xref: /linux/fs/ceph/mds_client.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
9 
10 #include "super.h"
11 #include "mds_client.h"
12 
13 #include <linux/ceph/messenger.h>
14 #include <linux/ceph/decode.h>
15 #include <linux/ceph/pagelist.h>
16 #include <linux/ceph/auth.h>
17 #include <linux/ceph/debugfs.h>
18 
19 /*
20  * A cluster of MDS (metadata server) daemons is responsible for
21  * managing the file system namespace (the directory hierarchy and
22  * inodes) and for coordinating shared access to storage.  Metadata is
23  * partitioning hierarchically across a number of servers, and that
24  * partition varies over time as the cluster adjusts the distribution
25  * in order to balance load.
26  *
27  * The MDS client is primarily responsible to managing synchronous
28  * metadata requests for operations like open, unlink, and so forth.
29  * If there is a MDS failure, we find out about it when we (possibly
30  * request and) receive a new MDS map, and can resubmit affected
31  * requests.
32  *
33  * For the most part, though, we take advantage of a lossless
34  * communications channel to the MDS, and do not need to worry about
35  * timing out or resubmitting requests.
36  *
37  * We maintain a stateful "session" with each MDS we interact with.
38  * Within each session, we sent periodic heartbeat messages to ensure
39  * any capabilities or leases we have been issues remain valid.  If
40  * the session times out and goes stale, our leases and capabilities
41  * are no longer valid.
42  */
43 
44 struct ceph_reconnect_state {
45 	struct ceph_pagelist *pagelist;
46 	bool flock;
47 };
48 
49 static void __wake_requests(struct ceph_mds_client *mdsc,
50 			    struct list_head *head);
51 
52 static const struct ceph_connection_operations mds_con_ops;
53 
54 
55 /*
56  * mds reply parsing
57  */
58 
59 /*
60  * parse individual inode info
61  */
62 static int parse_reply_info_in(void **p, void *end,
63 			       struct ceph_mds_reply_info_in *info,
64 			       int features)
65 {
66 	int err = -EIO;
67 
68 	info->in = *p;
69 	*p += sizeof(struct ceph_mds_reply_inode) +
70 		sizeof(*info->in->fragtree.splits) *
71 		le32_to_cpu(info->in->fragtree.nsplits);
72 
73 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
74 	ceph_decode_need(p, end, info->symlink_len, bad);
75 	info->symlink = *p;
76 	*p += info->symlink_len;
77 
78 	if (features & CEPH_FEATURE_DIRLAYOUTHASH)
79 		ceph_decode_copy_safe(p, end, &info->dir_layout,
80 				      sizeof(info->dir_layout), bad);
81 	else
82 		memset(&info->dir_layout, 0, sizeof(info->dir_layout));
83 
84 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
85 	ceph_decode_need(p, end, info->xattr_len, bad);
86 	info->xattr_data = *p;
87 	*p += info->xattr_len;
88 	return 0;
89 bad:
90 	return err;
91 }
92 
93 /*
94  * parse a normal reply, which may contain a (dir+)dentry and/or a
95  * target inode.
96  */
97 static int parse_reply_info_trace(void **p, void *end,
98 				  struct ceph_mds_reply_info_parsed *info,
99 				  int features)
100 {
101 	int err;
102 
103 	if (info->head->is_dentry) {
104 		err = parse_reply_info_in(p, end, &info->diri, features);
105 		if (err < 0)
106 			goto out_bad;
107 
108 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
109 			goto bad;
110 		info->dirfrag = *p;
111 		*p += sizeof(*info->dirfrag) +
112 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
113 		if (unlikely(*p > end))
114 			goto bad;
115 
116 		ceph_decode_32_safe(p, end, info->dname_len, bad);
117 		ceph_decode_need(p, end, info->dname_len, bad);
118 		info->dname = *p;
119 		*p += info->dname_len;
120 		info->dlease = *p;
121 		*p += sizeof(*info->dlease);
122 	}
123 
124 	if (info->head->is_target) {
125 		err = parse_reply_info_in(p, end, &info->targeti, features);
126 		if (err < 0)
127 			goto out_bad;
128 	}
129 
130 	if (unlikely(*p != end))
131 		goto bad;
132 	return 0;
133 
134 bad:
135 	err = -EIO;
136 out_bad:
137 	pr_err("problem parsing mds trace %d\n", err);
138 	return err;
139 }
140 
141 /*
142  * parse readdir results
143  */
144 static int parse_reply_info_dir(void **p, void *end,
145 				struct ceph_mds_reply_info_parsed *info,
146 				int features)
147 {
148 	u32 num, i = 0;
149 	int err;
150 
151 	info->dir_dir = *p;
152 	if (*p + sizeof(*info->dir_dir) > end)
153 		goto bad;
154 	*p += sizeof(*info->dir_dir) +
155 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
156 	if (*p > end)
157 		goto bad;
158 
159 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
160 	num = ceph_decode_32(p);
161 	info->dir_end = ceph_decode_8(p);
162 	info->dir_complete = ceph_decode_8(p);
163 	if (num == 0)
164 		goto done;
165 
166 	/* alloc large array */
167 	info->dir_nr = num;
168 	info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
169 			       sizeof(*info->dir_dname) +
170 			       sizeof(*info->dir_dname_len) +
171 			       sizeof(*info->dir_dlease),
172 			       GFP_NOFS);
173 	if (info->dir_in == NULL) {
174 		err = -ENOMEM;
175 		goto out_bad;
176 	}
177 	info->dir_dname = (void *)(info->dir_in + num);
178 	info->dir_dname_len = (void *)(info->dir_dname + num);
179 	info->dir_dlease = (void *)(info->dir_dname_len + num);
180 
181 	while (num) {
182 		/* dentry */
183 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
184 		info->dir_dname_len[i] = ceph_decode_32(p);
185 		ceph_decode_need(p, end, info->dir_dname_len[i], bad);
186 		info->dir_dname[i] = *p;
187 		*p += info->dir_dname_len[i];
188 		dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
189 		     info->dir_dname[i]);
190 		info->dir_dlease[i] = *p;
191 		*p += sizeof(struct ceph_mds_reply_lease);
192 
193 		/* inode */
194 		err = parse_reply_info_in(p, end, &info->dir_in[i], features);
195 		if (err < 0)
196 			goto out_bad;
197 		i++;
198 		num--;
199 	}
200 
201 done:
202 	if (*p != end)
203 		goto bad;
204 	return 0;
205 
206 bad:
207 	err = -EIO;
208 out_bad:
209 	pr_err("problem parsing dir contents %d\n", err);
210 	return err;
211 }
212 
213 /*
214  * parse fcntl F_GETLK results
215  */
216 static int parse_reply_info_filelock(void **p, void *end,
217 				     struct ceph_mds_reply_info_parsed *info,
218 				     int features)
219 {
220 	if (*p + sizeof(*info->filelock_reply) > end)
221 		goto bad;
222 
223 	info->filelock_reply = *p;
224 	*p += sizeof(*info->filelock_reply);
225 
226 	if (unlikely(*p != end))
227 		goto bad;
228 	return 0;
229 
230 bad:
231 	return -EIO;
232 }
233 
234 /*
235  * parse extra results
236  */
237 static int parse_reply_info_extra(void **p, void *end,
238 				  struct ceph_mds_reply_info_parsed *info,
239 				  int features)
240 {
241 	if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
242 		return parse_reply_info_filelock(p, end, info, features);
243 	else
244 		return parse_reply_info_dir(p, end, info, features);
245 }
246 
247 /*
248  * parse entire mds reply
249  */
250 static int parse_reply_info(struct ceph_msg *msg,
251 			    struct ceph_mds_reply_info_parsed *info,
252 			    int features)
253 {
254 	void *p, *end;
255 	u32 len;
256 	int err;
257 
258 	info->head = msg->front.iov_base;
259 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
260 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
261 
262 	/* trace */
263 	ceph_decode_32_safe(&p, end, len, bad);
264 	if (len > 0) {
265 		err = parse_reply_info_trace(&p, p+len, info, features);
266 		if (err < 0)
267 			goto out_bad;
268 	}
269 
270 	/* extra */
271 	ceph_decode_32_safe(&p, end, len, bad);
272 	if (len > 0) {
273 		err = parse_reply_info_extra(&p, p+len, info, features);
274 		if (err < 0)
275 			goto out_bad;
276 	}
277 
278 	/* snap blob */
279 	ceph_decode_32_safe(&p, end, len, bad);
280 	info->snapblob_len = len;
281 	info->snapblob = p;
282 	p += len;
283 
284 	if (p != end)
285 		goto bad;
286 	return 0;
287 
288 bad:
289 	err = -EIO;
290 out_bad:
291 	pr_err("mds parse_reply err %d\n", err);
292 	return err;
293 }
294 
295 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
296 {
297 	kfree(info->dir_in);
298 }
299 
300 
301 /*
302  * sessions
303  */
304 static const char *session_state_name(int s)
305 {
306 	switch (s) {
307 	case CEPH_MDS_SESSION_NEW: return "new";
308 	case CEPH_MDS_SESSION_OPENING: return "opening";
309 	case CEPH_MDS_SESSION_OPEN: return "open";
310 	case CEPH_MDS_SESSION_HUNG: return "hung";
311 	case CEPH_MDS_SESSION_CLOSING: return "closing";
312 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
313 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
314 	default: return "???";
315 	}
316 }
317 
318 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
319 {
320 	if (atomic_inc_not_zero(&s->s_ref)) {
321 		dout("mdsc get_session %p %d -> %d\n", s,
322 		     atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
323 		return s;
324 	} else {
325 		dout("mdsc get_session %p 0 -- FAIL", s);
326 		return NULL;
327 	}
328 }
329 
330 void ceph_put_mds_session(struct ceph_mds_session *s)
331 {
332 	dout("mdsc put_session %p %d -> %d\n", s,
333 	     atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
334 	if (atomic_dec_and_test(&s->s_ref)) {
335 		if (s->s_authorizer)
336 		     s->s_mdsc->fsc->client->monc.auth->ops->destroy_authorizer(
337 			     s->s_mdsc->fsc->client->monc.auth,
338 			     s->s_authorizer);
339 		kfree(s);
340 	}
341 }
342 
343 /*
344  * called under mdsc->mutex
345  */
346 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
347 						   int mds)
348 {
349 	struct ceph_mds_session *session;
350 
351 	if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
352 		return NULL;
353 	session = mdsc->sessions[mds];
354 	dout("lookup_mds_session %p %d\n", session,
355 	     atomic_read(&session->s_ref));
356 	get_session(session);
357 	return session;
358 }
359 
360 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
361 {
362 	if (mds >= mdsc->max_sessions)
363 		return false;
364 	return mdsc->sessions[mds];
365 }
366 
367 static int __verify_registered_session(struct ceph_mds_client *mdsc,
368 				       struct ceph_mds_session *s)
369 {
370 	if (s->s_mds >= mdsc->max_sessions ||
371 	    mdsc->sessions[s->s_mds] != s)
372 		return -ENOENT;
373 	return 0;
374 }
375 
376 /*
377  * create+register a new session for given mds.
378  * called under mdsc->mutex.
379  */
380 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
381 						 int mds)
382 {
383 	struct ceph_mds_session *s;
384 
385 	s = kzalloc(sizeof(*s), GFP_NOFS);
386 	if (!s)
387 		return ERR_PTR(-ENOMEM);
388 	s->s_mdsc = mdsc;
389 	s->s_mds = mds;
390 	s->s_state = CEPH_MDS_SESSION_NEW;
391 	s->s_ttl = 0;
392 	s->s_seq = 0;
393 	mutex_init(&s->s_mutex);
394 
395 	ceph_con_init(mdsc->fsc->client->msgr, &s->s_con);
396 	s->s_con.private = s;
397 	s->s_con.ops = &mds_con_ops;
398 	s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS;
399 	s->s_con.peer_name.num = cpu_to_le64(mds);
400 
401 	spin_lock_init(&s->s_cap_lock);
402 	s->s_cap_gen = 0;
403 	s->s_cap_ttl = 0;
404 	s->s_renew_requested = 0;
405 	s->s_renew_seq = 0;
406 	INIT_LIST_HEAD(&s->s_caps);
407 	s->s_nr_caps = 0;
408 	s->s_trim_caps = 0;
409 	atomic_set(&s->s_ref, 1);
410 	INIT_LIST_HEAD(&s->s_waiting);
411 	INIT_LIST_HEAD(&s->s_unsafe);
412 	s->s_num_cap_releases = 0;
413 	s->s_cap_iterator = NULL;
414 	INIT_LIST_HEAD(&s->s_cap_releases);
415 	INIT_LIST_HEAD(&s->s_cap_releases_done);
416 	INIT_LIST_HEAD(&s->s_cap_flushing);
417 	INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
418 
419 	dout("register_session mds%d\n", mds);
420 	if (mds >= mdsc->max_sessions) {
421 		int newmax = 1 << get_count_order(mds+1);
422 		struct ceph_mds_session **sa;
423 
424 		dout("register_session realloc to %d\n", newmax);
425 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
426 		if (sa == NULL)
427 			goto fail_realloc;
428 		if (mdsc->sessions) {
429 			memcpy(sa, mdsc->sessions,
430 			       mdsc->max_sessions * sizeof(void *));
431 			kfree(mdsc->sessions);
432 		}
433 		mdsc->sessions = sa;
434 		mdsc->max_sessions = newmax;
435 	}
436 	mdsc->sessions[mds] = s;
437 	atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
438 
439 	ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
440 
441 	return s;
442 
443 fail_realloc:
444 	kfree(s);
445 	return ERR_PTR(-ENOMEM);
446 }
447 
448 /*
449  * called under mdsc->mutex
450  */
451 static void __unregister_session(struct ceph_mds_client *mdsc,
452 			       struct ceph_mds_session *s)
453 {
454 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
455 	BUG_ON(mdsc->sessions[s->s_mds] != s);
456 	mdsc->sessions[s->s_mds] = NULL;
457 	ceph_con_close(&s->s_con);
458 	ceph_put_mds_session(s);
459 }
460 
461 /*
462  * drop session refs in request.
