xref: /linux/fs/ceph/mds_client.c (revision 394d83c17fac2b7bcf05cb99d1e945135767bb6b)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
9 
10 #include "super.h"
11 #include "mds_client.h"
12 
13 #include <linux/ceph/messenger.h>
14 #include <linux/ceph/decode.h>
15 #include <linux/ceph/pagelist.h>
16 #include <linux/ceph/auth.h>
17 #include <linux/ceph/debugfs.h>
18 
19 /*
20  * A cluster of MDS (metadata server) daemons is responsible for
21  * managing the file system namespace (the directory hierarchy and
22  * inodes) and for coordinating shared access to storage.  Metadata is
23  * partitioning hierarchically across a number of servers, and that
24  * partition varies over time as the cluster adjusts the distribution
25  * in order to balance load.
26  *
27  * The MDS client is primarily responsible to managing synchronous
28  * metadata requests for operations like open, unlink, and so forth.
29  * If there is a MDS failure, we find out about it when we (possibly
30  * request and) receive a new MDS map, and can resubmit affected
31  * requests.
32  *
33  * For the most part, though, we take advantage of a lossless
34  * communications channel to the MDS, and do not need to worry about
35  * timing out or resubmitting requests.
36  *
37  * We maintain a stateful "session" with each MDS we interact with.
38  * Within each session, we sent periodic heartbeat messages to ensure
39  * any capabilities or leases we have been issues remain valid.  If
40  * the session times out and goes stale, our leases and capabilities
41  * are no longer valid.
42  */
43 
44 struct ceph_reconnect_state {
45 	struct ceph_pagelist *pagelist;
46 	bool flock;
47 };
48 
49 static void __wake_requests(struct ceph_mds_client *mdsc,
50 			    struct list_head *head);
51 
52 static const struct ceph_connection_operations mds_con_ops;
53 
54 
55 /*
56  * mds reply parsing
57  */
58 
59 /*
60  * parse individual inode info
61  */
62 static int parse_reply_info_in(void **p, void *end,
63 			       struct ceph_mds_reply_info_in *info,
64 			       int features)
65 {
66 	int err = -EIO;
67 
68 	info->in = *p;
69 	*p += sizeof(struct ceph_mds_reply_inode) +
70 		sizeof(*info->in->fragtree.splits) *
71 		le32_to_cpu(info->in->fragtree.nsplits);
72 
73 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
74 	ceph_decode_need(p, end, info->symlink_len, bad);
75 	info->symlink = *p;
76 	*p += info->symlink_len;
77 
78 	if (features & CEPH_FEATURE_DIRLAYOUTHASH)
79 		ceph_decode_copy_safe(p, end, &info->dir_layout,
80 				      sizeof(info->dir_layout), bad);
81 	else
82 		memset(&info->dir_layout, 0, sizeof(info->dir_layout));
83 
84 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
85 	ceph_decode_need(p, end, info->xattr_len, bad);
86 	info->xattr_data = *p;
87 	*p += info->xattr_len;
88 	return 0;
89 bad:
90 	return err;
91 }
92 
93 /*
94  * parse a normal reply, which may contain a (dir+)dentry and/or a
95  * target inode.
96  */
97 static int parse_reply_info_trace(void **p, void *end,
98 				  struct ceph_mds_reply_info_parsed *info,
99 				  int features)
100 {
101 	int err;
102 
103 	if (info->head->is_dentry) {
104 		err = parse_reply_info_in(p, end, &info->diri, features);
105 		if (err < 0)
106 			goto out_bad;
107 
108 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
109 			goto bad;
110 		info->dirfrag = *p;
111 		*p += sizeof(*info->dirfrag) +
112 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
113 		if (unlikely(*p > end))
114 			goto bad;
115 
116 		ceph_decode_32_safe(p, end, info->dname_len, bad);
117 		ceph_decode_need(p, end, info->dname_len, bad);
118 		info->dname = *p;
119 		*p += info->dname_len;
120 		info->dlease = *p;
121 		*p += sizeof(*info->dlease);
122 	}
123 
124 	if (info->head->is_target) {
125 		err = parse_reply_info_in(p, end, &info->targeti, features);
126 		if (err < 0)
127 			goto out_bad;
128 	}
129 
130 	if (unlikely(*p != end))
131 		goto bad;
132 	return 0;
133 
134 bad:
135 	err = -EIO;
136 out_bad:
137 	pr_err("problem parsing mds trace %d\n", err);
138 	return err;
139 }
140 
141 /*
142  * parse readdir results
143  */
144 static int parse_reply_info_dir(void **p, void *end,
145 				struct ceph_mds_reply_info_parsed *info,
146 				int features)
147 {
148 	u32 num, i = 0;
149 	int err;
150 
151 	info->dir_dir = *p;
152 	if (*p + sizeof(*info->dir_dir) > end)
153 		goto bad;
154 	*p += sizeof(*info->dir_dir) +
155 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
156 	if (*p > end)
157 		goto bad;
158 
159 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
160 	num = ceph_decode_32(p);
161 	info->dir_end = ceph_decode_8(p);
162 	info->dir_complete = ceph_decode_8(p);
163 	if (num == 0)
164 		goto done;
165 
166 	/* alloc large array */
167 	info->dir_nr = num;
168 	info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
169 			       sizeof(*info->dir_dname) +
170 			       sizeof(*info->dir_dname_len) +
171 			       sizeof(*info->dir_dlease),
172 			       GFP_NOFS);
173 	if (info->dir_in == NULL) {
174 		err = -ENOMEM;
175 		goto out_bad;
176 	}
177 	info->dir_dname = (void *)(info->dir_in + num);
178 	info->dir_dname_len = (void *)(info->dir_dname + num);
179 	info->dir_dlease = (void *)(info->dir_dname_len + num);
180 
181 	while (num) {
182 		/* dentry */
183 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
184 		info->dir_dname_len[i] = ceph_decode_32(p);
185 		ceph_decode_need(p, end, info->dir_dname_len[i], bad);
186 		info->dir_dname[i] = *p;
187 		*p += info->dir_dname_len[i];
188 		dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
189 		     info->dir_dname[i]);
190 		info->dir_dlease[i] = *p;
191 		*p += sizeof(struct ceph_mds_reply_lease);
192 
193 		/* inode */
194 		err = parse_reply_info_in(p, end, &info->dir_in[i], features);
195 		if (err < 0)
196 			goto out_bad;
197 		i++;
198 		num--;
199 	}
200 
201 done:
202 	if (*p != end)
203 		goto bad;
204 	return 0;
205 
206 bad:
207 	err = -EIO;
208 out_bad:
209 	pr_err("problem parsing dir contents %d\n", err);
210 	return err;
211 }
212 
213 /*
214  * parse fcntl F_GETLK results
215  */
216 static int parse_reply_info_filelock(void **p, void *end,
217 				     struct ceph_mds_reply_info_parsed *info,
218 				     int features)
219 {
220 	if (*p + sizeof(*info->filelock_reply) > end)
221 		goto bad;
222 
223 	info->filelock_reply = *p;
224 	*p += sizeof(*info->filelock_reply);
225 
226 	if (unlikely(*p != end))
227 		goto bad;
228 	return 0;
229 
230 bad:
231 	return -EIO;
232 }
233 
234 /*
235  * parse extra results
236  */
237 static int parse_reply_info_extra(void **p, void *end,
238 				  struct ceph_mds_reply_info_parsed *info,
239 				  int features)
240 {
241 	if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
242 		return parse_reply_info_filelock(p, end, info, features);
243 	else
244 		return parse_reply_info_dir(p, end, info, features);
245 }
246 
247 /*
248  * parse entire mds reply
249  */
250 static int parse_reply_info(struct ceph_msg *msg,
251 			    struct ceph_mds_reply_info_parsed *info,
252 			    int features)
253 {
254 	void *p, *end;
255 	u32 len;
256 	int err;
257 
258 	info->head = msg->front.iov_base;
259 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
260 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
261 
262 	/* trace */
263 	ceph_decode_32_safe(&p, end, len, bad);
264 	if (len > 0) {
265 		err = parse_reply_info_trace(&p, p+len, info, features);
266 		if (err < 0)
267 			goto out_bad;
268 	}
269 
270 	/* extra */
271 	ceph_decode_32_safe(&p, end, len, bad);
272 	if (len > 0) {
273 		err = parse_reply_info_extra(&p, p+len, info, features);
274 		if (err < 0)
275 			goto out_bad;
276 	}
277 
278 	/* snap blob */
279 	ceph_decode_32_safe(&p, end, len, bad);
280 	info->snapblob_len = len;
281 	info->snapblob = p;
282 	p += len;
283 
284 	if (p != end)
285 		goto bad;
286 	return 0;
287 
288 bad:
289 	err = -EIO;
290 out_bad:
291 	pr_err("mds parse_reply err %d\n", err);
292 	return err;
293 }
294 
295 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
296 {
297 	kfree(info->dir_in);
298 }
299 
300 
301 /*
302  * sessions
303  */
304 static const char *session_state_name(int s)
305 {
306 	switch (s) {
307 	case CEPH_MDS_SESSION_NEW: return "new";
308 	case CEPH_MDS_SESSION_OPENING: return "opening";
309 	case CEPH_MDS_SESSION_OPEN: return "open";
310 	case CEPH_MDS_SESSION_HUNG: return "hung";
311 	case CEPH_MDS_SESSION_CLOSING: return "closing";
312 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
313 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
314 	default: return "???";
315 	}
316 }
317 
318 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
319 {
320 	if (atomic_inc_not_zero(&s->s_ref)) {
321 		dout("mdsc get_session %p %d -> %d\n", s,
322 		     atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
323 		return s;
324 	} else {
325 		dout("mdsc get_session %p 0 -- FAIL", s);
326 		return NULL;
327 	}
328 }
329 
330 void ceph_put_mds_session(struct ceph_mds_session *s)
331 {
332 	dout("mdsc put_session %p %d -> %d\n", s,
333 	     atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
334 	if (atomic_dec_and_test(&s->s_ref)) {
335 		if (s->s_authorizer)
336 		     s->s_mdsc->fsc->client->monc.auth->ops->destroy_authorizer(
337 			     s->s_mdsc->fsc->client->monc.auth,
338 			     s->s_authorizer);
339 		kfree(s);
340 	}
341 }
342 
343 /*
344  * called under mdsc->mutex
345  */
346 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
347 						   int mds)
348 {
349 	struct ceph_mds_session *session;
350 
351 	if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
352 		return NULL;
353 	session = mdsc->sessions[mds];
354 	dout("lookup_mds_session %p %d\n", session,
355 	     atomic_read(&session->s_ref));
356 	get_session(session);
357 	return session;
358 }
359 
360 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
361 {
362 	if (mds >= mdsc->max_sessions)
363 		return false;
364 	return mdsc->sessions[mds];
365 }
366 
367 static int __verify_registered_session(struct ceph_mds_client *mdsc,
368 				       struct ceph_mds_session *s)
369 {
370 	if (s->s_mds >= mdsc->max_sessions ||
371 	    mdsc->sessions[s->s_mds] != s)
372 		return -ENOENT;
373 	return 0;
374 }
375 
376 /*
377  * create+register a new session for given mds.
378  * called under mdsc->mutex.
379  */
380 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
381 						 int mds)
382 {
383 	struct ceph_mds_session *s;
384 
385 	s = kzalloc(sizeof(*s), GFP_NOFS);
386 	if (!s)
387 		return ERR_PTR(-ENOMEM);
388 	s->s_mdsc = mdsc;
389 	s->s_mds = mds;
390 	s->s_state = CEPH_MDS_SESSION_NEW;
391 	s->s_ttl = 0;
392 	s->s_seq = 0;
393 	mutex_init(&s->s_mutex);
394 
395 	ceph_con_init(mdsc->fsc->client->msgr, &s->s_con);
396 	s->s_con.private = s;
397 	s->s_con.ops = &mds_con_ops;
398 	s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS;
399 	s->s_con.peer_name.num = cpu_to_le64(mds);
400 
401 	spin_lock_init(&s->s_cap_lock);
402 	s->s_cap_gen = 0;
403 	s->s_cap_ttl = 0;
404 	s->s_renew_requested = 0;
405 	s->s_renew_seq = 0;
406 	INIT_LIST_HEAD(&s->s_caps);
407 	s->s_nr_caps = 0;
408 	s->s_trim_caps = 0;
409 	atomic_set(&s->s_ref, 1);
410 	INIT_LIST_HEAD(&s->s_waiting);
411 	INIT_LIST_HEAD(&s->s_unsafe);
412 	s->s_num_cap_releases = 0;
413 	s->s_cap_iterator = NULL;
414 	INIT_LIST_HEAD(&s->s_cap_releases);
415 	INIT_LIST_HEAD(&s->s_cap_releases_done);
416 	INIT_LIST_HEAD(&s->s_cap_flushing);
417 	INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
418 
419 	dout("register_session mds%d\n", mds);
420 	if (mds >= mdsc->max_sessions) {
421 		int newmax = 1 << get_count_order(mds+1);
422 		struct ceph_mds_session **sa;
423 
424 		dout("register_session realloc to %d\n", newmax);
425 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
426 		if (sa == NULL)
427 			goto fail_realloc;
428 		if (mdsc->sessions) {
429 			memcpy(sa, mdsc->sessions,
430 			       mdsc->max_sessions * sizeof(void *));
431 			kfree(mdsc->sessions);
432 		}
433 		mdsc->sessions = sa;
434 		mdsc->max_sessions = newmax;
435 	}
436 	mdsc->sessions[mds] = s;
437 	atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
438 
439 	ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
440 
441 	return s;
442 
443 fail_realloc:
444 	kfree(s);
445 	return ERR_PTR(-ENOMEM);
446 }
447 
448 /*
449  * called under mdsc->mutex
450  */
451 static void __unregister_session(struct ceph_mds_client *mdsc,
452 			       struct ceph_mds_session *s)
453 {
454 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
455 	BUG_ON(mdsc->sessions[s->s_mds] != s);
456 	mdsc->sessions[s->s_mds] = NULL;
457 	ceph_con_close(&s->s_con);
458 	ceph_put_mds_session(s);
459 }
460 
461 /*
462  * drop session refs in request.
