1 #include "ceph_debug.h" 2 3 #include <linux/fs.h> 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include <linux/wait.h> 9 #include <linux/writeback.h> 10 11 #include "super.h" 12 #include "decode.h" 13 #include "messenger.h" 14 15 /* 16 * Capability management 17 * 18 * The Ceph metadata servers control client access to inode metadata 19 * and file data by issuing capabilities, granting clients permission 20 * to read and/or write both inode field and file data to OSDs 21 * (storage nodes). Each capability consists of a set of bits 22 * indicating which operations are allowed. 23 * 24 * If the client holds a *_SHARED cap, the client has a coherent value 25 * that can be safely read from the cached inode. 26 * 27 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the 28 * client is allowed to change inode attributes (e.g., file size, 29 * mtime), note its dirty state in the ceph_cap, and asynchronously 30 * flush that metadata change to the MDS. 31 * 32 * In the event of a conflicting operation (perhaps by another 33 * client), the MDS will revoke the conflicting client capabilities. 34 * 35 * In order for a client to cache an inode, it must hold a capability 36 * with at least one MDS server. When inodes are released, release 37 * notifications are batched and periodically sent en masse to the MDS 38 * cluster to release server state. 39 */ 40 41 42 /* 43 * Generate readable cap strings for debugging output. 44 */ 45 #define MAX_CAP_STR 20 46 static char cap_str[MAX_CAP_STR][40]; 47 static DEFINE_SPINLOCK(cap_str_lock); 48 static int last_cap_str; 49 50 static char *gcap_string(char *s, int c) 51 { 52 if (c & CEPH_CAP_GSHARED) 53 *s++ = 's'; 54 if (c & CEPH_CAP_GEXCL) 55 *s++ = 'x'; 56 if (c & CEPH_CAP_GCACHE) 57 *s++ = 'c'; 58 if (c & CEPH_CAP_GRD) 59 *s++ = 'r'; 60 if (c & CEPH_CAP_GWR) 61 *s++ = 'w'; 62 if (c & CEPH_CAP_GBUFFER) 63 *s++ = 'b'; 64 if (c & CEPH_CAP_GLAZYIO) 65 *s++ = 'l'; 66 return s; 67 } 68 69 const char *ceph_cap_string(int caps) 70 { 71 int i; 72 char *s; 73 int c; 74 75 spin_lock(&cap_str_lock); 76 i = last_cap_str++; 77 if (last_cap_str == MAX_CAP_STR) 78 last_cap_str = 0; 79 spin_unlock(&cap_str_lock); 80 81 s = cap_str[i]; 82 83 if (caps & CEPH_CAP_PIN) 84 *s++ = 'p'; 85 86 c = (caps >> CEPH_CAP_SAUTH) & 3; 87 if (c) { 88 *s++ = 'A'; 89 s = gcap_string(s, c); 90 } 91 92 c = (caps >> CEPH_CAP_SLINK) & 3; 93 if (c) { 94 *s++ = 'L'; 95 s = gcap_string(s, c); 96 } 97 98 c = (caps >> CEPH_CAP_SXATTR) & 3; 99 if (c) { 100 *s++ = 'X'; 101 s = gcap_string(s, c); 102 } 103 104 c = caps >> CEPH_CAP_SFILE; 105 if (c) { 106 *s++ = 'F'; 107 s = gcap_string(s, c); 108 } 109 110 if (s == cap_str[i]) 111 *s++ = '-'; 112 *s = 0; 113 return cap_str[i]; 114 } 115 116 /* 117 * Cap reservations 118 * 119 * Maintain a global pool of preallocated struct ceph_caps, referenced 120 * by struct ceph_caps_reservations. This ensures that we preallocate 121 * memory needed to successfully process an MDS response. (If an MDS 122 * sends us cap information and we fail to process it, we will have 123 * problems due to the client and MDS being out of sync.) 124 * 125 * Reservations are 'owned' by a ceph_cap_reservation context. 126 */ 127 static spinlock_t caps_list_lock; 128 static struct list_head caps_list; /* unused (reserved or unreserved) */ 129 static int caps_total_count; /* total caps allocated */ 130 static int caps_use_count; /* in use */ 131 static int caps_reserve_count; /* unused, reserved */ 132 static int caps_avail_count; /* unused, unreserved */ 133 static int caps_min_count; /* keep at least this many (unreserved) */ 134 135 void __init ceph_caps_init(void) 136 { 137 INIT_LIST_HEAD(&caps_list); 138 spin_lock_init(&caps_list_lock); 139 } 140 141 void ceph_caps_finalize(void) 142 { 143 struct ceph_cap *cap; 144 145 spin_lock(&caps_list_lock); 146 while (!list_empty(&caps_list)) { 147 cap = list_first_entry(&caps_list, struct ceph_cap, caps_item); 148 list_del(&cap->caps_item); 149 kmem_cache_free(ceph_cap_cachep, cap); 150 } 151 caps_total_count = 0; 152 caps_avail_count = 0; 153 caps_use_count = 0; 154 caps_reserve_count = 0; 155 caps_min_count = 0; 156 spin_unlock(&caps_list_lock); 157 } 158 159 void ceph_adjust_min_caps(int delta) 160 { 161 spin_lock(&caps_list_lock); 162 caps_min_count += delta; 163 BUG_ON(caps_min_count < 0); 164 spin_unlock(&caps_list_lock); 165 } 166 167 int ceph_reserve_caps(struct ceph_cap_reservation *ctx, int need) 168 { 169 int i; 170 struct ceph_cap *cap; 171 int have; 172 int alloc = 0; 173 LIST_HEAD(newcaps); 174 int ret = 0; 175 176 dout("reserve caps ctx=%p need=%d\n", ctx, need); 177 178 /* first reserve any caps that are already allocated */ 179 spin_lock(&caps_list_lock); 180 if (caps_avail_count >= need) 181 have = need; 182 else 183 have = caps_avail_count; 184 caps_avail_count -= have; 185 caps_reserve_count += have; 186 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 187 caps_avail_count); 188 spin_unlock(&caps_list_lock); 189 190 for (i = have; i < need; i++) { 191 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 192 if (!cap) { 193 ret = -ENOMEM; 194 goto out_alloc_count; 195 } 196 list_add(&cap->caps_item, &newcaps); 197 alloc++; 198 } 199 BUG_ON(have + alloc != need); 200 201 spin_lock(&caps_list_lock); 202 caps_total_count += alloc; 203 caps_reserve_count += alloc; 204 list_splice(&newcaps, &caps_list); 205 206 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 207 caps_avail_count); 208 spin_unlock(&caps_list_lock); 209 210 ctx->count = need; 211 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", 212 ctx, caps_total_count, caps_use_count, caps_reserve_count, 213 caps_avail_count); 214 return 0; 215 216 out_alloc_count: 217 /* we didn't manage to reserve as much as we needed */ 218 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n", 219 ctx, need, have); 220 return ret; 221 } 222 223 int ceph_unreserve_caps(struct ceph_cap_reservation *ctx) 224 { 225 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); 226 if (ctx->count) { 227 spin_lock(&caps_list_lock); 228 BUG_ON(caps_reserve_count < ctx->count); 229 caps_reserve_count -= ctx->count; 230 caps_avail_count += ctx->count; 231 ctx->count = 0; 232 dout("unreserve caps %d = %d used + %d resv + %d avail\n", 233 caps_total_count, caps_use_count, caps_reserve_count, 234 caps_avail_count); 235 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 236 caps_avail_count); 237 spin_unlock(&caps_list_lock); 238 } 239 return 0; 240 } 241 242 static struct ceph_cap *get_cap(struct ceph_cap_reservation *ctx) 243 { 244 struct ceph_cap *cap = NULL; 245 246 /* temporary, until we do something about cap import/export */ 247 if (!ctx) 248 return kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 249 250 spin_lock(&caps_list_lock); 251 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 252 ctx, ctx->count, caps_total_count, caps_use_count, 253 caps_reserve_count, caps_avail_count); 254 BUG_ON(!ctx->count); 255 BUG_ON(ctx->count > caps_reserve_count); 256 BUG_ON(list_empty(&caps_list)); 257 258 ctx->count--; 259 caps_reserve_count--; 260 caps_use_count++; 261 262 cap = list_first_entry(&caps_list, struct ceph_cap, caps_item); 263 list_del(&cap->caps_item); 264 265 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 266 caps_avail_count); 267 spin_unlock(&caps_list_lock); 268 return cap; 269 } 270 271 void ceph_put_cap(struct ceph_cap *cap) 272 { 273 spin_lock(&caps_list_lock); 274 dout("put_cap %p %d = %d used + %d resv + %d avail\n", 275 cap, caps_total_count, caps_use_count, 276 caps_reserve_count, caps_avail_count); 277 caps_use_count--; 278 /* 279 * Keep some preallocated caps around (ceph_min_count), to 280 * avoid lots of free/alloc churn. 281 */ 282 if (caps_avail_count >= caps_reserve_count + caps_min_count) { 283 caps_total_count--; 284 kmem_cache_free(ceph_cap_cachep, cap); 285 } else { 286 caps_avail_count++; 287 list_add(&cap->caps_item, &caps_list); 288 } 289 290 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 291 caps_avail_count); 292 spin_unlock(&caps_list_lock); 293 } 294 295 void ceph_reservation_status(struct ceph_client *client, 296 int *total, int *avail, int *used, int *reserved, 297 int *min) 298 { 299 if (total) 300 *total = caps_total_count; 301 if (avail) 302 *avail = caps_avail_count; 303 if (used) 304 *used = caps_use_count; 305 if (reserved) 306 *reserved = caps_reserve_count; 307 if (min) 308 *min = caps_min_count; 309 } 310 311 /* 312 * Find ceph_cap for given mds, if any. 313 * 314 * Called with i_lock held. 315 */ 316 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) 317 { 318 struct ceph_cap *cap; 319 struct rb_node *n = ci->i_caps.rb_node; 320 321 while (n) { 322 cap = rb_entry(n, struct ceph_cap, ci_node); 323 if (mds < cap->mds) 324 n = n->rb_left; 325 else if (mds > cap->mds) 326 n = n->rb_right; 327 else 328 return cap; 329 } 330 return NULL; 331 } 332 333 /* 334 * Return id of any MDS with a cap, preferably FILE_WR|WRBUFFER|EXCL, else 335 * -1. 