463  *
464  * should be last request ref, or hold mdsc->mutex
465  */
466 static void put_request_session(struct ceph_mds_request *req)
467 {
468 	if (req->r_session) {
469 		ceph_put_mds_session(req->r_session);
470 		req->r_session = NULL;
471 	}
472 }
473 
474 void ceph_mdsc_release_request(struct kref *kref)
475 {
476 	struct ceph_mds_request *req = container_of(kref,
477 						    struct ceph_mds_request,
478 						    r_kref);
479 	if (req->r_request)
480 		ceph_msg_put(req->r_request);
481 	if (req->r_reply) {
482 		ceph_msg_put(req->r_reply);
483 		destroy_reply_info(&req->r_reply_info);
484 	}
485 	if (req->r_inode) {
486 		ceph_put_cap_refs(ceph_inode(req->r_inode),
487 				  CEPH_CAP_PIN);
488 		iput(req->r_inode);
489 	}
490 	if (req->r_locked_dir)
491 		ceph_put_cap_refs(ceph_inode(req->r_locked_dir),
492 				  CEPH_CAP_PIN);
493 	if (req->r_target_inode)
494 		iput(req->r_target_inode);
495 	if (req->r_dentry)
496 		dput(req->r_dentry);
497 	if (req->r_old_dentry) {
498 		ceph_put_cap_refs(
499 			ceph_inode(req->r_old_dentry->d_parent->d_inode),
500 			CEPH_CAP_PIN);
501 		dput(req->r_old_dentry);
502 	}
503 	kfree(req->r_path1);
504 	kfree(req->r_path2);
505 	put_request_session(req);
506 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
507 	kfree(req);
508 }
509 
510 /*
511  * lookup session, bump ref if found.
512  *
513  * called under mdsc->mutex.
514  */
515 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
516 					     u64 tid)
517 {
518 	struct ceph_mds_request *req;
519 	struct rb_node *n = mdsc->request_tree.rb_node;
520 
521 	while (n) {
522 		req = rb_entry(n, struct ceph_mds_request, r_node);
523 		if (tid < req->r_tid)
524 			n = n->rb_left;
525 		else if (tid > req->r_tid)
526 			n = n->rb_right;
527 		else {
528 			ceph_mdsc_get_request(req);
529 			return req;
530 		}
531 	}
532 	return NULL;
533 }
534 
535 static void __insert_request(struct ceph_mds_client *mdsc,
536 			     struct ceph_mds_request *new)
537 {
538 	struct rb_node **p = &mdsc->request_tree.rb_node;
539 	struct rb_node *parent = NULL;
540 	struct ceph_mds_request *req = NULL;
541 
542 	while (*p) {
543 		parent = *p;
544 		req = rb_entry(parent, struct ceph_mds_request, r_node);
545 		if (new->r_tid < req->r_tid)
546 			p = &(*p)->rb_left;
547 		else if (new->r_tid > req->r_tid)
548 			p = &(*p)->rb_right;
549 		else
550 			BUG();
551 	}
552 
553 	rb_link_node(&new->r_node, parent, p);
554 	rb_insert_color(&new->r_node, &mdsc->request_tree);
555 }
556 
557 /*
558  * Register an in-flight request, and assign a tid.  Link to directory
559  * are modifying (if any).
560  *
561  * Called under mdsc->mutex.
562  */
563 static void __register_request(struct ceph_mds_client *mdsc,
564 			       struct ceph_mds_request *req,
565 			       struct inode *dir)
566 {
567 	req->r_tid = ++mdsc->last_tid;
568 	if (req->r_num_caps)
569 		ceph_reserve_caps(mdsc, &req->r_caps_reservation,
570 				  req->r_num_caps);
571 	dout("__register_request %p tid %lld\n", req, req->r_tid);
572 	ceph_mdsc_get_request(req);
573 	__insert_request(mdsc, req);
574 
575 	req->r_uid = current_fsuid();
576 	req->r_gid = current_fsgid();
577 
578 	if (dir) {
579 		struct ceph_inode_info *ci = ceph_inode(dir);
580 
581 		ihold(dir);
582 		spin_lock(&ci->i_unsafe_lock);
583 		req->r_unsafe_dir = dir;
584 		list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
585 		spin_unlock(&ci->i_unsafe_lock);
586 	}
587 }
588 
589 static void __unregister_request(struct ceph_mds_client *mdsc,
590 				 struct ceph_mds_request *req)
591 {
592 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
593 	rb_erase(&req->r_node, &mdsc->request_tree);
594 	RB_CLEAR_NODE(&req->r_node);
595 
596 	if (req->r_unsafe_dir) {
597 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
598 
599 		spin_lock(&ci->i_unsafe_lock);
600 		list_del_init(&req->r_unsafe_dir_item);
601 		spin_unlock(&ci->i_unsafe_lock);
602 
603 		iput(req->r_unsafe_dir);
604 		req->r_unsafe_dir = NULL;
605 	}
606 
607 	ceph_mdsc_put_request(req);
608 }
609 
610 /*
611  * Choose mds to send request to next.  If there is a hint set in the
612  * request (e.g., due to a prior forward hint from the mds), use that.
613  * Otherwise, consult frag tree and/or caps to identify the
614  * appropriate mds.  If all else fails, choose randomly.
615  *
616  * Called under mdsc->mutex.
617  */
618 struct dentry *get_nonsnap_parent(struct dentry *dentry)
619 {
620 	while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
621 		dentry = dentry->d_parent;
622 	return dentry;
623 }
624 
625 static int __choose_mds(struct ceph_mds_client *mdsc,
626 			struct ceph_mds_request *req)
627 {
628 	struct inode *inode;
629 	struct ceph_inode_info *ci;
630 	struct ceph_cap *cap;
631 	int mode = req->r_direct_mode;
632 	int mds = -1;
633 	u32 hash = req->r_direct_hash;
634 	bool is_hash = req->r_direct_is_hash;
635 
636 	/*
637 	 * is there a specific mds we should try?  ignore hint if we have
638 	 * no session and the mds is not up (active or recovering).
639 	 */
640 	if (req->r_resend_mds >= 0 &&
641 	    (__have_session(mdsc, req->r_resend_mds) ||
642 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
643 		dout("choose_mds using resend_mds mds%d\n",
644 		     req->r_resend_mds);
645 		return req->r_resend_mds;
646 	}
647 
648 	if (mode == USE_RANDOM_MDS)
649 		goto random;
650 
651 	inode = NULL;
652 	if (req->r_inode) {
653 		inode = req->r_inode;
654 	} else if (req->r_dentry) {
655 		struct inode *dir = req->r_dentry->d_parent->d_inode;
656 
657 		if (dir->i_sb != mdsc->fsc->sb) {
658 			/* not this fs! */
659 			inode = req->r_dentry->d_inode;
660 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
661 			/* direct snapped/virtual snapdir requests
662 			 * based on parent dir inode */
663 			struct dentry *dn =
664 				get_nonsnap_parent(req->r_dentry->d_parent);
665 			inode = dn->d_inode;
666 			dout("__choose_mds using nonsnap parent %p\n", inode);
667 		} else if (req->r_dentry->d_inode) {
668 			/* dentry target */
669 			inode = req->r_dentry->d_inode;
670 		} else {
671 			/* dir + name */
672 			inode = dir;
673 			hash = ceph_dentry_hash(req->r_dentry);
674 			is_hash = true;
675 		}
676 	}
677 
678 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
679 	     (int)hash, mode);
680 	if (!inode)
681 		goto random;
682 	ci = ceph_inode(inode);
683 
684 	if (is_hash && S_ISDIR(inode->i_mode)) {
685 		struct ceph_inode_frag frag;
686 		int found;
687 
688 		ceph_choose_frag(ci, hash, &frag, &found);
689 		if (found) {
690 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
691 				u8 r;
692 
693 				/* choose a random replica */
694 				get_random_bytes(&r, 1);
695 				r %= frag.ndist;
696 				mds = frag.dist[r];
697 				dout("choose_mds %p %llx.%llx "
698 				     "frag %u mds%d (%d/%d)\n",
699 				     inode, ceph_vinop(inode),
700 				     frag.frag, mds,
701 				     (int)r, frag.ndist);
702 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
703 				    CEPH_MDS_STATE_ACTIVE)
704 					return mds;
705 			}
706 
707 			/* since this file/dir wasn't known to be
708 			 * replicated, then we want to look for the
709 			 * authoritative mds. */
710 			mode = USE_AUTH_MDS;
711 			if (frag.mds >= 0) {
712 				/* choose auth mds */
713 				mds = frag.mds;
714 				dout("choose_mds %p %llx.%llx "
715 				     "frag %u mds%d (auth)\n",
716 				     inode, ceph_vinop(inode), frag.frag, mds);
717 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
718 				    CEPH_MDS_STATE_ACTIVE)
719 					return mds;
720 			}
721 		}
722 	}
723 
724 	spin_lock(&inode->i_lock);
725 	cap = NULL;
726 	if (mode == USE_AUTH_MDS)
727 		cap = ci->i_auth_cap;
728 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
729 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
730 	if (!cap) {
731 		spin_unlock(&inode->i_lock);
732 		goto random;
733 	}
734 	mds = cap->session->s_mds;
735 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
736 	     inode, ceph_vinop(inode), mds,
737 	     cap == ci->i_auth_cap ? "auth " : "", cap);
738 	spin_unlock(&inode->i_lock);
739 	return mds;
740 
741 random:
742 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
743 	dout("choose_mds chose random mds%d\n", mds);
744 	return mds;
745 }
746 
747 
748 /*
749  * session messages
750  */
751 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
752 {
753 	struct ceph_msg *msg;
754 	struct ceph_mds_session_head *h;
755 
756 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS);
757 	if (!msg) {
758 		pr_err("create_session_msg ENOMEM creating msg\n");
759 		return NULL;
760 	}
761 	h = msg->front.iov_base;
762 	h->op = cpu_to_le32(op);
763 	h->seq = cpu_to_le64(seq);
764 	return msg;
765 }
766 
767 /*
768  * send session open request.
769  *
770  * called under mdsc->mutex
771  */
772 static int __open_session(struct ceph_mds_client *mdsc,
773 			  struct ceph_mds_session *session)
774 {
775 	struct ceph_msg *msg;
776 	int mstate;
777 	int mds = session->s_mds;
778 
779 	/* wait for mds to go active? */
780 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
781 	dout("open_session to mds%d (%s)\n", mds,
782 	     ceph_mds_state_name(mstate));
783 	session->s_state = CEPH_MDS_SESSION_OPENING;
784 	session->s_renew_requested = jiffies;
785 
786 	/* send connect message */
787 	msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
788 	if (!msg)
789 		return -ENOMEM;
790 	ceph_con_send(&session->s_con, msg);
791 	return 0;
792 }
793 
794 /*
795  * open sessions for any export targets for the given mds
796  *
797  * called under mdsc->mutex
798  */
799 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
800 					  struct ceph_mds_session *session)
801 {
802 	struct ceph_mds_info *mi;
803 	struct ceph_mds_session *ts;
804 	int i, mds = session->s_mds;
805 	int target;
806 
807 	if (mds >= mdsc->mdsmap->m_max_mds)
808 		return;
809 	mi = &mdsc->mdsmap->m_info[mds];
810 	dout("open_export_target_sessions for mds%d (%d targets)\n",
811 	     session->s_mds, mi->num_export_targets);
812 
813 	for (i = 0; i < mi->num_export_targets; i++) {
814 		target = mi->export_targets[i];
815 		ts = __ceph_lookup_mds_session(mdsc, target);
816 		if (!ts) {
817 			ts = register_session(mdsc, target);
818 			if (IS_ERR(ts))
819 				return;
820 		}
821 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
822 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
823 			__open_session(mdsc, session);
824 		else
825 			dout(" mds%d target mds%d %p is %s\n", session->s_mds,
826 			     i, ts, session_state_name(ts->s_state));
827 		ceph_put_mds_session(ts);
828 	}
829 }
830 
831 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
832 					   struct ceph_mds_session *session)
833 {
834 	mutex_lock(&mdsc->mutex);
835 	__open_export_target_sessions(mdsc, session);
836 	mutex_unlock(&mdsc->mutex);
837 }
838 
839 /*
840  * session caps
841  */
842 
843 /*
844  * Free preallocated cap messages assigned to this session
845  */
846 static void cleanup_cap_releases(struct ceph_mds_session *session)
847 {
848 	struct ceph_msg *msg;
849 
850 	spin_lock(&session->s_cap_lock);
851 	while (!list_empty(&session->s_cap_releases)) {
852 		msg = list_first_entry(&session->s_cap_releases,
853 				       struct ceph_msg, list_head);
854 		list_del_init(&msg->list_head);
855 		ceph_msg_put(msg);
856 	}
857 	while (!list_empty(&session->s_cap_releases_done)) {
858 		msg = list_first_entry(&session->s_cap_releases_done,
859 				       struct ceph_msg, list_head);
860 		list_del_init(&msg->list_head);
861 		ceph_msg_put(msg);
862 	}
863 	spin_unlock(&session->s_cap_lock);
864 }
865 
866 /*
867  * Helper to safely iterate over all caps associated with a session, with
868  * special care taken to handle a racing __ceph_remove_cap().
869  *
870  * Caller must hold session s_mutex.
