; 1548 size_t size, count; 1549 void *p, *end; 1550 int ret; 1551 1552 const char* metadata[][2] = { 1553 {"hostname", mdsc->nodename}, 1554 {"kernel_version", init_utsname()->release}, 1555 {"entity_id", opt->name ? : ""}, 1556 {"root", fsopt->server_path ? : "/"}, 1557 {NULL, NULL} 1558 }; 1559 1560 /* Calculate serialized length of metadata */ 1561 extra_bytes = 4; /* map length */ 1562 for (i = 0; metadata[i][0]; ++i) { 1563 extra_bytes += 8 + strlen(metadata[i][0]) + 1564 strlen(metadata[i][1]); 1565 metadata_key_count++; 1566 } 1567 1568 /* supported feature */ 1569 size = 0; 1570 count = ARRAY_SIZE(feature_bits); 1571 if (count > 0) 1572 size = FEATURE_BYTES(count); 1573 extra_bytes += 4 + size; 1574 1575 /* metric spec */ 1576 size = 0; 1577 count = ARRAY_SIZE(metric_bits); 1578 if (count > 0) 1579 size = METRIC_BYTES(count); 1580 extra_bytes += 2 + 4 + 4 + size; 1581 1582 /* flags, mds auth caps and oldest_client_tid */ 1583 extra_bytes += 4 + 4 + 8; 1584 1585 /* Allocate the message */ 1586 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + extra_bytes, 1587 GFP_NOFS, false); 1588 if (!msg) { 1589 pr_err_client(cl, "ENOMEM creating session open msg\n"); 1590 return ERR_PTR(-ENOMEM); 1591 } 1592 p = msg->front.iov_base; 1593 end = p + msg->front.iov_len; 1594 1595 h = p; 1596 h->op = cpu_to_le32(op); 1597 h->seq = cpu_to_le64(seq); 1598 1599 /* 1600 * Serialize client metadata into waiting buffer space, using 1601 * the format that userspace expects for map<string, string> 1602 * 1603 * ClientSession messages with metadata are v7 1604 */ 1605 msg->hdr.version = cpu_to_le16(7); 1606 msg->hdr.compat_version = cpu_to_le16(1); 1607 1608 /* The write pointer, following the session_head structure */ 1609 p += sizeof(*h); 1610 1611 /* Number of entries in the map */ 1612 ceph_encode_32(&p, metadata_key_count); 1613 1614 /* Two length-prefixed strings for each entry in the map */ 1615 for (i = 0; metadata[i][0]; ++i) { 1616 size_t const key_len = strlen(metadata[i][0]); 1617 size_t const val_len = strlen(metadata[i][1]); 1618 1619 ceph_encode_32(&p, key_len); 1620 memcpy(p, metadata[i][0], key_len); 1621 p += key_len; 1622 ceph_encode_32(&p, val_len); 1623 memcpy(p, metadata[i][1], val_len); 1624 p += val_len; 1625 } 1626 1627 ret = encode_supported_features(&p, end); 1628 if (ret) { 1629 pr_err_client(cl, "encode_supported_features failed!\n"); 1630 ceph_msg_put(msg); 1631 return ERR_PTR(ret); 1632 } 1633 1634 ret = encode_metric_spec(&p, end); 1635 if (ret) { 1636 pr_err_client(cl, "encode_metric_spec failed!\n"); 1637 ceph_msg_put(msg); 1638 return ERR_PTR(ret); 1639 } 1640 1641 /* version == 5, flags */ 1642 ceph_encode_32(&p, 0); 1643 1644 /* version == 6, mds auth caps */ 1645 ceph_encode_32(&p, 0); 1646 1647 /* version == 7, oldest_client_tid */ 1648 ceph_encode_64(&p, mdsc->oldest_tid); 1649 1650 msg->front.iov_len = p - msg->front.iov_base; 1651 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1652 1653 return msg; 1654 } 1655 1656 /* 1657 * send session open request. 1658 * 1659 * called under mdsc->mutex 1660 */ 1661 static int __open_session(struct ceph_mds_client *mdsc, 1662 struct ceph_mds_session *session) 1663 { 1664 struct ceph_msg *msg; 1665 int mstate; 1666 int mds = session->s_mds; 1667 1668 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) 1669 return -EIO; 1670 1671 /* wait for mds to go active? */ 1672 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 1673 doutc(mdsc->fsc->client, "open_session to mds%d (%s)\n", mds, 1674 ceph_mds_state_name(mstate)); 1675 session->s_state = CEPH_MDS_SESSION_OPENING; 1676 session->s_renew_requested = jiffies; 1677 1678 /* send connect message */ 1679 msg = create_session_full_msg(mdsc, CEPH_SESSION_REQUEST_OPEN, 1680 session->s_seq); 1681 if (IS_ERR(msg)) 1682 return PTR_ERR(msg); 1683 ceph_con_send(&session->s_con, msg); 1684 return 0; 1685 } 1686 1687 /* 1688 * open sessions for any export targets for the given mds 1689 * 1690 * called under mdsc->mutex 1691 */ 1692 static struct ceph_mds_session * 1693 __open_export_target_session(struct ceph_mds_client *mdsc, int target) 1694 { 1695 struct ceph_mds_session *session; 1696 int ret; 1697 1698 session = __ceph_lookup_mds_session(mdsc, target); 1699 if (!session) { 1700 session = register_session(mdsc, target); 1701 if (IS_ERR(session)) 1702 return session; 1703 } 1704 if (session->s_state == CEPH_MDS_SESSION_NEW || 1705 session->s_state == CEPH_MDS_SESSION_CLOSING) { 1706 ret = __open_session(mdsc, session); 1707 if (ret) 1708 return ERR_PTR(ret); 1709 } 1710 1711 return session; 1712 } 1713 1714 struct ceph_mds_session * 1715 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target) 1716 { 1717 struct ceph_mds_session *session; 1718 struct ceph_client *cl = mdsc->fsc->client; 1719 1720 doutc(cl, "to mds%d\n", target); 1721 1722 mutex_lock(&mdsc->mutex); 1723 session = __open_export_target_session(mdsc, target); 1724 mutex_unlock(&mdsc->mutex); 1725 1726 return session; 1727 } 1728 1729 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 1730 struct ceph_mds_session *session) 1731 { 1732 struct ceph_mds_info *mi; 1733 struct ceph_mds_session *ts; 1734 int i, mds = session->s_mds; 1735 struct ceph_client *cl = mdsc->fsc->client; 1736 1737 if (mds >= mdsc->mdsmap->possible_max_rank) 1738 return; 1739 1740 mi = &mdsc->mdsmap->m_info[mds]; 1741 doutc(cl, "for mds%d (%d targets)\n", session->s_mds, 1742 mi->num_export_targets); 1743 1744 for (i = 0; i < mi->num_export_targets; i++) { 1745 ts = __open_export_target_session(mdsc, mi->export_targets[i]); 1746 ceph_put_mds_session(ts); 1747 } 1748 } 1749 1750 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 1751 struct ceph_mds_session *session) 1752 { 1753 mutex_lock(&mdsc->mutex); 1754 __open_export_target_sessions(mdsc, session); 1755 mutex_unlock(&mdsc->mutex); 1756 } 1757 1758 /* 1759 * session caps 1760 */ 1761 1762 static void detach_cap_releases(struct ceph_mds_session *session, 1763 struct list_head *target) 1764 { 1765 struct ceph_client *cl = session->s_mdsc->fsc->client; 1766 1767 lockdep_assert_held(&session->s_cap_lock); 1768 1769 list_splice_init(&session->s_cap_releases, target); 1770 session->s_num_cap_releases = 0; 1771 doutc(cl, "mds%d\n", session->s_mds); 1772 } 1773 1774 static void dispose_cap_releases(struct ceph_mds_client *mdsc, 1775 struct list_head *dispose) 1776 { 1777 while (!list_empty(dispose)) { 1778 struct ceph_cap *cap; 1779 /* zero out the in-progress message */ 1780 cap = list_first_entry(dispose, struct ceph_cap, session_caps); 1781 list_del(&cap->session_caps); 1782 ceph_put_cap(mdsc, cap); 1783 } 1784 } 1785 1786 static void cleanup_session_requests(struct ceph_mds_client *mdsc, 1787 struct ceph_mds_session *session) 1788 { 1789 struct ceph_client *cl = mdsc->fsc->client; 1790 struct ceph_mds_request *req; 1791 struct rb_node *p; 1792 1793 doutc(cl, "mds%d\n", session->s_mds); 1794 mutex_lock(&mdsc->mutex); 1795 while (!list_empty(&session->s_unsafe)) { 1796 req = list_first_entry(&session->s_unsafe, 1797 struct ceph_mds_request, r_unsafe_item); 1798 pr_warn_ratelimited_client(cl, " dropping unsafe request %llu\n", 1799 req->r_tid); 1800 if (req->r_target_inode) 1801 mapping_set_error(req->r_target_inode->i_mapping, -EIO); 1802 if (req->r_unsafe_dir) 1803 mapping_set_error(req->r_unsafe_dir->i_mapping, -EIO); 1804 __unregister_request(mdsc, req); 1805 } 1806 /* zero r_attempts, so kick_requests() will re-send requests */ 1807 p = rb_first(&mdsc->request_tree); 1808 while (p) { 1809 req = rb_entry(p, struct ceph_mds_request, r_node); 1810 p = rb_next(p); 1811 if (req->r_session && 1812 req->r_session->s_mds == session->s_mds) 1813 req->r_attempts = 0; 1814 } 1815 mutex_unlock(&mdsc->mutex); 1816 } 1817 1818 /* 1819 * Helper to safely iterate over all caps associated with a session, with 1820 * special care taken to handle a racing __ceph_remove_cap(). 1821 * 1822 * Caller must hold session s_mutex. 1823 */ 1824 int ceph_iterate_session_caps(struct ceph_mds_session *session, 1825 int (*cb)(struct inode *, int mds, void *), 1826 void *arg) 1827 { 1828 struct ceph_client *cl = session->s_mdsc->fsc->client; 1829 struct list_head *p; 1830 struct ceph_cap *cap; 1831 struct inode *inode, *last_inode = NULL; 1832 struct ceph_cap *old_cap = NULL; 1833 int ret; 1834 1835 doutc(cl, "%p mds%d\n", session, session->s_mds); 1836 spin_lock(&session->s_cap_lock); 1837 p = session->s_caps.next; 1838 while (p != &session->s_caps) { 1839 int mds; 1840 1841 cap = list_entry(p, struct ceph_cap, session_caps); 1842 inode = igrab(&cap->ci->netfs.inode); 1843 if (!inode) { 1844 p = p->next; 1845 continue; 1846 } 1847 session->s_cap_iterator = cap; 1848 mds = cap->mds; 1849 spin_unlock(&session->s_cap_lock); 1850 1851 if (last_inode) { 1852 iput(last_inode); 1853 last_inode = NULL; 1854 } 1855 if (old_cap) { 1856 ceph_put_cap(session->s_mdsc, old_cap); 1857 old_cap = NULL; 1858 } 1859 1860 ret = cb(inode, mds, arg); 1861 last_inode = inode; 1862 1863 spin_lock(&session->s_cap_lock); 1864 p = p->next; 1865 if (!cap->ci) { 1866 doutc(cl, "finishing cap %p removal\n", cap); 1867 BUG_ON(cap->session != session); 1868 cap->session = NULL; 1869 list_del_init(&cap->session_caps); 1870 session->s_nr_caps--; 1871 atomic64_dec(&session->s_mdsc->metric.total_caps); 1872 if (cap->queue_release) 1873 __ceph_queue_cap_release(session, cap); 1874 else 1875 old_cap = cap; /* put_cap it w/o locks held */ 1876 } 1877 if (ret < 0) 1878 goto out; 1879 } 1880 ret = 0; 1881 out: 1882 session->s_cap_iterator = NULL; 1883 spin_unlock(&session->s_cap_lock); 1884 1885 iput(last_inode); 1886 if (old_cap) 1887 ceph_put_cap(session->s_mdsc, old_cap); 1888 1889 return ret; 1890 } 1891 1892 static int remove_session_caps_cb(struct inode *inode, int mds, void *arg) 1893 { 1894 struct ceph_inode_info *ci = ceph_inode(inode); 1895 struct ceph_client *cl = ceph_inode_to_client(inode); 1896 bool invalidate = false; 1897 struct ceph_cap *cap; 1898 int iputs = 0; 1899 1900 spin_lock(&ci->i_ceph_lock); 1901 cap = __get_cap_for_mds(ci, mds); 1902 if (cap) { 1903 doutc(cl, " removing cap %p, ci is %p, inode is %p\n", 1904 cap, ci, &ci->netfs.inode); 1905 1906 iputs = ceph_purge_inode_cap(inode, cap, &invalidate); 1907 } 1908 spin_unlock(&ci->i_ceph_lock); 1909 1910 if (cap) 1911 wake_up_all(&ci->i_cap_wq); 1912 if (invalidate) 1913 ceph_queue_invalidate(inode); 1914 while (iputs--) 1915 iput(inode); 1916 return 0; 1917 } 1918 1919 /* 1920 * caller must hold session s_mutex 1921 */ 1922 static void remove_session_caps(struct ceph_mds_session *session) 1923 { 1924 struct ceph_fs_client *fsc = session->s_mdsc->fsc; 1925 struct super_block *sb = fsc->sb; 1926 LIST_HEAD(dispose); 1927 1928 doutc(fsc->client, "on %p\n", session); 1929 ceph_iterate_session_caps(session, remove_session_caps_cb, fsc); 1930 1931 wake_up_all(&fsc->mdsc->cap_flushing_wq); 1932 1933 spin_lock(&session->s_cap_lock); 1934 if (session->s_nr_caps > 0) { 1935 struct inode *inode; 1936 struct ceph_cap *cap, *prev = NULL; 1937 struct ceph_vino vino; 1938 /* 1939 * iterate_session_caps() skips inodes that are being 1940 * deleted, we need to wait until deletions are complete. 1941 * __wait_on_freeing_inode() is designed for the job, 1942 * but it is not exported, so use lookup inode function 1943 * to access it. 1944 */ 1945 while (!list_empty(&session->s_caps)) { 1946 cap = list_entry(session->s_caps.next, 1947 struct ceph_cap, session_caps); 1948 if (cap == prev) 1949 break; 1950 prev = cap; 1951 vino = cap->ci->i_vino; 1952 spin_unlock(&session->s_cap_lock); 1953 1954 inode = ceph_find_inode(sb, vino); 1955 iput(inode); 1956 1957 spin_lock(&session->s_cap_lock); 1958 } 1959 } 1960 1961 // drop cap expires and unlock s_cap_lock 1962 detach_cap_releases(session, &dispose); 1963 1964 BUG_ON(session->s_nr_caps > 0); 1965 BUG_ON(!list_empty(&session->s_cap_flushing)); 1966 spin_unlock(&session->s_cap_lock); 1967 dispose_cap_releases(session->s_mdsc, &dispose); 1968 } 1969 1970 enum { 1971 RECONNECT, 1972 RENEWCAPS, 1973 FORCE_RO, 1974 }; 1975 1976 /* 1977 * wake up any threads waiting on this session's caps. if the cap is 1978 * old (didn't get renewed on the client reconnect), remove it now. 1979 * 1980 * caller must hold s_mutex. 1981 */ 1982 static int wake_up_session_cb(struct inode *inode, int mds, void *arg) 1983 { 1984 struct ceph_inode_info *ci = ceph_inode(inode); 1985 unsigned long ev = (unsigned long)arg; 1986 1987 if (ev == RECONNECT) { 1988 spin_lock(&ci->i_ceph_lock); 1989 ci->i_wanted_max_size = 0; 1990 ci->i_requested_max_size = 0; 1991 spin_unlock(&ci->i_ceph_lock); 1992 } else if (ev == RENEWCAPS) { 1993 struct ceph_cap *cap; 1994 1995 spin_lock(&ci->i_ceph_lock); 1996 cap = __get_cap_for_mds(ci, mds); 1997 /* mds did not re-issue stale cap */ 1998 if (cap && cap->cap_gen < atomic_read(&cap->session->s_cap_gen)) 1999 cap->issued = cap->implemented = CEPH_CAP_PIN; 2000 spin_unlock(&ci->i_ceph_lock); 2001 } else if (ev == FORCE_RO) { 2002 } 2003 wake_up_all(&ci->i_cap_wq); 2004 return 0; 2005 } 2006 2007 static void wake_up_session_caps(struct ceph_mds_session *session, int ev) 2008 { 2009 struct ceph_client *cl = session->s_mdsc->fsc->client; 2010 2011 doutc(cl, "session %p mds%d\n", session, session->s_mds); 2012 ceph_iterate_session_caps(session, wake_up_session_cb, 2013 (void *)(unsigned long)ev); 2014 } 2015 2016 /* 2017 * Send periodic message to MDS renewing all currently held caps. The 2018 * ack will reset the expiration for all caps from this session. 2019 * 2020 * caller holds s_mutex 2021 */ 2022 static int send_renew_caps(struct ceph_mds_client *mdsc, 2023 struct ceph_mds_session *session) 2024 { 2025 struct ceph_client *cl = mdsc->fsc->client; 2026 struct ceph_msg *msg; 2027 int state; 2028 2029 if (time_after_eq(jiffies, session->s_cap_ttl) && 2030 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 2031 pr_info_client(cl, "mds%d caps stale\n", session->s_mds); 2032 session->s_renew_requested = jiffies; 2033 2034 /* do not try to renew caps until a recovering mds has reconnected 2035 * with its clients. */ 2036 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 2037 if (state < CEPH_MDS_STATE_RECONNECT) { 2038 doutc(cl, "ignoring mds%d (%s)\n", session->s_mds, 2039 ceph_mds_state_name(state)); 2040 return 0; 2041 } 2042 2043 doutc(cl, "to mds%d (%s)\n", session->s_mds, 2044 ceph_mds_state_name(state)); 2045 msg = create_session_full_msg(mdsc, CEPH_SESSION_REQUEST_RENEWCAPS, 2046 ++session->s_renew_seq); 2047 if (IS_ERR(msg)) 2048 return PTR_ERR(msg); 2049 ceph_con_send(&session->s_con, msg); 2050 return 0; 2051 } 2052 2053 static int send_flushmsg_ack(struct ceph_mds_client *mdsc, 2054 struct ceph_mds_session *session, u64 seq) 2055 { 2056 struct ceph_client *cl = mdsc->fsc->client; 2057 struct ceph_msg *msg; 2058 2059 doutc(cl, "to mds%d (%s)s seq %lld\n", session->s_mds, 2060 ceph_session_state_name(session->s_state), seq); 2061 msg = ceph_create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq); 2062 if (!msg) 2063 return -ENOMEM; 2064 ceph_con_send(&session->s_con, msg); 2065 return 0; 2066 } 2067 2068 2069 /* 2070 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 2071 * 2072 * Called under session->s_mutex 2073 */ 2074 static void renewed_caps(struct ceph_mds_client *mdsc, 2075 struct ceph_mds_session *session, int is_renew) 2076 { 2077 struct ceph_client *cl = mdsc->fsc->client; 2078 int was_stale; 2079 int wake = 0; 2080 2081 spin_lock(&session->s_cap_lock); 2082 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 2083 2084 session->s_cap_ttl = session->s_renew_requested + 2085 mdsc->mdsmap->m_session_timeout*HZ; 2086 2087 if (was_stale) { 2088 if (time_before(jiffies, session->s_cap_ttl)) { 2089 pr_info_client(cl, "mds%d caps renewed\n", 2090 session->s_mds); 2091 wake = 1; 2092 } else { 2093 pr_info_client(cl, "mds%d caps still stale\n", 2094 session->s_mds); 2095 } 2096 } 2097 doutc(cl, "mds%d ttl now %lu, was %s, now %s\n", session->s_mds, 2098 session->s_cap_ttl, was_stale ? "stale" : "fresh", 2099 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 2100 spin_unlock(&session->s_cap_lock); 2101 2102 if (wake) 2103 wake_up_session_caps(session, RENEWCAPS); 2104 } 2105 2106 /* 2107 * send a session close request 2108 */ 2109 static int request_close_session(struct ceph_mds_session *session) 2110 { 2111 struct ceph_client *cl = session->s_mdsc->fsc->client; 2112 struct ceph_msg *msg; 2113 2114 doutc(cl, "mds%d state %s seq %lld\n", session->s_mds, 2115 ceph_session_state_name(session->s_state), session->s_seq); 2116 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_CLOSE, 2117 session->s_seq); 2118 if (!msg) 2119 return -ENOMEM; 2120 ceph_con_send(&session->s_con, msg); 2121 return 1; 2122 } 2123 2124 /* 2125 * Called with s_mutex held. 2126 */ 2127 static int __close_session(struct ceph_mds_client *mdsc, 2128 struct ceph_mds_session *session) 2129 { 2130 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 2131 return 0; 2132 session->s_state = CEPH_MDS_SESSION_CLOSING; 2133 return request_close_session(session); 2134 } 2135 2136 static bool drop_negative_children(struct dentry *dentry) 2137 { 2138 struct dentry *child; 2139 bool all_negative = true; 2140 2141 if (!d_is_dir(dentry)) 2142 goto out; 2143 2144 spin_lock(&dentry->d_lock); 2145 hlist_for_each_entry(child, &dentry->d_children, d_sib) { 2146 if (d_really_is_positive(child)) { 2147 all_negative = false; 2148 break; 2149 } 2150 } 2151 spin_unlock(&dentry->d_lock); 2152 2153 if (all_negative) 2154 shrink_dcache_parent(dentry); 2155 out: 2156 return all_negative; 2157 } 2158 2159 /* 2160 * Trim old(er) caps. 2161 * 2162 * Because we can't cache an inode without one or more caps, we do 2163 * this indirectly: if a cap is unused, we prune its aliases, at which 2164 * point the inode will hopefully get dropped to. 2165 * 2166 * Yes, this is a bit sloppy. Our only real goal here is to respond to 2167 * memory pressure from the MDS, though, so it needn't be perfect. 