1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/wait.h> 5 #include <linux/slab.h> 6 #include <linux/sched.h> 7 #include <linux/debugfs.h> 8 #include <linux/seq_file.h> 9 10 #include "super.h" 11 #include "mds_client.h" 12 13 #include <linux/ceph/messenger.h> 14 #include <linux/ceph/decode.h> 15 #include <linux/ceph/pagelist.h> 16 #include <linux/ceph/auth.h> 17 #include <linux/ceph/debugfs.h> 18 19 /* 20 * A cluster of MDS (metadata server) daemons is responsible for 21 * managing the file system namespace (the directory hierarchy and 22 * inodes) and for coordinating shared access to storage. Metadata is 23 * partitioning hierarchically across a number of servers, and that 24 * partition varies over time as the cluster adjusts the distribution 25 * in order to balance load. 26 * 27 * The MDS client is primarily responsible to managing synchronous 28 * metadata requests for operations like open, unlink, and so forth. 29 * If there is a MDS failure, we find out about it when we (possibly 30 * request and) receive a new MDS map, and can resubmit affected 31 * requests. 32 * 33 * For the most part, though, we take advantage of a lossless 34 * communications channel to the MDS, and do not need to worry about 35 * timing out or resubmitting requests. 36 * 37 * We maintain a stateful "session" with each MDS we interact with. 38 * Within each session, we sent periodic heartbeat messages to ensure 39 * any capabilities or leases we have been issues remain valid. If 40 * the session times out and goes stale, our leases and capabilities 41 * are no longer valid. 42 */ 43 44 struct ceph_reconnect_state { 45 struct ceph_pagelist *pagelist; 46 bool flock; 47 }; 48 49 static void __wake_requests(struct ceph_mds_client *mdsc, 50 struct list_head *head); 51 52 static const struct ceph_connection_operations mds_con_ops; 53 54 55 /* 56 * mds reply parsing 57 */ 58 59 /* 60 * parse individual inode info 61 */ 62 static int parse_reply_info_in(void **p, void *end, 63 struct ceph_mds_reply_info_in *info, 64 int features) 65 { 66 int err = -EIO; 67 68 info->in = *p; 69 *p += sizeof(struct ceph_mds_reply_inode) + 70 sizeof(*info->in->fragtree.splits) * 71 le32_to_cpu(info->in->fragtree.nsplits); 72 73 ceph_decode_32_safe(p, end, info->symlink_len, bad); 74 ceph_decode_need(p, end, info->symlink_len, bad); 75 info->symlink = *p; 76 *p += info->symlink_len; 77 78 if (features & CEPH_FEATURE_DIRLAYOUTHASH) 79 ceph_decode_copy_safe(p, end, &info->dir_layout, 80 sizeof(info->dir_layout), bad); 81 else 82 memset(&info->dir_layout, 0, sizeof(info->dir_layout)); 83 84 ceph_decode_32_safe(p, end, info->xattr_len, bad); 85 ceph_decode_need(p, end, info->xattr_len, bad); 86 info->xattr_data = *p; 87 *p += info->xattr_len; 88 return 0; 89 bad: 90 return err; 91 } 92 93 /* 94 * parse a normal reply, which may contain a (dir+)dentry and/or a 95 * target inode. 96 */ 97 static int parse_reply_info_trace(void **p, void *end, 98 struct ceph_mds_reply_info_parsed *info, 99 int features) 100 { 101 int err; 102 103 if (info->head->is_dentry) { 104 err = parse_reply_info_in(p, end, &info->diri, features); 105 if (err < 0) 106 goto out_bad; 107 108 if (unlikely(*p + sizeof(*info->dirfrag) > end)) 109 goto bad; 110 info->dirfrag = *p; 111 *p += sizeof(*info->dirfrag) + 112 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist); 113 if (unlikely(*p > end)) 114 goto bad; 115 116 ceph_decode_32_safe(p, end, info->dname_len, bad); 117 ceph_decode_need(p, end, info->dname_len, bad); 118 info->dname = *p; 119 *p += info->dname_len; 120 info->dlease = *p; 121 *p += sizeof(*info->dlease); 122 } 123 124 if (info->head->is_target) { 125 err = parse_reply_info_in(p, end, &info->targeti, features); 126 if (err < 0) 127 goto out_bad; 128 } 129 130 if (unlikely(*p != end)) 131 goto bad; 132 return 0; 133 134 bad: 135 err = -EIO; 136 out_bad: 137 pr_err("problem parsing mds trace %d\n", err); 138 return err; 139 } 140 141 /* 142 * parse readdir results 143 */ 144 static int parse_reply_info_dir(void **p, void *end, 145 struct ceph_mds_reply_info_parsed *info, 146 int features) 147 { 148 u32 num, i = 0; 149 int err; 150 151 info->dir_dir = *p; 152 if (*p + sizeof(*info->dir_dir) > end) 153 goto bad; 154 *p += sizeof(*info->dir_dir) + 155 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist); 156 if (*p > end) 157 goto bad; 158 159 ceph_decode_need(p, end, sizeof(num) + 2, bad); 160 num = ceph_decode_32(p); 161 info->dir_end = ceph_decode_8(p); 162 info->dir_complete = ceph_decode_8(p); 163 if (num == 0) 164 goto done; 165 166 /* alloc large array */ 167 info->dir_nr = num; 168 info->dir_in = kcalloc(num, sizeof(*info->dir_in) + 169 sizeof(*info->dir_dname) + 170 sizeof(*info->dir_dname_len) + 171 sizeof(*info->dir_dlease), 172 GFP_NOFS); 173 if (info->dir_in == NULL) { 174 err = -ENOMEM; 175 goto out_bad; 176 } 177 info->dir_dname = (void *)(info->dir_in + num); 178 info->dir_dname_len = (void *)(info->dir_dname + num); 179 info->dir_dlease = (void *)(info->dir_dname_len + num); 180 181 while (num) { 182 /* dentry */ 183 ceph_decode_need(p, end, sizeof(u32)*2, bad); 184 info->dir_dname_len[i] = ceph_decode_32(p); 185 ceph_decode_need(p, end, info->dir_dname_len[i], bad); 186 info->dir_dname[i] = *p; 187 *p += info->dir_dname_len[i]; 188 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i], 189 info->dir_dname[i]); 190 info->dir_dlease[i] = *p; 191 *p += sizeof(struct ceph_mds_reply_lease); 192 193 /* inode */ 194 err = parse_reply_info_in(p, end, &info->dir_in[i], features); 195 if (err < 0) 196 goto out_bad; 197 i++; 198 num--; 199 } 200 201 done: 202 if (*p != end) 203 goto bad; 204 return 0; 205 206 bad: 207 err = -EIO; 208 out_bad: 209 pr_err("problem parsing dir contents %d\n", err); 210 return err; 211 } 212 213 /* 214 * parse fcntl F_GETLK results 215 */ 216 static int parse_reply_info_filelock(void **p, void *end, 217 struct ceph_mds_reply_info_parsed *info, 218 int features) 219 { 220 if (*p + sizeof(*info->filelock_reply) > end) 221 goto bad; 222 223 info->filelock_reply = *p; 224 *p += sizeof(*info->filelock_reply); 225 226 if (unlikely(*p != end)) 227 goto bad; 228 return 0; 229 230 bad: 231 return -EIO; 232 } 233 234 /* 235 * parse extra results 236 */ 237 static int parse_reply_info_extra(void **p, void *end, 238 struct ceph_mds_reply_info_parsed *info, 239 int features) 240 { 241 if (info->head->op == CEPH_MDS_OP_GETFILELOCK) 242 return parse_reply_info_filelock(p, end, info, features); 243 else 244 return parse_reply_info_dir(p, end, info, features); 245 } 246 247 /* 248 * parse entire mds reply 249 */ 250 static int parse_reply_info(struct ceph_msg *msg, 251 struct ceph_mds_reply_info_parsed *info, 252 int features) 253 { 254 void *p, *end; 255 u32 len; 256 int err; 257 258 info->head = msg->front.iov_base; 259 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 260 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 261 262 /* trace */ 263 ceph_decode_32_safe(&p, end, len, bad); 264 if (len > 0) { 265 err = parse_reply_info_trace(&p, p+len, info, features); 266 if (err < 0) 267 goto out_bad; 268 } 269 270 /* extra */ 271 ceph_decode_32_safe(&p, end, len, bad); 272 if (len > 0) { 273 err = parse_reply_info_extra(&p, p+len, info, features); 274 if (err < 0) 275 goto out_bad; 276 } 277 278 /* snap blob */ 279 ceph_decode_32_safe(&p, end, len, bad); 280 info->snapblob_len = len; 281 info->snapblob = p; 282 p += len; 283 284 if (p != end) 285 goto bad; 286 return 0; 287 288 bad: 289 err = -EIO; 290 out_bad: 291 pr_err("mds parse_reply err %d\n", err); 292 return err; 293 } 294 295 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 296 { 297 kfree(info->dir_in); 298 } 299 300 301 /* 302 * sessions 303 */ 304 static const char *session_state_name(int s) 305 { 306 switch (s) { 307 case CEPH_MDS_SESSION_NEW: return "new"; 308 case CEPH_MDS_SESSION_OPENING: return "opening"; 309 case CEPH_MDS_SESSION_OPEN: return "open"; 310 case CEPH_MDS_SESSION_HUNG: return "hung"; 311 case CEPH_MDS_SESSION_CLOSING: return "closing"; 312 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 313 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 314 default: return "???"; 315 } 316 } 317 318 static struct ceph_mds_session *get_session(struct ceph_mds_session *s) 319 { 320 if (atomic_inc_not_zero(&s->s_ref)) { 321 dout("mdsc get_session %p %d -> %d\n", s, 322 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref)); 323 return s; 324 } else { 325 dout("mdsc get_session %p 0 -- FAIL", s); 326 return NULL; 327 } 328 } 329 330 void ceph_put_mds_session(struct ceph_mds_session *s) 331 { 332 dout("mdsc put_session %p %d -> %d\n", s, 333 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1); 334 if (atomic_dec_and_test(&s->s_ref)) { 335 if (s->s_authorizer) 336 s->s_mdsc->fsc->client->monc.auth->ops->destroy_authorizer( 337 s->s_mdsc->fsc->client->monc.auth, 338 s->s_authorizer); 339 kfree(s); 340 } 341 } 342 343 /* 344 * called under mdsc->mutex 345 */ 346 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 347 int mds) 348 { 349 struct ceph_mds_session *session; 350 351 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL) 352 return NULL; 353 session = mdsc->sessions[mds]; 354 dout("lookup_mds_session %p %d\n", session, 355 atomic_read(&session->s_ref)); 356 get_session(session); 357 return session; 358 } 359 360 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 361 { 362 if (mds >= mdsc->max_sessions) 363 return false; 364 return mdsc->sessions[mds]; 365 } 366 367 static int __verify_registered_session(struct ceph_mds_client *mdsc, 368 struct ceph_mds_session *s) 369 { 370 if (s->s_mds >= mdsc->max_sessions || 371 mdsc->sessions[s->s_mds] != s) 372 return -ENOENT; 373 return 0; 374 } 375 376 /* 377 * create+register a new session for given mds. 378 * called under mdsc->mutex. 379 */ 380 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 381 int mds) 382 { 383 struct ceph_mds_session *s; 384 385 s = kzalloc(sizeof(*s), GFP_NOFS); 386 if (!s) 387 return ERR_PTR(-ENOMEM); 388 s->s_mdsc = mdsc; 389 s->s_mds = mds; 390 s->s_state = CEPH_MDS_SESSION_NEW; 391 s->s_ttl = 0; 392 s->s_seq = 0; 393 mutex_init(&s->s_mutex); 394 395 ceph_con_init(mdsc->fsc->client->msgr, &s->s_con); 396 s->s_con.private = s; 397 s->s_con.ops = &mds_con_ops; 398 s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS; 399 s->s_con.peer_name.num = cpu_to_le64(mds); 400 401 spin_lock_init(&s->s_cap_lock); 402 s->s_cap_gen = 0; 403 s->s_cap_ttl = 0; 404 s->s_renew_requested = 0; 405 s->s_renew_seq = 0; 406 INIT_LIST_HEAD(&s->s_caps); 407 s->s_nr_caps = 0; 408 s->s_trim_caps = 0; 409 atomic_set(&s->s_ref, 1); 410 INIT_LIST_HEAD(&s->s_waiting); 411 INIT_LIST_HEAD(&s->s_unsafe); 412 s->s_num_cap_releases = 0; 413 s->s_cap_iterator = NULL; 414 INIT_LIST_HEAD(&s->s_cap_releases); 415 INIT_LIST_HEAD(&s->s_cap_releases_done); 416 INIT_LIST_HEAD(&s->s_cap_flushing); 417 INIT_LIST_HEAD(&s->s_cap_snaps_flushing); 418 419 dout("register_session mds%d\n", mds); 420 if (mds >= mdsc->max_sessions) { 421 int newmax = 1 << get_count_order(mds+1); 422 struct ceph_mds_session **sa; 423 424 dout("register_session realloc to %d\n", newmax); 425 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 426 if (sa == NULL) 427 goto fail_realloc; 428 if (mdsc->sessions) { 429 memcpy(sa, mdsc->sessions, 430 mdsc->max_sessions * sizeof(void *)); 431 kfree(mdsc->sessions); 432 } 433 mdsc->sessions = sa; 434 mdsc->max_sessions = newmax; 435 } 436 mdsc->sessions[mds] = s; 437 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 438 439 ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 440 441 return s; 442 443 fail_realloc: 444 kfree(s); 445 return ERR_PTR(-ENOMEM); 446 } 447 448 /* 449 * called under mdsc->mutex 450 */ 451 static void __unregister_session(struct ceph_mds_client *mdsc, 452 struct ceph_mds_session *s) 453 { 454 dout("__unregister_session mds%d %p\n", s->s_mds, s); 455 BUG_ON(mdsc->sessions[s->s_mds] != s); 456 mdsc->sessions[s->s_mds] = NULL; 457 ceph_con_close(&s->s_con); 458 ceph_put_mds_session(s); 459 } 460 461 /* 462 * drop session refs in request. 