1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include <linux/wait.h> 9 #include <linux/writeback.h> 10 11 #include "super.h" 12 #include "mds_client.h" 13 #include <linux/ceph/decode.h> 14 #include <linux/ceph/messenger.h> 15 16 /* 17 * Capability management 18 * 19 * The Ceph metadata servers control client access to inode metadata 20 * and file data by issuing capabilities, granting clients permission 21 * to read and/or write both inode field and file data to OSDs 22 * (storage nodes). Each capability consists of a set of bits 23 * indicating which operations are allowed. 24 * 25 * If the client holds a *_SHARED cap, the client has a coherent value 26 * that can be safely read from the cached inode. 27 * 28 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the 29 * client is allowed to change inode attributes (e.g., file size, 30 * mtime), note its dirty state in the ceph_cap, and asynchronously 31 * flush that metadata change to the MDS. 32 * 33 * In the event of a conflicting operation (perhaps by another 34 * client), the MDS will revoke the conflicting client capabilities. 35 * 36 * In order for a client to cache an inode, it must hold a capability 37 * with at least one MDS server. When inodes are released, release 38 * notifications are batched and periodically sent en masse to the MDS 39 * cluster to release server state. 40 */ 41 42 43 /* 44 * Generate readable cap strings for debugging output. 45 */ 46 #define MAX_CAP_STR 20 47 static char cap_str[MAX_CAP_STR][40]; 48 static DEFINE_SPINLOCK(cap_str_lock); 49 static int last_cap_str; 50 51 static char *gcap_string(char *s, int c) 52 { 53 if (c & CEPH_CAP_GSHARED) 54 *s++ = 's'; 55 if (c & CEPH_CAP_GEXCL) 56 *s++ = 'x'; 57 if (c & CEPH_CAP_GCACHE) 58 *s++ = 'c'; 59 if (c & CEPH_CAP_GRD) 60 *s++ = 'r'; 61 if (c & CEPH_CAP_GWR) 62 *s++ = 'w'; 63 if (c & CEPH_CAP_GBUFFER) 64 *s++ = 'b'; 65 if (c & CEPH_CAP_GLAZYIO) 66 *s++ = 'l'; 67 return s; 68 } 69 70 const char *ceph_cap_string(int caps) 71 { 72 int i; 73 char *s; 74 int c; 75 76 spin_lock(&cap_str_lock); 77 i = last_cap_str++; 78 if (last_cap_str == MAX_CAP_STR) 79 last_cap_str = 0; 80 spin_unlock(&cap_str_lock); 81 82 s = cap_str[i]; 83 84 if (caps & CEPH_CAP_PIN) 85 *s++ = 'p'; 86 87 c = (caps >> CEPH_CAP_SAUTH) & 3; 88 if (c) { 89 *s++ = 'A'; 90 s = gcap_string(s, c); 91 } 92 93 c = (caps >> CEPH_CAP_SLINK) & 3; 94 if (c) { 95 *s++ = 'L'; 96 s = gcap_string(s, c); 97 } 98 99 c = (caps >> CEPH_CAP_SXATTR) & 3; 100 if (c) { 101 *s++ = 'X'; 102 s = gcap_string(s, c); 103 } 104 105 c = caps >> CEPH_CAP_SFILE; 106 if (c) { 107 *s++ = 'F'; 108 s = gcap_string(s, c); 109 } 110 111 if (s == cap_str[i]) 112 *s++ = '-'; 113 *s = 0; 114 return cap_str[i]; 115 } 116 117 void ceph_caps_init(struct ceph_mds_client *mdsc) 118 { 119 INIT_LIST_HEAD(&mdsc->caps_list); 120 spin_lock_init(&mdsc->caps_list_lock); 121 } 122 123 void ceph_caps_finalize(struct ceph_mds_client *mdsc) 124 { 125 struct ceph_cap *cap; 126 127 spin_lock(&mdsc->caps_list_lock); 128 while (!list_empty(&mdsc->caps_list)) { 129 cap = list_first_entry(&mdsc->caps_list, 130 struct ceph_cap, caps_item); 131 list_del(&cap->caps_item); 132 kmem_cache_free(ceph_cap_cachep, cap); 133 } 134 mdsc->caps_total_count = 0; 135 mdsc->caps_avail_count = 0; 136 mdsc->caps_use_count = 0; 137 mdsc->caps_reserve_count = 0; 138 mdsc->caps_min_count = 0; 139 spin_unlock(&mdsc->caps_list_lock); 140 } 141 142 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta) 143 { 144 spin_lock(&mdsc->caps_list_lock); 145 mdsc->caps_min_count += delta; 146 BUG_ON(mdsc->caps_min_count < 0); 147 spin_unlock(&mdsc->caps_list_lock); 148 } 149 150 int ceph_reserve_caps(struct ceph_mds_client *mdsc, 151 struct ceph_cap_reservation *ctx, int need) 152 { 153 int i; 154 struct ceph_cap *cap; 155 int have; 156 int alloc = 0; 157 LIST_HEAD(newcaps); 158 int ret = 0; 159 160 dout("reserve caps ctx=%p need=%d\n", ctx, need); 161 162 /* first reserve any caps that are already allocated */ 163 spin_lock(&mdsc->caps_list_lock); 164 if (mdsc->caps_avail_count >= need) 165 have = need; 166 else 167 have = mdsc->caps_avail_count; 168 mdsc->caps_avail_count -= have; 169 mdsc->caps_reserve_count += have; 170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 171 mdsc->caps_reserve_count + 172 mdsc->caps_avail_count); 173 spin_unlock(&mdsc->caps_list_lock); 174 175 for (i = have; i < need; i++) { 176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 177 if (!cap) { 178 ret = -ENOMEM; 179 goto out_alloc_count; 180 } 181 list_add(&cap->caps_item, &newcaps); 182 alloc++; 183 } 184 BUG_ON(have + alloc != need); 185 186 spin_lock(&mdsc->caps_list_lock); 187 mdsc->caps_total_count += alloc; 188 mdsc->caps_reserve_count += alloc; 189 list_splice(&newcaps, &mdsc->caps_list); 190 191 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 192 mdsc->caps_reserve_count + 193 mdsc->caps_avail_count); 194 spin_unlock(&mdsc->caps_list_lock); 195 196 ctx->count = need; 197 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", 198 ctx, mdsc->caps_total_count, mdsc->caps_use_count, 199 mdsc->caps_reserve_count, mdsc->caps_avail_count); 200 return 0; 201 202 out_alloc_count: 203 /* we didn't manage to reserve as much as we needed */ 204 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n", 205 ctx, need, have); 206 return ret; 207 } 208 209 int ceph_unreserve_caps(struct ceph_mds_client *mdsc, 210 struct ceph_cap_reservation *ctx) 211 { 212 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); 213 if (ctx->count) { 214 spin_lock(&mdsc->caps_list_lock); 215 BUG_ON(mdsc->caps_reserve_count < ctx->count); 216 mdsc->caps_reserve_count -= ctx->count; 217 mdsc->caps_avail_count += ctx->count; 218 ctx->count = 0; 219 dout("unreserve caps %d = %d used + %d resv + %d avail\n", 220 mdsc->caps_total_count, mdsc->caps_use_count, 221 mdsc->caps_reserve_count, mdsc->caps_avail_count); 222 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 223 mdsc->caps_reserve_count + 224 mdsc->caps_avail_count); 225 spin_unlock(&mdsc->caps_list_lock); 226 } 227 return 0; 228 } 229 230 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc, 231 struct ceph_cap_reservation *ctx) 232 { 233 struct ceph_cap *cap = NULL; 234 235 /* temporary, until we do something about cap import/export */ 236 if (!ctx) { 237 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 238 if (cap) { 239 mdsc->caps_use_count++; 240 mdsc->caps_total_count++; 241 } 242 return cap; 243 } 244 245 spin_lock(&mdsc->caps_list_lock); 246 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 247 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count, 248 mdsc->caps_reserve_count, mdsc->caps_avail_count); 249 BUG_ON(!ctx->count); 250 BUG_ON(ctx->count > mdsc->caps_reserve_count); 251 BUG_ON(list_empty(&mdsc->caps_list)); 252 253 ctx->count--; 254 mdsc->caps_reserve_count--; 255 mdsc->caps_use_count++; 256 257 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item); 258 list_del(&cap->caps_item); 259 260 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 261 mdsc->caps_reserve_count + mdsc->caps_avail_count); 262 spin_unlock(&mdsc->caps_list_lock); 263 return cap; 264 } 265 266 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap) 267 { 268 spin_lock(&mdsc->caps_list_lock); 269 dout("put_cap %p %d = %d used + %d resv + %d avail\n", 270 cap, mdsc->caps_total_count, mdsc->caps_use_count, 271 mdsc->caps_reserve_count, mdsc->caps_avail_count); 272 mdsc->caps_use_count--; 273 /* 274 * Keep some preallocated caps around (ceph_min_count), to 275 * avoid lots of free/alloc churn. 276 */ 277 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count + 278 mdsc->caps_min_count) { 279 mdsc->caps_total_count--; 280 kmem_cache_free(ceph_cap_cachep, cap); 281 } else { 282 mdsc->caps_avail_count++; 283 list_add(&cap->caps_item, &mdsc->caps_list); 284 } 285 286 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 287 mdsc->caps_reserve_count + mdsc->caps_avail_count); 288 spin_unlock(&mdsc->caps_list_lock); 289 } 290 291 void ceph_reservation_status(struct ceph_fs_client *fsc, 292 int *total, int *avail, int *used, int *reserved, 293 int *min) 294 { 295 struct ceph_mds_client *mdsc = fsc->mdsc; 296 297 if (total) 298 *total = mdsc->caps_total_count; 299 if (avail) 300 *avail = mdsc->caps_avail_count; 301 if (used) 302 *used = mdsc->caps_use_count; 303 if (reserved) 304 *reserved = mdsc->caps_reserve_count; 305 if (min) 306 *min = mdsc->caps_min_count; 307 } 308 309 /* 310 * Find ceph_cap for given mds, if any. 311 * 312 * Called with i_lock held. 313 */ 314 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) 315 { 316 struct ceph_cap *cap; 317 struct rb_node *n = ci->i_caps.rb_node; 318 319 while (n) { 320 cap = rb_entry(n, struct ceph_cap, ci_node); 321 if (mds < cap->mds) 322 n = n->rb_left; 323 else if (mds > cap->mds) 324 n = n->rb_right; 325 else 326 return cap; 327 } 328 return NULL; 329 } 330 331 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds) 332 { 333 struct ceph_cap *cap; 334 335 spin_lock(&ci->vfs_inode.i_lock); 336 cap = __get_cap_for_mds(ci, mds); 337 spin_unlock(&ci->vfs_inode.i_lock); 338 return cap; 339 } 340 341 /* 342 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1. 343 */ 344 static int __ceph_get_cap_mds(struct ceph_inode_info *ci) 345 { 346 struct ceph_cap *cap; 347 int mds = -1; 348 struct rb_node *p; 349 350 /* prefer mds with WR|BUFFER|EXCL caps */ 351 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 352 cap = rb_entry(p, struct ceph_cap, ci_node); 353 mds = cap->mds; 354 if (cap->issued & (CEPH_CAP_FILE_WR | 355 CEPH_CAP_FILE_BUFFER | 356 CEPH_CAP_FILE_EXCL)) 357 break; 358 } 359 return mds; 360 } 361 362 int ceph_get_cap_mds(struct inode *inode) 363 { 364 int mds; 365 spin_lock(&inode->i_lock); 366 mds = __ceph_get_cap_mds(ceph_inode(inode)); 367 spin_unlock(&inode->i_lock); 368 return mds; 369 } 370 371 /* 372 * Called under i_lock. 373 */ 374 static void __insert_cap_node(struct ceph_inode_info *ci, 375 struct ceph_cap *new) 376 { 377 struct rb_node **p = &ci->i_caps.rb_node; 378 struct rb_node *parent = NULL; 379 struct ceph_cap *cap = NULL; 380 381 while (*p) { 382 parent = *p; 383 cap = rb_entry(parent, struct ceph_cap, ci_node); 384 if (new->mds < cap->mds) 385 p = &(*p)->rb_left; 386 else if (new->mds > cap->mds) 387 p = &(*p)->rb_right; 388 else 389 BUG(); 390 } 391 392 rb_link_node(&new->ci_node, parent, p); 393 rb_insert_color(&new->ci_node, &ci->i_caps); 394 } 395 396 /* 397 * (re)set cap hold timeouts, which control the delayed release 398 * of unused caps back to the MDS. Should be called on cap use. 399 */ 400 static void __cap_set_timeouts(struct ceph_mds_client *mdsc, 401 struct ceph_inode_info *ci) 402 { 403 struct ceph_mount_options *ma = mdsc->fsc->mount_options; 404 405 ci->i_hold_caps_min = round_jiffies(jiffies + 406 ma->caps_wanted_delay_min * HZ); 407 ci->i_hold_caps_max = round_jiffies(jiffies + 408 ma->caps_wanted_delay_max * HZ); 409 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, 410 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); 411 } 412 413 /* 414 * (Re)queue cap at the end of the delayed cap release list. 415 * 416 * If I_FLUSH is set, leave the inode at the front of the list. 417 * 418 * Caller holds i_lock 419 * -> we take mdsc->cap_delay_lock 420 */ 421 static void __cap_delay_requeue(struct ceph_mds_client *mdsc, 422 struct ceph_inode_info *ci) 423 { 424 __cap_set_timeouts(mdsc, ci); 425 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, 426 ci->i_ceph_flags, ci->i_hold_caps_max); 427 if (!mdsc->stopping) { 428 spin_lock(&mdsc->cap_delay_lock); 429 if (!list_empty(&ci->i_cap_delay_list)) { 430 if (ci->i_ceph_flags & CEPH_I_FLUSH) 431 goto no_change; 432 list_del_init(&ci->i_cap_delay_list); 433 } 434 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 435 no_change: 436 spin_unlock(&mdsc->cap_delay_lock); 437 } 438 } 439 440 /* 441 * Queue an inode for immediate writeback. Mark inode with I_FLUSH, 442 * indicating we should send a cap message to flush dirty metadata 443 * asap, and move to the front of the delayed cap list. 444 */ 445 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, 446 struct ceph_inode_info *ci) 447 { 448 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); 449 spin_lock(&mdsc->cap_delay_lock); 450 ci->i_ceph_flags |= CEPH_I_FLUSH; 451 if (!list_empty(&ci->i_cap_delay_list)) 452 list_del_init(&ci->i_cap_delay_list); 453 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 454 spin_unlock(&mdsc->cap_delay_lock); 455 } 456 457 /* 458 * Cancel delayed work on cap. 459 * 460 * Caller must hold i_lock. 461 */ 462 static void __cap_delay_cancel(struct ceph_mds_client *mdsc, 463 struct ceph_inode_info *ci) 464 { 465 dout("__cap_delay_cancel %p\n", &ci->vfs_inode); 466 if (list_empty(&ci->i_cap_delay_list)) 467 return; 468 spin_lock(&mdsc->cap_delay_lock); 469 list_del_init(&ci->i_cap_delay_list); 470 spin_unlock(&mdsc->cap_delay_lock); 471 } 472 473 /* 474 * Common issue checks for add_cap, handle_cap_grant. 