336 */ 337 static int __ceph_get_cap_mds(struct ceph_inode_info *ci, u32 *mseq) 338 { 339 struct ceph_cap *cap; 340 int mds = -1; 341 struct rb_node *p; 342 343 /* prefer mds with WR|WRBUFFER|EXCL caps */ 344 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 345 cap = rb_entry(p, struct ceph_cap, ci_node); 346 mds = cap->mds; 347 if (mseq) 348 *mseq = cap->mseq; 349 if (cap->issued & (CEPH_CAP_FILE_WR | 350 CEPH_CAP_FILE_BUFFER | 351 CEPH_CAP_FILE_EXCL)) 352 break; 353 } 354 return mds; 355 } 356 357 int ceph_get_cap_mds(struct inode *inode) 358 { 359 int mds; 360 spin_lock(&inode->i_lock); 361 mds = __ceph_get_cap_mds(ceph_inode(inode), NULL); 362 spin_unlock(&inode->i_lock); 363 return mds; 364 } 365 366 /* 367 * Called under i_lock. 368 */ 369 static void __insert_cap_node(struct ceph_inode_info *ci, 370 struct ceph_cap *new) 371 { 372 struct rb_node **p = &ci->i_caps.rb_node; 373 struct rb_node *parent = NULL; 374 struct ceph_cap *cap = NULL; 375 376 while (*p) { 377 parent = *p; 378 cap = rb_entry(parent, struct ceph_cap, ci_node); 379 if (new->mds < cap->mds) 380 p = &(*p)->rb_left; 381 else if (new->mds > cap->mds) 382 p = &(*p)->rb_right; 383 else 384 BUG(); 385 } 386 387 rb_link_node(&new->ci_node, parent, p); 388 rb_insert_color(&new->ci_node, &ci->i_caps); 389 } 390 391 /* 392 * (re)set cap hold timeouts, which control the delayed release 393 * of unused caps back to the MDS. Should be called on cap use. 394 */ 395 static void __cap_set_timeouts(struct ceph_mds_client *mdsc, 396 struct ceph_inode_info *ci) 397 { 398 struct ceph_mount_args *ma = mdsc->client->mount_args; 399 400 ci->i_hold_caps_min = round_jiffies(jiffies + 401 ma->caps_wanted_delay_min * HZ); 402 ci->i_hold_caps_max = round_jiffies(jiffies + 403 ma->caps_wanted_delay_max * HZ); 404 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, 405 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); 406 } 407 408 /* 409 * (Re)queue cap at the end of the delayed cap release list. 410 * 411 * If I_FLUSH is set, leave the inode at the front of the list. 412 * 413 * Caller holds i_lock 414 * -> we take mdsc->cap_delay_lock 415 */ 416 static void __cap_delay_requeue(struct ceph_mds_client *mdsc, 417 struct ceph_inode_info *ci) 418 { 419 __cap_set_timeouts(mdsc, ci); 420 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, 421 ci->i_ceph_flags, ci->i_hold_caps_max); 422 if (!mdsc->stopping) { 423 spin_lock(&mdsc->cap_delay_lock); 424 if (!list_empty(&ci->i_cap_delay_list)) { 425 if (ci->i_ceph_flags & CEPH_I_FLUSH) 426 goto no_change; 427 list_del_init(&ci->i_cap_delay_list); 428 } 429 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 430 no_change: 431 spin_unlock(&mdsc->cap_delay_lock); 432 } 433 } 434 435 /* 436 * Queue an inode for immediate writeback. Mark inode with I_FLUSH, 437 * indicating we should send a cap message to flush dirty metadata 438 * asap, and move to the front of the delayed cap list. 439 */ 440 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, 441 struct ceph_inode_info *ci) 442 { 443 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); 444 spin_lock(&mdsc->cap_delay_lock); 445 ci->i_ceph_flags |= CEPH_I_FLUSH; 446 if (!list_empty(&ci->i_cap_delay_list)) 447 list_del_init(&ci->i_cap_delay_list); 448 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 449 spin_unlock(&mdsc->cap_delay_lock); 450 } 451 452 /* 453 * Cancel delayed work on cap. 454 * 455 * Caller must hold i_lock. 456 */ 457 static void __cap_delay_cancel(struct ceph_mds_client *mdsc, 458 struct ceph_inode_info *ci) 459 { 460 dout("__cap_delay_cancel %p\n", &ci->vfs_inode); 461 if (list_empty(&ci->i_cap_delay_list)) 462 return; 463 spin_lock(&mdsc->cap_delay_lock); 464 list_del_init(&ci->i_cap_delay_list); 465 spin_unlock(&mdsc->cap_delay_lock); 466 } 467 468 /* 469 * Common issue checks for add_cap, handle_cap_grant. 470 */ 471 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, 472 unsigned issued) 473 { 474 unsigned had = __ceph_caps_issued(ci, NULL); 475 476 /* 477 * Each time we receive FILE_CACHE anew, we increment 478 * i_rdcache_gen. 479 */ 480 if ((issued & CEPH_CAP_FILE_CACHE) && 481 (had & CEPH_CAP_FILE_CACHE) == 0) 482 ci->i_rdcache_gen++; 483 484 /* 485 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we 486 * don't know what happened to this directory while we didn't 487 * have the cap. 488 */ 489 if ((issued & CEPH_CAP_FILE_SHARED) && 490 (had & CEPH_CAP_FILE_SHARED) == 0) { 491 ci->i_shared_gen++; 492 if (S_ISDIR(ci->vfs_inode.i_mode)) { 493 dout(" marking %p NOT complete\n", &ci->vfs_inode); 494 ci->i_ceph_flags &= ~CEPH_I_COMPLETE; 495 } 496 } 497 } 498 499 /* 500 * Add a capability under the given MDS session. 501 * 502 * Caller should hold session snap_rwsem (read) and s_mutex. 503 * 504 * @fmode is the open file mode, if we are opening a file, otherwise 505 * it is < 0. (This is so we can atomically add the cap and add an 506 * open file reference to it.) 507 */ 508 int ceph_add_cap(struct inode *inode, 509 struct ceph_mds_session *session, u64 cap_id, 510 int fmode, unsigned issued, unsigned wanted, 511 unsigned seq, unsigned mseq, u64 realmino, int flags, 512 struct ceph_cap_reservation *caps_reservation) 513 { 514 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc; 515 struct ceph_inode_info *ci = ceph_inode(inode); 516 struct ceph_cap *new_cap = NULL; 517 struct ceph_cap *cap; 518 int mds = session->s_mds; 519 int actual_wanted; 520 521 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, 522 session->s_mds, cap_id, ceph_cap_string(issued), seq); 523 524 /* 525 * If we are opening the file, include file mode wanted bits 526 * in wanted. 527 */ 528 if (fmode >= 0) 529 wanted |= ceph_caps_for_mode(fmode); 530 531 retry: 532 spin_lock(&inode->i_lock); 533 cap = __get_cap_for_mds(ci, mds); 534 if (!cap) { 535 if (new_cap) { 536 cap = new_cap; 537 new_cap = NULL; 538 } else { 539 spin_unlock(&inode->i_lock); 540 new_cap = get_cap(caps_reservation); 541 if (new_cap == NULL) 542 return -ENOMEM; 543 goto retry; 544 } 545 546 cap->issued = 0; 547 cap->implemented = 0; 548 cap->mds = mds; 549 cap->mds_wanted = 0; 550 551 cap->ci = ci; 552 __insert_cap_node(ci, cap); 553 554 /* clear out old exporting info? (i.e. on cap import) */ 555 if (ci->i_cap_exporting_mds == mds) { 556 ci->i_cap_exporting_issued = 0; 557 ci->i_cap_exporting_mseq = 0; 558 ci->i_cap_exporting_mds = -1; 559 } 560 561 /* add to session cap list */ 562 cap->session = session; 563 spin_lock(&session->s_cap_lock); 564 list_add_tail(&cap->session_caps, &session->s_caps); 565 session->s_nr_caps++; 566 spin_unlock(&session->s_cap_lock); 567 } 568 569 if (!ci->i_snap_realm) { 570 /* 571 * add this inode to the appropriate snap realm 572 */ 573 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, 574 realmino); 575 if (realm) { 576 ceph_get_snap_realm(mdsc, realm); 577 spin_lock(&realm->inodes_with_caps_lock); 578 ci->i_snap_realm = realm; 579 list_add(&ci->i_snap_realm_item, 580 &realm->inodes_with_caps); 581 spin_unlock(&realm->inodes_with_caps_lock); 582 } else { 583 pr_err("ceph_add_cap: couldn't find snap realm %llx\n", 584 realmino); 585 } 586 } 587 588 __check_cap_issue(ci, cap, issued); 589 590 /* 591 * If we are issued caps we don't want, or the mds' wanted 592 * value appears to be off, queue a check so we'll release 593 * later and/or update the mds wanted value. 594 */ 595 actual_wanted = __ceph_caps_wanted(ci); 596 if ((wanted & ~actual_wanted) || 597 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { 598 dout(" issued %s, mds wanted %s, actual %s, queueing\n", 599 ceph_cap_string(issued), ceph_cap_string(wanted), 600 ceph_cap_string(actual_wanted)); 601 __cap_delay_requeue(mdsc, ci); 602 } 603 604 if (flags & CEPH_CAP_FLAG_AUTH) 605 ci->i_auth_cap = cap; 606 else if (ci->i_auth_cap == cap) 607 ci->i_auth_cap = NULL; 608 609 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", 610 inode, ceph_vinop(inode), cap, ceph_cap_string(issued), 611 ceph_cap_string(issued|cap->issued), seq, mds); 612 cap->cap_id = cap_id; 613 cap->issued = issued; 614 cap->implemented |= issued; 615 cap->mds_wanted |= wanted; 616 cap->seq = seq; 617 cap->issue_seq = seq; 618 cap->mseq = mseq; 619 cap->cap_gen = session->s_cap_gen; 620 621 if (fmode >= 0) 622 __ceph_get_fmode(ci, fmode); 623 spin_unlock(&inode->i_lock); 624 wake_up(&ci->i_cap_wq); 625 return 0; 626 } 627 628 /* 629 * Return true if cap has not timed out and belongs to the current 630 * generation of the MDS session (i.e. has not gone 'stale' due to 631 * us losing touch with the mds). 