463 * 464 * should be last request ref, or hold mdsc->mutex 465 */ 466 static void put_request_session(struct ceph_mds_request *req) 467 { 468 if (req->r_session) { 469 ceph_put_mds_session(req->r_session); 470 req->r_session = NULL; 471 } 472 } 473 474 void ceph_mdsc_release_request(struct kref *kref) 475 { 476 struct ceph_mds_request *req = container_of(kref, 477 struct ceph_mds_request, 478 r_kref); 479 if (req->r_request) 480 ceph_msg_put(req->r_request); 481 if (req->r_reply) { 482 ceph_msg_put(req->r_reply); 483 destroy_reply_info(&req->r_reply_info); 484 } 485 if (req->r_inode) { 486 ceph_put_cap_refs(ceph_inode(req->r_inode), 487 CEPH_CAP_PIN); 488 iput(req->r_inode); 489 } 490 if (req->r_locked_dir) 491 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), 492 CEPH_CAP_PIN); 493 if (req->r_target_inode) 494 iput(req->r_target_inode); 495 if (req->r_dentry) 496 dput(req->r_dentry); 497 if (req->r_old_dentry) { 498 ceph_put_cap_refs( 499 ceph_inode(req->r_old_dentry->d_parent->d_inode), 500 CEPH_CAP_PIN); 501 dput(req->r_old_dentry); 502 } 503 kfree(req->r_path1); 504 kfree(req->r_path2); 505 put_request_session(req); 506 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 507 kfree(req); 508 } 509 510 /* 511 * lookup session, bump ref if found. 512 * 513 * called under mdsc->mutex. 514 */ 515 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc, 516 u64 tid) 517 { 518 struct ceph_mds_request *req; 519 struct rb_node *n = mdsc->request_tree.rb_node; 520 521 while (n) { 522 req = rb_entry(n, struct ceph_mds_request, r_node); 523 if (tid < req->r_tid) 524 n = n->rb_left; 525 else if (tid > req->r_tid) 526 n = n->rb_right; 527 else { 528 ceph_mdsc_get_request(req); 529 return req; 530 } 531 } 532 return NULL; 533 } 534 535 static void __insert_request(struct ceph_mds_client *mdsc, 536 struct ceph_mds_request *new) 537 { 538 struct rb_node **p = &mdsc->request_tree.rb_node; 539 struct rb_node *parent = NULL; 540 struct ceph_mds_request *req = NULL; 541 542 while (*p) { 543 parent = *p; 544 req = rb_entry(parent, struct ceph_mds_request, r_node); 545 if (new->r_tid < req->r_tid) 546 p = &(*p)->rb_left; 547 else if (new->r_tid > req->r_tid) 548 p = &(*p)->rb_right; 549 else 550 BUG(); 551 } 552 553 rb_link_node(&new->r_node, parent, p); 554 rb_insert_color(&new->r_node, &mdsc->request_tree); 555 } 556 557 /* 558 * Register an in-flight request, and assign a tid. Link to directory 559 * are modifying (if any). 560 * 561 * Called under mdsc->mutex. 562 */ 563 static void __register_request(struct ceph_mds_client *mdsc, 564 struct ceph_mds_request *req, 565 struct inode *dir) 566 { 567 req->r_tid = ++mdsc->last_tid; 568 if (req->r_num_caps) 569 ceph_reserve_caps(mdsc, &req->r_caps_reservation, 570 req->r_num_caps); 571 dout("__register_request %p tid %lld\n", req, req->r_tid); 572 ceph_mdsc_get_request(req); 573 __insert_request(mdsc, req); 574 575 req->r_uid = current_fsuid(); 576 req->r_gid = current_fsgid(); 577 578 if (dir) { 579 struct ceph_inode_info *ci = ceph_inode(dir); 580 581 spin_lock(&ci->i_unsafe_lock); 582 req->r_unsafe_dir = dir; 583 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 584 spin_unlock(&ci->i_unsafe_lock); 585 } 586 } 587 588 static void __unregister_request(struct ceph_mds_client *mdsc, 589 struct ceph_mds_request *req) 590 { 591 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 592 rb_erase(&req->r_node, &mdsc->request_tree); 593 RB_CLEAR_NODE(&req->r_node); 594 595 if (req->r_unsafe_dir) { 596 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 597 598 spin_lock(&ci->i_unsafe_lock); 599 list_del_init(&req->r_unsafe_dir_item); 600 spin_unlock(&ci->i_unsafe_lock); 601 } 602 603 ceph_mdsc_put_request(req); 604 } 605 606 /* 607 * Choose mds to send request to next. If there is a hint set in the 608 * request (e.g., due to a prior forward hint from the mds), use that. 609 * Otherwise, consult frag tree and/or caps to identify the 610 * appropriate mds. If all else fails, choose randomly. 611 * 612 * Called under mdsc->mutex. 613 */ 614 struct dentry *get_nonsnap_parent(struct dentry *dentry) 615 { 616 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP) 617 dentry = dentry->d_parent; 618 return dentry; 619 } 620 621 static int __choose_mds(struct ceph_mds_client *mdsc, 622 struct ceph_mds_request *req) 623 { 624 struct inode *inode; 625 struct ceph_inode_info *ci; 626 struct ceph_cap *cap; 627 int mode = req->r_direct_mode; 628 int mds = -1; 629 u32 hash = req->r_direct_hash; 630 bool is_hash = req->r_direct_is_hash; 631 632 /* 633 * is there a specific mds we should try? ignore hint if we have 634 * no session and the mds is not up (active or recovering). 635 */ 636 if (req->r_resend_mds >= 0 && 637 (__have_session(mdsc, req->r_resend_mds) || 638 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 639 dout("choose_mds using resend_mds mds%d\n", 640 req->r_resend_mds); 641 return req->r_resend_mds; 642 } 643 644 if (mode == USE_RANDOM_MDS) 645 goto random; 646 647 inode = NULL; 648 if (req->r_inode) { 649 inode = req->r_inode; 650 } else if (req->r_dentry) { 651 struct inode *dir = req->r_dentry->d_parent->d_inode; 652 653 if (dir->i_sb != mdsc->fsc->sb) { 654 /* not this fs! */ 655 inode = req->r_dentry->d_inode; 656 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 657 /* direct snapped/virtual snapdir requests 658 * based on parent dir inode */ 659 struct dentry *dn = 660 get_nonsnap_parent(req->r_dentry->d_parent); 661 inode = dn->d_inode; 662 dout("__choose_mds using nonsnap parent %p\n", inode); 663 } else if (req->r_dentry->d_inode) { 664 /* dentry target */ 665 inode = req->r_dentry->d_inode; 666 } else { 667 /* dir + name */ 668 inode = dir; 669 hash = ceph_dentry_hash(req->r_dentry); 670 is_hash = true; 671 } 672 } 673 674 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash, 675 (int)hash, mode); 676 if (!inode) 677 goto random; 678 ci = ceph_inode(inode); 679 680 if (is_hash && S_ISDIR(inode->i_mode)) { 681 struct ceph_inode_frag frag; 682 int found; 683 684 ceph_choose_frag(ci, hash, &frag, &found); 685 if (found) { 686 if (mode == USE_ANY_MDS && frag.ndist > 0) { 687 u8 r; 688 689 /* choose a random replica */ 690 get_random_bytes(&r, 1); 691 r %= frag.ndist; 692 mds = frag.dist[r]; 693 dout("choose_mds %p %llx.%llx " 694 "frag %u mds%d (%d/%d)\n", 695 inode, ceph_vinop(inode), 696 frag.frag, frag.mds, 697 (int)r, frag.ndist); 698 return mds; 699 } 700 701 /* since this file/dir wasn't known to be 702 * replicated, then we want to look for the 703 * authoritative mds. */ 704 mode = USE_AUTH_MDS; 705 if (frag.mds >= 0) { 706 /* choose auth mds */ 707 mds = frag.mds; 708 dout("choose_mds %p %llx.%llx " 709 "frag %u mds%d (auth)\n", 710 inode, ceph_vinop(inode), frag.frag, mds); 711 return mds; 712 } 713 } 714 } 715 716 spin_lock(&inode->i_lock); 717 cap = NULL; 718 if (mode == USE_AUTH_MDS) 719 cap = ci->i_auth_cap; 720 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 721 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 722 if (!cap) { 723 spin_unlock(&inode->i_lock); 724 goto random; 725 } 726 mds = cap->session->s_mds; 727 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n", 728 inode, ceph_vinop(inode), mds, 729 cap == ci->i_auth_cap ? "auth " : "", cap); 730 spin_unlock(&inode->i_lock); 731 return mds; 732 733 random: 734 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 735 dout("choose_mds chose random mds%d\n", mds); 736 return mds; 737 } 738 739 740 /* 741 * session messages 742 */ 743 static struct ceph_msg *create_session_msg(u32 op, u64 seq) 744 { 745 struct ceph_msg *msg; 746 struct ceph_mds_session_head *h; 747 748 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS); 749 if (!msg) { 750 pr_err("create_session_msg ENOMEM creating msg\n"); 751 return NULL; 752 } 753 h = msg->front.iov_base; 754 h->op = cpu_to_le32(op); 755 h->seq = cpu_to_le64(seq); 756 return msg; 757 } 758 759 /* 760 * send session open request. 761 * 762 * called under mdsc->mutex 763 */ 764 static int __open_session(struct ceph_mds_client *mdsc, 765 struct ceph_mds_session *session) 766 { 767 struct ceph_msg *msg; 768 int mstate; 769 int mds = session->s_mds; 770 771 /* wait for mds to go active? */ 772 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 773 dout("open_session to mds%d (%s)\n", mds, 774 ceph_mds_state_name(mstate)); 775 session->s_state = CEPH_MDS_SESSION_OPENING; 776 session->s_renew_requested = jiffies; 777 778 /* send connect message */ 779 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq); 780 if (!msg) 781 return -ENOMEM; 782 ceph_con_send(&session->s_con, msg); 783 return 0; 784 } 785 786 /* 787 * open sessions for any export targets for the given mds 788 * 789 * called under mdsc->mutex 790 */ 791 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 792 struct ceph_mds_session *session) 793 { 794 struct ceph_mds_info *mi; 795 struct ceph_mds_session *ts; 796 int i, mds = session->s_mds; 797 int target; 798 799 if (mds >= mdsc->mdsmap->m_max_mds) 800 return; 801 mi = &mdsc->mdsmap->m_info[mds]; 802 dout("open_export_target_sessions for mds%d (%d targets)\n", 803 session->s_mds, mi->num_export_targets); 804 805 for (i = 0; i < mi->num_export_targets; i++) { 806 target = mi->export_targets[i]; 807 ts = __ceph_lookup_mds_session(mdsc, target); 808 if (!ts) { 809 ts = register_session(mdsc, target); 810 if (IS_ERR(ts)) 811 return; 812 } 813 if (session->s_state == CEPH_MDS_SESSION_NEW || 814 session->s_state == CEPH_MDS_SESSION_CLOSING) 815 __open_session(mdsc, session); 816 else 817 dout(" mds%d target mds%d %p is %s\n", session->s_mds, 818 i, ts, session_state_name(ts->s_state)); 819 ceph_put_mds_session(ts); 820 } 821 } 822 823 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 824 struct ceph_mds_session *session) 825 { 826 mutex_lock(&mdsc->mutex); 827 __open_export_target_sessions(mdsc, session); 828 mutex_unlock(&mdsc->mutex); 829 } 830 831 /* 832 * session caps 833 */ 834 835 /* 836 * Free preallocated cap messages assigned to this session 837 */ 838 static void cleanup_cap_releases(struct ceph_mds_session *session) 839 { 840 struct ceph_msg *msg; 841 842 spin_lock(&session->s_cap_lock); 843 while (!list_empty(&session->s_cap_releases)) { 844 msg = list_first_entry(&session->s_cap_releases, 845 struct ceph_msg, list_head); 846 list_del_init(&msg->list_head); 847 ceph_msg_put(msg); 848 } 849 while (!list_empty(&session->s_cap_releases_done)) { 850 msg = list_first_entry(&session->s_cap_releases_done, 851 struct ceph_msg, list_head); 852 list_del_init(&msg->list_head); 853 ceph_msg_put(msg); 854 } 855 spin_unlock(&session->s_cap_lock); 856 } 857 858 /* 859 * Helper to safely iterate over all caps associated with a session, with 860 * special care taken to handle a racing __ceph_remove_cap(). 861 * 862 * Caller must hold session s_mutex. 863 */ 864 static int iterate_session_caps(struct ceph_mds_session *session, 865 int (*cb)(struct inode *, struct ceph_cap *, 866 void *), void *arg) 867 { 868 struct list_head *p; 869 struct ceph_cap *cap; 870 struct inode *inode, *last_inode = NULL; 871 struct ceph_cap *old_cap = NULL; 872 int ret; 873 874 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 875 spin_lock(&session->s_cap_lock); 876 p = session->s_caps.next; 877 while (p != &session->s_caps) { 878 cap = list_entry(p, struct ceph_cap, session_caps); 879 inode = igrab(&cap->ci->vfs_inode); 880 if (!inode) { 881 p = p->next; 882 continue; 883 } 884 session->s_cap_iterator = cap; 885 spin_unlock(&session->s_cap_lock); 886 887 if (last_inode) { 888 iput(last_inode); 889 last_inode = NULL; 890 } 891 if (old_cap) { 892 ceph_put_cap(session->s_mdsc, old_cap); 893 old_cap = NULL; 894 } 895 896 ret = cb(inode, cap, arg); 897 last_inode = inode; 898 899 spin_lock(&session->s_cap_lock); 900 p = p->next; 901 if (cap->ci == NULL) { 902 dout("iterate_session_caps finishing cap %p removal\n", 903 cap); 904 BUG_ON(cap->session != session); 905 list_del_init(&cap->session_caps); 906 session->s_nr_caps--; 907 cap->session = NULL; 908 old_cap = cap; /* put_cap it w/o locks held */ 909 } 910 if (ret < 0) 911 goto out; 912 } 913 ret = 0; 914 out: 915 session->s_cap_iterator = NULL; 916 spin_unlock(&session->s_cap_lock); 917 918 if (last_inode) 919 iput(last_inode); 920 if (old_cap) 921 ceph_put_cap(session->s_mdsc, old_cap); 922 923 return ret; 924 } 925 926 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 927 void *arg) 928 { 929 struct ceph_inode_info *ci = ceph_inode(inode); 930 int drop = 0; 931 932 dout("removing cap %p, ci is %p, inode is %p\n", 933 cap, ci, &ci->vfs_inode); 934 spin_lock(&inode->i_lock); 935 __ceph_remove_cap(cap); 936 if (!