475 */ 476 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, 477 unsigned issued) 478 { 479 unsigned had = __ceph_caps_issued(ci, NULL); 480 481 /* 482 * Each time we receive FILE_CACHE anew, we increment 483 * i_rdcache_gen. 484 */ 485 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && 486 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) 487 ci->i_rdcache_gen++; 488 489 /* 490 * if we are newly issued FILE_SHARED, clear D_COMPLETE; we 491 * don't know what happened to this directory while we didn't 492 * have the cap. 493 */ 494 if ((issued & CEPH_CAP_FILE_SHARED) && 495 (had & CEPH_CAP_FILE_SHARED) == 0) { 496 ci->i_shared_gen++; 497 if (S_ISDIR(ci->vfs_inode.i_mode)) 498 ceph_dir_clear_complete(&ci->vfs_inode); 499 } 500 } 501 502 /* 503 * Add a capability under the given MDS session. 504 * 505 * Caller should hold session snap_rwsem (read) and s_mutex. 506 * 507 * @fmode is the open file mode, if we are opening a file, otherwise 508 * it is < 0. (This is so we can atomically add the cap and add an 509 * open file reference to it.) 510 */ 511 int ceph_add_cap(struct inode *inode, 512 struct ceph_mds_session *session, u64 cap_id, 513 int fmode, unsigned issued, unsigned wanted, 514 unsigned seq, unsigned mseq, u64 realmino, int flags, 515 struct ceph_cap_reservation *caps_reservation) 516 { 517 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 518 struct ceph_inode_info *ci = ceph_inode(inode); 519 struct ceph_cap *new_cap = NULL; 520 struct ceph_cap *cap; 521 int mds = session->s_mds; 522 int actual_wanted; 523 524 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, 525 session->s_mds, cap_id, ceph_cap_string(issued), seq); 526 527 /* 528 * If we are opening the file, include file mode wanted bits 529 * in wanted. 530 */ 531 if (fmode >= 0) 532 wanted |= ceph_caps_for_mode(fmode); 533 534 retry: 535 spin_lock(&inode->i_lock); 536 cap = __get_cap_for_mds(ci, mds); 537 if (!cap) { 538 if (new_cap) { 539 cap = new_cap; 540 new_cap = NULL; 541 } else { 542 spin_unlock(&inode->i_lock); 543 new_cap = get_cap(mdsc, caps_reservation); 544 if (new_cap == NULL) 545 return -ENOMEM; 546 goto retry; 547 } 548 549 cap->issued = 0; 550 cap->implemented = 0; 551 cap->mds = mds; 552 cap->mds_wanted = 0; 553 554 cap->ci = ci; 555 __insert_cap_node(ci, cap); 556 557 /* clear out old exporting info? (i.e. on cap import) */ 558 if (ci->i_cap_exporting_mds == mds) { 559 ci->i_cap_exporting_issued = 0; 560 ci->i_cap_exporting_mseq = 0; 561 ci->i_cap_exporting_mds = -1; 562 } 563 564 /* add to session cap list */ 565 cap->session = session; 566 spin_lock(&session->s_cap_lock); 567 list_add_tail(&cap->session_caps, &session->s_caps); 568 session->s_nr_caps++; 569 spin_unlock(&session->s_cap_lock); 570 } else if (new_cap) 571 ceph_put_cap(mdsc, new_cap); 572 573 if (!ci->i_snap_realm) { 574 /* 575 * add this inode to the appropriate snap realm 576 */ 577 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, 578 realmino); 579 if (realm) { 580 ceph_get_snap_realm(mdsc, realm); 581 spin_lock(&realm->inodes_with_caps_lock); 582 ci->i_snap_realm = realm; 583 list_add(&ci->i_snap_realm_item, 584 &realm->inodes_with_caps); 585 spin_unlock(&realm->inodes_with_caps_lock); 586 } else { 587 pr_err("ceph_add_cap: couldn't find snap realm %llx\n", 588 realmino); 589 WARN_ON(!realm); 590 } 591 } 592 593 __check_cap_issue(ci, cap, issued); 594 595 /* 596 * If we are issued caps we don't want, or the mds' wanted 597 * value appears to be off, queue a check so we'll release 598 * later and/or update the mds wanted value. 599 */ 600 actual_wanted = __ceph_caps_wanted(ci); 601 if ((wanted & ~actual_wanted) || 602 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { 603 dout(" issued %s, mds wanted %s, actual %s, queueing\n", 604 ceph_cap_string(issued), ceph_cap_string(wanted), 605 ceph_cap_string(actual_wanted)); 606 __cap_delay_requeue(mdsc, ci); 607 } 608 609 if (flags & CEPH_CAP_FLAG_AUTH) 610 ci->i_auth_cap = cap; 611 else if (ci->i_auth_cap == cap) 612 ci->i_auth_cap = NULL; 613 614 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", 615 inode, ceph_vinop(inode), cap, ceph_cap_string(issued), 616 ceph_cap_string(issued|cap->issued), seq, mds); 617 cap->cap_id = cap_id; 618 cap->issued = issued; 619 cap->implemented |= issued; 620 cap->mds_wanted |= wanted; 621 cap->seq = seq; 622 cap->issue_seq = seq; 623 cap->mseq = mseq; 624 cap->cap_gen = session->s_cap_gen; 625 626 if (fmode >= 0) 627 __ceph_get_fmode(ci, fmode); 628 spin_unlock(&inode->i_lock); 629 wake_up_all(&ci->i_cap_wq); 630 return 0; 631 } 632 633 /* 634 * Return true if cap has not timed out and belongs to the current 635 * generation of the MDS session (i.e. has not gone 'stale' due to 636 * us losing touch with the mds). 637 */ 638 static int __cap_is_valid(struct ceph_cap *cap) 639 { 640 unsigned long ttl; 641 u32 gen; 642 643 spin_lock(&cap->session->s_cap_lock); 644 gen = cap->session->s_cap_gen; 645 ttl = cap->session->s_cap_ttl; 646 spin_unlock(&cap->session->s_cap_lock); 647 648 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { 649 dout("__cap_is_valid %p cap %p issued %s " 650 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, 651 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); 652 return 0; 653 } 654 655 return 1; 656 } 657 658 /* 659 * Return set of valid cap bits issued to us. Note that caps time 660 * out, and may be invalidated in bulk if the client session times out 661 * and session->s_cap_gen is bumped. 662 */ 663 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) 664 { 665 int have = ci->i_snap_caps | ci->i_cap_exporting_issued; 666 struct ceph_cap *cap; 667 struct rb_node *p; 668 669 if (implemented) 670 *implemented = 0; 671 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 672 cap = rb_entry(p, struct ceph_cap, ci_node); 673 if (!__cap_is_valid(cap)) 674 continue; 675 dout("__ceph_caps_issued %p cap %p issued %s\n", 676 &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); 677 have |= cap->issued; 678 if (implemented) 679 *implemented |= cap->implemented; 680 } 681 return have; 682 } 683 684 /* 685 * Get cap bits issued by caps other than @ocap 686 */ 687 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) 688 { 689 int have = ci->i_snap_caps; 690 struct ceph_cap *cap; 691 struct rb_node *p; 692 693 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 694 cap = rb_entry(p, struct ceph_cap, ci_node); 695 if (cap == ocap) 696 continue; 697 if (!__cap_is_valid(cap)) 698 continue; 699 have |= cap->issued; 700 } 701 return have; 702 } 703 704 /* 705 * Move a cap to the end of the LRU (oldest caps at list head, newest 706 * at list tail). 707 */ 708 static void __touch_cap(struct ceph_cap *cap) 709 { 710 struct ceph_mds_session *s = cap->session; 711 712 spin_lock(&s->s_cap_lock); 713 if (s->s_cap_iterator == NULL) { 714 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, 715 s->s_mds); 716 list_move_tail(&cap->session_caps, &s->s_caps); 717 } else { 718 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", 719 &cap->ci->vfs_inode, cap, s->s_mds); 720 } 721 spin_unlock(&s->s_cap_lock); 722 } 723 724 /* 725 * Check if we hold the given mask. If so, move the cap(s) to the 726 * front of their respective LRUs. (This is the preferred way for 727 * callers to check for caps they want.) 728 */ 729 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) 730 { 731 struct ceph_cap *cap; 732 struct rb_node *p; 733 int have = ci->i_snap_caps; 734 735 if ((have & mask) == mask) { 736 dout("__ceph_caps_issued_mask %p snap issued %s" 737 " (mask %s)\n", &ci->vfs_inode, 738 ceph_cap_string(have), 739 ceph_cap_string(mask)); 740 return 1; 741 } 742 743 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 744 cap = rb_entry(p, struct ceph_cap, ci_node); 745 if (!__cap_is_valid(cap)) 746 continue; 747 if ((cap->issued & mask) == mask) { 748 dout("__ceph_caps_issued_mask %p cap %p issued %s" 749 " (mask %s)\n", &ci->vfs_inode, cap, 750 ceph_cap_string(cap->issued), 751 ceph_cap_string(mask)); 752 if (touch) 753 __touch_cap(cap); 754 return 1; 755 } 756 757 /* does a combination of caps satisfy mask? */ 758 have |= cap->issued; 759 if ((have & mask) == mask) { 760 dout("__ceph_caps_issued_mask %p combo issued %s" 761 " (mask %s)\n", &ci->vfs_inode, 762 ceph_cap_string(cap->issued), 763 ceph_cap_string(mask)); 764 if (touch) { 765 struct rb_node *q; 766 767 /* touch this + preceding caps */ 768 __touch_cap(cap); 769 for (q = rb_first(&ci->i_caps); q != p; 770 q = rb_next(q)) { 771 cap = rb_entry(q, struct ceph_cap, 772 ci_node); 773 if (!__cap_is_valid(cap)) 774 continue; 775 __touch_cap(cap); 776 } 777 } 778 return 1; 779 } 780 } 781 782 return 0; 783 } 784 785 /* 786 * Return true if mask caps are currently being revoked by an MDS. 787 */ 788 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) 789 { 790 struct inode *inode = &ci->vfs_inode; 791 struct ceph_cap *cap; 792 struct rb_node *p; 793 int ret = 0; 794 795 spin_lock(&inode->i_lock); 796 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 797 cap = rb_entry(p, struct ceph_cap, ci_node); 798 if (__cap_is_valid(cap) && 799 (cap->implemented & ~cap->issued & mask)) { 800 ret = 1; 801 break; 802 } 803 } 804 spin_unlock(&inode->i_lock); 805 dout("ceph_caps_revoking %p %s = %d\n", inode, 806 ceph_cap_string(mask), ret); 807 return ret; 808 } 809 810 int __ceph_caps_used(struct ceph_inode_info *ci) 811 { 812 int used = 0; 813 if (ci->i_pin_ref) 814 used |= CEPH_CAP_PIN; 815 if (ci->i_rd_ref) 816 used |= CEPH_CAP_FILE_RD; 817 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages) 818 used |= CEPH_CAP_FILE_CACHE; 819 if (ci->i_wr_ref) 820 used |= CEPH_CAP_FILE_WR; 821 if (ci->i_wb_ref || ci->i_wrbuffer_ref) 822 used |= CEPH_CAP_FILE_BUFFER; 823 return used; 824 } 825 826 /* 827 * wanted, by virtue of open file modes 828 */ 829 int __ceph_caps_file_wanted(struct ceph_inode_info *ci) 830 { 831 int want = 0; 832 int mode; 833 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++) 834 if (ci->i_nr_by_mode[mode]) 835 want |= ceph_caps_for_mode(mode); 836 return want; 837 } 838 839 /* 840 * Return caps we have registered with the MDS(s) as 'wanted'. 