1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/wait.h> 5 #include <linux/slab.h> 6 #include <linux/sched.h> 7 #include <linux/debugfs.h> 8 #include <linux/seq_file.h> 9 10 #include "super.h" 11 #include "mds_client.h" 12 13 #include <linux/ceph/messenger.h> 14 #include <linux/ceph/decode.h> 15 #include <linux/ceph/pagelist.h> 16 #include <linux/ceph/auth.h> 17 #include <linux/ceph/debugfs.h> 18 19 /* 20 * A cluster of MDS (metadata server) daemons is responsible for 21 * managing the file system namespace (the directory hierarchy and 22 * inodes) and for coordinating shared access to storage. Metadata is 23 * partitioning hierarchically across a number of servers, and that 24 * partition varies over time as the cluster adjusts the distribution 25 * in order to balance load. 26 * 27 * The MDS client is primarily responsible to managing synchronous 28 * metadata requests for operations like open, unlink, and so forth. 29 * If there is a MDS failure, we find out about it when we (possibly 30 * request and) receive a new MDS map, and can resubmit affected 31 * requests. 32 * 33 * For the most part, though, we take advantage of a lossless 34 * communications channel to the MDS, and do not need to worry about 35 * timing out or resubmitting requests. 36 * 37 * We maintain a stateful "session" with each MDS we interact with. 38 * Within each session, we sent periodic heartbeat messages to ensure 39 * any capabilities or leases we have been issues remain valid. If 40 * the session times out and goes stale, our leases and capabilities 41 * are no longer valid. 42 */ 43 44 struct ceph_reconnect_state { 45 struct ceph_pagelist *pagelist; 46 bool flock; 47 }; 48 49 static void __wake_requests(struct ceph_mds_client *mdsc, 50 struct list_head *head); 51 52 static const struct ceph_connection_operations mds_con_ops; 53 54 55 /* 56 * mds reply parsing 57 */ 58 59 /* 60 * parse individual inode info 61 */ 62 static int parse_reply_info_in(void **p, void *end, 63 struct ceph_mds_reply_info_in *info, 64 int features) 65 { 66 int err = -EIO; 67 68 info->in = *p; 69 *p += sizeof(struct ceph_mds_reply_inode) + 70 sizeof(*info->in->fragtree.splits) * 71 le32_to_cpu(info->in->fragtree.nsplits); 72 73 ceph_decode_32_safe(p, end, info->symlink_len, bad); 74 ceph_decode_need(p, end, info->symlink_len, bad); 75 info->symlink = *p; 76 *p += info->symlink_len; 77 78 if (features & CEPH_FEATURE_DIRLAYOUTHASH) 79 ceph_decode_copy_safe(p, end, &info->dir_layout, 80 sizeof(info->dir_layout), bad); 81 else 82 memset(&info->dir_layout, 0, sizeof(info->dir_layout)); 83 84 ceph_decode_32_safe(p, end, info->xattr_len, bad); 85 ceph_decode_need(p, end, info->xattr_len, bad); 86 info->xattr_data = *p; 87 *p += info->xattr_len; 88 return 0; 89 bad: 90 return err; 91 } 92 93 /* 94 * parse a normal reply, which may contain a (dir+)dentry and/or a 95 * target inode. 96 */ 97 static int parse_reply_info_trace(void **p, void *end, 98 struct ceph_mds_reply_info_parsed *info, 99 int features) 100 { 101 int err; 102 103 if (info->head->is_dentry) { 104 err = parse_reply_info_in(p, end, &info->diri, features); 105 if (err < 0) 106 goto out_bad; 107 108 if (unlikely(*p + sizeof(*info->dirfrag) > end)) 109 goto bad; 110 info->dirfrag = *p; 111 *p += sizeof(*info->dirfrag) + 112 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist); 113 if (unlikely(*p > end)) 114 goto bad; 115 116 ceph_decode_32_safe(p, end, info->dname_len, bad); 117 ceph_decode_need(p, end, info->dname_len, bad); 118 info->dname = *p; 119 *p += info->dname_len; 120 info->dlease = *p; 121 *p += sizeof(*info->dlease); 122 } 123 124 if (info->head->is_target) { 125 err = parse_reply_info_in(p, end, &info->targeti, features); 126 if (err < 0) 127 goto out_bad; 128 } 129 130 if (unlikely(*p != end)) 131 goto bad; 132 return 0; 133 134 bad: 135 err = -EIO; 136 out_bad: 137 pr_err("problem parsing mds trace %d\n", err); 138 return err; 139 } 140 141 /* 142 * parse readdir results 143 */ 144 static int parse_reply_info_dir(void **p, void *end, 145 struct ceph_mds_reply_info_parsed *info, 146 int features) 147 { 148 u32 num, i = 0; 149 int err; 150 151 info->dir_dir = *p; 152 if (*p + sizeof(*info->dir_dir) > end) 153 goto bad; 154 *p += sizeof(*info->dir_dir) + 155 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist); 156 if (*p > end) 157 goto bad; 158 159 ceph_decode_need(p, end, sizeof(num) + 2, bad); 160 num = ceph_decode_32(p); 161 info->dir_end = ceph_decode_8(p); 162 info->dir_complete = ceph_decode_8(p); 163 if (num == 0) 164 goto done; 165 166 /* alloc large array */ 167 info->dir_nr = num; 168 info->dir_in = kcalloc(num, sizeof(*info->dir_in) + 169 sizeof(*info->dir_dname) + 170 sizeof(*info->dir_dname_len) + 171 sizeof(*info->dir_dlease), 172 GFP_NOFS); 173 if (info->dir_in == NULL) { 174 err = -ENOMEM; 175 goto out_bad; 176 } 177 info->dir_dname = (void *)(info->dir_in + num); 178 info->dir_dname_len = (void *)(info->dir_dname + num); 179 info->dir_dlease = (void *)(info->dir_dname_len + num); 180 181 while (num) { 182 /* dentry */ 183 ceph_decode_need(p, end, sizeof(u32)*2, bad); 184 info->dir_dname_len[i] = ceph_decode_32(p); 185 ceph_decode_need(p, end, info->dir_dname_len[i], bad); 186 info->dir_dname[i] = *p; 187 *p += info->dir_dname_len[i]; 188 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i], 189 info->dir_dname[i]); 190 info->dir_dlease[i] = *p; 191 *p += sizeof(struct ceph_mds_reply_lease); 192 193 /* inode */ 194 err = parse_reply_info_in(p, end, &info->dir_in[i], features); 195 if (err < 0) 196 goto out_bad; 197 i++; 198 num--; 199 } 200 201 done: 202 if (*p != end) 203 goto bad; 204 return 0; 205 206 bad: 207 err = -EIO; 208 out_bad: 209 pr_err("problem parsing dir contents %d\n", err); 210 return err; 211 } 212 213 /* 214 * parse fcntl F_GETLK results 215 */ 216 static int parse_reply_info_filelock(void **p, void *end, 217 struct ceph_mds_reply_info_parsed *info, 218 int features) 219 { 220 if (*p + sizeof(*info->filelock_reply) > end) 221 goto bad; 222 223 info->filelock_reply = *p; 224 *p += sizeof(*info->filelock_reply); 225 226 if (unlikely(*p != end)) 227 goto bad; 228 return 0; 229 230 bad: 231 return -EIO; 232 } 233 234 /* 235 * parse extra results 236 */ 237 static int parse_reply_info_extra(void **p, void *end, 238 struct ceph_mds_reply_info_parsed *info, 239 int features) 240 { 241 if (info->head->op == CEPH_MDS_OP_GETFILELOCK) 242 return parse_reply_info_filelock(p, end, info, features); 243 else 244 return parse_reply_info_dir(p, end, info, features); 245 } 246 247 /* 248 * parse entire mds reply 249 */ 250 static int parse_reply_info(struct ceph_msg *msg, 251 struct ceph_mds_reply_info_parsed *info, 252 int features) 253 { 254 void *p, *end; 255 u32 len; 256 int err; 257 258 info->head = msg->front.iov_base; 259 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 260 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 261 262 /* trace */ 263 ceph_decode_32_safe(&p, end, len, bad); 264 if (len > 0) { 265 err = parse_reply_info_trace(&p, p+len, info, features); 266 if (err < 0) 267 goto out_bad; 268 } 269 270 /* extra */ 271 ceph_decode_32_safe(&p, end, len, bad); 272 if (len > 0) { 273 err = parse_reply_info_extra(&p, p+len, info, features); 274 if (err < 0) 275 goto out_bad; 276 } 277 278 /* snap blob */ 279 ceph_decode_32_safe(&p, end, len, bad); 280 info->snapblob_len = len; 281 info->snapblob = p; 282 p += len; 283 284 if (p != end) 285 goto bad; 286 return 0; 287 288 bad: 289 err = -EIO; 290 out_bad: 291 pr_err("mds parse_reply err %d\n", err); 292 return err; 293 } 294 295 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 296 { 297 kfree(info->dir_in); 298 } 299 300 301 /* 302 * sessions 303 */ 304 static const char *session_state_name(int s) 305 { 306 switch (s) { 307 case CEPH_MDS_SESSION_NEW: return "new"; 308 case CEPH_MDS_SESSION_OPENING: return "opening"; 309 case CEPH_MDS_SESSION_OPEN: return "open"; 310 case CEPH_MDS_SESSION_HUNG: return "hung"; 311 case CEPH_MDS_SESSION_CLOSING: return "closing"; 312 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 313 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 314 default: return "???"; 315 } 316 } 317 318 static struct ceph_mds_session *get_session(struct ceph_mds_session *s) 319 { 320 if (atomic_inc_not_zero(&s->s_ref)) { 321 dout("mdsc get_session %p %d -> %d\n", s, 322 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref)); 323 return s; 324 } else { 325 dout("mdsc get_session %p 0 -- FAIL", s); 326 return NULL; 327 } 328 } 329 330 void ceph_put_mds_session(struct ceph_mds_session *s) 331 { 332 dout("mdsc put_session %p %d -> %d\n", s, 333 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1); 334 if (atomic_dec_and_test(&s->s_ref)) { 335 if (s->s_authorizer) 336 s->s_mdsc->fsc->client->monc.auth->ops->destroy_authorizer( 337 s->s_mdsc->fsc->client->monc.auth, 338 s->s_authorizer); 339 kfree(s); 340 } 341 } 342 343 /* 344 * called under mdsc->mutex 345 */ 346 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 347 int mds) 348 { 349 struct ceph_mds_session *session; 350 351 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL) 352 return NULL; 353 session = mdsc->sessions[mds]; 354 dout("lookup_mds_session %p %d\n", session, 355 atomic_read(&session->s_ref)); 356 get_session(session); 357 return session; 358 } 359 360 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 361 { 362 if (mds >= mdsc->max_sessions) 363 return false; 364 return mdsc->sessions[mds]; 365 } 366 367 static int __verify_registered_session(struct ceph_mds_client *mdsc, 368 struct ceph_mds_session *s) 369 { 370 if (s->s_mds >= mdsc->max_sessions || 371 mdsc->sessions[s->s_mds] != s) 372 return -ENOENT; 373 return 0; 374 } 375 376 /* 377 * create+register a new session for given mds. 378 * called under mdsc->mutex. 379 */ 380 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 381 int mds) 382 { 383 struct ceph_mds_session *s; 384 385 s = kzalloc(sizeof(*s), GFP_NOFS); 386 if (!s) 387 return ERR_PTR(-ENOMEM); 388 s->s_mdsc = mdsc; 389 s->s_mds = mds; 390 s->s_state = CEPH_MDS_SESSION_NEW; 391 s->s_ttl = 0; 392 s->s_seq = 0; 393 mutex_init(&s->s_mutex); 394 395 ceph_con_init(mdsc->fsc->client->msgr, &s->s_con); 396 s->s_con.private = s; 397 s->s_con.ops = &mds_con_ops; 398 s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS; 399 s->s_con.peer_name.num = cpu_to_le64(mds); 400 401 spin_lock_init(&s->s_cap_lock); 402 s->s_cap_gen = 0; 403 s->s_cap_ttl = 0; 404 s->s_renew_requested = 0; 405 s->s_renew_seq = 0; 406 INIT_LIST_HEAD(&s->s_caps); 407 s->s_nr_caps = 0; 408 s->s_trim_caps = 0; 409 atomic_set(&s->s_ref, 1); 410 INIT_LIST_HEAD(&s->s_waiting); 411 INIT_LIST_HEAD(&s->s_unsafe); 412 s->s_num_cap_releases = 0; 413 s->s_cap_iterator = NULL; 414 INIT_LIST_HEAD(&s->s_cap_releases); 415 INIT_LIST_HEAD(&s->s_cap_releases_done); 416 INIT_LIST_HEAD(&s->s_cap_flushing); 417 INIT_LIST_HEAD(&s->s_cap_snaps_flushing); 418 419 dout("register_session mds%d\n", mds); 420 if (mds >= mdsc->max_sessions) { 421 int newmax = 1 << get_count_order(mds+1); 422 struct ceph_mds_session **sa; 423 424 dout("register_session realloc to %d\n", newmax); 425 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 426 if (sa == NULL) 427 goto fail_realloc; 428 if (mdsc->sessions) { 429 memcpy(sa, mdsc->sessions, 430 mdsc->max_sessions * sizeof(void *)); 431 kfree(mdsc->sessions); 432 } 433 mdsc->sessions = sa; 434 mdsc->max_sessions = newmax; 435 } 436 mdsc->sessions[mds] = s; 437 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 438 439 ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 440 441 return s; 442 443 fail_realloc: 444 kfree(s); 445 return ERR_PTR(-ENOMEM); 446 } 447 448 /* 449 * called under mdsc->mutex 450 */ 451 static void __unregister_session(struct ceph_mds_client *mdsc, 452 struct ceph_mds_session *s) 453 { 454 dout("__unregister_session mds%d %p\n", s->s_mds, s); 455 BUG_ON(mdsc->sessions[s->s_mds] != s); 456 mdsc->sessions[s->s_mds] = NULL; 457 ceph_con_close(&s->s_con); 458 ceph_put_mds_session(s); 459 } 460 461 /* 462 * drop session refs in request. 