463  *
464  * should be last request ref, or hold mdsc->mutex
465  */
466 static void put_request_session(struct ceph_mds_request *req)
467 {
468 	if (req->r_session) {
469 		ceph_put_mds_session(req->r_session);
470 		req->r_session = NULL;
471 	}
472 }
473 
474 void ceph_mdsc_release_request(struct kref *kref)
475 {
476 	struct ceph_mds_request *req = container_of(kref,
477 						    struct ceph_mds_request,
478 						    r_kref);
479 	if (req->r_request)
480 		ceph_msg_put(req->r_request);
481 	if (req->r_reply) {
482 		ceph_msg_put(req->r_reply);
483 		destroy_reply_info(&req->r_reply_info);
484 	}
485 	if (req->r_inode) {
486 		ceph_put_cap_refs(ceph_inode(req->r_inode),
487 				  CEPH_CAP_PIN);
488 		iput(req->r_inode);
489 	}
490 	if (req->r_locked_dir)
491 		ceph_put_cap_refs(ceph_inode(req->r_locked_dir),
492 				  CEPH_CAP_PIN);
493 	if (req->r_target_inode)
494 		iput(req->r_target_inode);
495 	if (req->r_dentry)
496 		dput(req->r_dentry);
497 	if (req->r_old_dentry) {
498 		ceph_put_cap_refs(
499 			ceph_inode(req->r_old_dentry->d_parent->d_inode),
500 			CEPH_CAP_PIN);
501 		dput(req->r_old_dentry);
502 	}
503 	kfree(req->r_path1);
504 	kfree(req->r_path2);
505 	put_request_session(req);
506 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
507 	kfree(req);
508 }
509 
510 /*
511  * lookup session, bump ref if found.
512  *
513  * called under mdsc->mutex.
514  */
515 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
516 					     u64 tid)
517 {
518 	struct ceph_mds_request *req;
519 	struct rb_node *n = mdsc->request_tree.rb_node;
520 
521 	while (n) {
522 		req = rb_entry(n, struct ceph_mds_request, r_node);
523 		if (tid < req->r_tid)
524 			n = n->rb_left;
525 		else if (tid > req->r_tid)
526 			n = n->rb_right;
527 		else {
528 			ceph_mdsc_get_request(req);
529 			return req;
530 		}
531 	}
532 	return NULL;
533 }
534 
535 static void __insert_request(struct ceph_mds_client *mdsc,
536 			     struct ceph_mds_request *new)
537 {
538 	struct rb_node **p = &mdsc->request_tree.rb_node;
539 	struct rb_node *parent = NULL;
540 	struct ceph_mds_request *req = NULL;
541 
542 	while (*p) {
543 		parent = *p;
544 		req = rb_entry(parent, struct ceph_mds_request, r_node);
545 		if (new->r_tid < req->r_tid)
546 			p = &(*p)->rb_left;
547 		else if (new->r_tid > req->r_tid)
548 			p = &(*p)->rb_right;
549 		else
550 			BUG();
551 	}
552 
553 	rb_link_node(&new->r_node, parent, p);
554 	rb_insert_color(&new->r_node, &mdsc->request_tree);
555 }
556 
557 /*
558  * Register an in-flight request, and assign a tid.  Link to directory
559  * are modifying (if any).
560  *
561  * Called under mdsc->mutex.
562  */
563 static void __register_request(struct ceph_mds_client *mdsc,
564 			       struct ceph_mds_request *req,
565 			       struct inode *dir)
566 {
567 	req->r_tid = ++mdsc->last_tid;
568 	if (req->r_num_caps)
569 		ceph_reserve_caps(mdsc, &req->r_caps_reservation,
570 				  req->r_num_caps);
571 	dout("__register_request %p tid %lld\n", req, req->r_tid);
572 	ceph_mdsc_get_request(req);
573 	__insert_request(mdsc, req);
574 
575 	req->r_uid = current_fsuid();
576 	req->r_gid = current_fsgid();
577 
578 	if (dir) {
579 		struct ceph_inode_info *ci = ceph_inode(dir);
580 
581 		spin_lock(&ci->i_unsafe_lock);
582 		req->r_unsafe_dir = dir;
583 		list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
584 		spin_unlock(&ci->i_unsafe_lock);
585 	}
586 }
587 
588 static void __unregister_request(struct ceph_mds_client *mdsc,
589 				 struct ceph_mds_request *req)
590 {
591 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
592 	rb_erase(&req->r_node, &mdsc->request_tree);
593 	RB_CLEAR_NODE(&req->r_node);
594 
595 	if (req->r_unsafe_dir) {
596 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
597 
598 		spin_lock(&ci->i_unsafe_lock);
599 		list_del_init(&req->r_unsafe_dir_item);
600 		spin_unlock(&ci->i_unsafe_lock);
601 	}
602 
603 	ceph_mdsc_put_request(req);
604 }
605 
606 /*
607  * Choose mds to send request to next.  If there is a hint set in the
608  * request (e.g., due to a prior forward hint from the mds), use that.
609  * Otherwise, consult frag tree and/or caps to identify the
610  * appropriate mds.  If all else fails, choose randomly.
611  *
612  * Called under mdsc->mutex.
613  */
614 struct dentry *get_nonsnap_parent(struct dentry *dentry)
615 {
616 	while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
617 		dentry = dentry->d_parent;
618 	return dentry;
619 }
620 
621 static int __choose_mds(struct ceph_mds_client *mdsc,
622 			struct ceph_mds_request *req)
623 {
624 	struct inode *inode;
625 	struct ceph_inode_info *ci;
626 	struct ceph_cap *cap;
627 	int mode = req->r_direct_mode;
628 	int mds = -1;
629 	u32 hash = req->r_direct_hash;
630 	bool is_hash = req->r_direct_is_hash;
631 
632 	/*
633 	 * is there a specific mds we should try?  ignore hint if we have
634 	 * no session and the mds is not up (active or recovering).
635 	 */
636 	if (req->r_resend_mds >= 0 &&
637 	    (__have_session(mdsc, req->r_resend_mds) ||
638 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
639 		dout("choose_mds using resend_mds mds%d\n",
640 		     req->r_resend_mds);
641 		return req->r_resend_mds;
642 	}
643 
644 	if (mode == USE_RANDOM_MDS)
645 		goto random;
646 
647 	inode = NULL;
648 	if (req->r_inode) {
649 		inode = req->r_inode;
650 	} else if (req->r_dentry) {
651 		struct inode *dir = req->r_dentry->d_parent->d_inode;
652 
653 		if (dir->i_sb != mdsc->fsc->sb) {
654 			/* not this fs! */
655 			inode = req->r_dentry->d_inode;
656 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
657 			/* direct snapped/virtual snapdir requests
658 			 * based on parent dir inode */
659 			struct dentry *dn =
660 				get_nonsnap_parent(req->r_dentry->d_parent);
661 			inode = dn->d_inode;
662 			dout("__choose_mds using nonsnap parent %p\n", inode);
663 		} else if (req->r_dentry->d_inode) {
664 			/* dentry target */
665 			inode = req->r_dentry->d_inode;
666 		} else {
667 			/* dir + name */
668 			inode = dir;
669 			hash = ceph_dentry_hash(req->r_dentry);
670 			is_hash = true;
671 		}
672 	}
673 
674 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
675 	     (int)hash, mode);
676 	if (!inode)
677 		goto random;
678 	ci = ceph_inode(inode);
679 
680 	if (is_hash && S_ISDIR(inode->i_mode)) {
681 		struct ceph_inode_frag frag;
682 		int found;
683 
684 		ceph_choose_frag(ci, hash, &frag, &found);
685 		if (found) {
686 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
687 				u8 r;
688 
689 				/* choose a random replica */
690 				get_random_bytes(&r, 1);
691 				r %= frag.ndist;
692 				mds = frag.dist[r];
693 				dout("choose_mds %p %llx.%llx "
694 				     "frag %u mds%d (%d/%d)\n",
695 				     inode, ceph_vinop(inode),
696 				     frag.frag, frag.mds,
697 				     (int)r, frag.ndist);
698 				return mds;
699 			}
700 
701 			/* since this file/dir wasn't known to be
702 			 * replicated, then we want to look for the
703 			 * authoritative mds. */
704 			mode = USE_AUTH_MDS;
705 			if (frag.mds >= 0) {
706 				/* choose auth mds */
707 				mds = frag.mds;
708 				dout("choose_mds %p %llx.%llx "
709 				     "frag %u mds%d (auth)\n",
710 				     inode, ceph_vinop(inode), frag.frag, mds);
711 				return mds;
712 			}
713 		}
714 	}
715 
716 	spin_lock(&inode->i_lock);
717 	cap = NULL;
718 	if (mode == USE_AUTH_MDS)
719 		cap = ci->i_auth_cap;
720 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
721 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
722 	if (!cap) {
723 		spin_unlock(&inode->i_lock);
724 		goto random;
725 	}
726 	mds = cap->session->s_mds;
727 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
728 	     inode, ceph_vinop(inode), mds,
729 	     cap == ci->i_auth_cap ? "auth " : "", cap);
730 	spin_unlock(&inode->i_lock);
731 	return mds;
732 
733 random:
734 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
735 	dout("choose_mds chose random mds%d\n", mds);
736 	return mds;
737 }
738 
739 
740 /*
741  * session messages
742  */
743 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
744 {
745 	struct ceph_msg *msg;
746 	struct ceph_mds_session_head *h;
747 
748 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS);
749 	if (!msg) {
750 		pr_err("create_session_msg ENOMEM creating msg\n");
751 		return NULL;
752 	}
753 	h = msg->front.iov_base;
754 	h->op = cpu_to_le32(op);
755 	h->seq = cpu_to_le64(seq);
756 	return msg;
757 }
758 
759 /*
760  * send session open request.
761  *
762  * called under mdsc->mutex
763  */
764 static int __open_session(struct ceph_mds_client *mdsc,
765 			  struct ceph_mds_session *session)
766 {
767 	struct ceph_msg *msg;
768 	int mstate;
769 	int mds = session->s_mds;
770 
771 	/* wait for mds to go active? */
772 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
773 	dout("open_session to mds%d (%s)\n", mds,
774 	     ceph_mds_state_name(mstate));
775 	session->s_state = CEPH_MDS_SESSION_OPENING;
776 	session->s_renew_requested = jiffies;
777 
778 	/* send connect message */
779 	msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
780 	if (!msg)
781 		return -ENOMEM;
782 	ceph_con_send(&session->s_con, msg);
783 	return 0;
784 }
785 
786 /*
787  * open sessions for any export targets for the given mds
788  *
789  * called under mdsc->mutex
790  */
791 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
792 					  struct ceph_mds_session *session)
793 {
794 	struct ceph_mds_info *mi;
795 	struct ceph_mds_session *ts;
796 	int i, mds = session->s_mds;
797 	int target;
798 
799 	if (mds >= mdsc->mdsmap->m_max_mds)
800 		return;
801 	mi = &mdsc->mdsmap->m_info[mds];
802 	dout("open_export_target_sessions for mds%d (%d targets)\n",
803 	     session->s_mds, mi->num_export_targets);
804 
805 	for (i = 0; i < mi->num_export_targets; i++) {
806 		target = mi->export_targets[i];
807 		ts = __ceph_lookup_mds_session(mdsc, target);
808 		if (!ts) {
809 			ts = register_session(mdsc, target);
810 			if (IS_ERR(ts))
811 				return;
812 		}
813 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
814 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
815 			__open_session(mdsc, session);
816 		else
817 			dout(" mds%d target mds%d %p is %s\n", session->s_mds,
818 			     i, ts, session_state_name(ts->s_state));
819 		ceph_put_mds_session(ts);
820 	}
821 }
822 
823 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
824 					   struct ceph_mds_session *session)
825 {
826 	mutex_lock(&mdsc->mutex);
827 	__open_export_target_sessions(mdsc, session);
828 	mutex_unlock(&mdsc->mutex);
829 }
830 
831 /*
832  * session caps
833  */
834 
835 /*
836  * Free preallocated cap messages assigned to this session
837  */
838 static void cleanup_cap_releases(struct ceph_mds_session *session)
839 {
840 	struct ceph_msg *msg;
841 
842 	spin_lock(&session->s_cap_lock);
843 	while (!list_empty(&session->s_cap_releases)) {
844 		msg = list_first_entry(&session->s_cap_releases,
845 				       struct ceph_msg, list_head);
846 		list_del_init(&msg->list_head);
847 		ceph_msg_put(msg);
848 	}
849 	while (!list_empty(&session->s_cap_releases_done)) {
850 		msg = list_first_entry(&session->s_cap_releases_done,
851 				       struct ceph_msg, list_head);
852 		list_del_init(&msg->list_head);
853 		ceph_msg_put(msg);
854 	}
855 	spin_unlock(&session->s_cap_lock);
856 }
857 
858 /*
859  * Helper to safely iterate over all caps associated with a session, with
860  * special care taken to handle a racing __ceph_remove_cap().
861  *
862  * Caller must hold session s_mutex.