841 */ 842 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) 843 { 844 struct ceph_cap *cap; 845 struct rb_node *p; 846 int mds_wanted = 0; 847 848 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 849 cap = rb_entry(p, struct ceph_cap, ci_node); 850 if (!__cap_is_valid(cap)) 851 continue; 852 mds_wanted |= cap->mds_wanted; 853 } 854 return mds_wanted; 855 } 856 857 /* 858 * called under i_lock 859 */ 860 static int __ceph_is_any_caps(struct ceph_inode_info *ci) 861 { 862 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0; 863 } 864 865 /* 866 * Remove a cap. Take steps to deal with a racing iterate_session_caps. 867 * 868 * caller should hold i_lock. 869 * caller will not hold session s_mutex if called from destroy_inode. 870 */ 871 void __ceph_remove_cap(struct ceph_cap *cap) 872 { 873 struct ceph_mds_session *session = cap->session; 874 struct ceph_inode_info *ci = cap->ci; 875 struct ceph_mds_client *mdsc = 876 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 877 int removed = 0; 878 879 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); 880 881 /* remove from session list */ 882 spin_lock(&session->s_cap_lock); 883 if (session->s_cap_iterator == cap) { 884 /* not yet, we are iterating over this very cap */ 885 dout("__ceph_remove_cap delaying %p removal from session %p\n", 886 cap, cap->session); 887 } else { 888 list_del_init(&cap->session_caps); 889 session->s_nr_caps--; 890 cap->session = NULL; 891 removed = 1; 892 } 893 /* protect backpointer with s_cap_lock: see iterate_session_caps */ 894 cap->ci = NULL; 895 spin_unlock(&session->s_cap_lock); 896 897 /* remove from inode list */ 898 rb_erase(&cap->ci_node, &ci->i_caps); 899 if (ci->i_auth_cap == cap) 900 ci->i_auth_cap = NULL; 901 902 if (removed) 903 ceph_put_cap(mdsc, cap); 904 905 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) { 906 struct ceph_snap_realm *realm = ci->i_snap_realm; 907 spin_lock(&realm->inodes_with_caps_lock); 908 list_del_init(&ci->i_snap_realm_item); 909 ci->i_snap_realm_counter++; 910 ci->i_snap_realm = NULL; 911 spin_unlock(&realm->inodes_with_caps_lock); 912 ceph_put_snap_realm(mdsc, realm); 913 } 914 if (!__ceph_is_any_real_caps(ci)) 915 __cap_delay_cancel(mdsc, ci); 916 } 917 918 /* 919 * Build and send a cap message to the given MDS. 920 * 921 * Caller should be holding s_mutex. 922 */ 923 static int send_cap_msg(struct ceph_mds_session *session, 924 u64 ino, u64 cid, int op, 925 int caps, int wanted, int dirty, 926 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq, 927 u64 size, u64 max_size, 928 struct timespec *mtime, struct timespec *atime, 929 u64 time_warp_seq, 930 uid_t uid, gid_t gid, mode_t mode, 931 u64 xattr_version, 932 struct ceph_buffer *xattrs_buf, 933 u64 follows) 934 { 935 struct ceph_mds_caps *fc; 936 struct ceph_msg *msg; 937 938 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" 939 " seq %u/%u mseq %u follows %lld size %llu/%llu" 940 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), 941 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), 942 ceph_cap_string(dirty), 943 seq, issue_seq, mseq, follows, size, max_size, 944 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); 945 946 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false); 947 if (!msg) 948 return -ENOMEM; 949 950 msg->hdr.tid = cpu_to_le64(flush_tid); 951 952 fc = msg->front.iov_base; 953 memset(fc, 0, sizeof(*fc)); 954 955 fc->cap_id = cpu_to_le64(cid); 956 fc->op = cpu_to_le32(op); 957 fc->seq = cpu_to_le32(seq); 958 fc->issue_seq = cpu_to_le32(issue_seq); 959 fc->migrate_seq = cpu_to_le32(mseq); 960 fc->caps = cpu_to_le32(caps); 961 fc->wanted = cpu_to_le32(wanted); 962 fc->dirty = cpu_to_le32(dirty); 963 fc->ino = cpu_to_le64(ino); 964 fc->snap_follows = cpu_to_le64(follows); 965 966 fc->size = cpu_to_le64(size); 967 fc->max_size = cpu_to_le64(max_size); 968 if (mtime) 969 ceph_encode_timespec(&fc->mtime, mtime); 970 if (atime) 971 ceph_encode_timespec(&fc->atime, atime); 972 fc->time_warp_seq = cpu_to_le32(time_warp_seq); 973 974 fc->uid = cpu_to_le32(uid); 975 fc->gid = cpu_to_le32(gid); 976 fc->mode = cpu_to_le32(mode); 977 978 fc->xattr_version = cpu_to_le64(xattr_version); 979 if (xattrs_buf) { 980 msg->middle = ceph_buffer_get(xattrs_buf); 981 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); 982 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); 983 } 984 985 ceph_con_send(&session->s_con, msg); 986 return 0; 987 } 988 989 static void __queue_cap_release(struct ceph_mds_session *session, 990 u64 ino, u64 cap_id, u32 migrate_seq, 991 u32 issue_seq) 992 { 993 struct ceph_msg *msg; 994 struct ceph_mds_cap_release *head; 995 struct ceph_mds_cap_item *item; 996 997 spin_lock(&session->s_cap_lock); 998 BUG_ON(!session->s_num_cap_releases); 999 msg = list_first_entry(&session->s_cap_releases, 1000 struct ceph_msg, list_head); 1001 1002 dout(" adding %llx release to mds%d msg %p (%d left)\n", 1003 ino, session->s_mds, msg, session->s_num_cap_releases); 1004 1005 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE); 1006 head = msg->front.iov_base; 1007 head->num = cpu_to_le32(le32_to_cpu(head->num) + 1); 1008 item = msg->front.iov_base + msg->front.iov_len; 1009 item->ino = cpu_to_le64(ino); 1010 item->cap_id = cpu_to_le64(cap_id); 1011 item->migrate_seq = cpu_to_le32(migrate_seq); 1012 item->seq = cpu_to_le32(issue_seq); 1013 1014 session->s_num_cap_releases--; 1015 1016 msg->front.iov_len += sizeof(*item); 1017 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1018 dout(" release msg %p full\n", msg); 1019 list_move_tail(&msg->list_head, &session->s_cap_releases_done); 1020 } else { 1021 dout(" release msg %p at %d/%d (%d)\n", msg, 1022 (int)le32_to_cpu(head->num), 1023 (int)CEPH_CAPS_PER_RELEASE, 1024 (int)msg->front.iov_len); 1025 } 1026 spin_unlock(&session->s_cap_lock); 1027 } 1028 1029 /* 1030 * Queue cap releases when an inode is dropped from our cache. Since 1031 * inode is about to be destroyed, there is no need for i_lock. 1032 */ 1033 void ceph_queue_caps_release(struct inode *inode) 1034 { 1035 struct ceph_inode_info *ci = ceph_inode(inode); 1036 struct rb_node *p; 1037 1038 p = rb_first(&ci->i_caps); 1039 while (p) { 1040 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); 1041 struct ceph_mds_session *session = cap->session; 1042 1043 __queue_cap_release(session, ceph_ino(inode), cap->cap_id, 1044 cap->mseq, cap->issue_seq); 1045 p = rb_next(p); 1046 __ceph_remove_cap(cap); 1047 } 1048 } 1049 1050 /* 1051 * Send a cap msg on the given inode. Update our caps state, then 1052 * drop i_lock and send the message. 1053 * 1054 * Make note of max_size reported/requested from mds, revoked caps 1055 * that have now been implemented. 1056 * 1057 * Make half-hearted attempt ot to invalidate page cache if we are 1058 * dropping RDCACHE. Note that this will leave behind locked pages 1059 * that we'll then need to deal with elsewhere. 1060 * 1061 * Return non-zero if delayed release, or we experienced an error 1062 * such that the caller should requeue + retry later. 1063 * 1064 * called with i_lock, then drops it. 1065 * caller should hold snap_rwsem (read), s_mutex. 1066 */ 1067 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, 1068 int op, int used, int want, int retain, int flushing, 1069 unsigned *pflush_tid) 1070 __releases(cap->ci->vfs_inode->i_lock) 1071 { 1072 struct ceph_inode_info *ci = cap->ci; 1073 struct inode *inode = &ci->vfs_inode; 1074 u64 cap_id = cap->cap_id; 1075 int held, revoking, dropping, keep; 1076 u64 seq, issue_seq, mseq, time_warp_seq, follows; 1077 u64 size, max_size; 1078 struct timespec mtime, atime; 1079 int wake = 0; 1080 mode_t mode; 1081 uid_t uid; 1082 gid_t gid; 1083 struct ceph_mds_session *session; 1084 u64 xattr_version = 0; 1085 struct ceph_buffer *xattr_blob = NULL; 1086 int delayed = 0; 1087 u64 flush_tid = 0; 1088 int i; 1089 int ret; 1090 1091 held = cap->issued | cap->implemented; 1092 revoking = cap->implemented & ~cap->issued; 1093 retain &= ~revoking; 1094 dropping = cap->issued & ~retain; 1095 1096 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", 1097 inode, cap, cap->session, 1098 ceph_cap_string(held), ceph_cap_string(held & retain), 1099 ceph_cap_string(revoking)); 1100 BUG_ON((retain & CEPH_CAP_PIN) == 0); 1101 1102 session = cap->session; 1103 1104 /* don't release wanted unless we've waited a bit. */ 1105 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1106 time_before(jiffies, ci->i_hold_caps_min)) { 1107 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", 1108 ceph_cap_string(cap->issued), 1109 ceph_cap_string(cap->issued & retain), 1110 ceph_cap_string(cap->mds_wanted), 1111 ceph_cap_string(want)); 1112 want |= cap->mds_wanted; 1113 retain |= cap->issued; 1114 delayed = 1; 1115 } 1116 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); 1117 1118 cap->issued &= retain; /* drop bits we don't want */ 1119 if (cap->implemented & ~cap->issued) { 1120 /* 1121 * Wake up any waiters on wanted -> needed transition. 1122 * This is due to the weird transition from buffered 1123 * to sync IO... we need to flush dirty pages _before_ 1124 * allowing sync writes to avoid reordering. 1125 */ 1126 wake = 1; 1127 } 1128 cap->implemented &= cap->issued | used; 1129 cap->mds_wanted = want; 1130 1131 if (flushing) { 1132 /* 1133 * assign a tid for flush operations so we can avoid 1134 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark 1135 * clean type races. track latest tid for every bit 1136 * so we can handle flush AxFw, flush Fw, and have the 1137 * first ack clean Ax. 1138 */ 1139 flush_tid = ++ci->i_cap_flush_last_tid; 1140 if (pflush_tid) 1141 *pflush_tid = flush_tid; 1142 dout(" cap_flush_tid %d\n", (int)flush_tid); 1143 for (i = 0; i < CEPH_CAP_BITS; i++) 1144 if (flushing & (1 << i)) 1145 ci->i_cap_flush_tid[i] = flush_tid; 1146 1147 follows = ci->i_head_snapc->seq; 1148 } else { 1149 follows = 0; 1150 } 1151 1152 keep = cap->implemented; 1153 seq = cap->seq; 1154 issue_seq = cap->issue_seq; 1155 mseq = cap->mseq; 1156 size = inode->i_size; 1157 ci->i_reported_size = size; 1158 max_size = ci->i_wanted_max_size; 1159 ci->i_requested_max_size = max_size; 1160 mtime = inode->i_mtime; 1161 atime = inode->i_atime; 1162 time_warp_seq = ci->i_time_warp_seq; 1163 uid = inode->i_uid; 1164 gid = inode->i_gid; 1165 mode = inode->i_mode; 1166 1167 if (flushing & CEPH_CAP_XATTR_EXCL) { 1168 __ceph_build_xattrs_blob(ci); 1169 xattr_blob = ci->i_xattrs.blob; 1170 xattr_version = ci->i_xattrs.version; 1171 } 1172 1173 spin_unlock(&inode->i_lock); 1174 1175 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, 1176 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq, 1177 size, max_size, &mtime, &atime, time_warp_seq, 1178 uid, gid, mode, xattr_version, xattr_blob, 1179 follows); 1180 if (ret < 0) { 1181 dout("error sending cap msg, must requeue %p\n", inode); 1182 delayed = 1; 1183 } 1184 1185 if (wake) 1186 wake_up_all(&ci->i_cap_wq); 1187 1188 return delayed; 1189 } 1190 1191 /* 1192 * When a snapshot is taken, clients accumulate dirty metadata on 1193 * inodes with capabilities in ceph_cap_snaps to describe the file 1194 * state at the time the snapshot was taken. This must be flushed 1195 * asynchronously back to the MDS once sync writes complete and dirty 1196 * data is written out. 1197 * 1198 * Unless @again is true, skip cap_snaps that were already sent to 1199 * the MDS (i.e., during this session). 1200 * 1201 * Called under i_lock. Takes s_mutex as needed. 