463 * 464 * should be last request ref, or hold mdsc->mutex 465 */ 466 static void put_request_session(struct ceph_mds_request *req) 467 { 468 if (req->r_session) { 469 ceph_put_mds_session(req->r_session); 470 req->r_session = NULL; 471 } 472 } 473 474 void ceph_mdsc_release_request(struct kref *kref) 475 { 476 struct ceph_mds_request *req = container_of(kref, 477 struct ceph_mds_request, 478 r_kref); 479 if (req->r_request) 480 ceph_msg_put(req->r_request); 481 if (req->r_reply) { 482 ceph_msg_put(req->r_reply); 483 destroy_reply_info(&req->r_reply_info); 484 } 485 if (req->r_inode) { 486 ceph_put_cap_refs(ceph_inode(req->r_inode), 487 CEPH_CAP_PIN); 488 iput(req->r_inode); 489 } 490 if (req->r_locked_dir) 491 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), 492 CEPH_CAP_PIN); 493 if (req->r_target_inode) 494 iput(req->r_target_inode); 495 if (req->r_dentry) 496 dput(req->r_dentry); 497 if (req->r_old_dentry) { 498 ceph_put_cap_refs( 499 ceph_inode(req->r_old_dentry->d_parent->d_inode), 500 CEPH_CAP_PIN); 501 dput(req->r_old_dentry); 502 } 503 kfree(req->r_path1); 504 kfree(req->r_path2); 505 put_request_session(req); 506 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 507 kfree(req); 508 } 509 510 /* 511 * lookup session, bump ref if found. 512 * 513 * called under mdsc->mutex. 514 */ 515 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc, 516 u64 tid) 517 { 518 struct ceph_mds_request *req; 519 struct rb_node *n = mdsc->request_tree.rb_node; 520 521 while (n) { 522 req = rb_entry(n, struct ceph_mds_request, r_node); 523 if (tid < req->r_tid) 524 n = n->rb_left; 525 else if (tid > req->r_tid) 526 n = n->rb_right; 527 else { 528 ceph_mdsc_get_request(req); 529 return req; 530 } 531 } 532 return NULL; 533 } 534 535 static void __insert_request(struct ceph_mds_client *mdsc, 536 struct ceph_mds_request *new) 537 { 538 struct rb_node **p = &mdsc->request_tree.rb_node; 539 struct rb_node *parent = NULL; 540 struct ceph_mds_request *req = NULL; 541 542 while (*p) { 543 parent = *p; 544 req = rb_entry(parent, struct ceph_mds_request, r_node); 545 if (new->r_tid < req->r_tid) 546 p = &(*p)->rb_left; 547 else if (new->r_tid > req->r_tid) 548 p = &(*p)->rb_right; 549 else 550 BUG(); 551 } 552 553 rb_link_node(&new->r_node, parent, p); 554 rb_insert_color(&new->r_node, &mdsc->request_tree); 555 } 556 557 /* 558 * Register an in-flight request, and assign a tid. Link to directory 559 * are modifying (if any). 560 * 561 * Called under mdsc->mutex. 562 */ 563 static void __register_request(struct ceph_mds_client *mdsc, 564 struct ceph_mds_request *req, 565 struct inode *dir) 566 { 567 req->r_tid = ++mdsc->last_tid; 568 if (req->r_num_caps) 569 ceph_reserve_caps(mdsc, &req->r_caps_reservation, 570 req->r_num_caps); 571 dout("__register_request %p tid %lld\n", req, req->r_tid); 572 ceph_mdsc_get_request(req); 573 __insert_request(mdsc, req); 574 575 req->r_uid = current_fsuid(); 576 req->r_gid = current_fsgid(); 577 578 if (dir) { 579 struct ceph_inode_info *ci = ceph_inode(dir); 580 581 ihold(dir); 582 spin_lock(&ci->i_unsafe_lock); 583 req->r_unsafe_dir = dir; 584 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 585 spin_unlock(&ci->i_unsafe_lock); 586 } 587 } 588 589 static void __unregister_request(struct ceph_mds_client *mdsc, 590 struct ceph_mds_request *req) 591 { 592 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 593 rb_erase(&req->r_node, &mdsc->request_tree); 594 RB_CLEAR_NODE(&req->r_node); 595 596 if (req->r_unsafe_dir) { 597 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 598 599 spin_lock(&ci->i_unsafe_lock); 600 list_del_init(&req->r_unsafe_dir_item); 601 spin_unlock(&ci->i_unsafe_lock); 602 603 iput(req->r_unsafe_dir); 604 req->r_unsafe_dir = NULL; 605 } 606 607 ceph_mdsc_put_request(req); 608 } 609 610 /* 611 * Choose mds to send request to next. If there is a hint set in the 612 * request (e.g., due to a prior forward hint from the mds), use that. 613 * Otherwise, consult frag tree and/or caps to identify the 614 * appropriate mds. If all else fails, choose randomly. 615 * 616 * Called under mdsc->mutex. 617 */ 618 struct dentry *get_nonsnap_parent(struct dentry *dentry) 619 { 620 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP) 621 dentry = dentry->d_parent; 622 return dentry; 623 } 624 625 static int __choose_mds(struct ceph_mds_client *mdsc, 626 struct ceph_mds_request *req) 627 { 628 struct inode *inode; 629 struct ceph_inode_info *ci; 630 struct ceph_cap *cap; 631 int mode = req->r_direct_mode; 632 int mds = -1; 633 u32 hash = req->r_direct_hash; 634 bool is_hash = req->r_direct_is_hash; 635 636 /* 637 * is there a specific mds we should try? ignore hint if we have 638 * no session and the mds is not up (active or recovering). 639 */ 640 if (req->r_resend_mds >= 0 && 641 (__have_session(mdsc, req->r_resend_mds) || 642 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 643 dout("choose_mds using resend_mds mds%d\n", 644 req->r_resend_mds); 645 return req->r_resend_mds; 646 } 647 648 if (mode == USE_RANDOM_MDS) 649 goto random; 650 651 inode = NULL; 652 if (req->r_inode) { 653 inode = req->r_inode; 654 } else if (req->r_dentry) { 655 struct inode *dir = req->r_dentry->d_parent->d_inode; 656 657 if (dir->i_sb != mdsc->fsc->sb) { 658 /* not this fs! */ 659 inode = req->r_dentry->d_inode; 660 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 661 /* direct snapped/virtual snapdir requests 662 * based on parent dir inode */ 663 struct dentry *dn = 664 get_nonsnap_parent(req->r_dentry->d_parent); 665 inode = dn->d_inode; 666 dout("__choose_mds using nonsnap parent %p\n", inode); 667 } else if (req->r_dentry->d_inode) { 668 /* dentry target */ 669 inode = req->r_dentry->d_inode; 670 } else { 671 /* dir + name */ 672 inode = dir; 673 hash = ceph_dentry_hash(req->r_dentry); 674 is_hash = true; 675 } 676 } 677 678 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash, 679 (int)hash, mode); 680 if (!inode) 681 goto random; 682 ci = ceph_inode(inode); 683 684 if (is_hash && S_ISDIR(inode->i_mode)) { 685 struct ceph_inode_frag frag; 686 int found; 687 688 ceph_choose_frag(ci, hash, &frag, &found); 689 if (found) { 690 if (mode == USE_ANY_MDS && frag.ndist > 0) { 691 u8 r; 692 693 /* choose a random replica */ 694 get_random_bytes(&r, 1); 695 r %= frag.ndist; 696 mds = frag.dist[r]; 697 dout("choose_mds %p %llx.%llx " 698 "frag %u mds%d (%d/%d)\n", 699 inode, ceph_vinop(inode), 700 frag.frag, mds, 701 (int)r, frag.ndist); 702 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 703 CEPH_MDS_STATE_ACTIVE) 704 return mds; 705 } 706 707 /* since this file/dir wasn't known to be 708 * replicated, then we want to look for the 709 * authoritative mds. */ 710 mode = USE_AUTH_MDS; 711 if (frag.mds >= 0) { 712 /* choose auth mds */ 713 mds = frag.mds; 714 dout("choose_mds %p %llx.%llx " 715 "frag %u mds%d (auth)\n", 716 inode, ceph_vinop(inode), frag.frag, mds); 717 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 718 CEPH_MDS_STATE_ACTIVE) 719 return mds; 720 } 721 } 722 } 723 724 spin_lock(&inode->i_lock); 725 cap = NULL; 726 if (mode == USE_AUTH_MDS) 727 cap = ci->i_auth_cap; 728 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 729 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 730 if (!cap) { 731 spin_unlock(&inode->i_lock); 732 goto random; 733 } 734 mds = cap->session->s_mds; 735 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n", 736 inode, ceph_vinop(inode), mds, 737 cap == ci->i_auth_cap ? "auth " : "", cap); 738 spin_unlock(&inode->i_lock); 739 return mds; 740 741 random: 742 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 743 dout("choose_mds chose random mds%d\n", mds); 744 return mds; 745 } 746 747 748 /* 749 * session messages 750 */ 751 static struct ceph_msg *create_session_msg(u32 op, u64 seq) 752 { 753 struct ceph_msg *msg; 754 struct ceph_mds_session_head *h; 755 756 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS); 757 if (!msg) { 758 pr_err("create_session_msg ENOMEM creating msg\n"); 759 return NULL; 760 } 761 h = msg->front.iov_base; 762 h->op = cpu_to_le32(op); 763 h->seq = cpu_to_le64(seq); 764 return msg; 765 } 766 767 /* 768 * send session open request. 769 * 770 * called under mdsc->mutex 771 */ 772 static int __open_session(struct ceph_mds_client *mdsc, 773 struct ceph_mds_session *session) 774 { 775 struct ceph_msg *msg; 776 int mstate; 777 int mds = session->s_mds; 778 779 /* wait for mds to go active? */ 780 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 781 dout("open_session to mds%d (%s)\n", mds, 782 ceph_mds_state_name(mstate)); 783 session->s_state = CEPH_MDS_SESSION_OPENING; 784 session->s_renew_requested = jiffies; 785 786 /* send connect message */ 787 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq); 788 if (!msg) 789 return -ENOMEM; 790 ceph_con_send(&session->s_con, msg); 791 return 0; 792 } 793 794 /* 795 * open sessions for any export targets for the given mds 796 * 797 * called under mdsc->mutex 798 */ 799 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 800 struct ceph_mds_session *session) 801 { 802 struct ceph_mds_info *mi; 803 struct ceph_mds_session *ts; 804 int i, mds = session->s_mds; 805 int target; 806 807 if (mds >= mdsc->mdsmap->m_max_mds) 808 return; 809 mi = &mdsc->mdsmap->m_info[mds]; 810 dout("open_export_target_sessions for mds%d (%d targets)\n", 811 session->s_mds, mi->num_export_targets); 812 813 for (i = 0; i < mi->num_export_targets; i++) { 814 target = mi->export_targets[i]; 815 ts = __ceph_lookup_mds_session(mdsc, target); 816 if (!ts) { 817 ts = register_session(mdsc, target); 818 if (IS_ERR(ts)) 819 return; 820 } 821 if (session->s_state == CEPH_MDS_SESSION_NEW || 822 session->s_state == CEPH_MDS_SESSION_CLOSING) 823 __open_session(mdsc, session); 824 else 825 dout(" mds%d target mds%d %p is %s\n", session->s_mds, 826 i, ts, session_state_name(ts->s_state)); 827 ceph_put_mds_session(ts); 828 } 829 } 830 831 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 832 struct ceph_mds_session *session) 833 { 834 mutex_lock(&mdsc->mutex); 835 __open_export_target_sessions(mdsc, session); 836 mutex_unlock(&mdsc->mutex); 837 } 838 839 /* 840 * session caps 841 */ 842 843 /* 844 * Free preallocated cap messages assigned to this session 845 */ 846 static void cleanup_cap_releases(struct ceph_mds_session *session) 847 { 848 struct ceph_msg *msg; 849 850 spin_lock(&session->s_cap_lock); 851 while (!list_empty(&session->s_cap_releases)) { 852 msg = list_first_entry(&session->s_cap_releases, 853 struct ceph_msg, list_head); 854 list_del_init(&msg->list_head); 855 ceph_msg_put(msg); 856 } 857 while (!list_empty(&session->s_cap_releases_done)) { 858 msg = list_first_entry(&session->s_cap_releases_done, 859 struct ceph_msg, list_head); 860 list_del_init(&msg->list_head); 861 ceph_msg_put(msg); 862 } 863 spin_unlock(&session->s_cap_lock); 864 } 865 866 /* 867 * Helper to safely iterate over all caps associated with a session, with 868 * special care taken to handle a racing __ceph_remove_cap(). 869 * 870 * Caller must hold session s_mutex. 871 */ 872 static int iterate_session_caps(struct ceph_mds_session *session, 873 int (*cb)(struct inode *, struct ceph_cap *, 874 void *), void *arg) 875 { 876 struct list_head *p; 877 struct ceph_cap *cap; 878 struct inode *inode, *last_inode = NULL; 879 struct ceph_cap *old_cap = NULL; 880 int ret; 881 882 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 883 spin_lock(&session->s_cap_lock); 884 p = session->s_caps.next; 885 while (p != &session->s_caps) { 886 cap = list_entry(p, struct ceph_cap, session_caps); 887 inode = igrab(&cap->ci->vfs_inode); 888 if (!inode) { 889 p = p->next; 890 continue; 891 } 892 session->s_cap_iterator = cap; 893 spin_unlock(&session->s_cap_lock); 894 895 if (last_inode) { 896 iput(last_inode); 897 last_inode = NULL; 898 } 899 if (old_cap) { 900 ceph_put_cap(session->s_mdsc, old_cap); 901 old_cap = NULL; 902 } 903 904 ret = cb(inode, cap, arg); 905 last_inode = inode; 906 907 spin_lock(&session->s_cap_lock); 908 p = p->next; 909 if (cap->ci == NULL) { 910 dout("iterate_session_caps finishing cap %p removal\n", 911 cap); 912 BUG_ON(cap->session != session); 913 list_del_init(&cap->session_caps); 914 session->s_nr_caps--; 915 cap->session = NULL; 916 old_cap = cap; /* put_cap it w/o locks held */ 917 } 918 if (ret < 0) 919 goto out; 920 } 921 ret = 0; 922 out: 923 session->s_cap_iterator = NULL; 924 spin_unlock(&session->s_cap_lock); 925 926 if (last_inode) 927 iput(last_inode); 928 if (old_cap) 929 ceph_put_cap(session->s_mdsc, old_cap); 930 931 return ret; 932 } 933 934 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 935 void *arg) 936 { 937 struct ceph_inode_info *ci = ceph_inode(inode); 938 int drop = 0; 939 940 dout("removing cap %p, ci is %p, inode is %p\n", 941 cap, ci, &ci->vfs_inode); 942 spin_lock(&inode->i_lock); 943 __ceph_remove_cap(cap); 944 if (!