__ceph_is_any_real_caps(ci)) { 937 struct ceph_mds_client *mdsc = 938 ceph_sb_to_client(inode->i_sb)->mdsc; 939 940 spin_lock(&mdsc->cap_dirty_lock); 941 if (!list_empty(&ci->i_dirty_item)) { 942 pr_info(" dropping dirty %s state for %p %lld\n", 943 ceph_cap_string(ci->i_dirty_caps), 944 inode, ceph_ino(inode)); 945 ci->i_dirty_caps = 0; 946 list_del_init(&ci->i_dirty_item); 947 drop = 1; 948 } 949 if (!list_empty(&ci->i_flushing_item)) { 950 pr_info(" dropping dirty+flushing %s state for %p %lld\n", 951 ceph_cap_string(ci->i_flushing_caps), 952 inode, ceph_ino(inode)); 953 ci->i_flushing_caps = 0; 954 list_del_init(&ci->i_flushing_item); 955 mdsc->num_cap_flushing--; 956 drop = 1; 957 } 958 if (drop && ci->i_wrbuffer_ref) { 959 pr_info(" dropping dirty data for %p %lld\n", 960 inode, ceph_ino(inode)); 961 ci->i_wrbuffer_ref = 0; 962 ci->i_wrbuffer_ref_head = 0; 963 drop++; 964 } 965 spin_unlock(&mdsc->cap_dirty_lock); 966 } 967 spin_unlock(&inode->i_lock); 968 while (drop--) 969 iput(inode); 970 return 0; 971 } 972 973 /* 974 * caller must hold session s_mutex 975 */ 976 static void remove_session_caps(struct ceph_mds_session *session) 977 { 978 dout("remove_session_caps on %p\n", session); 979 iterate_session_caps(session, remove_session_caps_cb, NULL); 980 BUG_ON(session->s_nr_caps > 0); 981 BUG_ON(!list_empty(&session->s_cap_flushing)); 982 cleanup_cap_releases(session); 983 } 984 985 /* 986 * wake up any threads waiting on this session's caps. if the cap is 987 * old (didn't get renewed on the client reconnect), remove it now. 988 * 989 * caller must hold s_mutex. 990 */ 991 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 992 void *arg) 993 { 994 struct ceph_inode_info *ci = ceph_inode(inode); 995 996 wake_up_all(&ci->i_cap_wq); 997 if (arg) { 998 spin_lock(&inode->i_lock); 999 ci->i_wanted_max_size = 0; 1000 ci->i_requested_max_size = 0; 1001 spin_unlock(&inode->i_lock); 1002 } 1003 return 0; 1004 } 1005 1006 static void wake_up_session_caps(struct ceph_mds_session *session, 1007 int reconnect) 1008 { 1009 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1010 iterate_session_caps(session, wake_up_session_cb, 1011 (void *)(unsigned long)reconnect); 1012 } 1013 1014 /* 1015 * Send periodic message to MDS renewing all currently held caps. The 1016 * ack will reset the expiration for all caps from this session. 1017 * 1018 * caller holds s_mutex 1019 */ 1020 static int send_renew_caps(struct ceph_mds_client *mdsc, 1021 struct ceph_mds_session *session) 1022 { 1023 struct ceph_msg *msg; 1024 int state; 1025 1026 if (time_after_eq(jiffies, session->s_cap_ttl) && 1027 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1028 pr_info("mds%d caps stale\n", session->s_mds); 1029 session->s_renew_requested = jiffies; 1030 1031 /* do not try to renew caps until a recovering mds has reconnected 1032 * with its clients. */ 1033 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1034 if (state < CEPH_MDS_STATE_RECONNECT) { 1035 dout("send_renew_caps ignoring mds%d (%s)\n", 1036 session->s_mds, ceph_mds_state_name(state)); 1037 return 0; 1038 } 1039 1040 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 1041 ceph_mds_state_name(state)); 1042 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 1043 ++session->s_renew_seq); 1044 if (!msg) 1045 return -ENOMEM; 1046 ceph_con_send(&session->s_con, msg); 1047 return 0; 1048 } 1049 1050 /* 1051 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 1052 * 1053 * Called under session->s_mutex 1054 */ 1055 static void renewed_caps(struct ceph_mds_client *mdsc, 1056 struct ceph_mds_session *session, int is_renew) 1057 { 1058 int was_stale; 1059 int wake = 0; 1060 1061 spin_lock(&session->s_cap_lock); 1062 was_stale = is_renew && (session->s_cap_ttl == 0 || 1063 time_after_eq(jiffies, session->s_cap_ttl)); 1064 1065 session->s_cap_ttl = session->s_renew_requested + 1066 mdsc->mdsmap->m_session_timeout*HZ; 1067 1068 if (was_stale) { 1069 if (time_before(jiffies, session->s_cap_ttl)) { 1070 pr_info("mds%d caps renewed\n", session->s_mds); 1071 wake = 1; 1072 } else { 1073 pr_info("mds%d caps still stale\n", session->s_mds); 1074 } 1075 } 1076 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 1077 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 1078 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 1079 spin_unlock(&session->s_cap_lock); 1080 1081 if (wake) 1082 wake_up_session_caps(session, 0); 1083 } 1084 1085 /* 1086 * send a session close request 1087 */ 1088 static int request_close_session(struct ceph_mds_client *mdsc, 1089 struct ceph_mds_session *session) 1090 { 1091 struct ceph_msg *msg; 1092 1093 dout("request_close_session mds%d state %s seq %lld\n", 1094 session->s_mds, session_state_name(session->s_state), 1095 session->s_seq); 1096 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); 1097 if (!msg) 1098 return -ENOMEM; 1099 ceph_con_send(&session->s_con, msg); 1100 return 0; 1101 } 1102 1103 /* 1104 * Called with s_mutex held. 1105 */ 1106 static int __close_session(struct ceph_mds_client *mdsc, 1107 struct ceph_mds_session *session) 1108 { 1109 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 1110 return 0; 1111 session->s_state = CEPH_MDS_SESSION_CLOSING; 1112 return request_close_session(mdsc, session); 1113 } 1114 1115 /* 1116 * Trim old(er) caps. 1117 * 1118 * Because we can't cache an inode without one or more caps, we do 1119 * this indirectly: if a cap is unused, we prune its aliases, at which 1120 * point the inode will hopefully get dropped to. 1121 * 1122 * Yes, this is a bit sloppy. Our only real goal here is to respond to 1123 * memory pressure from the MDS, though, so it needn't be perfect. 1124 */ 1125 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1126 { 1127 struct ceph_mds_session *session = arg; 1128 struct ceph_inode_info *ci = ceph_inode(inode); 1129 int used, oissued, mine; 1130 1131 if (session->s_trim_caps <= 0) 1132 return -1; 1133 1134 spin_lock(&inode->i_lock); 1135 mine = cap->issued | cap->implemented; 1136 used = __ceph_caps_used(ci); 1137 oissued = __ceph_caps_issued_other(ci, cap); 1138 1139 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n", 1140 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1141 ceph_cap_string(used)); 1142 if (ci->i_dirty_caps) 1143 goto out; /* dirty caps */ 1144 if ((used & ~oissued) & mine) 1145 goto out; /* we need these caps */ 1146 1147 session->s_trim_caps--; 1148 if (oissued) { 1149 /* we aren't the only cap.. just remove us */ 1150 __ceph_remove_cap(cap); 1151 } else { 1152 /* try to drop referring dentries */ 1153 spin_unlock(&inode->i_lock); 1154 d_prune_aliases(inode); 1155 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 1156 inode, cap, atomic_read(&inode->i_count)); 1157 return 0; 1158 } 1159 1160 out: 1161 spin_unlock(&inode->i_lock); 1162 return 0; 1163 } 1164 1165 /* 1166 * Trim session cap count down to some max number. 1167 */ 1168 static int trim_caps(struct ceph_mds_client *mdsc, 1169 struct ceph_mds_session *session, 1170 int max_caps) 1171 { 1172 int trim_caps = session->s_nr_caps - max_caps; 1173 1174 dout("trim_caps mds%d start: %d / %d, trim %d\n", 1175 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 1176 if (trim_caps > 0) { 1177 session->s_trim_caps = trim_caps; 1178 iterate_session_caps(session, trim_caps_cb, session); 1179 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 1180 session->s_mds, session->s_nr_caps, max_caps, 1181 trim_caps - session->s_trim_caps); 1182 session->s_trim_caps = 0; 1183 } 1184 return 0; 1185 } 1186 1187 /* 1188 * Allocate cap_release messages. If there is a partially full message 1189 * in the queue, try to allocate enough to cover it's remainder, so that 1190 * we can send it immediately. 1191 * 1192 * Called under s_mutex. 1193 */ 1194 int ceph_add_cap_releases(struct ceph_mds_client *mdsc, 1195 struct ceph_mds_session *session) 1196 { 1197 struct ceph_msg *msg, *partial = NULL; 1198 struct ceph_mds_cap_release *head; 1199 int err = -ENOMEM; 1200 int extra = mdsc->fsc->mount_options->cap_release_safety; 1201 int num; 1202 1203 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds, 1204 extra); 1205 1206 spin_lock(&session->s_cap_lock); 1207 1208 if (!list_empty(&session->s_cap_releases)) { 1209 msg = list_first_entry(&session->s_cap_releases, 1210 struct ceph_msg, 1211 list_head); 1212 head = msg->front.iov_base; 1213 num = le32_to_cpu(head->num); 1214 if (num) { 1215 dout(" partial %p with (%d/%d)\n", msg, num, 1216 (int)CEPH_CAPS_PER_RELEASE); 1217 extra += CEPH_CAPS_PER_RELEASE - num; 1218 partial = msg; 1219 } 1220 } 1221 while (session->s_num_cap_releases < session->s_nr_caps + extra) { 1222 spin_unlock(&session->s_cap_lock); 1223 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE, 1224 GFP_NOFS); 1225 if (!msg) 1226 goto out_unlocked; 1227 dout("add_cap_releases %p msg %p now %d\n", session, msg, 1228 (int)msg->front.iov_len); 1229 head = msg->front.iov_base; 1230 head->num = cpu_to_le32(0); 1231 msg->front.iov_len = sizeof(*head); 1232 spin_lock(&session->s_cap_lock); 1233 list_add(&msg->list_head, &session->s_cap_releases); 1234 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE; 1235 } 1236 1237 if (partial) { 1238 head = partial->front.iov_base; 1239 num = le32_to_cpu(head->num); 1240 dout(" queueing partial %p with %d/%d\n", partial, num, 1241 (int)CEPH_CAPS_PER_RELEASE); 1242 list_move_tail(&partial->list_head, 1243 &session->s_cap_releases_done); 1244 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num; 1245 } 1246 err = 0; 1247 spin_unlock(&session->s_cap_lock); 1248 out_unlocked: 1249 return err; 1250 } 1251 1252 /* 1253 * flush all dirty inode data to disk. 1254 * 1255 * returns true if we've flushed through want_flush_seq 1256 */ 1257 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq) 1258 { 1259 int mds, ret = 1; 1260 1261 dout("check_cap_flush want %lld\n", want_flush_seq); 1262 mutex_lock(&mdsc->mutex); 1263 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) { 1264 struct ceph_mds_session *session = mdsc->sessions[mds]; 1265 1266 if (!session) 1267 continue; 1268 get_session(session); 1269 mutex_unlock(&mdsc->mutex); 1270 1271 mutex_lock(&session->s_mutex); 1272 if (!list_empty(&session->s_cap_flushing)) { 1273 struct ceph_inode_info *ci = 1274 list_entry(session->s_cap_flushing.next, 1275 struct ceph_inode_info, 1276 i_flushing_item); 1277 struct inode *inode = &ci->vfs_inode; 1278 1279 spin_lock(&inode->i_lock); 1280 if (ci->i_cap_flush_seq <= want_flush_seq) { 1281 dout("check_cap_flush still flushing %p " 1282 "seq %lld <= %lld to mds%d\n", inode, 1283 ci->i_cap_flush_seq, want_flush_seq, 1284 session->s_mds); 1285 ret = 0; 1286 } 1287 spin_unlock(&inode->i_lock); 1288 } 1289 mutex_unlock(&session->s_mutex); 1290 ceph_put_mds_session(session); 1291 1292 if (!ret) 1293 return ret; 1294 mutex_lock(&mdsc->mutex); 1295 } 1296 1297 mutex_unlock(&mdsc->mutex); 1298 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq); 1299 return ret; 1300 } 1301 1302 /* 1303 * called under s_mutex 1304 */ 1305 void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 1306 struct ceph_mds_session *session) 1307 { 1308 struct ceph_msg *msg; 1309 1310 dout("send_cap_releases mds%d\n", session->s_mds); 1311 spin_lock(&session->s_cap_lock); 1312 while (!list_empty(&session->s_cap_releases_done)) { 1313 msg = list_first_entry(&session->s_cap_releases_done, 1314 struct ceph_msg, list_head); 1315 list_del_init(&msg->list_head); 1316 spin_unlock(&session->s_cap_lock); 1317 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1318 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1319 ceph_con_send(&session->s_con, msg); 1320 spin_lock(&session->s_cap_lock); 1321 } 1322 spin_unlock(&session->s_cap_lock); 1323 } 1324 1325 static void discard_cap_releases(struct ceph_mds_client *mdsc, 1326 struct ceph_mds_session *session) 1327 { 1328 struct ceph_msg *msg; 1329 struct ceph_mds_cap_release *head; 1330 unsigned num; 1331 1332 dout("discard_cap_releases mds%d\n", session->s_mds); 1333 spin_lock(&session->s_cap_lock); 1334 1335 /* zero out the in-progress message */ 1336 msg = list_first_entry(&session->s_cap_releases, 1337 struct ceph_msg, list_head); 1338 head = msg->front.iov_base; 1339 num = le32_to_cpu(head->num); 1340 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num); 1341 head->num = cpu_to_le32(0); 1342 session->s_num_cap_releases += num; 1343 1344 /* requeue completed messages */ 1345 while (!list_empty(&session->s_cap_releases_done)) { 1346 msg = list_first_entry(&session->s_cap_releases_done, 1347 struct ceph_msg, list_head); 1348 list_del_init(&msg->list_head); 1349 1350 head = msg->front.iov_base; 1351 num = le32_to_cpu(head->num); 1352 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, 1353 num); 1354 session->s_num_cap_releases += num; 1355 head->num = cpu_to_le32(0); 1356 msg->front.iov_len = sizeof(*head); 1357 list_add(&msg->list_head, &session->s_cap_releases); 1358 } 1359 1360 spin_unlock(&session->s_cap_lock); 1361 } 1362 1363 /* 1364 * requests 1365 */ 1366 1367 /* 1368 * Create an mds request. 