871  */
872 static int iterate_session_caps(struct ceph_mds_session *session,
873 				 int (*cb)(struct inode *, struct ceph_cap *,
874 					    void *), void *arg)
875 {
876 	struct list_head *p;
877 	struct ceph_cap *cap;
878 	struct inode *inode, *last_inode = NULL;
879 	struct ceph_cap *old_cap = NULL;
880 	int ret;
881 
882 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
883 	spin_lock(&session->s_cap_lock);
884 	p = session->s_caps.next;
885 	while (p != &session->s_caps) {
886 		cap = list_entry(p, struct ceph_cap, session_caps);
887 		inode = igrab(&cap->ci->vfs_inode);
888 		if (!inode) {
889 			p = p->next;
890 			continue;
891 		}
892 		session->s_cap_iterator = cap;
893 		spin_unlock(&session->s_cap_lock);
894 
895 		if (last_inode) {
896 			iput(last_inode);
897 			last_inode = NULL;
898 		}
899 		if (old_cap) {
900 			ceph_put_cap(session->s_mdsc, old_cap);
901 			old_cap = NULL;
902 		}
903 
904 		ret = cb(inode, cap, arg);
905 		last_inode = inode;
906 
907 		spin_lock(&session->s_cap_lock);
908 		p = p->next;
909 		if (cap->ci == NULL) {
910 			dout("iterate_session_caps  finishing cap %p removal\n",
911 			     cap);
912 			BUG_ON(cap->session != session);
913 			list_del_init(&cap->session_caps);
914 			session->s_nr_caps--;
915 			cap->session = NULL;
916 			old_cap = cap;  /* put_cap it w/o locks held */
917 		}
918 		if (ret < 0)
919 			goto out;
920 	}
921 	ret = 0;
922 out:
923 	session->s_cap_iterator = NULL;
924 	spin_unlock(&session->s_cap_lock);
925 
926 	if (last_inode)
927 		iput(last_inode);
928 	if (old_cap)
929 		ceph_put_cap(session->s_mdsc, old_cap);
930 
931 	return ret;
932 }
933 
934 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
935 				  void *arg)
936 {
937 	struct ceph_inode_info *ci = ceph_inode(inode);
938 	int drop = 0;
939 
940 	dout("removing cap %p, ci is %p, inode is %p\n",
941 	     cap, ci, &ci->vfs_inode);
942 	spin_lock(&inode->i_lock);
943 	__ceph_remove_cap(cap);
944 	if (!__ceph_is_any_real_caps(ci)) {
945 		struct ceph_mds_client *mdsc =
946 			ceph_sb_to_client(inode->i_sb)->mdsc;
947 
948 		spin_lock(&mdsc->cap_dirty_lock);
949 		if (!list_empty(&ci->i_dirty_item)) {
950 			pr_info(" dropping dirty %s state for %p %lld\n",
951 				ceph_cap_string(ci->i_dirty_caps),
952 				inode, ceph_ino(inode));
953 			ci->i_dirty_caps = 0;
954 			list_del_init(&ci->i_dirty_item);
955 			drop = 1;
956 		}
957 		if (!list_empty(&ci->i_flushing_item)) {
958 			pr_info(" dropping dirty+flushing %s state for %p %lld\n",
959 				ceph_cap_string(ci->i_flushing_caps),
960 				inode, ceph_ino(inode));
961 			ci->i_flushing_caps = 0;
962 			list_del_init(&ci->i_flushing_item);
963 			mdsc->num_cap_flushing--;
964 			drop = 1;
965 		}
966 		if (drop && ci->i_wrbuffer_ref) {
967 			pr_info(" dropping dirty data for %p %lld\n",
968 				inode, ceph_ino(inode));
969 			ci->i_wrbuffer_ref = 0;
970 			ci->i_wrbuffer_ref_head = 0;
971 			drop++;
972 		}
973 		spin_unlock(&mdsc->cap_dirty_lock);
974 	}
975 	spin_unlock(&inode->i_lock);
976 	while (drop--)
977 		iput(inode);
978 	return 0;
979 }
980 
981 /*
982  * caller must hold session s_mutex
983  */
984 static void remove_session_caps(struct ceph_mds_session *session)
985 {
986 	dout("remove_session_caps on %p\n", session);
987 	iterate_session_caps(session, remove_session_caps_cb, NULL);
988 	BUG_ON(session->s_nr_caps > 0);
989 	BUG_ON(!list_empty(&session->s_cap_flushing));
990 	cleanup_cap_releases(session);
991 }
992 
993 /*
994  * wake up any threads waiting on this session's caps.  if the cap is
995  * old (didn't get renewed on the client reconnect), remove it now.
996  *
997  * caller must hold s_mutex.
998  */
999 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1000 			      void *arg)
1001 {
1002 	struct ceph_inode_info *ci = ceph_inode(inode);
1003 
1004 	wake_up_all(&ci->i_cap_wq);
1005 	if (arg) {
1006 		spin_lock(&inode->i_lock);
1007 		ci->i_wanted_max_size = 0;
1008 		ci->i_requested_max_size = 0;
1009 		spin_unlock(&inode->i_lock);
1010 	}
1011 	return 0;
1012 }
1013 
1014 static void wake_up_session_caps(struct ceph_mds_session *session,
1015 				 int reconnect)
1016 {
1017 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1018 	iterate_session_caps(session, wake_up_session_cb,
1019 			     (void *)(unsigned long)reconnect);
1020 }
1021 
1022 /*
1023  * Send periodic message to MDS renewing all currently held caps.  The
1024  * ack will reset the expiration for all caps from this session.
1025  *
1026  * caller holds s_mutex
1027  */
1028 static int send_renew_caps(struct ceph_mds_client *mdsc,
1029 			   struct ceph_mds_session *session)
1030 {
1031 	struct ceph_msg *msg;
1032 	int state;
1033 
1034 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1035 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1036 		pr_info("mds%d caps stale\n", session->s_mds);
1037 	session->s_renew_requested = jiffies;
1038 
1039 	/* do not try to renew caps until a recovering mds has reconnected
1040 	 * with its clients. */
1041 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1042 	if (state < CEPH_MDS_STATE_RECONNECT) {
1043 		dout("send_renew_caps ignoring mds%d (%s)\n",
1044 		     session->s_mds, ceph_mds_state_name(state));
1045 		return 0;
1046 	}
1047 
1048 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1049 		ceph_mds_state_name(state));
1050 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1051 				 ++session->s_renew_seq);
1052 	if (!msg)
1053 		return -ENOMEM;
1054 	ceph_con_send(&session->s_con, msg);
1055 	return 0;
1056 }
1057 
1058 /*
1059  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1060  *
1061  * Called under session->s_mutex
1062  */
1063 static void renewed_caps(struct ceph_mds_client *mdsc,
1064 			 struct ceph_mds_session *session, int is_renew)
1065 {
1066 	int was_stale;
1067 	int wake = 0;
1068 
1069 	spin_lock(&session->s_cap_lock);
1070 	was_stale = is_renew && (session->s_cap_ttl == 0 ||
1071 				 time_after_eq(jiffies, session->s_cap_ttl));
1072 
1073 	session->s_cap_ttl = session->s_renew_requested +
1074 		mdsc->mdsmap->m_session_timeout*HZ;
1075 
1076 	if (was_stale) {
1077 		if (time_before(jiffies, session->s_cap_ttl)) {
1078 			pr_info("mds%d caps renewed\n", session->s_mds);
1079 			wake = 1;
1080 		} else {
1081 			pr_info("mds%d caps still stale\n", session->s_mds);
1082 		}
1083 	}
1084 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1085 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1086 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1087 	spin_unlock(&session->s_cap_lock);
1088 
1089 	if (wake)
1090 		wake_up_session_caps(session, 0);
1091 }
1092 
1093 /*
1094  * send a session close request
1095  */
1096 static int request_close_session(struct ceph_mds_client *mdsc,
1097 				 struct ceph_mds_session *session)
1098 {
1099 	struct ceph_msg *msg;
1100 
1101 	dout("request_close_session mds%d state %s seq %lld\n",
1102 	     session->s_mds, session_state_name(session->s_state),
1103 	     session->s_seq);
1104 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1105 	if (!msg)
1106 		return -ENOMEM;
1107 	ceph_con_send(&session->s_con, msg);
1108 	return 0;
1109 }
1110 
1111 /*
1112  * Called with s_mutex held.
1113  */
1114 static int __close_session(struct ceph_mds_client *mdsc,
1115 			 struct ceph_mds_session *session)
1116 {
1117 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1118 		return 0;
1119 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1120 	return request_close_session(mdsc, session);
1121 }
1122 
1123 /*
1124  * Trim old(er) caps.
1125  *
1126  * Because we can't cache an inode without one or more caps, we do
1127  * this indirectly: if a cap is unused, we prune its aliases, at which
1128  * point the inode will hopefully get dropped to.
1129  *
1130  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1131  * memory pressure from the MDS, though, so it needn't be perfect.
1132  */
1133 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1134 {
1135 	struct ceph_mds_session *session = arg;
1136 	struct ceph_inode_info *ci = ceph_inode(inode);
1137 	int used, oissued, mine;
1138 
1139 	if (session->s_trim_caps <= 0)
1140 		return -1;
1141 
1142 	spin_lock(&inode->i_lock);
1143 	mine = cap->issued | cap->implemented;
1144 	used = __ceph_caps_used(ci);
1145 	oissued = __ceph_caps_issued_other(ci, cap);
1146 
1147 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1148 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1149 	     ceph_cap_string(used));
1150 	if (ci->i_dirty_caps)
1151 		goto out;   /* dirty caps */
1152 	if ((used & ~oissued) & mine)
1153 		goto out;   /* we need these caps */
1154 
1155 	session->s_trim_caps--;
1156 	if (oissued) {
1157 		/* we aren't the only cap.. just remove us */
1158 		__ceph_remove_cap(cap);
1159 	} else {
1160 		/* try to drop referring dentries */
1161 		spin_unlock(&inode->i_lock);
1162 		d_prune_aliases(inode);
1163 		dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1164 		     inode, cap, atomic_read(&inode->i_count));
1165 		return 0;
1166 	}
1167 
1168 out:
1169 	spin_unlock(&inode->i_lock);
1170 	return 0;
1171 }
1172 
1173 /*
1174  * Trim session cap count down to some max number.
1175  */
1176 static int trim_caps(struct ceph_mds_client *mdsc,
1177 		     struct ceph_mds_session *session,
1178 		     int max_caps)
1179 {
1180 	int trim_caps = session->s_nr_caps - max_caps;
1181 
1182 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1183 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1184 	if (trim_caps > 0) {
1185 		session->s_trim_caps = trim_caps;
1186 		iterate_session_caps(session, trim_caps_cb, session);
1187 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1188 		     session->s_mds, session->s_nr_caps, max_caps,
1189 			trim_caps - session->s_trim_caps);
1190 		session->s_trim_caps = 0;
1191 	}
1192 	return 0;
1193 }
1194 
1195 /*
1196  * Allocate cap_release messages.  If there is a partially full message
1197  * in the queue, try to allocate enough to cover it's remainder, so that
1198  * we can send it immediately.
1199  *
1200  * Called under s_mutex.
1201  */
1202 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1203 			  struct ceph_mds_session *session)
1204 {
1205 	struct ceph_msg *msg, *partial = NULL;
1206 	struct ceph_mds_cap_release *head;
1207 	int err = -ENOMEM;
1208 	int extra = mdsc->fsc->mount_options->cap_release_safety;
1209 	int num;
1210 
1211 	dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1212 	     extra);
1213 
1214 	spin_lock(&session->s_cap_lock);
1215 
1216 	if (!list_empty(&session->s_cap_releases)) {
1217 		msg = list_first_entry(&session->s_cap_releases,
1218 				       struct ceph_msg,
1219 				 list_head);
1220 		head = msg->front.iov_base;
1221 		num = le32_to_cpu(head->num);
1222 		if (num) {
1223 			dout(" partial %p with (%d/%d)\n", msg, num,
1224 			     (int)CEPH_CAPS_PER_RELEASE);
1225 			extra += CEPH_CAPS_PER_RELEASE - num;
1226 			partial = msg;
1227 		}
1228 	}
1229 	while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1230 		spin_unlock(&session->s_cap_lock);
1231 		msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1232 				   GFP_NOFS);
1233 		if (!msg)
1234 			goto out_unlocked;
1235 		dout("add_cap_releases %p msg %p now %d\n", session, msg,
1236 		     (int)msg->front.iov_len);
1237 		head = msg->front.iov_base;
1238 		head->num = cpu_to_le32(0);
1239 		msg->front.iov_len = sizeof(*head);
1240 		spin_lock(&session->s_cap_lock);
1241 		list_add(&msg->list_head, &session->s_cap_releases);
1242 		session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1243 	}
1244 
1245 	if (partial) {
1246 		head = partial->front.iov_base;
1247 		num = le32_to_cpu(head->num);
1248 		dout(" queueing partial %p with %d/%d\n", partial, num,
1249 		     (int)CEPH_CAPS_PER_RELEASE);
1250 		list_move_tail(&partial->list_head,
1251 			       &session->s_cap_releases_done);
1252 		session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1253 	}
1254 	err = 0;
1255 	spin_unlock(&session->s_cap_lock);
1256 out_unlocked:
1257 	return err;
1258 }
1259 
1260 /*
1261  * flush all dirty inode data to disk.
1262  *
1263  * returns true if we've flushed through want_flush_seq
1264  */
1265 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1266 {
1267 	int mds, ret = 1;
1268 
1269 	dout("check_cap_flush want %lld\n", want_flush_seq);
1270 	mutex_lock(&mdsc->mutex);
1271 	for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1272 		struct ceph_mds_session *session = mdsc->sessions[mds];
1273 
1274 		if (!session)
1275 			continue;
1276 		get_session(session);
1277 		mutex_unlock(&mdsc->mutex);
1278 
1279 		mutex_lock(&session->s_mutex);
1280 		if (!list_empty(&session->s_cap_flushing)) {
1281 			struct ceph_inode_info *ci =
1282 				list_entry(session->s_cap_flushing.next,
1283 					   struct ceph_inode_info,
1284 					   i_flushing_item);
1285 			struct inode *inode = &ci->vfs_inode;
1286 
1287 			spin_lock(&inode->i_lock);
1288 			if (ci->i_cap_flush_seq <= want_flush_seq) {
1289 				dout("check_cap_flush still flushing %p "
1290 				     "seq %lld <= %lld to mds%d\n", inode,
1291 				     ci->i_cap_flush_seq, want_flush_seq,
1292 				     session->s_mds);
1293 				ret = 0;
1294 			}
1295 			spin_unlock(&inode->i_lock);
1296 		}
1297 		mutex_unlock(&session->s_mutex);
1298 		ceph_put_mds_session(session);
1299 
1300 		if (!ret)
1301 			return ret;
1302 		mutex_lock(&mdsc->mutex);
1303 	}
1304 
1305 	mutex_unlock(&mdsc->mutex);
1306 	dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1307 	return ret;
1308 }
1309 
1310 /*
1311  * called under s_mutex
1312  */
1313 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1314 			    struct ceph_mds_session *session)
1315 {
1316 	struct ceph_msg *msg;
1317 
1318 	dout("send_cap_releases mds%d\n", session->s_mds);
1319 	spin_lock(&session->s_cap_lock);
1320 	while (!list_empty(&session->s_cap_releases_done)) {
1321 		msg = list_first_entry(&session->s_cap_releases_done,
1322 				 struct ceph_msg, list_head);
1323 		list_del_init(&msg->list_head);
1324 		spin_unlock(&session->s_cap_lock);
1325 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1326 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1327 		ceph_con_send(&session->s_con, msg);
1328 		spin_lock(&session->s_cap_lock);
1329 	}
1330 	spin_unlock(&session->s_cap_lock);
1331 }
1332 
1333 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1334 				 struct ceph_mds_session *session)
1335 {
1336 	struct ceph_msg *msg;
1337 	struct ceph_mds_cap_release *head;
1338 	unsigned num;
1339 
1340 	dout("discard_cap_releases mds%d\n", session->s_mds);
1341 	spin_lock(&session->s_cap_lock);
1342 
1343 	/* zero out the in-progress message */
1344 	msg = list_first_entry(&session->s_cap_releases,
1345 			       struct ceph_msg, list_head);
1346 	head = msg->front.iov_base;
1347 	num = le32_to_cpu(head->num);
1348 	dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1349 	head->num = cpu_to_le32(0);
1350 	session->s_num_cap_releases += num;
1351 
1352 	/* requeue completed messages */
1353 	while (!list_empty(&session->s_cap_releases_done)) {
1354 		msg = list_first_entry(&session->s_cap_releases_done,
1355 				 struct ceph_msg, list_head);
1356 		list_del_init(&msg->list_head);
1357 
1358 		head = msg->front.iov_base;
1359 		num = le32_to_cpu(head->num);
1360 		dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1361 		     num);
1362 		session->s_num_cap_releases += num;
1363 		head->num = cpu_to_le32(0);
1364 		msg->front.iov_len = sizeof(*head);
1365 		list_add(&msg->list_head, &session->s_cap_releases);
1366 	}
1367 
1368 	spin_unlock(&session->s_cap_lock);
1369 }
1370 
1371 /*
1372  * requests
1373  */
1374 
1375 /*
1376  * Create an mds request.