1202 */ 1203 void __ceph_flush_snaps(struct ceph_inode_info *ci, 1204 struct ceph_mds_session **psession, 1205 int again) 1206 __releases(ci->vfs_inode->i_lock) 1207 __acquires(ci->vfs_inode->i_lock) 1208 { 1209 struct inode *inode = &ci->vfs_inode; 1210 int mds; 1211 struct ceph_cap_snap *capsnap; 1212 u32 mseq; 1213 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 1214 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold 1215 session->s_mutex */ 1216 u64 next_follows = 0; /* keep track of how far we've gotten through the 1217 i_cap_snaps list, and skip these entries next time 1218 around to avoid an infinite loop */ 1219 1220 if (psession) 1221 session = *psession; 1222 1223 dout("__flush_snaps %p\n", inode); 1224 retry: 1225 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 1226 /* avoid an infiniute loop after retry */ 1227 if (capsnap->follows < next_follows) 1228 continue; 1229 /* 1230 * we need to wait for sync writes to complete and for dirty 1231 * pages to be written out. 1232 */ 1233 if (capsnap->dirty_pages || capsnap->writing) 1234 break; 1235 1236 /* 1237 * if cap writeback already occurred, we should have dropped 1238 * the capsnap in ceph_put_wrbuffer_cap_refs. 1239 */ 1240 BUG_ON(capsnap->dirty == 0); 1241 1242 /* pick mds, take s_mutex */ 1243 if (ci->i_auth_cap == NULL) { 1244 dout("no auth cap (migrating?), doing nothing\n"); 1245 goto out; 1246 } 1247 1248 /* only flush each capsnap once */ 1249 if (!again && !list_empty(&capsnap->flushing_item)) { 1250 dout("already flushed %p, skipping\n", capsnap); 1251 continue; 1252 } 1253 1254 mds = ci->i_auth_cap->session->s_mds; 1255 mseq = ci->i_auth_cap->mseq; 1256 1257 if (session && session->s_mds != mds) { 1258 dout("oops, wrong session %p mutex\n", session); 1259 mutex_unlock(&session->s_mutex); 1260 ceph_put_mds_session(session); 1261 session = NULL; 1262 } 1263 if (!session) { 1264 spin_unlock(&inode->i_lock); 1265 mutex_lock(&mdsc->mutex); 1266 session = __ceph_lookup_mds_session(mdsc, mds); 1267 mutex_unlock(&mdsc->mutex); 1268 if (session) { 1269 dout("inverting session/ino locks on %p\n", 1270 session); 1271 mutex_lock(&session->s_mutex); 1272 } 1273 /* 1274 * if session == NULL, we raced against a cap 1275 * deletion or migration. retry, and we'll 1276 * get a better @mds value next time. 1277 */ 1278 spin_lock(&inode->i_lock); 1279 goto retry; 1280 } 1281 1282 capsnap->flush_tid = ++ci->i_cap_flush_last_tid; 1283 atomic_inc(&capsnap->nref); 1284 if (!list_empty(&capsnap->flushing_item)) 1285 list_del_init(&capsnap->flushing_item); 1286 list_add_tail(&capsnap->flushing_item, 1287 &session->s_cap_snaps_flushing); 1288 spin_unlock(&inode->i_lock); 1289 1290 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n", 1291 inode, capsnap, capsnap->follows, capsnap->flush_tid); 1292 send_cap_msg(session, ceph_vino(inode).ino, 0, 1293 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, 1294 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq, 1295 capsnap->size, 0, 1296 &capsnap->mtime, &capsnap->atime, 1297 capsnap->time_warp_seq, 1298 capsnap->uid, capsnap->gid, capsnap->mode, 1299 capsnap->xattr_version, capsnap->xattr_blob, 1300 capsnap->follows); 1301 1302 next_follows = capsnap->follows + 1; 1303 ceph_put_cap_snap(capsnap); 1304 1305 spin_lock(&inode->i_lock); 1306 goto retry; 1307 } 1308 1309 /* we flushed them all; remove this inode from the queue */ 1310 spin_lock(&mdsc->snap_flush_lock); 1311 list_del_init(&ci->i_snap_flush_item); 1312 spin_unlock(&mdsc->snap_flush_lock); 1313 1314 out: 1315 if (psession) 1316 *psession = session; 1317 else if (session) { 1318 mutex_unlock(&session->s_mutex); 1319 ceph_put_mds_session(session); 1320 } 1321 } 1322 1323 static void ceph_flush_snaps(struct ceph_inode_info *ci) 1324 { 1325 struct inode *inode = &ci->vfs_inode; 1326 1327 spin_lock(&inode->i_lock); 1328 __ceph_flush_snaps(ci, NULL, 0); 1329 spin_unlock(&inode->i_lock); 1330 } 1331 1332 /* 1333 * Mark caps dirty. If inode is newly dirty, return the dirty flags. 1334 * Caller is then responsible for calling __mark_inode_dirty with the 1335 * returned flags value. 1336 */ 1337 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask) 1338 { 1339 struct ceph_mds_client *mdsc = 1340 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 1341 struct inode *inode = &ci->vfs_inode; 1342 int was = ci->i_dirty_caps; 1343 int dirty = 0; 1344 1345 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, 1346 ceph_cap_string(mask), ceph_cap_string(was), 1347 ceph_cap_string(was | mask)); 1348 ci->i_dirty_caps |= mask; 1349 if (was == 0) { 1350 if (!ci->i_head_snapc) 1351 ci->i_head_snapc = ceph_get_snap_context( 1352 ci->i_snap_realm->cached_context); 1353 dout(" inode %p now dirty snapc %p\n", &ci->vfs_inode, 1354 ci->i_head_snapc); 1355 BUG_ON(!list_empty(&ci->i_dirty_item)); 1356 spin_lock(&mdsc->cap_dirty_lock); 1357 list_add(&ci->i_dirty_item, &mdsc->cap_dirty); 1358 spin_unlock(&mdsc->cap_dirty_lock); 1359 if (ci->i_flushing_caps == 0) { 1360 ihold(inode); 1361 dirty |= I_DIRTY_SYNC; 1362 } 1363 } 1364 BUG_ON(list_empty(&ci->i_dirty_item)); 1365 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && 1366 (mask & CEPH_CAP_FILE_BUFFER)) 1367 dirty |= I_DIRTY_DATASYNC; 1368 __cap_delay_requeue(mdsc, ci); 1369 return dirty; 1370 } 1371 1372 /* 1373 * Add dirty inode to the flushing list. Assigned a seq number so we 1374 * can wait for caps to flush without starving. 1375 * 1376 * Called under i_lock. 1377 */ 1378 static int __mark_caps_flushing(struct inode *inode, 1379 struct ceph_mds_session *session) 1380 { 1381 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1382 struct ceph_inode_info *ci = ceph_inode(inode); 1383 int flushing; 1384 1385 BUG_ON(ci->i_dirty_caps == 0); 1386 BUG_ON(list_empty(&ci->i_dirty_item)); 1387 1388 flushing = ci->i_dirty_caps; 1389 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", 1390 ceph_cap_string(flushing), 1391 ceph_cap_string(ci->i_flushing_caps), 1392 ceph_cap_string(ci->i_flushing_caps | flushing)); 1393 ci->i_flushing_caps |= flushing; 1394 ci->i_dirty_caps = 0; 1395 dout(" inode %p now !dirty\n", inode); 1396 1397 spin_lock(&mdsc->cap_dirty_lock); 1398 list_del_init(&ci->i_dirty_item); 1399 1400 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq; 1401 if (list_empty(&ci->i_flushing_item)) { 1402 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1403 mdsc->num_cap_flushing++; 1404 dout(" inode %p now flushing seq %lld\n", inode, 1405 ci->i_cap_flush_seq); 1406 } else { 1407 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1408 dout(" inode %p now flushing (more) seq %lld\n", inode, 1409 ci->i_cap_flush_seq); 1410 } 1411 spin_unlock(&mdsc->cap_dirty_lock); 1412 1413 return flushing; 1414 } 1415 1416 /* 1417 * try to invalidate mapping pages without blocking. 1418 */ 1419 static int try_nonblocking_invalidate(struct inode *inode) 1420 { 1421 struct ceph_inode_info *ci = ceph_inode(inode); 1422 u32 invalidating_gen = ci->i_rdcache_gen; 1423 1424 spin_unlock(&inode->i_lock); 1425 invalidate_mapping_pages(&inode->i_data, 0, -1); 1426 spin_lock(&inode->i_lock); 1427 1428 if (inode->i_data.nrpages == 0 && 1429 invalidating_gen == ci->i_rdcache_gen) { 1430 /* success. */ 1431 dout("try_nonblocking_invalidate %p success\n", inode); 1432 /* save any racing async invalidate some trouble */ 1433 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1; 1434 return 0; 1435 } 1436 dout("try_nonblocking_invalidate %p failed\n", inode); 1437 return -1; 1438 } 1439 1440 /* 1441 * Swiss army knife function to examine currently used and wanted 1442 * versus held caps. Release, flush, ack revoked caps to mds as 1443 * appropriate. 1444 * 1445 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay 1446 * cap release further. 1447 * CHECK_CAPS_AUTHONLY - we should only check the auth cap 1448 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without 1449 * further delay. 1450 */ 1451 void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1452 struct ceph_mds_session *session) 1453 { 1454 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode); 1455 struct ceph_mds_client *mdsc = fsc->mdsc; 1456 struct inode *inode = &ci->vfs_inode; 1457 struct ceph_cap *cap; 1458 int file_wanted, used; 1459 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ 1460 int issued, implemented, want, retain, revoking, flushing = 0; 1461 int mds = -1; /* keep track of how far we've gone through i_caps list 1462 to avoid an infinite loop on retry */ 1463 struct rb_node *p; 1464 int tried_invalidate = 0; 1465 int delayed = 0, sent = 0, force_requeue = 0, num; 1466 int queue_invalidate = 0; 1467 int is_delayed = flags & CHECK_CAPS_NODELAY; 1468 1469 /* if we are unmounting, flush any unused caps immediately. */ 1470 if (mdsc->stopping) 1471 is_delayed = 1; 1472 1473 spin_lock(&inode->i_lock); 1474 1475 if (ci->i_ceph_flags & CEPH_I_FLUSH) 1476 flags |= CHECK_CAPS_FLUSH; 1477 1478 /* flush snaps first time around only */ 1479 if (!list_empty(&ci->i_cap_snaps)) 1480 __ceph_flush_snaps(ci, &session, 0); 1481 goto retry_locked; 1482 retry: 1483 spin_lock(&inode->i_lock); 1484 retry_locked: 1485 file_wanted = __ceph_caps_file_wanted(ci); 1486 used = __ceph_caps_used(ci); 1487 want = file_wanted | used; 1488 issued = __ceph_caps_issued(ci, &implemented); 1489 revoking = implemented & ~issued; 1490 1491 retain = want | CEPH_CAP_PIN; 1492 if (!mdsc->stopping && inode->i_nlink > 0) { 1493 if (want) { 1494 retain |= CEPH_CAP_ANY; /* be greedy */ 1495 } else { 1496 retain |= CEPH_CAP_ANY_SHARED; 1497 /* 1498 * keep RD only if we didn't have the file open RW, 1499 * because then the mds would revoke it anyway to 1500 * journal max_size=0. 1501 */ 1502 if (ci->i_max_size == 0) 1503 retain |= CEPH_CAP_ANY_RD; 1504 } 1505 } 1506 1507 dout("check_caps %p file_want %s used %s dirty %s flushing %s" 1508 " issued %s revoking %s retain %s %s%s%s\n", inode, 1509 ceph_cap_string(file_wanted), 1510 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), 1511 ceph_cap_string(ci->i_flushing_caps), 1512 ceph_cap_string(issued), ceph_cap_string(revoking), 1513 ceph_cap_string(retain), 1514 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", 1515 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", 1516 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); 1517 1518 /* 1519 * If we no longer need to hold onto old our caps, and we may 1520 * have cached pages, but don't want them, then try to invalidate. 1521 * If we fail, it's because pages are locked.... try again later. 