1369 */ 1370 struct ceph_mds_request * 1371 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 1372 { 1373 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS); 1374 1375 if (!req) 1376 return ERR_PTR(-ENOMEM); 1377 1378 mutex_init(&req->r_fill_mutex); 1379 req->r_mdsc = mdsc; 1380 req->r_started = jiffies; 1381 req->r_resend_mds = -1; 1382 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 1383 req->r_fmode = -1; 1384 kref_init(&req->r_kref); 1385 INIT_LIST_HEAD(&req->r_wait); 1386 init_completion(&req->r_completion); 1387 init_completion(&req->r_safe_completion); 1388 INIT_LIST_HEAD(&req->r_unsafe_item); 1389 1390 req->r_op = op; 1391 req->r_direct_mode = mode; 1392 return req; 1393 } 1394 1395 /* 1396 * return oldest (lowest) request, tid in request tree, 0 if none. 1397 * 1398 * called under mdsc->mutex. 1399 */ 1400 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 1401 { 1402 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 1403 return NULL; 1404 return rb_entry(rb_first(&mdsc->request_tree), 1405 struct ceph_mds_request, r_node); 1406 } 1407 1408 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 1409 { 1410 struct ceph_mds_request *req = __get_oldest_req(mdsc); 1411 1412 if (req) 1413 return req->r_tid; 1414 return 0; 1415 } 1416 1417 /* 1418 * Build a dentry's path. Allocate on heap; caller must kfree. Based 1419 * on build_path_from_dentry in fs/cifs/dir.c. 1420 * 1421 * If @stop_on_nosnap, generate path relative to the first non-snapped 1422 * inode. 1423 * 1424 * Encode hidden .snap dirs as a double /, i.e. 1425 * foo/.snap/bar -> foo//bar 1426 */ 1427 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base, 1428 int stop_on_nosnap) 1429 { 1430 struct dentry *temp; 1431 char *path; 1432 int len, pos; 1433 1434 if (dentry == NULL) 1435 return ERR_PTR(-EINVAL); 1436 1437 retry: 1438 len = 0; 1439 for (temp = dentry; !IS_ROOT(temp);) { 1440 struct inode *inode = temp->d_inode; 1441 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) 1442 len++; /* slash only */ 1443 else if (stop_on_nosnap && inode && 1444 ceph_snap(inode) == CEPH_NOSNAP) 1445 break; 1446 else 1447 len += 1 + temp->d_name.len; 1448 temp = temp->d_parent; 1449 if (temp == NULL) { 1450 pr_err("build_path corrupt dentry %p\n", dentry); 1451 return ERR_PTR(-EINVAL); 1452 } 1453 } 1454 if (len) 1455 len--; /* no leading '/' */ 1456 1457 path = kmalloc(len+1, GFP_NOFS); 1458 if (path == NULL) 1459 return ERR_PTR(-ENOMEM); 1460 pos = len; 1461 path[pos] = 0; /* trailing null */ 1462 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) { 1463 struct inode *inode = temp->d_inode; 1464 1465 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 1466 dout("build_path path+%d: %p SNAPDIR\n", 1467 pos, temp); 1468 } else if (stop_on_nosnap && inode && 1469 ceph_snap(inode) == CEPH_NOSNAP) { 1470 break; 1471 } else { 1472 pos -= temp->d_name.len; 1473 if (pos < 0) 1474 break; 1475 strncpy(path + pos, temp->d_name.name, 1476 temp->d_name.len); 1477 } 1478 if (pos) 1479 path[--pos] = '/'; 1480 temp = temp->d_parent; 1481 if (temp == NULL) { 1482 pr_err("build_path corrupt dentry\n"); 1483 kfree(path); 1484 return ERR_PTR(-EINVAL); 1485 } 1486 } 1487 if (pos != 0) { 1488 pr_err("build_path did not end path lookup where " 1489 "expected, namelen is %d, pos is %d\n", len, pos); 1490 /* presumably this is only possible if racing with a 1491 rename of one of the parent directories (we can not 1492 lock the dentries above us to prevent this, but 1493 retrying should be harmless) */ 1494 kfree(path); 1495 goto retry; 1496 } 1497 1498 *base = ceph_ino(temp->d_inode); 1499 *plen = len; 1500 dout("build_path on %p %d built %llx '%.*s'\n", 1501 dentry, dentry->d_count, *base, len, path); 1502 return path; 1503 } 1504 1505 static int build_dentry_path(struct dentry *dentry, 1506 const char **ppath, int *ppathlen, u64 *pino, 1507 int *pfreepath) 1508 { 1509 char *path; 1510 1511 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) { 1512 *pino = ceph_ino(dentry->d_parent->d_inode); 1513 *ppath = dentry->d_name.name; 1514 *ppathlen = dentry->d_name.len; 1515 return 0; 1516 } 1517 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1518 if (IS_ERR(path)) 1519 return PTR_ERR(path); 1520 *ppath = path; 1521 *pfreepath = 1; 1522 return 0; 1523 } 1524 1525 static int build_inode_path(struct inode *inode, 1526 const char **ppath, int *ppathlen, u64 *pino, 1527 int *pfreepath) 1528 { 1529 struct dentry *dentry; 1530 char *path; 1531 1532 if (ceph_snap(inode) == CEPH_NOSNAP) { 1533 *pino = ceph_ino(inode); 1534 *ppathlen = 0; 1535 return 0; 1536 } 1537 dentry = d_find_alias(inode); 1538 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1539 dput(dentry); 1540 if (IS_ERR(path)) 1541 return PTR_ERR(path); 1542 *ppath = path; 1543 *pfreepath = 1; 1544 return 0; 1545 } 1546 1547 /* 1548 * request arguments may be specified via an inode *, a dentry *, or 1549 * an explicit ino+path. 1550 */ 1551 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 1552 const char *rpath, u64 rino, 1553 const char **ppath, int *pathlen, 1554 u64 *ino, int *freepath) 1555 { 1556 int r = 0; 1557 1558 if (rinode) { 1559 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 1560 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 1561 ceph_snap(rinode)); 1562 } else if (rdentry) { 1563 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath); 1564 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 1565 *ppath); 1566 } else if (rpath) { 1567 *ino = rino; 1568 *ppath = rpath; 1569 *pathlen = strlen(rpath); 1570 dout(" path %.*s\n", *pathlen, rpath); 1571 } 1572 1573 return r; 1574 } 1575 1576 /* 1577 * called under mdsc->mutex 1578 */ 1579 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc, 1580 struct ceph_mds_request *req, 1581 int mds) 1582 { 1583 struct ceph_msg *msg; 1584 struct ceph_mds_request_head *head; 1585 const char *path1 = NULL; 1586 const char *path2 = NULL; 1587 u64 ino1 = 0, ino2 = 0; 1588 int pathlen1 = 0, pathlen2 = 0; 1589 int freepath1 = 0, freepath2 = 0; 1590 int len; 1591 u16 releases; 1592 void *p, *end; 1593 int ret; 1594 1595 ret = set_request_path_attr(req->r_inode, req->r_dentry, 1596 req->r_path1, req->r_ino1.ino, 1597 &path1, &pathlen1, &ino1, &freepath1); 1598 if (ret < 0) { 1599 msg = ERR_PTR(ret); 1600 goto out; 1601 } 1602 1603 ret = set_request_path_attr(NULL, req->r_old_dentry, 1604 req->r_path2, req->r_ino2.ino, 1605 &path2, &pathlen2, &ino2, &freepath2); 1606 if (ret < 0) { 1607 msg = ERR_PTR(ret); 1608 goto out_free1; 1609 } 1610 1611 len = sizeof(*head) + 1612 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)); 1613 1614 /* calculate (max) length for cap releases */ 1615 len += sizeof(struct ceph_mds_request_release) * 1616 (!!req->r_inode_drop + !!req->r_dentry_drop + 1617 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 1618 if (req->r_dentry_drop) 1619 len += req->r_dentry->d_name.len; 1620 if (req->r_old_dentry_drop) 1621 len += req->r_old_dentry->d_name.len; 1622 1623 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS); 1624 if (!msg) { 1625 msg = ERR_PTR(-ENOMEM); 1626 goto out_free2; 1627 } 1628 1629 msg->hdr.tid = cpu_to_le64(req->r_tid); 1630 1631 head = msg->front.iov_base; 1632 p = msg->front.iov_base + sizeof(*head); 1633 end = msg->front.iov_base + msg->front.iov_len; 1634 1635 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 1636 head->op = cpu_to_le32(req->r_op); 1637 head->caller_uid = cpu_to_le32(req->r_uid); 1638 head->caller_gid = cpu_to_le32(req->r_gid); 1639 head->args = req->r_args; 1640 1641 ceph_encode_filepath(&p, end, ino1, path1); 1642 ceph_encode_filepath(&p, end, ino2, path2); 1643 1644 /* make note of release offset, in case we need to replay */ 1645 req->r_request_release_offset = p - msg->front.iov_base; 1646 1647 /* cap releases */ 1648 releases = 0; 1649 if (req->r_inode_drop) 1650 releases += ceph_encode_inode_release(&p, 1651 req->r_inode ? req->r_inode : req->r_dentry->d_inode, 1652 mds, req->r_inode_drop, req->r_inode_unless, 0); 1653 if (req->r_dentry_drop) 1654 releases += ceph_encode_dentry_release(&p, req->r_dentry, 1655 mds, req->r_dentry_drop, req->r_dentry_unless); 1656 if (req->r_old_dentry_drop) 1657 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 1658 mds, req->r_old_dentry_drop, req->r_old_dentry_unless); 1659 if (req->r_old_inode_drop) 1660 releases += ceph_encode_inode_release(&p, 1661 req->r_old_dentry->d_inode, 1662 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 1663 head->num_releases = cpu_to_le16(releases); 1664 1665 BUG_ON(p > end); 1666 msg->front.iov_len = p - msg->front.iov_base; 1667 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1668 1669 msg->pages = req->r_pages; 1670 msg->nr_pages = req->r_num_pages; 1671 msg->hdr.data_len = cpu_to_le32(req->r_data_len); 1672 msg->hdr.data_off = cpu_to_le16(0); 1673 1674 out_free2: 1675 if (freepath2) 1676 kfree((char *)path2); 1677 out_free1: 1678 if (freepath1) 1679 kfree((char *)path1); 1680 out: 1681 return msg; 1682 } 1683 1684 /* 1685 * called under mdsc->mutex if error, under no mutex if 1686 * success. 1687 */ 1688 static void complete_request(struct ceph_mds_client *mdsc, 1689 struct ceph_mds_request *req) 1690 { 1691 if (req->r_callback) 1692 req->r_callback(mdsc, req); 1693 else 1694 complete_all(&req->r_completion); 1695 } 1696 1697 /* 1698 * called under mdsc->mutex 1699 */ 1700 static int __prepare_send_request(struct ceph_mds_client *mdsc, 1701 struct ceph_mds_request *req, 1702 int mds) 1703 { 1704 struct ceph_mds_request_head *rhead; 1705 struct ceph_msg *msg; 1706 int flags = 0; 1707 1708 req->r_attempts++; 1709 if (req->r_inode) { 1710 struct ceph_cap *cap = 1711 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 1712 1713 if (cap) 1714 req->r_sent_on_mseq = cap->mseq; 1715 else 1716 req->r_sent_on_mseq = -1; 1717 } 1718 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, 1719 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 1720 1721 if (req->r_got_unsafe) { 1722 /* 1723 * Replay. Do not regenerate message (and rebuild 1724 * paths, etc.); just use the original message. 