863  */
864 static int iterate_session_caps(struct ceph_mds_session *session,
865 				 int (*cb)(struct inode *, struct ceph_cap *,
866 					    void *), void *arg)
867 {
868 	struct list_head *p;
869 	struct ceph_cap *cap;
870 	struct inode *inode, *last_inode = NULL;
871 	struct ceph_cap *old_cap = NULL;
872 	int ret;
873 
874 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
875 	spin_lock(&session->s_cap_lock);
876 	p = session->s_caps.next;
877 	while (p != &session->s_caps) {
878 		cap = list_entry(p, struct ceph_cap, session_caps);
879 		inode = igrab(&cap->ci->vfs_inode);
880 		if (!inode) {
881 			p = p->next;
882 			continue;
883 		}
884 		session->s_cap_iterator = cap;
885 		spin_unlock(&session->s_cap_lock);
886 
887 		if (last_inode) {
888 			iput(last_inode);
889 			last_inode = NULL;
890 		}
891 		if (old_cap) {
892 			ceph_put_cap(session->s_mdsc, old_cap);
893 			old_cap = NULL;
894 		}
895 
896 		ret = cb(inode, cap, arg);
897 		last_inode = inode;
898 
899 		spin_lock(&session->s_cap_lock);
900 		p = p->next;
901 		if (cap->ci == NULL) {
902 			dout("iterate_session_caps  finishing cap %p removal\n",
903 			     cap);
904 			BUG_ON(cap->session != session);
905 			list_del_init(&cap->session_caps);
906 			session->s_nr_caps--;
907 			cap->session = NULL;
908 			old_cap = cap;  /* put_cap it w/o locks held */
909 		}
910 		if (ret < 0)
911 			goto out;
912 	}
913 	ret = 0;
914 out:
915 	session->s_cap_iterator = NULL;
916 	spin_unlock(&session->s_cap_lock);
917 
918 	if (last_inode)
919 		iput(last_inode);
920 	if (old_cap)
921 		ceph_put_cap(session->s_mdsc, old_cap);
922 
923 	return ret;
924 }
925 
926 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
927 				  void *arg)
928 {
929 	struct ceph_inode_info *ci = ceph_inode(inode);
930 	int drop = 0;
931 
932 	dout("removing cap %p, ci is %p, inode is %p\n",
933 	     cap, ci, &ci->vfs_inode);
934 	spin_lock(&inode->i_lock);
935 	__ceph_remove_cap(cap);
936 	if (!__ceph_is_any_real_caps(ci)) {
937 		struct ceph_mds_client *mdsc =
938 			ceph_sb_to_client(inode->i_sb)->mdsc;
939 
940 		spin_lock(&mdsc->cap_dirty_lock);
941 		if (!list_empty(&ci->i_dirty_item)) {
942 			pr_info(" dropping dirty %s state for %p %lld\n",
943 				ceph_cap_string(ci->i_dirty_caps),
944 				inode, ceph_ino(inode));
945 			ci->i_dirty_caps = 0;
946 			list_del_init(&ci->i_dirty_item);
947 			drop = 1;
948 		}
949 		if (!list_empty(&ci->i_flushing_item)) {
950 			pr_info(" dropping dirty+flushing %s state for %p %lld\n",
951 				ceph_cap_string(ci->i_flushing_caps),
952 				inode, ceph_ino(inode));
953 			ci->i_flushing_caps = 0;
954 			list_del_init(&ci->i_flushing_item);
955 			mdsc->num_cap_flushing--;
956 			drop = 1;
957 		}
958 		if (drop && ci->i_wrbuffer_ref) {
959 			pr_info(" dropping dirty data for %p %lld\n",
960 				inode, ceph_ino(inode));
961 			ci->i_wrbuffer_ref = 0;
962 			ci->i_wrbuffer_ref_head = 0;
963 			drop++;
964 		}
965 		spin_unlock(&mdsc->cap_dirty_lock);
966 	}
967 	spin_unlock(&inode->i_lock);
968 	while (drop--)
969 		iput(inode);
970 	return 0;
971 }
972 
973 /*
974  * caller must hold session s_mutex
975  */
976 static void remove_session_caps(struct ceph_mds_session *session)
977 {
978 	dout("remove_session_caps on %p\n", session);
979 	iterate_session_caps(session, remove_session_caps_cb, NULL);
980 	BUG_ON(session->s_nr_caps > 0);
981 	BUG_ON(!list_empty(&session->s_cap_flushing));
982 	cleanup_cap_releases(session);
983 }
984 
985 /*
986  * wake up any threads waiting on this session's caps.  if the cap is
987  * old (didn't get renewed on the client reconnect), remove it now.
988  *
989  * caller must hold s_mutex.
990  */
991 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
992 			      void *arg)
993 {
994 	struct ceph_inode_info *ci = ceph_inode(inode);
995 
996 	wake_up_all(&ci->i_cap_wq);
997 	if (arg) {
998 		spin_lock(&inode->i_lock);
999 		ci->i_wanted_max_size = 0;
1000 		ci->i_requested_max_size = 0;
1001 		spin_unlock(&inode->i_lock);
1002 	}
1003 	return 0;
1004 }
1005 
1006 static void wake_up_session_caps(struct ceph_mds_session *session,
1007 				 int reconnect)
1008 {
1009 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1010 	iterate_session_caps(session, wake_up_session_cb,
1011 			     (void *)(unsigned long)reconnect);
1012 }
1013 
1014 /*
1015  * Send periodic message to MDS renewing all currently held caps.  The
1016  * ack will reset the expiration for all caps from this session.
1017  *
1018  * caller holds s_mutex
1019  */
1020 static int send_renew_caps(struct ceph_mds_client *mdsc,
1021 			   struct ceph_mds_session *session)
1022 {
1023 	struct ceph_msg *msg;
1024 	int state;
1025 
1026 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1027 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1028 		pr_info("mds%d caps stale\n", session->s_mds);
1029 	session->s_renew_requested = jiffies;
1030 
1031 	/* do not try to renew caps until a recovering mds has reconnected
1032 	 * with its clients. */
1033 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1034 	if (state < CEPH_MDS_STATE_RECONNECT) {
1035 		dout("send_renew_caps ignoring mds%d (%s)\n",
1036 		     session->s_mds, ceph_mds_state_name(state));
1037 		return 0;
1038 	}
1039 
1040 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1041 		ceph_mds_state_name(state));
1042 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1043 				 ++session->s_renew_seq);
1044 	if (!msg)
1045 		return -ENOMEM;
1046 	ceph_con_send(&session->s_con, msg);
1047 	return 0;
1048 }
1049 
1050 /*
1051  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1052  *
1053  * Called under session->s_mutex
1054  */
1055 static void renewed_caps(struct ceph_mds_client *mdsc,
1056 			 struct ceph_mds_session *session, int is_renew)
1057 {
1058 	int was_stale;
1059 	int wake = 0;
1060 
1061 	spin_lock(&session->s_cap_lock);
1062 	was_stale = is_renew && (session->s_cap_ttl == 0 ||
1063 				 time_after_eq(jiffies, session->s_cap_ttl));
1064 
1065 	session->s_cap_ttl = session->s_renew_requested +
1066 		mdsc->mdsmap->m_session_timeout*HZ;
1067 
1068 	if (was_stale) {
1069 		if (time_before(jiffies, session->s_cap_ttl)) {
1070 			pr_info("mds%d caps renewed\n", session->s_mds);
1071 			wake = 1;
1072 		} else {
1073 			pr_info("mds%d caps still stale\n", session->s_mds);
1074 		}
1075 	}
1076 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1077 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1078 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1079 	spin_unlock(&session->s_cap_lock);
1080 
1081 	if (wake)
1082 		wake_up_session_caps(session, 0);
1083 }
1084 
1085 /*
1086  * send a session close request
1087  */
1088 static int request_close_session(struct ceph_mds_client *mdsc,
1089 				 struct ceph_mds_session *session)
1090 {
1091 	struct ceph_msg *msg;
1092 
1093 	dout("request_close_session mds%d state %s seq %lld\n",
1094 	     session->s_mds, session_state_name(session->s_state),
1095 	     session->s_seq);
1096 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1097 	if (!msg)
1098 		return -ENOMEM;
1099 	ceph_con_send(&session->s_con, msg);
1100 	return 0;
1101 }
1102 
1103 /*
1104  * Called with s_mutex held.
1105  */
1106 static int __close_session(struct ceph_mds_client *mdsc,
1107 			 struct ceph_mds_session *session)
1108 {
1109 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1110 		return 0;
1111 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1112 	return request_close_session(mdsc, session);
1113 }
1114 
1115 /*
1116  * Trim old(er) caps.
1117  *
1118  * Because we can't cache an inode without one or more caps, we do
1119  * this indirectly: if a cap is unused, we prune its aliases, at which
1120  * point the inode will hopefully get dropped to.
1121  *
1122  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1123  * memory pressure from the MDS, though, so it needn't be perfect.
1124  */
1125 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1126 {
1127 	struct ceph_mds_session *session = arg;
1128 	struct ceph_inode_info *ci = ceph_inode(inode);
1129 	int used, oissued, mine;
1130 
1131 	if (session->s_trim_caps <= 0)
1132 		return -1;
1133 
1134 	spin_lock(&inode->i_lock);
1135 	mine = cap->issued | cap->implemented;
1136 	used = __ceph_caps_used(ci);
1137 	oissued = __ceph_caps_issued_other(ci, cap);
1138 
1139 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1140 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1141 	     ceph_cap_string(used));
1142 	if (ci->i_dirty_caps)
1143 		goto out;   /* dirty caps */
1144 	if ((used & ~oissued) & mine)
1145 		goto out;   /* we need these caps */
1146 
1147 	session->s_trim_caps--;
1148 	if (oissued) {
1149 		/* we aren't the only cap.. just remove us */
1150 		__ceph_remove_cap(cap);
1151 	} else {
1152 		/* try to drop referring dentries */
1153 		spin_unlock(&inode->i_lock);
1154 		d_prune_aliases(inode);
1155 		dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1156 		     inode, cap, atomic_read(&inode->i_count));
1157 		return 0;
1158 	}
1159 
1160 out:
1161 	spin_unlock(&inode->i_lock);
1162 	return 0;
1163 }
1164 
1165 /*
1166  * Trim session cap count down to some max number.
1167  */
1168 static int trim_caps(struct ceph_mds_client *mdsc,
1169 		     struct ceph_mds_session *session,
1170 		     int max_caps)
1171 {
1172 	int trim_caps = session->s_nr_caps - max_caps;
1173 
1174 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1175 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1176 	if (trim_caps > 0) {
1177 		session->s_trim_caps = trim_caps;
1178 		iterate_session_caps(session, trim_caps_cb, session);
1179 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1180 		     session->s_mds, session->s_nr_caps, max_caps,
1181 			trim_caps - session->s_trim_caps);
1182 		session->s_trim_caps = 0;
1183 	}
1184 	return 0;
1185 }
1186 
1187 /*
1188  * Allocate cap_release messages.  If there is a partially full message
1189  * in the queue, try to allocate enough to cover it's remainder, so that
1190  * we can send it immediately.
1191  *
1192  * Called under s_mutex.
1193  */
1194 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1195 			  struct ceph_mds_session *session)
1196 {
1197 	struct ceph_msg *msg, *partial = NULL;
1198 	struct ceph_mds_cap_release *head;
1199 	int err = -ENOMEM;
1200 	int extra = mdsc->fsc->mount_options->cap_release_safety;
1201 	int num;
1202 
1203 	dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1204 	     extra);
1205 
1206 	spin_lock(&session->s_cap_lock);
1207 
1208 	if (!list_empty(&session->s_cap_releases)) {
1209 		msg = list_first_entry(&session->s_cap_releases,
1210 				       struct ceph_msg,
1211 				 list_head);
1212 		head = msg->front.iov_base;
1213 		num = le32_to_cpu(head->num);
1214 		if (num) {
1215 			dout(" partial %p with (%d/%d)\n", msg, num,
1216 			     (int)CEPH_CAPS_PER_RELEASE);
1217 			extra += CEPH_CAPS_PER_RELEASE - num;
1218 			partial = msg;
1219 		}
1220 	}
1221 	while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1222 		spin_unlock(&session->s_cap_lock);
1223 		msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1224 				   GFP_NOFS);
1225 		if (!msg)
1226 			goto out_unlocked;
1227 		dout("add_cap_releases %p msg %p now %d\n", session, msg,
1228 		     (int)msg->front.iov_len);
1229 		head = msg->front.iov_base;
1230 		head->num = cpu_to_le32(0);
1231 		msg->front.iov_len = sizeof(*head);
1232 		spin_lock(&session->s_cap_lock);
1233 		list_add(&msg->list_head, &session->s_cap_releases);
1234 		session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1235 	}
1236 
1237 	if (partial) {
1238 		head = partial->front.iov_base;
1239 		num = le32_to_cpu(head->num);
1240 		dout(" queueing partial %p with %d/%d\n", partial, num,
1241 		     (int)CEPH_CAPS_PER_RELEASE);
1242 		list_move_tail(&partial->list_head,
1243 			       &session->s_cap_releases_done);
1244 		session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1245 	}
1246 	err = 0;
1247 	spin_unlock(&session->s_cap_lock);
1248 out_unlocked:
1249 	return err;
1250 }
1251 
1252 /*
1253  * flush all dirty inode data to disk.
1254  *
1255  * returns true if we've flushed through want_flush_seq
1256  */
1257 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1258 {
1259 	int mds, ret = 1;
1260 
1261 	dout("check_cap_flush want %lld\n", want_flush_seq);
1262 	mutex_lock(&mdsc->mutex);
1263 	for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1264 		struct ceph_mds_session *session = mdsc->sessions[mds];
1265 
1266 		if (!session)
1267 			continue;
1268 		get_session(session);
1269 		mutex_unlock(&mdsc->mutex);
1270 
1271 		mutex_lock(&session->s_mutex);
1272 		if (!list_empty(&session->s_cap_flushing)) {
1273 			struct ceph_inode_info *ci =
1274 				list_entry(session->s_cap_flushing.next,
1275 					   struct ceph_inode_info,
1276 					   i_flushing_item);
1277 			struct inode *inode = &ci->vfs_inode;
1278 
1279 			spin_lock(&inode->i_lock);
1280 			if (ci->i_cap_flush_seq <= want_flush_seq) {
1281 				dout("check_cap_flush still flushing %p "
1282 				     "seq %lld <= %lld to mds%d\n", inode,
1283 				     ci->i_cap_flush_seq, want_flush_seq,
1284 				     session->s_mds);
1285 				ret = 0;
1286 			}
1287 			spin_unlock(&inode->i_lock);
1288 		}
1289 		mutex_unlock(&session->s_mutex);
1290 		ceph_put_mds_session(session);
1291 
1292 		if (!ret)
1293 			return ret;
1294 		mutex_lock(&mdsc->mutex);
1295 	}
1296 
1297 	mutex_unlock(&mdsc->mutex);
1298 	dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1299 	return ret;
1300 }
1301 
1302 /*
1303  * called under s_mutex
1304  */
1305 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1306 			    struct ceph_mds_session *session)
1307 {
1308 	struct ceph_msg *msg;
1309 
1310 	dout("send_cap_releases mds%d\n", session->s_mds);
1311 	spin_lock(&session->s_cap_lock);
1312 	while (!list_empty(&session->s_cap_releases_done)) {
1313 		msg = list_first_entry(&session->s_cap_releases_done,
1314 				 struct ceph_msg, list_head);
1315 		list_del_init(&msg->list_head);
1316 		spin_unlock(&session->s_cap_lock);
1317 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1318 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1319 		ceph_con_send(&session->s_con, msg);
1320 		spin_lock(&session->s_cap_lock);
1321 	}
1322 	spin_unlock(&session->s_cap_lock);
1323 }
1324 
1325 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1326 				 struct ceph_mds_session *session)
1327 {
1328 	struct ceph_msg *msg;
1329 	struct ceph_mds_cap_release *head;
1330 	unsigned num;
1331 
1332 	dout("discard_cap_releases mds%d\n", session->s_mds);
1333 	spin_lock(&session->s_cap_lock);
1334 
1335 	/* zero out the in-progress message */
1336 	msg = list_first_entry(&session->s_cap_releases,
1337 			       struct ceph_msg, list_head);
1338 	head = msg->front.iov_base;
1339 	num = le32_to_cpu(head->num);
1340 	dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1341 	head->num = cpu_to_le32(0);
1342 	session->s_num_cap_releases += num;
1343 
1344 	/* requeue completed messages */
1345 	while (!list_empty(&session->s_cap_releases_done)) {
1346 		msg = list_first_entry(&session->s_cap_releases_done,
1347 				 struct ceph_msg, list_head);
1348 		list_del_init(&msg->list_head);
1349 
1350 		head = msg->front.iov_base;
1351 		num = le32_to_cpu(head->num);
1352 		dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1353 		     num);
1354 		session->s_num_cap_releases += num;
1355 		head->num = cpu_to_le32(0);
1356 		msg->front.iov_len = sizeof(*head);
1357 		list_add(&msg->list_head, &session->s_cap_releases);
1358 	}
1359 
1360 	spin_unlock(&session->s_cap_lock);
1361 }
1362 
1363 /*
1364  * requests
1365  */
1366 
1367 /*
1368  * Create an mds request.