__ceph_is_any_real_caps(ci)) { 945 struct ceph_mds_client *mdsc = 946 ceph_sb_to_client(inode->i_sb)->mdsc; 947 948 spin_lock(&mdsc->cap_dirty_lock); 949 if (!list_empty(&ci->i_dirty_item)) { 950 pr_info(" dropping dirty %s state for %p %lld\n", 951 ceph_cap_string(ci->i_dirty_caps), 952 inode, ceph_ino(inode)); 953 ci->i_dirty_caps = 0; 954 list_del_init(&ci->i_dirty_item); 955 drop = 1; 956 } 957 if (!list_empty(&ci->i_flushing_item)) { 958 pr_info(" dropping dirty+flushing %s state for %p %lld\n", 959 ceph_cap_string(ci->i_flushing_caps), 960 inode, ceph_ino(inode)); 961 ci->i_flushing_caps = 0; 962 list_del_init(&ci->i_flushing_item); 963 mdsc->num_cap_flushing--; 964 drop = 1; 965 } 966 if (drop && ci->i_wrbuffer_ref) { 967 pr_info(" dropping dirty data for %p %lld\n", 968 inode, ceph_ino(inode)); 969 ci->i_wrbuffer_ref = 0; 970 ci->i_wrbuffer_ref_head = 0; 971 drop++; 972 } 973 spin_unlock(&mdsc->cap_dirty_lock); 974 } 975 spin_unlock(&inode->i_lock); 976 while (drop--) 977 iput(inode); 978 return 0; 979 } 980 981 /* 982 * caller must hold session s_mutex 983 */ 984 static void remove_session_caps(struct ceph_mds_session *session) 985 { 986 dout("remove_session_caps on %p\n", session); 987 iterate_session_caps(session, remove_session_caps_cb, NULL); 988 BUG_ON(session->s_nr_caps > 0); 989 BUG_ON(!list_empty(&session->s_cap_flushing)); 990 cleanup_cap_releases(session); 991 } 992 993 /* 994 * wake up any threads waiting on this session's caps. if the cap is 995 * old (didn't get renewed on the client reconnect), remove it now. 996 * 997 * caller must hold s_mutex. 998 */ 999 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 1000 void *arg) 1001 { 1002 struct ceph_inode_info *ci = ceph_inode(inode); 1003 1004 wake_up_all(&ci->i_cap_wq); 1005 if (arg) { 1006 spin_lock(&inode->i_lock); 1007 ci->i_wanted_max_size = 0; 1008 ci->i_requested_max_size = 0; 1009 spin_unlock(&inode->i_lock); 1010 } 1011 return 0; 1012 } 1013 1014 static void wake_up_session_caps(struct ceph_mds_session *session, 1015 int reconnect) 1016 { 1017 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1018 iterate_session_caps(session, wake_up_session_cb, 1019 (void *)(unsigned long)reconnect); 1020 } 1021 1022 /* 1023 * Send periodic message to MDS renewing all currently held caps. The 1024 * ack will reset the expiration for all caps from this session. 1025 * 1026 * caller holds s_mutex 1027 */ 1028 static int send_renew_caps(struct ceph_mds_client *mdsc, 1029 struct ceph_mds_session *session) 1030 { 1031 struct ceph_msg *msg; 1032 int state; 1033 1034 if (time_after_eq(jiffies, session->s_cap_ttl) && 1035 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1036 pr_info("mds%d caps stale\n", session->s_mds); 1037 session->s_renew_requested = jiffies; 1038 1039 /* do not try to renew caps until a recovering mds has reconnected 1040 * with its clients. */ 1041 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1042 if (state < CEPH_MDS_STATE_RECONNECT) { 1043 dout("send_renew_caps ignoring mds%d (%s)\n", 1044 session->s_mds, ceph_mds_state_name(state)); 1045 return 0; 1046 } 1047 1048 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 1049 ceph_mds_state_name(state)); 1050 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 1051 ++session->s_renew_seq); 1052 if (!msg) 1053 return -ENOMEM; 1054 ceph_con_send(&session->s_con, msg); 1055 return 0; 1056 } 1057 1058 /* 1059 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 1060 * 1061 * Called under session->s_mutex 1062 */ 1063 static void renewed_caps(struct ceph_mds_client *mdsc, 1064 struct ceph_mds_session *session, int is_renew) 1065 { 1066 int was_stale; 1067 int wake = 0; 1068 1069 spin_lock(&session->s_cap_lock); 1070 was_stale = is_renew && (session->s_cap_ttl == 0 || 1071 time_after_eq(jiffies, session->s_cap_ttl)); 1072 1073 session->s_cap_ttl = session->s_renew_requested + 1074 mdsc->mdsmap->m_session_timeout*HZ; 1075 1076 if (was_stale) { 1077 if (time_before(jiffies, session->s_cap_ttl)) { 1078 pr_info("mds%d caps renewed\n", session->s_mds); 1079 wake = 1; 1080 } else { 1081 pr_info("mds%d caps still stale\n", session->s_mds); 1082 } 1083 } 1084 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 1085 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 1086 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 1087 spin_unlock(&session->s_cap_lock); 1088 1089 if (wake) 1090 wake_up_session_caps(session, 0); 1091 } 1092 1093 /* 1094 * send a session close request 1095 */ 1096 static int request_close_session(struct ceph_mds_client *mdsc, 1097 struct ceph_mds_session *session) 1098 { 1099 struct ceph_msg *msg; 1100 1101 dout("request_close_session mds%d state %s seq %lld\n", 1102 session->s_mds, session_state_name(session->s_state), 1103 session->s_seq); 1104 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); 1105 if (!msg) 1106 return -ENOMEM; 1107 ceph_con_send(&session->s_con, msg); 1108 return 0; 1109 } 1110 1111 /* 1112 * Called with s_mutex held. 1113 */ 1114 static int __close_session(struct ceph_mds_client *mdsc, 1115 struct ceph_mds_session *session) 1116 { 1117 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 1118 return 0; 1119 session->s_state = CEPH_MDS_SESSION_CLOSING; 1120 return request_close_session(mdsc, session); 1121 } 1122 1123 /* 1124 * Trim old(er) caps. 1125 * 1126 * Because we can't cache an inode without one or more caps, we do 1127 * this indirectly: if a cap is unused, we prune its aliases, at which 1128 * point the inode will hopefully get dropped to. 1129 * 1130 * Yes, this is a bit sloppy. Our only real goal here is to respond to 1131 * memory pressure from the MDS, though, so it needn't be perfect. 1132 */ 1133 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1134 { 1135 struct ceph_mds_session *session = arg; 1136 struct ceph_inode_info *ci = ceph_inode(inode); 1137 int used, oissued, mine; 1138 1139 if (session->s_trim_caps <= 0) 1140 return -1; 1141 1142 spin_lock(&inode->i_lock); 1143 mine = cap->issued | cap->implemented; 1144 used = __ceph_caps_used(ci); 1145 oissued = __ceph_caps_issued_other(ci, cap); 1146 1147 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n", 1148 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1149 ceph_cap_string(used)); 1150 if (ci->i_dirty_caps) 1151 goto out; /* dirty caps */ 1152 if ((used & ~oissued) & mine) 1153 goto out; /* we need these caps */ 1154 1155 session->s_trim_caps--; 1156 if (oissued) { 1157 /* we aren't the only cap.. just remove us */ 1158 __ceph_remove_cap(cap); 1159 } else { 1160 /* try to drop referring dentries */ 1161 spin_unlock(&inode->i_lock); 1162 d_prune_aliases(inode); 1163 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 1164 inode, cap, atomic_read(&inode->i_count)); 1165 return 0; 1166 } 1167 1168 out: 1169 spin_unlock(&inode->i_lock); 1170 return 0; 1171 } 1172 1173 /* 1174 * Trim session cap count down to some max number. 1175 */ 1176 static int trim_caps(struct ceph_mds_client *mdsc, 1177 struct ceph_mds_session *session, 1178 int max_caps) 1179 { 1180 int trim_caps = session->s_nr_caps - max_caps; 1181 1182 dout("trim_caps mds%d start: %d / %d, trim %d\n", 1183 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 1184 if (trim_caps > 0) { 1185 session->s_trim_caps = trim_caps; 1186 iterate_session_caps(session, trim_caps_cb, session); 1187 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 1188 session->s_mds, session->s_nr_caps, max_caps, 1189 trim_caps - session->s_trim_caps); 1190 session->s_trim_caps = 0; 1191 } 1192 return 0; 1193 } 1194 1195 /* 1196 * Allocate cap_release messages. If there is a partially full message 1197 * in the queue, try to allocate enough to cover it's remainder, so that 1198 * we can send it immediately. 1199 * 1200 * Called under s_mutex. 1201 */ 1202 int ceph_add_cap_releases(struct ceph_mds_client *mdsc, 1203 struct ceph_mds_session *session) 1204 { 1205 struct ceph_msg *msg, *partial = NULL; 1206 struct ceph_mds_cap_release *head; 1207 int err = -ENOMEM; 1208 int extra = mdsc->fsc->mount_options->cap_release_safety; 1209 int num; 1210 1211 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds, 1212 extra); 1213 1214 spin_lock(&session->s_cap_lock); 1215 1216 if (!list_empty(&session->s_cap_releases)) { 1217 msg = list_first_entry(&session->s_cap_releases, 1218 struct ceph_msg, 1219 list_head); 1220 head = msg->front.iov_base; 1221 num = le32_to_cpu(head->num); 1222 if (num) { 1223 dout(" partial %p with (%d/%d)\n", msg, num, 1224 (int)CEPH_CAPS_PER_RELEASE); 1225 extra += CEPH_CAPS_PER_RELEASE - num; 1226 partial = msg; 1227 } 1228 } 1229 while (session->s_num_cap_releases < session->s_nr_caps + extra) { 1230 spin_unlock(&session->s_cap_lock); 1231 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE, 1232 GFP_NOFS); 1233 if (!msg) 1234 goto out_unlocked; 1235 dout("add_cap_releases %p msg %p now %d\n", session, msg, 1236 (int)msg->front.iov_len); 1237 head = msg->front.iov_base; 1238 head->num = cpu_to_le32(0); 1239 msg->front.iov_len = sizeof(*head); 1240 spin_lock(&session->s_cap_lock); 1241 list_add(&msg->list_head, &session->s_cap_releases); 1242 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE; 1243 } 1244 1245 if (partial) { 1246 head = partial->front.iov_base; 1247 num = le32_to_cpu(head->num); 1248 dout(" queueing partial %p with %d/%d\n", partial, num, 1249 (int)CEPH_CAPS_PER_RELEASE); 1250 list_move_tail(&partial->list_head, 1251 &session->s_cap_releases_done); 1252 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num; 1253 } 1254 err = 0; 1255 spin_unlock(&session->s_cap_lock); 1256 out_unlocked: 1257 return err; 1258 } 1259 1260 /* 1261 * flush all dirty inode data to disk. 1262 * 1263 * returns true if we've flushed through want_flush_seq 1264 */ 1265 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq) 1266 { 1267 int mds, ret = 1; 1268 1269 dout("check_cap_flush want %lld\n", want_flush_seq); 1270 mutex_lock(&mdsc->mutex); 1271 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) { 1272 struct ceph_mds_session *session = mdsc->sessions[mds]; 1273 1274 if (!session) 1275 continue; 1276 get_session(session); 1277 mutex_unlock(&mdsc->mutex); 1278 1279 mutex_lock(&session->s_mutex); 1280 if (!list_empty(&session->s_cap_flushing)) { 1281 struct ceph_inode_info *ci = 1282 list_entry(session->s_cap_flushing.next, 1283 struct ceph_inode_info, 1284 i_flushing_item); 1285 struct inode *inode = &ci->vfs_inode; 1286 1287 spin_lock(&inode->i_lock); 1288 if (ci->i_cap_flush_seq <= want_flush_seq) { 1289 dout("check_cap_flush still flushing %p " 1290 "seq %lld <= %lld to mds%d\n", inode, 1291 ci->i_cap_flush_seq, want_flush_seq, 1292 session->s_mds); 1293 ret = 0; 1294 } 1295 spin_unlock(&inode->i_lock); 1296 } 1297 mutex_unlock(&session->s_mutex); 1298 ceph_put_mds_session(session); 1299 1300 if (!ret) 1301 return ret; 1302 mutex_lock(&mdsc->mutex); 1303 } 1304 1305 mutex_unlock(&mdsc->mutex); 1306 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq); 1307 return ret; 1308 } 1309 1310 /* 1311 * called under s_mutex 1312 */ 1313 void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 1314 struct ceph_mds_session *session) 1315 { 1316 struct ceph_msg *msg; 1317 1318 dout("send_cap_releases mds%d\n", session->s_mds); 1319 spin_lock(&session->s_cap_lock); 1320 while (!list_empty(&session->s_cap_releases_done)) { 1321 msg = list_first_entry(&session->s_cap_releases_done, 1322 struct ceph_msg, list_head); 1323 list_del_init(&msg->list_head); 1324 spin_unlock(&session->s_cap_lock); 1325 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1326 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1327 ceph_con_send(&session->s_con, msg); 1328 spin_lock(&session->s_cap_lock); 1329 } 1330 spin_unlock(&session->s_cap_lock); 1331 } 1332 1333 static void discard_cap_releases(struct ceph_mds_client *mdsc, 1334 struct ceph_mds_session *session) 1335 { 1336 struct ceph_msg *msg; 1337 struct ceph_mds_cap_release *head; 1338 unsigned num; 1339 1340 dout("discard_cap_releases mds%d\n", session->s_mds); 1341 spin_lock(&session->s_cap_lock); 1342 1343 /* zero out the in-progress message */ 1344 msg = list_first_entry(&session->s_cap_releases, 1345 struct ceph_msg, list_head); 1346 head = msg->front.iov_base; 1347 num = le32_to_cpu(head->num); 1348 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num); 1349 head->num = cpu_to_le32(0); 1350 session->s_num_cap_releases += num; 1351 1352 /* requeue completed messages */ 1353 while (!list_empty(&session->s_cap_releases_done)) { 1354 msg = list_first_entry(&session->s_cap_releases_done, 1355 struct ceph_msg, list_head); 1356 list_del_init(&msg->list_head); 1357 1358 head = msg->front.iov_base; 1359 num = le32_to_cpu(head->num); 1360 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, 1361 num); 1362 session->s_num_cap_releases += num; 1363 head->num = cpu_to_le32(0); 1364 msg->front.iov_len = sizeof(*head); 1365 list_add(&msg->list_head, &session->s_cap_releases); 1366 } 1367 1368 spin_unlock(&session->s_cap_lock); 1369 } 1370 1371 /* 1372 * requests 1373 */ 1374 1375 /* 1376 * Create an mds request. 