1725 * Rebuilding paths will break for renames because 1726 * d_move mangles the src name. 1727 */ 1728 msg = req->r_request; 1729 rhead = msg->front.iov_base; 1730 1731 flags = le32_to_cpu(rhead->flags); 1732 flags |= CEPH_MDS_FLAG_REPLAY; 1733 rhead->flags = cpu_to_le32(flags); 1734 1735 if (req->r_target_inode) 1736 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 1737 1738 rhead->num_retry = req->r_attempts - 1; 1739 1740 /* remove cap/dentry releases from message */ 1741 rhead->num_releases = 0; 1742 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset); 1743 msg->front.iov_len = req->r_request_release_offset; 1744 return 0; 1745 } 1746 1747 if (req->r_request) { 1748 ceph_msg_put(req->r_request); 1749 req->r_request = NULL; 1750 } 1751 msg = create_request_message(mdsc, req, mds); 1752 if (IS_ERR(msg)) { 1753 req->r_err = PTR_ERR(msg); 1754 complete_request(mdsc, req); 1755 return PTR_ERR(msg); 1756 } 1757 req->r_request = msg; 1758 1759 rhead = msg->front.iov_base; 1760 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 1761 if (req->r_got_unsafe) 1762 flags |= CEPH_MDS_FLAG_REPLAY; 1763 if (req->r_locked_dir) 1764 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 1765 rhead->flags = cpu_to_le32(flags); 1766 rhead->num_fwd = req->r_num_fwd; 1767 rhead->num_retry = req->r_attempts - 1; 1768 rhead->ino = 0; 1769 1770 dout(" r_locked_dir = %p\n", req->r_locked_dir); 1771 return 0; 1772 } 1773 1774 /* 1775 * send request, or put it on the appropriate wait list. 1776 */ 1777 static int __do_request(struct ceph_mds_client *mdsc, 1778 struct ceph_mds_request *req) 1779 { 1780 struct ceph_mds_session *session = NULL; 1781 int mds = -1; 1782 int err = -EAGAIN; 1783 1784 if (req->r_err || req->r_got_result) 1785 goto out; 1786 1787 if (req->r_timeout && 1788 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 1789 dout("do_request timed out\n"); 1790 err = -EIO; 1791 goto finish; 1792 } 1793 1794 put_request_session(req); 1795 1796 mds = __choose_mds(mdsc, req); 1797 if (mds < 0 || 1798 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 1799 dout("do_request no mds or not active, waiting for map\n"); 1800 list_add(&req->r_wait, &mdsc->waiting_for_map); 1801 goto out; 1802 } 1803 1804 /* get, open session */ 1805 session = __ceph_lookup_mds_session(mdsc, mds); 1806 if (!session) { 1807 session = register_session(mdsc, mds); 1808 if (IS_ERR(session)) { 1809 err = PTR_ERR(session); 1810 goto finish; 1811 } 1812 } 1813 req->r_session = get_session(session); 1814 1815 dout("do_request mds%d session %p state %s\n", mds, session, 1816 session_state_name(session->s_state)); 1817 if (session->s_state != CEPH_MDS_SESSION_OPEN && 1818 session->s_state != CEPH_MDS_SESSION_HUNG) { 1819 if (session->s_state == CEPH_MDS_SESSION_NEW || 1820 session->s_state == CEPH_MDS_SESSION_CLOSING) 1821 __open_session(mdsc, session); 1822 list_add(&req->r_wait, &session->s_waiting); 1823 goto out_session; 1824 } 1825 1826 /* send request */ 1827 req->r_resend_mds = -1; /* forget any previous mds hint */ 1828 1829 if (req->r_request_started == 0) /* note request start time */ 1830 req->r_request_started = jiffies; 1831 1832 err = __prepare_send_request(mdsc, req, mds); 1833 if (!err) { 1834 ceph_msg_get(req->r_request); 1835 ceph_con_send(&session->s_con, req->r_request); 1836 } 1837 1838 out_session: 1839 ceph_put_mds_session(session); 1840 out: 1841 return err; 1842 1843 finish: 1844 req->r_err = err; 1845 complete_request(mdsc, req); 1846 goto out; 1847 } 1848 1849 /* 1850 * called under mdsc->mutex 1851 */ 1852 static void __wake_requests(struct ceph_mds_client *mdsc, 1853 struct list_head *head) 1854 { 1855 struct ceph_mds_request *req, *nreq; 1856 1857 list_for_each_entry_safe(req, nreq, head, r_wait) { 1858 list_del_init(&req->r_wait); 1859 __do_request(mdsc, req); 1860 } 1861 } 1862 1863 /* 1864 * Wake up threads with requests pending for @mds, so that they can 1865 * resubmit their requests to a possibly different mds. 1866 */ 1867 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 1868 { 1869 struct ceph_mds_request *req; 1870 struct rb_node *p; 1871 1872 dout("kick_requests mds%d\n", mds); 1873 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) { 1874 req = rb_entry(p, struct ceph_mds_request, r_node); 1875 if (req->r_got_unsafe) 1876 continue; 1877 if (req->r_session && 1878 req->r_session->s_mds == mds) { 1879 dout(" kicking tid %llu\n", req->r_tid); 1880 __do_request(mdsc, req); 1881 } 1882 } 1883 } 1884 1885 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, 1886 struct ceph_mds_request *req) 1887 { 1888 dout("submit_request on %p\n", req); 1889 mutex_lock(&mdsc->mutex); 1890 __register_request(mdsc, req, NULL); 1891 __do_request(mdsc, req); 1892 mutex_unlock(&mdsc->mutex); 1893 } 1894 1895 /* 1896 * Synchrously perform an mds request. Take care of all of the 1897 * session setup, forwarding, retry details. 1898 */ 1899 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 1900 struct inode *dir, 1901 struct ceph_mds_request *req) 1902 { 1903 int err; 1904 1905 dout("do_request on %p\n", req); 1906 1907 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */ 1908 if (req->r_inode) 1909 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 1910 if (req->r_locked_dir) 1911 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 1912 if (req->r_old_dentry) 1913 ceph_get_cap_refs( 1914 ceph_inode(req->r_old_dentry->d_parent->d_inode), 1915 CEPH_CAP_PIN); 1916 1917 /* issue */ 1918 mutex_lock(&mdsc->mutex); 1919 __register_request(mdsc, req, dir); 1920 __do_request(mdsc, req); 1921 1922 if (req->r_err) { 1923 err = req->r_err; 1924 __unregister_request(mdsc, req); 1925 dout("do_request early error %d\n", err); 1926 goto out; 1927 } 1928 1929 /* wait */ 1930 mutex_unlock(&mdsc->mutex); 1931 dout("do_request waiting\n"); 1932 if (req->r_timeout) { 1933 err = (long)wait_for_completion_killable_timeout( 1934 &req->r_completion, req->r_timeout); 1935 if (err == 0) 1936 err = -EIO; 1937 } else { 1938 err = wait_for_completion_killable(&req->r_completion); 1939 } 1940 dout("do_request waited, got %d\n", err); 1941 mutex_lock(&mdsc->mutex); 1942 1943 /* only abort if we didn't race with a real reply */ 1944 if (req->r_got_result) { 1945 err = le32_to_cpu(req->r_reply_info.head->result); 1946 } else if (err < 0) { 1947 dout("aborted request %lld with %d\n", req->r_tid, err); 1948 1949 /* 1950 * ensure we aren't running concurrently with 1951 * ceph_fill_trace or ceph_readdir_prepopulate, which 1952 * rely on locks (dir mutex) held by our caller. 1953 */ 1954 mutex_lock(&req->r_fill_mutex); 1955 req->r_err = err; 1956 req->r_aborted = true; 1957 mutex_unlock(&req->r_fill_mutex); 1958 1959 if (req->r_locked_dir && 1960 (req->r_op & CEPH_MDS_OP_WRITE)) 1961 ceph_invalidate_dir_request(req); 1962 } else { 1963 err = req->r_err; 1964 } 1965 1966 out: 1967 mutex_unlock(&mdsc->mutex); 1968 dout("do_request %p done, result %d\n", req, err); 1969 return err; 1970 } 1971 1972 /* 1973 * Invalidate dir I_COMPLETE, dentry lease state on an aborted MDS 1974 * namespace request. 1975 */ 1976 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 1977 { 1978 struct inode *inode = req->r_locked_dir; 1979 struct ceph_inode_info *ci = ceph_inode(inode); 1980 1981 dout("invalidate_dir_request %p (I_COMPLETE, lease(s))\n", inode); 1982 spin_lock(&inode->i_lock); 1983 ci->i_ceph_flags &= ~CEPH_I_COMPLETE; 1984 ci->i_release_count++; 1985 spin_unlock(&inode->i_lock); 1986 1987 if (req->r_dentry) 1988 ceph_invalidate_dentry_lease(req->r_dentry); 1989 if (req->r_old_dentry) 1990 ceph_invalidate_dentry_lease(req->r_old_dentry); 1991 } 1992 1993 /* 1994 * Handle mds reply. 1995 * 1996 * We take the session mutex and parse and process the reply immediately. 1997 * This preserves the logical ordering of replies, capabilities, etc., sent 1998 * by the MDS as they are applied to our local cache. 1999 */ 2000 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 2001 { 2002 struct ceph_mds_client *mdsc = session->s_mdsc; 2003 struct ceph_mds_request *req; 2004 struct ceph_mds_reply_head *head = msg->front.iov_base; 2005 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 2006 u64 tid; 2007 int err, result; 2008 int mds = session->s_mds; 2009 2010 if (msg->front.iov_len < sizeof(*head)) { 2011 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 2012 ceph_msg_dump(msg); 2013 return; 2014 } 2015 2016 /* get request, session */ 2017 tid = le64_to_cpu(msg->hdr.tid); 2018 mutex_lock(&mdsc->mutex); 2019 req = __lookup_request(mdsc, tid); 2020 if (!req) { 2021 dout("handle_reply on unknown tid %llu\n", tid); 2022 mutex_unlock(&mdsc->mutex); 2023 return; 2024 } 2025 dout("handle_reply %p\n", req); 2026 2027 /* correct session? */ 2028 if (req->r_session != session) { 2029 pr_err("mdsc_handle_reply got %llu on session mds%d" 2030 " not mds%d\n", tid, session->s_mds, 2031 req->r_session ? req->r_session->s_mds : -1); 2032 mutex_unlock(&mdsc->mutex); 2033 goto out; 2034 } 2035 2036 /* dup? */ 2037 if ((req->r_got_unsafe && !head->safe) || 2038 (req->r_got_safe && head->safe)) { 2039 pr_warning("got a dup %s reply on %llu from mds%d\n", 2040 head->safe ? "safe" : "unsafe", tid, mds); 2041 mutex_unlock(&mdsc->mutex); 2042 goto out; 2043 } 2044 if (req->r_got_safe && !head->safe) { 2045 pr_warning("got unsafe after safe on %llu from mds%d\n", 2046 tid, mds); 2047 mutex_unlock(&mdsc->mutex); 2048 goto out; 2049 } 2050 2051 result = le32_to_cpu(head->result); 2052 2053 /* 2054 * Handle an ESTALE 2055 * if we're not talking to the authority, send to them 2056 * if the authority has changed while we weren't looking, 2057 * send to new authority 2058 * Otherwise we just have to return an ESTALE 2059 */ 2060 if (result == -ESTALE) { 2061 dout("got ESTALE on request %llu", req->r_tid); 2062 if (!req->r_inode) { 2063 /* do nothing; not an authority problem */ 2064 } else if (req->r_direct_mode != USE_AUTH_MDS) { 2065 dout("not using auth, setting for that now"); 2066 req->r_direct_mode = USE_AUTH_MDS; 2067 __do_request(mdsc, req); 2068 mutex_unlock(&mdsc->mutex); 2069 goto out; 2070 } else { 2071 struct ceph_inode_info *ci = ceph_inode(req->r_inode); 2072 struct ceph_cap *cap = NULL; 2073 2074 if (req->r_session) 2075 cap = ceph_get_cap_for_mds(ci, 2076 req->r_session->s_mds); 2077 2078 dout("already using auth"); 2079 if ((!cap || cap != ci->i_auth_cap) || 2080 (cap->mseq != req->r_sent_on_mseq)) { 2081 dout("but cap changed, so resending"); 2082 __do_request(mdsc, req); 2083 mutex_unlock(&mdsc->mutex); 2084 goto out; 2085 } 2086 } 2087 dout("have to return ESTALE on request %llu", req->r_tid); 2088 } 2089 2090 2091 if (head->safe) { 2092 req->r_got_safe = true; 2093 __unregister_request(mdsc, req); 2094 complete_all(&req->r_safe_completion); 2095 2096 if (req->r_got_unsafe) { 2097 /* 2098 * We already handled the unsafe response, now do the 2099 * cleanup. No need to examine the response; the MDS 2100 * doesn't include any result info in the safe 2101 * response. And even if it did, there is nothing 2102 * useful we could do with a revised return value. 2103 */ 2104 dout("got safe reply %llu, mds%d\n", tid, mds); 2105 list_del_init(&req->r_unsafe_item); 2106 2107 /* last unsafe request during umount? */ 2108 if (mdsc->stopping && !__get_oldest_req(mdsc)) 2109 complete_all(&mdsc->safe_umount_waiters); 2110 mutex_unlock(&mdsc->mutex); 2111 goto out; 2112 } 2113 } else { 2114 req->r_got_unsafe = true; 2115 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 2116 } 2117 2118 dout("handle_reply tid %lld result %d\n", tid, result); 2119 rinfo = &req->r_reply_info; 2120 err = parse_reply_info(msg, rinfo, session->s_con.peer_features); 2121 mutex_unlock(&mdsc->mutex); 2122 2123 mutex_lock(&session->s_mutex); 2124 if (err < 0) { 2125 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 2126 ceph_msg_dump(msg); 2127 goto out_err; 2128 } 2129 2130 /* snap trace */ 2131 if (rinfo->snapblob_len) { 2132 down_write(&mdsc->snap_rwsem); 2133 ceph_update_snap_trace(mdsc, rinfo->snapblob, 2134 rinfo->snapblob + rinfo->snapblob_len, 2135 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP); 2136 downgrade_write(&mdsc->snap_rwsem); 2137 } else { 2138 down_read(&mdsc->snap_rwsem); 2139 } 2140 2141 /* insert trace into our cache */ 2142 mutex_lock(&req->r_fill_mutex); 2143 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session); 2144 if (err == 0) { 2145 if (result == 0 && req->r_op != CEPH_MDS_OP_GETFILELOCK && 2146 rinfo->dir_nr) 2147 ceph_readdir_prepopulate(req, req->r_session); 2148 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 2149 } 2150 mutex_unlock(&req->r_fill_mutex); 2151 2152 up_read(&mdsc->snap_rwsem); 2153 out_err: 2154 mutex_lock(&mdsc->mutex); 2155 if (!req->r_aborted) { 2156 if (err) { 2157 req->r_err = err; 2158 } else { 2159 req->r_reply = msg; 2160 ceph_msg_get(msg); 2161 req->r_got_result = true; 2162 } 2163 } else { 2164 dout("reply arrived after request %lld was aborted\n", tid); 2165 } 2166 mutex_unlock(&mdsc->mutex); 2167 2168 ceph_add_cap_releases(mdsc, req->r_session); 2169 mutex_unlock(&session->s_mutex); 2170 2171 /* kick calling process */ 2172 complete_request(mdsc, req); 2173 out: 2174 ceph_mdsc_put_request(req); 2175 return; 2176 } 2177 2178 2179 2180 /* 2181 * handle mds notification that our request has been forwarded. 