1369  */
1370 struct ceph_mds_request *
1371 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1372 {
1373 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1374 
1375 	if (!req)
1376 		return ERR_PTR(-ENOMEM);
1377 
1378 	mutex_init(&req->r_fill_mutex);
1379 	req->r_mdsc = mdsc;
1380 	req->r_started = jiffies;
1381 	req->r_resend_mds = -1;
1382 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1383 	req->r_fmode = -1;
1384 	kref_init(&req->r_kref);
1385 	INIT_LIST_HEAD(&req->r_wait);
1386 	init_completion(&req->r_completion);
1387 	init_completion(&req->r_safe_completion);
1388 	INIT_LIST_HEAD(&req->r_unsafe_item);
1389 
1390 	req->r_op = op;
1391 	req->r_direct_mode = mode;
1392 	return req;
1393 }
1394 
1395 /*
1396  * return oldest (lowest) request, tid in request tree, 0 if none.
1397  *
1398  * called under mdsc->mutex.
1399  */
1400 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1401 {
1402 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1403 		return NULL;
1404 	return rb_entry(rb_first(&mdsc->request_tree),
1405 			struct ceph_mds_request, r_node);
1406 }
1407 
1408 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1409 {
1410 	struct ceph_mds_request *req = __get_oldest_req(mdsc);
1411 
1412 	if (req)
1413 		return req->r_tid;
1414 	return 0;
1415 }
1416 
1417 /*
1418  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1419  * on build_path_from_dentry in fs/cifs/dir.c.
1420  *
1421  * If @stop_on_nosnap, generate path relative to the first non-snapped
1422  * inode.
1423  *
1424  * Encode hidden .snap dirs as a double /, i.e.
1425  *   foo/.snap/bar -> foo//bar
1426  */
1427 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1428 			   int stop_on_nosnap)
1429 {
1430 	struct dentry *temp;
1431 	char *path;
1432 	int len, pos;
1433 
1434 	if (dentry == NULL)
1435 		return ERR_PTR(-EINVAL);
1436 
1437 retry:
1438 	len = 0;
1439 	for (temp = dentry; !IS_ROOT(temp);) {
1440 		struct inode *inode = temp->d_inode;
1441 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1442 			len++;  /* slash only */
1443 		else if (stop_on_nosnap && inode &&
1444 			 ceph_snap(inode) == CEPH_NOSNAP)
1445 			break;
1446 		else
1447 			len += 1 + temp->d_name.len;
1448 		temp = temp->d_parent;
1449 		if (temp == NULL) {
1450 			pr_err("build_path corrupt dentry %p\n", dentry);
1451 			return ERR_PTR(-EINVAL);
1452 		}
1453 	}
1454 	if (len)
1455 		len--;  /* no leading '/' */
1456 
1457 	path = kmalloc(len+1, GFP_NOFS);
1458 	if (path == NULL)
1459 		return ERR_PTR(-ENOMEM);
1460 	pos = len;
1461 	path[pos] = 0;	/* trailing null */
1462 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1463 		struct inode *inode = temp->d_inode;
1464 
1465 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1466 			dout("build_path path+%d: %p SNAPDIR\n",
1467 			     pos, temp);
1468 		} else if (stop_on_nosnap && inode &&
1469 			   ceph_snap(inode) == CEPH_NOSNAP) {
1470 			break;
1471 		} else {
1472 			pos -= temp->d_name.len;
1473 			if (pos < 0)
1474 				break;
1475 			strncpy(path + pos, temp->d_name.name,
1476 				temp->d_name.len);
1477 		}
1478 		if (pos)
1479 			path[--pos] = '/';
1480 		temp = temp->d_parent;
1481 		if (temp == NULL) {
1482 			pr_err("build_path corrupt dentry\n");
1483 			kfree(path);
1484 			return ERR_PTR(-EINVAL);
1485 		}
1486 	}
1487 	if (pos != 0) {
1488 		pr_err("build_path did not end path lookup where "
1489 		       "expected, namelen is %d, pos is %d\n", len, pos);
1490 		/* presumably this is only possible if racing with a
1491 		   rename of one of the parent directories (we can not
1492 		   lock the dentries above us to prevent this, but
1493 		   retrying should be harmless) */
1494 		kfree(path);
1495 		goto retry;
1496 	}
1497 
1498 	*base = ceph_ino(temp->d_inode);
1499 	*plen = len;
1500 	dout("build_path on %p %d built %llx '%.*s'\n",
1501 	     dentry, dentry->d_count, *base, len, path);
1502 	return path;
1503 }
1504 
1505 static int build_dentry_path(struct dentry *dentry,
1506 			     const char **ppath, int *ppathlen, u64 *pino,
1507 			     int *pfreepath)
1508 {
1509 	char *path;
1510 
1511 	if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1512 		*pino = ceph_ino(dentry->d_parent->d_inode);
1513 		*ppath = dentry->d_name.name;
1514 		*ppathlen = dentry->d_name.len;
1515 		return 0;
1516 	}
1517 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1518 	if (IS_ERR(path))
1519 		return PTR_ERR(path);
1520 	*ppath = path;
1521 	*pfreepath = 1;
1522 	return 0;
1523 }
1524 
1525 static int build_inode_path(struct inode *inode,
1526 			    const char **ppath, int *ppathlen, u64 *pino,
1527 			    int *pfreepath)
1528 {
1529 	struct dentry *dentry;
1530 	char *path;
1531 
1532 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1533 		*pino = ceph_ino(inode);
1534 		*ppathlen = 0;
1535 		return 0;
1536 	}
1537 	dentry = d_find_alias(inode);
1538 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1539 	dput(dentry);
1540 	if (IS_ERR(path))
1541 		return PTR_ERR(path);
1542 	*ppath = path;
1543 	*pfreepath = 1;
1544 	return 0;
1545 }
1546 
1547 /*
1548  * request arguments may be specified via an inode *, a dentry *, or
1549  * an explicit ino+path.
1550  */
1551 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1552 				  const char *rpath, u64 rino,
1553 				  const char **ppath, int *pathlen,
1554 				  u64 *ino, int *freepath)
1555 {
1556 	int r = 0;
1557 
1558 	if (rinode) {
1559 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1560 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1561 		     ceph_snap(rinode));
1562 	} else if (rdentry) {
1563 		r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1564 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1565 		     *ppath);
1566 	} else if (rpath) {
1567 		*ino = rino;
1568 		*ppath = rpath;
1569 		*pathlen = strlen(rpath);
1570 		dout(" path %.*s\n", *pathlen, rpath);
1571 	}
1572 
1573 	return r;
1574 }
1575 
1576 /*
1577  * called under mdsc->mutex
1578  */
1579 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1580 					       struct ceph_mds_request *req,
1581 					       int mds)
1582 {
1583 	struct ceph_msg *msg;
1584 	struct ceph_mds_request_head *head;
1585 	const char *path1 = NULL;
1586 	const char *path2 = NULL;
1587 	u64 ino1 = 0, ino2 = 0;
1588 	int pathlen1 = 0, pathlen2 = 0;
1589 	int freepath1 = 0, freepath2 = 0;
1590 	int len;
1591 	u16 releases;
1592 	void *p, *end;
1593 	int ret;
1594 
1595 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
1596 			      req->r_path1, req->r_ino1.ino,
1597 			      &path1, &pathlen1, &ino1, &freepath1);
1598 	if (ret < 0) {
1599 		msg = ERR_PTR(ret);
1600 		goto out;
1601 	}
1602 
1603 	ret = set_request_path_attr(NULL, req->r_old_dentry,
1604 			      req->r_path2, req->r_ino2.ino,
1605 			      &path2, &pathlen2, &ino2, &freepath2);
1606 	if (ret < 0) {
1607 		msg = ERR_PTR(ret);
1608 		goto out_free1;
1609 	}
1610 
1611 	len = sizeof(*head) +
1612 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1613 
1614 	/* calculate (max) length for cap releases */
1615 	len += sizeof(struct ceph_mds_request_release) *
1616 		(!!req->r_inode_drop + !!req->r_dentry_drop +
1617 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1618 	if (req->r_dentry_drop)
1619 		len += req->r_dentry->d_name.len;
1620 	if (req->r_old_dentry_drop)
1621 		len += req->r_old_dentry->d_name.len;
1622 
1623 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS);
1624 	if (!msg) {
1625 		msg = ERR_PTR(-ENOMEM);
1626 		goto out_free2;
1627 	}
1628 
1629 	msg->hdr.tid = cpu_to_le64(req->r_tid);
1630 
1631 	head = msg->front.iov_base;
1632 	p = msg->front.iov_base + sizeof(*head);
1633 	end = msg->front.iov_base + msg->front.iov_len;
1634 
1635 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1636 	head->op = cpu_to_le32(req->r_op);
1637 	head->caller_uid = cpu_to_le32(req->r_uid);
1638 	head->caller_gid = cpu_to_le32(req->r_gid);
1639 	head->args = req->r_args;
1640 
1641 	ceph_encode_filepath(&p, end, ino1, path1);
1642 	ceph_encode_filepath(&p, end, ino2, path2);
1643 
1644 	/* make note of release offset, in case we need to replay */
1645 	req->r_request_release_offset = p - msg->front.iov_base;
1646 
1647 	/* cap releases */
1648 	releases = 0;
1649 	if (req->r_inode_drop)
1650 		releases += ceph_encode_inode_release(&p,
1651 		      req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1652 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
1653 	if (req->r_dentry_drop)
1654 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
1655 		       mds, req->r_dentry_drop, req->r_dentry_unless);
1656 	if (req->r_old_dentry_drop)
1657 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1658 		       mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1659 	if (req->r_old_inode_drop)
1660 		releases += ceph_encode_inode_release(&p,
1661 		      req->r_old_dentry->d_inode,
1662 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1663 	head->num_releases = cpu_to_le16(releases);
1664 
1665 	BUG_ON(p > end);
1666 	msg->front.iov_len = p - msg->front.iov_base;
1667 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1668 
1669 	msg->pages = req->r_pages;
1670 	msg->nr_pages = req->r_num_pages;
1671 	msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1672 	msg->hdr.data_off = cpu_to_le16(0);
1673 
1674 out_free2:
1675 	if (freepath2)
1676 		kfree((char *)path2);
1677 out_free1:
1678 	if (freepath1)
1679 		kfree((char *)path1);
1680 out:
1681 	return msg;
1682 }
1683 
1684 /*
1685  * called under mdsc->mutex if error, under no mutex if
1686  * success.
1687  */
1688 static void complete_request(struct ceph_mds_client *mdsc,
1689 			     struct ceph_mds_request *req)
1690 {
1691 	if (req->r_callback)
1692 		req->r_callback(mdsc, req);
1693 	else
1694 		complete_all(&req->r_completion);
1695 }
1696 
1697 /*
1698  * called under mdsc->mutex
1699  */
1700 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1701 				  struct ceph_mds_request *req,
1702 				  int mds)
1703 {
1704 	struct ceph_mds_request_head *rhead;
1705 	struct ceph_msg *msg;
1706 	int flags = 0;
1707 
1708 	req->r_attempts++;
1709 	if (req->r_inode) {
1710 		struct ceph_cap *cap =
1711 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1712 
1713 		if (cap)
1714 			req->r_sent_on_mseq = cap->mseq;
1715 		else
1716 			req->r_sent_on_mseq = -1;
1717 	}
1718 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1719 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1720 
1721 	if (req->r_got_unsafe) {
1722 		/*
1723 		 * Replay.  Do not regenerate message (and rebuild
1724 		 * paths, etc.); just use the original message.
1725 		 * Rebuilding paths will break for renames because
1726 		 * d_move mangles the src name.
1727 		 */
1728 		msg = req->r_request;
1729 		rhead = msg->front.iov_base;
1730 
1731 		flags = le32_to_cpu(rhead->flags);
1732 		flags |= CEPH_MDS_FLAG_REPLAY;
1733 		rhead->flags = cpu_to_le32(flags);
1734 
1735 		if (req->r_target_inode)
1736 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1737 
1738 		rhead->num_retry = req->r_attempts - 1;
1739 
1740 		/* remove cap/dentry releases from message */
1741 		rhead->num_releases = 0;
1742 		msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1743 		msg->front.iov_len = req->r_request_release_offset;
1744 		return 0;
1745 	}
1746 
1747 	if (req->r_request) {
1748 		ceph_msg_put(req->r_request);
1749 		req->r_request = NULL;
1750 	}
1751 	msg = create_request_message(mdsc, req, mds);
1752 	if (IS_ERR(msg)) {
1753 		req->r_err = PTR_ERR(msg);
1754 		complete_request(mdsc, req);
1755 		return PTR_ERR(msg);
1756 	}
1757 	req->r_request = msg;
1758 
1759 	rhead = msg->front.iov_base;
1760 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1761 	if (req->r_got_unsafe)
1762 		flags |= CEPH_MDS_FLAG_REPLAY;
1763 	if (req->r_locked_dir)
1764 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1765 	rhead->flags = cpu_to_le32(flags);
1766 	rhead->num_fwd = req->r_num_fwd;
1767 	rhead->num_retry = req->r_attempts - 1;
1768 	rhead->ino = 0;
1769 
1770 	dout(" r_locked_dir = %p\n", req->r_locked_dir);
1771 	return 0;
1772 }
1773 
1774 /*
1775  * send request, or put it on the appropriate wait list.