1522 */ 1523 if ((!is_delayed || mdsc->stopping) && 1524 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ 1525 inode->i_data.nrpages && /* have cached pages */ 1526 (file_wanted == 0 || /* no open files */ 1527 (revoking & (CEPH_CAP_FILE_CACHE| 1528 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */ 1529 !tried_invalidate) { 1530 dout("check_caps trying to invalidate on %p\n", inode); 1531 if (try_nonblocking_invalidate(inode) < 0) { 1532 if (revoking & (CEPH_CAP_FILE_CACHE| 1533 CEPH_CAP_FILE_LAZYIO)) { 1534 dout("check_caps queuing invalidate\n"); 1535 queue_invalidate = 1; 1536 ci->i_rdcache_revoking = ci->i_rdcache_gen; 1537 } else { 1538 dout("check_caps failed to invalidate pages\n"); 1539 /* we failed to invalidate pages. check these 1540 caps again later. */ 1541 force_requeue = 1; 1542 __cap_set_timeouts(mdsc, ci); 1543 } 1544 } 1545 tried_invalidate = 1; 1546 goto retry_locked; 1547 } 1548 1549 num = 0; 1550 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 1551 cap = rb_entry(p, struct ceph_cap, ci_node); 1552 num++; 1553 1554 /* avoid looping forever */ 1555 if (mds >= cap->mds || 1556 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) 1557 continue; 1558 1559 /* NOTE: no side-effects allowed, until we take s_mutex */ 1560 1561 revoking = cap->implemented & ~cap->issued; 1562 dout(" mds%d cap %p issued %s implemented %s revoking %s\n", 1563 cap->mds, cap, ceph_cap_string(cap->issued), 1564 ceph_cap_string(cap->implemented), 1565 ceph_cap_string(revoking)); 1566 1567 if (cap == ci->i_auth_cap && 1568 (cap->issued & CEPH_CAP_FILE_WR)) { 1569 /* request larger max_size from MDS? */ 1570 if (ci->i_wanted_max_size > ci->i_max_size && 1571 ci->i_wanted_max_size > ci->i_requested_max_size) { 1572 dout("requesting new max_size\n"); 1573 goto ack; 1574 } 1575 1576 /* approaching file_max? */ 1577 if ((inode->i_size << 1) >= ci->i_max_size && 1578 (ci->i_reported_size << 1) < ci->i_max_size) { 1579 dout("i_size approaching max_size\n"); 1580 goto ack; 1581 } 1582 } 1583 /* flush anything dirty? */ 1584 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && 1585 ci->i_dirty_caps) { 1586 dout("flushing dirty caps\n"); 1587 goto ack; 1588 } 1589 1590 /* completed revocation? going down and there are no caps? */ 1591 if (revoking && (revoking & used) == 0) { 1592 dout("completed revocation of %s\n", 1593 ceph_cap_string(cap->implemented & ~cap->issued)); 1594 goto ack; 1595 } 1596 1597 /* want more caps from mds? */ 1598 if (want & ~(cap->mds_wanted | cap->issued)) 1599 goto ack; 1600 1601 /* things we might delay */ 1602 if ((cap->issued & ~retain) == 0 && 1603 cap->mds_wanted == want) 1604 continue; /* nope, all good */ 1605 1606 if (is_delayed) 1607 goto ack; 1608 1609 /* delay? */ 1610 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1611 time_before(jiffies, ci->i_hold_caps_max)) { 1612 dout(" delaying issued %s -> %s, wanted %s -> %s\n", 1613 ceph_cap_string(cap->issued), 1614 ceph_cap_string(cap->issued & retain), 1615 ceph_cap_string(cap->mds_wanted), 1616 ceph_cap_string(want)); 1617 delayed++; 1618 continue; 1619 } 1620 1621 ack: 1622 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1623 dout(" skipping %p I_NOFLUSH set\n", inode); 1624 continue; 1625 } 1626 1627 if (session && session != cap->session) { 1628 dout("oops, wrong session %p mutex\n", session); 1629 mutex_unlock(&session->s_mutex); 1630 session = NULL; 1631 } 1632 if (!session) { 1633 session = cap->session; 1634 if (mutex_trylock(&session->s_mutex) == 0) { 1635 dout("inverting session/ino locks on %p\n", 1636 session); 1637 spin_unlock(&inode->i_lock); 1638 if (took_snap_rwsem) { 1639 up_read(&mdsc->snap_rwsem); 1640 took_snap_rwsem = 0; 1641 } 1642 mutex_lock(&session->s_mutex); 1643 goto retry; 1644 } 1645 } 1646 /* take snap_rwsem after session mutex */ 1647 if (!took_snap_rwsem) { 1648 if (down_read_trylock(&mdsc->snap_rwsem) == 0) { 1649 dout("inverting snap/in locks on %p\n", 1650 inode); 1651 spin_unlock(&inode->i_lock); 1652 down_read(&mdsc->snap_rwsem); 1653 took_snap_rwsem = 1; 1654 goto retry; 1655 } 1656 took_snap_rwsem = 1; 1657 } 1658 1659 if (cap == ci->i_auth_cap && ci->i_dirty_caps) 1660 flushing = __mark_caps_flushing(inode, session); 1661 else 1662 flushing = 0; 1663 1664 mds = cap->mds; /* remember mds, so we don't repeat */ 1665 sent++; 1666 1667 /* __send_cap drops i_lock */ 1668 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want, 1669 retain, flushing, NULL); 1670 goto retry; /* retake i_lock and restart our cap scan. */ 1671 } 1672 1673 /* 1674 * Reschedule delayed caps release if we delayed anything, 1675 * otherwise cancel. 1676 */ 1677 if (delayed && is_delayed) 1678 force_requeue = 1; /* __send_cap delayed release; requeue */ 1679 if (!delayed && !is_delayed) 1680 __cap_delay_cancel(mdsc, ci); 1681 else if (!is_delayed || force_requeue) 1682 __cap_delay_requeue(mdsc, ci); 1683 1684 spin_unlock(&inode->i_lock); 1685 1686 if (queue_invalidate) 1687 ceph_queue_invalidate(inode); 1688 1689 if (session) 1690 mutex_unlock(&session->s_mutex); 1691 if (took_snap_rwsem) 1692 up_read(&mdsc->snap_rwsem); 1693 } 1694 1695 /* 1696 * Try to flush dirty caps back to the auth mds. 1697 */ 1698 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session, 1699 unsigned *flush_tid) 1700 { 1701 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1702 struct ceph_inode_info *ci = ceph_inode(inode); 1703 int unlock_session = session ? 0 : 1; 1704 int flushing = 0; 1705 1706 retry: 1707 spin_lock(&inode->i_lock); 1708 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1709 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode); 1710 goto out; 1711 } 1712 if (ci->i_dirty_caps && ci->i_auth_cap) { 1713 struct ceph_cap *cap = ci->i_auth_cap; 1714 int used = __ceph_caps_used(ci); 1715 int want = __ceph_caps_wanted(ci); 1716 int delayed; 1717 1718 if (!session) { 1719 spin_unlock(&inode->i_lock); 1720 session = cap->session; 1721 mutex_lock(&session->s_mutex); 1722 goto retry; 1723 } 1724 BUG_ON(session != cap->session); 1725 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) 1726 goto out; 1727 1728 flushing = __mark_caps_flushing(inode, session); 1729 1730 /* __send_cap drops i_lock */ 1731 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, 1732 cap->issued | cap->implemented, flushing, 1733 flush_tid); 1734 if (!delayed) 1735 goto out_unlocked; 1736 1737 spin_lock(&inode->i_lock); 1738 __cap_delay_requeue(mdsc, ci); 1739 } 1740 out: 1741 spin_unlock(&inode->i_lock); 1742 out_unlocked: 1743 if (session && unlock_session) 1744 mutex_unlock(&session->s_mutex); 1745 return flushing; 1746 } 1747 1748 /* 1749 * Return true if we've flushed caps through the given flush_tid. 1750 */ 1751 static int caps_are_flushed(struct inode *inode, unsigned tid) 1752 { 1753 struct ceph_inode_info *ci = ceph_inode(inode); 1754 int i, ret = 1; 1755 1756 spin_lock(&inode->i_lock); 1757 for (i = 0; i < CEPH_CAP_BITS; i++) 1758 if ((ci->i_flushing_caps & (1 << i)) && 1759 ci->i_cap_flush_tid[i] <= tid) { 1760 /* still flushing this bit */ 1761 ret = 0; 1762 break; 1763 } 1764 spin_unlock(&inode->i_lock); 1765 return ret; 1766 } 1767 1768 /* 1769 * Wait on any unsafe replies for the given inode. First wait on the 1770 * newest request, and make that the upper bound. Then, if there are 1771 * more requests, keep waiting on the oldest as long as it is still older 1772 * than the original request. 1773 */ 1774 static void sync_write_wait(struct inode *inode) 1775 { 1776 struct ceph_inode_info *ci = ceph_inode(inode); 1777 struct list_head *head = &ci->i_unsafe_writes; 1778 struct ceph_osd_request *req; 1779 u64 last_tid; 1780 1781 spin_lock(&ci->i_unsafe_lock); 1782 if (list_empty(head)) 1783 goto out; 1784 1785 /* set upper bound as _last_ entry in chain */ 1786 req = list_entry(head->prev, struct ceph_osd_request, 1787 r_unsafe_item); 1788 last_tid = req->r_tid; 1789 1790 do { 1791 ceph_osdc_get_request(req); 1792 spin_unlock(&ci->i_unsafe_lock); 1793 dout("sync_write_wait on tid %llu (until %llu)\n", 1794 req->r_tid, last_tid); 1795 wait_for_completion(&req->r_safe_completion); 1796 spin_lock(&ci->i_unsafe_lock); 1797 ceph_osdc_put_request(req); 1798 1799 /* 1800 * from here on look at first entry in chain, since we 1801 * only want to wait for anything older than last_tid 1802 */ 1803 if (list_empty(head)) 1804 break; 1805 req = list_entry(head->next, struct ceph_osd_request, 1806 r_unsafe_item); 1807 } while (req->r_tid < last_tid); 1808 out: 1809 spin_unlock(&ci->i_unsafe_lock); 1810 } 1811 1812 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1813 { 1814 struct inode *inode = file->f_mapping->host; 1815 struct ceph_inode_info *ci = ceph_inode(inode); 1816 unsigned flush_tid; 1817 int ret; 1818 int dirty; 1819 1820 dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); 1821 sync_write_wait(inode); 1822 1823 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 1824 if (ret < 0) 1825 return ret; 1826 mutex_lock(&inode->i_mutex); 1827 1828 dirty = try_flush_caps(inode, NULL, &flush_tid); 1829 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); 1830 1831 /* 1832 * only wait on non-file metadata writeback (the mds 1833 * can recover size and mtime, so we don't need to 1834 * wait for that) 1835 */ 1836 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { 1837 dout("fsync waiting for flush_tid %u\n", flush_tid); 1838 ret = wait_event_interruptible(ci->i_cap_wq, 1839 caps_are_flushed(inode, flush_tid)); 1840 } 1841 1842 dout("fsync %p%s done\n", inode, datasync ? " datasync" : ""); 1843 mutex_unlock(&inode->i_mutex); 1844 return ret; 1845 } 1846 1847 /* 1848 * Flush any dirty caps back to the mds. If we aren't asked to wait, 1849 * queue inode for flush but don't do so immediately, because we can 1850 * get by with fewer MDS messages if we wait for data writeback to 1851 * complete first. 1852 */ 1853 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc) 1854 { 1855 struct ceph_inode_info *ci = ceph_inode(inode); 1856 unsigned flush_tid; 1857 int err = 0; 1858 int dirty; 1859 int wait = wbc->sync_mode == WB_SYNC_ALL; 1860 1861 dout("write_inode %p wait=%d\n", inode, wait); 1862 if (wait) { 1863 dirty = try_flush_caps(inode, NULL, &flush_tid); 1864 if (dirty) 1865 err = wait_event_interruptible(ci->i_cap_wq, 1866 caps_are_flushed(inode, flush_tid)); 1867 } else { 1868 struct ceph_mds_client *mdsc = 1869 ceph_sb_to_client(inode->i_sb)->mdsc; 1870 1871 spin_lock(&inode->i_lock); 1872 if (__ceph_caps_dirty(ci)) 1873 __cap_delay_requeue_front(mdsc, ci); 1874 spin_unlock(&inode->i_lock); 1875 } 1876 return err; 1877 } 1878 1879 /* 1880 * After a recovering MDS goes active, we need to resend any caps 1881 * we were flushing. 1882 * 1883 * Caller holds session->s_mutex. 1884 */ 1885 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, 1886 struct ceph_mds_session *session) 1887 { 1888 struct ceph_cap_snap *capsnap; 1889 1890 dout("kick_flushing_capsnaps mds%d\n", session->s_mds); 1891 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, 1892 flushing_item) { 1893 struct ceph_inode_info *ci = capsnap->ci; 1894 struct inode *inode = &ci->vfs_inode; 1895 struct ceph_cap *cap; 1896 1897 spin_lock(&inode->i_lock); 1898 cap = ci->i_auth_cap; 1899 if (cap && cap->session == session) { 1900 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, 1901 cap, capsnap); 1902 __ceph_flush_snaps(ci, &session, 1); 1903 } else { 1904 pr_err("%p auth cap %p not mds%d ???\n", inode, 1905 cap, session->s_mds); 1906 } 1907 spin_unlock(&inode->i_lock); 1908 } 1909 } 1910 1911 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 1912 struct ceph_mds_session *session) 1913 { 1914 struct ceph_inode_info *ci; 1915 1916 kick_flushing_capsnaps(mdsc, session); 1917 1918 dout("kick_flushing_caps mds%d\n", session->s_mds); 1919 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 1920 struct inode *inode = &ci->vfs_inode; 1921 struct ceph_cap *cap; 1922 int delayed = 0; 1923 1924 spin_lock(&inode->i_lock); 1925 cap = ci->i_auth_cap; 1926 if (cap && cap->session == session) { 1927 dout("kick_flushing_caps %p cap %p %s\n", inode, 1928 cap, ceph_cap_string(ci->i_flushing_caps)); 1929 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1930 __ceph_caps_used(ci), 1931 __ceph_caps_wanted(ci), 1932 cap->issued | cap->implemented, 1933 ci->i_flushing_caps, NULL); 1934 if (delayed) { 1935 spin_lock(&inode->i_lock); 1936 __cap_delay_requeue(mdsc, ci); 1937 spin_unlock(&inode->i_lock); 1938 } 1939 } else { 1940 pr_err("%p auth cap %p not mds%d ???