1377  */
1378 struct ceph_mds_request *
1379 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1380 {
1381 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1382 
1383 	if (!req)
1384 		return ERR_PTR(-ENOMEM);
1385 
1386 	mutex_init(&req->r_fill_mutex);
1387 	req->r_mdsc = mdsc;
1388 	req->r_started = jiffies;
1389 	req->r_resend_mds = -1;
1390 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1391 	req->r_fmode = -1;
1392 	kref_init(&req->r_kref);
1393 	INIT_LIST_HEAD(&req->r_wait);
1394 	init_completion(&req->r_completion);
1395 	init_completion(&req->r_safe_completion);
1396 	INIT_LIST_HEAD(&req->r_unsafe_item);
1397 
1398 	req->r_op = op;
1399 	req->r_direct_mode = mode;
1400 	return req;
1401 }
1402 
1403 /*
1404  * return oldest (lowest) request, tid in request tree, 0 if none.
1405  *
1406  * called under mdsc->mutex.
1407  */
1408 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1409 {
1410 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1411 		return NULL;
1412 	return rb_entry(rb_first(&mdsc->request_tree),
1413 			struct ceph_mds_request, r_node);
1414 }
1415 
1416 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1417 {
1418 	struct ceph_mds_request *req = __get_oldest_req(mdsc);
1419 
1420 	if (req)
1421 		return req->r_tid;
1422 	return 0;
1423 }
1424 
1425 /*
1426  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1427  * on build_path_from_dentry in fs/cifs/dir.c.
1428  *
1429  * If @stop_on_nosnap, generate path relative to the first non-snapped
1430  * inode.
1431  *
1432  * Encode hidden .snap dirs as a double /, i.e.
1433  *   foo/.snap/bar -> foo//bar
1434  */
1435 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1436 			   int stop_on_nosnap)
1437 {
1438 	struct dentry *temp;
1439 	char *path;
1440 	int len, pos;
1441 
1442 	if (dentry == NULL)
1443 		return ERR_PTR(-EINVAL);
1444 
1445 retry:
1446 	len = 0;
1447 	for (temp = dentry; !IS_ROOT(temp);) {
1448 		struct inode *inode = temp->d_inode;
1449 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1450 			len++;  /* slash only */
1451 		else if (stop_on_nosnap && inode &&
1452 			 ceph_snap(inode) == CEPH_NOSNAP)
1453 			break;
1454 		else
1455 			len += 1 + temp->d_name.len;
1456 		temp = temp->d_parent;
1457 		if (temp == NULL) {
1458 			pr_err("build_path corrupt dentry %p\n", dentry);
1459 			return ERR_PTR(-EINVAL);
1460 		}
1461 	}
1462 	if (len)
1463 		len--;  /* no leading '/' */
1464 
1465 	path = kmalloc(len+1, GFP_NOFS);
1466 	if (path == NULL)
1467 		return ERR_PTR(-ENOMEM);
1468 	pos = len;
1469 	path[pos] = 0;	/* trailing null */
1470 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1471 		struct inode *inode = temp->d_inode;
1472 
1473 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1474 			dout("build_path path+%d: %p SNAPDIR\n",
1475 			     pos, temp);
1476 		} else if (stop_on_nosnap && inode &&
1477 			   ceph_snap(inode) == CEPH_NOSNAP) {
1478 			break;
1479 		} else {
1480 			pos -= temp->d_name.len;
1481 			if (pos < 0)
1482 				break;
1483 			strncpy(path + pos, temp->d_name.name,
1484 				temp->d_name.len);
1485 		}
1486 		if (pos)
1487 			path[--pos] = '/';
1488 		temp = temp->d_parent;
1489 		if (temp == NULL) {
1490 			pr_err("build_path corrupt dentry\n");
1491 			kfree(path);
1492 			return ERR_PTR(-EINVAL);
1493 		}
1494 	}
1495 	if (pos != 0) {
1496 		pr_err("build_path did not end path lookup where "
1497 		       "expected, namelen is %d, pos is %d\n", len, pos);
1498 		/* presumably this is only possible if racing with a
1499 		   rename of one of the parent directories (we can not
1500 		   lock the dentries above us to prevent this, but
1501 		   retrying should be harmless) */
1502 		kfree(path);
1503 		goto retry;
1504 	}
1505 
1506 	*base = ceph_ino(temp->d_inode);
1507 	*plen = len;
1508 	dout("build_path on %p %d built %llx '%.*s'\n",
1509 	     dentry, dentry->d_count, *base, len, path);
1510 	return path;
1511 }
1512 
1513 static int build_dentry_path(struct dentry *dentry,
1514 			     const char **ppath, int *ppathlen, u64 *pino,
1515 			     int *pfreepath)
1516 {
1517 	char *path;
1518 
1519 	if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1520 		*pino = ceph_ino(dentry->d_parent->d_inode);
1521 		*ppath = dentry->d_name.name;
1522 		*ppathlen = dentry->d_name.len;
1523 		return 0;
1524 	}
1525 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1526 	if (IS_ERR(path))
1527 		return PTR_ERR(path);
1528 	*ppath = path;
1529 	*pfreepath = 1;
1530 	return 0;
1531 }
1532 
1533 static int build_inode_path(struct inode *inode,
1534 			    const char **ppath, int *ppathlen, u64 *pino,
1535 			    int *pfreepath)
1536 {
1537 	struct dentry *dentry;
1538 	char *path;
1539 
1540 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1541 		*pino = ceph_ino(inode);
1542 		*ppathlen = 0;
1543 		return 0;
1544 	}
1545 	dentry = d_find_alias(inode);
1546 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1547 	dput(dentry);
1548 	if (IS_ERR(path))
1549 		return PTR_ERR(path);
1550 	*ppath = path;
1551 	*pfreepath = 1;
1552 	return 0;
1553 }
1554 
1555 /*
1556  * request arguments may be specified via an inode *, a dentry *, or
1557  * an explicit ino+path.
1558  */
1559 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1560 				  const char *rpath, u64 rino,
1561 				  const char **ppath, int *pathlen,
1562 				  u64 *ino, int *freepath)
1563 {
1564 	int r = 0;
1565 
1566 	if (rinode) {
1567 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1568 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1569 		     ceph_snap(rinode));
1570 	} else if (rdentry) {
1571 		r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1572 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1573 		     *ppath);
1574 	} else if (rpath) {
1575 		*ino = rino;
1576 		*ppath = rpath;
1577 		*pathlen = strlen(rpath);
1578 		dout(" path %.*s\n", *pathlen, rpath);
1579 	}
1580 
1581 	return r;
1582 }
1583 
1584 /*
1585  * called under mdsc->mutex
1586  */
1587 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1588 					       struct ceph_mds_request *req,
1589 					       int mds)
1590 {
1591 	struct ceph_msg *msg;
1592 	struct ceph_mds_request_head *head;
1593 	const char *path1 = NULL;
1594 	const char *path2 = NULL;
1595 	u64 ino1 = 0, ino2 = 0;
1596 	int pathlen1 = 0, pathlen2 = 0;
1597 	int freepath1 = 0, freepath2 = 0;
1598 	int len;
1599 	u16 releases;
1600 	void *p, *end;
1601 	int ret;
1602 
1603 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
1604 			      req->r_path1, req->r_ino1.ino,
1605 			      &path1, &pathlen1, &ino1, &freepath1);
1606 	if (ret < 0) {
1607 		msg = ERR_PTR(ret);
1608 		goto out;
1609 	}
1610 
1611 	ret = set_request_path_attr(NULL, req->r_old_dentry,
1612 			      req->r_path2, req->r_ino2.ino,
1613 			      &path2, &pathlen2, &ino2, &freepath2);
1614 	if (ret < 0) {
1615 		msg = ERR_PTR(ret);
1616 		goto out_free1;
1617 	}
1618 
1619 	len = sizeof(*head) +
1620 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1621 
1622 	/* calculate (max) length for cap releases */
1623 	len += sizeof(struct ceph_mds_request_release) *
1624 		(!!req->r_inode_drop + !!req->r_dentry_drop +
1625 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1626 	if (req->r_dentry_drop)
1627 		len += req->r_dentry->d_name.len;
1628 	if (req->r_old_dentry_drop)
1629 		len += req->r_old_dentry->d_name.len;
1630 
1631 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS);
1632 	if (!msg) {
1633 		msg = ERR_PTR(-ENOMEM);
1634 		goto out_free2;
1635 	}
1636 
1637 	msg->hdr.tid = cpu_to_le64(req->r_tid);
1638 
1639 	head = msg->front.iov_base;
1640 	p = msg->front.iov_base + sizeof(*head);
1641 	end = msg->front.iov_base + msg->front.iov_len;
1642 
1643 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1644 	head->op = cpu_to_le32(req->r_op);
1645 	head->caller_uid = cpu_to_le32(req->r_uid);
1646 	head->caller_gid = cpu_to_le32(req->r_gid);
1647 	head->args = req->r_args;
1648 
1649 	ceph_encode_filepath(&p, end, ino1, path1);
1650 	ceph_encode_filepath(&p, end, ino2, path2);
1651 
1652 	/* make note of release offset, in case we need to replay */
1653 	req->r_request_release_offset = p - msg->front.iov_base;
1654 
1655 	/* cap releases */
1656 	releases = 0;
1657 	if (req->r_inode_drop)
1658 		releases += ceph_encode_inode_release(&p,
1659 		      req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1660 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
1661 	if (req->r_dentry_drop)
1662 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
1663 		       mds, req->r_dentry_drop, req->r_dentry_unless);
1664 	if (req->r_old_dentry_drop)
1665 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1666 		       mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1667 	if (req->r_old_inode_drop)
1668 		releases += ceph_encode_inode_release(&p,
1669 		      req->r_old_dentry->d_inode,
1670 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1671 	head->num_releases = cpu_to_le16(releases);
1672 
1673 	BUG_ON(p > end);
1674 	msg->front.iov_len = p - msg->front.iov_base;
1675 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1676 
1677 	msg->pages = req->r_pages;
1678 	msg->nr_pages = req->r_num_pages;
1679 	msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1680 	msg->hdr.data_off = cpu_to_le16(0);
1681 
1682 out_free2:
1683 	if (freepath2)
1684 		kfree((char *)path2);
1685 out_free1:
1686 	if (freepath1)
1687 		kfree((char *)path1);
1688 out:
1689 	return msg;
1690 }
1691 
1692 /*
1693  * called under mdsc->mutex if error, under no mutex if
1694  * success.
1695  */
1696 static void complete_request(struct ceph_mds_client *mdsc,
1697 			     struct ceph_mds_request *req)
1698 {
1699 	if (req->r_callback)
1700 		req->r_callback(mdsc, req);
1701 	else
1702 		complete_all(&req->r_completion);
1703 }
1704 
1705 /*
1706  * called under mdsc->mutex
1707  */
1708 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1709 				  struct ceph_mds_request *req,
1710 				  int mds)
1711 {
1712 	struct ceph_mds_request_head *rhead;
1713 	struct ceph_msg *msg;
1714 	int flags = 0;
1715 
1716 	req->r_attempts++;
1717 	if (req->r_inode) {
1718 		struct ceph_cap *cap =
1719 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1720 
1721 		if (cap)
1722 			req->r_sent_on_mseq = cap->mseq;
1723 		else
1724 			req->r_sent_on_mseq = -1;
1725 	}
1726 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1727 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1728 
1729 	if (req->r_got_unsafe) {
1730 		/*
1731 		 * Replay.  Do not regenerate message (and rebuild
1732 		 * paths, etc.); just use the original message.
1733 		 * Rebuilding paths will break for renames because
1734 		 * d_move mangles the src name.
1735 		 */
1736 		msg = req->r_request;
1737 		rhead = msg->front.iov_base;
1738 
1739 		flags = le32_to_cpu(rhead->flags);
1740 		flags |= CEPH_MDS_FLAG_REPLAY;
1741 		rhead->flags = cpu_to_le32(flags);
1742 
1743 		if (req->r_target_inode)
1744 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1745 
1746 		rhead->num_retry = req->r_attempts - 1;
1747 
1748 		/* remove cap/dentry releases from message */
1749 		rhead->num_releases = 0;
1750 		msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1751 		msg->front.iov_len = req->r_request_release_offset;
1752 		return 0;
1753 	}
1754 
1755 	if (req->r_request) {
1756 		ceph_msg_put(req->r_request);
1757 		req->r_request = NULL;
1758 	}
1759 	msg = create_request_message(mdsc, req, mds);
1760 	if (IS_ERR(msg)) {
1761 		req->r_err = PTR_ERR(msg);
1762 		complete_request(mdsc, req);
1763 		return PTR_ERR(msg);
1764 	}
1765 	req->r_request = msg;
1766 
1767 	rhead = msg->front.iov_base;
1768 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1769 	if (req->r_got_unsafe)
1770 		flags |= CEPH_MDS_FLAG_REPLAY;
1771 	if (req->r_locked_dir)
1772 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1773 	rhead->flags = cpu_to_le32(flags);
1774 	rhead->num_fwd = req->r_num_fwd;
1775 	rhead->num_retry = req->r_attempts - 1;
1776 	rhead->ino = 0;
1777 
1778 	dout(" r_locked_dir = %p\n", req->r_locked_dir);
1779 	return 0;
1780 }
1781 
1782 /*
1783  * send request, or put it on the appropriate wait list.