632 */ 633 static int __cap_is_valid(struct ceph_cap *cap) 634 { 635 unsigned long ttl; 636 u32 gen; 637 638 spin_lock(&cap->session->s_cap_lock); 639 gen = cap->session->s_cap_gen; 640 ttl = cap->session->s_cap_ttl; 641 spin_unlock(&cap->session->s_cap_lock); 642 643 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { 644 dout("__cap_is_valid %p cap %p issued %s " 645 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, 646 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); 647 return 0; 648 } 649 650 return 1; 651 } 652 653 /* 654 * Return set of valid cap bits issued to us. Note that caps time 655 * out, and may be invalidated in bulk if the client session times out 656 * and session->s_cap_gen is bumped. 657 */ 658 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) 659 { 660 int have = ci->i_snap_caps | ci->i_cap_exporting_issued; 661 struct ceph_cap *cap; 662 struct rb_node *p; 663 664 if (implemented) 665 *implemented = 0; 666 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 667 cap = rb_entry(p, struct ceph_cap, ci_node); 668 if (!__cap_is_valid(cap)) 669 continue; 670 dout("__ceph_caps_issued %p cap %p issued %s\n", 671 &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); 672 have |= cap->issued; 673 if (implemented) 674 *implemented |= cap->implemented; 675 } 676 return have; 677 } 678 679 /* 680 * Get cap bits issued by caps other than @ocap 681 */ 682 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) 683 { 684 int have = ci->i_snap_caps; 685 struct ceph_cap *cap; 686 struct rb_node *p; 687 688 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 689 cap = rb_entry(p, struct ceph_cap, ci_node); 690 if (cap == ocap) 691 continue; 692 if (!__cap_is_valid(cap)) 693 continue; 694 have |= cap->issued; 695 } 696 return have; 697 } 698 699 /* 700 * Move a cap to the end of the LRU (oldest caps at list head, newest 701 * at list tail). 702 */ 703 static void __touch_cap(struct ceph_cap *cap) 704 { 705 struct ceph_mds_session *s = cap->session; 706 707 spin_lock(&s->s_cap_lock); 708 if (s->s_cap_iterator == NULL) { 709 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, 710 s->s_mds); 711 list_move_tail(&cap->session_caps, &s->s_caps); 712 } else { 713 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", 714 &cap->ci->vfs_inode, cap, s->s_mds); 715 } 716 spin_unlock(&s->s_cap_lock); 717 } 718 719 /* 720 * Check if we hold the given mask. If so, move the cap(s) to the 721 * front of their respective LRUs. (This is the preferred way for 722 * callers to check for caps they want.) 723 */ 724 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) 725 { 726 struct ceph_cap *cap; 727 struct rb_node *p; 728 int have = ci->i_snap_caps; 729 730 if ((have & mask) == mask) { 731 dout("__ceph_caps_issued_mask %p snap issued %s" 732 " (mask %s)\n", &ci->vfs_inode, 733 ceph_cap_string(have), 734 ceph_cap_string(mask)); 735 return 1; 736 } 737 738 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 739 cap = rb_entry(p, struct ceph_cap, ci_node); 740 if (!__cap_is_valid(cap)) 741 continue; 742 if ((cap->issued & mask) == mask) { 743 dout("__ceph_caps_issued_mask %p cap %p issued %s" 744 " (mask %s)\n", &ci->vfs_inode, cap, 745 ceph_cap_string(cap->issued), 746 ceph_cap_string(mask)); 747 if (touch) 748 __touch_cap(cap); 749 return 1; 750 } 751 752 /* does a combination of caps satisfy mask? */ 753 have |= cap->issued; 754 if ((have & mask) == mask) { 755 dout("__ceph_caps_issued_mask %p combo issued %s" 756 " (mask %s)\n", &ci->vfs_inode, 757 ceph_cap_string(cap->issued), 758 ceph_cap_string(mask)); 759 if (touch) { 760 struct rb_node *q; 761 762 /* touch this + preceeding caps */ 763 __touch_cap(cap); 764 for (q = rb_first(&ci->i_caps); q != p; 765 q = rb_next(q)) { 766 cap = rb_entry(q, struct ceph_cap, 767 ci_node); 768 if (!__cap_is_valid(cap)) 769 continue; 770 __touch_cap(cap); 771 } 772 } 773 return 1; 774 } 775 } 776 777 return 0; 778 } 779 780 /* 781 * Return true if mask caps are currently being revoked by an MDS. 782 */ 783 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) 784 { 785 struct inode *inode = &ci->vfs_inode; 786 struct ceph_cap *cap; 787 struct rb_node *p; 788 int ret = 0; 789 790 spin_lock(&inode->i_lock); 791 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 792 cap = rb_entry(p, struct ceph_cap, ci_node); 793 if (__cap_is_valid(cap) && 794 (cap->implemented & ~cap->issued & mask)) { 795 ret = 1; 796 break; 797 } 798 } 799 spin_unlock(&inode->i_lock); 800 dout("ceph_caps_revoking %p %s = %d\n", inode, 801 ceph_cap_string(mask), ret); 802 return ret; 803 } 804 805 int __ceph_caps_used(struct ceph_inode_info *ci) 806 { 807 int used = 0; 808 if (ci->i_pin_ref) 809 used |= CEPH_CAP_PIN; 810 if (ci->i_rd_ref) 811 used |= CEPH_CAP_FILE_RD; 812 if (ci->i_rdcache_ref || ci->i_rdcache_gen) 813 used |= CEPH_CAP_FILE_CACHE; 814 if (ci->i_wr_ref) 815 used |= CEPH_CAP_FILE_WR; 816 if (ci->i_wrbuffer_ref) 817 used |= CEPH_CAP_FILE_BUFFER; 818 return used; 819 } 820 821 /* 822 * wanted, by virtue of open file modes 823 */ 824 int __ceph_caps_file_wanted(struct ceph_inode_info *ci) 825 { 826 int want = 0; 827 int mode; 828 for (mode = 0; mode < 4; mode++) 829 if (ci->i_nr_by_mode[mode]) 830 want |= ceph_caps_for_mode(mode); 831 return want; 832 } 833 834 /* 835 * Return caps we have registered with the MDS(s) as 'wanted'. 836 */ 837 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) 838 { 839 struct ceph_cap *cap; 840 struct rb_node *p; 841 int mds_wanted = 0; 842 843 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 844 cap = rb_entry(p, struct ceph_cap, ci_node); 845 if (!__cap_is_valid(cap)) 846 continue; 847 mds_wanted |= cap->mds_wanted; 848 } 849 return mds_wanted; 850 } 851 852 /* 853 * called under i_lock 854 */ 855 static int __ceph_is_any_caps(struct ceph_inode_info *ci) 856 { 857 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0; 858 } 859 860 /* 861 * Remove a cap. Take steps to deal with a racing iterate_session_caps. 862 * 863 * caller should hold i_lock. 864 * caller will not hold session s_mutex if called from destroy_inode. 865 */ 866 void __ceph_remove_cap(struct ceph_cap *cap) 867 { 868 struct ceph_mds_session *session = cap->session; 869 struct ceph_inode_info *ci = cap->ci; 870 struct ceph_mds_client *mdsc = 871 &ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 872 int removed = 0; 873 874 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); 875 876 /* remove from session list */ 877 spin_lock(&session->s_cap_lock); 878 if (session->s_cap_iterator == cap) { 879 /* not yet, we are iterating over this very cap */ 880 dout("__ceph_remove_cap delaying %p removal from session %p\n", 881 cap, cap->session); 882 } else { 883 list_del_init(&cap->session_caps); 884 session->s_nr_caps--; 885 cap->session = NULL; 886 removed = 1; 887 } 888 /* protect backpointer with s_cap_lock: see iterate_session_caps */ 889 cap->ci = NULL; 890 spin_unlock(&session->s_cap_lock); 891 892 /* remove from inode list */ 893 rb_erase(&cap->ci_node, &ci->i_caps); 894 if (ci->i_auth_cap == cap) 895 ci->i_auth_cap = NULL; 896 897 if (removed) 898 ceph_put_cap(cap); 899 900 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) { 901 struct ceph_snap_realm *realm = ci->i_snap_realm; 902 spin_lock(&realm->inodes_with_caps_lock); 903 list_del_init(&ci->i_snap_realm_item); 904 ci->i_snap_realm_counter++; 905 ci->i_snap_realm = NULL; 906 spin_unlock(&realm->inodes_with_caps_lock); 907 ceph_put_snap_realm(mdsc, realm); 908 } 909 if (!__ceph_is_any_real_caps(ci)) 910 __cap_delay_cancel(mdsc, ci); 911 } 912 913 /* 914 * Build and send a cap message to the given MDS. 915 * 916 * Caller should be holding s_mutex. 