2168 */ 2169 static int trim_caps_cb(struct inode *inode, int mds, void *arg) 2170 { 2171 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 2172 struct ceph_client *cl = mdsc->fsc->client; 2173 int *remaining = arg; 2174 struct ceph_inode_info *ci = ceph_inode(inode); 2175 int used, wanted, oissued, mine; 2176 struct ceph_cap *cap; 2177 2178 if (*remaining <= 0) 2179 return -1; 2180 2181 spin_lock(&ci->i_ceph_lock); 2182 cap = __get_cap_for_mds(ci, mds); 2183 if (!cap) { 2184 spin_unlock(&ci->i_ceph_lock); 2185 return 0; 2186 } 2187 mine = cap->issued | cap->implemented; 2188 used = __ceph_caps_used(ci); 2189 wanted = __ceph_caps_file_wanted(ci); 2190 oissued = __ceph_caps_issued_other(ci, cap); 2191 2192 doutc(cl, "%p %llx.%llx cap %p mine %s oissued %s used %s wanted %s\n", 2193 inode, ceph_vinop(inode), cap, ceph_cap_string(mine), 2194 ceph_cap_string(oissued), ceph_cap_string(used), 2195 ceph_cap_string(wanted)); 2196 if (cap == ci->i_auth_cap) { 2197 if (ci->i_dirty_caps || ci->i_flushing_caps || 2198 !list_empty(&ci->i_cap_snaps)) 2199 goto out; 2200 if ((used | wanted) & CEPH_CAP_ANY_WR) 2201 goto out; 2202 /* Note: it's possible that i_filelock_ref becomes non-zero 2203 * after dropping auth caps. It doesn't hurt because reply 2204 * of lock mds request will re-add auth caps. */ 2205 if (atomic_read(&ci->i_filelock_ref) > 0) 2206 goto out; 2207 } 2208 /* The inode has cached pages, but it's no longer used. 2209 * we can safely drop it */ 2210 if (S_ISREG(inode->i_mode) && 2211 wanted == 0 && used == CEPH_CAP_FILE_CACHE && 2212 !(oissued & CEPH_CAP_FILE_CACHE)) { 2213 used = 0; 2214 oissued = 0; 2215 } 2216 if ((used | wanted) & ~oissued & mine) 2217 goto out; /* we need these caps */ 2218 2219 if (oissued) { 2220 /* we aren't the only cap.. just remove us */ 2221 ceph_remove_cap(mdsc, cap, true); 2222 (*remaining)--; 2223 } else { 2224 struct dentry *dentry; 2225 /* try dropping referring dentries */ 2226 spin_unlock(&ci->i_ceph_lock); 2227 dentry = d_find_any_alias(inode); 2228 if (dentry && drop_negative_children(dentry)) { 2229 int count; 2230 dput(dentry); 2231 d_prune_aliases(inode); 2232 count = atomic_read(&inode->i_count); 2233 if (count == 1) 2234 (*remaining)--; 2235 doutc(cl, "%p %llx.%llx cap %p pruned, count now %d\n", 2236 inode, ceph_vinop(inode), cap, count); 2237 } else { 2238 dput(dentry); 2239 } 2240 return 0; 2241 } 2242 2243 out: 2244 spin_unlock(&ci->i_ceph_lock); 2245 return 0; 2246 } 2247 2248 /* 2249 * Trim session cap count down to some max number. 2250 */ 2251 int ceph_trim_caps(struct ceph_mds_client *mdsc, 2252 struct ceph_mds_session *session, 2253 int max_caps) 2254 { 2255 struct ceph_client *cl = mdsc->fsc->client; 2256 int trim_caps = session->s_nr_caps - max_caps; 2257 2258 doutc(cl, "mds%d start: %d / %d, trim %d\n", session->s_mds, 2259 session->s_nr_caps, max_caps, trim_caps); 2260 if (trim_caps > 0) { 2261 int remaining = trim_caps; 2262 2263 ceph_iterate_session_caps(session, trim_caps_cb, &remaining); 2264 doutc(cl, "mds%d done: %d / %d, trimmed %d\n", 2265 session->s_mds, session->s_nr_caps, max_caps, 2266 trim_caps - remaining); 2267 } 2268 2269 ceph_flush_cap_releases(mdsc, session); 2270 return 0; 2271 } 2272 2273 static int check_caps_flush(struct ceph_mds_client *mdsc, 2274 u64 want_flush_tid) 2275 { 2276 struct ceph_client *cl = mdsc->fsc->client; 2277 int ret = 1; 2278 2279 spin_lock(&mdsc->cap_dirty_lock); 2280 if (!list_empty(&mdsc->cap_flush_list)) { 2281 struct ceph_cap_flush *cf = 2282 list_first_entry(&mdsc->cap_flush_list, 2283 struct ceph_cap_flush, g_list); 2284 if (cf->tid <= want_flush_tid) { 2285 doutc(cl, "still flushing tid %llu <= %llu\n", 2286 cf->tid, want_flush_tid); 2287 ret = 0; 2288 } 2289 } 2290 spin_unlock(&mdsc->cap_dirty_lock); 2291 return ret; 2292 } 2293 2294 /* 2295 * flush all dirty inode data to disk. 2296 * 2297 * returns true if we've flushed through want_flush_tid 2298 */ 2299 static void wait_caps_flush(struct ceph_mds_client *mdsc, 2300 u64 want_flush_tid) 2301 { 2302 struct ceph_client *cl = mdsc->fsc->client; 2303 2304 doutc(cl, "want %llu\n", want_flush_tid); 2305 2306 wait_event(mdsc->cap_flushing_wq, 2307 check_caps_flush(mdsc, want_flush_tid)); 2308 2309 doutc(cl, "ok, flushed thru %llu\n", want_flush_tid); 2310 } 2311 2312 /* 2313 * called under s_mutex 2314 */ 2315 static void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 2316 struct ceph_mds_session *session) 2317 { 2318 struct ceph_client *cl = mdsc->fsc->client; 2319 struct ceph_msg *msg = NULL; 2320 struct ceph_mds_cap_release *head; 2321 struct ceph_mds_cap_item *item; 2322 struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc; 2323 struct ceph_cap *cap; 2324 LIST_HEAD(tmp_list); 2325 int num_cap_releases; 2326 __le32 barrier, *cap_barrier; 2327 2328 down_read(&osdc->lock); 2329 barrier = cpu_to_le32(osdc->epoch_barrier); 2330 up_read(&osdc->lock); 2331 2332 spin_lock(&session->s_cap_lock); 2333 again: 2334 list_splice_init(&session->s_cap_releases, &tmp_list); 2335 num_cap_releases = session->s_num_cap_releases; 2336 session->s_num_cap_releases = 0; 2337 spin_unlock(&session->s_cap_lock); 2338 2339 while (!list_empty(&tmp_list)) { 2340 if (!msg) { 2341 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, 2342 PAGE_SIZE, GFP_NOFS, false); 2343 if (!msg) 2344 goto out_err; 2345 head = msg->front.iov_base; 2346 head->num = cpu_to_le32(0); 2347 msg->front.iov_len = sizeof(*head); 2348 2349 msg->hdr.version = cpu_to_le16(2); 2350 msg->hdr.compat_version = cpu_to_le16(1); 2351 } 2352 2353 cap = list_first_entry(&tmp_list, struct ceph_cap, 2354 session_caps); 2355 list_del(&cap->session_caps); 2356 num_cap_releases--; 2357 2358 head = msg->front.iov_base; 2359 put_unaligned_le32(get_unaligned_le32(&head->num) + 1, 2360 &head->num); 2361 item = msg->front.iov_base + msg->front.iov_len; 2362 item->ino = cpu_to_le64(cap->cap_ino); 2363 item->cap_id = cpu_to_le64(cap->cap_id); 2364 item->migrate_seq = cpu_to_le32(cap->mseq); 2365 item->seq = cpu_to_le32(cap->issue_seq); 2366 msg->front.iov_len += sizeof(*item); 2367 2368 ceph_put_cap(mdsc, cap); 2369 2370 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 2371 // Append cap_barrier field 2372 cap_barrier = msg->front.iov_base + msg->front.iov_len; 2373 *cap_barrier = barrier; 2374 msg->front.iov_len += sizeof(*cap_barrier); 2375 2376 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2377 doutc(cl, "mds%d %p\n", session->s_mds, msg); 2378 ceph_con_send(&session->s_con, msg); 2379 msg = NULL; 2380 } 2381 } 2382 2383 BUG_ON(num_cap_releases != 0); 2384 2385 spin_lock(&session->s_cap_lock); 2386 if (!list_empty(&session->s_cap_releases)) 2387 goto again; 2388 spin_unlock(&session->s_cap_lock); 2389 2390 if (msg) { 2391 // Append cap_barrier field 2392 cap_barrier = msg->front.iov_base + msg->front.iov_len; 2393 *cap_barrier = barrier; 2394 msg->front.iov_len += sizeof(*cap_barrier); 2395 2396 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2397 doutc(cl, "mds%d %p\n", session->s_mds, msg); 2398 ceph_con_send(&session->s_con, msg); 2399 } 2400 return; 2401 out_err: 2402 pr_err_client(cl, "mds%d, failed to allocate message\n", 2403 session->s_mds); 2404 spin_lock(&session->s_cap_lock); 2405 list_splice(&tmp_list, &session->s_cap_releases); 2406 session->s_num_cap_releases += num_cap_releases; 2407 spin_unlock(&session->s_cap_lock); 2408 } 2409 2410 static void ceph_cap_release_work(struct work_struct *work) 2411 { 2412 struct ceph_mds_session *session = 2413 container_of(work, struct ceph_mds_session, s_cap_release_work); 2414 2415 mutex_lock(&session->s_mutex); 2416 if (session->s_state == CEPH_MDS_SESSION_OPEN || 2417 session->s_state == CEPH_MDS_SESSION_HUNG) 2418 ceph_send_cap_releases(session->s_mdsc, session); 2419 mutex_unlock(&session->s_mutex); 2420 ceph_put_mds_session(session); 2421 } 2422 2423 void ceph_flush_cap_releases(struct ceph_mds_client *mdsc, 2424 struct ceph_mds_session *session) 2425 { 2426 struct ceph_client *cl = mdsc->fsc->client; 2427 if (mdsc->stopping) 2428 return; 2429 2430 ceph_get_mds_session(session); 2431 if (queue_work(mdsc->fsc->cap_wq, 2432 &session->s_cap_release_work)) { 2433 doutc(cl, "cap release work queued\n"); 2434 } else { 2435 ceph_put_mds_session(session); 2436 doutc(cl, "failed to queue cap release work\n"); 2437 } 2438 } 2439 2440 /* 2441 * caller holds session->s_cap_lock 2442 */ 2443 void __ceph_queue_cap_release(struct ceph_mds_session *session, 2444 struct ceph_cap *cap) 2445 { 2446 list_add_tail(&cap->session_caps, &session->s_cap_releases); 2447 session->s_num_cap_releases++; 2448 2449 if (!(session->s_num_cap_releases % CEPH_CAPS_PER_RELEASE)) 2450 ceph_flush_cap_releases(session->s_mdsc, session); 2451 } 2452 2453 static void ceph_cap_reclaim_work(struct work_struct *work) 2454 { 2455 struct ceph_mds_client *mdsc = 2456 container_of(work, struct ceph_mds_client, cap_reclaim_work); 2457 int ret = ceph_trim_dentries(mdsc); 2458 if (ret == -EAGAIN) 2459 ceph_queue_cap_reclaim_work(mdsc); 2460 } 2461 2462 void ceph_queue_cap_reclaim_work(struct ceph_mds_client *mdsc) 2463 { 2464 struct ceph_client *cl = mdsc->fsc->client; 2465 if (mdsc->stopping) 2466 return; 2467 2468 if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_reclaim_work)) { 2469 doutc(cl, "caps reclaim work queued\n"); 2470 } else { 2471 doutc(cl, "failed to queue caps release work\n"); 2472 } 2473 } 2474 2475 void ceph_reclaim_caps_nr(struct ceph_mds_client *mdsc, int nr) 2476 { 2477 int val; 2478 if (!nr) 2479 return; 2480 val = atomic_add_return(nr, &mdsc->cap_reclaim_pending); 2481 if ((val % CEPH_CAPS_PER_RELEASE) < nr) { 2482 atomic_set(&mdsc->cap_reclaim_pending, 0); 2483 ceph_queue_cap_reclaim_work(mdsc); 2484 } 2485 } 2486 2487 /* 2488 * requests 2489 */ 2490 2491 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req, 2492 struct inode *dir) 2493 { 2494 struct ceph_inode_info *ci = ceph_inode(dir); 2495 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; 2496 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options; 2497 size_t size = sizeof(struct ceph_mds_reply_dir_entry); 2498 unsigned int num_entries; 2499 int order; 2500 2501 spin_lock(&ci->i_ceph_lock); 2502 num_entries = ci->i_files + ci->i_subdirs; 2503 spin_unlock(&ci->i_ceph_lock); 2504 num_entries = max(num_entries, 1U); 2505 num_entries = min(num_entries, opt->max_readdir); 2506 2507 order = get_order(size * num_entries); 2508 while (order >= 0) { 2509 rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL | 2510 __GFP_NOWARN | 2511 __GFP_ZERO, 2512 order); 2513 if (rinfo->dir_entries) 2514 break; 2515 order--; 2516 } 2517 if (!rinfo->dir_entries) 2518 return -ENOMEM; 2519 2520 num_entries = (PAGE_SIZE << order) / size; 2521 num_entries = min(num_entries, opt->max_readdir); 2522 2523 rinfo->dir_buf_size = PAGE_SIZE << order; 2524 req->r_num_caps = num_entries + 1; 2525 req->r_args.readdir.max_entries = cpu_to_le32(num_entries); 2526 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes); 2527 return 0; 2528 } 2529 2530 /* 2531 * Create an mds request. 2532 */ 2533 struct ceph_mds_request * 2534 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 2535 { 2536 struct ceph_mds_request *req; 2537 2538 req = kmem_cache_zalloc(ceph_mds_request_cachep, GFP_NOFS); 2539 if (!req) 2540 return ERR_PTR(-ENOMEM); 2541 2542 mutex_init(&req->r_fill_mutex); 2543 req->r_mdsc = mdsc; 2544 req->r_started = jiffies; 2545 req->r_start_latency = ktime_get(); 2546 req->r_resend_mds = -1; 2547 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 2548 INIT_LIST_HEAD(&req->r_unsafe_target_item); 2549 req->r_fmode = -1; 2550 req->r_feature_needed = -1; 2551 kref_init(&req->r_kref); 2552 RB_CLEAR_NODE(&req->r_node); 2553 INIT_LIST_HEAD(&req->r_wait); 2554 init_completion(&req->r_completion); 2555 init_completion(&req->r_safe_completion); 2556 INIT_LIST_HEAD(&req->r_unsafe_item); 2557 2558 ktime_get_coarse_real_ts64(&req->r_stamp); 2559 2560 req->r_op = op; 2561 req->r_direct_mode = mode; 2562 return req; 2563 } 2564 2565 /* 2566 * return oldest (lowest) request, tid in request tree, 0 if none. 2567 * 2568 * called under mdsc->mutex. 2569 */ 2570 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 2571 { 2572 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 2573 return NULL; 2574 return rb_entry(rb_first(&mdsc->request_tree), 2575 struct ceph_mds_request, r_node); 2576 } 2577 2578 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 2579 { 2580 return mdsc->oldest_tid; 2581 } 2582 2583 #if IS_ENABLED(CONFIG_FS_ENCRYPTION) 2584 static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen) 2585 { 2586 struct inode *dir = req->r_parent; 2587 struct dentry *dentry = req->r_dentry; 2588 u8 *cryptbuf = NULL; 2589 u32 len = 0; 2590 int ret = 0; 2591 2592 /* only encode if we have parent and dentry */ 2593 if (!dir || !dentry) 2594 goto success; 2595 2596 /* No-op unless this is encrypted */ 2597 if (!IS_ENCRYPTED(dir)) 2598 goto success; 2599 2600 ret = ceph_fscrypt_prepare_readdir(dir); 2601 if (ret < 0) 2602 return ERR_PTR(ret); 2603 2604 /* No key? Just ignore it. */ 2605 if (!fscrypt_has_encryption_key(dir)) 2606 goto success; 2607 2608 if (!fscrypt_fname_encrypted_size(dir, dentry->d_name.len, NAME_MAX, 2609 &len)) { 2610 WARN_ON_ONCE(1); 2611 return ERR_PTR(-ENAMETOOLONG); 2612 } 2613 2614 /* No need to append altname if name is short enough */ 2615 if (len <= CEPH_NOHASH_NAME_MAX) { 2616 len = 0; 2617 goto success; 2618 } 2619 2620 cryptbuf = kmalloc(len, GFP_KERNEL); 2621 if (!cryptbuf) 2622 return ERR_PTR(-ENOMEM); 2623 2624 ret = fscrypt_fname_encrypt(dir, &dentry->d_name, cryptbuf, len); 2625 if (ret) { 2626 kfree(cryptbuf); 2627 return ERR_PTR(ret); 2628 } 2629 success: 2630 *plen = len; 2631 return cryptbuf; 2632 } 2633 #else 2634 static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen) 2635 { 2636 *plen = 0; 2637 return NULL; 2638 } 2639 #endif 2640 2641 /** 2642 * ceph_mdsc_build_path - build a path string to a given dentry 2643 * @mdsc: mds client 2644 * @dentry: dentry to which path should be built 2645 * @plen: returned length of string 2646 * @pbase: returned base inode number 2647 * @for_wire: is this path going to be sent to the MDS? 2648 * 2649 * Build a string that represents the path to the dentry. This is mostly called 2650 * for two different purposes: 2651 * 2652 * 1) we need to build a path string to send to the MDS (for_wire == true) 2653 * 2) we need a path string for local presentation (e.g. debugfs) 2654 * (for_wire == false) 2655 * 2656 * The path is built in reverse, starting with the dentry. Walk back up toward 2657 * the root, building the path until the first non-snapped inode is reached 2658 * (for_wire) or the root inode is reached (!for_wire). 2659 * 2660 * Encode hidden .snap dirs as a double /, i.e. 2661 * foo/.snap/bar -> foo//bar 2662 */ 2663 char *ceph_mdsc_build_path(struct ceph_mds_client *mdsc, struct dentry *dentry, 2664 int *plen, u64 *pbase, int for_wire) 2665 { 2666 struct ceph_client *cl = mdsc->fsc->client; 2667 struct dentry *cur; 2668 struct inode *inode; 2669 char *path; 2670 int pos; 2671 unsigned seq; 2672 u64 base; 2673 2674 if (!dentry) 2675 return ERR_PTR(-EINVAL); 2676 2677 path = __getname(); 2678 if (!path) 2679 return ERR_PTR(-ENOMEM); 2680 retry: 2681 pos = PATH_MAX - 1; 2682 path[pos] = '\0'; 2683 2684 seq = read_seqbegin(&rename_lock); 2685 cur = dget(dentry); 2686 for (;;) { 2687 struct dentry *parent; 2688 2689 spin_lock(&cur->d_lock); 2690 inode = d_inode(cur); 2691 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 2692 doutc(cl, "path+%d: %p SNAPDIR\n", pos, cur); 2693 spin_unlock(&cur->d_lock); 2694 parent = dget_parent(cur); 2695 } else if (for_wire && inode && dentry != cur && 2696 ceph_snap(inode) == CEPH_NOSNAP) { 2697 spin_unlock(&cur->d_lock); 2698 pos++; /* get rid of any prepended '/' */ 2699 break; 2700 } else if (!for_wire || !IS_ENCRYPTED(d_inode(cur->d_parent))) { 2701 pos -= cur->d_name.len; 2702 if (pos < 0) { 2703 spin_unlock(&cur->d_lock); 2704 break; 2705 } 2706 memcpy(path + pos, cur->d_name.name, cur->d_name.len); 2707 spin_unlock(&cur->d_lock); 2708 parent = dget_parent(cur); 2709 } else { 2710 int len, ret; 2711 char buf[NAME_MAX]; 2712 2713 /* 2714 * Proactively copy name into buf, in case we need to 2715 * present it as-is. 2716 */ 2717 memcpy(buf, cur->d_name.name, cur->d_name.len); 2718 len = cur->d_name.len; 2719 spin_unlock(&cur->d_lock); 2720 parent = dget_parent(cur); 2721 2722 ret = ceph_fscrypt_prepare_readdir(d_inode(parent)); 2723 if (ret < 0) { 2724 dput(parent); 2725 dput(cur); 2726 return ERR_PTR(ret); 2727 } 2728 2729 if (fscrypt_has_encryption_key(d_inode(parent))) { 2730 len = ceph_encode_encrypted_fname(d_inode(parent), 2731 cur, buf); 2732 if (len < 0) { 2733 dput(parent); 2734 dput(cur); 2735 return ERR_PTR(len); 2736 } 2737 } 2738 pos -= len; 2739 if (pos < 0) { 2740 dput(parent); 2741 break; 2742 } 2743 memcpy(path + pos, buf, len); 2744 } 2745 dput(cur); 2746 cur = parent; 2747 2748 /* Are we at the root? */ 2749 if (IS_ROOT(cur)) 2750 break; 2751 2752 /* Are we out of buffer? */ 2753 if (--pos < 0) 2754 break; 2755 2756 path[pos] = '/'; 2757 } 2758 inode = d_inode(cur); 2759 base = inode ? ceph_ino(inode) : 0; 2760 dput(cur); 2761 2762 if (read_seqretry(&rename_lock, seq)) 2763 goto retry; 2764 2765 if (pos < 0) { 2766 /* 2767 * A rename didn't occur, but somehow we didn't end up where 2768 * we thought we would. Throw a warning and try again. 