1377 */ 1378 struct ceph_mds_request * 1379 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 1380 { 1381 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS); 1382 1383 if (!req) 1384 return ERR_PTR(-ENOMEM); 1385 1386 mutex_init(&req->r_fill_mutex); 1387 req->r_mdsc = mdsc; 1388 req->r_started = jiffies; 1389 req->r_resend_mds = -1; 1390 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 1391 req->r_fmode = -1; 1392 kref_init(&req->r_kref); 1393 INIT_LIST_HEAD(&req->r_wait); 1394 init_completion(&req->r_completion); 1395 init_completion(&req->r_safe_completion); 1396 INIT_LIST_HEAD(&req->r_unsafe_item); 1397 1398 req->r_op = op; 1399 req->r_direct_mode = mode; 1400 return req; 1401 } 1402 1403 /* 1404 * return oldest (lowest) request, tid in request tree, 0 if none. 1405 * 1406 * called under mdsc->mutex. 1407 */ 1408 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 1409 { 1410 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 1411 return NULL; 1412 return rb_entry(rb_first(&mdsc->request_tree), 1413 struct ceph_mds_request, r_node); 1414 } 1415 1416 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 1417 { 1418 struct ceph_mds_request *req = __get_oldest_req(mdsc); 1419 1420 if (req) 1421 return req->r_tid; 1422 return 0; 1423 } 1424 1425 /* 1426 * Build a dentry's path. Allocate on heap; caller must kfree. Based 1427 * on build_path_from_dentry in fs/cifs/dir.c. 1428 * 1429 * If @stop_on_nosnap, generate path relative to the first non-snapped 1430 * inode. 1431 * 1432 * Encode hidden .snap dirs as a double /, i.e. 1433 * foo/.snap/bar -> foo//bar 1434 */ 1435 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base, 1436 int stop_on_nosnap) 1437 { 1438 struct dentry *temp; 1439 char *path; 1440 int len, pos; 1441 1442 if (dentry == NULL) 1443 return ERR_PTR(-EINVAL); 1444 1445 retry: 1446 len = 0; 1447 for (temp = dentry; !IS_ROOT(temp);) { 1448 struct inode *inode = temp->d_inode; 1449 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) 1450 len++; /* slash only */ 1451 else if (stop_on_nosnap && inode && 1452 ceph_snap(inode) == CEPH_NOSNAP) 1453 break; 1454 else 1455 len += 1 + temp->d_name.len; 1456 temp = temp->d_parent; 1457 if (temp == NULL) { 1458 pr_err("build_path corrupt dentry %p\n", dentry); 1459 return ERR_PTR(-EINVAL); 1460 } 1461 } 1462 if (len) 1463 len--; /* no leading '/' */ 1464 1465 path = kmalloc(len+1, GFP_NOFS); 1466 if (path == NULL) 1467 return ERR_PTR(-ENOMEM); 1468 pos = len; 1469 path[pos] = 0; /* trailing null */ 1470 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) { 1471 struct inode *inode = temp->d_inode; 1472 1473 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 1474 dout("build_path path+%d: %p SNAPDIR\n", 1475 pos, temp); 1476 } else if (stop_on_nosnap && inode && 1477 ceph_snap(inode) == CEPH_NOSNAP) { 1478 break; 1479 } else { 1480 pos -= temp->d_name.len; 1481 if (pos < 0) 1482 break; 1483 strncpy(path + pos, temp->d_name.name, 1484 temp->d_name.len); 1485 } 1486 if (pos) 1487 path[--pos] = '/'; 1488 temp = temp->d_parent; 1489 if (temp == NULL) { 1490 pr_err("build_path corrupt dentry\n"); 1491 kfree(path); 1492 return ERR_PTR(-EINVAL); 1493 } 1494 } 1495 if (pos != 0) { 1496 pr_err("build_path did not end path lookup where " 1497 "expected, namelen is %d, pos is %d\n", len, pos); 1498 /* presumably this is only possible if racing with a 1499 rename of one of the parent directories (we can not 1500 lock the dentries above us to prevent this, but 1501 retrying should be harmless) */ 1502 kfree(path); 1503 goto retry; 1504 } 1505 1506 *base = ceph_ino(temp->d_inode); 1507 *plen = len; 1508 dout("build_path on %p %d built %llx '%.*s'\n", 1509 dentry, dentry->d_count, *base, len, path); 1510 return path; 1511 } 1512 1513 static int build_dentry_path(struct dentry *dentry, 1514 const char **ppath, int *ppathlen, u64 *pino, 1515 int *pfreepath) 1516 { 1517 char *path; 1518 1519 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) { 1520 *pino = ceph_ino(dentry->d_parent->d_inode); 1521 *ppath = dentry->d_name.name; 1522 *ppathlen = dentry->d_name.len; 1523 return 0; 1524 } 1525 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1526 if (IS_ERR(path)) 1527 return PTR_ERR(path); 1528 *ppath = path; 1529 *pfreepath = 1; 1530 return 0; 1531 } 1532 1533 static int build_inode_path(struct inode *inode, 1534 const char **ppath, int *ppathlen, u64 *pino, 1535 int *pfreepath) 1536 { 1537 struct dentry *dentry; 1538 char *path; 1539 1540 if (ceph_snap(inode) == CEPH_NOSNAP) { 1541 *pino = ceph_ino(inode); 1542 *ppathlen = 0; 1543 return 0; 1544 } 1545 dentry = d_find_alias(inode); 1546 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1547 dput(dentry); 1548 if (IS_ERR(path)) 1549 return PTR_ERR(path); 1550 *ppath = path; 1551 *pfreepath = 1; 1552 return 0; 1553 } 1554 1555 /* 1556 * request arguments may be specified via an inode *, a dentry *, or 1557 * an explicit ino+path. 1558 */ 1559 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 1560 const char *rpath, u64 rino, 1561 const char **ppath, int *pathlen, 1562 u64 *ino, int *freepath) 1563 { 1564 int r = 0; 1565 1566 if (rinode) { 1567 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 1568 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 1569 ceph_snap(rinode)); 1570 } else if (rdentry) { 1571 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath); 1572 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 1573 *ppath); 1574 } else if (rpath) { 1575 *ino = rino; 1576 *ppath = rpath; 1577 *pathlen = strlen(rpath); 1578 dout(" path %.*s\n", *pathlen, rpath); 1579 } 1580 1581 return r; 1582 } 1583 1584 /* 1585 * called under mdsc->mutex 1586 */ 1587 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc, 1588 struct ceph_mds_request *req, 1589 int mds) 1590 { 1591 struct ceph_msg *msg; 1592 struct ceph_mds_request_head *head; 1593 const char *path1 = NULL; 1594 const char *path2 = NULL; 1595 u64 ino1 = 0, ino2 = 0; 1596 int pathlen1 = 0, pathlen2 = 0; 1597 int freepath1 = 0, freepath2 = 0; 1598 int len; 1599 u16 releases; 1600 void *p, *end; 1601 int ret; 1602 1603 ret = set_request_path_attr(req->r_inode, req->r_dentry, 1604 req->r_path1, req->r_ino1.ino, 1605 &path1, &pathlen1, &ino1, &freepath1); 1606 if (ret < 0) { 1607 msg = ERR_PTR(ret); 1608 goto out; 1609 } 1610 1611 ret = set_request_path_attr(NULL, req->r_old_dentry, 1612 req->r_path2, req->r_ino2.ino, 1613 &path2, &pathlen2, &ino2, &freepath2); 1614 if (ret < 0) { 1615 msg = ERR_PTR(ret); 1616 goto out_free1; 1617 } 1618 1619 len = sizeof(*head) + 1620 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)); 1621 1622 /* calculate (max) length for cap releases */ 1623 len += sizeof(struct ceph_mds_request_release) * 1624 (!!req->r_inode_drop + !!req->r_dentry_drop + 1625 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 1626 if (req->r_dentry_drop) 1627 len += req->r_dentry->d_name.len; 1628 if (req->r_old_dentry_drop) 1629 len += req->r_old_dentry->d_name.len; 1630 1631 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS); 1632 if (!msg) { 1633 msg = ERR_PTR(-ENOMEM); 1634 goto out_free2; 1635 } 1636 1637 msg->hdr.tid = cpu_to_le64(req->r_tid); 1638 1639 head = msg->front.iov_base; 1640 p = msg->front.iov_base + sizeof(*head); 1641 end = msg->front.iov_base + msg->front.iov_len; 1642 1643 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 1644 head->op = cpu_to_le32(req->r_op); 1645 head->caller_uid = cpu_to_le32(req->r_uid); 1646 head->caller_gid = cpu_to_le32(req->r_gid); 1647 head->args = req->r_args; 1648 1649 ceph_encode_filepath(&p, end, ino1, path1); 1650 ceph_encode_filepath(&p, end, ino2, path2); 1651 1652 /* make note of release offset, in case we need to replay */ 1653 req->r_request_release_offset = p - msg->front.iov_base; 1654 1655 /* cap releases */ 1656 releases = 0; 1657 if (req->r_inode_drop) 1658 releases += ceph_encode_inode_release(&p, 1659 req->r_inode ? req->r_inode : req->r_dentry->d_inode, 1660 mds, req->r_inode_drop, req->r_inode_unless, 0); 1661 if (req->r_dentry_drop) 1662 releases += ceph_encode_dentry_release(&p, req->r_dentry, 1663 mds, req->r_dentry_drop, req->r_dentry_unless); 1664 if (req->r_old_dentry_drop) 1665 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 1666 mds, req->r_old_dentry_drop, req->r_old_dentry_unless); 1667 if (req->r_old_inode_drop) 1668 releases += ceph_encode_inode_release(&p, 1669 req->r_old_dentry->d_inode, 1670 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 1671 head->num_releases = cpu_to_le16(releases); 1672 1673 BUG_ON(p > end); 1674 msg->front.iov_len = p - msg->front.iov_base; 1675 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1676 1677 msg->pages = req->r_pages; 1678 msg->nr_pages = req->r_num_pages; 1679 msg->hdr.data_len = cpu_to_le32(req->r_data_len); 1680 msg->hdr.data_off = cpu_to_le16(0); 1681 1682 out_free2: 1683 if (freepath2) 1684 kfree((char *)path2); 1685 out_free1: 1686 if (freepath1) 1687 kfree((char *)path1); 1688 out: 1689 return msg; 1690 } 1691 1692 /* 1693 * called under mdsc->mutex if error, under no mutex if 1694 * success. 1695 */ 1696 static void complete_request(struct ceph_mds_client *mdsc, 1697 struct ceph_mds_request *req) 1698 { 1699 if (req->r_callback) 1700 req->r_callback(mdsc, req); 1701 else 1702 complete_all(&req->r_completion); 1703 } 1704 1705 /* 1706 * called under mdsc->mutex 1707 */ 1708 static int __prepare_send_request(struct ceph_mds_client *mdsc, 1709 struct ceph_mds_request *req, 1710 int mds) 1711 { 1712 struct ceph_mds_request_head *rhead; 1713 struct ceph_msg *msg; 1714 int flags = 0; 1715 1716 req->r_attempts++; 1717 if (req->r_inode) { 1718 struct ceph_cap *cap = 1719 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 1720 1721 if (cap) 1722 req->r_sent_on_mseq = cap->mseq; 1723 else 1724 req->r_sent_on_mseq = -1; 1725 } 1726 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, 1727 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 1728 1729 if (req->r_got_unsafe) { 1730 /* 1731 * Replay. Do not regenerate message (and rebuild 1732 * paths, etc.); just use the original message. 