917 */ 918 static int send_cap_msg(struct ceph_mds_session *session, 919 u64 ino, u64 cid, int op, 920 int caps, int wanted, int dirty, 921 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq, 922 u64 size, u64 max_size, 923 struct timespec *mtime, struct timespec *atime, 924 u64 time_warp_seq, 925 uid_t uid, gid_t gid, mode_t mode, 926 u64 xattr_version, 927 struct ceph_buffer *xattrs_buf, 928 u64 follows) 929 { 930 struct ceph_mds_caps *fc; 931 struct ceph_msg *msg; 932 933 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" 934 " seq %u/%u mseq %u follows %lld size %llu/%llu" 935 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), 936 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), 937 ceph_cap_string(dirty), 938 seq, issue_seq, mseq, follows, size, max_size, 939 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); 940 941 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS); 942 if (!msg) 943 return -ENOMEM; 944 945 msg->hdr.tid = cpu_to_le64(flush_tid); 946 947 fc = msg->front.iov_base; 948 memset(fc, 0, sizeof(*fc)); 949 950 fc->cap_id = cpu_to_le64(cid); 951 fc->op = cpu_to_le32(op); 952 fc->seq = cpu_to_le32(seq); 953 fc->issue_seq = cpu_to_le32(issue_seq); 954 fc->migrate_seq = cpu_to_le32(mseq); 955 fc->caps = cpu_to_le32(caps); 956 fc->wanted = cpu_to_le32(wanted); 957 fc->dirty = cpu_to_le32(dirty); 958 fc->ino = cpu_to_le64(ino); 959 fc->snap_follows = cpu_to_le64(follows); 960 961 fc->size = cpu_to_le64(size); 962 fc->max_size = cpu_to_le64(max_size); 963 if (mtime) 964 ceph_encode_timespec(&fc->mtime, mtime); 965 if (atime) 966 ceph_encode_timespec(&fc->atime, atime); 967 fc->time_warp_seq = cpu_to_le32(time_warp_seq); 968 969 fc->uid = cpu_to_le32(uid); 970 fc->gid = cpu_to_le32(gid); 971 fc->mode = cpu_to_le32(mode); 972 973 fc->xattr_version = cpu_to_le64(xattr_version); 974 if (xattrs_buf) { 975 msg->middle = ceph_buffer_get(xattrs_buf); 976 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); 977 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); 978 } 979 980 ceph_con_send(&session->s_con, msg); 981 return 0; 982 } 983 984 /* 985 * Queue cap releases when an inode is dropped from our cache. Since 986 * inode is about to be destroyed, there is no need for i_lock. 987 */ 988 void ceph_queue_caps_release(struct inode *inode) 989 { 990 struct ceph_inode_info *ci = ceph_inode(inode); 991 struct rb_node *p; 992 993 p = rb_first(&ci->i_caps); 994 while (p) { 995 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); 996 struct ceph_mds_session *session = cap->session; 997 struct ceph_msg *msg; 998 struct ceph_mds_cap_release *head; 999 struct ceph_mds_cap_item *item; 1000 1001 spin_lock(&session->s_cap_lock); 1002 BUG_ON(!session->s_num_cap_releases); 1003 msg = list_first_entry(&session->s_cap_releases, 1004 struct ceph_msg, list_head); 1005 1006 dout(" adding %p release to mds%d msg %p (%d left)\n", 1007 inode, session->s_mds, msg, session->s_num_cap_releases); 1008 1009 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE); 1010 head = msg->front.iov_base; 1011 head->num = cpu_to_le32(le32_to_cpu(head->num) + 1); 1012 item = msg->front.iov_base + msg->front.iov_len; 1013 item->ino = cpu_to_le64(ceph_ino(inode)); 1014 item->cap_id = cpu_to_le64(cap->cap_id); 1015 item->migrate_seq = cpu_to_le32(cap->mseq); 1016 item->seq = cpu_to_le32(cap->issue_seq); 1017 1018 session->s_num_cap_releases--; 1019 1020 msg->front.iov_len += sizeof(*item); 1021 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1022 dout(" release msg %p full\n", msg); 1023 list_move_tail(&msg->list_head, 1024 &session->s_cap_releases_done); 1025 } else { 1026 dout(" release msg %p at %d/%d (%d)\n", msg, 1027 (int)le32_to_cpu(head->num), 1028 (int)CEPH_CAPS_PER_RELEASE, 1029 (int)msg->front.iov_len); 1030 } 1031 spin_unlock(&session->s_cap_lock); 1032 p = rb_next(p); 1033 __ceph_remove_cap(cap); 1034 } 1035 } 1036 1037 /* 1038 * Send a cap msg on the given inode. Update our caps state, then 1039 * drop i_lock and send the message. 1040 * 1041 * Make note of max_size reported/requested from mds, revoked caps 1042 * that have now been implemented. 1043 * 1044 * Make half-hearted attempt ot to invalidate page cache if we are 1045 * dropping RDCACHE. Note that this will leave behind locked pages 1046 * that we'll then need to deal with elsewhere. 1047 * 1048 * Return non-zero if delayed release, or we experienced an error 1049 * such that the caller should requeue + retry later. 1050 * 1051 * called with i_lock, then drops it. 1052 * caller should hold snap_rwsem (read), s_mutex. 1053 */ 1054 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, 1055 int op, int used, int want, int retain, int flushing, 1056 unsigned *pflush_tid) 1057 __releases(cap->ci->vfs_inode->i_lock) 1058 { 1059 struct ceph_inode_info *ci = cap->ci; 1060 struct inode *inode = &ci->vfs_inode; 1061 u64 cap_id = cap->cap_id; 1062 int held, revoking, dropping, keep; 1063 u64 seq, issue_seq, mseq, time_warp_seq, follows; 1064 u64 size, max_size; 1065 struct timespec mtime, atime; 1066 int wake = 0; 1067 mode_t mode; 1068 uid_t uid; 1069 gid_t gid; 1070 struct ceph_mds_session *session; 1071 u64 xattr_version = 0; 1072 int delayed = 0; 1073 u64 flush_tid = 0; 1074 int i; 1075 int ret; 1076 1077 held = cap->issued | cap->implemented; 1078 revoking = cap->implemented & ~cap->issued; 1079 retain &= ~revoking; 1080 dropping = cap->issued & ~retain; 1081 1082 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", 1083 inode, cap, cap->session, 1084 ceph_cap_string(held), ceph_cap_string(held & retain), 1085 ceph_cap_string(revoking)); 1086 BUG_ON((retain & CEPH_CAP_PIN) == 0); 1087 1088 session = cap->session; 1089 1090 /* don't release wanted unless we've waited a bit. */ 1091 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1092 time_before(jiffies, ci->i_hold_caps_min)) { 1093 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", 1094 ceph_cap_string(cap->issued), 1095 ceph_cap_string(cap->issued & retain), 1096 ceph_cap_string(cap->mds_wanted), 1097 ceph_cap_string(want)); 1098 want |= cap->mds_wanted; 1099 retain |= cap->issued; 1100 delayed = 1; 1101 } 1102 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); 1103 1104 cap->issued &= retain; /* drop bits we don't want */ 1105 if (cap->implemented & ~cap->issued) { 1106 /* 1107 * Wake up any waiters on wanted -> needed transition. 1108 * This is due to the weird transition from buffered 1109 * to sync IO... we need to flush dirty pages _before_ 1110 * allowing sync writes to avoid reordering. 1111 */ 1112 wake = 1; 1113 } 1114 cap->implemented &= cap->issued | used; 1115 cap->mds_wanted = want; 1116 1117 if (flushing) { 1118 /* 1119 * assign a tid for flush operations so we can avoid 1120 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark 1121 * clean type races. track latest tid for every bit 1122 * so we can handle flush AxFw, flush Fw, and have the 1123 * first ack clean Ax. 1124 */ 1125 flush_tid = ++ci->i_cap_flush_last_tid; 1126 if (pflush_tid) 1127 *pflush_tid = flush_tid; 1128 dout(" cap_flush_tid %d\n", (int)flush_tid); 1129 for (i = 0; i < CEPH_CAP_BITS; i++) 1130 if (flushing & (1 << i)) 1131 ci->i_cap_flush_tid[i] = flush_tid; 1132 } 1133 1134 keep = cap->implemented; 1135 seq = cap->seq; 1136 issue_seq = cap->issue_seq; 1137 mseq = cap->mseq; 1138 size = inode->i_size; 1139 ci->i_reported_size = size; 1140 max_size = ci->i_wanted_max_size; 1141 ci->i_requested_max_size = max_size; 1142 mtime = inode->i_mtime; 1143 atime = inode->i_atime; 1144 time_warp_seq = ci->i_time_warp_seq; 1145 follows = ci->i_snap_realm->cached_context->seq; 1146 uid = inode->i_uid; 1147 gid = inode->i_gid; 1148 mode = inode->i_mode; 1149 1150 if (dropping & CEPH_CAP_XATTR_EXCL) { 1151 __ceph_build_xattrs_blob(ci); 1152 xattr_version = ci->i_xattrs.version + 1; 1153 } 1154 1155 spin_unlock(&inode->i_lock); 1156 1157 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, 1158 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq, 1159 size, max_size, &mtime, &atime, time_warp_seq, 1160 uid, gid, mode, 1161 xattr_version, 1162 (flushing & CEPH_CAP_XATTR_EXCL) ? ci->i_xattrs.blob : NULL, 1163 follows); 1164 if (ret < 0) { 1165 dout("error sending cap msg, must requeue %p\n", inode); 1166 delayed = 1; 1167 } 1168 1169 if (wake) 1170 wake_up(&ci->i_cap_wq); 1171 1172 return delayed; 1173 } 1174 1175 /* 1176 * When a snapshot is taken, clients accumulate dirty metadata on 1177 * inodes with capabilities in ceph_cap_snaps to describe the file 1178 * state at the time the snapshot was taken. This must be flushed 1179 * asynchronously back to the MDS once sync writes complete and dirty 1180 * data is written out. 1181 * 1182 * Called under i_lock. Takes s_mutex as needed. 