2769 */ 2770 pr_warn_client(cl, "did not end path lookup where expected (pos = %d)\n", 2771 pos); 2772 goto retry; 2773 } 2774 2775 *pbase = base; 2776 *plen = PATH_MAX - 1 - pos; 2777 doutc(cl, "on %p %d built %llx '%.*s'\n", dentry, d_count(dentry), 2778 base, *plen, path + pos); 2779 return path + pos; 2780 } 2781 2782 static int build_dentry_path(struct ceph_mds_client *mdsc, struct dentry *dentry, 2783 struct inode *dir, const char **ppath, int *ppathlen, 2784 u64 *pino, bool *pfreepath, bool parent_locked) 2785 { 2786 char *path; 2787 2788 rcu_read_lock(); 2789 if (!dir) 2790 dir = d_inode_rcu(dentry->d_parent); 2791 if (dir && parent_locked && ceph_snap(dir) == CEPH_NOSNAP && 2792 !IS_ENCRYPTED(dir)) { 2793 *pino = ceph_ino(dir); 2794 rcu_read_unlock(); 2795 *ppath = dentry->d_name.name; 2796 *ppathlen = dentry->d_name.len; 2797 return 0; 2798 } 2799 rcu_read_unlock(); 2800 path = ceph_mdsc_build_path(mdsc, dentry, ppathlen, pino, 1); 2801 if (IS_ERR(path)) 2802 return PTR_ERR(path); 2803 *ppath = path; 2804 *pfreepath = true; 2805 return 0; 2806 } 2807 2808 static int build_inode_path(struct inode *inode, 2809 const char **ppath, int *ppathlen, u64 *pino, 2810 bool *pfreepath) 2811 { 2812 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 2813 struct dentry *dentry; 2814 char *path; 2815 2816 if (ceph_snap(inode) == CEPH_NOSNAP) { 2817 *pino = ceph_ino(inode); 2818 *ppathlen = 0; 2819 return 0; 2820 } 2821 dentry = d_find_alias(inode); 2822 path = ceph_mdsc_build_path(mdsc, dentry, ppathlen, pino, 1); 2823 dput(dentry); 2824 if (IS_ERR(path)) 2825 return PTR_ERR(path); 2826 *ppath = path; 2827 *pfreepath = true; 2828 return 0; 2829 } 2830 2831 /* 2832 * request arguments may be specified via an inode *, a dentry *, or 2833 * an explicit ino+path. 2834 */ 2835 static int set_request_path_attr(struct ceph_mds_client *mdsc, struct inode *rinode, 2836 struct dentry *rdentry, struct inode *rdiri, 2837 const char *rpath, u64 rino, const char **ppath, 2838 int *pathlen, u64 *ino, bool *freepath, 2839 bool parent_locked) 2840 { 2841 struct ceph_client *cl = mdsc->fsc->client; 2842 int r = 0; 2843 2844 if (rinode) { 2845 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 2846 doutc(cl, " inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 2847 ceph_snap(rinode)); 2848 } else if (rdentry) { 2849 r = build_dentry_path(mdsc, rdentry, rdiri, ppath, pathlen, ino, 2850 freepath, parent_locked); 2851 doutc(cl, " dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, *ppath); 2852 } else if (rpath || rino) { 2853 *ino = rino; 2854 *ppath = rpath; 2855 *pathlen = rpath ? strlen(rpath) : 0; 2856 doutc(cl, " path %.*s\n", *pathlen, rpath); 2857 } 2858 2859 return r; 2860 } 2861 2862 static void encode_mclientrequest_tail(void **p, 2863 const struct ceph_mds_request *req) 2864 { 2865 struct ceph_timespec ts; 2866 int i; 2867 2868 ceph_encode_timespec64(&ts, &req->r_stamp); 2869 ceph_encode_copy(p, &ts, sizeof(ts)); 2870 2871 /* v4: gid_list */ 2872 ceph_encode_32(p, req->r_cred->group_info->ngroups); 2873 for (i = 0; i < req->r_cred->group_info->ngroups; i++) 2874 ceph_encode_64(p, from_kgid(&init_user_ns, 2875 req->r_cred->group_info->gid[i])); 2876 2877 /* v5: altname */ 2878 ceph_encode_32(p, req->r_altname_len); 2879 ceph_encode_copy(p, req->r_altname, req->r_altname_len); 2880 2881 /* v6: fscrypt_auth and fscrypt_file */ 2882 if (req->r_fscrypt_auth) { 2883 u32 authlen = ceph_fscrypt_auth_len(req->r_fscrypt_auth); 2884 2885 ceph_encode_32(p, authlen); 2886 ceph_encode_copy(p, req->r_fscrypt_auth, authlen); 2887 } else { 2888 ceph_encode_32(p, 0); 2889 } 2890 if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags)) { 2891 ceph_encode_32(p, sizeof(__le64)); 2892 ceph_encode_64(p, req->r_fscrypt_file); 2893 } else { 2894 ceph_encode_32(p, 0); 2895 } 2896 } 2897 2898 static inline u16 mds_supported_head_version(struct ceph_mds_session *session) 2899 { 2900 if (!test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD, &session->s_features)) 2901 return 1; 2902 2903 if (!test_bit(CEPHFS_FEATURE_HAS_OWNER_UIDGID, &session->s_features)) 2904 return 2; 2905 2906 return CEPH_MDS_REQUEST_HEAD_VERSION; 2907 } 2908 2909 static struct ceph_mds_request_head_legacy * 2910 find_legacy_request_head(void *p, u64 features) 2911 { 2912 bool legacy = !(features & CEPH_FEATURE_FS_BTIME); 2913 struct ceph_mds_request_head_old *ohead; 2914 2915 if (legacy) 2916 return (struct ceph_mds_request_head_legacy *)p; 2917 ohead = (struct ceph_mds_request_head_old *)p; 2918 return (struct ceph_mds_request_head_legacy *)&ohead->oldest_client_tid; 2919 } 2920 2921 /* 2922 * called under mdsc->mutex 2923 */ 2924 static struct ceph_msg *create_request_message(struct ceph_mds_session *session, 2925 struct ceph_mds_request *req, 2926 bool drop_cap_releases) 2927 { 2928 int mds = session->s_mds; 2929 struct ceph_mds_client *mdsc = session->s_mdsc; 2930 struct ceph_client *cl = mdsc->fsc->client; 2931 struct ceph_msg *msg; 2932 struct ceph_mds_request_head_legacy *lhead; 2933 const char *path1 = NULL; 2934 const char *path2 = NULL; 2935 u64 ino1 = 0, ino2 = 0; 2936 int pathlen1 = 0, pathlen2 = 0; 2937 bool freepath1 = false, freepath2 = false; 2938 struct dentry *old_dentry = NULL; 2939 int len; 2940 u16 releases; 2941 void *p, *end; 2942 int ret; 2943 bool legacy = !(session->s_con.peer_features & CEPH_FEATURE_FS_BTIME); 2944 u16 request_head_version = mds_supported_head_version(session); 2945 kuid_t caller_fsuid = req->r_cred->fsuid; 2946 kgid_t caller_fsgid = req->r_cred->fsgid; 2947 2948 ret = set_request_path_attr(mdsc, req->r_inode, req->r_dentry, 2949 req->r_parent, req->r_path1, req->r_ino1.ino, 2950 &path1, &pathlen1, &ino1, &freepath1, 2951 test_bit(CEPH_MDS_R_PARENT_LOCKED, 2952 &req->r_req_flags)); 2953 if (ret < 0) { 2954 msg = ERR_PTR(ret); 2955 goto out; 2956 } 2957 2958 /* If r_old_dentry is set, then assume that its parent is locked */ 2959 if (req->r_old_dentry && 2960 !(req->r_old_dentry->d_flags & DCACHE_DISCONNECTED)) 2961 old_dentry = req->r_old_dentry; 2962 ret = set_request_path_attr(mdsc, NULL, old_dentry, 2963 req->r_old_dentry_dir, 2964 req->r_path2, req->r_ino2.ino, 2965 &path2, &pathlen2, &ino2, &freepath2, true); 2966 if (ret < 0) { 2967 msg = ERR_PTR(ret); 2968 goto out_free1; 2969 } 2970 2971 req->r_altname = get_fscrypt_altname(req, &req->r_altname_len); 2972 if (IS_ERR(req->r_altname)) { 2973 msg = ERR_CAST(req->r_altname); 2974 req->r_altname = NULL; 2975 goto out_free2; 2976 } 2977 2978 /* 2979 * For old cephs without supporting the 32bit retry/fwd feature 2980 * it will copy the raw memories directly when decoding the 2981 * requests. While new cephs will decode the head depending the 2982 * version member, so we need to make sure it will be compatible 2983 * with them both. 2984 */ 2985 if (legacy) 2986 len = sizeof(struct ceph_mds_request_head_legacy); 2987 else if (request_head_version == 1) 2988 len = sizeof(struct ceph_mds_request_head_old); 2989 else if (request_head_version == 2) 2990 len = offsetofend(struct ceph_mds_request_head, ext_num_fwd); 2991 else 2992 len = sizeof(struct ceph_mds_request_head); 2993 2994 /* filepaths */ 2995 len += 2 * (1 + sizeof(u32) + sizeof(u64)); 2996 len += pathlen1 + pathlen2; 2997 2998 /* cap releases */ 2999 len += sizeof(struct ceph_mds_request_release) * 3000 (!!req->r_inode_drop + !!req->r_dentry_drop + 3001 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 3002 3003 if (req->r_dentry_drop) 3004 len += pathlen1; 3005 if (req->r_old_dentry_drop) 3006 len += pathlen2; 3007 3008 /* MClientRequest tail */ 3009 3010 /* req->r_stamp */ 3011 len += sizeof(struct ceph_timespec); 3012 3013 /* gid list */ 3014 len += sizeof(u32) + (sizeof(u64) * req->r_cred->group_info->ngroups); 3015 3016 /* alternate name */ 3017 len += sizeof(u32) + req->r_altname_len; 3018 3019 /* fscrypt_auth */ 3020 len += sizeof(u32); // fscrypt_auth 3021 if (req->r_fscrypt_auth) 3022 len += ceph_fscrypt_auth_len(req->r_fscrypt_auth); 3023 3024 /* fscrypt_file */ 3025 len += sizeof(u32); 3026 if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags)) 3027 len += sizeof(__le64); 3028 3029 msg = ceph_msg_new2(CEPH_MSG_CLIENT_REQUEST, len, 1, GFP_NOFS, false); 3030 if (!msg) { 3031 msg = ERR_PTR(-ENOMEM); 3032 goto out_free2; 3033 } 3034 3035 msg->hdr.tid = cpu_to_le64(req->r_tid); 3036 3037 lhead = find_legacy_request_head(msg->front.iov_base, 3038 session->s_con.peer_features); 3039 3040 if ((req->r_mnt_idmap != &nop_mnt_idmap) && 3041 !test_bit(CEPHFS_FEATURE_HAS_OWNER_UIDGID, &session->s_features)) { 3042 WARN_ON_ONCE(!IS_CEPH_MDS_OP_NEWINODE(req->r_op)); 3043 3044 if (enable_unsafe_idmap) { 3045 pr_warn_once_client(cl, 3046 "idmapped mount is used and CEPHFS_FEATURE_HAS_OWNER_UIDGID" 3047 " is not supported by MDS. UID/GID-based restrictions may" 3048 " not work properly.\n"); 3049 3050 caller_fsuid = from_vfsuid(req->r_mnt_idmap, &init_user_ns, 3051 VFSUIDT_INIT(req->r_cred->fsuid)); 3052 caller_fsgid = from_vfsgid(req->r_mnt_idmap, &init_user_ns, 3053 VFSGIDT_INIT(req->r_cred->fsgid)); 3054 } else { 3055 pr_err_ratelimited_client(cl, 3056 "idmapped mount is used and CEPHFS_FEATURE_HAS_OWNER_UIDGID" 3057 " is not supported by MDS. Fail request with -EIO.\n"); 3058 3059 ret = -EIO; 3060 goto out_err; 3061 } 3062 } 3063 3064 /* 3065 * The ceph_mds_request_head_legacy didn't contain a version field, and 3066 * one was added when we moved the message version from 3->4. 3067 */ 3068 if (legacy) { 3069 msg->hdr.version = cpu_to_le16(3); 3070 p = msg->front.iov_base + sizeof(*lhead); 3071 } else if (request_head_version == 1) { 3072 struct ceph_mds_request_head_old *ohead = msg->front.iov_base; 3073 3074 msg->hdr.version = cpu_to_le16(4); 3075 ohead->version = cpu_to_le16(1); 3076 p = msg->front.iov_base + sizeof(*ohead); 3077 } else if (request_head_version == 2) { 3078 struct ceph_mds_request_head *nhead = msg->front.iov_base; 3079 3080 msg->hdr.version = cpu_to_le16(6); 3081 nhead->version = cpu_to_le16(2); 3082 3083 p = msg->front.iov_base + offsetofend(struct ceph_mds_request_head, ext_num_fwd); 3084 } else { 3085 struct ceph_mds_request_head *nhead = msg->front.iov_base; 3086 kuid_t owner_fsuid; 3087 kgid_t owner_fsgid; 3088 3089 msg->hdr.version = cpu_to_le16(6); 3090 nhead->version = cpu_to_le16(CEPH_MDS_REQUEST_HEAD_VERSION); 3091 nhead->struct_len = cpu_to_le32(sizeof(struct ceph_mds_request_head)); 3092 3093 if (IS_CEPH_MDS_OP_NEWINODE(req->r_op)) { 3094 owner_fsuid = from_vfsuid(req->r_mnt_idmap, &init_user_ns, 3095 VFSUIDT_INIT(req->r_cred->fsuid)); 3096 owner_fsgid = from_vfsgid(req->r_mnt_idmap, &init_user_ns, 3097 VFSGIDT_INIT(req->r_cred->fsgid)); 3098 nhead->owner_uid = cpu_to_le32(from_kuid(&init_user_ns, owner_fsuid)); 3099 nhead->owner_gid = cpu_to_le32(from_kgid(&init_user_ns, owner_fsgid)); 3100 } else { 3101 nhead->owner_uid = cpu_to_le32(-1); 3102 nhead->owner_gid = cpu_to_le32(-1); 3103 } 3104 3105 p = msg->front.iov_base + sizeof(*nhead); 3106 } 3107 3108 end = msg->front.iov_base + msg->front.iov_len; 3109 3110 lhead->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 3111 lhead->op = cpu_to_le32(req->r_op); 3112 lhead->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, 3113 caller_fsuid)); 3114 lhead->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, 3115 caller_fsgid)); 3116 lhead->ino = cpu_to_le64(req->r_deleg_ino); 3117 lhead->args = req->r_args; 3118 3119 ceph_encode_filepath(&p, end, ino1, path1); 3120 ceph_encode_filepath(&p, end, ino2, path2); 3121 3122 /* make note of release offset, in case we need to replay */ 3123 req->r_request_release_offset = p - msg->front.iov_base; 3124 3125 /* cap releases */ 3126 releases = 0; 3127 if (req->r_inode_drop) 3128 releases += ceph_encode_inode_release(&p, 3129 req->r_inode ? req->r_inode : d_inode(req->r_dentry), 3130 mds, req->r_inode_drop, req->r_inode_unless, 3131 req->r_op == CEPH_MDS_OP_READDIR); 3132 if (req->r_dentry_drop) { 3133 ret = ceph_encode_dentry_release(&p, req->r_dentry, 3134 req->r_parent, mds, req->r_dentry_drop, 3135 req->r_dentry_unless); 3136 if (ret < 0) 3137 goto out_err; 3138 releases += ret; 3139 } 3140 if (req->r_old_dentry_drop) { 3141 ret = ceph_encode_dentry_release(&p, req->r_old_dentry, 3142 req->r_old_dentry_dir, mds, 3143 req->r_old_dentry_drop, 3144 req->r_old_dentry_unless); 3145 if (ret < 0) 3146 goto out_err; 3147 releases += ret; 3148 } 3149 if (req->r_old_inode_drop) 3150 releases += ceph_encode_inode_release(&p, 3151 d_inode(req->r_old_dentry), 3152 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 3153 3154 if (drop_cap_releases) { 3155 releases = 0; 3156 p = msg->front.iov_base + req->r_request_release_offset; 3157 } 3158 3159 lhead->num_releases = cpu_to_le16(releases); 3160 3161 encode_mclientrequest_tail(&p, req); 3162 3163 if (WARN_ON_ONCE(p > end)) { 3164 ceph_msg_put(msg); 3165 msg = ERR_PTR(-ERANGE); 3166 goto out_free2; 3167 } 3168 3169 msg->front.iov_len = p - msg->front.iov_base; 3170 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 3171 3172 if (req->r_pagelist) { 3173 struct ceph_pagelist *pagelist = req->r_pagelist; 3174 ceph_msg_data_add_pagelist(msg, pagelist); 3175 msg->hdr.data_len = cpu_to_le32(pagelist->length); 3176 } else { 3177 msg->hdr.data_len = 0; 3178 } 3179 3180 msg->hdr.data_off = cpu_to_le16(0); 3181 3182 out_free2: 3183 if (freepath2) 3184 ceph_mdsc_free_path((char *)path2, pathlen2); 3185 out_free1: 3186 if (freepath1) 3187 ceph_mdsc_free_path((char *)path1, pathlen1); 3188 out: 3189 return msg; 3190 out_err: 3191 ceph_msg_put(msg); 3192 msg = ERR_PTR(ret); 3193 goto out_free2; 3194 } 3195 3196 /* 3197 * called under mdsc->mutex if error, under no mutex if 3198 * success. 3199 */ 3200 static void complete_request(struct ceph_mds_client *mdsc, 3201 struct ceph_mds_request *req) 3202 { 3203 req->r_end_latency = ktime_get(); 3204 3205 if (req->r_callback) 3206 req->r_callback(mdsc, req); 3207 complete_all(&req->r_completion); 3208 } 3209 3210 /* 3211 * called under mdsc->mutex 3212 */ 3213 static int __prepare_send_request(struct ceph_mds_session *session, 3214 struct ceph_mds_request *req, 3215 bool drop_cap_releases) 3216 { 3217 int mds = session->s_mds; 3218 struct ceph_mds_client *mdsc = session->s_mdsc; 3219 struct ceph_client *cl = mdsc->fsc->client; 3220 struct ceph_mds_request_head_legacy *lhead; 3221 struct ceph_mds_request_head *nhead; 3222 struct ceph_msg *msg; 3223 int flags = 0, old_max_retry; 3224 bool old_version = !test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD, 3225 &session->s_features); 3226 3227 /* 3228 * Avoid inifinite retrying after overflow. The client will 3229 * increase the retry count and if the MDS is old version, 3230 * so we limit to retry at most 256 times. 3231 */ 3232 if (req->r_attempts) { 3233 old_max_retry = sizeof_field(struct ceph_mds_request_head_old, 3234 num_retry); 3235 old_max_retry = 1 << (old_max_retry * BITS_PER_BYTE); 3236 if ((old_version && req->r_attempts >= old_max_retry) || 3237 ((uint32_t)req->r_attempts >= U32_MAX)) { 3238 pr_warn_ratelimited_client(cl, "request tid %llu seq overflow\n", 3239 req->r_tid); 3240 return -EMULTIHOP; 3241 } 3242 } 3243 3244 req->r_attempts++; 3245 if (req->r_inode) { 3246 struct ceph_cap *cap = 3247 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 3248 3249 if (cap) 3250 req->r_sent_on_mseq = cap->mseq; 3251 else 3252 req->r_sent_on_mseq = -1; 3253 } 3254 doutc(cl, "%p tid %lld %s (attempt %d)\n", req, req->r_tid, 3255 ceph_mds_op_name(req->r_op), req->r_attempts); 3256 3257 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3258 void *p; 3259 3260 /* 3261 * Replay. Do not regenerate message (and rebuild 3262 * paths, etc.); just use the original message. 