\n", inode, 1941 cap, session->s_mds); 1942 spin_unlock(&inode->i_lock); 1943 } 1944 } 1945 } 1946 1947 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc, 1948 struct ceph_mds_session *session, 1949 struct inode *inode) 1950 { 1951 struct ceph_inode_info *ci = ceph_inode(inode); 1952 struct ceph_cap *cap; 1953 int delayed = 0; 1954 1955 spin_lock(&inode->i_lock); 1956 cap = ci->i_auth_cap; 1957 dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode, 1958 ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq); 1959 __ceph_flush_snaps(ci, &session, 1); 1960 if (ci->i_flushing_caps) { 1961 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1962 __ceph_caps_used(ci), 1963 __ceph_caps_wanted(ci), 1964 cap->issued | cap->implemented, 1965 ci->i_flushing_caps, NULL); 1966 if (delayed) { 1967 spin_lock(&inode->i_lock); 1968 __cap_delay_requeue(mdsc, ci); 1969 spin_unlock(&inode->i_lock); 1970 } 1971 } else { 1972 spin_unlock(&inode->i_lock); 1973 } 1974 } 1975 1976 1977 /* 1978 * Take references to capabilities we hold, so that we don't release 1979 * them to the MDS prematurely. 1980 * 1981 * Protected by i_lock. 1982 */ 1983 static void __take_cap_refs(struct ceph_inode_info *ci, int got) 1984 { 1985 if (got & CEPH_CAP_PIN) 1986 ci->i_pin_ref++; 1987 if (got & CEPH_CAP_FILE_RD) 1988 ci->i_rd_ref++; 1989 if (got & CEPH_CAP_FILE_CACHE) 1990 ci->i_rdcache_ref++; 1991 if (got & CEPH_CAP_FILE_WR) 1992 ci->i_wr_ref++; 1993 if (got & CEPH_CAP_FILE_BUFFER) { 1994 if (ci->i_wb_ref == 0) 1995 ihold(&ci->vfs_inode); 1996 ci->i_wb_ref++; 1997 dout("__take_cap_refs %p wb %d -> %d (?)\n", 1998 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref); 1999 } 2000 } 2001 2002 /* 2003 * Try to grab cap references. Specify those refs we @want, and the 2004 * minimal set we @need. Also include the larger offset we are writing 2005 * to (when applicable), and check against max_size here as well. 2006 * Note that caller is responsible for ensuring max_size increases are 2007 * requested from the MDS. 2008 */ 2009 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, 2010 int *got, loff_t endoff, int *check_max, int *err) 2011 { 2012 struct inode *inode = &ci->vfs_inode; 2013 int ret = 0; 2014 int have, implemented; 2015 int file_wanted; 2016 2017 dout("get_cap_refs %p need %s want %s\n", inode, 2018 ceph_cap_string(need), ceph_cap_string(want)); 2019 spin_lock(&inode->i_lock); 2020 2021 /* make sure file is actually open */ 2022 file_wanted = __ceph_caps_file_wanted(ci); 2023 if ((file_wanted & need) == 0) { 2024 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n", 2025 ceph_cap_string(need), ceph_cap_string(file_wanted)); 2026 *err = -EBADF; 2027 ret = 1; 2028 goto out; 2029 } 2030 2031 if (need & CEPH_CAP_FILE_WR) { 2032 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { 2033 dout("get_cap_refs %p endoff %llu > maxsize %llu\n", 2034 inode, endoff, ci->i_max_size); 2035 if (endoff > ci->i_wanted_max_size) { 2036 *check_max = 1; 2037 ret = 1; 2038 } 2039 goto out; 2040 } 2041 /* 2042 * If a sync write is in progress, we must wait, so that we 2043 * can get a final snapshot value for size+mtime. 2044 */ 2045 if (__ceph_have_pending_cap_snap(ci)) { 2046 dout("get_cap_refs %p cap_snap_pending\n", inode); 2047 goto out; 2048 } 2049 } 2050 have = __ceph_caps_issued(ci, &implemented); 2051 2052 /* 2053 * disallow writes while a truncate is pending 2054 */ 2055 if (ci->i_truncate_pending) 2056 have &= ~CEPH_CAP_FILE_WR; 2057 2058 if ((have & need) == need) { 2059 /* 2060 * Look at (implemented & ~have & not) so that we keep waiting 2061 * on transition from wanted -> needed caps. This is needed 2062 * for WRBUFFER|WR -> WR to avoid a new WR sync write from 2063 * going before a prior buffered writeback happens. 2064 */ 2065 int not = want & ~(have & need); 2066 int revoking = implemented & ~have; 2067 dout("get_cap_refs %p have %s but not %s (revoking %s)\n", 2068 inode, ceph_cap_string(have), ceph_cap_string(not), 2069 ceph_cap_string(revoking)); 2070 if ((revoking & not) == 0) { 2071 *got = need | (have & want); 2072 __take_cap_refs(ci, *got); 2073 ret = 1; 2074 } 2075 } else { 2076 dout("get_cap_refs %p have %s needed %s\n", inode, 2077 ceph_cap_string(have), ceph_cap_string(need)); 2078 } 2079 out: 2080 spin_unlock(&inode->i_lock); 2081 dout("get_cap_refs %p ret %d got %s\n", inode, 2082 ret, ceph_cap_string(*got)); 2083 return ret; 2084 } 2085 2086 /* 2087 * Check the offset we are writing up to against our current 2088 * max_size. If necessary, tell the MDS we want to write to 2089 * a larger offset. 2090 */ 2091 static void check_max_size(struct inode *inode, loff_t endoff) 2092 { 2093 struct ceph_inode_info *ci = ceph_inode(inode); 2094 int check = 0; 2095 2096 /* do we need to explicitly request a larger max_size? */ 2097 spin_lock(&inode->i_lock); 2098 if ((endoff >= ci->i_max_size || 2099 endoff > (inode->i_size << 1)) && 2100 endoff > ci->i_wanted_max_size) { 2101 dout("write %p at large endoff %llu, req max_size\n", 2102 inode, endoff); 2103 ci->i_wanted_max_size = endoff; 2104 check = 1; 2105 } 2106 spin_unlock(&inode->i_lock); 2107 if (check) 2108 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2109 } 2110 2111 /* 2112 * Wait for caps, and take cap references. If we can't get a WR cap 2113 * due to a small max_size, make sure we check_max_size (and possibly 2114 * ask the mds) so we don't get hung up indefinitely. 2115 */ 2116 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got, 2117 loff_t endoff) 2118 { 2119 int check_max, ret, err; 2120 2121 retry: 2122 if (endoff > 0) 2123 check_max_size(&ci->vfs_inode, endoff); 2124 check_max = 0; 2125 err = 0; 2126 ret = wait_event_interruptible(ci->i_cap_wq, 2127 try_get_cap_refs(ci, need, want, 2128 got, endoff, 2129 &check_max, &err)); 2130 if (err) 2131 ret = err; 2132 if (check_max) 2133 goto retry; 2134 return ret; 2135 } 2136 2137 /* 2138 * Take cap refs. Caller must already know we hold at least one ref 2139 * on the caps in question or we don't know this is safe. 2140 */ 2141 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) 2142 { 2143 spin_lock(&ci->vfs_inode.i_lock); 2144 __take_cap_refs(ci, caps); 2145 spin_unlock(&ci->vfs_inode.i_lock); 2146 } 2147 2148 /* 2149 * Release cap refs. 2150 * 2151 * If we released the last ref on any given cap, call ceph_check_caps 2152 * to release (or schedule a release). 2153 * 2154 * If we are releasing a WR cap (from a sync write), finalize any affected 2155 * cap_snap, and wake up any waiters. 2156 */ 2157 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) 2158 { 2159 struct inode *inode = &ci->vfs_inode; 2160 int last = 0, put = 0, flushsnaps = 0, wake = 0; 2161 struct ceph_cap_snap *capsnap; 2162 2163 spin_lock(&inode->i_lock); 2164 if (had & CEPH_CAP_PIN) 2165 --ci->i_pin_ref; 2166 if (had & CEPH_CAP_FILE_RD) 2167 if (--ci->i_rd_ref == 0) 2168 last++; 2169 if (had & CEPH_CAP_FILE_CACHE) 2170 if (--ci->i_rdcache_ref == 0) 2171 last++; 2172 if (had & CEPH_CAP_FILE_BUFFER) { 2173 if (--ci->i_wb_ref == 0) { 2174 last++; 2175 put++; 2176 } 2177 dout("put_cap_refs %p wb %d -> %d (?)\n", 2178 inode, ci->i_wb_ref+1, ci->i_wb_ref); 2179 } 2180 if (had & CEPH_CAP_FILE_WR) 2181 if (--ci->i_wr_ref == 0) { 2182 last++; 2183 if (!list_empty(&ci->i_cap_snaps)) { 2184 capsnap = list_first_entry(&ci->i_cap_snaps, 2185 struct ceph_cap_snap, 2186 ci_item); 2187 if (capsnap->writing) { 2188 capsnap->writing = 0; 2189 flushsnaps = 2190 __ceph_finish_cap_snap(ci, 2191 capsnap); 2192 wake = 1; 2193 } 2194 } 2195 } 2196 spin_unlock(&inode->i_lock); 2197 2198 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had), 2199 last ? " last" : "", put ? " put" : ""); 2200 2201 if (last && !flushsnaps) 2202 ceph_check_caps(ci, 0, NULL); 2203 else if (flushsnaps) 2204 ceph_flush_snaps(ci); 2205 if (wake) 2206 wake_up_all(&ci->i_cap_wq); 2207 if (put) 2208 iput(inode); 2209 } 2210 2211 /* 2212 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap 2213 * context. Adjust per-snap dirty page accounting as appropriate. 2214 * Once all dirty data for a cap_snap is flushed, flush snapped file 2215 * metadata back to the MDS. If we dropped the last ref, call 2216 * ceph_check_caps. 2217 */ 2218 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 2219 struct ceph_snap_context *snapc) 2220 { 2221 struct inode *inode = &ci->vfs_inode; 2222 int last = 0; 2223 int complete_capsnap = 0; 2224 int drop_capsnap = 0; 2225 int found = 0; 2226 struct ceph_cap_snap *capsnap = NULL; 2227 2228 spin_lock(&inode->i_lock); 2229 ci->i_wrbuffer_ref -= nr; 2230 last = !ci->i_wrbuffer_ref; 2231 2232 if (ci->i_head_snapc == snapc) { 2233 ci->i_wrbuffer_ref_head -= nr; 2234 if (ci->i_wrbuffer_ref_head == 0 && 2235 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) { 2236 BUG_ON(!ci->i_head_snapc); 2237 ceph_put_snap_context(ci->i_head_snapc); 2238 ci->i_head_snapc = NULL; 2239 } 2240 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", 2241 inode, 2242 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, 2243 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 2244 last ? " LAST" : ""); 2245 } else { 2246 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2247 if (capsnap->context == snapc) { 2248 found = 1; 2249 break; 2250 } 2251 } 2252 BUG_ON(!found); 2253 capsnap->dirty_pages -= nr; 2254 if (capsnap->dirty_pages == 0) { 2255 complete_capsnap = 1; 2256 if (capsnap->dirty == 0) 2257 /* cap writeback completed before we created 2258 * the cap_snap; no FLUSHSNAP is needed */ 2259 drop_capsnap = 1; 2260 } 2261 dout("put_wrbuffer_cap_refs on %p cap_snap %p " 2262 " snap %lld %d/%d -> %d/%d %s%s%s\n", 2263 inode, capsnap, capsnap->context->seq, 2264 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, 2265 ci->i_wrbuffer_ref, capsnap->dirty_pages, 2266 last ? " (wrbuffer last)" : "", 2267 complete_capsnap ? " (complete capsnap)" : "", 2268 drop_capsnap ? " (drop capsnap)" : ""); 2269 if (drop_capsnap) { 2270 ceph_put_snap_context(capsnap->context); 2271 list_del(&capsnap->ci_item); 2272 list_del(&capsnap->flushing_item); 2273 ceph_put_cap_snap(capsnap); 2274 } 2275 } 2276 2277 spin_unlock(&inode->i_lock); 2278 2279 if (last) { 2280 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2281 iput(inode); 2282 } else if (complete_capsnap) { 2283 ceph_flush_snaps(ci); 2284 wake_up_all(&ci->i_cap_wq); 2285 } 2286 if (drop_capsnap) 2287 iput(inode); 2288 } 2289 2290 /* 2291 * Handle a cap GRANT message from the MDS. (Note that a GRANT may 2292 * actually be a revocation if it specifies a smaller cap set.) 2293 * 2294 * caller holds s_mutex and i_lock, we drop both. 2295 * 2296 * return value: 2297 * 0 - ok 2298 * 1 - check_caps on auth cap only (writeback) 2299 * 2 - check_caps (ack revoke) 2300 */ 2301 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant, 2302 struct ceph_mds_session *session, 2303 struct ceph_cap *cap, 2304 struct ceph_buffer *xattr_buf) 2305 __releases(inode->i_lock) 2306 { 2307 struct ceph_inode_info *ci = ceph_inode(inode); 2308 int mds = session->s_mds; 2309 int seq = le32_to_cpu(grant->seq); 2310 int newcaps = le32_to_cpu(grant->caps); 2311 int issued, implemented, used, wanted, dirty; 2312 u64 size = le64_to_cpu(grant->size); 2313 u64 max_size = le64_to_cpu(grant->max_size); 2314 struct timespec mtime, atime, ctime; 2315 int check_caps = 0; 2316 int wake = 0; 2317 int writeback = 0; 2318 int revoked_rdcache = 0; 2319 int queue_invalidate = 0; 2320 2321 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", 2322 inode, cap, mds, seq, ceph_cap_string(newcaps)); 2323 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, 2324 inode->i_size); 2325 2326 /* 2327 * If CACHE is being revoked, and we have no dirty buffers, 2328 * try to invalidate (once). (If there are dirty buffers, we 2329 * will invalidate _after_ writeback.) 