1776  */
1777 static int __do_request(struct ceph_mds_client *mdsc,
1778 			struct ceph_mds_request *req)
1779 {
1780 	struct ceph_mds_session *session = NULL;
1781 	int mds = -1;
1782 	int err = -EAGAIN;
1783 
1784 	if (req->r_err || req->r_got_result)
1785 		goto out;
1786 
1787 	if (req->r_timeout &&
1788 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1789 		dout("do_request timed out\n");
1790 		err = -EIO;
1791 		goto finish;
1792 	}
1793 
1794 	put_request_session(req);
1795 
1796 	mds = __choose_mds(mdsc, req);
1797 	if (mds < 0 ||
1798 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1799 		dout("do_request no mds or not active, waiting for map\n");
1800 		list_add(&req->r_wait, &mdsc->waiting_for_map);
1801 		goto out;
1802 	}
1803 
1804 	/* get, open session */
1805 	session = __ceph_lookup_mds_session(mdsc, mds);
1806 	if (!session) {
1807 		session = register_session(mdsc, mds);
1808 		if (IS_ERR(session)) {
1809 			err = PTR_ERR(session);
1810 			goto finish;
1811 		}
1812 	}
1813 	req->r_session = get_session(session);
1814 
1815 	dout("do_request mds%d session %p state %s\n", mds, session,
1816 	     session_state_name(session->s_state));
1817 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1818 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
1819 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
1820 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
1821 			__open_session(mdsc, session);
1822 		list_add(&req->r_wait, &session->s_waiting);
1823 		goto out_session;
1824 	}
1825 
1826 	/* send request */
1827 	req->r_resend_mds = -1;   /* forget any previous mds hint */
1828 
1829 	if (req->r_request_started == 0)   /* note request start time */
1830 		req->r_request_started = jiffies;
1831 
1832 	err = __prepare_send_request(mdsc, req, mds);
1833 	if (!err) {
1834 		ceph_msg_get(req->r_request);
1835 		ceph_con_send(&session->s_con, req->r_request);
1836 	}
1837 
1838 out_session:
1839 	ceph_put_mds_session(session);
1840 out:
1841 	return err;
1842 
1843 finish:
1844 	req->r_err = err;
1845 	complete_request(mdsc, req);
1846 	goto out;
1847 }
1848 
1849 /*
1850  * called under mdsc->mutex
1851  */
1852 static void __wake_requests(struct ceph_mds_client *mdsc,
1853 			    struct list_head *head)
1854 {
1855 	struct ceph_mds_request *req, *nreq;
1856 
1857 	list_for_each_entry_safe(req, nreq, head, r_wait) {
1858 		list_del_init(&req->r_wait);
1859 		__do_request(mdsc, req);
1860 	}
1861 }
1862 
1863 /*
1864  * Wake up threads with requests pending for @mds, so that they can
1865  * resubmit their requests to a possibly different mds.
1866  */
1867 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1868 {
1869 	struct ceph_mds_request *req;
1870 	struct rb_node *p;
1871 
1872 	dout("kick_requests mds%d\n", mds);
1873 	for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1874 		req = rb_entry(p, struct ceph_mds_request, r_node);
1875 		if (req->r_got_unsafe)
1876 			continue;
1877 		if (req->r_session &&
1878 		    req->r_session->s_mds == mds) {
1879 			dout(" kicking tid %llu\n", req->r_tid);
1880 			__do_request(mdsc, req);
1881 		}
1882 	}
1883 }
1884 
1885 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1886 			      struct ceph_mds_request *req)
1887 {
1888 	dout("submit_request on %p\n", req);
1889 	mutex_lock(&mdsc->mutex);
1890 	__register_request(mdsc, req, NULL);
1891 	__do_request(mdsc, req);
1892 	mutex_unlock(&mdsc->mutex);
1893 }
1894 
1895 /*
1896  * Synchrously perform an mds request.  Take care of all of the
1897  * session setup, forwarding, retry details.
1898  */
1899 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1900 			 struct inode *dir,
1901 			 struct ceph_mds_request *req)
1902 {
1903 	int err;
1904 
1905 	dout("do_request on %p\n", req);
1906 
1907 	/* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1908 	if (req->r_inode)
1909 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1910 	if (req->r_locked_dir)
1911 		ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1912 	if (req->r_old_dentry)
1913 		ceph_get_cap_refs(
1914 			ceph_inode(req->r_old_dentry->d_parent->d_inode),
1915 			CEPH_CAP_PIN);
1916 
1917 	/* issue */
1918 	mutex_lock(&mdsc->mutex);
1919 	__register_request(mdsc, req, dir);
1920 	__do_request(mdsc, req);
1921 
1922 	if (req->r_err) {
1923 		err = req->r_err;
1924 		__unregister_request(mdsc, req);
1925 		dout("do_request early error %d\n", err);
1926 		goto out;
1927 	}
1928 
1929 	/* wait */
1930 	mutex_unlock(&mdsc->mutex);
1931 	dout("do_request waiting\n");
1932 	if (req->r_timeout) {
1933 		err = (long)wait_for_completion_killable_timeout(
1934 			&req->r_completion, req->r_timeout);
1935 		if (err == 0)
1936 			err = -EIO;
1937 	} else {
1938 		err = wait_for_completion_killable(&req->r_completion);
1939 	}
1940 	dout("do_request waited, got %d\n", err);
1941 	mutex_lock(&mdsc->mutex);
1942 
1943 	/* only abort if we didn't race with a real reply */
1944 	if (req->r_got_result) {
1945 		err = le32_to_cpu(req->r_reply_info.head->result);
1946 	} else if (err < 0) {
1947 		dout("aborted request %lld with %d\n", req->r_tid, err);
1948 
1949 		/*
1950 		 * ensure we aren't running concurrently with
1951 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
1952 		 * rely on locks (dir mutex) held by our caller.
1953 		 */
1954 		mutex_lock(&req->r_fill_mutex);
1955 		req->r_err = err;
1956 		req->r_aborted = true;
1957 		mutex_unlock(&req->r_fill_mutex);
1958 
1959 		if (req->r_locked_dir &&
1960 		    (req->r_op & CEPH_MDS_OP_WRITE))
1961 			ceph_invalidate_dir_request(req);
1962 	} else {
1963 		err = req->r_err;
1964 	}
1965 
1966 out:
1967 	mutex_unlock(&mdsc->mutex);
1968 	dout("do_request %p done, result %d\n", req, err);
1969 	return err;
1970 }
1971 
1972 /*
1973  * Invalidate dir I_COMPLETE, dentry lease state on an aborted MDS
1974  * namespace request.
1975  */
1976 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
1977 {
1978 	struct inode *inode = req->r_locked_dir;
1979 	struct ceph_inode_info *ci = ceph_inode(inode);
1980 
1981 	dout("invalidate_dir_request %p (I_COMPLETE, lease(s))\n", inode);
1982 	spin_lock(&inode->i_lock);
1983 	ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
1984 	ci->i_release_count++;
1985 	spin_unlock(&inode->i_lock);
1986 
1987 	if (req->r_dentry)
1988 		ceph_invalidate_dentry_lease(req->r_dentry);
1989 	if (req->r_old_dentry)
1990 		ceph_invalidate_dentry_lease(req->r_old_dentry);
1991 }
1992 
1993 /*
1994  * Handle mds reply.
1995  *
1996  * We take the session mutex and parse and process the reply immediately.
1997  * This preserves the logical ordering of replies, capabilities, etc., sent
1998  * by the MDS as they are applied to our local cache.
1999  */
2000 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2001 {
2002 	struct ceph_mds_client *mdsc = session->s_mdsc;
2003 	struct ceph_mds_request *req;
2004 	struct ceph_mds_reply_head *head = msg->front.iov_base;
2005 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2006 	u64 tid;
2007 	int err, result;
2008 	int mds = session->s_mds;
2009 
2010 	if (msg->front.iov_len < sizeof(*head)) {
2011 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2012 		ceph_msg_dump(msg);
2013 		return;
2014 	}
2015 
2016 	/* get request, session */
2017 	tid = le64_to_cpu(msg->hdr.tid);
2018 	mutex_lock(&mdsc->mutex);
2019 	req = __lookup_request(mdsc, tid);
2020 	if (!req) {
2021 		dout("handle_reply on unknown tid %llu\n", tid);
2022 		mutex_unlock(&mdsc->mutex);
2023 		return;
2024 	}
2025 	dout("handle_reply %p\n", req);
2026 
2027 	/* correct session? */
2028 	if (req->r_session != session) {
2029 		pr_err("mdsc_handle_reply got %llu on session mds%d"
2030 		       " not mds%d\n", tid, session->s_mds,
2031 		       req->r_session ? req->r_session->s_mds : -1);
2032 		mutex_unlock(&mdsc->mutex);
2033 		goto out;
2034 	}
2035 
2036 	/* dup? */
2037 	if ((req->r_got_unsafe && !head->safe) ||
2038 	    (req->r_got_safe && head->safe)) {
2039 		pr_warning("got a dup %s reply on %llu from mds%d\n",
2040 			   head->safe ? "safe" : "unsafe", tid, mds);
2041 		mutex_unlock(&mdsc->mutex);
2042 		goto out;
2043 	}
2044 	if (req->r_got_safe && !head->safe) {
2045 		pr_warning("got unsafe after safe on %llu from mds%d\n",
2046 			   tid, mds);
2047 		mutex_unlock(&mdsc->mutex);
2048 		goto out;
2049 	}
2050 
2051 	result = le32_to_cpu(head->result);
2052 
2053 	/*
2054 	 * Handle an ESTALE
2055 	 * if we're not talking to the authority, send to them
2056 	 * if the authority has changed while we weren't looking,
2057 	 * send to new authority
2058 	 * Otherwise we just have to return an ESTALE
2059 	 */
2060 	if (result == -ESTALE) {
2061 		dout("got ESTALE on request %llu", req->r_tid);
2062 		if (!req->r_inode) {
2063 			/* do nothing; not an authority problem */
2064 		} else if (req->r_direct_mode != USE_AUTH_MDS) {
2065 			dout("not using auth, setting for that now");
2066 			req->r_direct_mode = USE_AUTH_MDS;
2067 			__do_request(mdsc, req);
2068 			mutex_unlock(&mdsc->mutex);
2069 			goto out;
2070 		} else  {
2071 			struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2072 			struct ceph_cap *cap = NULL;
2073 
2074 			if (req->r_session)
2075 				cap = ceph_get_cap_for_mds(ci,
2076 						   req->r_session->s_mds);
2077 
2078 			dout("already using auth");
2079 			if ((!cap || cap != ci->i_auth_cap) ||
2080 			    (cap->mseq != req->r_sent_on_mseq)) {
2081 				dout("but cap changed, so resending");
2082 				__do_request(mdsc, req);
2083 				mutex_unlock(&mdsc->mutex);
2084 				goto out;
2085 			}
2086 		}
2087 		dout("have to return ESTALE on request %llu", req->r_tid);
2088 	}
2089 
2090 
2091 	if (head->safe) {
2092 		req->r_got_safe = true;
2093 		__unregister_request(mdsc, req);
2094 		complete_all(&req->r_safe_completion);
2095 
2096 		if (req->r_got_unsafe) {
2097 			/*
2098 			 * We already handled the unsafe response, now do the
2099 			 * cleanup.  No need to examine the response; the MDS
2100 			 * doesn't include any result info in the safe
2101 			 * response.  And even if it did, there is nothing
2102 			 * useful we could do with a revised return value.
2103 			 */
2104 			dout("got safe reply %llu, mds%d\n", tid, mds);
2105 			list_del_init(&req->r_unsafe_item);
2106 
2107 			/* last unsafe request during umount? */
2108 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2109 				complete_all(&mdsc->safe_umount_waiters);
2110 			mutex_unlock(&mdsc->mutex);
2111 			goto out;
2112 		}
2113 	} else {
2114 		req->r_got_unsafe = true;
2115 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2116 	}
2117 
2118 	dout("handle_reply tid %lld result %d\n", tid, result);
2119 	rinfo = &req->r_reply_info;
2120 	err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2121 	mutex_unlock(&mdsc->mutex);
2122 
2123 	mutex_lock(&session->s_mutex);
2124 	if (err < 0) {
2125 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2126 		ceph_msg_dump(msg);
2127 		goto out_err;
2128 	}
2129 
2130 	/* snap trace */
2131 	if (rinfo->snapblob_len) {
2132 		down_write(&mdsc->snap_rwsem);
2133 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2134 			       rinfo->snapblob + rinfo->snapblob_len,
2135 			       le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2136 		downgrade_write(&mdsc->snap_rwsem);
2137 	} else {
2138 		down_read(&mdsc->snap_rwsem);
2139 	}
2140 
2141 	/* insert trace into our cache */
2142 	mutex_lock(&req->r_fill_mutex);
2143 	err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2144 	if (err == 0) {
2145 		if (result == 0 && req->r_op != CEPH_MDS_OP_GETFILELOCK &&
2146 		    rinfo->dir_nr)
2147 			ceph_readdir_prepopulate(req, req->r_session);
2148 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2149 	}
2150 	mutex_unlock(&req->r_fill_mutex);
2151 
2152 	up_read(&mdsc->snap_rwsem);
2153 out_err:
2154 	mutex_lock(&mdsc->mutex);
2155 	if (!req->r_aborted) {
2156 		if (err) {
2157 			req->r_err = err;
2158 		} else {
2159 			req->r_reply = msg;
2160 			ceph_msg_get(msg);
2161 			req->r_got_result = true;
2162 		}
2163 	} else {
2164 		dout("reply arrived after request %lld was aborted\n", tid);
2165 	}
2166 	mutex_unlock(&mdsc->mutex);
2167 
2168 	ceph_add_cap_releases(mdsc, req->r_session);
2169 	mutex_unlock(&session->s_mutex);
2170 
2171 	/* kick calling process */
2172 	complete_request(mdsc, req);
2173 out:
2174 	ceph_mdsc_put_request(req);
2175 	return;
2176 }
2177 
2178 
2179 
2180 /*
2181  * handle mds notification that our request has been forwarded.