1183 */ 1184 void __ceph_flush_snaps(struct ceph_inode_info *ci, 1185 struct ceph_mds_session **psession) 1186 { 1187 struct inode *inode = &ci->vfs_inode; 1188 int mds; 1189 struct ceph_cap_snap *capsnap; 1190 u32 mseq; 1191 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc; 1192 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold 1193 session->s_mutex */ 1194 u64 next_follows = 0; /* keep track of how far we've gotten through the 1195 i_cap_snaps list, and skip these entries next time 1196 around to avoid an infinite loop */ 1197 1198 if (psession) 1199 session = *psession; 1200 1201 dout("__flush_snaps %p\n", inode); 1202 retry: 1203 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 1204 /* avoid an infiniute loop after retry */ 1205 if (capsnap->follows < next_follows) 1206 continue; 1207 /* 1208 * we need to wait for sync writes to complete and for dirty 1209 * pages to be written out. 1210 */ 1211 if (capsnap->dirty_pages || capsnap->writing) 1212 continue; 1213 1214 /* 1215 * if cap writeback already occurred, we should have dropped 1216 * the capsnap in ceph_put_wrbuffer_cap_refs. 1217 */ 1218 BUG_ON(capsnap->dirty == 0); 1219 1220 /* pick mds, take s_mutex */ 1221 mds = __ceph_get_cap_mds(ci, &mseq); 1222 if (session && session->s_mds != mds) { 1223 dout("oops, wrong session %p mutex\n", session); 1224 mutex_unlock(&session->s_mutex); 1225 ceph_put_mds_session(session); 1226 session = NULL; 1227 } 1228 if (!session) { 1229 spin_unlock(&inode->i_lock); 1230 mutex_lock(&mdsc->mutex); 1231 session = __ceph_lookup_mds_session(mdsc, mds); 1232 mutex_unlock(&mdsc->mutex); 1233 if (session) { 1234 dout("inverting session/ino locks on %p\n", 1235 session); 1236 mutex_lock(&session->s_mutex); 1237 } 1238 /* 1239 * if session == NULL, we raced against a cap 1240 * deletion. retry, and we'll get a better 1241 * @mds value next time. 1242 */ 1243 spin_lock(&inode->i_lock); 1244 goto retry; 1245 } 1246 1247 capsnap->flush_tid = ++ci->i_cap_flush_last_tid; 1248 atomic_inc(&capsnap->nref); 1249 if (!list_empty(&capsnap->flushing_item)) 1250 list_del_init(&capsnap->flushing_item); 1251 list_add_tail(&capsnap->flushing_item, 1252 &session->s_cap_snaps_flushing); 1253 spin_unlock(&inode->i_lock); 1254 1255 dout("flush_snaps %p cap_snap %p follows %lld size %llu\n", 1256 inode, capsnap, next_follows, capsnap->size); 1257 send_cap_msg(session, ceph_vino(inode).ino, 0, 1258 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, 1259 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq, 1260 capsnap->size, 0, 1261 &capsnap->mtime, &capsnap->atime, 1262 capsnap->time_warp_seq, 1263 capsnap->uid, capsnap->gid, capsnap->mode, 1264 0, NULL, 1265 capsnap->follows); 1266 1267 next_follows = capsnap->follows + 1; 1268 ceph_put_cap_snap(capsnap); 1269 1270 spin_lock(&inode->i_lock); 1271 goto retry; 1272 } 1273 1274 /* we flushed them all; remove this inode from the queue */ 1275 spin_lock(&mdsc->snap_flush_lock); 1276 list_del_init(&ci->i_snap_flush_item); 1277 spin_unlock(&mdsc->snap_flush_lock); 1278 1279 if (psession) 1280 *psession = session; 1281 else if (session) { 1282 mutex_unlock(&session->s_mutex); 1283 ceph_put_mds_session(session); 1284 } 1285 } 1286 1287 static void ceph_flush_snaps(struct ceph_inode_info *ci) 1288 { 1289 struct inode *inode = &ci->vfs_inode; 1290 1291 spin_lock(&inode->i_lock); 1292 __ceph_flush_snaps(ci, NULL); 1293 spin_unlock(&inode->i_lock); 1294 } 1295 1296 /* 1297 * Mark caps dirty. If inode is newly dirty, add to the global dirty 1298 * list. 1299 */ 1300 void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask) 1301 { 1302 struct ceph_mds_client *mdsc = 1303 &ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 1304 struct inode *inode = &ci->vfs_inode; 1305 int was = ci->i_dirty_caps; 1306 int dirty = 0; 1307 1308 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, 1309 ceph_cap_string(mask), ceph_cap_string(was), 1310 ceph_cap_string(was | mask)); 1311 ci->i_dirty_caps |= mask; 1312 if (was == 0) { 1313 dout(" inode %p now dirty\n", &ci->vfs_inode); 1314 BUG_ON(!list_empty(&ci->i_dirty_item)); 1315 spin_lock(&mdsc->cap_dirty_lock); 1316 list_add(&ci->i_dirty_item, &mdsc->cap_dirty); 1317 spin_unlock(&mdsc->cap_dirty_lock); 1318 if (ci->i_flushing_caps == 0) { 1319 igrab(inode); 1320 dirty |= I_DIRTY_SYNC; 1321 } 1322 } 1323 BUG_ON(list_empty(&ci->i_dirty_item)); 1324 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && 1325 (mask & CEPH_CAP_FILE_BUFFER)) 1326 dirty |= I_DIRTY_DATASYNC; 1327 if (dirty) 1328 __mark_inode_dirty(inode, dirty); 1329 __cap_delay_requeue(mdsc, ci); 1330 } 1331 1332 /* 1333 * Add dirty inode to the flushing list. Assigned a seq number so we 1334 * can wait for caps to flush without starving. 1335 * 1336 * Called under i_lock. 1337 */ 1338 static int __mark_caps_flushing(struct inode *inode, 1339 struct ceph_mds_session *session) 1340 { 1341 struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc; 1342 struct ceph_inode_info *ci = ceph_inode(inode); 1343 int flushing; 1344 1345 BUG_ON(ci->i_dirty_caps == 0); 1346 BUG_ON(list_empty(&ci->i_dirty_item)); 1347 1348 flushing = ci->i_dirty_caps; 1349 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", 1350 ceph_cap_string(flushing), 1351 ceph_cap_string(ci->i_flushing_caps), 1352 ceph_cap_string(ci->i_flushing_caps | flushing)); 1353 ci->i_flushing_caps |= flushing; 1354 ci->i_dirty_caps = 0; 1355 dout(" inode %p now !dirty\n", inode); 1356 1357 spin_lock(&mdsc->cap_dirty_lock); 1358 list_del_init(&ci->i_dirty_item); 1359 1360 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq; 1361 if (list_empty(&ci->i_flushing_item)) { 1362 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1363 mdsc->num_cap_flushing++; 1364 dout(" inode %p now flushing seq %lld\n", inode, 1365 ci->i_cap_flush_seq); 1366 } else { 1367 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1368 dout(" inode %p now flushing (more) seq %lld\n", inode, 1369 ci->i_cap_flush_seq); 1370 } 1371 spin_unlock(&mdsc->cap_dirty_lock); 1372 1373 return flushing; 1374 } 1375 1376 /* 1377 * try to invalidate mapping pages without blocking. 1378 */ 1379 static int mapping_is_empty(struct address_space *mapping) 1380 { 1381 struct page *page = find_get_page(mapping, 0); 1382 1383 if (!page) 1384 return 1; 1385 1386 put_page(page); 1387 return 0; 1388 } 1389 1390 static int try_nonblocking_invalidate(struct inode *inode) 1391 { 1392 struct ceph_inode_info *ci = ceph_inode(inode); 1393 u32 invalidating_gen = ci->i_rdcache_gen; 1394 1395 spin_unlock(&inode->i_lock); 1396 invalidate_mapping_pages(&inode->i_data, 0, -1); 1397 spin_lock(&inode->i_lock); 1398 1399 if (mapping_is_empty(&inode->i_data) && 1400 invalidating_gen == ci->i_rdcache_gen) { 1401 /* success. */ 1402 dout("try_nonblocking_invalidate %p success\n", inode); 1403 ci->i_rdcache_gen = 0; 1404 ci->i_rdcache_revoking = 0; 1405 return 0; 1406 } 1407 dout("try_nonblocking_invalidate %p failed\n", inode); 1408 return -1; 1409 } 1410 1411 /* 1412 * Swiss army knife function to examine currently used and wanted 1413 * versus held caps. Release, flush, ack revoked caps to mds as 1414 * appropriate. 1415 * 1416 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay 1417 * cap release further. 1418 * CHECK_CAPS_AUTHONLY - we should only check the auth cap 1419 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without 1420 * further delay. 1421 */ 1422 void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1423 struct ceph_mds_session *session) 1424 __releases(session->s_mutex) 1425 { 1426 struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode); 1427 struct ceph_mds_client *mdsc = &client->mdsc; 1428 struct inode *inode = &ci->vfs_inode; 1429 struct ceph_cap *cap; 1430 int file_wanted, used; 1431 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ 1432 int issued, implemented, want, retain, revoking, flushing = 0; 1433 int mds = -1; /* keep track of how far we've gone through i_caps list 1434 to avoid an infinite loop on retry */ 1435 struct rb_node *p; 1436 int tried_invalidate = 0; 1437 int delayed = 0, sent = 0, force_requeue = 0, num; 1438 int queue_invalidate = 0; 1439 int is_delayed = flags & CHECK_CAPS_NODELAY; 1440 1441 /* if we are unmounting, flush any unused caps immediately. */ 1442 if (mdsc->stopping) 1443 is_delayed = 1; 1444 1445 spin_lock(&inode->i_lock); 1446 1447 if (ci->i_ceph_flags & CEPH_I_FLUSH) 1448 flags |= CHECK_CAPS_FLUSH; 1449 1450 /* flush snaps first time around only */ 1451 if (!list_empty(&ci->i_cap_snaps)) 1452 __ceph_flush_snaps(ci, &session); 1453 goto retry_locked; 1454 retry: 1455 spin_lock(&inode->i_lock); 1456 retry_locked: 1457 file_wanted = __ceph_caps_file_wanted(ci); 1458 used = __ceph_caps_used(ci); 1459 want = file_wanted | used; 1460 issued = __ceph_caps_issued(ci, &implemented); 1461 revoking = implemented & ~issued; 1462 1463 retain = want | CEPH_CAP_PIN; 1464 if (!mdsc->stopping && inode->i_nlink > 0) { 1465 if (want) { 1466 retain |= CEPH_CAP_ANY; /* be greedy */ 1467 } else { 1468 retain |= CEPH_CAP_ANY_SHARED; 1469 /* 1470 * keep RD only if we didn't have the file open RW, 1471 * because then the mds would revoke it anyway to 1472 * journal max_size=0. 1473 */ 1474 if (ci->i_max_size == 0) 1475 retain |= CEPH_CAP_ANY_RD; 1476 } 1477 } 1478 1479 dout("check_caps %p file_want %s used %s dirty %s flushing %s" 1480 " issued %s revoking %s retain %s %s%s%s\n", inode, 1481 ceph_cap_string(file_wanted), 1482 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), 1483 ceph_cap_string(ci->i_flushing_caps), 1484 ceph_cap_string(issued), ceph_cap_string(revoking), 1485 ceph_cap_string(retain), 1486 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", 1487 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", 1488 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); 1489 1490 /* 1491 * If we no longer need to hold onto old our caps, and we may 1492 * have cached pages, but don't want them, then try to invalidate. 