1784  */
1785 static int __do_request(struct ceph_mds_client *mdsc,
1786 			struct ceph_mds_request *req)
1787 {
1788 	struct ceph_mds_session *session = NULL;
1789 	int mds = -1;
1790 	int err = -EAGAIN;
1791 
1792 	if (req->r_err || req->r_got_result)
1793 		goto out;
1794 
1795 	if (req->r_timeout &&
1796 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1797 		dout("do_request timed out\n");
1798 		err = -EIO;
1799 		goto finish;
1800 	}
1801 
1802 	put_request_session(req);
1803 
1804 	mds = __choose_mds(mdsc, req);
1805 	if (mds < 0 ||
1806 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1807 		dout("do_request no mds or not active, waiting for map\n");
1808 		list_add(&req->r_wait, &mdsc->waiting_for_map);
1809 		goto out;
1810 	}
1811 
1812 	/* get, open session */
1813 	session = __ceph_lookup_mds_session(mdsc, mds);
1814 	if (!session) {
1815 		session = register_session(mdsc, mds);
1816 		if (IS_ERR(session)) {
1817 			err = PTR_ERR(session);
1818 			goto finish;
1819 		}
1820 	}
1821 	req->r_session = get_session(session);
1822 
1823 	dout("do_request mds%d session %p state %s\n", mds, session,
1824 	     session_state_name(session->s_state));
1825 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1826 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
1827 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
1828 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
1829 			__open_session(mdsc, session);
1830 		list_add(&req->r_wait, &session->s_waiting);
1831 		goto out_session;
1832 	}
1833 
1834 	/* send request */
1835 	req->r_resend_mds = -1;   /* forget any previous mds hint */
1836 
1837 	if (req->r_request_started == 0)   /* note request start time */
1838 		req->r_request_started = jiffies;
1839 
1840 	err = __prepare_send_request(mdsc, req, mds);
1841 	if (!err) {
1842 		ceph_msg_get(req->r_request);
1843 		ceph_con_send(&session->s_con, req->r_request);
1844 	}
1845 
1846 out_session:
1847 	ceph_put_mds_session(session);
1848 out:
1849 	return err;
1850 
1851 finish:
1852 	req->r_err = err;
1853 	complete_request(mdsc, req);
1854 	goto out;
1855 }
1856 
1857 /*
1858  * called under mdsc->mutex
1859  */
1860 static void __wake_requests(struct ceph_mds_client *mdsc,
1861 			    struct list_head *head)
1862 {
1863 	struct ceph_mds_request *req, *nreq;
1864 
1865 	list_for_each_entry_safe(req, nreq, head, r_wait) {
1866 		list_del_init(&req->r_wait);
1867 		__do_request(mdsc, req);
1868 	}
1869 }
1870 
1871 /*
1872  * Wake up threads with requests pending for @mds, so that they can
1873  * resubmit their requests to a possibly different mds.
1874  */
1875 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1876 {
1877 	struct ceph_mds_request *req;
1878 	struct rb_node *p;
1879 
1880 	dout("kick_requests mds%d\n", mds);
1881 	for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1882 		req = rb_entry(p, struct ceph_mds_request, r_node);
1883 		if (req->r_got_unsafe)
1884 			continue;
1885 		if (req->r_session &&
1886 		    req->r_session->s_mds == mds) {
1887 			dout(" kicking tid %llu\n", req->r_tid);
1888 			__do_request(mdsc, req);
1889 		}
1890 	}
1891 }
1892 
1893 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1894 			      struct ceph_mds_request *req)
1895 {
1896 	dout("submit_request on %p\n", req);
1897 	mutex_lock(&mdsc->mutex);
1898 	__register_request(mdsc, req, NULL);
1899 	__do_request(mdsc, req);
1900 	mutex_unlock(&mdsc->mutex);
1901 }
1902 
1903 /*
1904  * Synchrously perform an mds request.  Take care of all of the
1905  * session setup, forwarding, retry details.
1906  */
1907 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1908 			 struct inode *dir,
1909 			 struct ceph_mds_request *req)
1910 {
1911 	int err;
1912 
1913 	dout("do_request on %p\n", req);
1914 
1915 	/* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1916 	if (req->r_inode)
1917 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1918 	if (req->r_locked_dir)
1919 		ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1920 	if (req->r_old_dentry)
1921 		ceph_get_cap_refs(
1922 			ceph_inode(req->r_old_dentry->d_parent->d_inode),
1923 			CEPH_CAP_PIN);
1924 
1925 	/* issue */
1926 	mutex_lock(&mdsc->mutex);
1927 	__register_request(mdsc, req, dir);
1928 	__do_request(mdsc, req);
1929 
1930 	if (req->r_err) {
1931 		err = req->r_err;
1932 		__unregister_request(mdsc, req);
1933 		dout("do_request early error %d\n", err);
1934 		goto out;
1935 	}
1936 
1937 	/* wait */
1938 	mutex_unlock(&mdsc->mutex);
1939 	dout("do_request waiting\n");
1940 	if (req->r_timeout) {
1941 		err = (long)wait_for_completion_killable_timeout(
1942 			&req->r_completion, req->r_timeout);
1943 		if (err == 0)
1944 			err = -EIO;
1945 	} else {
1946 		err = wait_for_completion_killable(&req->r_completion);
1947 	}
1948 	dout("do_request waited, got %d\n", err);
1949 	mutex_lock(&mdsc->mutex);
1950 
1951 	/* only abort if we didn't race with a real reply */
1952 	if (req->r_got_result) {
1953 		err = le32_to_cpu(req->r_reply_info.head->result);
1954 	} else if (err < 0) {
1955 		dout("aborted request %lld with %d\n", req->r_tid, err);
1956 
1957 		/*
1958 		 * ensure we aren't running concurrently with
1959 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
1960 		 * rely on locks (dir mutex) held by our caller.
1961 		 */
1962 		mutex_lock(&req->r_fill_mutex);
1963 		req->r_err = err;
1964 		req->r_aborted = true;
1965 		mutex_unlock(&req->r_fill_mutex);
1966 
1967 		if (req->r_locked_dir &&
1968 		    (req->r_op & CEPH_MDS_OP_WRITE))
1969 			ceph_invalidate_dir_request(req);
1970 	} else {
1971 		err = req->r_err;
1972 	}
1973 
1974 out:
1975 	mutex_unlock(&mdsc->mutex);
1976 	dout("do_request %p done, result %d\n", req, err);
1977 	return err;
1978 }
1979 
1980 /*
1981  * Invalidate dir I_COMPLETE, dentry lease state on an aborted MDS
1982  * namespace request.
1983  */
1984 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
1985 {
1986 	struct inode *inode = req->r_locked_dir;
1987 	struct ceph_inode_info *ci = ceph_inode(inode);
1988 
1989 	dout("invalidate_dir_request %p (I_COMPLETE, lease(s))\n", inode);
1990 	spin_lock(&inode->i_lock);
1991 	ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
1992 	ci->i_release_count++;
1993 	spin_unlock(&inode->i_lock);
1994 
1995 	if (req->r_dentry)
1996 		ceph_invalidate_dentry_lease(req->r_dentry);
1997 	if (req->r_old_dentry)
1998 		ceph_invalidate_dentry_lease(req->r_old_dentry);
1999 }
2000 
2001 /*
2002  * Handle mds reply.
2003  *
2004  * We take the session mutex and parse and process the reply immediately.
2005  * This preserves the logical ordering of replies, capabilities, etc., sent
2006  * by the MDS as they are applied to our local cache.
2007  */
2008 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2009 {
2010 	struct ceph_mds_client *mdsc = session->s_mdsc;
2011 	struct ceph_mds_request *req;
2012 	struct ceph_mds_reply_head *head = msg->front.iov_base;
2013 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2014 	u64 tid;
2015 	int err, result;
2016 	int mds = session->s_mds;
2017 
2018 	if (msg->front.iov_len < sizeof(*head)) {
2019 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2020 		ceph_msg_dump(msg);
2021 		return;
2022 	}
2023 
2024 	/* get request, session */
2025 	tid = le64_to_cpu(msg->hdr.tid);
2026 	mutex_lock(&mdsc->mutex);
2027 	req = __lookup_request(mdsc, tid);
2028 	if (!req) {
2029 		dout("handle_reply on unknown tid %llu\n", tid);
2030 		mutex_unlock(&mdsc->mutex);
2031 		return;
2032 	}
2033 	dout("handle_reply %p\n", req);
2034 
2035 	/* correct session? */
2036 	if (req->r_session != session) {
2037 		pr_err("mdsc_handle_reply got %llu on session mds%d"
2038 		       " not mds%d\n", tid, session->s_mds,
2039 		       req->r_session ? req->r_session->s_mds : -1);
2040 		mutex_unlock(&mdsc->mutex);
2041 		goto out;
2042 	}
2043 
2044 	/* dup? */
2045 	if ((req->r_got_unsafe && !head->safe) ||
2046 	    (req->r_got_safe && head->safe)) {
2047 		pr_warning("got a dup %s reply on %llu from mds%d\n",
2048 			   head->safe ? "safe" : "unsafe", tid, mds);
2049 		mutex_unlock(&mdsc->mutex);
2050 		goto out;
2051 	}
2052 	if (req->r_got_safe && !head->safe) {
2053 		pr_warning("got unsafe after safe on %llu from mds%d\n",
2054 			   tid, mds);
2055 		mutex_unlock(&mdsc->mutex);
2056 		goto out;
2057 	}
2058 
2059 	result = le32_to_cpu(head->result);
2060 
2061 	/*
2062 	 * Handle an ESTALE
2063 	 * if we're not talking to the authority, send to them
2064 	 * if the authority has changed while we weren't looking,
2065 	 * send to new authority
2066 	 * Otherwise we just have to return an ESTALE
2067 	 */
2068 	if (result == -ESTALE) {
2069 		dout("got ESTALE on request %llu", req->r_tid);
2070 		if (!req->r_inode) {
2071 			/* do nothing; not an authority problem */
2072 		} else if (req->r_direct_mode != USE_AUTH_MDS) {
2073 			dout("not using auth, setting for that now");
2074 			req->r_direct_mode = USE_AUTH_MDS;
2075 			__do_request(mdsc, req);
2076 			mutex_unlock(&mdsc->mutex);
2077 			goto out;
2078 		} else  {
2079 			struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2080 			struct ceph_cap *cap = NULL;
2081 
2082 			if (req->r_session)
2083 				cap = ceph_get_cap_for_mds(ci,
2084 						   req->r_session->s_mds);
2085 
2086 			dout("already using auth");
2087 			if ((!cap || cap != ci->i_auth_cap) ||
2088 			    (cap->mseq != req->r_sent_on_mseq)) {
2089 				dout("but cap changed, so resending");
2090 				__do_request(mdsc, req);
2091 				mutex_unlock(&mdsc->mutex);
2092 				goto out;
2093 			}
2094 		}
2095 		dout("have to return ESTALE on request %llu", req->r_tid);
2096 	}
2097 
2098 
2099 	if (head->safe) {
2100 		req->r_got_safe = true;
2101 		__unregister_request(mdsc, req);
2102 		complete_all(&req->r_safe_completion);
2103 
2104 		if (req->r_got_unsafe) {
2105 			/*
2106 			 * We already handled the unsafe response, now do the
2107 			 * cleanup.  No need to examine the response; the MDS
2108 			 * doesn't include any result info in the safe
2109 			 * response.  And even if it did, there is nothing
2110 			 * useful we could do with a revised return value.
2111 			 */
2112 			dout("got safe reply %llu, mds%d\n", tid, mds);
2113 			list_del_init(&req->r_unsafe_item);
2114 
2115 			/* last unsafe request during umount? */
2116 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2117 				complete_all(&mdsc->safe_umount_waiters);
2118 			mutex_unlock(&mdsc->mutex);
2119 			goto out;
2120 		}
2121 	} else {
2122 		req->r_got_unsafe = true;
2123 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2124 	}
2125 
2126 	dout("handle_reply tid %lld result %d\n", tid, result);
2127 	rinfo = &req->r_reply_info;
2128 	err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2129 	mutex_unlock(&mdsc->mutex);
2130 
2131 	mutex_lock(&session->s_mutex);
2132 	if (err < 0) {
2133 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2134 		ceph_msg_dump(msg);
2135 		goto out_err;
2136 	}
2137 
2138 	/* snap trace */
2139 	if (rinfo->snapblob_len) {
2140 		down_write(&mdsc->snap_rwsem);
2141 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2142 			       rinfo->snapblob + rinfo->snapblob_len,
2143 			       le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2144 		downgrade_write(&mdsc->snap_rwsem);
2145 	} else {
2146 		down_read(&mdsc->snap_rwsem);
2147 	}
2148 
2149 	/* insert trace into our cache */
2150 	mutex_lock(&req->r_fill_mutex);
2151 	err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2152 	if (err == 0) {
2153 		if (result == 0 && req->r_op != CEPH_MDS_OP_GETFILELOCK &&
2154 		    rinfo->dir_nr)
2155 			ceph_readdir_prepopulate(req, req->r_session);
2156 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2157 	}
2158 	mutex_unlock(&req->r_fill_mutex);
2159 
2160 	up_read(&mdsc->snap_rwsem);
2161 out_err:
2162 	mutex_lock(&mdsc->mutex);
2163 	if (!req->r_aborted) {
2164 		if (err) {
2165 			req->r_err = err;
2166 		} else {
2167 			req->r_reply = msg;
2168 			ceph_msg_get(msg);
2169 			req->r_got_result = true;
2170 		}
2171 	} else {
2172 		dout("reply arrived after request %lld was aborted\n", tid);
2173 	}
2174 	mutex_unlock(&mdsc->mutex);
2175 
2176 	ceph_add_cap_releases(mdsc, req->r_session);
2177 	mutex_unlock(&session->s_mutex);
2178 
2179 	/* kick calling process */
2180 	complete_request(mdsc, req);
2181 out:
2182 	ceph_mdsc_put_request(req);
2183 	return;
2184 }
2185 
2186 
2187 
2188 /*
2189  * handle mds notification that our request has been forwarded.