3263 * Rebuilding paths will break for renames because 3264 * d_move mangles the src name. 3265 */ 3266 msg = req->r_request; 3267 lhead = find_legacy_request_head(msg->front.iov_base, 3268 session->s_con.peer_features); 3269 3270 flags = le32_to_cpu(lhead->flags); 3271 flags |= CEPH_MDS_FLAG_REPLAY; 3272 lhead->flags = cpu_to_le32(flags); 3273 3274 if (req->r_target_inode) 3275 lhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 3276 3277 lhead->num_retry = req->r_attempts - 1; 3278 if (!old_version) { 3279 nhead = (struct ceph_mds_request_head*)msg->front.iov_base; 3280 nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1); 3281 } 3282 3283 /* remove cap/dentry releases from message */ 3284 lhead->num_releases = 0; 3285 3286 p = msg->front.iov_base + req->r_request_release_offset; 3287 encode_mclientrequest_tail(&p, req); 3288 3289 msg->front.iov_len = p - msg->front.iov_base; 3290 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 3291 return 0; 3292 } 3293 3294 if (req->r_request) { 3295 ceph_msg_put(req->r_request); 3296 req->r_request = NULL; 3297 } 3298 msg = create_request_message(session, req, drop_cap_releases); 3299 if (IS_ERR(msg)) { 3300 req->r_err = PTR_ERR(msg); 3301 return PTR_ERR(msg); 3302 } 3303 req->r_request = msg; 3304 3305 lhead = find_legacy_request_head(msg->front.iov_base, 3306 session->s_con.peer_features); 3307 lhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 3308 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 3309 flags |= CEPH_MDS_FLAG_REPLAY; 3310 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) 3311 flags |= CEPH_MDS_FLAG_ASYNC; 3312 if (req->r_parent) 3313 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 3314 lhead->flags = cpu_to_le32(flags); 3315 lhead->num_fwd = req->r_num_fwd; 3316 lhead->num_retry = req->r_attempts - 1; 3317 if (!old_version) { 3318 nhead = (struct ceph_mds_request_head*)msg->front.iov_base; 3319 nhead->ext_num_fwd = cpu_to_le32(req->r_num_fwd); 3320 nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1); 3321 } 3322 3323 doutc(cl, " r_parent = %p\n", req->r_parent); 3324 return 0; 3325 } 3326 3327 /* 3328 * called under mdsc->mutex 3329 */ 3330 static int __send_request(struct ceph_mds_session *session, 3331 struct ceph_mds_request *req, 3332 bool drop_cap_releases) 3333 { 3334 int err; 3335 3336 err = __prepare_send_request(session, req, drop_cap_releases); 3337 if (!err) { 3338 ceph_msg_get(req->r_request); 3339 ceph_con_send(&session->s_con, req->r_request); 3340 } 3341 3342 return err; 3343 } 3344 3345 /* 3346 * send request, or put it on the appropriate wait list. 3347 */ 3348 static void __do_request(struct ceph_mds_client *mdsc, 3349 struct ceph_mds_request *req) 3350 { 3351 struct ceph_client *cl = mdsc->fsc->client; 3352 struct ceph_mds_session *session = NULL; 3353 int mds = -1; 3354 int err = 0; 3355 bool random; 3356 3357 if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { 3358 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) 3359 __unregister_request(mdsc, req); 3360 return; 3361 } 3362 3363 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) { 3364 doutc(cl, "metadata corrupted\n"); 3365 err = -EIO; 3366 goto finish; 3367 } 3368 if (req->r_timeout && 3369 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 3370 doutc(cl, "timed out\n"); 3371 err = -ETIMEDOUT; 3372 goto finish; 3373 } 3374 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) { 3375 doutc(cl, "forced umount\n"); 3376 err = -EIO; 3377 goto finish; 3378 } 3379 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) { 3380 if (mdsc->mdsmap_err) { 3381 err = mdsc->mdsmap_err; 3382 doutc(cl, "mdsmap err %d\n", err); 3383 goto finish; 3384 } 3385 if (mdsc->mdsmap->m_epoch == 0) { 3386 doutc(cl, "no mdsmap, waiting for map\n"); 3387 list_add(&req->r_wait, &mdsc->waiting_for_map); 3388 return; 3389 } 3390 if (!(mdsc->fsc->mount_options->flags & 3391 CEPH_MOUNT_OPT_MOUNTWAIT) && 3392 !ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) { 3393 err = -EHOSTUNREACH; 3394 goto finish; 3395 } 3396 } 3397 3398 put_request_session(req); 3399 3400 mds = __choose_mds(mdsc, req, &random); 3401 if (mds < 0 || 3402 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 3403 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) { 3404 err = -EJUKEBOX; 3405 goto finish; 3406 } 3407 doutc(cl, "no mds or not active, waiting for map\n"); 3408 list_add(&req->r_wait, &mdsc->waiting_for_map); 3409 return; 3410 } 3411 3412 /* get, open session */ 3413 session = __ceph_lookup_mds_session(mdsc, mds); 3414 if (!session) { 3415 session = register_session(mdsc, mds); 3416 if (IS_ERR(session)) { 3417 err = PTR_ERR(session); 3418 goto finish; 3419 } 3420 } 3421 req->r_session = ceph_get_mds_session(session); 3422 3423 doutc(cl, "mds%d session %p state %s\n", mds, session, 3424 ceph_session_state_name(session->s_state)); 3425 3426 /* 3427 * The old ceph will crash the MDSs when see unknown OPs 3428 */ 3429 if (req->r_feature_needed > 0 && 3430 !test_bit(req->r_feature_needed, &session->s_features)) { 3431 err = -EOPNOTSUPP; 3432 goto out_session; 3433 } 3434 3435 if (session->s_state != CEPH_MDS_SESSION_OPEN && 3436 session->s_state != CEPH_MDS_SESSION_HUNG) { 3437 /* 3438 * We cannot queue async requests since the caps and delegated 3439 * inodes are bound to the session. Just return -EJUKEBOX and 3440 * let the caller retry a sync request in that case. 3441 */ 3442 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) { 3443 err = -EJUKEBOX; 3444 goto out_session; 3445 } 3446 3447 /* 3448 * If the session has been REJECTED, then return a hard error, 3449 * unless it's a CLEANRECOVER mount, in which case we'll queue 3450 * it to the mdsc queue. 3451 */ 3452 if (session->s_state == CEPH_MDS_SESSION_REJECTED) { 3453 if (ceph_test_mount_opt(mdsc->fsc, CLEANRECOVER)) 3454 list_add(&req->r_wait, &mdsc->waiting_for_map); 3455 else 3456 err = -EACCES; 3457 goto out_session; 3458 } 3459 3460 if (session->s_state == CEPH_MDS_SESSION_NEW || 3461 session->s_state == CEPH_MDS_SESSION_CLOSING) { 3462 err = __open_session(mdsc, session); 3463 if (err) 3464 goto out_session; 3465 /* retry the same mds later */ 3466 if (random) 3467 req->r_resend_mds = mds; 3468 } 3469 list_add(&req->r_wait, &session->s_waiting); 3470 goto out_session; 3471 } 3472 3473 /* send request */ 3474 req->r_resend_mds = -1; /* forget any previous mds hint */ 3475 3476 if (req->r_request_started == 0) /* note request start time */ 3477 req->r_request_started = jiffies; 3478 3479 /* 3480 * For async create we will choose the auth MDS of frag in parent 3481 * directory to send the request and ususally this works fine, but 3482 * if the migrated the dirtory to another MDS before it could handle 3483 * it the request will be forwarded. 3484 * 3485 * And then the auth cap will be changed. 3486 */ 3487 if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags) && req->r_num_fwd) { 3488 struct ceph_dentry_info *di = ceph_dentry(req->r_dentry); 3489 struct ceph_inode_info *ci; 3490 struct ceph_cap *cap; 3491 3492 /* 3493 * The request maybe handled very fast and the new inode 3494 * hasn't been linked to the dentry yet. We need to wait 3495 * for the ceph_finish_async_create(), which shouldn't be 3496 * stuck too long or fail in thoery, to finish when forwarding 3497 * the request. 3498 */ 3499 if (!d_inode(req->r_dentry)) { 3500 err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_CREATE_BIT, 3501 TASK_KILLABLE); 3502 if (err) { 3503 mutex_lock(&req->r_fill_mutex); 3504 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 3505 mutex_unlock(&req->r_fill_mutex); 3506 goto out_session; 3507 } 3508 } 3509 3510 ci = ceph_inode(d_inode(req->r_dentry)); 3511 3512 spin_lock(&ci->i_ceph_lock); 3513 cap = ci->i_auth_cap; 3514 if (ci->i_ceph_flags & CEPH_I_ASYNC_CREATE && mds != cap->mds) { 3515 doutc(cl, "session changed for auth cap %d -> %d\n", 3516 cap->session->s_mds, session->s_mds); 3517 3518 /* Remove the auth cap from old session */ 3519 spin_lock(&cap->session->s_cap_lock); 3520 cap->session->s_nr_caps--; 3521 list_del_init(&cap->session_caps); 3522 spin_unlock(&cap->session->s_cap_lock); 3523 3524 /* Add the auth cap to the new session */ 3525 cap->mds = mds; 3526 cap->session = session; 3527 spin_lock(&session->s_cap_lock); 3528 session->s_nr_caps++; 3529 list_add_tail(&cap->session_caps, &session->s_caps); 3530 spin_unlock(&session->s_cap_lock); 3531 3532 change_auth_cap_ses(ci, session); 3533 } 3534 spin_unlock(&ci->i_ceph_lock); 3535 } 3536 3537 err = __send_request(session, req, false); 3538 3539 out_session: 3540 ceph_put_mds_session(session); 3541 finish: 3542 if (err) { 3543 doutc(cl, "early error %d\n", err); 3544 req->r_err = err; 3545 complete_request(mdsc, req); 3546 __unregister_request(mdsc, req); 3547 } 3548 return; 3549 } 3550 3551 /* 3552 * called under mdsc->mutex 3553 */ 3554 static void __wake_requests(struct ceph_mds_client *mdsc, 3555 struct list_head *head) 3556 { 3557 struct ceph_client *cl = mdsc->fsc->client; 3558 struct ceph_mds_request *req; 3559 LIST_HEAD(tmp_list); 3560 3561 list_splice_init(head, &tmp_list); 3562 3563 while (!list_empty(&tmp_list)) { 3564 req = list_entry(tmp_list.next, 3565 struct ceph_mds_request, r_wait); 3566 list_del_init(&req->r_wait); 3567 doutc(cl, " wake request %p tid %llu\n", req, 3568 req->r_tid); 3569 __do_request(mdsc, req); 3570 } 3571 } 3572 3573 /* 3574 * Wake up threads with requests pending for @mds, so that they can 3575 * resubmit their requests to a possibly different mds. 3576 */ 3577 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 3578 { 3579 struct ceph_client *cl = mdsc->fsc->client; 3580 struct ceph_mds_request *req; 3581 struct rb_node *p = rb_first(&mdsc->request_tree); 3582 3583 doutc(cl, "kick_requests mds%d\n", mds); 3584 while (p) { 3585 req = rb_entry(p, struct ceph_mds_request, r_node); 3586 p = rb_next(p); 3587 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 3588 continue; 3589 if (req->r_attempts > 0) 3590 continue; /* only new requests */ 3591 if (req->r_session && 3592 req->r_session->s_mds == mds) { 3593 doutc(cl, " kicking tid %llu\n", req->r_tid); 3594 list_del_init(&req->r_wait); 3595 __do_request(mdsc, req); 3596 } 3597 } 3598 } 3599 3600 int ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, struct inode *dir, 3601 struct ceph_mds_request *req) 3602 { 3603 struct ceph_client *cl = mdsc->fsc->client; 3604 int err = 0; 3605 3606 /* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */ 3607 if (req->r_inode) 3608 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 3609 if (req->r_parent) { 3610 struct ceph_inode_info *ci = ceph_inode(req->r_parent); 3611 int fmode = (req->r_op & CEPH_MDS_OP_WRITE) ? 3612 CEPH_FILE_MODE_WR : CEPH_FILE_MODE_RD; 3613 spin_lock(&ci->i_ceph_lock); 3614 ceph_take_cap_refs(ci, CEPH_CAP_PIN, false); 3615 __ceph_touch_fmode(ci, mdsc, fmode); 3616 spin_unlock(&ci->i_ceph_lock); 3617 } 3618 if (req->r_old_dentry_dir) 3619 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 3620 CEPH_CAP_PIN); 3621 3622 if (req->r_inode) { 3623 err = ceph_wait_on_async_create(req->r_inode); 3624 if (err) { 3625 doutc(cl, "wait for async create returned: %d\n", err); 3626 return err; 3627 } 3628 } 3629 3630 if (!err && req->r_old_inode) { 3631 err = ceph_wait_on_async_create(req->r_old_inode); 3632 if (err) { 3633 doutc(cl, "wait for async create returned: %d\n", err); 3634 return err; 3635 } 3636 } 3637 3638 doutc(cl, "submit_request on %p for inode %p\n", req, dir); 3639 mutex_lock(&mdsc->mutex); 3640 __register_request(mdsc, req, dir); 3641 __do_request(mdsc, req); 3642 err = req->r_err; 3643 mutex_unlock(&mdsc->mutex); 3644 return err; 3645 } 3646 3647 int ceph_mdsc_wait_request(struct ceph_mds_client *mdsc, 3648 struct ceph_mds_request *req, 3649 ceph_mds_request_wait_callback_t wait_func) 3650 { 3651 struct ceph_client *cl = mdsc->fsc->client; 3652 int err; 3653 3654 /* wait */ 3655 doutc(cl, "do_request waiting\n"); 3656 if (wait_func) { 3657 err = wait_func(mdsc, req); 3658 } else { 3659 long timeleft = wait_for_completion_killable_timeout( 3660 &req->r_completion, 3661 ceph_timeout_jiffies(req->r_timeout)); 3662 if (timeleft > 0) 3663 err = 0; 3664 else if (!timeleft) 3665 err = -ETIMEDOUT; /* timed out */ 3666 else 3667 err = timeleft; /* killed */ 3668 } 3669 doutc(cl, "do_request waited, got %d\n", err); 3670 mutex_lock(&mdsc->mutex); 3671 3672 /* only abort if we didn't race with a real reply */ 3673 if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) { 3674 err = le32_to_cpu(req->r_reply_info.head->result); 3675 } else if (err < 0) { 3676 doutc(cl, "aborted request %lld with %d\n", req->r_tid, err); 3677 3678 /* 3679 * ensure we aren't running concurrently with 3680 * ceph_fill_trace or ceph_readdir_prepopulate, which 3681 * rely on locks (dir mutex) held by our caller. 3682 */ 3683 mutex_lock(&req->r_fill_mutex); 3684 req->r_err = err; 3685 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 3686 mutex_unlock(&req->r_fill_mutex); 3687 3688 if (req->r_parent && 3689 (req->r_op & CEPH_MDS_OP_WRITE)) 3690 ceph_invalidate_dir_request(req); 3691 } else { 3692 err = req->r_err; 3693 } 3694 3695 mutex_unlock(&mdsc->mutex); 3696 return err; 3697 } 3698 3699 /* 3700 * Synchrously perform an mds request. Take care of all of the 3701 * session setup, forwarding, retry details. 3702 */ 3703 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 3704 struct inode *dir, 3705 struct ceph_mds_request *req) 3706 { 3707 struct ceph_client *cl = mdsc->fsc->client; 3708 int err; 3709 3710 doutc(cl, "do_request on %p\n", req); 3711 3712 /* issue */ 3713 err = ceph_mdsc_submit_request(mdsc, dir, req); 3714 if (!err) 3715 err = ceph_mdsc_wait_request(mdsc, req, NULL); 3716 doutc(cl, "do_request %p done, result %d\n", req, err); 3717 return err; 3718 } 3719 3720 /* 3721 * Invalidate dir's completeness, dentry lease state on an aborted MDS 3722 * namespace request. 3723 */ 3724 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 3725 { 3726 struct inode *dir = req->r_parent; 3727 struct inode *old_dir = req->r_old_dentry_dir; 3728 struct ceph_client *cl = req->r_mdsc->fsc->client; 3729 3730 doutc(cl, "invalidate_dir_request %p %p (complete, lease(s))\n", 3731 dir, old_dir); 3732 3733 ceph_dir_clear_complete(dir); 3734 if (old_dir) 3735 ceph_dir_clear_complete(old_dir); 3736 if (req->r_dentry) 3737 ceph_invalidate_dentry_lease(req->r_dentry); 3738 if (req->r_old_dentry) 3739 ceph_invalidate_dentry_lease(req->r_old_dentry); 3740 } 3741 3742 /* 3743 * Handle mds reply. 3744 * 3745 * We take the session mutex and parse and process the reply immediately. 3746 * This preserves the logical ordering of replies, capabilities, etc., sent 3747 * by the MDS as they are applied to our local cache. 3748 */ 3749 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 3750 { 3751 struct ceph_mds_client *mdsc = session->s_mdsc; 3752 struct ceph_client *cl = mdsc->fsc->client; 3753 struct ceph_mds_request *req; 3754 struct ceph_mds_reply_head *head = msg->front.iov_base; 3755 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 3756 struct ceph_snap_realm *realm; 3757 u64 tid; 3758 int err, result; 3759 int mds = session->s_mds; 3760 bool close_sessions = false; 3761 3762 if (msg->front.iov_len < sizeof(*head)) { 3763 pr_err_client(cl, "got corrupt (short) reply\n"); 3764 ceph_msg_dump(msg); 3765 return; 3766 } 3767 3768 /* get request, session */ 3769 tid = le64_to_cpu(msg->hdr.tid); 3770 mutex_lock(&mdsc->mutex); 3771 req = lookup_get_request(mdsc, tid); 3772 if (!req) { 3773 doutc(cl, "on unknown tid %llu\n", tid); 3774 mutex_unlock(&mdsc->mutex); 3775 return; 3776 } 3777 doutc(cl, "handle_reply %p\n", req); 3778 3779 /* correct session? */ 3780 if (req->r_session != session) { 3781 pr_err_client(cl, "got %llu on session mds%d not mds%d\n", 3782 tid, session->s_mds, 3783 req->r_session ? req->r_session->s_mds : -1); 3784 mutex_unlock(&mdsc->mutex); 3785 goto out; 3786 } 3787 3788 /* dup? */ 3789 if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) || 3790 (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) { 3791 pr_warn_client(cl, "got a dup %s reply on %llu from mds%d\n", 3792 head->safe ? "safe" : "unsafe", tid, mds); 3793 mutex_unlock(&mdsc->mutex); 3794 goto out; 3795 } 3796 if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) { 3797 pr_warn_client(cl, "got unsafe after safe on %llu from mds%d\n", 3798 tid, mds); 3799 mutex_unlock(&mdsc->mutex); 3800 goto out; 3801 } 3802 3803 result = le32_to_cpu(head->result); 3804 3805 if (head->safe) { 3806 set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags); 3807 __unregister_request(mdsc, req); 3808 3809 /* last request during umount? */ 3810 if (mdsc->stopping && !__get_oldest_req(mdsc)) 3811 complete_all(&mdsc->safe_umount_waiters); 3812 3813 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3814 /* 3815 * We already handled the unsafe response, now do the 3816 * cleanup. No need to examine the response; the MDS 3817 * doesn't include any result info in the safe 3818 * response. And even if it did, there is nothing 3819 * useful we could do with a revised return value. 