1493 * If we fail, it's because pages are locked.... try again later. 1494 */ 1495 if ((!is_delayed || mdsc->stopping) && 1496 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ 1497 ci->i_rdcache_gen && /* may have cached pages */ 1498 (file_wanted == 0 || /* no open files */ 1499 (revoking & CEPH_CAP_FILE_CACHE)) && /* or revoking cache */ 1500 !tried_invalidate) { 1501 dout("check_caps trying to invalidate on %p\n", inode); 1502 if (try_nonblocking_invalidate(inode) < 0) { 1503 if (revoking & CEPH_CAP_FILE_CACHE) { 1504 dout("check_caps queuing invalidate\n"); 1505 queue_invalidate = 1; 1506 ci->i_rdcache_revoking = ci->i_rdcache_gen; 1507 } else { 1508 dout("check_caps failed to invalidate pages\n"); 1509 /* we failed to invalidate pages. check these 1510 caps again later. */ 1511 force_requeue = 1; 1512 __cap_set_timeouts(mdsc, ci); 1513 } 1514 } 1515 tried_invalidate = 1; 1516 goto retry_locked; 1517 } 1518 1519 num = 0; 1520 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 1521 cap = rb_entry(p, struct ceph_cap, ci_node); 1522 num++; 1523 1524 /* avoid looping forever */ 1525 if (mds >= cap->mds || 1526 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) 1527 continue; 1528 1529 /* NOTE: no side-effects allowed, until we take s_mutex */ 1530 1531 revoking = cap->implemented & ~cap->issued; 1532 if (revoking) 1533 dout(" mds%d revoking %s\n", cap->mds, 1534 ceph_cap_string(revoking)); 1535 1536 if (cap == ci->i_auth_cap && 1537 (cap->issued & CEPH_CAP_FILE_WR)) { 1538 /* request larger max_size from MDS? */ 1539 if (ci->i_wanted_max_size > ci->i_max_size && 1540 ci->i_wanted_max_size > ci->i_requested_max_size) { 1541 dout("requesting new max_size\n"); 1542 goto ack; 1543 } 1544 1545 /* approaching file_max? */ 1546 if ((inode->i_size << 1) >= ci->i_max_size && 1547 (ci->i_reported_size << 1) < ci->i_max_size) { 1548 dout("i_size approaching max_size\n"); 1549 goto ack; 1550 } 1551 } 1552 /* flush anything dirty? */ 1553 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && 1554 ci->i_dirty_caps) { 1555 dout("flushing dirty caps\n"); 1556 goto ack; 1557 } 1558 1559 /* completed revocation? going down and there are no caps? */ 1560 if (revoking && (revoking & used) == 0) { 1561 dout("completed revocation of %s\n", 1562 ceph_cap_string(cap->implemented & ~cap->issued)); 1563 goto ack; 1564 } 1565 1566 /* want more caps from mds? */ 1567 if (want & ~(cap->mds_wanted | cap->issued)) 1568 goto ack; 1569 1570 /* things we might delay */ 1571 if ((cap->issued & ~retain) == 0 && 1572 cap->mds_wanted == want) 1573 continue; /* nope, all good */ 1574 1575 if (is_delayed) 1576 goto ack; 1577 1578 /* delay? */ 1579 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1580 time_before(jiffies, ci->i_hold_caps_max)) { 1581 dout(" delaying issued %s -> %s, wanted %s -> %s\n", 1582 ceph_cap_string(cap->issued), 1583 ceph_cap_string(cap->issued & retain), 1584 ceph_cap_string(cap->mds_wanted), 1585 ceph_cap_string(want)); 1586 delayed++; 1587 continue; 1588 } 1589 1590 ack: 1591 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1592 dout(" skipping %p I_NOFLUSH set\n", inode); 1593 continue; 1594 } 1595 1596 if (session && session != cap->session) { 1597 dout("oops, wrong session %p mutex\n", session); 1598 mutex_unlock(&session->s_mutex); 1599 session = NULL; 1600 } 1601 if (!session) { 1602 session = cap->session; 1603 if (mutex_trylock(&session->s_mutex) == 0) { 1604 dout("inverting session/ino locks on %p\n", 1605 session); 1606 spin_unlock(&inode->i_lock); 1607 if (took_snap_rwsem) { 1608 up_read(&mdsc->snap_rwsem); 1609 took_snap_rwsem = 0; 1610 } 1611 mutex_lock(&session->s_mutex); 1612 goto retry; 1613 } 1614 } 1615 /* take snap_rwsem after session mutex */ 1616 if (!took_snap_rwsem) { 1617 if (down_read_trylock(&mdsc->snap_rwsem) == 0) { 1618 dout("inverting snap/in locks on %p\n", 1619 inode); 1620 spin_unlock(&inode->i_lock); 1621 down_read(&mdsc->snap_rwsem); 1622 took_snap_rwsem = 1; 1623 goto retry; 1624 } 1625 took_snap_rwsem = 1; 1626 } 1627 1628 if (cap == ci->i_auth_cap && ci->i_dirty_caps) 1629 flushing = __mark_caps_flushing(inode, session); 1630 1631 mds = cap->mds; /* remember mds, so we don't repeat */ 1632 sent++; 1633 1634 /* __send_cap drops i_lock */ 1635 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want, 1636 retain, flushing, NULL); 1637 goto retry; /* retake i_lock and restart our cap scan. */ 1638 } 1639 1640 /* 1641 * Reschedule delayed caps release if we delayed anything, 1642 * otherwise cancel. 1643 */ 1644 if (delayed && is_delayed) 1645 force_requeue = 1; /* __send_cap delayed release; requeue */ 1646 if (!delayed && !is_delayed) 1647 __cap_delay_cancel(mdsc, ci); 1648 else if (!is_delayed || force_requeue) 1649 __cap_delay_requeue(mdsc, ci); 1650 1651 spin_unlock(&inode->i_lock); 1652 1653 if (queue_invalidate) 1654 ceph_queue_invalidate(inode); 1655 1656 if (session) 1657 mutex_unlock(&session->s_mutex); 1658 if (took_snap_rwsem) 1659 up_read(&mdsc->snap_rwsem); 1660 } 1661 1662 /* 1663 * Try to flush dirty caps back to the auth mds. 1664 */ 1665 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session, 1666 unsigned *flush_tid) 1667 { 1668 struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc; 1669 struct ceph_inode_info *ci = ceph_inode(inode); 1670 int unlock_session = session ? 0 : 1; 1671 int flushing = 0; 1672 1673 retry: 1674 spin_lock(&inode->i_lock); 1675 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1676 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode); 1677 goto out; 1678 } 1679 if (ci->i_dirty_caps && ci->i_auth_cap) { 1680 struct ceph_cap *cap = ci->i_auth_cap; 1681 int used = __ceph_caps_used(ci); 1682 int want = __ceph_caps_wanted(ci); 1683 int delayed; 1684 1685 if (!session) { 1686 spin_unlock(&inode->i_lock); 1687 session = cap->session; 1688 mutex_lock(&session->s_mutex); 1689 goto retry; 1690 } 1691 BUG_ON(session != cap->session); 1692 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) 1693 goto out; 1694 1695 flushing = __mark_caps_flushing(inode, session); 1696 1697 /* __send_cap drops i_lock */ 1698 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, 1699 cap->issued | cap->implemented, flushing, 1700 flush_tid); 1701 if (!delayed) 1702 goto out_unlocked; 1703 1704 spin_lock(&inode->i_lock); 1705 __cap_delay_requeue(mdsc, ci); 1706 } 1707 out: 1708 spin_unlock(&inode->i_lock); 1709 out_unlocked: 1710 if (session && unlock_session) 1711 mutex_unlock(&session->s_mutex); 1712 return flushing; 1713 } 1714 1715 /* 1716 * Return true if we've flushed caps through the given flush_tid. 1717 */ 1718 static int caps_are_flushed(struct inode *inode, unsigned tid) 1719 { 1720 struct ceph_inode_info *ci = ceph_inode(inode); 1721 int i, ret = 1; 1722 1723 spin_lock(&inode->i_lock); 1724 for (i = 0; i < CEPH_CAP_BITS; i++) 1725 if ((ci->i_flushing_caps & (1 << i)) && 1726 ci->i_cap_flush_tid[i] <= tid) { 1727 /* still flushing this bit */ 1728 ret = 0; 1729 break; 1730 } 1731 spin_unlock(&inode->i_lock); 1732 return ret; 1733 } 1734 1735 /* 1736 * Wait on any unsafe replies for the given inode. First wait on the 1737 * newest request, and make that the upper bound. Then, if there are 1738 * more requests, keep waiting on the oldest as long as it is still older 1739 * than the original request. 