2190  */
2191 static void handle_forward(struct ceph_mds_client *mdsc,
2192 			   struct ceph_mds_session *session,
2193 			   struct ceph_msg *msg)
2194 {
2195 	struct ceph_mds_request *req;
2196 	u64 tid = le64_to_cpu(msg->hdr.tid);
2197 	u32 next_mds;
2198 	u32 fwd_seq;
2199 	int err = -EINVAL;
2200 	void *p = msg->front.iov_base;
2201 	void *end = p + msg->front.iov_len;
2202 
2203 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2204 	next_mds = ceph_decode_32(&p);
2205 	fwd_seq = ceph_decode_32(&p);
2206 
2207 	mutex_lock(&mdsc->mutex);
2208 	req = __lookup_request(mdsc, tid);
2209 	if (!req) {
2210 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2211 		goto out;  /* dup reply? */
2212 	}
2213 
2214 	if (req->r_aborted) {
2215 		dout("forward tid %llu aborted, unregistering\n", tid);
2216 		__unregister_request(mdsc, req);
2217 	} else if (fwd_seq <= req->r_num_fwd) {
2218 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2219 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2220 	} else {
2221 		/* resend. forward race not possible; mds would drop */
2222 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2223 		BUG_ON(req->r_err);
2224 		BUG_ON(req->r_got_result);
2225 		req->r_num_fwd = fwd_seq;
2226 		req->r_resend_mds = next_mds;
2227 		put_request_session(req);
2228 		__do_request(mdsc, req);
2229 	}
2230 	ceph_mdsc_put_request(req);
2231 out:
2232 	mutex_unlock(&mdsc->mutex);
2233 	return;
2234 
2235 bad:
2236 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2237 }
2238 
2239 /*
2240  * handle a mds session control message
2241  */
2242 static void handle_session(struct ceph_mds_session *session,
2243 			   struct ceph_msg *msg)
2244 {
2245 	struct ceph_mds_client *mdsc = session->s_mdsc;
2246 	u32 op;
2247 	u64 seq;
2248 	int mds = session->s_mds;
2249 	struct ceph_mds_session_head *h = msg->front.iov_base;
2250 	int wake = 0;
2251 
2252 	/* decode */
2253 	if (msg->front.iov_len != sizeof(*h))
2254 		goto bad;
2255 	op = le32_to_cpu(h->op);
2256 	seq = le64_to_cpu(h->seq);
2257 
2258 	mutex_lock(&mdsc->mutex);
2259 	if (op == CEPH_SESSION_CLOSE)
2260 		__unregister_session(mdsc, session);
2261 	/* FIXME: this ttl calculation is generous */
2262 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2263 	mutex_unlock(&mdsc->mutex);
2264 
2265 	mutex_lock(&session->s_mutex);
2266 
2267 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2268 	     mds, ceph_session_op_name(op), session,
2269 	     session_state_name(session->s_state), seq);
2270 
2271 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2272 		session->s_state = CEPH_MDS_SESSION_OPEN;
2273 		pr_info("mds%d came back\n", session->s_mds);
2274 	}
2275 
2276 	switch (op) {
2277 	case CEPH_SESSION_OPEN:
2278 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2279 			pr_info("mds%d reconnect success\n", session->s_mds);
2280 		session->s_state = CEPH_MDS_SESSION_OPEN;
2281 		renewed_caps(mdsc, session, 0);
2282 		wake = 1;
2283 		if (mdsc->stopping)
2284 			__close_session(mdsc, session);
2285 		break;
2286 
2287 	case CEPH_SESSION_RENEWCAPS:
2288 		if (session->s_renew_seq == seq)
2289 			renewed_caps(mdsc, session, 1);
2290 		break;
2291 
2292 	case CEPH_SESSION_CLOSE:
2293 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2294 			pr_info("mds%d reconnect denied\n", session->s_mds);
2295 		remove_session_caps(session);
2296 		wake = 1; /* for good measure */
2297 		wake_up_all(&mdsc->session_close_wq);
2298 		kick_requests(mdsc, mds);
2299 		break;
2300 
2301 	case CEPH_SESSION_STALE:
2302 		pr_info("mds%d caps went stale, renewing\n",
2303 			session->s_mds);
2304 		spin_lock(&session->s_cap_lock);
2305 		session->s_cap_gen++;
2306 		session->s_cap_ttl = 0;
2307 		spin_unlock(&session->s_cap_lock);
2308 		send_renew_caps(mdsc, session);
2309 		break;
2310 
2311 	case CEPH_SESSION_RECALL_STATE:
2312 		trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2313 		break;
2314 
2315 	default:
2316 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2317 		WARN_ON(1);
2318 	}
2319 
2320 	mutex_unlock(&session->s_mutex);
2321 	if (wake) {
2322 		mutex_lock(&mdsc->mutex);
2323 		__wake_requests(mdsc, &session->s_waiting);
2324 		mutex_unlock(&mdsc->mutex);
2325 	}
2326 	return;
2327 
2328 bad:
2329 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2330 	       (int)msg->front.iov_len);
2331 	ceph_msg_dump(msg);
2332 	return;
2333 }
2334 
2335 
2336 /*
2337  * called under session->mutex.
2338  */
2339 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2340 				   struct ceph_mds_session *session)
2341 {
2342 	struct ceph_mds_request *req, *nreq;
2343 	int err;
2344 
2345 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2346 
2347 	mutex_lock(&mdsc->mutex);
2348 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2349 		err = __prepare_send_request(mdsc, req, session->s_mds);
2350 		if (!err) {
2351 			ceph_msg_get(req->r_request);
2352 			ceph_con_send(&session->s_con, req->r_request);
2353 		}
2354 	}
2355 	mutex_unlock(&mdsc->mutex);
2356 }
2357 
2358 /*
2359  * Encode information about a cap for a reconnect with the MDS.
2360  */
2361 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2362 			  void *arg)
2363 {
2364 	union {
2365 		struct ceph_mds_cap_reconnect v2;
2366 		struct ceph_mds_cap_reconnect_v1 v1;
2367 	} rec;
2368 	size_t reclen;
2369 	struct ceph_inode_info *ci;
2370 	struct ceph_reconnect_state *recon_state = arg;
2371 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2372 	char *path;
2373 	int pathlen, err;
2374 	u64 pathbase;
2375 	struct dentry *dentry;
2376 
2377 	ci = cap->ci;
2378 
2379 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2380 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2381 	     ceph_cap_string(cap->issued));
2382 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2383 	if (err)
2384 		return err;
2385 
2386 	dentry = d_find_alias(inode);
2387 	if (dentry) {
2388 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2389 		if (IS_ERR(path)) {
2390 			err = PTR_ERR(path);
2391 			goto out_dput;
2392 		}
2393 	} else {
2394 		path = NULL;
2395 		pathlen = 0;
2396 	}
2397 	err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2398 	if (err)
2399 		goto out_free;
2400 
2401 	spin_lock(&inode->i_lock);
2402 	cap->seq = 0;        /* reset cap seq */
2403 	cap->issue_seq = 0;  /* and issue_seq */
2404 
2405 	if (recon_state->flock) {
2406 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2407 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2408 		rec.v2.issued = cpu_to_le32(cap->issued);
2409 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2410 		rec.v2.pathbase = cpu_to_le64(pathbase);
2411 		rec.v2.flock_len = 0;
2412 		reclen = sizeof(rec.v2);
2413 	} else {
2414 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2415 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2416 		rec.v1.issued = cpu_to_le32(cap->issued);
2417 		rec.v1.size = cpu_to_le64(inode->i_size);
2418 		ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2419 		ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2420 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2421 		rec.v1.pathbase = cpu_to_le64(pathbase);
2422 		reclen = sizeof(rec.v1);
2423 	}
2424 	spin_unlock(&inode->i_lock);
2425 
2426 	if (recon_state->flock) {
2427 		int num_fcntl_locks, num_flock_locks;
2428 		struct ceph_pagelist_cursor trunc_point;
2429 
2430 		ceph_pagelist_set_cursor(pagelist, &trunc_point);
2431 		do {
2432 			lock_flocks();
2433 			ceph_count_locks(inode, &num_fcntl_locks,
2434 					 &num_flock_locks);
2435 			rec.v2.flock_len = (2*sizeof(u32) +
2436 					    (num_fcntl_locks+num_flock_locks) *
2437 					    sizeof(struct ceph_filelock));
2438 			unlock_flocks();
2439 
2440 			/* pre-alloc pagelist */
2441 			ceph_pagelist_truncate(pagelist, &trunc_point);
2442 			err = ceph_pagelist_append(pagelist, &rec, reclen);
2443 			if (!err)
2444 				err = ceph_pagelist_reserve(pagelist,
2445 							    rec.v2.flock_len);
2446 
2447 			/* encode locks */
2448 			if (!err) {
2449 				lock_flocks();
2450 				err = ceph_encode_locks(inode,
2451 							pagelist,
2452 							num_fcntl_locks,
2453 							num_flock_locks);
2454 				unlock_flocks();
2455 			}
2456 		} while (err == -ENOSPC);
2457 	} else {
2458 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2459 	}
2460 
2461 out_free:
2462 	kfree(path);
2463 out_dput:
2464 	dput(dentry);
2465 	return err;
2466 }
2467 
2468 
2469 /*
2470  * If an MDS fails and recovers, clients need to reconnect in order to
2471  * reestablish shared state.  This includes all caps issued through
2472  * this session _and_ the snap_realm hierarchy.  Because it's not
2473  * clear which snap realms the mds cares about, we send everything we
2474  * know about.. that ensures we'll then get any new info the
2475  * recovering MDS might have.
2476  *
2477  * This is a relatively heavyweight operation, but it's rare.
2478  *
2479  * called with mdsc->mutex held.
2480  */
2481 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2482 			       struct ceph_mds_session *session)
2483 {
2484 	struct ceph_msg *reply;
2485 	struct rb_node *p;
2486 	int mds = session->s_mds;
2487 	int err = -ENOMEM;
2488 	struct ceph_pagelist *pagelist;
2489 	struct ceph_reconnect_state recon_state;
2490 
2491 	pr_info("mds%d reconnect start\n", mds);
2492 
2493 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2494 	if (!pagelist)
2495 		goto fail_nopagelist;
2496 	ceph_pagelist_init(pagelist);
2497 
2498 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS);
2499 	if (!reply)
2500 		goto fail_nomsg;
2501 
2502 	mutex_lock(&session->s_mutex);
2503 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2504 	session->s_seq = 0;
2505 
2506 	ceph_con_open(&session->s_con,
2507 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2508 
2509 	/* replay unsafe requests */
2510 	replay_unsafe_requests(mdsc, session);
2511 
2512 	down_read(&mdsc->snap_rwsem);
2513 
2514 	dout("session %p state %s\n", session,
2515 	     session_state_name(session->s_state));
2516 
2517 	/* drop old cap expires; we're about to reestablish that state */
2518 	discard_cap_releases(mdsc, session);
2519 
2520 	/* traverse this session's caps */
2521 	err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2522 	if (err)
2523 		goto fail;
2524 
2525 	recon_state.pagelist = pagelist;
2526 	recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2527 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2528 	if (err < 0)
2529 		goto fail;
2530 
2531 	/*
2532 	 * snaprealms.  we provide mds with the ino, seq (version), and
2533 	 * parent for all of our realms.  If the mds has any newer info,
2534 	 * it will tell us.
2535 	 */
2536 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2537 		struct ceph_snap_realm *realm =
2538 			rb_entry(p, struct ceph_snap_realm, node);
2539 		struct ceph_mds_snaprealm_reconnect sr_rec;
2540 
2541 		dout(" adding snap realm %llx seq %lld parent %llx\n",
2542 		     realm->ino, realm->seq, realm->parent_ino);
2543 		sr_rec.ino = cpu_to_le64(realm->ino);
2544 		sr_rec.seq = cpu_to_le64(realm->seq);
2545 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
2546 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2547 		if (err)
2548 			goto fail;
2549 	}
2550 
2551 	reply->pagelist = pagelist;
2552 	if (recon_state.flock)
2553 		reply->hdr.version = cpu_to_le16(2);
2554 	reply->hdr.data_len = cpu_to_le32(pagelist->length);
2555 	reply->nr_pages = calc_pages_for(0, pagelist->length);
2556 	ceph_con_send(&session->s_con, reply);
2557 
2558 	mutex_unlock(&session->s_mutex);
2559 
2560 	mutex_lock(&mdsc->mutex);
2561 	__wake_requests(mdsc, &session->s_waiting);
2562 	mutex_unlock(&mdsc->mutex);
2563 
2564 	up_read(&mdsc->snap_rwsem);
2565 	return;
2566 
2567 fail:
2568 	ceph_msg_put(reply);
2569 	up_read(&mdsc->snap_rwsem);
2570 	mutex_unlock(&session->s_mutex);
2571 fail_nomsg:
2572 	ceph_pagelist_release(pagelist);
2573 	kfree(pagelist);
2574 fail_nopagelist:
2575 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2576 	return;
2577 }
2578 
2579 
2580 /*
2581  * compare old and new mdsmaps, kicking requests
2582  * and closing out old connections as necessary
2583  *
2584  * called under mdsc->mutex.