3820 */ 3821 doutc(cl, "got safe reply %llu, mds%d\n", tid, mds); 3822 3823 mutex_unlock(&mdsc->mutex); 3824 goto out; 3825 } 3826 } else { 3827 set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags); 3828 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 3829 } 3830 3831 doutc(cl, "tid %lld result %d\n", tid, result); 3832 if (test_bit(CEPHFS_FEATURE_REPLY_ENCODING, &session->s_features)) 3833 err = parse_reply_info(session, msg, req, (u64)-1); 3834 else 3835 err = parse_reply_info(session, msg, req, 3836 session->s_con.peer_features); 3837 mutex_unlock(&mdsc->mutex); 3838 3839 /* Must find target inode outside of mutexes to avoid deadlocks */ 3840 rinfo = &req->r_reply_info; 3841 if ((err >= 0) && rinfo->head->is_target) { 3842 struct inode *in = xchg(&req->r_new_inode, NULL); 3843 struct ceph_vino tvino = { 3844 .ino = le64_to_cpu(rinfo->targeti.in->ino), 3845 .snap = le64_to_cpu(rinfo->targeti.in->snapid) 3846 }; 3847 3848 /* 3849 * If we ended up opening an existing inode, discard 3850 * r_new_inode 3851 */ 3852 if (req->r_op == CEPH_MDS_OP_CREATE && 3853 !req->r_reply_info.has_create_ino) { 3854 /* This should never happen on an async create */ 3855 WARN_ON_ONCE(req->r_deleg_ino); 3856 iput(in); 3857 in = NULL; 3858 } 3859 3860 in = ceph_get_inode(mdsc->fsc->sb, tvino, in); 3861 if (IS_ERR(in)) { 3862 err = PTR_ERR(in); 3863 mutex_lock(&session->s_mutex); 3864 goto out_err; 3865 } 3866 req->r_target_inode = in; 3867 } 3868 3869 mutex_lock(&session->s_mutex); 3870 if (err < 0) { 3871 pr_err_client(cl, "got corrupt reply mds%d(tid:%lld)\n", 3872 mds, tid); 3873 ceph_msg_dump(msg); 3874 goto out_err; 3875 } 3876 3877 /* snap trace */ 3878 realm = NULL; 3879 if (rinfo->snapblob_len) { 3880 down_write(&mdsc->snap_rwsem); 3881 err = ceph_update_snap_trace(mdsc, rinfo->snapblob, 3882 rinfo->snapblob + rinfo->snapblob_len, 3883 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP, 3884 &realm); 3885 if (err) { 3886 up_write(&mdsc->snap_rwsem); 3887 close_sessions = true; 3888 if (err == -EIO) 3889 ceph_msg_dump(msg); 3890 goto out_err; 3891 } 3892 downgrade_write(&mdsc->snap_rwsem); 3893 } else { 3894 down_read(&mdsc->snap_rwsem); 3895 } 3896 3897 /* insert trace into our cache */ 3898 mutex_lock(&req->r_fill_mutex); 3899 current->journal_info = req; 3900 err = ceph_fill_trace(mdsc->fsc->sb, req); 3901 if (err == 0) { 3902 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || 3903 req->r_op == CEPH_MDS_OP_LSSNAP)) 3904 err = ceph_readdir_prepopulate(req, req->r_session); 3905 } 3906 current->journal_info = NULL; 3907 mutex_unlock(&req->r_fill_mutex); 3908 3909 up_read(&mdsc->snap_rwsem); 3910 if (realm) 3911 ceph_put_snap_realm(mdsc, realm); 3912 3913 if (err == 0) { 3914 if (req->r_target_inode && 3915 test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) { 3916 struct ceph_inode_info *ci = 3917 ceph_inode(req->r_target_inode); 3918 spin_lock(&ci->i_unsafe_lock); 3919 list_add_tail(&req->r_unsafe_target_item, 3920 &ci->i_unsafe_iops); 3921 spin_unlock(&ci->i_unsafe_lock); 3922 } 3923 3924 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 3925 } 3926 out_err: 3927 mutex_lock(&mdsc->mutex); 3928 if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { 3929 if (err) { 3930 req->r_err = err; 3931 } else { 3932 req->r_reply = ceph_msg_get(msg); 3933 set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags); 3934 } 3935 } else { 3936 doutc(cl, "reply arrived after request %lld was aborted\n", tid); 3937 } 3938 mutex_unlock(&mdsc->mutex); 3939 3940 mutex_unlock(&session->s_mutex); 3941 3942 /* kick calling process */ 3943 complete_request(mdsc, req); 3944 3945 ceph_update_metadata_metrics(&mdsc->metric, req->r_start_latency, 3946 req->r_end_latency, err); 3947 out: 3948 ceph_mdsc_put_request(req); 3949 3950 /* Defer closing the sessions after s_mutex lock being released */ 3951 if (close_sessions) 3952 ceph_mdsc_close_sessions(mdsc); 3953 return; 3954 } 3955 3956 3957 3958 /* 3959 * handle mds notification that our request has been forwarded. 3960 */ 3961 static void handle_forward(struct ceph_mds_client *mdsc, 3962 struct ceph_mds_session *session, 3963 struct ceph_msg *msg) 3964 { 3965 struct ceph_client *cl = mdsc->fsc->client; 3966 struct ceph_mds_request *req; 3967 u64 tid = le64_to_cpu(msg->hdr.tid); 3968 u32 next_mds; 3969 u32 fwd_seq; 3970 int err = -EINVAL; 3971 void *p = msg->front.iov_base; 3972 void *end = p + msg->front.iov_len; 3973 bool aborted = false; 3974 3975 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 3976 next_mds = ceph_decode_32(&p); 3977 fwd_seq = ceph_decode_32(&p); 3978 3979 mutex_lock(&mdsc->mutex); 3980 req = lookup_get_request(mdsc, tid); 3981 if (!req) { 3982 mutex_unlock(&mdsc->mutex); 3983 doutc(cl, "forward tid %llu to mds%d - req dne\n", tid, next_mds); 3984 return; /* dup reply? */ 3985 } 3986 3987 if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) { 3988 doutc(cl, "forward tid %llu aborted, unregistering\n", tid); 3989 __unregister_request(mdsc, req); 3990 } else if (fwd_seq <= req->r_num_fwd || (uint32_t)fwd_seq >= U32_MAX) { 3991 /* 3992 * Avoid inifinite retrying after overflow. 3993 * 3994 * The MDS will increase the fwd count and in client side 3995 * if the num_fwd is less than the one saved in request 3996 * that means the MDS is an old version and overflowed of 3997 * 8 bits. 3998 */ 3999 mutex_lock(&req->r_fill_mutex); 4000 req->r_err = -EMULTIHOP; 4001 set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags); 4002 mutex_unlock(&req->r_fill_mutex); 4003 aborted = true; 4004 pr_warn_ratelimited_client(cl, "forward tid %llu seq overflow\n", 4005 tid); 4006 } else { 4007 /* resend. forward race not possible; mds would drop */ 4008 doutc(cl, "forward tid %llu to mds%d (we resend)\n", tid, next_mds); 4009 BUG_ON(req->r_err); 4010 BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)); 4011 req->r_attempts = 0; 4012 req->r_num_fwd = fwd_seq; 4013 req->r_resend_mds = next_mds; 4014 put_request_session(req); 4015 __do_request(mdsc, req); 4016 } 4017 mutex_unlock(&mdsc->mutex); 4018 4019 /* kick calling process */ 4020 if (aborted) 4021 complete_request(mdsc, req); 4022 ceph_mdsc_put_request(req); 4023 return; 4024 4025 bad: 4026 pr_err_client(cl, "decode error err=%d\n", err); 4027 ceph_msg_dump(msg); 4028 } 4029 4030 static int __decode_session_metadata(void **p, void *end, 4031 bool *blocklisted) 4032 { 4033 /* map<string,string> */ 4034 u32 n; 4035 bool err_str; 4036 ceph_decode_32_safe(p, end, n, bad); 4037 while (n-- > 0) { 4038 u32 len; 4039 ceph_decode_32_safe(p, end, len, bad); 4040 ceph_decode_need(p, end, len, bad); 4041 err_str = !strncmp(*p, "error_string", len); 4042 *p += len; 4043 ceph_decode_32_safe(p, end, len, bad); 4044 ceph_decode_need(p, end, len, bad); 4045 /* 4046 * Match "blocklisted (blacklisted)" from newer MDSes, 4047 * or "blacklisted" from older MDSes. 4048 */ 4049 if (err_str && strnstr(*p, "blacklisted", len)) 4050 *blocklisted = true; 4051 *p += len; 4052 } 4053 return 0; 4054 bad: 4055 return -1; 4056 } 4057 4058 /* 4059 * handle a mds session control message 4060 */ 4061 static void handle_session(struct ceph_mds_session *session, 4062 struct ceph_msg *msg) 4063 { 4064 struct ceph_mds_client *mdsc = session->s_mdsc; 4065 struct ceph_client *cl = mdsc->fsc->client; 4066 int mds = session->s_mds; 4067 int msg_version = le16_to_cpu(msg->hdr.version); 4068 void *p = msg->front.iov_base; 4069 void *end = p + msg->front.iov_len; 4070 struct ceph_mds_session_head *h; 4071 u32 op; 4072 u64 seq, features = 0; 4073 int wake = 0; 4074 bool blocklisted = false; 4075 4076 /* decode */ 4077 ceph_decode_need(&p, end, sizeof(*h), bad); 4078 h = p; 4079 p += sizeof(*h); 4080 4081 op = le32_to_cpu(h->op); 4082 seq = le64_to_cpu(h->seq); 4083 4084 if (msg_version >= 3) { 4085 u32 len; 4086 /* version >= 2 and < 5, decode metadata, skip otherwise 4087 * as it's handled via flags. 4088 */ 4089 if (msg_version >= 5) 4090 ceph_decode_skip_map(&p, end, string, string, bad); 4091 else if (__decode_session_metadata(&p, end, &blocklisted) < 0) 4092 goto bad; 4093 4094 /* version >= 3, feature bits */ 4095 ceph_decode_32_safe(&p, end, len, bad); 4096 if (len) { 4097 ceph_decode_64_safe(&p, end, features, bad); 4098 p += len - sizeof(features); 4099 } 4100 } 4101 4102 if (msg_version >= 5) { 4103 u32 flags, len; 4104 4105 /* version >= 4 */ 4106 ceph_decode_skip_16(&p, end, bad); /* struct_v, struct_cv */ 4107 ceph_decode_32_safe(&p, end, len, bad); /* len */ 4108 ceph_decode_skip_n(&p, end, len, bad); /* metric_spec */ 4109 4110 /* version >= 5, flags */ 4111 ceph_decode_32_safe(&p, end, flags, bad); 4112 if (flags & CEPH_SESSION_BLOCKLISTED) { 4113 pr_warn_client(cl, "mds%d session blocklisted\n", 4114 session->s_mds); 4115 blocklisted = true; 4116 } 4117 } 4118 4119 mutex_lock(&mdsc->mutex); 4120 if (op == CEPH_SESSION_CLOSE) { 4121 ceph_get_mds_session(session); 4122 __unregister_session(mdsc, session); 4123 } 4124 /* FIXME: this ttl calculation is generous */ 4125 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 4126 mutex_unlock(&mdsc->mutex); 4127 4128 mutex_lock(&session->s_mutex); 4129 4130 doutc(cl, "mds%d %s %p state %s seq %llu\n", mds, 4131 ceph_session_op_name(op), session, 4132 ceph_session_state_name(session->s_state), seq); 4133 4134 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 4135 session->s_state = CEPH_MDS_SESSION_OPEN; 4136 pr_info_client(cl, "mds%d came back\n", session->s_mds); 4137 } 4138 4139 switch (op) { 4140 case CEPH_SESSION_OPEN: 4141 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 4142 pr_info_client(cl, "mds%d reconnect success\n", 4143 session->s_mds); 4144 4145 session->s_features = features; 4146 if (session->s_state == CEPH_MDS_SESSION_OPEN) { 4147 pr_notice_client(cl, "mds%d is already opened\n", 4148 session->s_mds); 4149 } else { 4150 session->s_state = CEPH_MDS_SESSION_OPEN; 4151 renewed_caps(mdsc, session, 0); 4152 if (test_bit(CEPHFS_FEATURE_METRIC_COLLECT, 4153 &session->s_features)) 4154 metric_schedule_delayed(&mdsc->metric); 4155 } 4156 4157 /* 4158 * The connection maybe broken and the session in client 4159 * side has been reinitialized, need to update the seq 4160 * anyway. 4161 */ 4162 if (!session->s_seq && seq) 4163 session->s_seq = seq; 4164 4165 wake = 1; 4166 if (mdsc->stopping) 4167 __close_session(mdsc, session); 4168 break; 4169 4170 case CEPH_SESSION_RENEWCAPS: 4171 if (session->s_renew_seq == seq) 4172 renewed_caps(mdsc, session, 1); 4173 break; 4174 4175 case CEPH_SESSION_CLOSE: 4176 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 4177 pr_info_client(cl, "mds%d reconnect denied\n", 4178 session->s_mds); 4179 session->s_state = CEPH_MDS_SESSION_CLOSED; 4180 cleanup_session_requests(mdsc, session); 4181 remove_session_caps(session); 4182 wake = 2; /* for good measure */ 4183 wake_up_all(&mdsc->session_close_wq); 4184 break; 4185 4186 case CEPH_SESSION_STALE: 4187 pr_info_client(cl, "mds%d caps went stale, renewing\n", 4188 session->s_mds); 4189 atomic_inc(&session->s_cap_gen); 4190 session->s_cap_ttl = jiffies - 1; 4191 send_renew_caps(mdsc, session); 4192 break; 4193 4194 case CEPH_SESSION_RECALL_STATE: 4195 ceph_trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 4196 break; 4197 4198 case CEPH_SESSION_FLUSHMSG: 4199 /* flush cap releases */ 4200 spin_lock(&session->s_cap_lock); 4201 if (session->s_num_cap_releases) 4202 ceph_flush_cap_releases(mdsc, session); 4203 spin_unlock(&session->s_cap_lock); 4204 4205 send_flushmsg_ack(mdsc, session, seq); 4206 break; 4207 4208 case CEPH_SESSION_FORCE_RO: 4209 doutc(cl, "force_session_readonly %p\n", session); 4210 spin_lock(&session->s_cap_lock); 4211 session->s_readonly = true; 4212 spin_unlock(&session->s_cap_lock); 4213 wake_up_session_caps(session, FORCE_RO); 4214 break; 4215 4216 case CEPH_SESSION_REJECT: 4217 WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING); 4218 pr_info_client(cl, "mds%d rejected session\n", 4219 session->s_mds); 4220 session->s_state = CEPH_MDS_SESSION_REJECTED; 4221 cleanup_session_requests(mdsc, session); 4222 remove_session_caps(session); 4223 if (blocklisted) 4224 mdsc->fsc->blocklisted = true; 4225 wake = 2; /* for good measure */ 4226 break; 4227 4228 default: 4229 pr_err_client(cl, "bad op %d mds%d\n", op, mds); 4230 WARN_ON(1); 4231 } 4232 4233 mutex_unlock(&session->s_mutex); 4234 if (wake) { 4235 mutex_lock(&mdsc->mutex); 4236 __wake_requests(mdsc, &session->s_waiting); 4237 if (wake == 2) 4238 kick_requests(mdsc, mds); 4239 mutex_unlock(&mdsc->mutex); 4240 } 4241 if (op == CEPH_SESSION_CLOSE) 4242 ceph_put_mds_session(session); 4243 return; 4244 4245 bad: 4246 pr_err_client(cl, "corrupt message mds%d len %d\n", mds, 4247 (int)msg->front.iov_len); 4248 ceph_msg_dump(msg); 4249 return; 4250 } 4251 4252 void ceph_mdsc_release_dir_caps(struct ceph_mds_request *req) 4253 { 4254 struct ceph_client *cl = req->r_mdsc->fsc->client; 4255 int dcaps; 4256 4257 dcaps = xchg(&req->r_dir_caps, 0); 4258 if (dcaps) { 4259 doutc(cl, "releasing r_dir_caps=%s\n", ceph_cap_string(dcaps)); 4260 ceph_put_cap_refs(ceph_inode(req->r_parent), dcaps); 4261 } 4262 } 4263 4264 void ceph_mdsc_release_dir_caps_no_check(struct ceph_mds_request *req) 4265 { 4266 struct ceph_client *cl = req->r_mdsc->fsc->client; 4267 int dcaps; 4268 4269 dcaps = xchg(&req->r_dir_caps, 0); 4270 if (dcaps) { 4271 doutc(cl, "releasing r_dir_caps=%s\n", ceph_cap_string(dcaps)); 4272 ceph_put_cap_refs_no_check_caps(ceph_inode(req->r_parent), 4273 dcaps); 4274 } 4275 } 4276 4277 /* 4278 * called under session->mutex. 4279 */ 4280 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 4281 struct ceph_mds_session *session) 4282 { 4283 struct ceph_mds_request *req, *nreq; 4284 struct rb_node *p; 4285 4286 doutc(mdsc->fsc->client, "mds%d\n", session->s_mds); 4287 4288 mutex_lock(&mdsc->mutex); 4289 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) 4290 __send_request(session, req, true); 4291 4292 /* 4293 * also re-send old requests when MDS enters reconnect stage. So that MDS 4294 * can process completed request in clientreplay stage. 4295 */ 4296 p = rb_first(&mdsc->request_tree); 4297 while (p) { 4298 req = rb_entry(p, struct ceph_mds_request, r_node); 4299 p = rb_next(p); 4300 if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) 4301 continue; 4302 if (req->r_attempts == 0) 4303 continue; /* only old requests */ 4304 if (!req->r_session) 4305 continue; 4306 if (req->r_session->s_mds != session->s_mds) 4307 continue; 4308 4309 ceph_mdsc_release_dir_caps_no_check(req); 4310 4311 __send_request(session, req, true); 4312 } 4313 mutex_unlock(&mdsc->mutex); 4314 } 4315 4316 static int send_reconnect_partial(struct ceph_reconnect_state *recon_state) 4317 { 4318 struct ceph_msg *reply; 4319 struct ceph_pagelist *_pagelist; 4320 struct page *page; 4321 __le32 *addr; 4322 int err = -ENOMEM; 4323 4324 if (!recon_state->allow_multi) 4325 return -ENOSPC; 4326 4327 /* can't handle message that contains both caps and realm */ 4328 BUG_ON(!recon_state->nr_caps == !recon_state->nr_realms); 4329 4330 /* pre-allocate new pagelist */ 4331 _pagelist = ceph_pagelist_alloc(GFP_NOFS); 4332 if (!_pagelist) 4333 return -ENOMEM; 4334 4335 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false); 4336 if (!reply) 4337 goto fail_msg; 4338 4339 /* placeholder for nr_caps */ 4340 err = ceph_pagelist_encode_32(_pagelist, 0); 4341 if (err < 0) 4342 goto fail; 4343 4344 if (recon_state->nr_caps) { 4345 /* currently encoding caps */ 4346 err = ceph_pagelist_encode_32(recon_state->pagelist, 0); 4347 if (err) 4348 goto fail; 4349 } else { 4350 /* placeholder for nr_realms (currently encoding relams) */ 4351 err = ceph_pagelist_encode_32(_pagelist, 0); 4352 if (err < 0) 4353 goto fail; 4354 } 4355 4356 err = ceph_pagelist_encode_8(recon_state->pagelist, 1); 4357 if (err) 4358 goto fail; 4359 4360 page = list_first_entry(&recon_state->pagelist->head, struct page, lru); 4361 addr = kmap_atomic(page); 4362 if (recon_state->nr_caps) { 4363 /* currently encoding caps */ 4364 *addr = cpu_to_le32(recon_state->nr_caps); 4365 } else { 4366 /* currently encoding relams */ 4367 *(addr + 1) = cpu_to_le32(recon_state->nr_realms); 4368 } 4369 kunmap_atomic(addr); 4370 4371 reply->hdr.version = cpu_to_le16(5); 4372 reply->hdr.compat_version = cpu_to_le16(4); 4373 4374 reply->hdr.data_len = cpu_to_le32(recon_state->pagelist->length); 4375 ceph_msg_data_add_pagelist(reply, recon_state->pagelist); 4376 4377 ceph_con_send(&recon_state->session->s_con, reply); 4378 ceph_pagelist_release(recon_state->pagelist); 4379 4380 recon_state->pagelist = _pagelist; 4381 recon_state->nr_caps = 0; 4382 recon_state->nr_realms = 0; 4383 recon_state->msg_version = 5; 4384 return 0; 4385 fail: 4386 ceph_msg_put(reply); 4387 fail_msg: 4388 ceph_pagelist_release(_pagelist); 4389 return err; 4390 } 4391 4392 static struct dentry* d_find_primary(struct inode *inode) 4393 { 4394 struct dentry *alias, *dn = NULL; 4395 4396 if (hlist_empty(&inode->i_dentry)) 4397 return NULL; 4398 4399 spin_lock(&inode->i_lock); 4400 if (hlist_empty(&inode->i_dentry)) 4401 goto out_unlock; 4402 4403 if (S_ISDIR(inode->i_mode)) { 4404 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 4405 if (!IS_ROOT(alias)) 4406 dn = dget(alias); 4407 goto out_unlock; 4408 } 4409 4410 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 4411 spin_lock(&alias->d_lock); 4412 if (!d_unhashed(alias) && 4413 (ceph_dentry(alias)->flags & CEPH_DENTRY_PRIMARY_LINK)) { 4414 dn = dget_dlock(alias); 4415 } 4416 spin_unlock(&alias->d_lock); 4417 if (dn) 4418 break; 4419 } 4420 out_unlock: 4421 spin_unlock(&inode->i_lock); 4422 return dn; 4423 } 4424 4425 /* 4426 * Encode information about a cap for a reconnect with the MDS. 4427 */ 4428 static int reconnect_caps_cb(struct inode *inode, int mds, void *arg) 4429 { 4430 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 4431 struct ceph_client *cl = ceph_inode_to_client(inode); 4432 union { 4433 struct ceph_mds_cap_reconnect v2; 4434 struct ceph_mds_cap_reconnect_v1 v1; 4435 } rec; 4436 struct ceph_inode_info *ci = ceph_inode(inode); 4437 struct ceph_reconnect_state *recon_state = arg; 4438 struct ceph_pagelist *pagelist = recon_state->pagelist; 4439 struct dentry *dentry; 4440 struct ceph_cap *cap; 4441 char *path; 4442 int pathlen = 0, err; 4443 u64 pathbase; 4444 u64 snap_follows; 4445 4446 dentry = d_find_primary(inode); 4447 if (dentry) { 4448 /* set pathbase to parent dir when msg_version >= 2 */ 4449 path = ceph_mdsc_build_path(mdsc, dentry, &pathlen, &pathbase, 4450 recon_state->msg_version >= 2); 4451 dput(dentry); 4452 if (IS_ERR(path)) { 4453 err = PTR_ERR(path); 4454 goto out_err; 4455 } 4456 } else { 4457 path = NULL; 4458 pathbase = 0; 4459 } 4460 4461 spin_lock(&ci->i_ceph_lock); 4462 cap = __get_cap_for_mds(ci, mds); 4463 if (!cap) { 4464 spin_unlock(&ci->i_ceph_lock); 4465 err = 0; 4466 goto out_err; 4467 } 4468 doutc(cl, " adding %p ino %llx.