2182  */
2183 static void handle_forward(struct ceph_mds_client *mdsc,
2184 			   struct ceph_mds_session *session,
2185 			   struct ceph_msg *msg)
2186 {
2187 	struct ceph_mds_request *req;
2188 	u64 tid = le64_to_cpu(msg->hdr.tid);
2189 	u32 next_mds;
2190 	u32 fwd_seq;
2191 	int err = -EINVAL;
2192 	void *p = msg->front.iov_base;
2193 	void *end = p + msg->front.iov_len;
2194 
2195 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2196 	next_mds = ceph_decode_32(&p);
2197 	fwd_seq = ceph_decode_32(&p);
2198 
2199 	mutex_lock(&mdsc->mutex);
2200 	req = __lookup_request(mdsc, tid);
2201 	if (!req) {
2202 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2203 		goto out;  /* dup reply? */
2204 	}
2205 
2206 	if (req->r_aborted) {
2207 		dout("forward tid %llu aborted, unregistering\n", tid);
2208 		__unregister_request(mdsc, req);
2209 	} else if (fwd_seq <= req->r_num_fwd) {
2210 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2211 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2212 	} else {
2213 		/* resend. forward race not possible; mds would drop */
2214 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2215 		BUG_ON(req->r_err);
2216 		BUG_ON(req->r_got_result);
2217 		req->r_num_fwd = fwd_seq;
2218 		req->r_resend_mds = next_mds;
2219 		put_request_session(req);
2220 		__do_request(mdsc, req);
2221 	}
2222 	ceph_mdsc_put_request(req);
2223 out:
2224 	mutex_unlock(&mdsc->mutex);
2225 	return;
2226 
2227 bad:
2228 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2229 }
2230 
2231 /*
2232  * handle a mds session control message
2233  */
2234 static void handle_session(struct ceph_mds_session *session,
2235 			   struct ceph_msg *msg)
2236 {
2237 	struct ceph_mds_client *mdsc = session->s_mdsc;
2238 	u32 op;
2239 	u64 seq;
2240 	int mds = session->s_mds;
2241 	struct ceph_mds_session_head *h = msg->front.iov_base;
2242 	int wake = 0;
2243 
2244 	/* decode */
2245 	if (msg->front.iov_len != sizeof(*h))
2246 		goto bad;
2247 	op = le32_to_cpu(h->op);
2248 	seq = le64_to_cpu(h->seq);
2249 
2250 	mutex_lock(&mdsc->mutex);
2251 	if (op == CEPH_SESSION_CLOSE)
2252 		__unregister_session(mdsc, session);
2253 	/* FIXME: this ttl calculation is generous */
2254 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2255 	mutex_unlock(&mdsc->mutex);
2256 
2257 	mutex_lock(&session->s_mutex);
2258 
2259 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2260 	     mds, ceph_session_op_name(op), session,
2261 	     session_state_name(session->s_state), seq);
2262 
2263 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2264 		session->s_state = CEPH_MDS_SESSION_OPEN;
2265 		pr_info("mds%d came back\n", session->s_mds);
2266 	}
2267 
2268 	switch (op) {
2269 	case CEPH_SESSION_OPEN:
2270 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2271 			pr_info("mds%d reconnect success\n", session->s_mds);
2272 		session->s_state = CEPH_MDS_SESSION_OPEN;
2273 		renewed_caps(mdsc, session, 0);
2274 		wake = 1;
2275 		if (mdsc->stopping)
2276 			__close_session(mdsc, session);
2277 		break;
2278 
2279 	case CEPH_SESSION_RENEWCAPS:
2280 		if (session->s_renew_seq == seq)
2281 			renewed_caps(mdsc, session, 1);
2282 		break;
2283 
2284 	case CEPH_SESSION_CLOSE:
2285 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2286 			pr_info("mds%d reconnect denied\n", session->s_mds);
2287 		remove_session_caps(session);
2288 		wake = 1; /* for good measure */
2289 		wake_up_all(&mdsc->session_close_wq);
2290 		kick_requests(mdsc, mds);
2291 		break;
2292 
2293 	case CEPH_SESSION_STALE:
2294 		pr_info("mds%d caps went stale, renewing\n",
2295 			session->s_mds);
2296 		spin_lock(&session->s_cap_lock);
2297 		session->s_cap_gen++;
2298 		session->s_cap_ttl = 0;
2299 		spin_unlock(&session->s_cap_lock);
2300 		send_renew_caps(mdsc, session);
2301 		break;
2302 
2303 	case CEPH_SESSION_RECALL_STATE:
2304 		trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2305 		break;
2306 
2307 	default:
2308 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2309 		WARN_ON(1);
2310 	}
2311 
2312 	mutex_unlock(&session->s_mutex);
2313 	if (wake) {
2314 		mutex_lock(&mdsc->mutex);
2315 		__wake_requests(mdsc, &session->s_waiting);
2316 		mutex_unlock(&mdsc->mutex);
2317 	}
2318 	return;
2319 
2320 bad:
2321 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2322 	       (int)msg->front.iov_len);
2323 	ceph_msg_dump(msg);
2324 	return;
2325 }
2326 
2327 
2328 /*
2329  * called under session->mutex.
2330  */
2331 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2332 				   struct ceph_mds_session *session)
2333 {
2334 	struct ceph_mds_request *req, *nreq;
2335 	int err;
2336 
2337 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2338 
2339 	mutex_lock(&mdsc->mutex);
2340 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2341 		err = __prepare_send_request(mdsc, req, session->s_mds);
2342 		if (!err) {
2343 			ceph_msg_get(req->r_request);
2344 			ceph_con_send(&session->s_con, req->r_request);
2345 		}
2346 	}
2347 	mutex_unlock(&mdsc->mutex);
2348 }
2349 
2350 /*
2351  * Encode information about a cap for a reconnect with the MDS.
2352  */
2353 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2354 			  void *arg)
2355 {
2356 	union {
2357 		struct ceph_mds_cap_reconnect v2;
2358 		struct ceph_mds_cap_reconnect_v1 v1;
2359 	} rec;
2360 	size_t reclen;
2361 	struct ceph_inode_info *ci;
2362 	struct ceph_reconnect_state *recon_state = arg;
2363 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2364 	char *path;
2365 	int pathlen, err;
2366 	u64 pathbase;
2367 	struct dentry *dentry;
2368 
2369 	ci = cap->ci;
2370 
2371 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2372 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2373 	     ceph_cap_string(cap->issued));
2374 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2375 	if (err)
2376 		return err;
2377 
2378 	dentry = d_find_alias(inode);
2379 	if (dentry) {
2380 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2381 		if (IS_ERR(path)) {
2382 			err = PTR_ERR(path);
2383 			goto out_dput;
2384 		}
2385 	} else {
2386 		path = NULL;
2387 		pathlen = 0;
2388 	}
2389 	err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2390 	if (err)
2391 		goto out_free;
2392 
2393 	spin_lock(&inode->i_lock);
2394 	cap->seq = 0;        /* reset cap seq */
2395 	cap->issue_seq = 0;  /* and issue_seq */
2396 
2397 	if (recon_state->flock) {
2398 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2399 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2400 		rec.v2.issued = cpu_to_le32(cap->issued);
2401 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2402 		rec.v2.pathbase = cpu_to_le64(pathbase);
2403 		rec.v2.flock_len = 0;
2404 		reclen = sizeof(rec.v2);
2405 	} else {
2406 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2407 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2408 		rec.v1.issued = cpu_to_le32(cap->issued);
2409 		rec.v1.size = cpu_to_le64(inode->i_size);
2410 		ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2411 		ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2412 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2413 		rec.v1.pathbase = cpu_to_le64(pathbase);
2414 		reclen = sizeof(rec.v1);
2415 	}
2416 	spin_unlock(&inode->i_lock);
2417 
2418 	if (recon_state->flock) {
2419 		int num_fcntl_locks, num_flock_locks;
2420 		struct ceph_pagelist_cursor trunc_point;
2421 
2422 		ceph_pagelist_set_cursor(pagelist, &trunc_point);
2423 		do {
2424 			lock_flocks();
2425 			ceph_count_locks(inode, &num_fcntl_locks,
2426 					 &num_flock_locks);
2427 			rec.v2.flock_len = (2*sizeof(u32) +
2428 					    (num_fcntl_locks+num_flock_locks) *
2429 					    sizeof(struct ceph_filelock));
2430 			unlock_flocks();
2431 
2432 			/* pre-alloc pagelist */
2433 			ceph_pagelist_truncate(pagelist, &trunc_point);
2434 			err = ceph_pagelist_append(pagelist, &rec, reclen);
2435 			if (!err)
2436 				err = ceph_pagelist_reserve(pagelist,
2437 							    rec.v2.flock_len);
2438 
2439 			/* encode locks */
2440 			if (!err) {
2441 				lock_flocks();
2442 				err = ceph_encode_locks(inode,
2443 							pagelist,
2444 							num_fcntl_locks,
2445 							num_flock_locks);
2446 				unlock_flocks();
2447 			}
2448 		} while (err == -ENOSPC);
2449 	} else {
2450 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2451 	}
2452 
2453 out_free:
2454 	kfree(path);
2455 out_dput:
2456 	dput(dentry);
2457 	return err;
2458 }
2459 
2460 
2461 /*
2462  * If an MDS fails and recovers, clients need to reconnect in order to
2463  * reestablish shared state.  This includes all caps issued through
2464  * this session _and_ the snap_realm hierarchy.  Because it's not
2465  * clear which snap realms the mds cares about, we send everything we
2466  * know about.. that ensures we'll then get any new info the
2467  * recovering MDS might have.
2468  *
2469  * This is a relatively heavyweight operation, but it's rare.
2470  *
2471  * called with mdsc->mutex held.
2472  */
2473 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2474 			       struct ceph_mds_session *session)
2475 {
2476 	struct ceph_msg *reply;
2477 	struct rb_node *p;
2478 	int mds = session->s_mds;
2479 	int err = -ENOMEM;
2480 	struct ceph_pagelist *pagelist;
2481 	struct ceph_reconnect_state recon_state;
2482 
2483 	pr_info("mds%d reconnect start\n", mds);
2484 
2485 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2486 	if (!pagelist)
2487 		goto fail_nopagelist;
2488 	ceph_pagelist_init(pagelist);
2489 
2490 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS);
2491 	if (!reply)
2492 		goto fail_nomsg;
2493 
2494 	mutex_lock(&session->s_mutex);
2495 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2496 	session->s_seq = 0;
2497 
2498 	ceph_con_open(&session->s_con,
2499 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2500 
2501 	/* replay unsafe requests */
2502 	replay_unsafe_requests(mdsc, session);
2503 
2504 	down_read(&mdsc->snap_rwsem);
2505 
2506 	dout("session %p state %s\n", session,
2507 	     session_state_name(session->s_state));
2508 
2509 	/* drop old cap expires; we're about to reestablish that state */
2510 	discard_cap_releases(mdsc, session);
2511 
2512 	/* traverse this session's caps */
2513 	err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2514 	if (err)
2515 		goto fail;
2516 
2517 	recon_state.pagelist = pagelist;
2518 	recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2519 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2520 	if (err < 0)
2521 		goto fail;
2522 
2523 	/*
2524 	 * snaprealms.  we provide mds with the ino, seq (version), and
2525 	 * parent for all of our realms.  If the mds has any newer info,
2526 	 * it will tell us.
2527 	 */
2528 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2529 		struct ceph_snap_realm *realm =
2530 			rb_entry(p, struct ceph_snap_realm, node);
2531 		struct ceph_mds_snaprealm_reconnect sr_rec;
2532 
2533 		dout(" adding snap realm %llx seq %lld parent %llx\n",
2534 		     realm->ino, realm->seq, realm->parent_ino);
2535 		sr_rec.ino = cpu_to_le64(realm->ino);
2536 		sr_rec.seq = cpu_to_le64(realm->seq);
2537 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
2538 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2539 		if (err)
2540 			goto fail;
2541 	}
2542 
2543 	reply->pagelist = pagelist;
2544 	if (recon_state.flock)
2545 		reply->hdr.version = cpu_to_le16(2);
2546 	reply->hdr.data_len = cpu_to_le32(pagelist->length);
2547 	reply->nr_pages = calc_pages_for(0, pagelist->length);
2548 	ceph_con_send(&session->s_con, reply);
2549 
2550 	mutex_unlock(&session->s_mutex);
2551 
2552 	mutex_lock(&mdsc->mutex);
2553 	__wake_requests(mdsc, &session->s_waiting);
2554 	mutex_unlock(&mdsc->mutex);
2555 
2556 	up_read(&mdsc->snap_rwsem);
2557 	return;
2558 
2559 fail:
2560 	ceph_msg_put(reply);
2561 	up_read(&mdsc->snap_rwsem);
2562 	mutex_unlock(&session->s_mutex);
2563 fail_nomsg:
2564 	ceph_pagelist_release(pagelist);
2565 	kfree(pagelist);
2566 fail_nopagelist:
2567 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2568 	return;
2569 }
2570 
2571 
2572 /*
2573  * compare old and new mdsmaps, kicking requests
2574  * and closing out old connections as necessary
2575  *
2576  * called under mdsc->mutex.