2585  */
2586 static void check_new_map(struct ceph_mds_client *mdsc,
2587 			  struct ceph_mdsmap *newmap,
2588 			  struct ceph_mdsmap *oldmap)
2589 {
2590 	int i;
2591 	int oldstate, newstate;
2592 	struct ceph_mds_session *s;
2593 
2594 	dout("check_new_map new %u old %u\n",
2595 	     newmap->m_epoch, oldmap->m_epoch);
2596 
2597 	for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2598 		if (mdsc->sessions[i] == NULL)
2599 			continue;
2600 		s = mdsc->sessions[i];
2601 		oldstate = ceph_mdsmap_get_state(oldmap, i);
2602 		newstate = ceph_mdsmap_get_state(newmap, i);
2603 
2604 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2605 		     i, ceph_mds_state_name(oldstate),
2606 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2607 		     ceph_mds_state_name(newstate),
2608 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2609 		     session_state_name(s->s_state));
2610 
2611 		if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
2612 			   ceph_mdsmap_get_addr(newmap, i),
2613 			   sizeof(struct ceph_entity_addr))) {
2614 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2615 				/* the session never opened, just close it
2616 				 * out now */
2617 				__wake_requests(mdsc, &s->s_waiting);
2618 				__unregister_session(mdsc, s);
2619 			} else {
2620 				/* just close it */
2621 				mutex_unlock(&mdsc->mutex);
2622 				mutex_lock(&s->s_mutex);
2623 				mutex_lock(&mdsc->mutex);
2624 				ceph_con_close(&s->s_con);
2625 				mutex_unlock(&s->s_mutex);
2626 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
2627 			}
2628 
2629 			/* kick any requests waiting on the recovering mds */
2630 			kick_requests(mdsc, i);
2631 		} else if (oldstate == newstate) {
2632 			continue;  /* nothing new with this mds */
2633 		}
2634 
2635 		/*
2636 		 * send reconnect?
2637 		 */
2638 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2639 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
2640 			mutex_unlock(&mdsc->mutex);
2641 			send_mds_reconnect(mdsc, s);
2642 			mutex_lock(&mdsc->mutex);
2643 		}
2644 
2645 		/*
2646 		 * kick request on any mds that has gone active.
2647 		 */
2648 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2649 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
2650 			if (oldstate != CEPH_MDS_STATE_CREATING &&
2651 			    oldstate != CEPH_MDS_STATE_STARTING)
2652 				pr_info("mds%d recovery completed\n", s->s_mds);
2653 			kick_requests(mdsc, i);
2654 			ceph_kick_flushing_caps(mdsc, s);
2655 			wake_up_session_caps(s, 1);
2656 		}
2657 	}
2658 
2659 	for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2660 		s = mdsc->sessions[i];
2661 		if (!s)
2662 			continue;
2663 		if (!ceph_mdsmap_is_laggy(newmap, i))
2664 			continue;
2665 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2666 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
2667 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
2668 			dout(" connecting to export targets of laggy mds%d\n",
2669 			     i);
2670 			__open_export_target_sessions(mdsc, s);
2671 		}
2672 	}
2673 }
2674 
2675 
2676 
2677 /*
2678  * leases
2679  */
2680 
2681 /*
2682  * caller must hold session s_mutex, dentry->d_lock
2683  */
2684 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2685 {
2686 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2687 
2688 	ceph_put_mds_session(di->lease_session);
2689 	di->lease_session = NULL;
2690 }
2691 
2692 static void handle_lease(struct ceph_mds_client *mdsc,
2693 			 struct ceph_mds_session *session,
2694 			 struct ceph_msg *msg)
2695 {
2696 	struct super_block *sb = mdsc->fsc->sb;
2697 	struct inode *inode;
2698 	struct dentry *parent, *dentry;
2699 	struct ceph_dentry_info *di;
2700 	int mds = session->s_mds;
2701 	struct ceph_mds_lease *h = msg->front.iov_base;
2702 	u32 seq;
2703 	struct ceph_vino vino;
2704 	int mask;
2705 	struct qstr dname;
2706 	int release = 0;
2707 
2708 	dout("handle_lease from mds%d\n", mds);
2709 
2710 	/* decode */
2711 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2712 		goto bad;
2713 	vino.ino = le64_to_cpu(h->ino);
2714 	vino.snap = CEPH_NOSNAP;
2715 	mask = le16_to_cpu(h->mask);
2716 	seq = le32_to_cpu(h->seq);
2717 	dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2718 	dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2719 	if (dname.len != get_unaligned_le32(h+1))
2720 		goto bad;
2721 
2722 	mutex_lock(&session->s_mutex);
2723 	session->s_seq++;
2724 
2725 	/* lookup inode */
2726 	inode = ceph_find_inode(sb, vino);
2727 	dout("handle_lease %s, mask %d, ino %llx %p %.*s\n",
2728 	     ceph_lease_op_name(h->action), mask, vino.ino, inode,
2729 	     dname.len, dname.name);
2730 	if (inode == NULL) {
2731 		dout("handle_lease no inode %llx\n", vino.ino);
2732 		goto release;
2733 	}
2734 
2735 	/* dentry */
2736 	parent = d_find_alias(inode);
2737 	if (!parent) {
2738 		dout("no parent dentry on inode %p\n", inode);
2739 		WARN_ON(1);
2740 		goto release;  /* hrm... */
2741 	}
2742 	dname.hash = full_name_hash(dname.name, dname.len);
2743 	dentry = d_lookup(parent, &dname);
2744 	dput(parent);
2745 	if (!dentry)
2746 		goto release;
2747 
2748 	spin_lock(&dentry->d_lock);
2749 	di = ceph_dentry(dentry);
2750 	switch (h->action) {
2751 	case CEPH_MDS_LEASE_REVOKE:
2752 		if (di && di->lease_session == session) {
2753 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2754 				h->seq = cpu_to_le32(di->lease_seq);
2755 			__ceph_mdsc_drop_dentry_lease(dentry);
2756 		}
2757 		release = 1;
2758 		break;
2759 
2760 	case CEPH_MDS_LEASE_RENEW:
2761 		if (di && di->lease_session == session &&
2762 		    di->lease_gen == session->s_cap_gen &&
2763 		    di->lease_renew_from &&
2764 		    di->lease_renew_after == 0) {
2765 			unsigned long duration =
2766 				le32_to_cpu(h->duration_ms) * HZ / 1000;
2767 
2768 			di->lease_seq = seq;
2769 			dentry->d_time = di->lease_renew_from + duration;
2770 			di->lease_renew_after = di->lease_renew_from +
2771 				(duration >> 1);
2772 			di->lease_renew_from = 0;
2773 		}
2774 		break;
2775 	}
2776 	spin_unlock(&dentry->d_lock);
2777 	dput(dentry);
2778 
2779 	if (!release)
2780 		goto out;
2781 
2782 release:
2783 	/* let's just reuse the same message */
2784 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2785 	ceph_msg_get(msg);
2786 	ceph_con_send(&session->s_con, msg);
2787 
2788 out:
2789 	iput(inode);
2790 	mutex_unlock(&session->s_mutex);
2791 	return;
2792 
2793 bad:
2794 	pr_err("corrupt lease message\n");
2795 	ceph_msg_dump(msg);
2796 }
2797 
2798 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2799 			      struct inode *inode,
2800 			      struct dentry *dentry, char action,
2801 			      u32 seq)
2802 {
2803 	struct ceph_msg *msg;
2804 	struct ceph_mds_lease *lease;
2805 	int len = sizeof(*lease) + sizeof(u32);
2806 	int dnamelen = 0;
2807 
2808 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2809 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
2810 	dnamelen = dentry->d_name.len;
2811 	len += dnamelen;
2812 
2813 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS);
2814 	if (!msg)
2815 		return;
2816 	lease = msg->front.iov_base;
2817 	lease->action = action;
2818 	lease->mask = cpu_to_le16(1);
2819 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2820 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2821 	lease->seq = cpu_to_le32(seq);
2822 	put_unaligned_le32(dnamelen, lease + 1);
2823 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2824 
2825 	/*
2826 	 * if this is a preemptive lease RELEASE, no need to
2827 	 * flush request stream, since the actual request will
2828 	 * soon follow.
2829 	 */
2830 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2831 
2832 	ceph_con_send(&session->s_con, msg);
2833 }
2834 
2835 /*
2836  * Preemptively release a lease we expect to invalidate anyway.
2837  * Pass @inode always, @dentry is optional.
2838  */
2839 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2840 			     struct dentry *dentry, int mask)
2841 {
2842 	struct ceph_dentry_info *di;
2843 	struct ceph_mds_session *session;
2844 	u32 seq;
2845 
2846 	BUG_ON(inode == NULL);
2847 	BUG_ON(dentry == NULL);
2848 	BUG_ON(mask == 0);
2849 
2850 	/* is dentry lease valid? */
2851 	spin_lock(&dentry->d_lock);
2852 	di = ceph_dentry(dentry);
2853 	if (!di || !di->lease_session ||
2854 	    di->lease_session->s_mds < 0 ||
2855 	    di->lease_gen != di->lease_session->s_cap_gen ||
2856 	    !time_before(jiffies, dentry->d_time)) {
2857 		dout("lease_release inode %p dentry %p -- "
2858 		     "no lease on %d\n",
2859 		     inode, dentry, mask);
2860 		spin_unlock(&dentry->d_lock);
2861 		return;
2862 	}
2863 
2864 	/* we do have a lease on this dentry; note mds and seq */
2865 	session = ceph_get_mds_session(di->lease_session);
2866 	seq = di->lease_seq;
2867 	__ceph_mdsc_drop_dentry_lease(dentry);
2868 	spin_unlock(&dentry->d_lock);
2869 
2870 	dout("lease_release inode %p dentry %p mask %d to mds%d\n",
2871 	     inode, dentry, mask, session->s_mds);
2872 	ceph_mdsc_lease_send_msg(session, inode, dentry,
2873 				 CEPH_MDS_LEASE_RELEASE, seq);
2874 	ceph_put_mds_session(session);
2875 }
2876 
2877 /*
2878  * drop all leases (and dentry refs) in preparation for umount
2879  */
2880 static void drop_leases(struct ceph_mds_client *mdsc)
2881 {
2882 	int i;
2883 
2884 	dout("drop_leases\n");
2885 	mutex_lock(&mdsc->mutex);
2886 	for (i = 0; i < mdsc->max_sessions; i++) {
2887 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2888 		if (!s)
2889 			continue;
2890 		mutex_unlock(&mdsc->mutex);
2891 		mutex_lock(&s->s_mutex);
2892 		mutex_unlock(&s->s_mutex);
2893 		ceph_put_mds_session(s);
2894 		mutex_lock(&mdsc->mutex);
2895 	}
2896 	mutex_unlock(&mdsc->mutex);
2897 }
2898 
2899 
2900 
2901 /*
2902  * delayed work -- periodically trim expired leases, renew caps with mds
2903  */
2904 static void schedule_delayed(struct ceph_mds_client *mdsc)
2905 {
2906 	int delay = 5;
2907 	unsigned hz = round_jiffies_relative(HZ * delay);
2908 	schedule_delayed_work(&mdsc->delayed_work, hz);
2909 }
2910 
2911 static void delayed_work(struct work_struct *work)
2912 {
2913 	int i;
2914 	struct ceph_mds_client *mdsc =
2915 		container_of(work, struct ceph_mds_client, delayed_work.work);
2916 	int renew_interval;
2917 	int renew_caps;
2918 
2919 	dout("mdsc delayed_work\n");
2920 	ceph_check_delayed_caps(mdsc);
2921 
2922 	mutex_lock(&mdsc->mutex);
2923 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2924 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2925 				   mdsc->last_renew_caps);
2926 	if (renew_caps)
2927 		mdsc->last_renew_caps = jiffies;
2928 
2929 	for (i = 0; i < mdsc->max_sessions; i++) {
2930 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2931 		if (s == NULL)
2932 			continue;
2933 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2934 			dout("resending session close request for mds%d\n",
2935 			     s->s_mds);
2936 			request_close_session(mdsc, s);
2937 			ceph_put_mds_session(s);
2938 			continue;
2939 		}
2940 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2941 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2942 				s->s_state = CEPH_MDS_SESSION_HUNG;
2943 				pr_info("mds%d hung\n", s->s_mds);
2944 			}
2945 		}
2946 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2947 			/* this mds is failed or recovering, just wait */
2948 			ceph_put_mds_session(s);
2949 			continue;
2950 		}
2951 		mutex_unlock(&mdsc->mutex);
2952 
2953 		mutex_lock(&s->s_mutex);
2954 		if (renew_caps)
2955 			send_renew_caps(mdsc, s);
2956 		else
2957 			ceph_con_keepalive(&s->s_con);
2958 		ceph_add_cap_releases(mdsc, s);
2959 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2960 		    s->s_state == CEPH_MDS_SESSION_HUNG)
2961 			ceph_send_cap_releases(mdsc, s);
2962 		mutex_unlock(&s->s_mutex);
2963 		ceph_put_mds_session(s);
2964 
2965 		mutex_lock(&mdsc->mutex);
2966 	}
2967 	mutex_unlock(&mdsc->mutex);
2968 
2969 	schedule_delayed(mdsc);
2970 }
2971 
2972 int ceph_mdsc_init(struct ceph_fs_client *fsc)
2973 
2974 {
2975 	struct ceph_mds_client *mdsc;
2976 
2977 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
2978 	if (!mdsc)
2979 		return -ENOMEM;
2980 	mdsc->fsc = fsc;
2981 	fsc->mdsc = mdsc;
2982 	mutex_init(&mdsc->mutex);
2983 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
2984 	if (mdsc->mdsmap == NULL)
2985 		return -ENOMEM;
2986 
2987 	init_completion(&mdsc->safe_umount_waiters);
2988 	init_waitqueue_head(&mdsc->session_close_wq);
2989 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
2990 	mdsc->sessions = NULL;
2991 	mdsc->max_sessions = 0;
2992 	mdsc->stopping = 0;
2993 	init_rwsem(&mdsc->snap_rwsem);
2994 	mdsc->snap_realms = RB_ROOT;
2995 	INIT_LIST_HEAD(&mdsc->snap_empty);
2996 	spin_lock_init(&mdsc->snap_empty_lock);
2997 	mdsc->last_tid = 0;
2998 	mdsc->request_tree = RB_ROOT;
2999 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3000 	mdsc->last_renew_caps = jiffies;
3001 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
3002 	spin_lock_init(&mdsc->cap_delay_lock);
3003 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
3004 	spin_lock_init(&mdsc->snap_flush_lock);
3005 	mdsc->cap_flush_seq = 0;
3006 	INIT_LIST_HEAD(&mdsc->cap_dirty);
3007 	INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3008 	mdsc->num_cap_flushing = 0;
3009 	spin_lock_init(&mdsc->cap_dirty_lock);
3010 	init_waitqueue_head(&mdsc->cap_flushing_wq);
3011 	spin_lock_init(&mdsc->dentry_lru_lock);
3012 	INIT_LIST_HEAD(&mdsc->dentry_lru);
3013 
3014 	ceph_caps_init(mdsc);
3015 	ceph_adjust_min_caps(mdsc, fsc->min_caps);
3016 
3017 	return 0;
3018 }
3019 
3020 /*
3021  * Wait for safe replies on open mds requests.  If we time out, drop
3022  * all requests from the tree to avoid dangling dentry refs.