2182 */ 2183 static void handle_forward(struct ceph_mds_client *mdsc, 2184 struct ceph_mds_session *session, 2185 struct ceph_msg *msg) 2186 { 2187 struct ceph_mds_request *req; 2188 u64 tid = le64_to_cpu(msg->hdr.tid); 2189 u32 next_mds; 2190 u32 fwd_seq; 2191 int err = -EINVAL; 2192 void *p = msg->front.iov_base; 2193 void *end = p + msg->front.iov_len; 2194 2195 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 2196 next_mds = ceph_decode_32(&p); 2197 fwd_seq = ceph_decode_32(&p); 2198 2199 mutex_lock(&mdsc->mutex); 2200 req = __lookup_request(mdsc, tid); 2201 if (!req) { 2202 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 2203 goto out; /* dup reply? */ 2204 } 2205 2206 if (req->r_aborted) { 2207 dout("forward tid %llu aborted, unregistering\n", tid); 2208 __unregister_request(mdsc, req); 2209 } else if (fwd_seq <= req->r_num_fwd) { 2210 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 2211 tid, next_mds, req->r_num_fwd, fwd_seq); 2212 } else { 2213 /* resend. forward race not possible; mds would drop */ 2214 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 2215 BUG_ON(req->r_err); 2216 BUG_ON(req->r_got_result); 2217 req->r_num_fwd = fwd_seq; 2218 req->r_resend_mds = next_mds; 2219 put_request_session(req); 2220 __do_request(mdsc, req); 2221 } 2222 ceph_mdsc_put_request(req); 2223 out: 2224 mutex_unlock(&mdsc->mutex); 2225 return; 2226 2227 bad: 2228 pr_err("mdsc_handle_forward decode error err=%d\n", err); 2229 } 2230 2231 /* 2232 * handle a mds session control message 2233 */ 2234 static void handle_session(struct ceph_mds_session *session, 2235 struct ceph_msg *msg) 2236 { 2237 struct ceph_mds_client *mdsc = session->s_mdsc; 2238 u32 op; 2239 u64 seq; 2240 int mds = session->s_mds; 2241 struct ceph_mds_session_head *h = msg->front.iov_base; 2242 int wake = 0; 2243 2244 /* decode */ 2245 if (msg->front.iov_len != sizeof(*h)) 2246 goto bad; 2247 op = le32_to_cpu(h->op); 2248 seq = le64_to_cpu(h->seq); 2249 2250 mutex_lock(&mdsc->mutex); 2251 if (op == CEPH_SESSION_CLOSE) 2252 __unregister_session(mdsc, session); 2253 /* FIXME: this ttl calculation is generous */ 2254 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 2255 mutex_unlock(&mdsc->mutex); 2256 2257 mutex_lock(&session->s_mutex); 2258 2259 dout("handle_session mds%d %s %p state %s seq %llu\n", 2260 mds, ceph_session_op_name(op), session, 2261 session_state_name(session->s_state), seq); 2262 2263 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 2264 session->s_state = CEPH_MDS_SESSION_OPEN; 2265 pr_info("mds%d came back\n", session->s_mds); 2266 } 2267 2268 switch (op) { 2269 case CEPH_SESSION_OPEN: 2270 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2271 pr_info("mds%d reconnect success\n", session->s_mds); 2272 session->s_state = CEPH_MDS_SESSION_OPEN; 2273 renewed_caps(mdsc, session, 0); 2274 wake = 1; 2275 if (mdsc->stopping) 2276 __close_session(mdsc, session); 2277 break; 2278 2279 case CEPH_SESSION_RENEWCAPS: 2280 if (session->s_renew_seq == seq) 2281 renewed_caps(mdsc, session, 1); 2282 break; 2283 2284 case CEPH_SESSION_CLOSE: 2285 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2286 pr_info("mds%d reconnect denied\n", session->s_mds); 2287 remove_session_caps(session); 2288 wake = 1; /* for good measure */ 2289 wake_up_all(&mdsc->session_close_wq); 2290 kick_requests(mdsc, mds); 2291 break; 2292 2293 case CEPH_SESSION_STALE: 2294 pr_info("mds%d caps went stale, renewing\n", 2295 session->s_mds); 2296 spin_lock(&session->s_cap_lock); 2297 session->s_cap_gen++; 2298 session->s_cap_ttl = 0; 2299 spin_unlock(&session->s_cap_lock); 2300 send_renew_caps(mdsc, session); 2301 break; 2302 2303 case CEPH_SESSION_RECALL_STATE: 2304 trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 2305 break; 2306 2307 default: 2308 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 2309 WARN_ON(1); 2310 } 2311 2312 mutex_unlock(&session->s_mutex); 2313 if (wake) { 2314 mutex_lock(&mdsc->mutex); 2315 __wake_requests(mdsc, &session->s_waiting); 2316 mutex_unlock(&mdsc->mutex); 2317 } 2318 return; 2319 2320 bad: 2321 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 2322 (int)msg->front.iov_len); 2323 ceph_msg_dump(msg); 2324 return; 2325 } 2326 2327 2328 /* 2329 * called under session->mutex. 2330 */ 2331 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 2332 struct ceph_mds_session *session) 2333 { 2334 struct ceph_mds_request *req, *nreq; 2335 int err; 2336 2337 dout("replay_unsafe_requests mds%d\n", session->s_mds); 2338 2339 mutex_lock(&mdsc->mutex); 2340 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) { 2341 err = __prepare_send_request(mdsc, req, session->s_mds); 2342 if (!err) { 2343 ceph_msg_get(req->r_request); 2344 ceph_con_send(&session->s_con, req->r_request); 2345 } 2346 } 2347 mutex_unlock(&mdsc->mutex); 2348 } 2349 2350 /* 2351 * Encode information about a cap for a reconnect with the MDS. 2352 */ 2353 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap, 2354 void *arg) 2355 { 2356 union { 2357 struct ceph_mds_cap_reconnect v2; 2358 struct ceph_mds_cap_reconnect_v1 v1; 2359 } rec; 2360 size_t reclen; 2361 struct ceph_inode_info *ci; 2362 struct ceph_reconnect_state *recon_state = arg; 2363 struct ceph_pagelist *pagelist = recon_state->pagelist; 2364 char *path; 2365 int pathlen, err; 2366 u64 pathbase; 2367 struct dentry *dentry; 2368 2369 ci = cap->ci; 2370 2371 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 2372 inode, ceph_vinop(inode), cap, cap->cap_id, 2373 ceph_cap_string(cap->issued)); 2374 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 2375 if (err) 2376 return err; 2377 2378 dentry = d_find_alias(inode); 2379 if (dentry) { 2380 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0); 2381 if (IS_ERR(path)) { 2382 err = PTR_ERR(path); 2383 goto out_dput; 2384 } 2385 } else { 2386 path = NULL; 2387 pathlen = 0; 2388 } 2389 err = ceph_pagelist_encode_string(pagelist, path, pathlen); 2390 if (err) 2391 goto out_free; 2392 2393 spin_lock(&inode->i_lock); 2394 cap->seq = 0; /* reset cap seq */ 2395 cap->issue_seq = 0; /* and issue_seq */ 2396 2397 if (recon_state->flock) { 2398 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 2399 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2400 rec.v2.issued = cpu_to_le32(cap->issued); 2401 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2402 rec.v2.pathbase = cpu_to_le64(pathbase); 2403 rec.v2.flock_len = 0; 2404 reclen = sizeof(rec.v2); 2405 } else { 2406 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 2407 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2408 rec.v1.issued = cpu_to_le32(cap->issued); 2409 rec.v1.size = cpu_to_le64(inode->i_size); 2410 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime); 2411 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime); 2412 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2413 rec.v1.pathbase = cpu_to_le64(pathbase); 2414 reclen = sizeof(rec.v1); 2415 } 2416 spin_unlock(&inode->i_lock); 2417 2418 if (recon_state->flock) { 2419 int num_fcntl_locks, num_flock_locks; 2420 struct ceph_pagelist_cursor trunc_point; 2421 2422 ceph_pagelist_set_cursor(pagelist, &trunc_point); 2423 do { 2424 lock_flocks(); 2425 ceph_count_locks(inode, &num_fcntl_locks, 2426 &num_flock_locks); 2427 rec.v2.flock_len = (2*sizeof(u32) + 2428 (num_fcntl_locks+num_flock_locks) * 2429 sizeof(struct ceph_filelock)); 2430 unlock_flocks(); 2431 2432 /* pre-alloc pagelist */ 2433 ceph_pagelist_truncate(pagelist, &trunc_point); 2434 err = ceph_pagelist_append(pagelist, &rec, reclen); 2435 if (!err) 2436 err = ceph_pagelist_reserve(pagelist, 2437 rec.v2.flock_len); 2438 2439 /* encode locks */ 2440 if (!err) { 2441 lock_flocks(); 2442 err = ceph_encode_locks(inode, 2443 pagelist, 2444 num_fcntl_locks, 2445 num_flock_locks); 2446 unlock_flocks(); 2447 } 2448 } while (err == -ENOSPC); 2449 } else { 2450 err = ceph_pagelist_append(pagelist, &rec, reclen); 2451 } 2452 2453 out_free: 2454 kfree(path); 2455 out_dput: 2456 dput(dentry); 2457 return err; 2458 } 2459 2460 2461 /* 2462 * If an MDS fails and recovers, clients need to reconnect in order to 2463 * reestablish shared state. This includes all caps issued through 2464 * this session _and_ the snap_realm hierarchy. Because it's not 2465 * clear which snap realms the mds cares about, we send everything we 2466 * know about.. that ensures we'll then get any new info the 2467 * recovering MDS might have. 2468 * 2469 * This is a relatively heavyweight operation, but it's rare. 2470 * 2471 * called with mdsc->mutex held. 2472 */ 2473 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 2474 struct ceph_mds_session *session) 2475 { 2476 struct ceph_msg *reply; 2477 struct rb_node *p; 2478 int mds = session->s_mds; 2479 int err = -ENOMEM; 2480 struct ceph_pagelist *pagelist; 2481 struct ceph_reconnect_state recon_state; 2482 2483 pr_info("mds%d reconnect start\n", mds); 2484 2485 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS); 2486 if (!pagelist) 2487 goto fail_nopagelist; 2488 ceph_pagelist_init(pagelist); 2489 2490 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS); 2491 if (!reply) 2492 goto fail_nomsg; 2493 2494 mutex_lock(&session->s_mutex); 2495 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 2496 session->s_seq = 0; 2497 2498 ceph_con_open(&session->s_con, 2499 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 2500 2501 /* replay unsafe requests */ 2502 replay_unsafe_requests(mdsc, session); 2503 2504 down_read(&mdsc->snap_rwsem); 2505 2506 dout("session %p state %s\n", session, 2507 session_state_name(session->s_state)); 2508 2509 /* drop old cap expires; we're about to reestablish that state */ 2510 discard_cap_releases(mdsc, session); 2511 2512 /* traverse this session's caps */ 2513 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps); 2514 if (err) 2515 goto fail; 2516 2517 recon_state.pagelist = pagelist; 2518 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK; 2519 err = iterate_session_caps(session, encode_caps_cb, &recon_state); 2520 if (err < 0) 2521 goto fail; 2522 2523 /* 2524 * snaprealms. we provide mds with the ino, seq (version), and 2525 * parent for all of our realms. If the mds has any newer info, 2526 * it will tell us. 2527 */ 2528 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 2529 struct ceph_snap_realm *realm = 2530 rb_entry(p, struct ceph_snap_realm, node); 2531 struct ceph_mds_snaprealm_reconnect sr_rec; 2532 2533 dout(" adding snap realm %llx seq %lld parent %llx\n", 2534 realm->ino, realm->seq, realm->parent_ino); 2535 sr_rec.ino = cpu_to_le64(realm->ino); 2536 sr_rec.seq = cpu_to_le64(realm->seq); 2537 sr_rec.parent = cpu_to_le64(realm->parent_ino); 2538 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 2539 if (err) 2540 goto fail; 2541 } 2542 2543 reply->pagelist = pagelist; 2544 if (recon_state.flock) 2545 reply->hdr.version = cpu_to_le16(2); 2546 reply->hdr.data_len = cpu_to_le32(pagelist->length); 2547 reply->nr_pages = calc_pages_for(0, pagelist->length); 2548 ceph_con_send(&session->s_con, reply); 2549 2550 mutex_unlock(&session->s_mutex); 2551 2552 mutex_lock(&mdsc->mutex); 2553 __wake_requests(mdsc, &session->s_waiting); 2554 mutex_unlock(&mdsc->mutex); 2555 2556 up_read(&mdsc->snap_rwsem); 2557 return; 2558 2559 fail: 2560 ceph_msg_put(reply); 2561 up_read(&mdsc->snap_rwsem); 2562 mutex_unlock(&session->s_mutex); 2563 fail_nomsg: 2564 ceph_pagelist_release(pagelist); 2565 kfree(pagelist); 2566 fail_nopagelist: 2567 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 2568 return; 2569 } 2570 2571 2572 /* 2573 * compare old and new mdsmaps, kicking requests 2574 * and closing out old connections as necessary 2575 * 2576 * called under mdsc->mutex. 