1733 * Rebuilding paths will break for renames because 1734 * d_move mangles the src name. 1735 */ 1736 msg = req->r_request; 1737 rhead = msg->front.iov_base; 1738 1739 flags = le32_to_cpu(rhead->flags); 1740 flags |= CEPH_MDS_FLAG_REPLAY; 1741 rhead->flags = cpu_to_le32(flags); 1742 1743 if (req->r_target_inode) 1744 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 1745 1746 rhead->num_retry = req->r_attempts - 1; 1747 1748 /* remove cap/dentry releases from message */ 1749 rhead->num_releases = 0; 1750 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset); 1751 msg->front.iov_len = req->r_request_release_offset; 1752 return 0; 1753 } 1754 1755 if (req->r_request) { 1756 ceph_msg_put(req->r_request); 1757 req->r_request = NULL; 1758 } 1759 msg = create_request_message(mdsc, req, mds); 1760 if (IS_ERR(msg)) { 1761 req->r_err = PTR_ERR(msg); 1762 complete_request(mdsc, req); 1763 return PTR_ERR(msg); 1764 } 1765 req->r_request = msg; 1766 1767 rhead = msg->front.iov_base; 1768 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 1769 if (req->r_got_unsafe) 1770 flags |= CEPH_MDS_FLAG_REPLAY; 1771 if (req->r_locked_dir) 1772 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 1773 rhead->flags = cpu_to_le32(flags); 1774 rhead->num_fwd = req->r_num_fwd; 1775 rhead->num_retry = req->r_attempts - 1; 1776 rhead->ino = 0; 1777 1778 dout(" r_locked_dir = %p\n", req->r_locked_dir); 1779 return 0; 1780 } 1781 1782 /* 1783 * send request, or put it on the appropriate wait list. 1784 */ 1785 static int __do_request(struct ceph_mds_client *mdsc, 1786 struct ceph_mds_request *req) 1787 { 1788 struct ceph_mds_session *session = NULL; 1789 int mds = -1; 1790 int err = -EAGAIN; 1791 1792 if (req->r_err || req->r_got_result) 1793 goto out; 1794 1795 if (req->r_timeout && 1796 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 1797 dout("do_request timed out\n"); 1798 err = -EIO; 1799 goto finish; 1800 } 1801 1802 put_request_session(req); 1803 1804 mds = __choose_mds(mdsc, req); 1805 if (mds < 0 || 1806 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 1807 dout("do_request no mds or not active, waiting for map\n"); 1808 list_add(&req->r_wait, &mdsc->waiting_for_map); 1809 goto out; 1810 } 1811 1812 /* get, open session */ 1813 session = __ceph_lookup_mds_session(mdsc, mds); 1814 if (!session) { 1815 session = register_session(mdsc, mds); 1816 if (IS_ERR(session)) { 1817 err = PTR_ERR(session); 1818 goto finish; 1819 } 1820 } 1821 req->r_session = get_session(session); 1822 1823 dout("do_request mds%d session %p state %s\n", mds, session, 1824 session_state_name(session->s_state)); 1825 if (session->s_state != CEPH_MDS_SESSION_OPEN && 1826 session->s_state != CEPH_MDS_SESSION_HUNG) { 1827 if (session->s_state == CEPH_MDS_SESSION_NEW || 1828 session->s_state == CEPH_MDS_SESSION_CLOSING) 1829 __open_session(mdsc, session); 1830 list_add(&req->r_wait, &session->s_waiting); 1831 goto out_session; 1832 } 1833 1834 /* send request */ 1835 req->r_resend_mds = -1; /* forget any previous mds hint */ 1836 1837 if (req->r_request_started == 0) /* note request start time */ 1838 req->r_request_started = jiffies; 1839 1840 err = __prepare_send_request(mdsc, req, mds); 1841 if (!err) { 1842 ceph_msg_get(req->r_request); 1843 ceph_con_send(&session->s_con, req->r_request); 1844 } 1845 1846 out_session: 1847 ceph_put_mds_session(session); 1848 out: 1849 return err; 1850 1851 finish: 1852 req->r_err = err; 1853 complete_request(mdsc, req); 1854 goto out; 1855 } 1856 1857 /* 1858 * called under mdsc->mutex 1859 */ 1860 static void __wake_requests(struct ceph_mds_client *mdsc, 1861 struct list_head *head) 1862 { 1863 struct ceph_mds_request *req, *nreq; 1864 1865 list_for_each_entry_safe(req, nreq, head, r_wait) { 1866 list_del_init(&req->r_wait); 1867 __do_request(mdsc, req); 1868 } 1869 } 1870 1871 /* 1872 * Wake up threads with requests pending for @mds, so that they can 1873 * resubmit their requests to a possibly different mds. 1874 */ 1875 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 1876 { 1877 struct ceph_mds_request *req; 1878 struct rb_node *p; 1879 1880 dout("kick_requests mds%d\n", mds); 1881 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) { 1882 req = rb_entry(p, struct ceph_mds_request, r_node); 1883 if (req->r_got_unsafe) 1884 continue; 1885 if (req->r_session && 1886 req->r_session->s_mds == mds) { 1887 dout(" kicking tid %llu\n", req->r_tid); 1888 __do_request(mdsc, req); 1889 } 1890 } 1891 } 1892 1893 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, 1894 struct ceph_mds_request *req) 1895 { 1896 dout("submit_request on %p\n", req); 1897 mutex_lock(&mdsc->mutex); 1898 __register_request(mdsc, req, NULL); 1899 __do_request(mdsc, req); 1900 mutex_unlock(&mdsc->mutex); 1901 } 1902 1903 /* 1904 * Synchrously perform an mds request. Take care of all of the 1905 * session setup, forwarding, retry details. 1906 */ 1907 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 1908 struct inode *dir, 1909 struct ceph_mds_request *req) 1910 { 1911 int err; 1912 1913 dout("do_request on %p\n", req); 1914 1915 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */ 1916 if (req->r_inode) 1917 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 1918 if (req->r_locked_dir) 1919 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 1920 if (req->r_old_dentry) 1921 ceph_get_cap_refs( 1922 ceph_inode(req->r_old_dentry->d_parent->d_inode), 1923 CEPH_CAP_PIN); 1924 1925 /* issue */ 1926 mutex_lock(&mdsc->mutex); 1927 __register_request(mdsc, req, dir); 1928 __do_request(mdsc, req); 1929 1930 if (req->r_err) { 1931 err = req->r_err; 1932 __unregister_request(mdsc, req); 1933 dout("do_request early error %d\n", err); 1934 goto out; 1935 } 1936 1937 /* wait */ 1938 mutex_unlock(&mdsc->mutex); 1939 dout("do_request waiting\n"); 1940 if (req->r_timeout) { 1941 err = (long)wait_for_completion_killable_timeout( 1942 &req->r_completion, req->r_timeout); 1943 if (err == 0) 1944 err = -EIO; 1945 } else { 1946 err = wait_for_completion_killable(&req->r_completion); 1947 } 1948 dout("do_request waited, got %d\n", err); 1949 mutex_lock(&mdsc->mutex); 1950 1951 /* only abort if we didn't race with a real reply */ 1952 if (req->r_got_result) { 1953 err = le32_to_cpu(req->r_reply_info.head->result); 1954 } else if (err < 0) { 1955 dout("aborted request %lld with %d\n", req->r_tid, err); 1956 1957 /* 1958 * ensure we aren't running concurrently with 1959 * ceph_fill_trace or ceph_readdir_prepopulate, which 1960 * rely on locks (dir mutex) held by our caller. 1961 */ 1962 mutex_lock(&req->r_fill_mutex); 1963 req->r_err = err; 1964 req->r_aborted = true; 1965 mutex_unlock(&req->r_fill_mutex); 1966 1967 if (req->r_locked_dir && 1968 (req->r_op & CEPH_MDS_OP_WRITE)) 1969 ceph_invalidate_dir_request(req); 1970 } else { 1971 err = req->r_err; 1972 } 1973 1974 out: 1975 mutex_unlock(&mdsc->mutex); 1976 dout("do_request %p done, result %d\n", req, err); 1977 return err; 1978 } 1979 1980 /* 1981 * Invalidate dir I_COMPLETE, dentry lease state on an aborted MDS 1982 * namespace request. 1983 */ 1984 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 1985 { 1986 struct inode *inode = req->r_locked_dir; 1987 struct ceph_inode_info *ci = ceph_inode(inode); 1988 1989 dout("invalidate_dir_request %p (I_COMPLETE, lease(s))\n", inode); 1990 spin_lock(&inode->i_lock); 1991 ci->i_ceph_flags &= ~CEPH_I_COMPLETE; 1992 ci->i_release_count++; 1993 spin_unlock(&inode->i_lock); 1994 1995 if (req->r_dentry) 1996 ceph_invalidate_dentry_lease(req->r_dentry); 1997 if (req->r_old_dentry) 1998 ceph_invalidate_dentry_lease(req->r_old_dentry); 1999 } 2000 2001 /* 2002 * Handle mds reply. 2003 * 2004 * We take the session mutex and parse and process the reply immediately. 2005 * This preserves the logical ordering of replies, capabilities, etc., sent 2006 * by the MDS as they are applied to our local cache. 2007 */ 2008 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 2009 { 2010 struct ceph_mds_client *mdsc = session->s_mdsc; 2011 struct ceph_mds_request *req; 2012 struct ceph_mds_reply_head *head = msg->front.iov_base; 2013 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 2014 u64 tid; 2015 int err, result; 2016 int mds = session->s_mds; 2017 2018 if (msg->front.iov_len < sizeof(*head)) { 2019 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 2020 ceph_msg_dump(msg); 2021 return; 2022 } 2023 2024 /* get request, session */ 2025 tid = le64_to_cpu(msg->hdr.tid); 2026 mutex_lock(&mdsc->mutex); 2027 req = __lookup_request(mdsc, tid); 2028 if (!req) { 2029 dout("handle_reply on unknown tid %llu\n", tid); 2030 mutex_unlock(&mdsc->mutex); 2031 return; 2032 } 2033 dout("handle_reply %p\n", req); 2034 2035 /* correct session? */ 2036 if (req->r_session != session) { 2037 pr_err("mdsc_handle_reply got %llu on session mds%d" 2038 " not mds%d\n", tid, session->s_mds, 2039 req->r_session ? req->r_session->s_mds : -1); 2040 mutex_unlock(&mdsc->mutex); 2041 goto out; 2042 } 2043 2044 /* dup? */ 2045 if ((req->r_got_unsafe && !head->safe) || 2046 (req->r_got_safe && head->safe)) { 2047 pr_warning("got a dup %s reply on %llu from mds%d\n", 2048 head->safe ? "safe" : "unsafe", tid, mds); 2049 mutex_unlock(&mdsc->mutex); 2050 goto out; 2051 } 2052 if (req->r_got_safe && !head->safe) { 2053 pr_warning("got unsafe after safe on %llu from mds%d\n", 2054 tid, mds); 2055 mutex_unlock(&mdsc->mutex); 2056 goto out; 2057 } 2058 2059 result = le32_to_cpu(head->result); 2060 2061 /* 2062 * Handle an ESTALE 2063 * if we're not talking to the authority, send to them 2064 * if the authority has changed while we weren't looking, 2065 * send to new authority 2066 * Otherwise we just have to return an ESTALE 2067 */ 2068 if (result == -ESTALE) { 2069 dout("got ESTALE on request %llu", req->r_tid); 2070 if (!req->r_inode) { 2071 /* do nothing; not an authority problem */ 2072 } else if (req->r_direct_mode != USE_AUTH_MDS) { 2073 dout("not using auth, setting for that now"); 2074 req->r_direct_mode = USE_AUTH_MDS; 2075 __do_request(mdsc, req); 2076 mutex_unlock(&mdsc->mutex); 2077 goto out; 2078 } else { 2079 struct ceph_inode_info *ci = ceph_inode(req->r_inode); 2080 struct ceph_cap *cap = NULL; 2081 2082 if (req->r_session) 2083 cap = ceph_get_cap_for_mds(ci, 2084 req->r_session->s_mds); 2085 2086 dout("already using auth"); 2087 if ((!cap || cap != ci->i_auth_cap) || 2088 (cap->mseq != req->r_sent_on_mseq)) { 2089 dout("but cap changed, so resending"); 2090 __do_request(mdsc, req); 2091 mutex_unlock(&mdsc->mutex); 2092 goto out; 2093 } 2094 } 2095 dout("have to return ESTALE on request %llu", req->r_tid); 2096 } 2097 2098 2099 if (head->safe) { 2100 req->r_got_safe = true; 2101 __unregister_request(mdsc, req); 2102 complete_all(&req->r_safe_completion); 2103 2104 if (req->r_got_unsafe) { 2105 /* 2106 * We already handled the unsafe response, now do the 2107 * cleanup. No need to examine the response; the MDS 2108 * doesn't include any result info in the safe 2109 * response. And even if it did, there is nothing 2110 * useful we could do with a revised return value. 2111 */ 2112 dout("got safe reply %llu, mds%d\n", tid, mds); 2113 list_del_init(&req->r_unsafe_item); 2114 2115 /* last unsafe request during umount? */ 2116 if (mdsc->stopping && !__get_oldest_req(mdsc)) 2117 complete_all(&mdsc->safe_umount_waiters); 2118 mutex_unlock(&mdsc->mutex); 2119 goto out; 2120 } 2121 } else { 2122 req->r_got_unsafe = true; 2123 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 2124 } 2125 2126 dout("handle_reply tid %lld result %d\n", tid, result); 2127 rinfo = &req->r_reply_info; 2128 err = parse_reply_info(msg, rinfo, session->s_con.peer_features); 2129 mutex_unlock(&mdsc->mutex); 2130 2131 mutex_lock(&session->s_mutex); 2132 if (err < 0) { 2133 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 2134 ceph_msg_dump(msg); 2135 goto out_err; 2136 } 2137 2138 /* snap trace */ 2139 if (rinfo->snapblob_len) { 2140 down_write(&mdsc->snap_rwsem); 2141 ceph_update_snap_trace(mdsc, rinfo->snapblob, 2142 rinfo->snapblob + rinfo->snapblob_len, 2143 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP); 2144 downgrade_write(&mdsc->snap_rwsem); 2145 } else { 2146 down_read(&mdsc->snap_rwsem); 2147 } 2148 2149 /* insert trace into our cache */ 2150 mutex_lock(&req->r_fill_mutex); 2151 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session); 2152 if (err == 0) { 2153 if (result == 0 && req->r_op != CEPH_MDS_OP_GETFILELOCK && 2154 rinfo->dir_nr) 2155 ceph_readdir_prepopulate(req, req->r_session); 2156 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 2157 } 2158 mutex_unlock(&req->r_fill_mutex); 2159 2160 up_read(&mdsc->snap_rwsem); 2161 out_err: 2162 mutex_lock(&mdsc->mutex); 2163 if (!req->r_aborted) { 2164 if (err) { 2165 req->r_err = err; 2166 } else { 2167 req->r_reply = msg; 2168 ceph_msg_get(msg); 2169 req->r_got_result = true; 2170 } 2171 } else { 2172 dout("reply arrived after request %lld was aborted\n", tid); 2173 } 2174 mutex_unlock(&mdsc->mutex); 2175 2176 ceph_add_cap_releases(mdsc, req->r_session); 2177 mutex_unlock(&session->s_mutex); 2178 2179 /* kick calling process */ 2180 complete_request(mdsc, req); 2181 out: 2182 ceph_mdsc_put_request(req); 2183 return; 2184 } 2185 2186 2187 2188 /* 2189 * handle mds notification that our request has been forwarded. 