2577  */
2578 static void check_new_map(struct ceph_mds_client *mdsc,
2579 			  struct ceph_mdsmap *newmap,
2580 			  struct ceph_mdsmap *oldmap)
2581 {
2582 	int i;
2583 	int oldstate, newstate;
2584 	struct ceph_mds_session *s;
2585 
2586 	dout("check_new_map new %u old %u\n",
2587 	     newmap->m_epoch, oldmap->m_epoch);
2588 
2589 	for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2590 		if (mdsc->sessions[i] == NULL)
2591 			continue;
2592 		s = mdsc->sessions[i];
2593 		oldstate = ceph_mdsmap_get_state(oldmap, i);
2594 		newstate = ceph_mdsmap_get_state(newmap, i);
2595 
2596 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2597 		     i, ceph_mds_state_name(oldstate),
2598 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2599 		     ceph_mds_state_name(newstate),
2600 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2601 		     session_state_name(s->s_state));
2602 
2603 		if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
2604 			   ceph_mdsmap_get_addr(newmap, i),
2605 			   sizeof(struct ceph_entity_addr))) {
2606 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2607 				/* the session never opened, just close it
2608 				 * out now */
2609 				__wake_requests(mdsc, &s->s_waiting);
2610 				__unregister_session(mdsc, s);
2611 			} else {
2612 				/* just close it */
2613 				mutex_unlock(&mdsc->mutex);
2614 				mutex_lock(&s->s_mutex);
2615 				mutex_lock(&mdsc->mutex);
2616 				ceph_con_close(&s->s_con);
2617 				mutex_unlock(&s->s_mutex);
2618 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
2619 			}
2620 
2621 			/* kick any requests waiting on the recovering mds */
2622 			kick_requests(mdsc, i);
2623 		} else if (oldstate == newstate) {
2624 			continue;  /* nothing new with this mds */
2625 		}
2626 
2627 		/*
2628 		 * send reconnect?
2629 		 */
2630 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2631 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
2632 			mutex_unlock(&mdsc->mutex);
2633 			send_mds_reconnect(mdsc, s);
2634 			mutex_lock(&mdsc->mutex);
2635 		}
2636 
2637 		/*
2638 		 * kick request on any mds that has gone active.
2639 		 */
2640 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2641 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
2642 			if (oldstate != CEPH_MDS_STATE_CREATING &&
2643 			    oldstate != CEPH_MDS_STATE_STARTING)
2644 				pr_info("mds%d recovery completed\n", s->s_mds);
2645 			kick_requests(mdsc, i);
2646 			ceph_kick_flushing_caps(mdsc, s);
2647 			wake_up_session_caps(s, 1);
2648 		}
2649 	}
2650 
2651 	for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2652 		s = mdsc->sessions[i];
2653 		if (!s)
2654 			continue;
2655 		if (!ceph_mdsmap_is_laggy(newmap, i))
2656 			continue;
2657 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2658 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
2659 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
2660 			dout(" connecting to export targets of laggy mds%d\n",
2661 			     i);
2662 			__open_export_target_sessions(mdsc, s);
2663 		}
2664 	}
2665 }
2666 
2667 
2668 
2669 /*
2670  * leases
2671  */
2672 
2673 /*
2674  * caller must hold session s_mutex, dentry->d_lock
2675  */
2676 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2677 {
2678 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2679 
2680 	ceph_put_mds_session(di->lease_session);
2681 	di->lease_session = NULL;
2682 }
2683 
2684 static void handle_lease(struct ceph_mds_client *mdsc,
2685 			 struct ceph_mds_session *session,
2686 			 struct ceph_msg *msg)
2687 {
2688 	struct super_block *sb = mdsc->fsc->sb;
2689 	struct inode *inode;
2690 	struct ceph_inode_info *ci;
2691 	struct dentry *parent, *dentry;
2692 	struct ceph_dentry_info *di;
2693 	int mds = session->s_mds;
2694 	struct ceph_mds_lease *h = msg->front.iov_base;
2695 	u32 seq;
2696 	struct ceph_vino vino;
2697 	int mask;
2698 	struct qstr dname;
2699 	int release = 0;
2700 
2701 	dout("handle_lease from mds%d\n", mds);
2702 
2703 	/* decode */
2704 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2705 		goto bad;
2706 	vino.ino = le64_to_cpu(h->ino);
2707 	vino.snap = CEPH_NOSNAP;
2708 	mask = le16_to_cpu(h->mask);
2709 	seq = le32_to_cpu(h->seq);
2710 	dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2711 	dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2712 	if (dname.len != get_unaligned_le32(h+1))
2713 		goto bad;
2714 
2715 	mutex_lock(&session->s_mutex);
2716 	session->s_seq++;
2717 
2718 	/* lookup inode */
2719 	inode = ceph_find_inode(sb, vino);
2720 	dout("handle_lease %s, mask %d, ino %llx %p %.*s\n",
2721 	     ceph_lease_op_name(h->action), mask, vino.ino, inode,
2722 	     dname.len, dname.name);
2723 	if (inode == NULL) {
2724 		dout("handle_lease no inode %llx\n", vino.ino);
2725 		goto release;
2726 	}
2727 	ci = ceph_inode(inode);
2728 
2729 	/* dentry */
2730 	parent = d_find_alias(inode);
2731 	if (!parent) {
2732 		dout("no parent dentry on inode %p\n", inode);
2733 		WARN_ON(1);
2734 		goto release;  /* hrm... */
2735 	}
2736 	dname.hash = full_name_hash(dname.name, dname.len);
2737 	dentry = d_lookup(parent, &dname);
2738 	dput(parent);
2739 	if (!dentry)
2740 		goto release;
2741 
2742 	spin_lock(&dentry->d_lock);
2743 	di = ceph_dentry(dentry);
2744 	switch (h->action) {
2745 	case CEPH_MDS_LEASE_REVOKE:
2746 		if (di && di->lease_session == session) {
2747 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2748 				h->seq = cpu_to_le32(di->lease_seq);
2749 			__ceph_mdsc_drop_dentry_lease(dentry);
2750 		}
2751 		release = 1;
2752 		break;
2753 
2754 	case CEPH_MDS_LEASE_RENEW:
2755 		if (di && di->lease_session == session &&
2756 		    di->lease_gen == session->s_cap_gen &&
2757 		    di->lease_renew_from &&
2758 		    di->lease_renew_after == 0) {
2759 			unsigned long duration =
2760 				le32_to_cpu(h->duration_ms) * HZ / 1000;
2761 
2762 			di->lease_seq = seq;
2763 			dentry->d_time = di->lease_renew_from + duration;
2764 			di->lease_renew_after = di->lease_renew_from +
2765 				(duration >> 1);
2766 			di->lease_renew_from = 0;
2767 		}
2768 		break;
2769 	}
2770 	spin_unlock(&dentry->d_lock);
2771 	dput(dentry);
2772 
2773 	if (!release)
2774 		goto out;
2775 
2776 release:
2777 	/* let's just reuse the same message */
2778 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2779 	ceph_msg_get(msg);
2780 	ceph_con_send(&session->s_con, msg);
2781 
2782 out:
2783 	iput(inode);
2784 	mutex_unlock(&session->s_mutex);
2785 	return;
2786 
2787 bad:
2788 	pr_err("corrupt lease message\n");
2789 	ceph_msg_dump(msg);
2790 }
2791 
2792 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2793 			      struct inode *inode,
2794 			      struct dentry *dentry, char action,
2795 			      u32 seq)
2796 {
2797 	struct ceph_msg *msg;
2798 	struct ceph_mds_lease *lease;
2799 	int len = sizeof(*lease) + sizeof(u32);
2800 	int dnamelen = 0;
2801 
2802 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2803 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
2804 	dnamelen = dentry->d_name.len;
2805 	len += dnamelen;
2806 
2807 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS);
2808 	if (!msg)
2809 		return;
2810 	lease = msg->front.iov_base;
2811 	lease->action = action;
2812 	lease->mask = cpu_to_le16(1);
2813 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2814 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2815 	lease->seq = cpu_to_le32(seq);
2816 	put_unaligned_le32(dnamelen, lease + 1);
2817 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2818 
2819 	/*
2820 	 * if this is a preemptive lease RELEASE, no need to
2821 	 * flush request stream, since the actual request will
2822 	 * soon follow.
2823 	 */
2824 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2825 
2826 	ceph_con_send(&session->s_con, msg);
2827 }
2828 
2829 /*
2830  * Preemptively release a lease we expect to invalidate anyway.
2831  * Pass @inode always, @dentry is optional.
2832  */
2833 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2834 			     struct dentry *dentry, int mask)
2835 {
2836 	struct ceph_dentry_info *di;
2837 	struct ceph_mds_session *session;
2838 	u32 seq;
2839 
2840 	BUG_ON(inode == NULL);
2841 	BUG_ON(dentry == NULL);
2842 	BUG_ON(mask == 0);
2843 
2844 	/* is dentry lease valid? */
2845 	spin_lock(&dentry->d_lock);
2846 	di = ceph_dentry(dentry);
2847 	if (!di || !di->lease_session ||
2848 	    di->lease_session->s_mds < 0 ||
2849 	    di->lease_gen != di->lease_session->s_cap_gen ||
2850 	    !time_before(jiffies, dentry->d_time)) {
2851 		dout("lease_release inode %p dentry %p -- "
2852 		     "no lease on %d\n",
2853 		     inode, dentry, mask);
2854 		spin_unlock(&dentry->d_lock);
2855 		return;
2856 	}
2857 
2858 	/* we do have a lease on this dentry; note mds and seq */
2859 	session = ceph_get_mds_session(di->lease_session);
2860 	seq = di->lease_seq;
2861 	__ceph_mdsc_drop_dentry_lease(dentry);
2862 	spin_unlock(&dentry->d_lock);
2863 
2864 	dout("lease_release inode %p dentry %p mask %d to mds%d\n",
2865 	     inode, dentry, mask, session->s_mds);
2866 	ceph_mdsc_lease_send_msg(session, inode, dentry,
2867 				 CEPH_MDS_LEASE_RELEASE, seq);
2868 	ceph_put_mds_session(session);
2869 }
2870 
2871 /*
2872  * drop all leases (and dentry refs) in preparation for umount
2873  */
2874 static void drop_leases(struct ceph_mds_client *mdsc)
2875 {
2876 	int i;
2877 
2878 	dout("drop_leases\n");
2879 	mutex_lock(&mdsc->mutex);
2880 	for (i = 0; i < mdsc->max_sessions; i++) {
2881 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2882 		if (!s)
2883 			continue;
2884 		mutex_unlock(&mdsc->mutex);
2885 		mutex_lock(&s->s_mutex);
2886 		mutex_unlock(&s->s_mutex);
2887 		ceph_put_mds_session(s);
2888 		mutex_lock(&mdsc->mutex);
2889 	}
2890 	mutex_unlock(&mdsc->mutex);
2891 }
2892 
2893 
2894 
2895 /*
2896  * delayed work -- periodically trim expired leases, renew caps with mds
2897  */
2898 static void schedule_delayed(struct ceph_mds_client *mdsc)
2899 {
2900 	int delay = 5;
2901 	unsigned hz = round_jiffies_relative(HZ * delay);
2902 	schedule_delayed_work(&mdsc->delayed_work, hz);
2903 }
2904 
2905 static void delayed_work(struct work_struct *work)
2906 {
2907 	int i;
2908 	struct ceph_mds_client *mdsc =
2909 		container_of(work, struct ceph_mds_client, delayed_work.work);
2910 	int renew_interval;
2911 	int renew_caps;
2912 
2913 	dout("mdsc delayed_work\n");
2914 	ceph_check_delayed_caps(mdsc);
2915 
2916 	mutex_lock(&mdsc->mutex);
2917 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2918 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2919 				   mdsc->last_renew_caps);
2920 	if (renew_caps)
2921 		mdsc->last_renew_caps = jiffies;
2922 
2923 	for (i = 0; i < mdsc->max_sessions; i++) {
2924 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2925 		if (s == NULL)
2926 			continue;
2927 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2928 			dout("resending session close request for mds%d\n",
2929 			     s->s_mds);
2930 			request_close_session(mdsc, s);
2931 			ceph_put_mds_session(s);
2932 			continue;
2933 		}
2934 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2935 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2936 				s->s_state = CEPH_MDS_SESSION_HUNG;
2937 				pr_info("mds%d hung\n", s->s_mds);
2938 			}
2939 		}
2940 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2941 			/* this mds is failed or recovering, just wait */
2942 			ceph_put_mds_session(s);
2943 			continue;
2944 		}
2945 		mutex_unlock(&mdsc->mutex);
2946 
2947 		mutex_lock(&s->s_mutex);
2948 		if (renew_caps)
2949 			send_renew_caps(mdsc, s);
2950 		else
2951 			ceph_con_keepalive(&s->s_con);
2952 		ceph_add_cap_releases(mdsc, s);
2953 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2954 		    s->s_state == CEPH_MDS_SESSION_HUNG)
2955 			ceph_send_cap_releases(mdsc, s);
2956 		mutex_unlock(&s->s_mutex);
2957 		ceph_put_mds_session(s);
2958 
2959 		mutex_lock(&mdsc->mutex);
2960 	}
2961 	mutex_unlock(&mdsc->mutex);
2962 
2963 	schedule_delayed(mdsc);
2964 }
2965 
2966 int ceph_mdsc_init(struct ceph_fs_client *fsc)
2967 
2968 {
2969 	struct ceph_mds_client *mdsc;
2970 
2971 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
2972 	if (!mdsc)
2973 		return -ENOMEM;
2974 	mdsc->fsc = fsc;
2975 	fsc->mdsc = mdsc;
2976 	mutex_init(&mdsc->mutex);
2977 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
2978 	if (mdsc->mdsmap == NULL)
2979 		return -ENOMEM;
2980 
2981 	init_completion(&mdsc->safe_umount_waiters);
2982 	init_waitqueue_head(&mdsc->session_close_wq);
2983 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
2984 	mdsc->sessions = NULL;
2985 	mdsc->max_sessions = 0;
2986 	mdsc->stopping = 0;
2987 	init_rwsem(&mdsc->snap_rwsem);
2988 	mdsc->snap_realms = RB_ROOT;
2989 	INIT_LIST_HEAD(&mdsc->snap_empty);
2990 	spin_lock_init(&mdsc->snap_empty_lock);
2991 	mdsc->last_tid = 0;
2992 	mdsc->request_tree = RB_ROOT;
2993 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
2994 	mdsc->last_renew_caps = jiffies;
2995 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
2996 	spin_lock_init(&mdsc->cap_delay_lock);
2997 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
2998 	spin_lock_init(&mdsc->snap_flush_lock);
2999 	mdsc->cap_flush_seq = 0;
3000 	INIT_LIST_HEAD(&mdsc->cap_dirty);
3001 	mdsc->num_cap_flushing = 0;
3002 	spin_lock_init(&mdsc->cap_dirty_lock);
3003 	init_waitqueue_head(&mdsc->cap_flushing_wq);
3004 	spin_lock_init(&mdsc->dentry_lru_lock);
3005 	INIT_LIST_HEAD(&mdsc->dentry_lru);
3006 
3007 	ceph_caps_init(mdsc);
3008 	ceph_adjust_min_caps(mdsc, fsc->min_caps);
3009 
3010 	return 0;
3011 }
3012 
3013 /*
3014  * Wait for safe replies on open mds requests.  If we time out, drop
3015  * all requests from the tree to avoid dangling dentry refs.