3023  */
3024 static void wait_requests(struct ceph_mds_client *mdsc)
3025 {
3026 	struct ceph_mds_request *req;
3027 	struct ceph_fs_client *fsc = mdsc->fsc;
3028 
3029 	mutex_lock(&mdsc->mutex);
3030 	if (__get_oldest_req(mdsc)) {
3031 		mutex_unlock(&mdsc->mutex);
3032 
3033 		dout("wait_requests waiting for requests\n");
3034 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3035 				    fsc->client->options->mount_timeout * HZ);
3036 
3037 		/* tear down remaining requests */
3038 		mutex_lock(&mdsc->mutex);
3039 		while ((req = __get_oldest_req(mdsc))) {
3040 			dout("wait_requests timed out on tid %llu\n",
3041 			     req->r_tid);
3042 			__unregister_request(mdsc, req);
3043 		}
3044 	}
3045 	mutex_unlock(&mdsc->mutex);
3046 	dout("wait_requests done\n");
3047 }
3048 
3049 /*
3050  * called before mount is ro, and before dentries are torn down.
3051  * (hmm, does this still race with new lookups?)
3052  */
3053 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3054 {
3055 	dout("pre_umount\n");
3056 	mdsc->stopping = 1;
3057 
3058 	drop_leases(mdsc);
3059 	ceph_flush_dirty_caps(mdsc);
3060 	wait_requests(mdsc);
3061 
3062 	/*
3063 	 * wait for reply handlers to drop their request refs and
3064 	 * their inode/dcache refs
3065 	 */
3066 	ceph_msgr_flush();
3067 }
3068 
3069 /*
3070  * wait for all write mds requests to flush.
3071  */
3072 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3073 {
3074 	struct ceph_mds_request *req = NULL, *nextreq;
3075 	struct rb_node *n;
3076 
3077 	mutex_lock(&mdsc->mutex);
3078 	dout("wait_unsafe_requests want %lld\n", want_tid);
3079 restart:
3080 	req = __get_oldest_req(mdsc);
3081 	while (req && req->r_tid <= want_tid) {
3082 		/* find next request */
3083 		n = rb_next(&req->r_node);
3084 		if (n)
3085 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3086 		else
3087 			nextreq = NULL;
3088 		if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3089 			/* write op */
3090 			ceph_mdsc_get_request(req);
3091 			if (nextreq)
3092 				ceph_mdsc_get_request(nextreq);
3093 			mutex_unlock(&mdsc->mutex);
3094 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3095 			     req->r_tid, want_tid);
3096 			wait_for_completion(&req->r_safe_completion);
3097 			mutex_lock(&mdsc->mutex);
3098 			ceph_mdsc_put_request(req);
3099 			if (!nextreq)
3100 				break;  /* next dne before, so we're done! */
3101 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3102 				/* next request was removed from tree */
3103 				ceph_mdsc_put_request(nextreq);
3104 				goto restart;
3105 			}
3106 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3107 		}
3108 		req = nextreq;
3109 	}
3110 	mutex_unlock(&mdsc->mutex);
3111 	dout("wait_unsafe_requests done\n");
3112 }
3113 
3114 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3115 {
3116 	u64 want_tid, want_flush;
3117 
3118 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3119 		return;
3120 
3121 	dout("sync\n");
3122 	mutex_lock(&mdsc->mutex);
3123 	want_tid = mdsc->last_tid;
3124 	want_flush = mdsc->cap_flush_seq;
3125 	mutex_unlock(&mdsc->mutex);
3126 	dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3127 
3128 	ceph_flush_dirty_caps(mdsc);
3129 
3130 	wait_unsafe_requests(mdsc, want_tid);
3131 	wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3132 }
3133 
3134 /*
3135  * true if all sessions are closed, or we force unmount
3136  */
3137 bool done_closing_sessions(struct ceph_mds_client *mdsc)
3138 {
3139 	int i, n = 0;
3140 
3141 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3142 		return true;
3143 
3144 	mutex_lock(&mdsc->mutex);
3145 	for (i = 0; i < mdsc->max_sessions; i++)
3146 		if (mdsc->sessions[i])
3147 			n++;
3148 	mutex_unlock(&mdsc->mutex);
3149 	return n == 0;
3150 }
3151 
3152 /*
3153  * called after sb is ro.
3154  */
3155 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3156 {
3157 	struct ceph_mds_session *session;
3158 	int i;
3159 	struct ceph_fs_client *fsc = mdsc->fsc;
3160 	unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3161 
3162 	dout("close_sessions\n");
3163 
3164 	/* close sessions */
3165 	mutex_lock(&mdsc->mutex);
3166 	for (i = 0; i < mdsc->max_sessions; i++) {
3167 		session = __ceph_lookup_mds_session(mdsc, i);
3168 		if (!session)
3169 			continue;
3170 		mutex_unlock(&mdsc->mutex);
3171 		mutex_lock(&session->s_mutex);
3172 		__close_session(mdsc, session);
3173 		mutex_unlock(&session->s_mutex);
3174 		ceph_put_mds_session(session);
3175 		mutex_lock(&mdsc->mutex);
3176 	}
3177 	mutex_unlock(&mdsc->mutex);
3178 
3179 	dout("waiting for sessions to close\n");
3180 	wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3181 			   timeout);
3182 
3183 	/* tear down remaining sessions */
3184 	mutex_lock(&mdsc->mutex);
3185 	for (i = 0; i < mdsc->max_sessions; i++) {
3186 		if (mdsc->sessions[i]) {
3187 			session = get_session(mdsc->sessions[i]);
3188 			__unregister_session(mdsc, session);
3189 			mutex_unlock(&mdsc->mutex);
3190 			mutex_lock(&session->s_mutex);
3191 			remove_session_caps(session);
3192 			mutex_unlock(&session->s_mutex);
3193 			ceph_put_mds_session(session);
3194 			mutex_lock(&mdsc->mutex);
3195 		}
3196 	}
3197 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3198 	mutex_unlock(&mdsc->mutex);
3199 
3200 	ceph_cleanup_empty_realms(mdsc);
3201 
3202 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3203 
3204 	dout("stopped\n");
3205 }
3206 
3207 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3208 {
3209 	dout("stop\n");
3210 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3211 	if (mdsc->mdsmap)
3212 		ceph_mdsmap_destroy(mdsc->mdsmap);
3213 	kfree(mdsc->sessions);
3214 	ceph_caps_finalize(mdsc);
3215 }
3216 
3217 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3218 {
3219 	struct ceph_mds_client *mdsc = fsc->mdsc;
3220 
3221 	dout("mdsc_destroy %p\n", mdsc);
3222 	ceph_mdsc_stop(mdsc);
3223 
3224 	/* flush out any connection work with references to us */
3225 	ceph_msgr_flush();
3226 
3227 	fsc->mdsc = NULL;
3228 	kfree(mdsc);
3229 	dout("mdsc_destroy %p done\n", mdsc);
3230 }
3231 
3232 
3233 /*
3234  * handle mds map update.
3235  */
3236 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3237 {
3238 	u32 epoch;
3239 	u32 maplen;
3240 	void *p = msg->front.iov_base;
3241 	void *end = p + msg->front.iov_len;
3242 	struct ceph_mdsmap *newmap, *oldmap;
3243 	struct ceph_fsid fsid;
3244 	int err = -EINVAL;
3245 
3246 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3247 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
3248 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3249 		return;
3250 	epoch = ceph_decode_32(&p);
3251 	maplen = ceph_decode_32(&p);
3252 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3253 
3254 	/* do we need it? */
3255 	ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3256 	mutex_lock(&mdsc->mutex);
3257 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3258 		dout("handle_map epoch %u <= our %u\n",
3259 		     epoch, mdsc->mdsmap->m_epoch);
3260 		mutex_unlock(&mdsc->mutex);
3261 		return;
3262 	}
3263 
3264 	newmap = ceph_mdsmap_decode(&p, end);
3265 	if (IS_ERR(newmap)) {
3266 		err = PTR_ERR(newmap);
3267 		goto bad_unlock;
3268 	}
3269 
3270 	/* swap into place */
3271 	if (mdsc->mdsmap) {
3272 		oldmap = mdsc->mdsmap;
3273 		mdsc->mdsmap = newmap;
3274 		check_new_map(mdsc, newmap, oldmap);
3275 		ceph_mdsmap_destroy(oldmap);
3276 	} else {
3277 		mdsc->mdsmap = newmap;  /* first mds map */
3278 	}
3279 	mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3280 
3281 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3282 
3283 	mutex_unlock(&mdsc->mutex);
3284 	schedule_delayed(mdsc);
3285 	return;
3286 
3287 bad_unlock:
3288 	mutex_unlock(&mdsc->mutex);
3289 bad:
3290 	pr_err("error decoding mdsmap %d\n", err);
3291 	return;
3292 }
3293 
3294 static struct ceph_connection *con_get(struct ceph_connection *con)
3295 {
3296 	struct ceph_mds_session *s = con->private;
3297 
3298 	if (get_session(s)) {
3299 		dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3300 		return con;
3301 	}
3302 	dout("mdsc con_get %p FAIL\n", s);
3303 	return NULL;
3304 }
3305 
3306 static void con_put(struct ceph_connection *con)
3307 {
3308 	struct ceph_mds_session *s = con->private;
3309 
3310 	dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3311 	ceph_put_mds_session(s);
3312 }
3313 
3314 /*
3315  * if the client is unresponsive for long enough, the mds will kill
3316  * the session entirely.
3317  */
3318 static void peer_reset(struct ceph_connection *con)
3319 {
3320 	struct ceph_mds_session *s = con->private;
3321 	struct ceph_mds_client *mdsc = s->s_mdsc;
3322 
3323 	pr_warning("mds%d closed our session\n", s->s_mds);
3324 	send_mds_reconnect(mdsc, s);
3325 }
3326 
3327 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3328 {
3329 	struct ceph_mds_session *s = con->private;
3330 	struct ceph_mds_client *mdsc = s->s_mdsc;
3331 	int type = le16_to_cpu(msg->hdr.type);
3332 
3333 	mutex_lock(&mdsc->mutex);
3334 	if (__verify_registered_session(mdsc, s) < 0) {
3335 		mutex_unlock(&mdsc->mutex);
3336 		goto out;
3337 	}
3338 	mutex_unlock(&mdsc->mutex);
3339 
3340 	switch (type) {
3341 	case CEPH_MSG_MDS_MAP:
3342 		ceph_mdsc_handle_map(mdsc, msg);
3343 		break;
3344 	case CEPH_MSG_CLIENT_SESSION:
3345 		handle_session(s, msg);
3346 		break;
3347 	case CEPH_MSG_CLIENT_REPLY:
3348 		handle_reply(s, msg);
3349 		break;
3350 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3351 		handle_forward(mdsc, s, msg);
3352 		break;
3353 	case CEPH_MSG_CLIENT_CAPS:
3354 		ceph_handle_caps(s, msg);
3355 		break;
3356 	case CEPH_MSG_CLIENT_SNAP:
3357 		ceph_handle_snap(mdsc, s, msg);
3358 		break;
3359 	case CEPH_MSG_CLIENT_LEASE:
3360 		handle_lease(mdsc, s, msg);
3361 		break;
3362 
3363 	default:
3364 		pr_err("received unknown message type %d %s\n", type,
3365 		       ceph_msg_type_name(type));
3366 	}
3367 out:
3368 	ceph_msg_put(msg);
3369 }
3370 
3371 /*
3372  * authentication
3373  */
3374 static int get_authorizer(struct ceph_connection *con,
3375 			  void **buf, int *len, int *proto,
3376 			  void **reply_buf, int *reply_len, int force_new)
3377 {
3378 	struct ceph_mds_session *s = con->private;
3379 	struct ceph_mds_client *mdsc = s->s_mdsc;
3380 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3381 	int ret = 0;
3382 
3383 	if (force_new && s->s_authorizer) {
3384 		ac->ops->destroy_authorizer(ac, s->s_authorizer);
3385 		s->s_authorizer = NULL;
3386 	}
3387 	if (s->s_authorizer == NULL) {
3388 		if (ac->ops->create_authorizer) {
3389 			ret = ac->ops->create_authorizer(
3390 				ac, CEPH_ENTITY_TYPE_MDS,
3391 				&s->s_authorizer,
3392 				&s->s_authorizer_buf,
3393 				&s->s_authorizer_buf_len,
3394 				&s->s_authorizer_reply_buf,
3395 				&s->s_authorizer_reply_buf_len);
3396 			if (ret)
3397 				return ret;
3398 		}
3399 	}
3400 
3401 	*proto = ac->protocol;
3402 	*buf = s->s_authorizer_buf;
3403 	*len = s->s_authorizer_buf_len;
3404 	*reply_buf = s->s_authorizer_reply_buf;
3405 	*reply_len = s->s_authorizer_reply_buf_len;
3406 	return 0;
3407 }
3408 
3409 
3410 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3411 {
3412 	struct ceph_mds_session *s = con->private;
3413 	struct ceph_mds_client *mdsc = s->s_mdsc;
3414 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3415 
3416 	return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len);
3417 }
3418 
3419 static int invalidate_authorizer(struct ceph_connection *con)
3420 {
3421 	struct ceph_mds_session *s = con->private;
3422 	struct ceph_mds_client *mdsc = s->s_mdsc;
3423 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3424 
3425 	if (ac->ops->invalidate_authorizer)
3426 		ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3427 
3428 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3429 }
3430 
3431 static const struct ceph_connection_operations mds_con_ops = {
3432 	.get = con_get,
3433 	.put = con_put,
3434 	.dispatch = dispatch,
3435 	.get_authorizer = get_authorizer,
3436 	.verify_authorizer_reply = verify_authorizer_reply,
3437 	.invalidate_authorizer = invalidate_authorizer,
3438 	.peer_reset = peer_reset,
3439 };
3440 
3441 /* eof */
3442