2577 */ 2578 static void check_new_map(struct ceph_mds_client *mdsc, 2579 struct ceph_mdsmap *newmap, 2580 struct ceph_mdsmap *oldmap) 2581 { 2582 int i; 2583 int oldstate, newstate; 2584 struct ceph_mds_session *s; 2585 2586 dout("check_new_map new %u old %u\n", 2587 newmap->m_epoch, oldmap->m_epoch); 2588 2589 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) { 2590 if (mdsc->sessions[i] == NULL) 2591 continue; 2592 s = mdsc->sessions[i]; 2593 oldstate = ceph_mdsmap_get_state(oldmap, i); 2594 newstate = ceph_mdsmap_get_state(newmap, i); 2595 2596 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 2597 i, ceph_mds_state_name(oldstate), 2598 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 2599 ceph_mds_state_name(newstate), 2600 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 2601 session_state_name(s->s_state)); 2602 2603 if (memcmp(ceph_mdsmap_get_addr(oldmap, i), 2604 ceph_mdsmap_get_addr(newmap, i), 2605 sizeof(struct ceph_entity_addr))) { 2606 if (s->s_state == CEPH_MDS_SESSION_OPENING) { 2607 /* the session never opened, just close it 2608 * out now */ 2609 __wake_requests(mdsc, &s->s_waiting); 2610 __unregister_session(mdsc, s); 2611 } else { 2612 /* just close it */ 2613 mutex_unlock(&mdsc->mutex); 2614 mutex_lock(&s->s_mutex); 2615 mutex_lock(&mdsc->mutex); 2616 ceph_con_close(&s->s_con); 2617 mutex_unlock(&s->s_mutex); 2618 s->s_state = CEPH_MDS_SESSION_RESTARTING; 2619 } 2620 2621 /* kick any requests waiting on the recovering mds */ 2622 kick_requests(mdsc, i); 2623 } else if (oldstate == newstate) { 2624 continue; /* nothing new with this mds */ 2625 } 2626 2627 /* 2628 * send reconnect? 2629 */ 2630 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 2631 newstate >= CEPH_MDS_STATE_RECONNECT) { 2632 mutex_unlock(&mdsc->mutex); 2633 send_mds_reconnect(mdsc, s); 2634 mutex_lock(&mdsc->mutex); 2635 } 2636 2637 /* 2638 * kick request on any mds that has gone active. 2639 */ 2640 if (oldstate < CEPH_MDS_STATE_ACTIVE && 2641 newstate >= CEPH_MDS_STATE_ACTIVE) { 2642 if (oldstate != CEPH_MDS_STATE_CREATING && 2643 oldstate != CEPH_MDS_STATE_STARTING) 2644 pr_info("mds%d recovery completed\n", s->s_mds); 2645 kick_requests(mdsc, i); 2646 ceph_kick_flushing_caps(mdsc, s); 2647 wake_up_session_caps(s, 1); 2648 } 2649 } 2650 2651 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) { 2652 s = mdsc->sessions[i]; 2653 if (!s) 2654 continue; 2655 if (!ceph_mdsmap_is_laggy(newmap, i)) 2656 continue; 2657 if (s->s_state == CEPH_MDS_SESSION_OPEN || 2658 s->s_state == CEPH_MDS_SESSION_HUNG || 2659 s->s_state == CEPH_MDS_SESSION_CLOSING) { 2660 dout(" connecting to export targets of laggy mds%d\n", 2661 i); 2662 __open_export_target_sessions(mdsc, s); 2663 } 2664 } 2665 } 2666 2667 2668 2669 /* 2670 * leases 2671 */ 2672 2673 /* 2674 * caller must hold session s_mutex, dentry->d_lock 2675 */ 2676 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 2677 { 2678 struct ceph_dentry_info *di = ceph_dentry(dentry); 2679 2680 ceph_put_mds_session(di->lease_session); 2681 di->lease_session = NULL; 2682 } 2683 2684 static void handle_lease(struct ceph_mds_client *mdsc, 2685 struct ceph_mds_session *session, 2686 struct ceph_msg *msg) 2687 { 2688 struct super_block *sb = mdsc->fsc->sb; 2689 struct inode *inode; 2690 struct ceph_inode_info *ci; 2691 struct dentry *parent, *dentry; 2692 struct ceph_dentry_info *di; 2693 int mds = session->s_mds; 2694 struct ceph_mds_lease *h = msg->front.iov_base; 2695 u32 seq; 2696 struct ceph_vino vino; 2697 int mask; 2698 struct qstr dname; 2699 int release = 0; 2700 2701 dout("handle_lease from mds%d\n", mds); 2702 2703 /* decode */ 2704 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 2705 goto bad; 2706 vino.ino = le64_to_cpu(h->ino); 2707 vino.snap = CEPH_NOSNAP; 2708 mask = le16_to_cpu(h->mask); 2709 seq = le32_to_cpu(h->seq); 2710 dname.name = (void *)h + sizeof(*h) + sizeof(u32); 2711 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32); 2712 if (dname.len != get_unaligned_le32(h+1)) 2713 goto bad; 2714 2715 mutex_lock(&session->s_mutex); 2716 session->s_seq++; 2717 2718 /* lookup inode */ 2719 inode = ceph_find_inode(sb, vino); 2720 dout("handle_lease %s, mask %d, ino %llx %p %.*s\n", 2721 ceph_lease_op_name(h->action), mask, vino.ino, inode, 2722 dname.len, dname.name); 2723 if (inode == NULL) { 2724 dout("handle_lease no inode %llx\n", vino.ino); 2725 goto release; 2726 } 2727 ci = ceph_inode(inode); 2728 2729 /* dentry */ 2730 parent = d_find_alias(inode); 2731 if (!parent) { 2732 dout("no parent dentry on inode %p\n", inode); 2733 WARN_ON(1); 2734 goto release; /* hrm... */ 2735 } 2736 dname.hash = full_name_hash(dname.name, dname.len); 2737 dentry = d_lookup(parent, &dname); 2738 dput(parent); 2739 if (!dentry) 2740 goto release; 2741 2742 spin_lock(&dentry->d_lock); 2743 di = ceph_dentry(dentry); 2744 switch (h->action) { 2745 case CEPH_MDS_LEASE_REVOKE: 2746 if (di && di->lease_session == session) { 2747 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 2748 h->seq = cpu_to_le32(di->lease_seq); 2749 __ceph_mdsc_drop_dentry_lease(dentry); 2750 } 2751 release = 1; 2752 break; 2753 2754 case CEPH_MDS_LEASE_RENEW: 2755 if (di && di->lease_session == session && 2756 di->lease_gen == session->s_cap_gen && 2757 di->lease_renew_from && 2758 di->lease_renew_after == 0) { 2759 unsigned long duration = 2760 le32_to_cpu(h->duration_ms) * HZ / 1000; 2761 2762 di->lease_seq = seq; 2763 dentry->d_time = di->lease_renew_from + duration; 2764 di->lease_renew_after = di->lease_renew_from + 2765 (duration >> 1); 2766 di->lease_renew_from = 0; 2767 } 2768 break; 2769 } 2770 spin_unlock(&dentry->d_lock); 2771 dput(dentry); 2772 2773 if (!release) 2774 goto out; 2775 2776 release: 2777 /* let's just reuse the same message */ 2778 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 2779 ceph_msg_get(msg); 2780 ceph_con_send(&session->s_con, msg); 2781 2782 out: 2783 iput(inode); 2784 mutex_unlock(&session->s_mutex); 2785 return; 2786 2787 bad: 2788 pr_err("corrupt lease message\n"); 2789 ceph_msg_dump(msg); 2790 } 2791 2792 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 2793 struct inode *inode, 2794 struct dentry *dentry, char action, 2795 u32 seq) 2796 { 2797 struct ceph_msg *msg; 2798 struct ceph_mds_lease *lease; 2799 int len = sizeof(*lease) + sizeof(u32); 2800 int dnamelen = 0; 2801 2802 dout("lease_send_msg inode %p dentry %p %s to mds%d\n", 2803 inode, dentry, ceph_lease_op_name(action), session->s_mds); 2804 dnamelen = dentry->d_name.len; 2805 len += dnamelen; 2806 2807 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS); 2808 if (!msg) 2809 return; 2810 lease = msg->front.iov_base; 2811 lease->action = action; 2812 lease->mask = cpu_to_le16(1); 2813 lease->ino = cpu_to_le64(ceph_vino(inode).ino); 2814 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap); 2815 lease->seq = cpu_to_le32(seq); 2816 put_unaligned_le32(dnamelen, lease + 1); 2817 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen); 2818 2819 /* 2820 * if this is a preemptive lease RELEASE, no need to 2821 * flush request stream, since the actual request will 2822 * soon follow. 2823 */ 2824 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); 2825 2826 ceph_con_send(&session->s_con, msg); 2827 } 2828 2829 /* 2830 * Preemptively release a lease we expect to invalidate anyway. 2831 * Pass @inode always, @dentry is optional. 2832 */ 2833 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode, 2834 struct dentry *dentry, int mask) 2835 { 2836 struct ceph_dentry_info *di; 2837 struct ceph_mds_session *session; 2838 u32 seq; 2839 2840 BUG_ON(inode == NULL); 2841 BUG_ON(dentry == NULL); 2842 BUG_ON(mask == 0); 2843 2844 /* is dentry lease valid? */ 2845 spin_lock(&dentry->d_lock); 2846 di = ceph_dentry(dentry); 2847 if (!di || !di->lease_session || 2848 di->lease_session->s_mds < 0 || 2849 di->lease_gen != di->lease_session->s_cap_gen || 2850 !time_before(jiffies, dentry->d_time)) { 2851 dout("lease_release inode %p dentry %p -- " 2852 "no lease on %d\n", 2853 inode, dentry, mask); 2854 spin_unlock(&dentry->d_lock); 2855 return; 2856 } 2857 2858 /* we do have a lease on this dentry; note mds and seq */ 2859 session = ceph_get_mds_session(di->lease_session); 2860 seq = di->lease_seq; 2861 __ceph_mdsc_drop_dentry_lease(dentry); 2862 spin_unlock(&dentry->d_lock); 2863 2864 dout("lease_release inode %p dentry %p mask %d to mds%d\n", 2865 inode, dentry, mask, session->s_mds); 2866 ceph_mdsc_lease_send_msg(session, inode, dentry, 2867 CEPH_MDS_LEASE_RELEASE, seq); 2868 ceph_put_mds_session(session); 2869 } 2870 2871 /* 2872 * drop all leases (and dentry refs) in preparation for umount 2873 */ 2874 static void drop_leases(struct ceph_mds_client *mdsc) 2875 { 2876 int i; 2877 2878 dout("drop_leases\n"); 2879 mutex_lock(&mdsc->mutex); 2880 for (i = 0; i < mdsc->max_sessions; i++) { 2881 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 2882 if (!s) 2883 continue; 2884 mutex_unlock(&mdsc->mutex); 2885 mutex_lock(&s->s_mutex); 2886 mutex_unlock(&s->s_mutex); 2887 ceph_put_mds_session(s); 2888 mutex_lock(&mdsc->mutex); 2889 } 2890 mutex_unlock(&mdsc->mutex); 2891 } 2892 2893 2894 2895 /* 2896 * delayed work -- periodically trim expired leases, renew caps with mds 2897 */ 2898 static void schedule_delayed(struct ceph_mds_client *mdsc) 2899 { 2900 int delay = 5; 2901 unsigned hz = round_jiffies_relative(HZ * delay); 2902 schedule_delayed_work(&mdsc->delayed_work, hz); 2903 } 2904 2905 static void delayed_work(struct work_struct *work) 2906 { 2907 int i; 2908 struct ceph_mds_client *mdsc = 2909 container_of(work, struct ceph_mds_client, delayed_work.work); 2910 int renew_interval; 2911 int renew_caps; 2912 2913 dout("mdsc delayed_work\n"); 2914 ceph_check_delayed_caps(mdsc); 2915 2916 mutex_lock(&mdsc->mutex); 2917 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 2918 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 2919 mdsc->last_renew_caps); 2920 if (renew_caps) 2921 mdsc->last_renew_caps = jiffies; 2922 2923 for (i = 0; i < mdsc->max_sessions; i++) { 2924 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 2925 if (s == NULL) 2926 continue; 2927 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 2928 dout("resending session close request for mds%d\n", 2929 s->s_mds); 2930 request_close_session(mdsc, s); 2931 ceph_put_mds_session(s); 2932 continue; 2933 } 2934 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 2935 if (s->s_state == CEPH_MDS_SESSION_OPEN) { 2936 s->s_state = CEPH_MDS_SESSION_HUNG; 2937 pr_info("mds%d hung\n", s->s_mds); 2938 } 2939 } 2940 if (s->s_state < CEPH_MDS_SESSION_OPEN) { 2941 /* this mds is failed or recovering, just wait */ 2942 ceph_put_mds_session(s); 2943 continue; 2944 } 2945 mutex_unlock(&mdsc->mutex); 2946 2947 mutex_lock(&s->s_mutex); 2948 if (renew_caps) 2949 send_renew_caps(mdsc, s); 2950 else 2951 ceph_con_keepalive(&s->s_con); 2952 ceph_add_cap_releases(mdsc, s); 2953 if (s->s_state == CEPH_MDS_SESSION_OPEN || 2954 s->s_state == CEPH_MDS_SESSION_HUNG) 2955 ceph_send_cap_releases(mdsc, s); 2956 mutex_unlock(&s->s_mutex); 2957 ceph_put_mds_session(s); 2958 2959 mutex_lock(&mdsc->mutex); 2960 } 2961 mutex_unlock(&mdsc->mutex); 2962 2963 schedule_delayed(mdsc); 2964 } 2965 2966 int ceph_mdsc_init(struct ceph_fs_client *fsc) 2967 2968 { 2969 struct ceph_mds_client *mdsc; 2970 2971 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 2972 if (!mdsc) 2973 return -ENOMEM; 2974 mdsc->fsc = fsc; 2975 fsc->mdsc = mdsc; 2976 mutex_init(&mdsc->mutex); 2977 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 2978 if (mdsc->mdsmap == NULL) 2979 return -ENOMEM; 2980 2981 init_completion(&mdsc->safe_umount_waiters); 2982 init_waitqueue_head(&mdsc->session_close_wq); 2983 INIT_LIST_HEAD(&mdsc->waiting_for_map); 2984 mdsc->sessions = NULL; 2985 mdsc->max_sessions = 0; 2986 mdsc->stopping = 0; 2987 init_rwsem(&mdsc->snap_rwsem); 2988 mdsc->snap_realms = RB_ROOT; 2989 INIT_LIST_HEAD(&mdsc->snap_empty); 2990 spin_lock_init(&mdsc->snap_empty_lock); 2991 mdsc->last_tid = 0; 2992 mdsc->request_tree = RB_ROOT; 2993 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 2994 mdsc->last_renew_caps = jiffies; 2995 INIT_LIST_HEAD(&mdsc->cap_delay_list); 2996 spin_lock_init(&mdsc->cap_delay_lock); 2997 INIT_LIST_HEAD(&mdsc->snap_flush_list); 2998 spin_lock_init(&mdsc->snap_flush_lock); 2999 mdsc->cap_flush_seq = 0; 3000 INIT_LIST_HEAD(&mdsc->cap_dirty); 3001 mdsc->num_cap_flushing = 0; 3002 spin_lock_init(&mdsc->cap_dirty_lock); 3003 init_waitqueue_head(&mdsc->cap_flushing_wq); 3004 spin_lock_init(&mdsc->dentry_lru_lock); 3005 INIT_LIST_HEAD(&mdsc->dentry_lru); 3006 3007 ceph_caps_init(mdsc); 3008 ceph_adjust_min_caps(mdsc, fsc->min_caps); 3009 3010 return 0; 3011 } 3012 3013 /* 3014 * Wait for safe replies on open mds requests. If we time out, drop 3015 * all requests from the tree to avoid dangling dentry refs. 3016 */ 3017 static void wait_requests(struct ceph_mds_client *mdsc) 3018 { 3019 struct ceph_mds_request *req; 3020 struct ceph_fs_client *fsc = mdsc->fsc; 3021 3022 mutex_lock(&mdsc->mutex); 3023 if (__get_oldest_req(mdsc)) { 3024 mutex_unlock(&mdsc->mutex); 3025 3026 dout("wait_requests waiting for requests\n"); 3027 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 3028 fsc->client->options->mount_timeout * HZ); 3029 3030 /* tear down remaining requests */ 3031 mutex_lock(&mdsc->mutex); 3032 while ((req = __get_oldest_req(mdsc))) { 3033 dout("wait_requests timed out on tid %llu\n", 3034 req->r_tid); 3035 __unregister_request(mdsc, req); 3036 } 3037 } 3038 mutex_unlock(&mdsc->mutex); 3039 dout("wait_requests done\n"); 3040 } 3041 3042 /* 3043 * called before mount is ro, and before dentries are torn down. 3044 * (hmm, does this still race with new lookups?) 