3016  */
3017 static void wait_requests(struct ceph_mds_client *mdsc)
3018 {
3019 	struct ceph_mds_request *req;
3020 	struct ceph_fs_client *fsc = mdsc->fsc;
3021 
3022 	mutex_lock(&mdsc->mutex);
3023 	if (__get_oldest_req(mdsc)) {
3024 		mutex_unlock(&mdsc->mutex);
3025 
3026 		dout("wait_requests waiting for requests\n");
3027 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3028 				    fsc->client->options->mount_timeout * HZ);
3029 
3030 		/* tear down remaining requests */
3031 		mutex_lock(&mdsc->mutex);
3032 		while ((req = __get_oldest_req(mdsc))) {
3033 			dout("wait_requests timed out on tid %llu\n",
3034 			     req->r_tid);
3035 			__unregister_request(mdsc, req);
3036 		}
3037 	}
3038 	mutex_unlock(&mdsc->mutex);
3039 	dout("wait_requests done\n");
3040 }
3041 
3042 /*
3043  * called before mount is ro, and before dentries are torn down.
3044  * (hmm, does this still race with new lookups?)
3045  */
3046 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3047 {
3048 	dout("pre_umount\n");
3049 	mdsc->stopping = 1;
3050 
3051 	drop_leases(mdsc);
3052 	ceph_flush_dirty_caps(mdsc);
3053 	wait_requests(mdsc);
3054 
3055 	/*
3056 	 * wait for reply handlers to drop their request refs and
3057 	 * their inode/dcache refs
3058 	 */
3059 	ceph_msgr_flush();
3060 }
3061 
3062 /*
3063  * wait for all write mds requests to flush.
3064  */
3065 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3066 {
3067 	struct ceph_mds_request *req = NULL, *nextreq;
3068 	struct rb_node *n;
3069 
3070 	mutex_lock(&mdsc->mutex);
3071 	dout("wait_unsafe_requests want %lld\n", want_tid);
3072 restart:
3073 	req = __get_oldest_req(mdsc);
3074 	while (req && req->r_tid <= want_tid) {
3075 		/* find next request */
3076 		n = rb_next(&req->r_node);
3077 		if (n)
3078 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3079 		else
3080 			nextreq = NULL;
3081 		if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3082 			/* write op */
3083 			ceph_mdsc_get_request(req);
3084 			if (nextreq)
3085 				ceph_mdsc_get_request(nextreq);
3086 			mutex_unlock(&mdsc->mutex);
3087 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3088 			     req->r_tid, want_tid);
3089 			wait_for_completion(&req->r_safe_completion);
3090 			mutex_lock(&mdsc->mutex);
3091 			ceph_mdsc_put_request(req);
3092 			if (!nextreq)
3093 				break;  /* next dne before, so we're done! */
3094 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3095 				/* next request was removed from tree */
3096 				ceph_mdsc_put_request(nextreq);
3097 				goto restart;
3098 			}
3099 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3100 		}
3101 		req = nextreq;
3102 	}
3103 	mutex_unlock(&mdsc->mutex);
3104 	dout("wait_unsafe_requests done\n");
3105 }
3106 
3107 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3108 {
3109 	u64 want_tid, want_flush;
3110 
3111 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3112 		return;
3113 
3114 	dout("sync\n");
3115 	mutex_lock(&mdsc->mutex);
3116 	want_tid = mdsc->last_tid;
3117 	want_flush = mdsc->cap_flush_seq;
3118 	mutex_unlock(&mdsc->mutex);
3119 	dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3120 
3121 	ceph_flush_dirty_caps(mdsc);
3122 
3123 	wait_unsafe_requests(mdsc, want_tid);
3124 	wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3125 }
3126 
3127 /*
3128  * true if all sessions are closed, or we force unmount
3129  */
3130 bool done_closing_sessions(struct ceph_mds_client *mdsc)
3131 {
3132 	int i, n = 0;
3133 
3134 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3135 		return true;
3136 
3137 	mutex_lock(&mdsc->mutex);
3138 	for (i = 0; i < mdsc->max_sessions; i++)
3139 		if (mdsc->sessions[i])
3140 			n++;
3141 	mutex_unlock(&mdsc->mutex);
3142 	return n == 0;
3143 }
3144 
3145 /*
3146  * called after sb is ro.
3147  */
3148 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3149 {
3150 	struct ceph_mds_session *session;
3151 	int i;
3152 	struct ceph_fs_client *fsc = mdsc->fsc;
3153 	unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3154 
3155 	dout("close_sessions\n");
3156 
3157 	/* close sessions */
3158 	mutex_lock(&mdsc->mutex);
3159 	for (i = 0; i < mdsc->max_sessions; i++) {
3160 		session = __ceph_lookup_mds_session(mdsc, i);
3161 		if (!session)
3162 			continue;
3163 		mutex_unlock(&mdsc->mutex);
3164 		mutex_lock(&session->s_mutex);
3165 		__close_session(mdsc, session);
3166 		mutex_unlock(&session->s_mutex);
3167 		ceph_put_mds_session(session);
3168 		mutex_lock(&mdsc->mutex);
3169 	}
3170 	mutex_unlock(&mdsc->mutex);
3171 
3172 	dout("waiting for sessions to close\n");
3173 	wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3174 			   timeout);
3175 
3176 	/* tear down remaining sessions */
3177 	mutex_lock(&mdsc->mutex);
3178 	for (i = 0; i < mdsc->max_sessions; i++) {
3179 		if (mdsc->sessions[i]) {
3180 			session = get_session(mdsc->sessions[i]);
3181 			__unregister_session(mdsc, session);
3182 			mutex_unlock(&mdsc->mutex);
3183 			mutex_lock(&session->s_mutex);
3184 			remove_session_caps(session);
3185 			mutex_unlock(&session->s_mutex);
3186 			ceph_put_mds_session(session);
3187 			mutex_lock(&mdsc->mutex);
3188 		}
3189 	}
3190 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3191 	mutex_unlock(&mdsc->mutex);
3192 
3193 	ceph_cleanup_empty_realms(mdsc);
3194 
3195 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3196 
3197 	dout("stopped\n");
3198 }
3199 
3200 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3201 {
3202 	dout("stop\n");
3203 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3204 	if (mdsc->mdsmap)
3205 		ceph_mdsmap_destroy(mdsc->mdsmap);
3206 	kfree(mdsc->sessions);
3207 	ceph_caps_finalize(mdsc);
3208 }
3209 
3210 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3211 {
3212 	struct ceph_mds_client *mdsc = fsc->mdsc;
3213 
3214 	ceph_mdsc_stop(mdsc);
3215 	fsc->mdsc = NULL;
3216 	kfree(mdsc);
3217 }
3218 
3219 
3220 /*
3221  * handle mds map update.
3222  */
3223 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3224 {
3225 	u32 epoch;
3226 	u32 maplen;
3227 	void *p = msg->front.iov_base;
3228 	void *end = p + msg->front.iov_len;
3229 	struct ceph_mdsmap *newmap, *oldmap;
3230 	struct ceph_fsid fsid;
3231 	int err = -EINVAL;
3232 
3233 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3234 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
3235 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3236 		return;
3237 	epoch = ceph_decode_32(&p);
3238 	maplen = ceph_decode_32(&p);
3239 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3240 
3241 	/* do we need it? */
3242 	ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3243 	mutex_lock(&mdsc->mutex);
3244 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3245 		dout("handle_map epoch %u <= our %u\n",
3246 		     epoch, mdsc->mdsmap->m_epoch);
3247 		mutex_unlock(&mdsc->mutex);
3248 		return;
3249 	}
3250 
3251 	newmap = ceph_mdsmap_decode(&p, end);
3252 	if (IS_ERR(newmap)) {
3253 		err = PTR_ERR(newmap);
3254 		goto bad_unlock;
3255 	}
3256 
3257 	/* swap into place */
3258 	if (mdsc->mdsmap) {
3259 		oldmap = mdsc->mdsmap;
3260 		mdsc->mdsmap = newmap;
3261 		check_new_map(mdsc, newmap, oldmap);
3262 		ceph_mdsmap_destroy(oldmap);
3263 	} else {
3264 		mdsc->mdsmap = newmap;  /* first mds map */
3265 	}
3266 	mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3267 
3268 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3269 
3270 	mutex_unlock(&mdsc->mutex);
3271 	schedule_delayed(mdsc);
3272 	return;
3273 
3274 bad_unlock:
3275 	mutex_unlock(&mdsc->mutex);
3276 bad:
3277 	pr_err("error decoding mdsmap %d\n", err);
3278 	return;
3279 }
3280 
3281 static struct ceph_connection *con_get(struct ceph_connection *con)
3282 {
3283 	struct ceph_mds_session *s = con->private;
3284 
3285 	if (get_session(s)) {
3286 		dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3287 		return con;
3288 	}
3289 	dout("mdsc con_get %p FAIL\n", s);
3290 	return NULL;
3291 }
3292 
3293 static void con_put(struct ceph_connection *con)
3294 {
3295 	struct ceph_mds_session *s = con->private;
3296 
3297 	ceph_put_mds_session(s);
3298 	dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref));
3299 }
3300 
3301 /*
3302  * if the client is unresponsive for long enough, the mds will kill
3303  * the session entirely.
3304  */
3305 static void peer_reset(struct ceph_connection *con)
3306 {
3307 	struct ceph_mds_session *s = con->private;
3308 	struct ceph_mds_client *mdsc = s->s_mdsc;
3309 
3310 	pr_warning("mds%d closed our session\n", s->s_mds);
3311 	send_mds_reconnect(mdsc, s);
3312 }
3313 
3314 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3315 {
3316 	struct ceph_mds_session *s = con->private;
3317 	struct ceph_mds_client *mdsc = s->s_mdsc;
3318 	int type = le16_to_cpu(msg->hdr.type);
3319 
3320 	mutex_lock(&mdsc->mutex);
3321 	if (__verify_registered_session(mdsc, s) < 0) {
3322 		mutex_unlock(&mdsc->mutex);
3323 		goto out;
3324 	}
3325 	mutex_unlock(&mdsc->mutex);
3326 
3327 	switch (type) {
3328 	case CEPH_MSG_MDS_MAP:
3329 		ceph_mdsc_handle_map(mdsc, msg);
3330 		break;
3331 	case CEPH_MSG_CLIENT_SESSION:
3332 		handle_session(s, msg);
3333 		break;
3334 	case CEPH_MSG_CLIENT_REPLY:
3335 		handle_reply(s, msg);
3336 		break;
3337 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3338 		handle_forward(mdsc, s, msg);
3339 		break;
3340 	case CEPH_MSG_CLIENT_CAPS:
3341 		ceph_handle_caps(s, msg);
3342 		break;
3343 	case CEPH_MSG_CLIENT_SNAP:
3344 		ceph_handle_snap(mdsc, s, msg);
3345 		break;
3346 	case CEPH_MSG_CLIENT_LEASE:
3347 		handle_lease(mdsc, s, msg);
3348 		break;
3349 
3350 	default:
3351 		pr_err("received unknown message type %d %s\n", type,
3352 		       ceph_msg_type_name(type));
3353 	}
3354 out:
3355 	ceph_msg_put(msg);
3356 }
3357 
3358 /*
3359  * authentication
3360  */
3361 static int get_authorizer(struct ceph_connection *con,
3362 			  void **buf, int *len, int *proto,
3363 			  void **reply_buf, int *reply_len, int force_new)
3364 {
3365 	struct ceph_mds_session *s = con->private;
3366 	struct ceph_mds_client *mdsc = s->s_mdsc;
3367 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3368 	int ret = 0;
3369 
3370 	if (force_new && s->s_authorizer) {
3371 		ac->ops->destroy_authorizer(ac, s->s_authorizer);
3372 		s->s_authorizer = NULL;
3373 	}
3374 	if (s->s_authorizer == NULL) {
3375 		if (ac->ops->create_authorizer) {
3376 			ret = ac->ops->create_authorizer(
3377 				ac, CEPH_ENTITY_TYPE_MDS,
3378 				&s->s_authorizer,
3379 				&s->s_authorizer_buf,
3380 				&s->s_authorizer_buf_len,
3381 				&s->s_authorizer_reply_buf,
3382 				&s->s_authorizer_reply_buf_len);
3383 			if (ret)
3384 				return ret;
3385 		}
3386 	}
3387 
3388 	*proto = ac->protocol;
3389 	*buf = s->s_authorizer_buf;
3390 	*len = s->s_authorizer_buf_len;
3391 	*reply_buf = s->s_authorizer_reply_buf;
3392 	*reply_len = s->s_authorizer_reply_buf_len;
3393 	return 0;
3394 }
3395 
3396 
3397 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3398 {
3399 	struct ceph_mds_session *s = con->private;
3400 	struct ceph_mds_client *mdsc = s->s_mdsc;
3401 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3402 
3403 	return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len);
3404 }
3405 
3406 static int invalidate_authorizer(struct ceph_connection *con)
3407 {
3408 	struct ceph_mds_session *s = con->private;
3409 	struct ceph_mds_client *mdsc = s->s_mdsc;
3410 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3411 
3412 	if (ac->ops->invalidate_authorizer)
3413 		ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3414 
3415 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3416 }
3417 
3418 static const struct ceph_connection_operations mds_con_ops = {
3419 	.get = con_get,
3420 	.put = con_put,
3421 	.dispatch = dispatch,
3422 	.get_authorizer = get_authorizer,
3423 	.verify_authorizer_reply = verify_authorizer_reply,
3424 	.invalidate_authorizer = invalidate_authorizer,
3425 	.peer_reset = peer_reset,
3426 };
3427 
3428 /* eof */
3429