%llx cap %p %lld %s\n", inode, 4469 ceph_vinop(inode), cap, cap->cap_id, 4470 ceph_cap_string(cap->issued)); 4471 4472 cap->seq = 0; /* reset cap seq */ 4473 cap->issue_seq = 0; /* and issue_seq */ 4474 cap->mseq = 0; /* and migrate_seq */ 4475 cap->cap_gen = atomic_read(&cap->session->s_cap_gen); 4476 4477 /* These are lost when the session goes away */ 4478 if (S_ISDIR(inode->i_mode)) { 4479 if (cap->issued & CEPH_CAP_DIR_CREATE) { 4480 ceph_put_string(rcu_dereference_raw(ci->i_cached_layout.pool_ns)); 4481 memset(&ci->i_cached_layout, 0, sizeof(ci->i_cached_layout)); 4482 } 4483 cap->issued &= ~CEPH_CAP_ANY_DIR_OPS; 4484 } 4485 4486 if (recon_state->msg_version >= 2) { 4487 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 4488 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 4489 rec.v2.issued = cpu_to_le32(cap->issued); 4490 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 4491 rec.v2.pathbase = cpu_to_le64(pathbase); 4492 rec.v2.flock_len = (__force __le32) 4493 ((ci->i_ceph_flags & CEPH_I_ERROR_FILELOCK) ? 0 : 1); 4494 } else { 4495 struct timespec64 ts; 4496 4497 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 4498 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 4499 rec.v1.issued = cpu_to_le32(cap->issued); 4500 rec.v1.size = cpu_to_le64(i_size_read(inode)); 4501 ts = inode_get_mtime(inode); 4502 ceph_encode_timespec64(&rec.v1.mtime, &ts); 4503 ts = inode_get_atime(inode); 4504 ceph_encode_timespec64(&rec.v1.atime, &ts); 4505 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 4506 rec.v1.pathbase = cpu_to_le64(pathbase); 4507 } 4508 4509 if (list_empty(&ci->i_cap_snaps)) { 4510 snap_follows = ci->i_head_snapc ? ci->i_head_snapc->seq : 0; 4511 } else { 4512 struct ceph_cap_snap *capsnap = 4513 list_first_entry(&ci->i_cap_snaps, 4514 struct ceph_cap_snap, ci_item); 4515 snap_follows = capsnap->follows; 4516 } 4517 spin_unlock(&ci->i_ceph_lock); 4518 4519 if (recon_state->msg_version >= 2) { 4520 int num_fcntl_locks, num_flock_locks; 4521 struct ceph_filelock *flocks = NULL; 4522 size_t struct_len, total_len = sizeof(u64); 4523 u8 struct_v = 0; 4524 4525 encode_again: 4526 if (rec.v2.flock_len) { 4527 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); 4528 } else { 4529 num_fcntl_locks = 0; 4530 num_flock_locks = 0; 4531 } 4532 if (num_fcntl_locks + num_flock_locks > 0) { 4533 flocks = kmalloc_array(num_fcntl_locks + num_flock_locks, 4534 sizeof(struct ceph_filelock), 4535 GFP_NOFS); 4536 if (!flocks) { 4537 err = -ENOMEM; 4538 goto out_err; 4539 } 4540 err = ceph_encode_locks_to_buffer(inode, flocks, 4541 num_fcntl_locks, 4542 num_flock_locks); 4543 if (err) { 4544 kfree(flocks); 4545 flocks = NULL; 4546 if (err == -ENOSPC) 4547 goto encode_again; 4548 goto out_err; 4549 } 4550 } else { 4551 kfree(flocks); 4552 flocks = NULL; 4553 } 4554 4555 if (recon_state->msg_version >= 3) { 4556 /* version, compat_version and struct_len */ 4557 total_len += 2 * sizeof(u8) + sizeof(u32); 4558 struct_v = 2; 4559 } 4560 /* 4561 * number of encoded locks is stable, so copy to pagelist 4562 */ 4563 struct_len = 2 * sizeof(u32) + 4564 (num_fcntl_locks + num_flock_locks) * 4565 sizeof(struct ceph_filelock); 4566 rec.v2.flock_len = cpu_to_le32(struct_len); 4567 4568 struct_len += sizeof(u32) + pathlen + sizeof(rec.v2); 4569 4570 if (struct_v >= 2) 4571 struct_len += sizeof(u64); /* snap_follows */ 4572 4573 total_len += struct_len; 4574 4575 if (pagelist->length + total_len > RECONNECT_MAX_SIZE) { 4576 err = send_reconnect_partial(recon_state); 4577 if (err) 4578 goto out_freeflocks; 4579 pagelist = recon_state->pagelist; 4580 } 4581 4582 err = ceph_pagelist_reserve(pagelist, total_len); 4583 if (err) 4584 goto out_freeflocks; 4585 4586 ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 4587 if (recon_state->msg_version >= 3) { 4588 ceph_pagelist_encode_8(pagelist, struct_v); 4589 ceph_pagelist_encode_8(pagelist, 1); 4590 ceph_pagelist_encode_32(pagelist, struct_len); 4591 } 4592 ceph_pagelist_encode_string(pagelist, path, pathlen); 4593 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2)); 4594 ceph_locks_to_pagelist(flocks, pagelist, 4595 num_fcntl_locks, num_flock_locks); 4596 if (struct_v >= 2) 4597 ceph_pagelist_encode_64(pagelist, snap_follows); 4598 out_freeflocks: 4599 kfree(flocks); 4600 } else { 4601 err = ceph_pagelist_reserve(pagelist, 4602 sizeof(u64) + sizeof(u32) + 4603 pathlen + sizeof(rec.v1)); 4604 if (err) 4605 goto out_err; 4606 4607 ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 4608 ceph_pagelist_encode_string(pagelist, path, pathlen); 4609 ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1)); 4610 } 4611 4612 out_err: 4613 ceph_mdsc_free_path(path, pathlen); 4614 if (!err) 4615 recon_state->nr_caps++; 4616 return err; 4617 } 4618 4619 static int encode_snap_realms(struct ceph_mds_client *mdsc, 4620 struct ceph_reconnect_state *recon_state) 4621 { 4622 struct rb_node *p; 4623 struct ceph_pagelist *pagelist = recon_state->pagelist; 4624 struct ceph_client *cl = mdsc->fsc->client; 4625 int err = 0; 4626 4627 if (recon_state->msg_version >= 4) { 4628 err = ceph_pagelist_encode_32(pagelist, mdsc->num_snap_realms); 4629 if (err < 0) 4630 goto fail; 4631 } 4632 4633 /* 4634 * snaprealms. we provide mds with the ino, seq (version), and 4635 * parent for all of our realms. If the mds has any newer info, 4636 * it will tell us. 4637 */ 4638 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 4639 struct ceph_snap_realm *realm = 4640 rb_entry(p, struct ceph_snap_realm, node); 4641 struct ceph_mds_snaprealm_reconnect sr_rec; 4642 4643 if (recon_state->msg_version >= 4) { 4644 size_t need = sizeof(u8) * 2 + sizeof(u32) + 4645 sizeof(sr_rec); 4646 4647 if (pagelist->length + need > RECONNECT_MAX_SIZE) { 4648 err = send_reconnect_partial(recon_state); 4649 if (err) 4650 goto fail; 4651 pagelist = recon_state->pagelist; 4652 } 4653 4654 err = ceph_pagelist_reserve(pagelist, need); 4655 if (err) 4656 goto fail; 4657 4658 ceph_pagelist_encode_8(pagelist, 1); 4659 ceph_pagelist_encode_8(pagelist, 1); 4660 ceph_pagelist_encode_32(pagelist, sizeof(sr_rec)); 4661 } 4662 4663 doutc(cl, " adding snap realm %llx seq %lld parent %llx\n", 4664 realm->ino, realm->seq, realm->parent_ino); 4665 sr_rec.ino = cpu_to_le64(realm->ino); 4666 sr_rec.seq = cpu_to_le64(realm->seq); 4667 sr_rec.parent = cpu_to_le64(realm->parent_ino); 4668 4669 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 4670 if (err) 4671 goto fail; 4672 4673 recon_state->nr_realms++; 4674 } 4675 fail: 4676 return err; 4677 } 4678 4679 4680 /* 4681 * If an MDS fails and recovers, clients need to reconnect in order to 4682 * reestablish shared state. This includes all caps issued through 4683 * this session _and_ the snap_realm hierarchy. Because it's not 4684 * clear which snap realms the mds cares about, we send everything we 4685 * know about.. that ensures we'll then get any new info the 4686 * recovering MDS might have. 4687 * 4688 * This is a relatively heavyweight operation, but it's rare. 4689 */ 4690 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 4691 struct ceph_mds_session *session) 4692 { 4693 struct ceph_client *cl = mdsc->fsc->client; 4694 struct ceph_msg *reply; 4695 int mds = session->s_mds; 4696 int err = -ENOMEM; 4697 struct ceph_reconnect_state recon_state = { 4698 .session = session, 4699 }; 4700 LIST_HEAD(dispose); 4701 4702 pr_info_client(cl, "mds%d reconnect start\n", mds); 4703 4704 recon_state.pagelist = ceph_pagelist_alloc(GFP_NOFS); 4705 if (!recon_state.pagelist) 4706 goto fail_nopagelist; 4707 4708 reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false); 4709 if (!reply) 4710 goto fail_nomsg; 4711 4712 xa_destroy(&session->s_delegated_inos); 4713 4714 mutex_lock(&session->s_mutex); 4715 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 4716 session->s_seq = 0; 4717 4718 doutc(cl, "session %p state %s\n", session, 4719 ceph_session_state_name(session->s_state)); 4720 4721 atomic_inc(&session->s_cap_gen); 4722 4723 spin_lock(&session->s_cap_lock); 4724 /* don't know if session is readonly */ 4725 session->s_readonly = 0; 4726 /* 4727 * notify __ceph_remove_cap() that we are composing cap reconnect. 4728 * If a cap get released before being added to the cap reconnect, 4729 * __ceph_remove_cap() should skip queuing cap release. 4730 */ 4731 session->s_cap_reconnect = 1; 4732 /* drop old cap expires; we're about to reestablish that state */ 4733 detach_cap_releases(session, &dispose); 4734 spin_unlock(&session->s_cap_lock); 4735 dispose_cap_releases(mdsc, &dispose); 4736 4737 /* trim unused caps to reduce MDS's cache rejoin time */ 4738 if (mdsc->fsc->sb->s_root) 4739 shrink_dcache_parent(mdsc->fsc->sb->s_root); 4740 4741 ceph_con_close(&session->s_con); 4742 ceph_con_open(&session->s_con, 4743 CEPH_ENTITY_TYPE_MDS, mds, 4744 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 4745 4746 /* replay unsafe requests */ 4747 replay_unsafe_requests(mdsc, session); 4748 4749 ceph_early_kick_flushing_caps(mdsc, session); 4750 4751 down_read(&mdsc->snap_rwsem); 4752 4753 /* placeholder for nr_caps */ 4754 err = ceph_pagelist_encode_32(recon_state.pagelist, 0); 4755 if (err) 4756 goto fail; 4757 4758 if (test_bit(CEPHFS_FEATURE_MULTI_RECONNECT, &session->s_features)) { 4759 recon_state.msg_version = 3; 4760 recon_state.allow_multi = true; 4761 } else if (session->s_con.peer_features & CEPH_FEATURE_MDSENC) { 4762 recon_state.msg_version = 3; 4763 } else { 4764 recon_state.msg_version = 2; 4765 } 4766 /* trsaverse this session's caps */ 4767 err = ceph_iterate_session_caps(session, reconnect_caps_cb, &recon_state); 4768 4769 spin_lock(&session->s_cap_lock); 4770 session->s_cap_reconnect = 0; 4771 spin_unlock(&session->s_cap_lock); 4772 4773 if (err < 0) 4774 goto fail; 4775 4776 /* check if all realms can be encoded into current message */ 4777 if (mdsc->num_snap_realms) { 4778 size_t total_len = 4779 recon_state.pagelist->length + 4780 mdsc->num_snap_realms * 4781 sizeof(struct ceph_mds_snaprealm_reconnect); 4782 if (recon_state.msg_version >= 4) { 4783 /* number of realms */ 4784 total_len += sizeof(u32); 4785 /* version, compat_version and struct_len */ 4786 total_len += mdsc->num_snap_realms * 4787 (2 * sizeof(u8) + sizeof(u32)); 4788 } 4789 if (total_len > RECONNECT_MAX_SIZE) { 4790 if (!recon_state.allow_multi) { 4791 err = -ENOSPC; 4792 goto fail; 4793 } 4794 if (recon_state.nr_caps) { 4795 err = send_reconnect_partial(&recon_state); 4796 if (err) 4797 goto fail; 4798 } 4799 recon_state.msg_version = 5; 4800 } 4801 } 4802 4803 err = encode_snap_realms(mdsc, &recon_state); 4804 if (err < 0) 4805 goto fail; 4806 4807 if (recon_state.msg_version >= 5) { 4808 err = ceph_pagelist_encode_8(recon_state.pagelist, 0); 4809 if (err < 0) 4810 goto fail; 4811 } 4812 4813 if (recon_state.nr_caps || recon_state.nr_realms) { 4814 struct page *page = 4815 list_first_entry(&recon_state.pagelist->head, 4816 struct page, lru); 4817 __le32 *addr = kmap_atomic(page); 4818 if (recon_state.nr_caps) { 4819 WARN_ON(recon_state.nr_realms != mdsc->num_snap_realms); 4820 *addr = cpu_to_le32(recon_state.nr_caps); 4821 } else if (recon_state.msg_version >= 4) { 4822 *(addr + 1) = cpu_to_le32(recon_state.nr_realms); 4823 } 4824 kunmap_atomic(addr); 4825 } 4826 4827 reply->hdr.version = cpu_to_le16(recon_state.msg_version); 4828 if (recon_state.msg_version >= 4) 4829 reply->hdr.compat_version = cpu_to_le16(4); 4830 4831 reply->hdr.data_len = cpu_to_le32(recon_state.pagelist->length); 4832 ceph_msg_data_add_pagelist(reply, recon_state.pagelist); 4833 4834 ceph_con_send(&session->s_con, reply); 4835 4836 mutex_unlock(&session->s_mutex); 4837 4838 mutex_lock(&mdsc->mutex); 4839 __wake_requests(mdsc, &session->s_waiting); 4840 mutex_unlock(&mdsc->mutex); 4841 4842 up_read(&mdsc->snap_rwsem); 4843 ceph_pagelist_release(recon_state.pagelist); 4844 return; 4845 4846 fail: 4847 ceph_msg_put(reply); 4848 up_read(&mdsc->snap_rwsem); 4849 mutex_unlock(&session->s_mutex); 4850 fail_nomsg: 4851 ceph_pagelist_release(recon_state.pagelist); 4852 fail_nopagelist: 4853 pr_err_client(cl, "error %d preparing reconnect for mds%d\n", 4854 err, mds); 4855 return; 4856 } 4857 4858 4859 /* 4860 * compare old and new mdsmaps, kicking requests 4861 * and closing out old connections as necessary 4862 * 4863 * called under mdsc->mutex. 4864 */ 4865 static void check_new_map(struct ceph_mds_client *mdsc, 4866 struct ceph_mdsmap *newmap, 4867 struct ceph_mdsmap *oldmap) 4868 { 4869 int i, j, err; 4870 int oldstate, newstate; 4871 struct ceph_mds_session *s; 4872 unsigned long targets[DIV_ROUND_UP(CEPH_MAX_MDS, sizeof(unsigned long))] = {0}; 4873 struct ceph_client *cl = mdsc->fsc->client; 4874 4875 doutc(cl, "new %u old %u\n", newmap->m_epoch, oldmap->m_epoch); 4876 4877 if (newmap->m_info) { 4878 for (i = 0; i < newmap->possible_max_rank; i++) { 4879 for (j = 0; j < newmap->m_info[i].num_export_targets; j++) 4880 set_bit(newmap->m_info[i].export_targets[j], targets); 4881 } 4882 } 4883 4884 for (i = 0; i < oldmap->possible_max_rank && i < mdsc->max_sessions; i++) { 4885 if (!mdsc->sessions[i]) 4886 continue; 4887 s = mdsc->sessions[i]; 4888 oldstate = ceph_mdsmap_get_state(oldmap, i); 4889 newstate = ceph_mdsmap_get_state(newmap, i); 4890 4891 doutc(cl, "mds%d state %s%s -> %s%s (session %s)\n", 4892 i, ceph_mds_state_name(oldstate), 4893 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 4894 ceph_mds_state_name(newstate), 4895 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 4896 ceph_session_state_name(s->s_state)); 4897 4898 if (i >= newmap->possible_max_rank) { 4899 /* force close session for stopped mds */ 4900 ceph_get_mds_session(s); 4901 __unregister_session(mdsc, s); 4902 __wake_requests(mdsc, &s->s_waiting); 4903 mutex_unlock(&mdsc->mutex); 4904 4905 mutex_lock(&s->s_mutex); 4906 cleanup_session_requests(mdsc, s); 4907 remove_session_caps(s); 4908 mutex_unlock(&s->s_mutex); 4909 4910 ceph_put_mds_session(s); 4911 4912 mutex_lock(&mdsc->mutex); 4913 kick_requests(mdsc, i); 4914 continue; 4915 } 4916 4917 if (memcmp(ceph_mdsmap_get_addr(oldmap, i), 4918 ceph_mdsmap_get_addr(newmap, i), 4919 sizeof(struct ceph_entity_addr))) { 4920 /* just close it */ 4921 mutex_unlock(&mdsc->mutex); 4922 mutex_lock(&s->s_mutex); 4923 mutex_lock(&mdsc->mutex); 4924 ceph_con_close(&s->s_con); 4925 mutex_unlock(&s->s_mutex); 4926 s->s_state = CEPH_MDS_SESSION_RESTARTING; 4927 } else if (oldstate == newstate) { 4928 continue; /* nothing new with this mds */ 4929 } 4930 4931 /* 4932 * send reconnect? 4933 */ 4934 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 4935 newstate >= CEPH_MDS_STATE_RECONNECT) { 4936 mutex_unlock(&mdsc->mutex); 4937 clear_bit(i, targets); 4938 send_mds_reconnect(mdsc, s); 4939 mutex_lock(&mdsc->mutex); 4940 } 4941 4942 /* 4943 * kick request on any mds that has gone active. 4944 */ 4945 if (oldstate < CEPH_MDS_STATE_ACTIVE && 4946 newstate >= CEPH_MDS_STATE_ACTIVE) { 4947 if (oldstate != CEPH_MDS_STATE_CREATING && 4948 oldstate != CEPH_MDS_STATE_STARTING) 4949 pr_info_client(cl, "mds%d recovery completed\n", 4950 s->s_mds); 4951 kick_requests(mdsc, i); 4952 mutex_unlock(&mdsc->mutex); 4953 mutex_lock(&s->s_mutex); 4954 mutex_lock(&mdsc->mutex); 4955 ceph_kick_flushing_caps(mdsc, s); 4956 mutex_unlock(&s->s_mutex); 4957 wake_up_session_caps(s, RECONNECT); 4958 } 4959 } 4960 4961 /* 4962 * Only open and reconnect sessions that don't exist yet. 4963 */ 4964 for (i = 0; i < newmap->possible_max_rank; i++) { 4965 /* 4966 * In case the import MDS is crashed just after 4967 * the EImportStart journal is flushed, so when 4968 * a standby MDS takes over it and is replaying 4969 * the EImportStart journal the new MDS daemon 4970 * will wait the client to reconnect it, but the 4971 * client may never register/open the session yet. 4972 * 4973 * Will try to reconnect that MDS daemon if the 4974 * rank number is in the export targets array and 4975 * is the up:reconnect state. 