1740 */ 1741 static void sync_write_wait(struct inode *inode) 1742 { 1743 struct ceph_inode_info *ci = ceph_inode(inode); 1744 struct list_head *head = &ci->i_unsafe_writes; 1745 struct ceph_osd_request *req; 1746 u64 last_tid; 1747 1748 spin_lock(&ci->i_unsafe_lock); 1749 if (list_empty(head)) 1750 goto out; 1751 1752 /* set upper bound as _last_ entry in chain */ 1753 req = list_entry(head->prev, struct ceph_osd_request, 1754 r_unsafe_item); 1755 last_tid = req->r_tid; 1756 1757 do { 1758 ceph_osdc_get_request(req); 1759 spin_unlock(&ci->i_unsafe_lock); 1760 dout("sync_write_wait on tid %llu (until %llu)\n", 1761 req->r_tid, last_tid); 1762 wait_for_completion(&req->r_safe_completion); 1763 spin_lock(&ci->i_unsafe_lock); 1764 ceph_osdc_put_request(req); 1765 1766 /* 1767 * from here on look at first entry in chain, since we 1768 * only want to wait for anything older than last_tid 1769 */ 1770 if (list_empty(head)) 1771 break; 1772 req = list_entry(head->next, struct ceph_osd_request, 1773 r_unsafe_item); 1774 } while (req->r_tid < last_tid); 1775 out: 1776 spin_unlock(&ci->i_unsafe_lock); 1777 } 1778 1779 int ceph_fsync(struct file *file, struct dentry *dentry, int datasync) 1780 { 1781 struct inode *inode = dentry->d_inode; 1782 struct ceph_inode_info *ci = ceph_inode(inode); 1783 unsigned flush_tid; 1784 int ret; 1785 int dirty; 1786 1787 dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); 1788 sync_write_wait(inode); 1789 1790 ret = filemap_write_and_wait(inode->i_mapping); 1791 if (ret < 0) 1792 return ret; 1793 1794 dirty = try_flush_caps(inode, NULL, &flush_tid); 1795 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); 1796 1797 /* 1798 * only wait on non-file metadata writeback (the mds 1799 * can recover size and mtime, so we don't need to 1800 * wait for that) 1801 */ 1802 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { 1803 dout("fsync waiting for flush_tid %u\n", flush_tid); 1804 ret = wait_event_interruptible(ci->i_cap_wq, 1805 caps_are_flushed(inode, flush_tid)); 1806 } 1807 1808 dout("fsync %p%s done\n", inode, datasync ? " datasync" : ""); 1809 return ret; 1810 } 1811 1812 /* 1813 * Flush any dirty caps back to the mds. If we aren't asked to wait, 1814 * queue inode for flush but don't do so immediately, because we can 1815 * get by with fewer MDS messages if we wait for data writeback to 1816 * complete first. 1817 */ 1818 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc) 1819 { 1820 struct ceph_inode_info *ci = ceph_inode(inode); 1821 unsigned flush_tid; 1822 int err = 0; 1823 int dirty; 1824 int wait = wbc->sync_mode == WB_SYNC_ALL; 1825 1826 dout("write_inode %p wait=%d\n", inode, wait); 1827 if (wait) { 1828 dirty = try_flush_caps(inode, NULL, &flush_tid); 1829 if (dirty) 1830 err = wait_event_interruptible(ci->i_cap_wq, 1831 caps_are_flushed(inode, flush_tid)); 1832 } else { 1833 struct ceph_mds_client *mdsc = 1834 &ceph_sb_to_client(inode->i_sb)->mdsc; 1835 1836 spin_lock(&inode->i_lock); 1837 if (__ceph_caps_dirty(ci)) 1838 __cap_delay_requeue_front(mdsc, ci); 1839 spin_unlock(&inode->i_lock); 1840 } 1841 return err; 1842 } 1843 1844 /* 1845 * After a recovering MDS goes active, we need to resend any caps 1846 * we were flushing. 1847 * 1848 * Caller holds session->s_mutex. 1849 */ 1850 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, 1851 struct ceph_mds_session *session) 1852 { 1853 struct ceph_cap_snap *capsnap; 1854 1855 dout("kick_flushing_capsnaps mds%d\n", session->s_mds); 1856 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, 1857 flushing_item) { 1858 struct ceph_inode_info *ci = capsnap->ci; 1859 struct inode *inode = &ci->vfs_inode; 1860 struct ceph_cap *cap; 1861 1862 spin_lock(&inode->i_lock); 1863 cap = ci->i_auth_cap; 1864 if (cap && cap->session == session) { 1865 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, 1866 cap, capsnap); 1867 __ceph_flush_snaps(ci, &session); 1868 } else { 1869 pr_err("%p auth cap %p not mds%d ???\n", inode, 1870 cap, session->s_mds); 1871 } 1872 spin_unlock(&inode->i_lock); 1873 } 1874 } 1875 1876 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 1877 struct ceph_mds_session *session) 1878 { 1879 struct ceph_inode_info *ci; 1880 1881 kick_flushing_capsnaps(mdsc, session); 1882 1883 dout("kick_flushing_caps mds%d\n", session->s_mds); 1884 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 1885 struct inode *inode = &ci->vfs_inode; 1886 struct ceph_cap *cap; 1887 int delayed = 0; 1888 1889 spin_lock(&inode->i_lock); 1890 cap = ci->i_auth_cap; 1891 if (cap && cap->session == session) { 1892 dout("kick_flushing_caps %p cap %p %s\n", inode, 1893 cap, ceph_cap_string(ci->i_flushing_caps)); 1894 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1895 __ceph_caps_used(ci), 1896 __ceph_caps_wanted(ci), 1897 cap->issued | cap->implemented, 1898 ci->i_flushing_caps, NULL); 1899 if (delayed) { 1900 spin_lock(&inode->i_lock); 1901 __cap_delay_requeue(mdsc, ci); 1902 spin_unlock(&inode->i_lock); 1903 } 1904 } else { 1905 pr_err("%p auth cap %p not mds%d ???\n", inode, 1906 cap, session->s_mds); 1907 spin_unlock(&inode->i_lock); 1908 } 1909 } 1910 } 1911 1912 1913 /* 1914 * Take references to capabilities we hold, so that we don't release 1915 * them to the MDS prematurely. 1916 * 1917 * Protected by i_lock. 1918 */ 1919 static void __take_cap_refs(struct ceph_inode_info *ci, int got) 1920 { 1921 if (got & CEPH_CAP_PIN) 1922 ci->i_pin_ref++; 1923 if (got & CEPH_CAP_FILE_RD) 1924 ci->i_rd_ref++; 1925 if (got & CEPH_CAP_FILE_CACHE) 1926 ci->i_rdcache_ref++; 1927 if (got & CEPH_CAP_FILE_WR) 1928 ci->i_wr_ref++; 1929 if (got & CEPH_CAP_FILE_BUFFER) { 1930 if (ci->i_wrbuffer_ref == 0) 1931 igrab(&ci->vfs_inode); 1932 ci->i_wrbuffer_ref++; 1933 dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n", 1934 &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref); 1935 } 1936 } 1937 1938 /* 1939 * Try to grab cap references. Specify those refs we @want, and the 1940 * minimal set we @need. Also include the larger offset we are writing 1941 * to (when applicable), and check against max_size here as well. 1942 * Note that caller is responsible for ensuring max_size increases are 1943 * requested from the MDS. 1944 */ 1945 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, 1946 int *got, loff_t endoff, int *check_max, int *err) 1947 { 1948 struct inode *inode = &ci->vfs_inode; 1949 int ret = 0; 1950 int have, implemented; 1951 int file_wanted; 1952 1953 dout("get_cap_refs %p need %s want %s\n", inode, 1954 ceph_cap_string(need), ceph_cap_string(want)); 1955 spin_lock(&inode->i_lock); 1956 1957 /* make sure file is actually open */ 1958 file_wanted = __ceph_caps_file_wanted(ci); 1959 if ((file_wanted & need) == 0) { 1960 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n", 1961 ceph_cap_string(need), ceph_cap_string(file_wanted)); 1962 *err = -EBADF; 1963 ret = 1; 1964 goto out; 1965 } 1966 1967 if (need & CEPH_CAP_FILE_WR) { 1968 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { 1969 dout("get_cap_refs %p endoff %llu > maxsize %llu\n", 1970 inode, endoff, ci->i_max_size); 1971 if (endoff > ci->i_wanted_max_size) { 1972 *check_max = 1; 1973 ret = 1; 1974 } 1975 goto out; 1976 } 1977 /* 1978 * If a sync write is in progress, we must wait, so that we 1979 * can get a final snapshot value for size+mtime. 1980 */ 1981 if (__ceph_have_pending_cap_snap(ci)) { 1982 dout("get_cap_refs %p cap_snap_pending\n", inode); 1983 goto out; 1984 } 1985 } 1986 have = __ceph_caps_issued(ci, &implemented); 1987 1988 /* 1989 * disallow writes while a truncate is pending 1990 */ 1991 if (ci->i_truncate_pending) 1992 have &= ~CEPH_CAP_FILE_WR; 1993 1994 if ((have & need) == need) { 1995 /* 1996 * Look at (implemented & ~have & not) so that we keep waiting 1997 * on transition from wanted -> needed caps. This is needed 1998 * for WRBUFFER|WR -> WR to avoid a new WR sync write from 1999 * going before a prior buffered writeback happens. 2000 */ 2001 int not = want & ~(have & need); 2002 int revoking = implemented & ~have; 2003 dout("get_cap_refs %p have %s but not %s (revoking %s)\n", 2004 inode, ceph_cap_string(have), ceph_cap_string(not), 2005 ceph_cap_string(revoking)); 2006 if ((revoking & not) == 0) { 2007 *got = need | (have & want); 2008 __take_cap_refs(ci, *got); 2009 ret = 1; 2010 } 2011 } else { 2012 dout("get_cap_refs %p have %s needed %s\n", inode, 2013 ceph_cap_string(have), ceph_cap_string(need)); 2014 } 2015 out: 2016 spin_unlock(&inode->i_lock); 2017 dout("get_cap_refs %p ret %d got %s\n", inode, 2018 ret, ceph_cap_string(*got)); 2019 return ret; 2020 } 2021 2022 /* 2023 * Check the offset we are writing up to against our current 2024 * max_size. If necessary, tell the MDS we want to write to 2025 * a larger offset. 2026 */ 2027 static void check_max_size(struct inode *inode, loff_t endoff) 2028 { 2029 struct ceph_inode_info *ci = ceph_inode(inode); 2030 int check = 0; 2031 2032 /* do we need to explicitly request a larger max_size? */ 2033 spin_lock(&inode->i_lock); 2034 if ((endoff >= ci->i_max_size || 2035 endoff > (inode->i_size << 1)) && 2036 endoff > ci->i_wanted_max_size) { 2037 dout("write %p at large endoff %llu, req max_size\n", 2038 inode, endoff); 2039 ci->i_wanted_max_size = endoff; 2040 check = 1; 2041 } 2042 spin_unlock(&inode->i_lock); 2043 if (check) 2044 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2045 } 2046 2047 /* 2048 * Wait for caps, and take cap references. If we can't get a WR cap 2049 * due to a small max_size, make sure we check_max_size (and possibly 2050 * ask the mds) so we don't get hung up indefinitely. 