3045 */ 3046 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 3047 { 3048 dout("pre_umount\n"); 3049 mdsc->stopping = 1; 3050 3051 drop_leases(mdsc); 3052 ceph_flush_dirty_caps(mdsc); 3053 wait_requests(mdsc); 3054 3055 /* 3056 * wait for reply handlers to drop their request refs and 3057 * their inode/dcache refs 3058 */ 3059 ceph_msgr_flush(); 3060 } 3061 3062 /* 3063 * wait for all write mds requests to flush. 3064 */ 3065 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) 3066 { 3067 struct ceph_mds_request *req = NULL, *nextreq; 3068 struct rb_node *n; 3069 3070 mutex_lock(&mdsc->mutex); 3071 dout("wait_unsafe_requests want %lld\n", want_tid); 3072 restart: 3073 req = __get_oldest_req(mdsc); 3074 while (req && req->r_tid <= want_tid) { 3075 /* find next request */ 3076 n = rb_next(&req->r_node); 3077 if (n) 3078 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 3079 else 3080 nextreq = NULL; 3081 if ((req->r_op & CEPH_MDS_OP_WRITE)) { 3082 /* write op */ 3083 ceph_mdsc_get_request(req); 3084 if (nextreq) 3085 ceph_mdsc_get_request(nextreq); 3086 mutex_unlock(&mdsc->mutex); 3087 dout("wait_unsafe_requests wait on %llu (want %llu)\n", 3088 req->r_tid, want_tid); 3089 wait_for_completion(&req->r_safe_completion); 3090 mutex_lock(&mdsc->mutex); 3091 ceph_mdsc_put_request(req); 3092 if (!nextreq) 3093 break; /* next dne before, so we're done! */ 3094 if (RB_EMPTY_NODE(&nextreq->r_node)) { 3095 /* next request was removed from tree */ 3096 ceph_mdsc_put_request(nextreq); 3097 goto restart; 3098 } 3099 ceph_mdsc_put_request(nextreq); /* won't go away */ 3100 } 3101 req = nextreq; 3102 } 3103 mutex_unlock(&mdsc->mutex); 3104 dout("wait_unsafe_requests done\n"); 3105 } 3106 3107 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 3108 { 3109 u64 want_tid, want_flush; 3110 3111 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3112 return; 3113 3114 dout("sync\n"); 3115 mutex_lock(&mdsc->mutex); 3116 want_tid = mdsc->last_tid; 3117 want_flush = mdsc->cap_flush_seq; 3118 mutex_unlock(&mdsc->mutex); 3119 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush); 3120 3121 ceph_flush_dirty_caps(mdsc); 3122 3123 wait_unsafe_requests(mdsc, want_tid); 3124 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush)); 3125 } 3126 3127 /* 3128 * true if all sessions are closed, or we force unmount 3129 */ 3130 bool done_closing_sessions(struct ceph_mds_client *mdsc) 3131 { 3132 int i, n = 0; 3133 3134 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3135 return true; 3136 3137 mutex_lock(&mdsc->mutex); 3138 for (i = 0; i < mdsc->max_sessions; i++) 3139 if (mdsc->sessions[i]) 3140 n++; 3141 mutex_unlock(&mdsc->mutex); 3142 return n == 0; 3143 } 3144 3145 /* 3146 * called after sb is ro. 3147 */ 3148 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 3149 { 3150 struct ceph_mds_session *session; 3151 int i; 3152 struct ceph_fs_client *fsc = mdsc->fsc; 3153 unsigned long timeout = fsc->client->options->mount_timeout * HZ; 3154 3155 dout("close_sessions\n"); 3156 3157 /* close sessions */ 3158 mutex_lock(&mdsc->mutex); 3159 for (i = 0; i < mdsc->max_sessions; i++) { 3160 session = __ceph_lookup_mds_session(mdsc, i); 3161 if (!session) 3162 continue; 3163 mutex_unlock(&mdsc->mutex); 3164 mutex_lock(&session->s_mutex); 3165 __close_session(mdsc, session); 3166 mutex_unlock(&session->s_mutex); 3167 ceph_put_mds_session(session); 3168 mutex_lock(&mdsc->mutex); 3169 } 3170 mutex_unlock(&mdsc->mutex); 3171 3172 dout("waiting for sessions to close\n"); 3173 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc), 3174 timeout); 3175 3176 /* tear down remaining sessions */ 3177 mutex_lock(&mdsc->mutex); 3178 for (i = 0; i < mdsc->max_sessions; i++) { 3179 if (mdsc->sessions[i]) { 3180 session = get_session(mdsc->sessions[i]); 3181 __unregister_session(mdsc, session); 3182 mutex_unlock(&mdsc->mutex); 3183 mutex_lock(&session->s_mutex); 3184 remove_session_caps(session); 3185 mutex_unlock(&session->s_mutex); 3186 ceph_put_mds_session(session); 3187 mutex_lock(&mdsc->mutex); 3188 } 3189 } 3190 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 3191 mutex_unlock(&mdsc->mutex); 3192 3193 ceph_cleanup_empty_realms(mdsc); 3194 3195 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3196 3197 dout("stopped\n"); 3198 } 3199 3200 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 3201 { 3202 dout("stop\n"); 3203 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3204 if (mdsc->mdsmap) 3205 ceph_mdsmap_destroy(mdsc->mdsmap); 3206 kfree(mdsc->sessions); 3207 ceph_caps_finalize(mdsc); 3208 } 3209 3210 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 3211 { 3212 struct ceph_mds_client *mdsc = fsc->mdsc; 3213 3214 ceph_mdsc_stop(mdsc); 3215 fsc->mdsc = NULL; 3216 kfree(mdsc); 3217 } 3218 3219 3220 /* 3221 * handle mds map update. 3222 */ 3223 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 3224 { 3225 u32 epoch; 3226 u32 maplen; 3227 void *p = msg->front.iov_base; 3228 void *end = p + msg->front.iov_len; 3229 struct ceph_mdsmap *newmap, *oldmap; 3230 struct ceph_fsid fsid; 3231 int err = -EINVAL; 3232 3233 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 3234 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 3235 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 3236 return; 3237 epoch = ceph_decode_32(&p); 3238 maplen = ceph_decode_32(&p); 3239 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 3240 3241 /* do we need it? */ 3242 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch); 3243 mutex_lock(&mdsc->mutex); 3244 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 3245 dout("handle_map epoch %u <= our %u\n", 3246 epoch, mdsc->mdsmap->m_epoch); 3247 mutex_unlock(&mdsc->mutex); 3248 return; 3249 } 3250 3251 newmap = ceph_mdsmap_decode(&p, end); 3252 if (IS_ERR(newmap)) { 3253 err = PTR_ERR(newmap); 3254 goto bad_unlock; 3255 } 3256 3257 /* swap into place */ 3258 if (mdsc->mdsmap) { 3259 oldmap = mdsc->mdsmap; 3260 mdsc->mdsmap = newmap; 3261 check_new_map(mdsc, newmap, oldmap); 3262 ceph_mdsmap_destroy(oldmap); 3263 } else { 3264 mdsc->mdsmap = newmap; /* first mds map */ 3265 } 3266 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size; 3267 3268 __wake_requests(mdsc, &mdsc->waiting_for_map); 3269 3270 mutex_unlock(&mdsc->mutex); 3271 schedule_delayed(mdsc); 3272 return; 3273 3274 bad_unlock: 3275 mutex_unlock(&mdsc->mutex); 3276 bad: 3277 pr_err("error decoding mdsmap %d\n", err); 3278 return; 3279 } 3280 3281 static struct ceph_connection *con_get(struct ceph_connection *con) 3282 { 3283 struct ceph_mds_session *s = con->private; 3284 3285 if (get_session(s)) { 3286 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref)); 3287 return con; 3288 } 3289 dout("mdsc con_get %p FAIL\n", s); 3290 return NULL; 3291 } 3292 3293 static void con_put(struct ceph_connection *con) 3294 { 3295 struct ceph_mds_session *s = con->private; 3296 3297 ceph_put_mds_session(s); 3298 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref)); 3299 } 3300 3301 /* 3302 * if the client is unresponsive for long enough, the mds will kill 3303 * the session entirely. 3304 */ 3305 static void peer_reset(struct ceph_connection *con) 3306 { 3307 struct ceph_mds_session *s = con->private; 3308 struct ceph_mds_client *mdsc = s->s_mdsc; 3309 3310 pr_warning("mds%d closed our session\n", s->s_mds); 3311 send_mds_reconnect(mdsc, s); 3312 } 3313 3314 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg) 3315 { 3316 struct ceph_mds_session *s = con->private; 3317 struct ceph_mds_client *mdsc = s->s_mdsc; 3318 int type = le16_to_cpu(msg->hdr.type); 3319 3320 mutex_lock(&mdsc->mutex); 3321 if (__verify_registered_session(mdsc, s) < 0) { 3322 mutex_unlock(&mdsc->mutex); 3323 goto out; 3324 } 3325 mutex_unlock(&mdsc->mutex); 3326 3327 switch (type) { 3328 case CEPH_MSG_MDS_MAP: 3329 ceph_mdsc_handle_map(mdsc, msg); 3330 break; 3331 case CEPH_MSG_CLIENT_SESSION: 3332 handle_session(s, msg); 3333 break; 3334 case CEPH_MSG_CLIENT_REPLY: 3335 handle_reply(s, msg); 3336 break; 3337 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 3338 handle_forward(mdsc, s, msg); 3339 break; 3340 case CEPH_MSG_CLIENT_CAPS: 3341 ceph_handle_caps(s, msg); 3342 break; 3343 case CEPH_MSG_CLIENT_SNAP: 3344 ceph_handle_snap(mdsc, s, msg); 3345 break; 3346 case CEPH_MSG_CLIENT_LEASE: 3347 handle_lease(mdsc, s, msg); 3348 break; 3349 3350 default: 3351 pr_err("received unknown message type %d %s\n", type, 3352 ceph_msg_type_name(type)); 3353 } 3354 out: 3355 ceph_msg_put(msg); 3356 } 3357 3358 /* 3359 * authentication 3360 */ 3361 static int get_authorizer(struct ceph_connection *con, 3362 void **buf, int *len, int *proto, 3363 void **reply_buf, int *reply_len, int force_new) 3364 { 3365 struct ceph_mds_session *s = con->private; 3366 struct ceph_mds_client *mdsc = s->s_mdsc; 3367 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3368 int ret = 0; 3369 3370 if (force_new && s->s_authorizer) { 3371 ac->ops->destroy_authorizer(ac, s->s_authorizer); 3372 s->s_authorizer = NULL; 3373 } 3374 if (s->s_authorizer == NULL) { 3375 if (ac->ops->create_authorizer) { 3376 ret = ac->ops->create_authorizer( 3377 ac, CEPH_ENTITY_TYPE_MDS, 3378 &s->s_authorizer, 3379 &s->s_authorizer_buf, 3380 &s->s_authorizer_buf_len, 3381 &s->s_authorizer_reply_buf, 3382 &s->s_authorizer_reply_buf_len); 3383 if (ret) 3384 return ret; 3385 } 3386 } 3387 3388 *proto = ac->protocol; 3389 *buf = s->s_authorizer_buf; 3390 *len = s->s_authorizer_buf_len; 3391 *reply_buf = s->s_authorizer_reply_buf; 3392 *reply_len = s->s_authorizer_reply_buf_len; 3393 return 0; 3394 } 3395 3396 3397 static int verify_authorizer_reply(struct ceph_connection *con, int len) 3398 { 3399 struct ceph_mds_session *s = con->private; 3400 struct ceph_mds_client *mdsc = s->s_mdsc; 3401 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3402 3403 return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len); 3404 } 3405 3406 static int invalidate_authorizer(struct ceph_connection *con) 3407 { 3408 struct ceph_mds_session *s = con->private; 3409 struct ceph_mds_client *mdsc = s->s_mdsc; 3410 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3411 3412 if (ac->ops->invalidate_authorizer) 3413 ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 3414 3415 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 3416 } 3417 3418 static const struct ceph_connection_operations mds_con_ops = { 3419 .get = con_get, 3420 .put = con_put, 3421 .dispatch = dispatch, 3422 .get_authorizer = get_authorizer, 3423 .verify_authorizer_reply = verify_authorizer_reply, 3424 .invalidate_authorizer = invalidate_authorizer, 3425 .peer_reset = peer_reset, 3426 }; 3427 3428 /* eof */ 3429