4976 */ 4977 newstate = ceph_mdsmap_get_state(newmap, i); 4978 if (!test_bit(i, targets) || newstate != CEPH_MDS_STATE_RECONNECT) 4979 continue; 4980 4981 /* 4982 * The session maybe registered and opened by some 4983 * requests which were choosing random MDSes during 4984 * the mdsc->mutex's unlock/lock gap below in rare 4985 * case. But the related MDS daemon will just queue 4986 * that requests and be still waiting for the client's 4987 * reconnection request in up:reconnect state. 4988 */ 4989 s = __ceph_lookup_mds_session(mdsc, i); 4990 if (likely(!s)) { 4991 s = __open_export_target_session(mdsc, i); 4992 if (IS_ERR(s)) { 4993 err = PTR_ERR(s); 4994 pr_err_client(cl, 4995 "failed to open export target session, err %d\n", 4996 err); 4997 continue; 4998 } 4999 } 5000 doutc(cl, "send reconnect to export target mds.%d\n", i); 5001 mutex_unlock(&mdsc->mutex); 5002 send_mds_reconnect(mdsc, s); 5003 ceph_put_mds_session(s); 5004 mutex_lock(&mdsc->mutex); 5005 } 5006 5007 for (i = 0; i < newmap->possible_max_rank && i < mdsc->max_sessions; i++) { 5008 s = mdsc->sessions[i]; 5009 if (!s) 5010 continue; 5011 if (!ceph_mdsmap_is_laggy(newmap, i)) 5012 continue; 5013 if (s->s_state == CEPH_MDS_SESSION_OPEN || 5014 s->s_state == CEPH_MDS_SESSION_HUNG || 5015 s->s_state == CEPH_MDS_SESSION_CLOSING) { 5016 doutc(cl, " connecting to export targets of laggy mds%d\n", i); 5017 __open_export_target_sessions(mdsc, s); 5018 } 5019 } 5020 } 5021 5022 5023 5024 /* 5025 * leases 5026 */ 5027 5028 /* 5029 * caller must hold session s_mutex, dentry->d_lock 5030 */ 5031 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 5032 { 5033 struct ceph_dentry_info *di = ceph_dentry(dentry); 5034 5035 ceph_put_mds_session(di->lease_session); 5036 di->lease_session = NULL; 5037 } 5038 5039 static void handle_lease(struct ceph_mds_client *mdsc, 5040 struct ceph_mds_session *session, 5041 struct ceph_msg *msg) 5042 { 5043 struct ceph_client *cl = mdsc->fsc->client; 5044 struct super_block *sb = mdsc->fsc->sb; 5045 struct inode *inode; 5046 struct dentry *parent, *dentry; 5047 struct ceph_dentry_info *di; 5048 int mds = session->s_mds; 5049 struct ceph_mds_lease *h = msg->front.iov_base; 5050 u32 seq; 5051 struct ceph_vino vino; 5052 struct qstr dname; 5053 int release = 0; 5054 5055 doutc(cl, "from mds%d\n", mds); 5056 5057 if (!ceph_inc_mds_stopping_blocker(mdsc, session)) 5058 return; 5059 5060 /* decode */ 5061 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 5062 goto bad; 5063 vino.ino = le64_to_cpu(h->ino); 5064 vino.snap = CEPH_NOSNAP; 5065 seq = le32_to_cpu(h->seq); 5066 dname.len = get_unaligned_le32(h + 1); 5067 if (msg->front.iov_len < sizeof(*h) + sizeof(u32) + dname.len) 5068 goto bad; 5069 dname.name = (void *)(h + 1) + sizeof(u32); 5070 5071 /* lookup inode */ 5072 inode = ceph_find_inode(sb, vino); 5073 doutc(cl, "%s, ino %llx %p %.*s\n", ceph_lease_op_name(h->action), 5074 vino.ino, inode, dname.len, dname.name); 5075 5076 mutex_lock(&session->s_mutex); 5077 if (!inode) { 5078 doutc(cl, "no inode %llx\n", vino.ino); 5079 goto release; 5080 } 5081 5082 /* dentry */ 5083 parent = d_find_alias(inode); 5084 if (!parent) { 5085 doutc(cl, "no parent dentry on inode %p\n", inode); 5086 WARN_ON(1); 5087 goto release; /* hrm... */ 5088 } 5089 dname.hash = full_name_hash(parent, dname.name, dname.len); 5090 dentry = d_lookup(parent, &dname); 5091 dput(parent); 5092 if (!dentry) 5093 goto release; 5094 5095 spin_lock(&dentry->d_lock); 5096 di = ceph_dentry(dentry); 5097 switch (h->action) { 5098 case CEPH_MDS_LEASE_REVOKE: 5099 if (di->lease_session == session) { 5100 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 5101 h->seq = cpu_to_le32(di->lease_seq); 5102 __ceph_mdsc_drop_dentry_lease(dentry); 5103 } 5104 release = 1; 5105 break; 5106 5107 case CEPH_MDS_LEASE_RENEW: 5108 if (di->lease_session == session && 5109 di->lease_gen == atomic_read(&session->s_cap_gen) && 5110 di->lease_renew_from && 5111 di->lease_renew_after == 0) { 5112 unsigned long duration = 5113 msecs_to_jiffies(le32_to_cpu(h->duration_ms)); 5114 5115 di->lease_seq = seq; 5116 di->time = di->lease_renew_from + duration; 5117 di->lease_renew_after = di->lease_renew_from + 5118 (duration >> 1); 5119 di->lease_renew_from = 0; 5120 } 5121 break; 5122 } 5123 spin_unlock(&dentry->d_lock); 5124 dput(dentry); 5125 5126 if (!release) 5127 goto out; 5128 5129 release: 5130 /* let's just reuse the same message */ 5131 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 5132 ceph_msg_get(msg); 5133 ceph_con_send(&session->s_con, msg); 5134 5135 out: 5136 mutex_unlock(&session->s_mutex); 5137 iput(inode); 5138 5139 ceph_dec_mds_stopping_blocker(mdsc); 5140 return; 5141 5142 bad: 5143 ceph_dec_mds_stopping_blocker(mdsc); 5144 5145 pr_err_client(cl, "corrupt lease message\n"); 5146 ceph_msg_dump(msg); 5147 } 5148 5149 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 5150 struct dentry *dentry, char action, 5151 u32 seq) 5152 { 5153 struct ceph_client *cl = session->s_mdsc->fsc->client; 5154 struct ceph_msg *msg; 5155 struct ceph_mds_lease *lease; 5156 struct inode *dir; 5157 int len = sizeof(*lease) + sizeof(u32) + NAME_MAX; 5158 5159 doutc(cl, "identry %p %s to mds%d\n", dentry, ceph_lease_op_name(action), 5160 session->s_mds); 5161 5162 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 5163 if (!msg) 5164 return; 5165 lease = msg->front.iov_base; 5166 lease->action = action; 5167 lease->seq = cpu_to_le32(seq); 5168 5169 spin_lock(&dentry->d_lock); 5170 dir = d_inode(dentry->d_parent); 5171 lease->ino = cpu_to_le64(ceph_ino(dir)); 5172 lease->first = lease->last = cpu_to_le64(ceph_snap(dir)); 5173 5174 put_unaligned_le32(dentry->d_name.len, lease + 1); 5175 memcpy((void *)(lease + 1) + 4, 5176 dentry->d_name.name, dentry->d_name.len); 5177 spin_unlock(&dentry->d_lock); 5178 5179 ceph_con_send(&session->s_con, msg); 5180 } 5181 5182 /* 5183 * lock unlock the session, to wait ongoing session activities 5184 */ 5185 static void lock_unlock_session(struct ceph_mds_session *s) 5186 { 5187 mutex_lock(&s->s_mutex); 5188 mutex_unlock(&s->s_mutex); 5189 } 5190 5191 static void maybe_recover_session(struct ceph_mds_client *mdsc) 5192 { 5193 struct ceph_client *cl = mdsc->fsc->client; 5194 struct ceph_fs_client *fsc = mdsc->fsc; 5195 5196 if (!ceph_test_mount_opt(fsc, CLEANRECOVER)) 5197 return; 5198 5199 if (READ_ONCE(fsc->mount_state) != CEPH_MOUNT_MOUNTED) 5200 return; 5201 5202 if (!READ_ONCE(fsc->blocklisted)) 5203 return; 5204 5205 pr_info_client(cl, "auto reconnect after blocklisted\n"); 5206 ceph_force_reconnect(fsc->sb); 5207 } 5208 5209 bool check_session_state(struct ceph_mds_session *s) 5210 { 5211 struct ceph_client *cl = s->s_mdsc->fsc->client; 5212 5213 switch (s->s_state) { 5214 case CEPH_MDS_SESSION_OPEN: 5215 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 5216 s->s_state = CEPH_MDS_SESSION_HUNG; 5217 pr_info_client(cl, "mds%d hung\n", s->s_mds); 5218 } 5219 break; 5220 case CEPH_MDS_SESSION_CLOSING: 5221 case CEPH_MDS_SESSION_NEW: 5222 case CEPH_MDS_SESSION_RESTARTING: 5223 case CEPH_MDS_SESSION_CLOSED: 5224 case CEPH_MDS_SESSION_REJECTED: 5225 return false; 5226 } 5227 5228 return true; 5229 } 5230 5231 /* 5232 * If the sequence is incremented while we're waiting on a REQUEST_CLOSE reply, 5233 * then we need to retransmit that request. 5234 */ 5235 void inc_session_sequence(struct ceph_mds_session *s) 5236 { 5237 struct ceph_client *cl = s->s_mdsc->fsc->client; 5238 5239 lockdep_assert_held(&s->s_mutex); 5240 5241 s->s_seq++; 5242 5243 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 5244 int ret; 5245 5246 doutc(cl, "resending session close request for mds%d\n", s->s_mds); 5247 ret = request_close_session(s); 5248 if (ret < 0) 5249 pr_err_client(cl, "unable to close session to mds%d: %d\n", 5250 s->s_mds, ret); 5251 } 5252 } 5253 5254 /* 5255 * delayed work -- periodically trim expired leases, renew caps with mds. If 5256 * the @delay parameter is set to 0 or if it's more than 5 secs, the default 5257 * workqueue delay value of 5 secs will be used. 5258 */ 5259 static void schedule_delayed(struct ceph_mds_client *mdsc, unsigned long delay) 5260 { 5261 unsigned long max_delay = HZ * 5; 5262 5263 /* 5 secs default delay */ 5264 if (!delay || (delay > max_delay)) 5265 delay = max_delay; 5266 schedule_delayed_work(&mdsc->delayed_work, 5267 round_jiffies_relative(delay)); 5268 } 5269 5270 static void delayed_work(struct work_struct *work) 5271 { 5272 struct ceph_mds_client *mdsc = 5273 container_of(work, struct ceph_mds_client, delayed_work.work); 5274 unsigned long delay; 5275 int renew_interval; 5276 int renew_caps; 5277 int i; 5278 5279 doutc(mdsc->fsc->client, "mdsc delayed_work\n"); 5280 5281 if (mdsc->stopping >= CEPH_MDSC_STOPPING_FLUSHED) 5282 return; 5283 5284 mutex_lock(&mdsc->mutex); 5285 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 5286 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 5287 mdsc->last_renew_caps); 5288 if (renew_caps) 5289 mdsc->last_renew_caps = jiffies; 5290 5291 for (i = 0; i < mdsc->max_sessions; i++) { 5292 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 5293 if (!s) 5294 continue; 5295 5296 if (!check_session_state(s)) { 5297 ceph_put_mds_session(s); 5298 continue; 5299 } 5300 mutex_unlock(&mdsc->mutex); 5301 5302 mutex_lock(&s->s_mutex); 5303 if (renew_caps) 5304 send_renew_caps(mdsc, s); 5305 else 5306 ceph_con_keepalive(&s->s_con); 5307 if (s->s_state == CEPH_MDS_SESSION_OPEN || 5308 s->s_state == CEPH_MDS_SESSION_HUNG) 5309 ceph_send_cap_releases(mdsc, s); 5310 mutex_unlock(&s->s_mutex); 5311 ceph_put_mds_session(s); 5312 5313 mutex_lock(&mdsc->mutex); 5314 } 5315 mutex_unlock(&mdsc->mutex); 5316 5317 delay = ceph_check_delayed_caps(mdsc); 5318 5319 ceph_queue_cap_reclaim_work(mdsc); 5320 5321 ceph_trim_snapid_map(mdsc); 5322 5323 maybe_recover_session(mdsc); 5324 5325 schedule_delayed(mdsc, delay); 5326 } 5327 5328 int ceph_mdsc_init(struct ceph_fs_client *fsc) 5329 5330 { 5331 struct ceph_mds_client *mdsc; 5332 int err; 5333 5334 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 5335 if (!mdsc) 5336 return -ENOMEM; 5337 mdsc->fsc = fsc; 5338 mutex_init(&mdsc->mutex); 5339 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 5340 if (!mdsc->mdsmap) { 5341 err = -ENOMEM; 5342 goto err_mdsc; 5343 } 5344 5345 init_completion(&mdsc->safe_umount_waiters); 5346 spin_lock_init(&mdsc->stopping_lock); 5347 atomic_set(&mdsc->stopping_blockers, 0); 5348 init_completion(&mdsc->stopping_waiter); 5349 init_waitqueue_head(&mdsc->session_close_wq); 5350 INIT_LIST_HEAD(&mdsc->waiting_for_map); 5351 mdsc->quotarealms_inodes = RB_ROOT; 5352 mutex_init(&mdsc->quotarealms_inodes_mutex); 5353 init_rwsem(&mdsc->snap_rwsem); 5354 mdsc->snap_realms = RB_ROOT; 5355 INIT_LIST_HEAD(&mdsc->snap_empty); 5356 spin_lock_init(&mdsc->snap_empty_lock); 5357 mdsc->request_tree = RB_ROOT; 5358 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 5359 mdsc->last_renew_caps = jiffies; 5360 INIT_LIST_HEAD(&mdsc->cap_delay_list); 5361 INIT_LIST_HEAD(&mdsc->cap_wait_list); 5362 spin_lock_init(&mdsc->cap_delay_lock); 5363 INIT_LIST_HEAD(&mdsc->snap_flush_list); 5364 spin_lock_init(&mdsc->snap_flush_lock); 5365 mdsc->last_cap_flush_tid = 1; 5366 INIT_LIST_HEAD(&mdsc->cap_flush_list); 5367 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 5368 spin_lock_init(&mdsc->cap_dirty_lock); 5369 init_waitqueue_head(&mdsc->cap_flushing_wq); 5370 INIT_WORK(&mdsc->cap_reclaim_work, ceph_cap_reclaim_work); 5371 err = ceph_metric_init(&mdsc->metric); 5372 if (err) 5373 goto err_mdsmap; 5374 5375 spin_lock_init(&mdsc->dentry_list_lock); 5376 INIT_LIST_HEAD(&mdsc->dentry_leases); 5377 INIT_LIST_HEAD(&mdsc->dentry_dir_leases); 5378 5379 ceph_caps_init(mdsc); 5380 ceph_adjust_caps_max_min(mdsc, fsc->mount_options); 5381 5382 spin_lock_init(&mdsc->snapid_map_lock); 5383 mdsc->snapid_map_tree = RB_ROOT; 5384 INIT_LIST_HEAD(&mdsc->snapid_map_lru); 5385 5386 init_rwsem(&mdsc->pool_perm_rwsem); 5387 mdsc->pool_perm_tree = RB_ROOT; 5388 5389 strscpy(mdsc->nodename, utsname()->nodename, 5390 sizeof(mdsc->nodename)); 5391 5392 fsc->mdsc = mdsc; 5393 return 0; 5394 5395 err_mdsmap: 5396 kfree(mdsc->mdsmap); 5397 err_mdsc: 5398 kfree(mdsc); 5399 return err; 5400 } 5401 5402 /* 5403 * Wait for safe replies on open mds requests. If we time out, drop 5404 * all requests from the tree to avoid dangling dentry refs. 5405 */ 5406 static void wait_requests(struct ceph_mds_client *mdsc) 5407 { 5408 struct ceph_client *cl = mdsc->fsc->client; 5409 struct ceph_options *opts = mdsc->fsc->client->options; 5410 struct ceph_mds_request *req; 5411 5412 mutex_lock(&mdsc->mutex); 5413 if (__get_oldest_req(mdsc)) { 5414 mutex_unlock(&mdsc->mutex); 5415 5416 doutc(cl, "waiting for requests\n"); 5417 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 5418 ceph_timeout_jiffies(opts->mount_timeout)); 5419 5420 /* tear down remaining requests */ 5421 mutex_lock(&mdsc->mutex); 5422 while ((req = __get_oldest_req(mdsc))) { 5423 doutc(cl, "timed out on tid %llu\n", req->r_tid); 5424 list_del_init(&req->r_wait); 5425 __unregister_request(mdsc, req); 5426 } 5427 } 5428 mutex_unlock(&mdsc->mutex); 5429 doutc(cl, "done\n"); 5430 } 5431 5432 void send_flush_mdlog(struct ceph_mds_session *s) 5433 { 5434 struct ceph_client *cl = s->s_mdsc->fsc->client; 5435 struct ceph_msg *msg; 5436 5437 /* 5438 * Pre-luminous MDS crashes when it sees an unknown session request 5439 */ 5440 if (!CEPH_HAVE_FEATURE(s->s_con.peer_features, SERVER_LUMINOUS)) 5441 return; 5442 5443 mutex_lock(&s->s_mutex); 5444 doutc(cl, "request mdlog flush to mds%d (%s)s seq %lld\n", 5445 s->s_mds, ceph_session_state_name(s->s_state), s->s_seq); 5446 msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_FLUSH_MDLOG, 5447 s->s_seq); 5448 if (!msg) { 5449 pr_err_client(cl, "failed to request mdlog flush to mds%d (%s) seq %lld\n", 5450 s->s_mds, ceph_session_state_name(s->s_state), s->s_seq); 5451 } else { 5452 ceph_con_send(&s->s_con, msg); 5453 } 5454 mutex_unlock(&s->s_mutex); 5455 } 5456 5457 /* 5458 * called before mount is ro, and before dentries are torn down. 5459 * (hmm, does this still race with new lookups?) 5460 */ 5461 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 5462 { 5463 doutc(mdsc->fsc->client, "begin\n"); 5464 mdsc->stopping = CEPH_MDSC_STOPPING_BEGIN; 5465 5466 ceph_mdsc_iterate_sessions(mdsc, send_flush_mdlog, true); 5467 ceph_mdsc_iterate_sessions(mdsc, lock_unlock_session, false); 5468 ceph_flush_dirty_caps(mdsc); 5469 wait_requests(mdsc); 5470 5471 /* 5472 * wait for reply handlers to drop their request refs and 5473 * their inode/dcache refs 5474 */ 5475 ceph_msgr_flush(); 5476 5477 ceph_cleanup_quotarealms_inodes(mdsc); 5478 doutc(mdsc->fsc->client, "done\n"); 5479 } 5480 5481 /* 5482 * flush the mdlog and wait for all write mds requests to flush. 5483 */ 5484 static void flush_mdlog_and_wait_mdsc_unsafe_requests(struct ceph_mds_client *mdsc, 5485 u64 want_tid) 5486 { 5487 struct ceph_client *cl = mdsc->fsc->client; 5488 struct ceph_mds_request *req = NULL, *nextreq; 5489 struct ceph_mds_session *last_session = NULL; 5490 struct rb_node *n; 5491 5492 mutex_lock(&mdsc->mutex); 5493 doutc(cl, "want %lld\n", want_tid); 5494 restart: 5495 req = __get_oldest_req(mdsc); 5496 while (req && req->r_tid <= want_tid) { 5497 /* find next request */ 5498 n = rb_next(&req->r_node); 5499 if (n) 5500 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 5501 else 5502 nextreq = NULL; 5503 if (req->r_op != CEPH_MDS_OP_SETFILELOCK && 5504 (req->r_op & CEPH_MDS_OP_WRITE)) { 5505 struct ceph_mds_session *s = req->r_session; 5506 5507 if (!s) { 5508 req = nextreq; 5509 continue; 5510 } 5511 5512 /* write op */ 5513 ceph_mdsc_get_request(req); 5514 if (nextreq) 5515 ceph_mdsc_get_request(nextreq); 5516 s = ceph_get_mds_session(s); 5517 mutex_unlock(&mdsc->mutex); 5518 5519 /* send flush mdlog request to MDS */ 5520 if (last_session != s) { 5521 send_flush_mdlog(s); 5522 ceph_put_mds_session(last_session); 5523 last_session = s; 5524 } else { 5525 ceph_put_mds_session(s); 5526 } 5527 doutc(cl, "wait on %llu (want %llu)\n", 5528 req->r_tid, want_tid); 5529 wait_for_completion(&req->r_safe_completion); 5530 5531 mutex_lock(&mdsc->mutex); 5532 ceph_mdsc_put_request(req); 5533 if (!nextreq) 5534 break; /* next dne before, so we're done! */ 5535 if (RB_EMPTY_NODE(&nextreq->r_node)) { 5536 /* next request was removed from tree */ 5537 ceph_mdsc_put_request(nextreq); 5538 goto restart; 5539 } 5540 ceph_mdsc_put_request(nextreq); /* won't go away */ 5541 } 5542 req = nextreq; 5543 } 5544 mutex_unlock(&mdsc->mutex); 5545 ceph_put_mds_session(last_session); 5546 doutc(cl, "done\n"); 5547 } 5548 5549 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 5550 { 5551 struct ceph_client *cl = mdsc->fsc->client; 5552 u64 want_tid, want_flush; 5553 5554 if (READ_ONCE(mdsc->fsc->mount_state) >= CEPH_MOUNT_SHUTDOWN) 5555 return; 5556 5557 doutc(cl, "sync\n"); 5558 mutex_lock(&mdsc->mutex); 5559 want_tid = mdsc->last_tid; 5560 mutex_unlock(&mdsc->mutex); 5561 5562 ceph_flush_dirty_caps(mdsc); 5563 spin_lock(&mdsc->cap_dirty_lock); 5564 want_flush = mdsc->last_cap_flush_tid; 5565 if (!list_empty(&mdsc->cap_flush_list)) { 5566 struct ceph_cap_flush *cf = 5567 list_last_entry(&mdsc->cap_flush_list, 5568 struct ceph_cap_flush, g_list); 5569 cf->wake = true; 5570 } 5571 spin_unlock(&mdsc->cap_dirty_lock); 5572 5573 doutc(cl, "sync want tid %lld flush_seq %lld\n", want_tid, want_flush); 5574 5575 flush_mdlog_and_wait_mdsc_unsafe_requests(mdsc, want_tid); 5576 wait_caps_flush(mdsc, want_flush); 5577 } 5578 5579 /* 5580 * true if all sessions are closed, or we force unmount 5581 */ 5582 static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped) 5583 { 5584 if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) 5585 return true; 5586 return atomic_read(&mdsc->num_sessions) <= skipped; 5587 } 5588 5589 /* 5590 * called after sb is ro or when metadata corrupted. 