2330 */ 2331 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && 2332 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2333 !ci->i_wrbuffer_ref) { 2334 if (try_nonblocking_invalidate(inode) == 0) { 2335 revoked_rdcache = 1; 2336 } else { 2337 /* there were locked pages.. invalidate later 2338 in a separate thread. */ 2339 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { 2340 queue_invalidate = 1; 2341 ci->i_rdcache_revoking = ci->i_rdcache_gen; 2342 } 2343 } 2344 } 2345 2346 /* side effects now are allowed */ 2347 2348 issued = __ceph_caps_issued(ci, &implemented); 2349 issued |= implemented | __ceph_caps_dirty(ci); 2350 2351 cap->cap_gen = session->s_cap_gen; 2352 2353 __check_cap_issue(ci, cap, newcaps); 2354 2355 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) { 2356 inode->i_mode = le32_to_cpu(grant->mode); 2357 inode->i_uid = le32_to_cpu(grant->uid); 2358 inode->i_gid = le32_to_cpu(grant->gid); 2359 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, 2360 inode->i_uid, inode->i_gid); 2361 } 2362 2363 if ((issued & CEPH_CAP_LINK_EXCL) == 0) 2364 set_nlink(inode, le32_to_cpu(grant->nlink)); 2365 2366 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { 2367 int len = le32_to_cpu(grant->xattr_len); 2368 u64 version = le64_to_cpu(grant->xattr_version); 2369 2370 if (version > ci->i_xattrs.version) { 2371 dout(" got new xattrs v%llu on %p len %d\n", 2372 version, inode, len); 2373 if (ci->i_xattrs.blob) 2374 ceph_buffer_put(ci->i_xattrs.blob); 2375 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); 2376 ci->i_xattrs.version = version; 2377 } 2378 } 2379 2380 /* size/ctime/mtime/atime? */ 2381 ceph_fill_file_size(inode, issued, 2382 le32_to_cpu(grant->truncate_seq), 2383 le64_to_cpu(grant->truncate_size), size); 2384 ceph_decode_timespec(&mtime, &grant->mtime); 2385 ceph_decode_timespec(&atime, &grant->atime); 2386 ceph_decode_timespec(&ctime, &grant->ctime); 2387 ceph_fill_file_time(inode, issued, 2388 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime, 2389 &atime); 2390 2391 /* max size increase? */ 2392 if (max_size != ci->i_max_size) { 2393 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size); 2394 ci->i_max_size = max_size; 2395 if (max_size >= ci->i_wanted_max_size) { 2396 ci->i_wanted_max_size = 0; /* reset */ 2397 ci->i_requested_max_size = 0; 2398 } 2399 wake = 1; 2400 } 2401 2402 /* check cap bits */ 2403 wanted = __ceph_caps_wanted(ci); 2404 used = __ceph_caps_used(ci); 2405 dirty = __ceph_caps_dirty(ci); 2406 dout(" my wanted = %s, used = %s, dirty %s\n", 2407 ceph_cap_string(wanted), 2408 ceph_cap_string(used), 2409 ceph_cap_string(dirty)); 2410 if (wanted != le32_to_cpu(grant->wanted)) { 2411 dout("mds wanted %s -> %s\n", 2412 ceph_cap_string(le32_to_cpu(grant->wanted)), 2413 ceph_cap_string(wanted)); 2414 grant->wanted = cpu_to_le32(wanted); 2415 } 2416 2417 cap->seq = seq; 2418 2419 /* file layout may have changed */ 2420 ci->i_layout = grant->layout; 2421 2422 /* revocation, grant, or no-op? */ 2423 if (cap->issued & ~newcaps) { 2424 int revoking = cap->issued & ~newcaps; 2425 2426 dout("revocation: %s -> %s (revoking %s)\n", 2427 ceph_cap_string(cap->issued), 2428 ceph_cap_string(newcaps), 2429 ceph_cap_string(revoking)); 2430 if (revoking & used & CEPH_CAP_FILE_BUFFER) 2431 writeback = 1; /* initiate writeback; will delay ack */ 2432 else if (revoking == CEPH_CAP_FILE_CACHE && 2433 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2434 queue_invalidate) 2435 ; /* do nothing yet, invalidation will be queued */ 2436 else if (cap == ci->i_auth_cap) 2437 check_caps = 1; /* check auth cap only */ 2438 else 2439 check_caps = 2; /* check all caps */ 2440 cap->issued = newcaps; 2441 cap->implemented |= newcaps; 2442 } else if (cap->issued == newcaps) { 2443 dout("caps unchanged: %s -> %s\n", 2444 ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); 2445 } else { 2446 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), 2447 ceph_cap_string(newcaps)); 2448 cap->issued = newcaps; 2449 cap->implemented |= newcaps; /* add bits only, to 2450 * avoid stepping on a 2451 * pending revocation */ 2452 wake = 1; 2453 } 2454 BUG_ON(cap->issued & ~cap->implemented); 2455 2456 spin_unlock(&inode->i_lock); 2457 if (writeback) 2458 /* 2459 * queue inode for writeback: we can't actually call 2460 * filemap_write_and_wait, etc. from message handler 2461 * context. 2462 */ 2463 ceph_queue_writeback(inode); 2464 if (queue_invalidate) 2465 ceph_queue_invalidate(inode); 2466 if (wake) 2467 wake_up_all(&ci->i_cap_wq); 2468 2469 if (check_caps == 1) 2470 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, 2471 session); 2472 else if (check_caps == 2) 2473 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session); 2474 else 2475 mutex_unlock(&session->s_mutex); 2476 } 2477 2478 /* 2479 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the 2480 * MDS has been safely committed. 2481 */ 2482 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, 2483 struct ceph_mds_caps *m, 2484 struct ceph_mds_session *session, 2485 struct ceph_cap *cap) 2486 __releases(inode->i_lock) 2487 { 2488 struct ceph_inode_info *ci = ceph_inode(inode); 2489 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 2490 unsigned seq = le32_to_cpu(m->seq); 2491 int dirty = le32_to_cpu(m->dirty); 2492 int cleaned = 0; 2493 int drop = 0; 2494 int i; 2495 2496 for (i = 0; i < CEPH_CAP_BITS; i++) 2497 if ((dirty & (1 << i)) && 2498 flush_tid == ci->i_cap_flush_tid[i]) 2499 cleaned |= 1 << i; 2500 2501 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," 2502 " flushing %s -> %s\n", 2503 inode, session->s_mds, seq, ceph_cap_string(dirty), 2504 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), 2505 ceph_cap_string(ci->i_flushing_caps & ~cleaned)); 2506 2507 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned)) 2508 goto out; 2509 2510 ci->i_flushing_caps &= ~cleaned; 2511 2512 spin_lock(&mdsc->cap_dirty_lock); 2513 if (ci->i_flushing_caps == 0) { 2514 list_del_init(&ci->i_flushing_item); 2515 if (!list_empty(&session->s_cap_flushing)) 2516 dout(" mds%d still flushing cap on %p\n", 2517 session->s_mds, 2518 &list_entry(session->s_cap_flushing.next, 2519 struct ceph_inode_info, 2520 i_flushing_item)->vfs_inode); 2521 mdsc->num_cap_flushing--; 2522 wake_up_all(&mdsc->cap_flushing_wq); 2523 dout(" inode %p now !flushing\n", inode); 2524 2525 if (ci->i_dirty_caps == 0) { 2526 dout(" inode %p now clean\n", inode); 2527 BUG_ON(!list_empty(&ci->i_dirty_item)); 2528 drop = 1; 2529 if (ci->i_wrbuffer_ref_head == 0) { 2530 BUG_ON(!ci->i_head_snapc); 2531 ceph_put_snap_context(ci->i_head_snapc); 2532 ci->i_head_snapc = NULL; 2533 } 2534 } else { 2535 BUG_ON(list_empty(&ci->i_dirty_item)); 2536 } 2537 } 2538 spin_unlock(&mdsc->cap_dirty_lock); 2539 wake_up_all(&ci->i_cap_wq); 2540 2541 out: 2542 spin_unlock(&inode->i_lock); 2543 if (drop) 2544 iput(inode); 2545 } 2546 2547 /* 2548 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can 2549 * throw away our cap_snap. 2550 * 2551 * Caller hold s_mutex. 2552 */ 2553 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, 2554 struct ceph_mds_caps *m, 2555 struct ceph_mds_session *session) 2556 { 2557 struct ceph_inode_info *ci = ceph_inode(inode); 2558 u64 follows = le64_to_cpu(m->snap_follows); 2559 struct ceph_cap_snap *capsnap; 2560 int drop = 0; 2561 2562 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", 2563 inode, ci, session->s_mds, follows); 2564 2565 spin_lock(&inode->i_lock); 2566 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2567 if (capsnap->follows == follows) { 2568 if (capsnap->flush_tid != flush_tid) { 2569 dout(" cap_snap %p follows %lld tid %lld !=" 2570 " %lld\n", capsnap, follows, 2571 flush_tid, capsnap->flush_tid); 2572 break; 2573 } 2574 WARN_ON(capsnap->dirty_pages || capsnap->writing); 2575 dout(" removing %p cap_snap %p follows %lld\n", 2576 inode, capsnap, follows); 2577 ceph_put_snap_context(capsnap->context); 2578 list_del(&capsnap->ci_item); 2579 list_del(&capsnap->flushing_item); 2580 ceph_put_cap_snap(capsnap); 2581 drop = 1; 2582 break; 2583 } else { 2584 dout(" skipping cap_snap %p follows %lld\n", 2585 capsnap, capsnap->follows); 2586 } 2587 } 2588 spin_unlock(&inode->i_lock); 2589 if (drop) 2590 iput(inode); 2591 } 2592 2593 /* 2594 * Handle TRUNC from MDS, indicating file truncation. 2595 * 2596 * caller hold s_mutex. 2597 */ 2598 static void handle_cap_trunc(struct inode *inode, 2599 struct ceph_mds_caps *trunc, 2600 struct ceph_mds_session *session) 2601 __releases(inode->i_lock) 2602 { 2603 struct ceph_inode_info *ci = ceph_inode(inode); 2604 int mds = session->s_mds; 2605 int seq = le32_to_cpu(trunc->seq); 2606 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); 2607 u64 truncate_size = le64_to_cpu(trunc->truncate_size); 2608 u64 size = le64_to_cpu(trunc->size); 2609 int implemented = 0; 2610 int dirty = __ceph_caps_dirty(ci); 2611 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); 2612 int queue_trunc = 0; 2613 2614 issued |= implemented | dirty; 2615 2616 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", 2617 inode, mds, seq, truncate_size, truncate_seq); 2618 queue_trunc = ceph_fill_file_size(inode, issued, 2619 truncate_seq, truncate_size, size); 2620 spin_unlock(&inode->i_lock); 2621 2622 if (queue_trunc) 2623 ceph_queue_vmtruncate(inode); 2624 } 2625 2626 /* 2627 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a 2628 * different one. If we are the most recent migration we've seen (as 2629 * indicated by mseq), make note of the migrating cap bits for the 2630 * duration (until we see the corresponding IMPORT). 2631 * 2632 * caller holds s_mutex 2633 */ 2634 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, 2635 struct ceph_mds_session *session, 2636 int *open_target_sessions) 2637 { 2638 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 2639 struct ceph_inode_info *ci = ceph_inode(inode); 2640 int mds = session->s_mds; 2641 unsigned mseq = le32_to_cpu(ex->migrate_seq); 2642 struct ceph_cap *cap = NULL, *t; 2643 struct rb_node *p; 2644 int remember = 1; 2645 2646 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n", 2647 inode, ci, mds, mseq); 2648 2649 spin_lock(&inode->i_lock); 2650 2651 /* make sure we haven't seen a higher mseq */ 2652 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 2653 t = rb_entry(p, struct ceph_cap, ci_node); 2654 if (ceph_seq_cmp(t->mseq, mseq) > 0) { 2655 dout(" higher mseq on cap from mds%d\n", 2656 t->session->s_mds); 2657 remember = 0; 2658 } 2659 if (t->session->s_mds == mds) 2660 cap = t; 2661 } 2662 2663 if (cap) { 2664 if (remember) { 2665 /* make note */ 2666 ci->i_cap_exporting_mds = mds; 2667 ci->i_cap_exporting_mseq = mseq; 2668 ci->i_cap_exporting_issued = cap->issued; 2669 2670 /* 2671 * make sure we have open sessions with all possible 2672 * export targets, so that we get the matching IMPORT 2673 */ 2674 *open_target_sessions = 1; 2675 2676 /* 2677 * we can't flush dirty caps that we've seen the 2678 * EXPORT but no IMPORT for 2679 */ 2680 spin_lock(&mdsc->cap_dirty_lock); 2681 if (!list_empty(&ci->i_dirty_item)) { 2682 dout(" moving %p to cap_dirty_migrating\n", 2683 inode); 2684 list_move(&ci->i_dirty_item, 2685 &mdsc->cap_dirty_migrating); 2686 } 2687 spin_unlock(&mdsc->cap_dirty_lock); 2688 } 2689 __ceph_remove_cap(cap); 2690 } 2691 /* else, we already released it */ 2692 2693 spin_unlock(&inode->i_lock); 2694 } 2695 2696 /* 2697 * Handle cap IMPORT. If there are temp bits from an older EXPORT, 2698 * clean them up. 2699 * 2700 * caller holds s_mutex. 