2190 */ 2191 static void handle_forward(struct ceph_mds_client *mdsc, 2192 struct ceph_mds_session *session, 2193 struct ceph_msg *msg) 2194 { 2195 struct ceph_mds_request *req; 2196 u64 tid = le64_to_cpu(msg->hdr.tid); 2197 u32 next_mds; 2198 u32 fwd_seq; 2199 int err = -EINVAL; 2200 void *p = msg->front.iov_base; 2201 void *end = p + msg->front.iov_len; 2202 2203 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 2204 next_mds = ceph_decode_32(&p); 2205 fwd_seq = ceph_decode_32(&p); 2206 2207 mutex_lock(&mdsc->mutex); 2208 req = __lookup_request(mdsc, tid); 2209 if (!req) { 2210 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 2211 goto out; /* dup reply? */ 2212 } 2213 2214 if (req->r_aborted) { 2215 dout("forward tid %llu aborted, unregistering\n", tid); 2216 __unregister_request(mdsc, req); 2217 } else if (fwd_seq <= req->r_num_fwd) { 2218 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 2219 tid, next_mds, req->r_num_fwd, fwd_seq); 2220 } else { 2221 /* resend. forward race not possible; mds would drop */ 2222 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 2223 BUG_ON(req->r_err); 2224 BUG_ON(req->r_got_result); 2225 req->r_num_fwd = fwd_seq; 2226 req->r_resend_mds = next_mds; 2227 put_request_session(req); 2228 __do_request(mdsc, req); 2229 } 2230 ceph_mdsc_put_request(req); 2231 out: 2232 mutex_unlock(&mdsc->mutex); 2233 return; 2234 2235 bad: 2236 pr_err("mdsc_handle_forward decode error err=%d\n", err); 2237 } 2238 2239 /* 2240 * handle a mds session control message 2241 */ 2242 static void handle_session(struct ceph_mds_session *session, 2243 struct ceph_msg *msg) 2244 { 2245 struct ceph_mds_client *mdsc = session->s_mdsc; 2246 u32 op; 2247 u64 seq; 2248 int mds = session->s_mds; 2249 struct ceph_mds_session_head *h = msg->front.iov_base; 2250 int wake = 0; 2251 2252 /* decode */ 2253 if (msg->front.iov_len != sizeof(*h)) 2254 goto bad; 2255 op = le32_to_cpu(h->op); 2256 seq = le64_to_cpu(h->seq); 2257 2258 mutex_lock(&mdsc->mutex); 2259 if (op == CEPH_SESSION_CLOSE) 2260 __unregister_session(mdsc, session); 2261 /* FIXME: this ttl calculation is generous */ 2262 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 2263 mutex_unlock(&mdsc->mutex); 2264 2265 mutex_lock(&session->s_mutex); 2266 2267 dout("handle_session mds%d %s %p state %s seq %llu\n", 2268 mds, ceph_session_op_name(op), session, 2269 session_state_name(session->s_state), seq); 2270 2271 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 2272 session->s_state = CEPH_MDS_SESSION_OPEN; 2273 pr_info("mds%d came back\n", session->s_mds); 2274 } 2275 2276 switch (op) { 2277 case CEPH_SESSION_OPEN: 2278 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2279 pr_info("mds%d reconnect success\n", session->s_mds); 2280 session->s_state = CEPH_MDS_SESSION_OPEN; 2281 renewed_caps(mdsc, session, 0); 2282 wake = 1; 2283 if (mdsc->stopping) 2284 __close_session(mdsc, session); 2285 break; 2286 2287 case CEPH_SESSION_RENEWCAPS: 2288 if (session->s_renew_seq == seq) 2289 renewed_caps(mdsc, session, 1); 2290 break; 2291 2292 case CEPH_SESSION_CLOSE: 2293 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2294 pr_info("mds%d reconnect denied\n", session->s_mds); 2295 remove_session_caps(session); 2296 wake = 1; /* for good measure */ 2297 wake_up_all(&mdsc->session_close_wq); 2298 kick_requests(mdsc, mds); 2299 break; 2300 2301 case CEPH_SESSION_STALE: 2302 pr_info("mds%d caps went stale, renewing\n", 2303 session->s_mds); 2304 spin_lock(&session->s_cap_lock); 2305 session->s_cap_gen++; 2306 session->s_cap_ttl = 0; 2307 spin_unlock(&session->s_cap_lock); 2308 send_renew_caps(mdsc, session); 2309 break; 2310 2311 case CEPH_SESSION_RECALL_STATE: 2312 trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 2313 break; 2314 2315 default: 2316 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 2317 WARN_ON(1); 2318 } 2319 2320 mutex_unlock(&session->s_mutex); 2321 if (wake) { 2322 mutex_lock(&mdsc->mutex); 2323 __wake_requests(mdsc, &session->s_waiting); 2324 mutex_unlock(&mdsc->mutex); 2325 } 2326 return; 2327 2328 bad: 2329 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 2330 (int)msg->front.iov_len); 2331 ceph_msg_dump(msg); 2332 return; 2333 } 2334 2335 2336 /* 2337 * called under session->mutex. 2338 */ 2339 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 2340 struct ceph_mds_session *session) 2341 { 2342 struct ceph_mds_request *req, *nreq; 2343 int err; 2344 2345 dout("replay_unsafe_requests mds%d\n", session->s_mds); 2346 2347 mutex_lock(&mdsc->mutex); 2348 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) { 2349 err = __prepare_send_request(mdsc, req, session->s_mds); 2350 if (!err) { 2351 ceph_msg_get(req->r_request); 2352 ceph_con_send(&session->s_con, req->r_request); 2353 } 2354 } 2355 mutex_unlock(&mdsc->mutex); 2356 } 2357 2358 /* 2359 * Encode information about a cap for a reconnect with the MDS. 2360 */ 2361 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap, 2362 void *arg) 2363 { 2364 union { 2365 struct ceph_mds_cap_reconnect v2; 2366 struct ceph_mds_cap_reconnect_v1 v1; 2367 } rec; 2368 size_t reclen; 2369 struct ceph_inode_info *ci; 2370 struct ceph_reconnect_state *recon_state = arg; 2371 struct ceph_pagelist *pagelist = recon_state->pagelist; 2372 char *path; 2373 int pathlen, err; 2374 u64 pathbase; 2375 struct dentry *dentry; 2376 2377 ci = cap->ci; 2378 2379 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 2380 inode, ceph_vinop(inode), cap, cap->cap_id, 2381 ceph_cap_string(cap->issued)); 2382 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 2383 if (err) 2384 return err; 2385 2386 dentry = d_find_alias(inode); 2387 if (dentry) { 2388 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0); 2389 if (IS_ERR(path)) { 2390 err = PTR_ERR(path); 2391 goto out_dput; 2392 } 2393 } else { 2394 path = NULL; 2395 pathlen = 0; 2396 } 2397 err = ceph_pagelist_encode_string(pagelist, path, pathlen); 2398 if (err) 2399 goto out_free; 2400 2401 spin_lock(&inode->i_lock); 2402 cap->seq = 0; /* reset cap seq */ 2403 cap->issue_seq = 0; /* and issue_seq */ 2404 2405 if (recon_state->flock) { 2406 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 2407 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2408 rec.v2.issued = cpu_to_le32(cap->issued); 2409 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2410 rec.v2.pathbase = cpu_to_le64(pathbase); 2411 rec.v2.flock_len = 0; 2412 reclen = sizeof(rec.v2); 2413 } else { 2414 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 2415 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2416 rec.v1.issued = cpu_to_le32(cap->issued); 2417 rec.v1.size = cpu_to_le64(inode->i_size); 2418 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime); 2419 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime); 2420 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2421 rec.v1.pathbase = cpu_to_le64(pathbase); 2422 reclen = sizeof(rec.v1); 2423 } 2424 spin_unlock(&inode->i_lock); 2425 2426 if (recon_state->flock) { 2427 int num_fcntl_locks, num_flock_locks; 2428 struct ceph_pagelist_cursor trunc_point; 2429 2430 ceph_pagelist_set_cursor(pagelist, &trunc_point); 2431 do { 2432 lock_flocks(); 2433 ceph_count_locks(inode, &num_fcntl_locks, 2434 &num_flock_locks); 2435 rec.v2.flock_len = (2*sizeof(u32) + 2436 (num_fcntl_locks+num_flock_locks) * 2437 sizeof(struct ceph_filelock)); 2438 unlock_flocks(); 2439 2440 /* pre-alloc pagelist */ 2441 ceph_pagelist_truncate(pagelist, &trunc_point); 2442 err = ceph_pagelist_append(pagelist, &rec, reclen); 2443 if (!err) 2444 err = ceph_pagelist_reserve(pagelist, 2445 rec.v2.flock_len); 2446 2447 /* encode locks */ 2448 if (!err) { 2449 lock_flocks(); 2450 err = ceph_encode_locks(inode, 2451 pagelist, 2452 num_fcntl_locks, 2453 num_flock_locks); 2454 unlock_flocks(); 2455 } 2456 } while (err == -ENOSPC); 2457 } else { 2458 err = ceph_pagelist_append(pagelist, &rec, reclen); 2459 } 2460 2461 out_free: 2462 kfree(path); 2463 out_dput: 2464 dput(dentry); 2465 return err; 2466 } 2467 2468 2469 /* 2470 * If an MDS fails and recovers, clients need to reconnect in order to 2471 * reestablish shared state. This includes all caps issued through 2472 * this session _and_ the snap_realm hierarchy. Because it's not 2473 * clear which snap realms the mds cares about, we send everything we 2474 * know about.. that ensures we'll then get any new info the 2475 * recovering MDS might have. 2476 * 2477 * This is a relatively heavyweight operation, but it's rare. 2478 * 2479 * called with mdsc->mutex held. 2480 */ 2481 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 2482 struct ceph_mds_session *session) 2483 { 2484 struct ceph_msg *reply; 2485 struct rb_node *p; 2486 int mds = session->s_mds; 2487 int err = -ENOMEM; 2488 struct ceph_pagelist *pagelist; 2489 struct ceph_reconnect_state recon_state; 2490 2491 pr_info("mds%d reconnect start\n", mds); 2492 2493 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS); 2494 if (!pagelist) 2495 goto fail_nopagelist; 2496 ceph_pagelist_init(pagelist); 2497 2498 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS); 2499 if (!reply) 2500 goto fail_nomsg; 2501 2502 mutex_lock(&session->s_mutex); 2503 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 2504 session->s_seq = 0; 2505 2506 ceph_con_open(&session->s_con, 2507 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 2508 2509 /* replay unsafe requests */ 2510 replay_unsafe_requests(mdsc, session); 2511 2512 down_read(&mdsc->snap_rwsem); 2513 2514 dout("session %p state %s\n", session, 2515 session_state_name(session->s_state)); 2516 2517 /* drop old cap expires; we're about to reestablish that state */ 2518 discard_cap_releases(mdsc, session); 2519 2520 /* traverse this session's caps */ 2521 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps); 2522 if (err) 2523 goto fail; 2524 2525 recon_state.pagelist = pagelist; 2526 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK; 2527 err = iterate_session_caps(session, encode_caps_cb, &recon_state); 2528 if (err < 0) 2529 goto fail; 2530 2531 /* 2532 * snaprealms. we provide mds with the ino, seq (version), and 2533 * parent for all of our realms. If the mds has any newer info, 2534 * it will tell us. 2535 */ 2536 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 2537 struct ceph_snap_realm *realm = 2538 rb_entry(p, struct ceph_snap_realm, node); 2539 struct ceph_mds_snaprealm_reconnect sr_rec; 2540 2541 dout(" adding snap realm %llx seq %lld parent %llx\n", 2542 realm->ino, realm->seq, realm->parent_ino); 2543 sr_rec.ino = cpu_to_le64(realm->ino); 2544 sr_rec.seq = cpu_to_le64(realm->seq); 2545 sr_rec.parent = cpu_to_le64(realm->parent_ino); 2546 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 2547 if (err) 2548 goto fail; 2549 } 2550 2551 reply->pagelist = pagelist; 2552 if (recon_state.flock) 2553 reply->hdr.version = cpu_to_le16(2); 2554 reply->hdr.data_len = cpu_to_le32(pagelist->length); 2555 reply->nr_pages = calc_pages_for(0, pagelist->length); 2556 ceph_con_send(&session->s_con, reply); 2557 2558 mutex_unlock(&session->s_mutex); 2559 2560 mutex_lock(&mdsc->mutex); 2561 __wake_requests(mdsc, &session->s_waiting); 2562 mutex_unlock(&mdsc->mutex); 2563 2564 up_read(&mdsc->snap_rwsem); 2565 return; 2566 2567 fail: 2568 ceph_msg_put(reply); 2569 up_read(&mdsc->snap_rwsem); 2570 mutex_unlock(&session->s_mutex); 2571 fail_nomsg: 2572 ceph_pagelist_release(pagelist); 2573 kfree(pagelist); 2574 fail_nopagelist: 2575 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 2576 return; 2577 } 2578 2579 2580 /* 2581 * compare old and new mdsmaps, kicking requests 2582 * and closing out old connections as necessary 2583 * 2584 * called under mdsc->mutex. 