5591 */ 5592 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 5593 { 5594 struct ceph_options *opts = mdsc->fsc->client->options; 5595 struct ceph_client *cl = mdsc->fsc->client; 5596 struct ceph_mds_session *session; 5597 int i; 5598 int skipped = 0; 5599 5600 doutc(cl, "begin\n"); 5601 5602 /* close sessions */ 5603 mutex_lock(&mdsc->mutex); 5604 for (i = 0; i < mdsc->max_sessions; i++) { 5605 session = __ceph_lookup_mds_session(mdsc, i); 5606 if (!session) 5607 continue; 5608 mutex_unlock(&mdsc->mutex); 5609 mutex_lock(&session->s_mutex); 5610 if (__close_session(mdsc, session) <= 0) 5611 skipped++; 5612 mutex_unlock(&session->s_mutex); 5613 ceph_put_mds_session(session); 5614 mutex_lock(&mdsc->mutex); 5615 } 5616 mutex_unlock(&mdsc->mutex); 5617 5618 doutc(cl, "waiting for sessions to close\n"); 5619 wait_event_timeout(mdsc->session_close_wq, 5620 done_closing_sessions(mdsc, skipped), 5621 ceph_timeout_jiffies(opts->mount_timeout)); 5622 5623 /* tear down remaining sessions */ 5624 mutex_lock(&mdsc->mutex); 5625 for (i = 0; i < mdsc->max_sessions; i++) { 5626 if (mdsc->sessions[i]) { 5627 session = ceph_get_mds_session(mdsc->sessions[i]); 5628 __unregister_session(mdsc, session); 5629 mutex_unlock(&mdsc->mutex); 5630 mutex_lock(&session->s_mutex); 5631 remove_session_caps(session); 5632 mutex_unlock(&session->s_mutex); 5633 ceph_put_mds_session(session); 5634 mutex_lock(&mdsc->mutex); 5635 } 5636 } 5637 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 5638 mutex_unlock(&mdsc->mutex); 5639 5640 ceph_cleanup_snapid_map(mdsc); 5641 ceph_cleanup_global_and_empty_realms(mdsc); 5642 5643 cancel_work_sync(&mdsc->cap_reclaim_work); 5644 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 5645 5646 doutc(cl, "done\n"); 5647 } 5648 5649 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc) 5650 { 5651 struct ceph_mds_session *session; 5652 int mds; 5653 5654 doutc(mdsc->fsc->client, "force umount\n"); 5655 5656 mutex_lock(&mdsc->mutex); 5657 for (mds = 0; mds < mdsc->max_sessions; mds++) { 5658 session = __ceph_lookup_mds_session(mdsc, mds); 5659 if (!session) 5660 continue; 5661 5662 if (session->s_state == CEPH_MDS_SESSION_REJECTED) 5663 __unregister_session(mdsc, session); 5664 __wake_requests(mdsc, &session->s_waiting); 5665 mutex_unlock(&mdsc->mutex); 5666 5667 mutex_lock(&session->s_mutex); 5668 __close_session(mdsc, session); 5669 if (session->s_state == CEPH_MDS_SESSION_CLOSING) { 5670 cleanup_session_requests(mdsc, session); 5671 remove_session_caps(session); 5672 } 5673 mutex_unlock(&session->s_mutex); 5674 ceph_put_mds_session(session); 5675 5676 mutex_lock(&mdsc->mutex); 5677 kick_requests(mdsc, mds); 5678 } 5679 __wake_requests(mdsc, &mdsc->waiting_for_map); 5680 mutex_unlock(&mdsc->mutex); 5681 } 5682 5683 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 5684 { 5685 doutc(mdsc->fsc->client, "stop\n"); 5686 /* 5687 * Make sure the delayed work stopped before releasing 5688 * the resources. 5689 * 5690 * Because the cancel_delayed_work_sync() will only 5691 * guarantee that the work finishes executing. But the 5692 * delayed work will re-arm itself again after that. 5693 */ 5694 flush_delayed_work(&mdsc->delayed_work); 5695 5696 if (mdsc->mdsmap) 5697 ceph_mdsmap_destroy(mdsc->mdsmap); 5698 kfree(mdsc->sessions); 5699 ceph_caps_finalize(mdsc); 5700 ceph_pool_perm_destroy(mdsc); 5701 } 5702 5703 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 5704 { 5705 struct ceph_mds_client *mdsc = fsc->mdsc; 5706 doutc(fsc->client, "%p\n", mdsc); 5707 5708 if (!mdsc) 5709 return; 5710 5711 /* flush out any connection work with references to us */ 5712 ceph_msgr_flush(); 5713 5714 ceph_mdsc_stop(mdsc); 5715 5716 ceph_metric_destroy(&mdsc->metric); 5717 5718 fsc->mdsc = NULL; 5719 kfree(mdsc); 5720 doutc(fsc->client, "%p done\n", mdsc); 5721 } 5722 5723 void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 5724 { 5725 struct ceph_fs_client *fsc = mdsc->fsc; 5726 struct ceph_client *cl = fsc->client; 5727 const char *mds_namespace = fsc->mount_options->mds_namespace; 5728 void *p = msg->front.iov_base; 5729 void *end = p + msg->front.iov_len; 5730 u32 epoch; 5731 u32 num_fs; 5732 u32 mount_fscid = (u32)-1; 5733 int err = -EINVAL; 5734 5735 ceph_decode_need(&p, end, sizeof(u32), bad); 5736 epoch = ceph_decode_32(&p); 5737 5738 doutc(cl, "epoch %u\n", epoch); 5739 5740 /* struct_v, struct_cv, map_len, epoch, legacy_client_fscid */ 5741 ceph_decode_skip_n(&p, end, 2 + sizeof(u32) * 3, bad); 5742 5743 ceph_decode_32_safe(&p, end, num_fs, bad); 5744 while (num_fs-- > 0) { 5745 void *info_p, *info_end; 5746 u32 info_len; 5747 u32 fscid, namelen; 5748 5749 ceph_decode_need(&p, end, 2 + sizeof(u32), bad); 5750 p += 2; // info_v, info_cv 5751 info_len = ceph_decode_32(&p); 5752 ceph_decode_need(&p, end, info_len, bad); 5753 info_p = p; 5754 info_end = p + info_len; 5755 p = info_end; 5756 5757 ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad); 5758 fscid = ceph_decode_32(&info_p); 5759 namelen = ceph_decode_32(&info_p); 5760 ceph_decode_need(&info_p, info_end, namelen, bad); 5761 5762 if (mds_namespace && 5763 strlen(mds_namespace) == namelen && 5764 !strncmp(mds_namespace, (char *)info_p, namelen)) { 5765 mount_fscid = fscid; 5766 break; 5767 } 5768 } 5769 5770 ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch); 5771 if (mount_fscid != (u32)-1) { 5772 fsc->client->monc.fs_cluster_id = mount_fscid; 5773 ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP, 5774 0, true); 5775 ceph_monc_renew_subs(&fsc->client->monc); 5776 } else { 5777 err = -ENOENT; 5778 goto err_out; 5779 } 5780 return; 5781 5782 bad: 5783 pr_err_client(cl, "error decoding fsmap %d. Shutting down mount.\n", 5784 err); 5785 ceph_umount_begin(mdsc->fsc->sb); 5786 ceph_msg_dump(msg); 5787 err_out: 5788 mutex_lock(&mdsc->mutex); 5789 mdsc->mdsmap_err = err; 5790 __wake_requests(mdsc, &mdsc->waiting_for_map); 5791 mutex_unlock(&mdsc->mutex); 5792 } 5793 5794 /* 5795 * handle mds map update. 5796 */ 5797 void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 5798 { 5799 struct ceph_client *cl = mdsc->fsc->client; 5800 u32 epoch; 5801 u32 maplen; 5802 void *p = msg->front.iov_base; 5803 void *end = p + msg->front.iov_len; 5804 struct ceph_mdsmap *newmap, *oldmap; 5805 struct ceph_fsid fsid; 5806 int err = -EINVAL; 5807 5808 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 5809 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 5810 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 5811 return; 5812 epoch = ceph_decode_32(&p); 5813 maplen = ceph_decode_32(&p); 5814 doutc(cl, "epoch %u len %d\n", epoch, (int)maplen); 5815 5816 /* do we need it? */ 5817 mutex_lock(&mdsc->mutex); 5818 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 5819 doutc(cl, "epoch %u <= our %u\n", epoch, mdsc->mdsmap->m_epoch); 5820 mutex_unlock(&mdsc->mutex); 5821 return; 5822 } 5823 5824 newmap = ceph_mdsmap_decode(mdsc, &p, end, ceph_msgr2(mdsc->fsc->client)); 5825 if (IS_ERR(newmap)) { 5826 err = PTR_ERR(newmap); 5827 goto bad_unlock; 5828 } 5829 5830 /* swap into place */ 5831 if (mdsc->mdsmap) { 5832 oldmap = mdsc->mdsmap; 5833 mdsc->mdsmap = newmap; 5834 check_new_map(mdsc, newmap, oldmap); 5835 ceph_mdsmap_destroy(oldmap); 5836 } else { 5837 mdsc->mdsmap = newmap; /* first mds map */ 5838 } 5839 mdsc->fsc->max_file_size = min((loff_t)mdsc->mdsmap->m_max_file_size, 5840 MAX_LFS_FILESIZE); 5841 5842 __wake_requests(mdsc, &mdsc->waiting_for_map); 5843 ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP, 5844 mdsc->mdsmap->m_epoch); 5845 5846 mutex_unlock(&mdsc->mutex); 5847 schedule_delayed(mdsc, 0); 5848 return; 5849 5850 bad_unlock: 5851 mutex_unlock(&mdsc->mutex); 5852 bad: 5853 pr_err_client(cl, "error decoding mdsmap %d. Shutting down mount.\n", 5854 err); 5855 ceph_umount_begin(mdsc->fsc->sb); 5856 ceph_msg_dump(msg); 5857 return; 5858 } 5859 5860 static struct ceph_connection *mds_get_con(struct ceph_connection *con) 5861 { 5862 struct ceph_mds_session *s = con->private; 5863 5864 if (ceph_get_mds_session(s)) 5865 return con; 5866 return NULL; 5867 } 5868 5869 static void mds_put_con(struct ceph_connection *con) 5870 { 5871 struct ceph_mds_session *s = con->private; 5872 5873 ceph_put_mds_session(s); 5874 } 5875 5876 /* 5877 * if the client is unresponsive for long enough, the mds will kill 5878 * the session entirely. 5879 */ 5880 static void mds_peer_reset(struct ceph_connection *con) 5881 { 5882 struct ceph_mds_session *s = con->private; 5883 struct ceph_mds_client *mdsc = s->s_mdsc; 5884 5885 pr_warn_client(mdsc->fsc->client, "mds%d closed our session\n", 5886 s->s_mds); 5887 if (READ_ONCE(mdsc->fsc->mount_state) != CEPH_MOUNT_FENCE_IO && 5888 ceph_mdsmap_get_state(mdsc->mdsmap, s->s_mds) >= CEPH_MDS_STATE_RECONNECT) 5889 send_mds_reconnect(mdsc, s); 5890 } 5891 5892 static void mds_dispatch(struct ceph_connection *con, struct ceph_msg *msg) 5893 { 5894 struct ceph_mds_session *s = con->private; 5895 struct ceph_mds_client *mdsc = s->s_mdsc; 5896 struct ceph_client *cl = mdsc->fsc->client; 5897 int type = le16_to_cpu(msg->hdr.type); 5898 5899 mutex_lock(&mdsc->mutex); 5900 if (__verify_registered_session(mdsc, s) < 0) { 5901 mutex_unlock(&mdsc->mutex); 5902 goto out; 5903 } 5904 mutex_unlock(&mdsc->mutex); 5905 5906 switch (type) { 5907 case CEPH_MSG_MDS_MAP: 5908 ceph_mdsc_handle_mdsmap(mdsc, msg); 5909 break; 5910 case CEPH_MSG_FS_MAP_USER: 5911 ceph_mdsc_handle_fsmap(mdsc, msg); 5912 break; 5913 case CEPH_MSG_CLIENT_SESSION: 5914 handle_session(s, msg); 5915 break; 5916 case CEPH_MSG_CLIENT_REPLY: 5917 handle_reply(s, msg); 5918 break; 5919 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 5920 handle_forward(mdsc, s, msg); 5921 break; 5922 case CEPH_MSG_CLIENT_CAPS: 5923 ceph_handle_caps(s, msg); 5924 break; 5925 case CEPH_MSG_CLIENT_SNAP: 5926 ceph_handle_snap(mdsc, s, msg); 5927 break; 5928 case CEPH_MSG_CLIENT_LEASE: 5929 handle_lease(mdsc, s, msg); 5930 break; 5931 case CEPH_MSG_CLIENT_QUOTA: 5932 ceph_handle_quota(mdsc, s, msg); 5933 break; 5934 5935 default: 5936 pr_err_client(cl, "received unknown message type %d %s\n", 5937 type, ceph_msg_type_name(type)); 5938 } 5939 out: 5940 ceph_msg_put(msg); 5941 } 5942 5943 /* 5944 * authentication 5945 */ 5946 5947 /* 5948 * Note: returned pointer is the address of a structure that's 5949 * managed separately. Caller must *not* attempt to free it. 5950 */ 5951 static struct ceph_auth_handshake * 5952 mds_get_authorizer(struct ceph_connection *con, int *proto, int force_new) 5953 { 5954 struct ceph_mds_session *s = con->private; 5955 struct ceph_mds_client *mdsc = s->s_mdsc; 5956 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 5957 struct ceph_auth_handshake *auth = &s->s_auth; 5958 int ret; 5959 5960 ret = __ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS, 5961 force_new, proto, NULL, NULL); 5962 if (ret) 5963 return ERR_PTR(ret); 5964 5965 return auth; 5966 } 5967 5968 static int mds_add_authorizer_challenge(struct ceph_connection *con, 5969 void *challenge_buf, int challenge_buf_len) 5970 { 5971 struct ceph_mds_session *s = con->private; 5972 struct ceph_mds_client *mdsc = s->s_mdsc; 5973 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 5974 5975 return ceph_auth_add_authorizer_challenge(ac, s->s_auth.authorizer, 5976 challenge_buf, challenge_buf_len); 5977 } 5978 5979 static int mds_verify_authorizer_reply(struct ceph_connection *con) 5980 { 5981 struct ceph_mds_session *s = con->private; 5982 struct ceph_mds_client *mdsc = s->s_mdsc; 5983 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 5984 struct ceph_auth_handshake *auth = &s->s_auth; 5985 5986 return ceph_auth_verify_authorizer_reply(ac, auth->authorizer, 5987 auth->authorizer_reply_buf, auth->authorizer_reply_buf_len, 5988 NULL, NULL, NULL, NULL); 5989 } 5990 5991 static int mds_invalidate_authorizer(struct ceph_connection *con) 5992 { 5993 struct ceph_mds_session *s = con->private; 5994 struct ceph_mds_client *mdsc = s->s_mdsc; 5995 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 5996 5997 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 5998 5999 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 6000 } 6001 6002 static int mds_get_auth_request(struct ceph_connection *con, 6003 void *buf, int *buf_len, 6004 void **authorizer, int *authorizer_len) 6005 { 6006 struct ceph_mds_session *s = con->private; 6007 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 6008 struct ceph_auth_handshake *auth = &s->s_auth; 6009 int ret; 6010 6011 ret = ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS, 6012 buf, buf_len); 6013 if (ret) 6014 return ret; 6015 6016 *authorizer = auth->authorizer_buf; 6017 *authorizer_len = auth->authorizer_buf_len; 6018 return 0; 6019 } 6020 6021 static int mds_handle_auth_reply_more(struct ceph_connection *con, 6022 void *reply, int reply_len, 6023 void *buf, int *buf_len, 6024 void **authorizer, int *authorizer_len) 6025 { 6026 struct ceph_mds_session *s = con->private; 6027 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 6028 struct ceph_auth_handshake *auth = &s->s_auth; 6029 int ret; 6030 6031 ret = ceph_auth_handle_svc_reply_more(ac, auth, reply, reply_len, 6032 buf, buf_len); 6033 if (ret) 6034 return ret; 6035 6036 *authorizer = auth->authorizer_buf; 6037 *authorizer_len = auth->authorizer_buf_len; 6038 return 0; 6039 } 6040 6041 static int mds_handle_auth_done(struct ceph_connection *con, 6042 u64 global_id, void *reply, int reply_len, 6043 u8 *session_key, int *session_key_len, 6044 u8 *con_secret, int *con_secret_len) 6045 { 6046 struct ceph_mds_session *s = con->private; 6047 struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth; 6048 struct ceph_auth_handshake *auth = &s->s_auth; 6049 6050 return ceph_auth_handle_svc_reply_done(ac, auth, reply, reply_len, 6051 session_key, session_key_len, 6052 con_secret, con_secret_len); 6053 } 6054 6055 static int mds_handle_auth_bad_method(struct ceph_connection *con, 6056 int used_proto, int result, 6057 const int *allowed_protos, int proto_cnt, 6058 const int *allowed_modes, int mode_cnt) 6059 { 6060 struct ceph_mds_session *s = con->private; 6061 struct ceph_mon_client *monc = &s->s_mdsc->fsc->client->monc; 6062 int ret; 6063 6064 if (ceph_auth_handle_bad_authorizer(monc->auth, CEPH_ENTITY_TYPE_MDS, 6065 used_proto, result, 6066 allowed_protos, proto_cnt, 6067 allowed_modes, mode_cnt)) { 6068 ret = ceph_monc_validate_auth(monc); 6069 if (ret) 6070 return ret; 6071 } 6072 6073 return -EACCES; 6074 } 6075 6076 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, 6077 struct ceph_msg_header *hdr, int *skip) 6078 { 6079 struct ceph_msg *msg; 6080 int type = (int) le16_to_cpu(hdr->type); 6081 int front_len = (int) le32_to_cpu(hdr->front_len); 6082 6083 if (con->in_msg) 6084 return con->in_msg; 6085 6086 *skip = 0; 6087 msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 6088 if (!msg) { 6089 pr_err("unable to allocate msg type %d len %d\n", 6090 type, front_len); 6091 return NULL; 6092 } 6093 6094 return msg; 6095 } 6096 6097 static int mds_sign_message(struct ceph_msg *msg) 6098 { 6099 struct ceph_mds_session *s = msg->con->private; 6100 struct ceph_auth_handshake *auth = &s->s_auth; 6101 6102 return ceph_auth_sign_message(auth, msg); 6103 } 6104 6105 static int mds_check_message_signature(struct ceph_msg *msg) 6106 { 6107 struct ceph_mds_session *s = msg->con->private; 6108 struct ceph_auth_handshake *auth = &s->s_auth; 6109 6110 return ceph_auth_check_message_signature(auth, msg); 6111 } 6112 6113 static const struct ceph_connection_operations mds_con_ops = { 6114 .get = mds_get_con, 6115 .put = mds_put_con, 6116 .alloc_msg = mds_alloc_msg, 6117 .dispatch = mds_dispatch, 6118 .peer_reset = mds_peer_reset, 6119 .get_authorizer = mds_get_authorizer, 6120 .add_authorizer_challenge = mds_add_authorizer_challenge, 6121 .verify_authorizer_reply = mds_verify_authorizer_reply, 6122 .invalidate_authorizer = mds_invalidate_authorizer, 6123 .sign_message = mds_sign_message, 6124 .check_message_signature = mds_check_message_signature, 6125 .get_auth_request = mds_get_auth_request, 6126 .handle_auth_reply_more = mds_handle_auth_reply_more, 6127 .handle_auth_done = mds_handle_auth_done, 6128 .handle_auth_bad_method = mds_handle_auth_bad_method, 6129 }; 6130 6131 /* eof */ 6132