2701 */ 2702 static void handle_cap_import(struct ceph_mds_client *mdsc, 2703 struct inode *inode, struct ceph_mds_caps *im, 2704 struct ceph_mds_session *session, 2705 void *snaptrace, int snaptrace_len) 2706 { 2707 struct ceph_inode_info *ci = ceph_inode(inode); 2708 int mds = session->s_mds; 2709 unsigned issued = le32_to_cpu(im->caps); 2710 unsigned wanted = le32_to_cpu(im->wanted); 2711 unsigned seq = le32_to_cpu(im->seq); 2712 unsigned mseq = le32_to_cpu(im->migrate_seq); 2713 u64 realmino = le64_to_cpu(im->realm); 2714 u64 cap_id = le64_to_cpu(im->cap_id); 2715 2716 if (ci->i_cap_exporting_mds >= 0 && 2717 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) { 2718 dout("handle_cap_import inode %p ci %p mds%d mseq %d" 2719 " - cleared exporting from mds%d\n", 2720 inode, ci, mds, mseq, 2721 ci->i_cap_exporting_mds); 2722 ci->i_cap_exporting_issued = 0; 2723 ci->i_cap_exporting_mseq = 0; 2724 ci->i_cap_exporting_mds = -1; 2725 2726 spin_lock(&mdsc->cap_dirty_lock); 2727 if (!list_empty(&ci->i_dirty_item)) { 2728 dout(" moving %p back to cap_dirty\n", inode); 2729 list_move(&ci->i_dirty_item, &mdsc->cap_dirty); 2730 } 2731 spin_unlock(&mdsc->cap_dirty_lock); 2732 } else { 2733 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n", 2734 inode, ci, mds, mseq); 2735 } 2736 2737 down_write(&mdsc->snap_rwsem); 2738 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len, 2739 false); 2740 downgrade_write(&mdsc->snap_rwsem); 2741 ceph_add_cap(inode, session, cap_id, -1, 2742 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH, 2743 NULL /* no caps context */); 2744 kick_flushing_inode_caps(mdsc, session, inode); 2745 up_read(&mdsc->snap_rwsem); 2746 2747 /* make sure we re-request max_size, if necessary */ 2748 spin_lock(&inode->i_lock); 2749 ci->i_requested_max_size = 0; 2750 spin_unlock(&inode->i_lock); 2751 } 2752 2753 /* 2754 * Handle a caps message from the MDS. 2755 * 2756 * Identify the appropriate session, inode, and call the right handler 2757 * based on the cap op. 2758 */ 2759 void ceph_handle_caps(struct ceph_mds_session *session, 2760 struct ceph_msg *msg) 2761 { 2762 struct ceph_mds_client *mdsc = session->s_mdsc; 2763 struct super_block *sb = mdsc->fsc->sb; 2764 struct inode *inode; 2765 struct ceph_cap *cap; 2766 struct ceph_mds_caps *h; 2767 int mds = session->s_mds; 2768 int op; 2769 u32 seq, mseq; 2770 struct ceph_vino vino; 2771 u64 cap_id; 2772 u64 size, max_size; 2773 u64 tid; 2774 void *snaptrace; 2775 size_t snaptrace_len; 2776 void *flock; 2777 u32 flock_len; 2778 int open_target_sessions = 0; 2779 2780 dout("handle_caps from mds%d\n", mds); 2781 2782 /* decode */ 2783 tid = le64_to_cpu(msg->hdr.tid); 2784 if (msg->front.iov_len < sizeof(*h)) 2785 goto bad; 2786 h = msg->front.iov_base; 2787 op = le32_to_cpu(h->op); 2788 vino.ino = le64_to_cpu(h->ino); 2789 vino.snap = CEPH_NOSNAP; 2790 cap_id = le64_to_cpu(h->cap_id); 2791 seq = le32_to_cpu(h->seq); 2792 mseq = le32_to_cpu(h->migrate_seq); 2793 size = le64_to_cpu(h->size); 2794 max_size = le64_to_cpu(h->max_size); 2795 2796 snaptrace = h + 1; 2797 snaptrace_len = le32_to_cpu(h->snap_trace_len); 2798 2799 if (le16_to_cpu(msg->hdr.version) >= 2) { 2800 void *p, *end; 2801 2802 p = snaptrace + snaptrace_len; 2803 end = msg->front.iov_base + msg->front.iov_len; 2804 ceph_decode_32_safe(&p, end, flock_len, bad); 2805 flock = p; 2806 } else { 2807 flock = NULL; 2808 flock_len = 0; 2809 } 2810 2811 mutex_lock(&session->s_mutex); 2812 session->s_seq++; 2813 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, 2814 (unsigned)seq); 2815 2816 /* lookup ino */ 2817 inode = ceph_find_inode(sb, vino); 2818 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, 2819 vino.snap, inode); 2820 if (!inode) { 2821 dout(" i don't have ino %llx\n", vino.ino); 2822 2823 if (op == CEPH_CAP_OP_IMPORT) 2824 __queue_cap_release(session, vino.ino, cap_id, 2825 mseq, seq); 2826 goto flush_cap_releases; 2827 } 2828 2829 /* these will work even if we don't have a cap yet */ 2830 switch (op) { 2831 case CEPH_CAP_OP_FLUSHSNAP_ACK: 2832 handle_cap_flushsnap_ack(inode, tid, h, session); 2833 goto done; 2834 2835 case CEPH_CAP_OP_EXPORT: 2836 handle_cap_export(inode, h, session, &open_target_sessions); 2837 goto done; 2838 2839 case CEPH_CAP_OP_IMPORT: 2840 handle_cap_import(mdsc, inode, h, session, 2841 snaptrace, snaptrace_len); 2842 ceph_check_caps(ceph_inode(inode), 0, session); 2843 goto done_unlocked; 2844 } 2845 2846 /* the rest require a cap */ 2847 spin_lock(&inode->i_lock); 2848 cap = __get_cap_for_mds(ceph_inode(inode), mds); 2849 if (!cap) { 2850 dout(" no cap on %p ino %llx.%llx from mds%d\n", 2851 inode, ceph_ino(inode), ceph_snap(inode), mds); 2852 spin_unlock(&inode->i_lock); 2853 goto flush_cap_releases; 2854 } 2855 2856 /* note that each of these drops i_lock for us */ 2857 switch (op) { 2858 case CEPH_CAP_OP_REVOKE: 2859 case CEPH_CAP_OP_GRANT: 2860 handle_cap_grant(inode, h, session, cap, msg->middle); 2861 goto done_unlocked; 2862 2863 case CEPH_CAP_OP_FLUSH_ACK: 2864 handle_cap_flush_ack(inode, tid, h, session, cap); 2865 break; 2866 2867 case CEPH_CAP_OP_TRUNC: 2868 handle_cap_trunc(inode, h, session); 2869 break; 2870 2871 default: 2872 spin_unlock(&inode->i_lock); 2873 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, 2874 ceph_cap_op_name(op)); 2875 } 2876 2877 goto done; 2878 2879 flush_cap_releases: 2880 /* 2881 * send any full release message to try to move things 2882 * along for the mds (who clearly thinks we still have this 2883 * cap). 2884 */ 2885 ceph_add_cap_releases(mdsc, session); 2886 ceph_send_cap_releases(mdsc, session); 2887 2888 done: 2889 mutex_unlock(&session->s_mutex); 2890 done_unlocked: 2891 if (inode) 2892 iput(inode); 2893 if (open_target_sessions) 2894 ceph_mdsc_open_export_target_sessions(mdsc, session); 2895 return; 2896 2897 bad: 2898 pr_err("ceph_handle_caps: corrupt message\n"); 2899 ceph_msg_dump(msg); 2900 return; 2901 } 2902 2903 /* 2904 * Delayed work handler to process end of delayed cap release LRU list. 2905 */ 2906 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) 2907 { 2908 struct ceph_inode_info *ci; 2909 int flags = CHECK_CAPS_NODELAY; 2910 2911 dout("check_delayed_caps\n"); 2912 while (1) { 2913 spin_lock(&mdsc->cap_delay_lock); 2914 if (list_empty(&mdsc->cap_delay_list)) 2915 break; 2916 ci = list_first_entry(&mdsc->cap_delay_list, 2917 struct ceph_inode_info, 2918 i_cap_delay_list); 2919 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && 2920 time_before(jiffies, ci->i_hold_caps_max)) 2921 break; 2922 list_del_init(&ci->i_cap_delay_list); 2923 spin_unlock(&mdsc->cap_delay_lock); 2924 dout("check_delayed_caps on %p\n", &ci->vfs_inode); 2925 ceph_check_caps(ci, flags, NULL); 2926 } 2927 spin_unlock(&mdsc->cap_delay_lock); 2928 } 2929 2930 /* 2931 * Flush all dirty caps to the mds 2932 */ 2933 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) 2934 { 2935 struct ceph_inode_info *ci; 2936 struct inode *inode; 2937 2938 dout("flush_dirty_caps\n"); 2939 spin_lock(&mdsc->cap_dirty_lock); 2940 while (!list_empty(&mdsc->cap_dirty)) { 2941 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info, 2942 i_dirty_item); 2943 inode = &ci->vfs_inode; 2944 ihold(inode); 2945 dout("flush_dirty_caps %p\n", inode); 2946 spin_unlock(&mdsc->cap_dirty_lock); 2947 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL); 2948 iput(inode); 2949 spin_lock(&mdsc->cap_dirty_lock); 2950 } 2951 spin_unlock(&mdsc->cap_dirty_lock); 2952 dout("flush_dirty_caps done\n"); 2953 } 2954 2955 /* 2956 * Drop open file reference. If we were the last open file, 2957 * we may need to release capabilities to the MDS (or schedule 2958 * their delayed release). 2959 */ 2960 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) 2961 { 2962 struct inode *inode = &ci->vfs_inode; 2963 int last = 0; 2964 2965 spin_lock(&inode->i_lock); 2966 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, 2967 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); 2968 BUG_ON(ci->i_nr_by_mode[fmode] == 0); 2969 if (--ci->i_nr_by_mode[fmode] == 0) 2970 last++; 2971 spin_unlock(&inode->i_lock); 2972 2973 if (last && ci->i_vino.snap == CEPH_NOSNAP) 2974 ceph_check_caps(ci, 0, NULL); 2975 } 2976 2977 /* 2978 * Helpers for embedding cap and dentry lease releases into mds 2979 * requests. 2980 * 2981 * @force is used by dentry_release (below) to force inclusion of a 2982 * record for the directory inode, even when there aren't any caps to 2983 * drop. 2984 */ 2985 int ceph_encode_inode_release(void **p, struct inode *inode, 2986 int mds, int drop, int unless, int force) 2987 { 2988 struct ceph_inode_info *ci = ceph_inode(inode); 2989 struct ceph_cap *cap; 2990 struct ceph_mds_request_release *rel = *p; 2991 int used, dirty; 2992 int ret = 0; 2993 2994 spin_lock(&inode->i_lock); 2995 used = __ceph_caps_used(ci); 2996 dirty = __ceph_caps_dirty(ci); 2997 2998 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n", 2999 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop), 3000 ceph_cap_string(unless)); 3001 3002 /* only drop unused, clean caps */ 3003 drop &= ~(used | dirty); 3004 3005 cap = __get_cap_for_mds(ci, mds); 3006 if (cap && __cap_is_valid(cap)) { 3007 if (force || 3008 ((cap->issued & drop) && 3009 (cap->issued & unless) == 0)) { 3010 if ((cap->issued & drop) && 3011 (cap->issued & unless) == 0) { 3012 dout("encode_inode_release %p cap %p %s -> " 3013 "%s\n", inode, cap, 3014 ceph_cap_string(cap->issued), 3015 ceph_cap_string(cap->issued & ~drop)); 3016 cap->issued &= ~drop; 3017 cap->implemented &= ~drop; 3018 if (ci->i_ceph_flags & CEPH_I_NODELAY) { 3019 int wanted = __ceph_caps_wanted(ci); 3020 dout(" wanted %s -> %s (act %s)\n", 3021 ceph_cap_string(cap->mds_wanted), 3022 ceph_cap_string(cap->mds_wanted & 3023 ~wanted), 3024 ceph_cap_string(wanted)); 3025 cap->mds_wanted &= wanted; 3026 } 3027 } else { 3028 dout("encode_inode_release %p cap %p %s" 3029 " (force)\n", inode, cap, 3030 ceph_cap_string(cap->issued)); 3031 } 3032 3033 rel->ino = cpu_to_le64(ceph_ino(inode)); 3034 rel->cap_id = cpu_to_le64(cap->cap_id); 3035 rel->seq = cpu_to_le32(cap->seq); 3036 rel->issue_seq = cpu_to_le32(cap->issue_seq), 3037 rel->mseq = cpu_to_le32(cap->mseq); 3038 rel->caps = cpu_to_le32(cap->issued); 3039 rel->wanted = cpu_to_le32(cap->mds_wanted); 3040 rel->dname_len = 0; 3041 rel->dname_seq = 0; 3042 *p += sizeof(*rel); 3043 ret = 1; 3044 } else { 3045 dout("encode_inode_release %p cap %p %s\n", 3046 inode, cap, ceph_cap_string(cap->issued)); 3047 } 3048 } 3049 spin_unlock(&inode->i_lock); 3050 return ret; 3051 } 3052 3053 int ceph_encode_dentry_release(void **p, struct dentry *dentry, 3054 int mds, int drop, int unless) 3055 { 3056 struct inode *dir = dentry->d_parent->d_inode; 3057 struct ceph_mds_request_release *rel = *p; 3058 struct ceph_dentry_info *di = ceph_dentry(dentry); 3059 int force = 0; 3060 int ret; 3061 3062 /* 3063 * force an record for the directory caps if we have a dentry lease. 3064 * this is racy (can't take i_lock and d_lock together), but it 3065 * doesn't have to be perfect; the mds will revoke anything we don't 3066 * release. 3067 */ 3068 spin_lock(&dentry->d_lock); 3069 if (di->lease_session && di->lease_session->s_mds == mds) 3070 force = 1; 3071 spin_unlock(&dentry->d_lock); 3072 3073 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); 3074 3075 spin_lock(&dentry->d_lock); 3076 if (ret && di->lease_session && di->lease_session->s_mds == mds) { 3077 dout("encode_dentry_release %p mds%d seq %d\n", 3078 dentry, mds, (int)di->lease_seq); 3079 rel->dname_len = cpu_to_le32(dentry->d_name.len); 3080 memcpy(*p, dentry->d_name.name, dentry->d_name.len); 3081 *p += dentry->d_name.len; 3082 rel->dname_seq = cpu_to_le32(di->lease_seq); 3083 __ceph_mdsc_drop_dentry_lease(dentry); 3084 } 3085 spin_unlock(&dentry->d_lock); 3086 return ret; 3087 } 3088