2585 */ 2586 static void check_new_map(struct ceph_mds_client *mdsc, 2587 struct ceph_mdsmap *newmap, 2588 struct ceph_mdsmap *oldmap) 2589 { 2590 int i; 2591 int oldstate, newstate; 2592 struct ceph_mds_session *s; 2593 2594 dout("check_new_map new %u old %u\n", 2595 newmap->m_epoch, oldmap->m_epoch); 2596 2597 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) { 2598 if (mdsc->sessions[i] == NULL) 2599 continue; 2600 s = mdsc->sessions[i]; 2601 oldstate = ceph_mdsmap_get_state(oldmap, i); 2602 newstate = ceph_mdsmap_get_state(newmap, i); 2603 2604 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 2605 i, ceph_mds_state_name(oldstate), 2606 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 2607 ceph_mds_state_name(newstate), 2608 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 2609 session_state_name(s->s_state)); 2610 2611 if (memcmp(ceph_mdsmap_get_addr(oldmap, i), 2612 ceph_mdsmap_get_addr(newmap, i), 2613 sizeof(struct ceph_entity_addr))) { 2614 if (s->s_state == CEPH_MDS_SESSION_OPENING) { 2615 /* the session never opened, just close it 2616 * out now */ 2617 __wake_requests(mdsc, &s->s_waiting); 2618 __unregister_session(mdsc, s); 2619 } else { 2620 /* just close it */ 2621 mutex_unlock(&mdsc->mutex); 2622 mutex_lock(&s->s_mutex); 2623 mutex_lock(&mdsc->mutex); 2624 ceph_con_close(&s->s_con); 2625 mutex_unlock(&s->s_mutex); 2626 s->s_state = CEPH_MDS_SESSION_RESTARTING; 2627 } 2628 2629 /* kick any requests waiting on the recovering mds */ 2630 kick_requests(mdsc, i); 2631 } else if (oldstate == newstate) { 2632 continue; /* nothing new with this mds */ 2633 } 2634 2635 /* 2636 * send reconnect? 2637 */ 2638 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 2639 newstate >= CEPH_MDS_STATE_RECONNECT) { 2640 mutex_unlock(&mdsc->mutex); 2641 send_mds_reconnect(mdsc, s); 2642 mutex_lock(&mdsc->mutex); 2643 } 2644 2645 /* 2646 * kick request on any mds that has gone active. 2647 */ 2648 if (oldstate < CEPH_MDS_STATE_ACTIVE && 2649 newstate >= CEPH_MDS_STATE_ACTIVE) { 2650 if (oldstate != CEPH_MDS_STATE_CREATING && 2651 oldstate != CEPH_MDS_STATE_STARTING) 2652 pr_info("mds%d recovery completed\n", s->s_mds); 2653 kick_requests(mdsc, i); 2654 ceph_kick_flushing_caps(mdsc, s); 2655 wake_up_session_caps(s, 1); 2656 } 2657 } 2658 2659 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) { 2660 s = mdsc->sessions[i]; 2661 if (!s) 2662 continue; 2663 if (!ceph_mdsmap_is_laggy(newmap, i)) 2664 continue; 2665 if (s->s_state == CEPH_MDS_SESSION_OPEN || 2666 s->s_state == CEPH_MDS_SESSION_HUNG || 2667 s->s_state == CEPH_MDS_SESSION_CLOSING) { 2668 dout(" connecting to export targets of laggy mds%d\n", 2669 i); 2670 __open_export_target_sessions(mdsc, s); 2671 } 2672 } 2673 } 2674 2675 2676 2677 /* 2678 * leases 2679 */ 2680 2681 /* 2682 * caller must hold session s_mutex, dentry->d_lock 2683 */ 2684 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 2685 { 2686 struct ceph_dentry_info *di = ceph_dentry(dentry); 2687 2688 ceph_put_mds_session(di->lease_session); 2689 di->lease_session = NULL; 2690 } 2691 2692 static void handle_lease(struct ceph_mds_client *mdsc, 2693 struct ceph_mds_session *session, 2694 struct ceph_msg *msg) 2695 { 2696 struct super_block *sb = mdsc->fsc->sb; 2697 struct inode *inode; 2698 struct dentry *parent, *dentry; 2699 struct ceph_dentry_info *di; 2700 int mds = session->s_mds; 2701 struct ceph_mds_lease *h = msg->front.iov_base; 2702 u32 seq; 2703 struct ceph_vino vino; 2704 int mask; 2705 struct qstr dname; 2706 int release = 0; 2707 2708 dout("handle_lease from mds%d\n", mds); 2709 2710 /* decode */ 2711 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 2712 goto bad; 2713 vino.ino = le64_to_cpu(h->ino); 2714 vino.snap = CEPH_NOSNAP; 2715 mask = le16_to_cpu(h->mask); 2716 seq = le32_to_cpu(h->seq); 2717 dname.name = (void *)h + sizeof(*h) + sizeof(u32); 2718 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32); 2719 if (dname.len != get_unaligned_le32(h+1)) 2720 goto bad; 2721 2722 mutex_lock(&session->s_mutex); 2723 session->s_seq++; 2724 2725 /* lookup inode */ 2726 inode = ceph_find_inode(sb, vino); 2727 dout("handle_lease %s, mask %d, ino %llx %p %.*s\n", 2728 ceph_lease_op_name(h->action), mask, vino.ino, inode, 2729 dname.len, dname.name); 2730 if (inode == NULL) { 2731 dout("handle_lease no inode %llx\n", vino.ino); 2732 goto release; 2733 } 2734 2735 /* dentry */ 2736 parent = d_find_alias(inode); 2737 if (!parent) { 2738 dout("no parent dentry on inode %p\n", inode); 2739 WARN_ON(1); 2740 goto release; /* hrm... */ 2741 } 2742 dname.hash = full_name_hash(dname.name, dname.len); 2743 dentry = d_lookup(parent, &dname); 2744 dput(parent); 2745 if (!dentry) 2746 goto release; 2747 2748 spin_lock(&dentry->d_lock); 2749 di = ceph_dentry(dentry); 2750 switch (h->action) { 2751 case CEPH_MDS_LEASE_REVOKE: 2752 if (di && di->lease_session == session) { 2753 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 2754 h->seq = cpu_to_le32(di->lease_seq); 2755 __ceph_mdsc_drop_dentry_lease(dentry); 2756 } 2757 release = 1; 2758 break; 2759 2760 case CEPH_MDS_LEASE_RENEW: 2761 if (di && di->lease_session == session && 2762 di->lease_gen == session->s_cap_gen && 2763 di->lease_renew_from && 2764 di->lease_renew_after == 0) { 2765 unsigned long duration = 2766 le32_to_cpu(h->duration_ms) * HZ / 1000; 2767 2768 di->lease_seq = seq; 2769 dentry->d_time = di->lease_renew_from + duration; 2770 di->lease_renew_after = di->lease_renew_from + 2771 (duration >> 1); 2772 di->lease_renew_from = 0; 2773 } 2774 break; 2775 } 2776 spin_unlock(&dentry->d_lock); 2777 dput(dentry); 2778 2779 if (!release) 2780 goto out; 2781 2782 release: 2783 /* let's just reuse the same message */ 2784 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 2785 ceph_msg_get(msg); 2786 ceph_con_send(&session->s_con, msg); 2787 2788 out: 2789 iput(inode); 2790 mutex_unlock(&session->s_mutex); 2791 return; 2792 2793 bad: 2794 pr_err("corrupt lease message\n"); 2795 ceph_msg_dump(msg); 2796 } 2797 2798 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 2799 struct inode *inode, 2800 struct dentry *dentry, char action, 2801 u32 seq) 2802 { 2803 struct ceph_msg *msg; 2804 struct ceph_mds_lease *lease; 2805 int len = sizeof(*lease) + sizeof(u32); 2806 int dnamelen = 0; 2807 2808 dout("lease_send_msg inode %p dentry %p %s to mds%d\n", 2809 inode, dentry, ceph_lease_op_name(action), session->s_mds); 2810 dnamelen = dentry->d_name.len; 2811 len += dnamelen; 2812 2813 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS); 2814 if (!msg) 2815 return; 2816 lease = msg->front.iov_base; 2817 lease->action = action; 2818 lease->mask = cpu_to_le16(1); 2819 lease->ino = cpu_to_le64(ceph_vino(inode).ino); 2820 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap); 2821 lease->seq = cpu_to_le32(seq); 2822 put_unaligned_le32(dnamelen, lease + 1); 2823 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen); 2824 2825 /* 2826 * if this is a preemptive lease RELEASE, no need to 2827 * flush request stream, since the actual request will 2828 * soon follow. 2829 */ 2830 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); 2831 2832 ceph_con_send(&session->s_con, msg); 2833 } 2834 2835 /* 2836 * Preemptively release a lease we expect to invalidate anyway. 2837 * Pass @inode always, @dentry is optional. 2838 */ 2839 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode, 2840 struct dentry *dentry, int mask) 2841 { 2842 struct ceph_dentry_info *di; 2843 struct ceph_mds_session *session; 2844 u32 seq; 2845 2846 BUG_ON(inode == NULL); 2847 BUG_ON(dentry == NULL); 2848 BUG_ON(mask == 0); 2849 2850 /* is dentry lease valid? */ 2851 spin_lock(&dentry->d_lock); 2852 di = ceph_dentry(dentry); 2853 if (!di || !di->lease_session || 2854 di->lease_session->s_mds < 0 || 2855 di->lease_gen != di->lease_session->s_cap_gen || 2856 !time_before(jiffies, dentry->d_time)) { 2857 dout("lease_release inode %p dentry %p -- " 2858 "no lease on %d\n", 2859 inode, dentry, mask); 2860 spin_unlock(&dentry->d_lock); 2861 return; 2862 } 2863 2864 /* we do have a lease on this dentry; note mds and seq */ 2865 session = ceph_get_mds_session(di->lease_session); 2866 seq = di->lease_seq; 2867 __ceph_mdsc_drop_dentry_lease(dentry); 2868 spin_unlock(&dentry->d_lock); 2869 2870 dout("lease_release inode %p dentry %p mask %d to mds%d\n", 2871 inode, dentry, mask, session->s_mds); 2872 ceph_mdsc_lease_send_msg(session, inode, dentry, 2873 CEPH_MDS_LEASE_RELEASE, seq); 2874 ceph_put_mds_session(session); 2875 } 2876 2877 /* 2878 * drop all leases (and dentry refs) in preparation for umount 2879 */ 2880 static void drop_leases(struct ceph_mds_client *mdsc) 2881 { 2882 int i; 2883 2884 dout("drop_leases\n"); 2885 mutex_lock(&mdsc->mutex); 2886 for (i = 0; i < mdsc->max_sessions; i++) { 2887 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 2888 if (!s) 2889 continue; 2890 mutex_unlock(&mdsc->mutex); 2891 mutex_lock(&s->s_mutex); 2892 mutex_unlock(&s->s_mutex); 2893 ceph_put_mds_session(s); 2894 mutex_lock(&mdsc->mutex); 2895 } 2896 mutex_unlock(&mdsc->mutex); 2897 } 2898 2899 2900 2901 /* 2902 * delayed work -- periodically trim expired leases, renew caps with mds 2903 */ 2904 static void schedule_delayed(struct ceph_mds_client *mdsc) 2905 { 2906 int delay = 5; 2907 unsigned hz = round_jiffies_relative(HZ * delay); 2908 schedule_delayed_work(&mdsc->delayed_work, hz); 2909 } 2910 2911 static void delayed_work(struct work_struct *work) 2912 { 2913 int i; 2914 struct ceph_mds_client *mdsc = 2915 container_of(work, struct ceph_mds_client, delayed_work.work); 2916 int renew_interval; 2917 int renew_caps; 2918 2919 dout("mdsc delayed_work\n"); 2920 ceph_check_delayed_caps(mdsc); 2921 2922 mutex_lock(&mdsc->mutex); 2923 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 2924 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 2925 mdsc->last_renew_caps); 2926 if (renew_caps) 2927 mdsc->last_renew_caps = jiffies; 2928 2929 for (i = 0; i < mdsc->max_sessions; i++) { 2930 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 2931 if (s == NULL) 2932 continue; 2933 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 2934 dout("resending session close request for mds%d\n", 2935 s->s_mds); 2936 request_close_session(mdsc, s); 2937 ceph_put_mds_session(s); 2938 continue; 2939 } 2940 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 2941 if (s->s_state == CEPH_MDS_SESSION_OPEN) { 2942 s->s_state = CEPH_MDS_SESSION_HUNG; 2943 pr_info("mds%d hung\n", s->s_mds); 2944 } 2945 } 2946 if (s->s_state < CEPH_MDS_SESSION_OPEN) { 2947 /* this mds is failed or recovering, just wait */ 2948 ceph_put_mds_session(s); 2949 continue; 2950 } 2951 mutex_unlock(&mdsc->mutex); 2952 2953 mutex_lock(&s->s_mutex); 2954 if (renew_caps) 2955 send_renew_caps(mdsc, s); 2956 else 2957 ceph_con_keepalive(&s->s_con); 2958 ceph_add_cap_releases(mdsc, s); 2959 if (s->s_state == CEPH_MDS_SESSION_OPEN || 2960 s->s_state == CEPH_MDS_SESSION_HUNG) 2961 ceph_send_cap_releases(mdsc, s); 2962 mutex_unlock(&s->s_mutex); 2963 ceph_put_mds_session(s); 2964 2965 mutex_lock(&mdsc->mutex); 2966 } 2967 mutex_unlock(&mdsc->mutex); 2968 2969 schedule_delayed(mdsc); 2970 } 2971 2972 int ceph_mdsc_init(struct ceph_fs_client *fsc) 2973 2974 { 2975 struct ceph_mds_client *mdsc; 2976 2977 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 2978 if (!mdsc) 2979 return -ENOMEM; 2980 mdsc->fsc = fsc; 2981 fsc->mdsc = mdsc; 2982 mutex_init(&mdsc->mutex); 2983 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 2984 if (mdsc->mdsmap == NULL) 2985 return -ENOMEM; 2986 2987 init_completion(&mdsc->safe_umount_waiters); 2988 init_waitqueue_head(&mdsc->session_close_wq); 2989 INIT_LIST_HEAD(&mdsc->waiting_for_map); 2990 mdsc->sessions = NULL; 2991 mdsc->max_sessions = 0; 2992 mdsc->stopping = 0; 2993 init_rwsem(&mdsc->snap_rwsem); 2994 mdsc->snap_realms = RB_ROOT; 2995 INIT_LIST_HEAD(&mdsc->snap_empty); 2996 spin_lock_init(&mdsc->snap_empty_lock); 2997 mdsc->last_tid = 0; 2998 mdsc->request_tree = RB_ROOT; 2999 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 3000 mdsc->last_renew_caps = jiffies; 3001 INIT_LIST_HEAD(&mdsc->cap_delay_list); 3002 spin_lock_init(&mdsc->cap_delay_lock); 3003 INIT_LIST_HEAD(&mdsc->snap_flush_list); 3004 spin_lock_init(&mdsc->snap_flush_lock); 3005 mdsc->cap_flush_seq = 0; 3006 INIT_LIST_HEAD(&mdsc->cap_dirty); 3007 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 3008 mdsc->num_cap_flushing = 0; 3009 spin_lock_init(&mdsc->cap_dirty_lock); 3010 init_waitqueue_head(&mdsc->cap_flushing_wq); 3011 spin_lock_init(&mdsc->dentry_lru_lock); 3012 INIT_LIST_HEAD(&mdsc->dentry_lru); 3013 3014 ceph_caps_init(mdsc); 3015 ceph_adjust_min_caps(mdsc, fsc->min_caps); 3016 3017 return 0; 3018 } 3019 3020 /* 3021 * Wait for safe replies on open mds requests. If we time out, drop 3022 * all requests from the tree to avoid dangling dentry refs. 3023 */ 3024 static void wait_requests(struct ceph_mds_client *mdsc) 3025 { 3026 struct ceph_mds_request *req; 3027 struct ceph_fs_client *fsc = mdsc->fsc; 3028 3029 mutex_lock(&mdsc->mutex); 3030 if (__get_oldest_req(mdsc)) { 3031 mutex_unlock(&mdsc->mutex); 3032 3033 dout("wait_requests waiting for requests\n"); 3034 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 3035 fsc->client->options->mount_timeout * HZ); 3036 3037 /* tear down remaining requests */ 3038 mutex_lock(&mdsc->mutex); 3039 while ((req = __get_oldest_req(mdsc))) { 3040 dout("wait_requests timed out on tid %llu\n", 3041 req->r_tid); 3042 __unregister_request(mdsc, req); 3043 } 3044 } 3045 mutex_unlock(&mdsc->mutex); 3046 dout("wait_requests done\n"); 3047 } 3048 3049 /* 3050 * called before mount is ro, and before dentries are torn down. 3051 * (hmm, does this still race with new lookups?) 3052 */ 3053 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 3054 { 3055 dout("pre_umount\n"); 3056 mdsc->stopping = 1; 3057 3058 drop_leases(mdsc); 3059 ceph_flush_dirty_caps(mdsc); 3060 wait_requests(mdsc); 3061 3062 /* 3063 * wait for reply handlers to drop their request refs and 3064 * their inode/dcache refs 3065 */ 3066 ceph_msgr_flush(); 3067 } 3068 3069 /* 3070 * wait for all write mds requests to flush. 3071 */ 3072 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) 3073 { 3074 struct ceph_mds_request *req = NULL, *nextreq; 3075 struct rb_node *n; 3076 3077 mutex_lock(&mdsc->mutex); 3078 dout("wait_unsafe_requests want %lld\n", want_tid); 3079 restart: 3080 req = __get_oldest_req(mdsc); 3081 while (req && req->r_tid <= want_tid) { 3082 /* find next request */ 3083 n = rb_next(&req->r_node); 3084 if (n) 3085 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 3086 else 3087 nextreq = NULL; 3088 if ((req->r_op & CEPH_MDS_OP_WRITE)) { 3089 /* write op */ 3090 ceph_mdsc_get_request(req); 3091 if (nextreq) 3092 ceph_mdsc_get_request(nextreq); 3093 mutex_unlock(&mdsc->mutex); 3094 dout("wait_unsafe_requests wait on %llu (want %llu)\n", 3095 req->r_tid, want_tid); 3096 wait_for_completion(&req->r_safe_completion); 3097 mutex_lock(&mdsc->mutex); 3098 ceph_mdsc_put_request(req); 3099 if (!nextreq) 3100 break; /* next dne before, so we're done! */ 3101 if (RB_EMPTY_NODE(&nextreq->r_node)) { 3102 /* next request was removed from tree */ 3103 ceph_mdsc_put_request(nextreq); 3104 goto restart; 3105 } 3106 ceph_mdsc_put_request(nextreq); /* won't go away */ 3107 } 3108 req = nextreq; 3109 } 3110 mutex_unlock(&mdsc->mutex); 3111 dout("wait_unsafe_requests done\n"); 3112 } 3113 3114 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 3115 { 3116 u64 want_tid, want_flush; 3117 3118 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3119 return; 3120 3121 dout("sync\n"); 3122 mutex_lock(&mdsc->mutex); 3123 want_tid = mdsc->last_tid; 3124 want_flush = mdsc->cap_flush_seq; 3125 mutex_unlock(&mdsc->mutex); 3126 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush); 3127 3128 ceph_flush_dirty_caps(mdsc); 3129 3130 wait_unsafe_requests(mdsc, want_tid); 3131 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush)); 3132 } 3133 3134 /* 3135 * true if all sessions are closed, or we force unmount 3136 */ 3137 bool done_closing_sessions(struct ceph_mds_client *mdsc) 3138 { 3139 int i, n = 0; 3140 3141 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3142 return true; 3143 3144 mutex_lock(&mdsc->mutex); 3145 for (i = 0; i < mdsc->max_sessions; i++) 3146 if (mdsc->sessions[i]) 3147 n++; 3148 mutex_unlock(&mdsc->mutex); 3149 return n == 0; 3150 } 3151 3152 /* 3153 * called after sb is ro. 3154 */ 3155 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 3156 { 3157 struct ceph_mds_session *session; 3158 int i; 3159 struct ceph_fs_client *fsc = mdsc->fsc; 3160 unsigned long timeout = fsc->client->options->mount_timeout * HZ; 3161 3162 dout("close_sessions\n"); 3163 3164 /* close sessions */ 3165 mutex_lock(&mdsc->mutex); 3166 for (i = 0; i < mdsc->max_sessions; i++) { 3167 session = __ceph_lookup_mds_session(mdsc, i); 3168 if (!session) 3169 continue; 3170 mutex_unlock(&mdsc->mutex); 3171 mutex_lock(&session->s_mutex); 3172 __close_session(mdsc, session); 3173 mutex_unlock(&session->s_mutex); 3174 ceph_put_mds_session(session); 3175 mutex_lock(&mdsc->mutex); 3176 } 3177 mutex_unlock(&mdsc->mutex); 3178 3179 dout("waiting for sessions to close\n"); 3180 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc), 3181 timeout); 3182 3183 /* tear down remaining sessions */ 3184 mutex_lock(&mdsc->mutex); 3185 for (i = 0; i < mdsc->max_sessions; i++) { 3186 if (mdsc->sessions[i]) { 3187 session = get_session(mdsc->sessions[i]); 3188 __unregister_session(mdsc, session); 3189 mutex_unlock(&mdsc->mutex); 3190 mutex_lock(&session->s_mutex); 3191 remove_session_caps(session); 3192 mutex_unlock(&session->s_mutex); 3193 ceph_put_mds_session(session); 3194 mutex_lock(&mdsc->mutex); 3195 } 3196 } 3197 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 3198 mutex_unlock(&mdsc->mutex); 3199 3200 ceph_cleanup_empty_realms(mdsc); 3201 3202 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3203 3204 dout("stopped\n"); 3205 } 3206 3207 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 3208 { 3209 dout("stop\n"); 3210 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3211 if (mdsc->mdsmap) 3212 ceph_mdsmap_destroy(mdsc->mdsmap); 3213 kfree(mdsc->sessions); 3214 ceph_caps_finalize(mdsc); 3215 } 3216 3217 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 3218 { 3219 struct ceph_mds_client *mdsc = fsc->mdsc; 3220 3221 dout("mdsc_destroy %p\n", mdsc); 3222 ceph_mdsc_stop(mdsc); 3223 3224 /* flush out any connection work with references to us */ 3225 ceph_msgr_flush(); 3226 3227 fsc->mdsc = NULL; 3228 kfree(mdsc); 3229 dout("mdsc_destroy %p done\n", mdsc); 3230 } 3231 3232 3233 /* 3234 * handle mds map update. 3235 */ 3236 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 3237 { 3238 u32 epoch; 3239 u32 maplen; 3240 void *p = msg->front.iov_base; 3241 void *end = p + msg->front.iov_len; 3242 struct ceph_mdsmap *newmap, *oldmap; 3243 struct ceph_fsid fsid; 3244 int err = -EINVAL; 3245 3246 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 3247 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 3248 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 3249 return; 3250 epoch = ceph_decode_32(&p); 3251 maplen = ceph_decode_32(&p); 3252 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 3253 3254 /* do we need it? */ 3255 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch); 3256 mutex_lock(&mdsc->mutex); 3257 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 3258 dout("handle_map epoch %u <= our %u\n", 3259 epoch, mdsc->mdsmap->m_epoch); 3260 mutex_unlock(&mdsc->mutex); 3261 return; 3262 } 3263 3264 newmap = ceph_mdsmap_decode(&p, end); 3265 if (IS_ERR(newmap)) { 3266 err = PTR_ERR(newmap); 3267 goto bad_unlock; 3268 } 3269 3270 /* swap into place */ 3271 if (mdsc->mdsmap) { 3272 oldmap = mdsc->mdsmap; 3273 mdsc->mdsmap = newmap; 3274 check_new_map(mdsc, newmap, oldmap); 3275 ceph_mdsmap_destroy(oldmap); 3276 } else { 3277 mdsc->mdsmap = newmap; /* first mds map */ 3278 } 3279 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size; 3280 3281 __wake_requests(mdsc, &mdsc->waiting_for_map); 3282 3283 mutex_unlock(&mdsc->mutex); 3284 schedule_delayed(mdsc); 3285 return; 3286 3287 bad_unlock: 3288 mutex_unlock(&mdsc->mutex); 3289 bad: 3290 pr_err("error decoding mdsmap %d\n", err); 3291 return; 3292 } 3293 3294 static struct ceph_connection *con_get(struct ceph_connection *con) 3295 { 3296 struct ceph_mds_session *s = con->private; 3297 3298 if (get_session(s)) { 3299 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref)); 3300 return con; 3301 } 3302 dout("mdsc con_get %p FAIL\n", s); 3303 return NULL; 3304 } 3305 3306 static void con_put(struct ceph_connection *con) 3307 { 3308 struct ceph_mds_session *s = con->private; 3309 3310 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1); 3311 ceph_put_mds_session(s); 3312 } 3313 3314 /* 3315 * if the client is unresponsive for long enough, the mds will kill 3316 * the session entirely. 3317 */ 3318 static void peer_reset(struct ceph_connection *con) 3319 { 3320 struct ceph_mds_session *s = con->private; 3321 struct ceph_mds_client *mdsc = s->s_mdsc; 3322 3323 pr_warning("mds%d closed our session\n", s->s_mds); 3324 send_mds_reconnect(mdsc, s); 3325 } 3326 3327 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg) 3328 { 3329 struct ceph_mds_session *s = con->private; 3330 struct ceph_mds_client *mdsc = s->s_mdsc; 3331 int type = le16_to_cpu(msg->hdr.type); 3332 3333 mutex_lock(&mdsc->mutex); 3334 if (__verify_registered_session(mdsc, s) < 0) { 3335 mutex_unlock(&mdsc->mutex); 3336 goto out; 3337 } 3338 mutex_unlock(&mdsc->mutex); 3339 3340 switch (type) { 3341 case CEPH_MSG_MDS_MAP: 3342 ceph_mdsc_handle_map(mdsc, msg); 3343 break; 3344 case CEPH_MSG_CLIENT_SESSION: 3345 handle_session(s, msg); 3346 break; 3347 case CEPH_MSG_CLIENT_REPLY: 3348 handle_reply(s, msg); 3349 break; 3350 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 3351 handle_forward(mdsc, s, msg); 3352 break; 3353 case CEPH_MSG_CLIENT_CAPS: 3354 ceph_handle_caps(s, msg); 3355 break; 3356 case CEPH_MSG_CLIENT_SNAP: 3357 ceph_handle_snap(mdsc, s, msg); 3358 break; 3359 case CEPH_MSG_CLIENT_LEASE: 3360 handle_lease(mdsc, s, msg); 3361 break; 3362 3363 default: 3364 pr_err("received unknown message type %d %s\n", type, 3365 ceph_msg_type_name(type)); 3366 } 3367 out: 3368 ceph_msg_put(msg); 3369 } 3370 3371 /* 3372 * authentication 3373 */ 3374 static int get_authorizer(struct ceph_connection *con, 3375 void **buf, int *len, int *proto, 3376 void **reply_buf, int *reply_len, int force_new) 3377 { 3378 struct ceph_mds_session *s = con->private; 3379 struct ceph_mds_client *mdsc = s->s_mdsc; 3380 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3381 int ret = 0; 3382 3383 if (force_new && s->s_authorizer) { 3384 ac->ops->destroy_authorizer(ac, s->s_authorizer); 3385 s->s_authorizer = NULL; 3386 } 3387 if (s->s_authorizer == NULL) { 3388 if (ac->ops->create_authorizer) { 3389 ret = ac->ops->create_authorizer( 3390 ac, CEPH_ENTITY_TYPE_MDS, 3391 &s->s_authorizer, 3392 &s->s_authorizer_buf, 3393 &s->s_authorizer_buf_len, 3394 &s->s_authorizer_reply_buf, 3395 &s->s_authorizer_reply_buf_len); 3396 if (ret) 3397 return ret; 3398 } 3399 } 3400 3401 *proto = ac->protocol; 3402 *buf = s->s_authorizer_buf; 3403 *len = s->s_authorizer_buf_len; 3404 *reply_buf = s->s_authorizer_reply_buf; 3405 *reply_len = s->s_authorizer_reply_buf_len; 3406 return 0; 3407 } 3408 3409 3410 static int verify_authorizer_reply(struct ceph_connection *con, int len) 3411 { 3412 struct ceph_mds_session *s = con->private; 3413 struct ceph_mds_client *mdsc = s->s_mdsc; 3414 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3415 3416 return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len); 3417 } 3418 3419 static int invalidate_authorizer(struct ceph_connection *con) 3420 { 3421 struct ceph_mds_session *s = con->private; 3422 struct ceph_mds_client *mdsc = s->s_mdsc; 3423 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3424 3425 if (ac->ops->invalidate_authorizer) 3426 ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 3427 3428 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 3429 } 3430 3431 static const struct ceph_connection_operations mds_con_ops = { 3432 .get = con_get, 3433 .put = con_put, 3434 .dispatch = dispatch, 3435 .get_authorizer = get_authorizer, 3436 .verify_authorizer_reply = verify_authorizer_reply, 3437 .invalidate_authorizer = invalidate_authorizer, 3438 .peer_reset = peer_reset, 3439 }; 3440 3441 /* eof */ 3442