2051 */ 2052 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got, 2053 loff_t endoff) 2054 { 2055 int check_max, ret, err; 2056 2057 retry: 2058 if (endoff > 0) 2059 check_max_size(&ci->vfs_inode, endoff); 2060 check_max = 0; 2061 err = 0; 2062 ret = wait_event_interruptible(ci->i_cap_wq, 2063 try_get_cap_refs(ci, need, want, 2064 got, endoff, 2065 &check_max, &err)); 2066 if (err) 2067 ret = err; 2068 if (check_max) 2069 goto retry; 2070 return ret; 2071 } 2072 2073 /* 2074 * Take cap refs. Caller must already know we hold at least one ref 2075 * on the caps in question or we don't know this is safe. 2076 */ 2077 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) 2078 { 2079 spin_lock(&ci->vfs_inode.i_lock); 2080 __take_cap_refs(ci, caps); 2081 spin_unlock(&ci->vfs_inode.i_lock); 2082 } 2083 2084 /* 2085 * Release cap refs. 2086 * 2087 * If we released the last ref on any given cap, call ceph_check_caps 2088 * to release (or schedule a release). 2089 * 2090 * If we are releasing a WR cap (from a sync write), finalize any affected 2091 * cap_snap, and wake up any waiters. 2092 */ 2093 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) 2094 { 2095 struct inode *inode = &ci->vfs_inode; 2096 int last = 0, put = 0, flushsnaps = 0, wake = 0; 2097 struct ceph_cap_snap *capsnap; 2098 2099 spin_lock(&inode->i_lock); 2100 if (had & CEPH_CAP_PIN) 2101 --ci->i_pin_ref; 2102 if (had & CEPH_CAP_FILE_RD) 2103 if (--ci->i_rd_ref == 0) 2104 last++; 2105 if (had & CEPH_CAP_FILE_CACHE) 2106 if (--ci->i_rdcache_ref == 0) 2107 last++; 2108 if (had & CEPH_CAP_FILE_BUFFER) { 2109 if (--ci->i_wrbuffer_ref == 0) { 2110 last++; 2111 put++; 2112 } 2113 dout("put_cap_refs %p wrbuffer %d -> %d (?)\n", 2114 inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref); 2115 } 2116 if (had & CEPH_CAP_FILE_WR) 2117 if (--ci->i_wr_ref == 0) { 2118 last++; 2119 if (!list_empty(&ci->i_cap_snaps)) { 2120 capsnap = list_first_entry(&ci->i_cap_snaps, 2121 struct ceph_cap_snap, 2122 ci_item); 2123 if (capsnap->writing) { 2124 capsnap->writing = 0; 2125 flushsnaps = 2126 __ceph_finish_cap_snap(ci, 2127 capsnap); 2128 wake = 1; 2129 } 2130 } 2131 } 2132 spin_unlock(&inode->i_lock); 2133 2134 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had), 2135 last ? " last" : "", put ? " put" : ""); 2136 2137 if (last && !flushsnaps) 2138 ceph_check_caps(ci, 0, NULL); 2139 else if (flushsnaps) 2140 ceph_flush_snaps(ci); 2141 if (wake) 2142 wake_up(&ci->i_cap_wq); 2143 if (put) 2144 iput(inode); 2145 } 2146 2147 /* 2148 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap 2149 * context. Adjust per-snap dirty page accounting as appropriate. 2150 * Once all dirty data for a cap_snap is flushed, flush snapped file 2151 * metadata back to the MDS. If we dropped the last ref, call 2152 * ceph_check_caps. 2153 */ 2154 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 2155 struct ceph_snap_context *snapc) 2156 { 2157 struct inode *inode = &ci->vfs_inode; 2158 int last = 0; 2159 int complete_capsnap = 0; 2160 int drop_capsnap = 0; 2161 int found = 0; 2162 struct ceph_cap_snap *capsnap = NULL; 2163 2164 spin_lock(&inode->i_lock); 2165 ci->i_wrbuffer_ref -= nr; 2166 last = !ci->i_wrbuffer_ref; 2167 2168 if (ci->i_head_snapc == snapc) { 2169 ci->i_wrbuffer_ref_head -= nr; 2170 if (!ci->i_wrbuffer_ref_head) { 2171 ceph_put_snap_context(ci->i_head_snapc); 2172 ci->i_head_snapc = NULL; 2173 } 2174 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", 2175 inode, 2176 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, 2177 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 2178 last ? " LAST" : ""); 2179 } else { 2180 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2181 if (capsnap->context == snapc) { 2182 found = 1; 2183 break; 2184 } 2185 } 2186 BUG_ON(!found); 2187 capsnap->dirty_pages -= nr; 2188 if (capsnap->dirty_pages == 0) { 2189 complete_capsnap = 1; 2190 if (capsnap->dirty == 0) 2191 /* cap writeback completed before we created 2192 * the cap_snap; no FLUSHSNAP is needed */ 2193 drop_capsnap = 1; 2194 } 2195 dout("put_wrbuffer_cap_refs on %p cap_snap %p " 2196 " snap %lld %d/%d -> %d/%d %s%s%s\n", 2197 inode, capsnap, capsnap->context->seq, 2198 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, 2199 ci->i_wrbuffer_ref, capsnap->dirty_pages, 2200 last ? " (wrbuffer last)" : "", 2201 complete_capsnap ? " (complete capsnap)" : "", 2202 drop_capsnap ? " (drop capsnap)" : ""); 2203 if (drop_capsnap) { 2204 ceph_put_snap_context(capsnap->context); 2205 list_del(&capsnap->ci_item); 2206 list_del(&capsnap->flushing_item); 2207 ceph_put_cap_snap(capsnap); 2208 } 2209 } 2210 2211 spin_unlock(&inode->i_lock); 2212 2213 if (last) { 2214 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2215 iput(inode); 2216 } else if (complete_capsnap) { 2217 ceph_flush_snaps(ci); 2218 wake_up(&ci->i_cap_wq); 2219 } 2220 if (drop_capsnap) 2221 iput(inode); 2222 } 2223 2224 /* 2225 * Handle a cap GRANT message from the MDS. (Note that a GRANT may 2226 * actually be a revocation if it specifies a smaller cap set.) 2227 * 2228 * caller holds s_mutex and i_lock, we drop both. 2229 * 2230 * return value: 2231 * 0 - ok 2232 * 1 - check_caps on auth cap only (writeback) 2233 * 2 - check_caps (ack revoke) 2234 */ 2235 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant, 2236 struct ceph_mds_session *session, 2237 struct ceph_cap *cap, 2238 struct ceph_buffer *xattr_buf) 2239 __releases(inode->i_lock) 2240 __releases(session->s_mutex) 2241 { 2242 struct ceph_inode_info *ci = ceph_inode(inode); 2243 int mds = session->s_mds; 2244 int seq = le32_to_cpu(grant->seq); 2245 int newcaps = le32_to_cpu(grant->caps); 2246 int issued, implemented, used, wanted, dirty; 2247 u64 size = le64_to_cpu(grant->size); 2248 u64 max_size = le64_to_cpu(grant->max_size); 2249 struct timespec mtime, atime, ctime; 2250 int check_caps = 0; 2251 int wake = 0; 2252 int writeback = 0; 2253 int revoked_rdcache = 0; 2254 int queue_invalidate = 0; 2255 2256 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", 2257 inode, cap, mds, seq, ceph_cap_string(newcaps)); 2258 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, 2259 inode->i_size); 2260 2261 /* 2262 * If CACHE is being revoked, and we have no dirty buffers, 2263 * try to invalidate (once). (If there are dirty buffers, we 2264 * will invalidate _after_ writeback.) 2265 */ 2266 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && 2267 !ci->i_wrbuffer_ref) { 2268 if (try_nonblocking_invalidate(inode) == 0) { 2269 revoked_rdcache = 1; 2270 } else { 2271 /* there were locked pages.. invalidate later 2272 in a separate thread. */ 2273 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { 2274 queue_invalidate = 1; 2275 ci->i_rdcache_revoking = ci->i_rdcache_gen; 2276 } 2277 } 2278 } 2279 2280 /* side effects now are allowed */ 2281 2282 issued = __ceph_caps_issued(ci, &implemented); 2283 issued |= implemented | __ceph_caps_dirty(ci); 2284 2285 cap->cap_gen = session->s_cap_gen; 2286 2287 __check_cap_issue(ci, cap, newcaps); 2288 2289 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) { 2290 inode->i_mode = le32_to_cpu(grant->mode); 2291 inode->i_uid = le32_to_cpu(grant->uid); 2292 inode->i_gid = le32_to_cpu(grant->gid); 2293 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, 2294 inode->i_uid, inode->i_gid); 2295 } 2296 2297 if ((issued & CEPH_CAP_LINK_EXCL) == 0) 2298 inode->i_nlink = le32_to_cpu(grant->nlink); 2299 2300 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { 2301 int len = le32_to_cpu(grant->xattr_len); 2302 u64 version = le64_to_cpu(grant->xattr_version); 2303 2304 if (version > ci->i_xattrs.version) { 2305 dout(" got new xattrs v%llu on %p len %d\n", 2306 version, inode, len); 2307 if (ci->i_xattrs.blob) 2308 ceph_buffer_put(ci->i_xattrs.blob); 2309 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); 2310 ci->i_xattrs.version = version; 2311 } 2312 } 2313 2314 /* size/ctime/mtime/atime? */ 2315 ceph_fill_file_size(inode, issued, 2316 le32_to_cpu(grant->truncate_seq), 2317 le64_to_cpu(grant->truncate_size), size); 2318 ceph_decode_timespec(&mtime, &grant->mtime); 2319 ceph_decode_timespec(&atime, &grant->atime); 2320 ceph_decode_timespec(&ctime, &grant->ctime); 2321 ceph_fill_file_time(inode, issued, 2322 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime, 2323 &atime); 2324 2325 /* max size increase? */ 2326 if (max_size != ci->i_max_size) { 2327 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size); 2328 ci->i_max_size = max_size; 2329 if (max_size >= ci->i_wanted_max_size) { 2330 ci->i_wanted_max_size = 0; /* reset */ 2331 ci->i_requested_max_size = 0; 2332 } 2333 wake = 1; 2334 } 2335 2336 /* check cap bits */ 2337 wanted = __ceph_caps_wanted(ci); 2338 used = __ceph_caps_used(ci); 2339 dirty = __ceph_caps_dirty(ci); 2340 dout(" my wanted = %s, used = %s, dirty %s\n", 2341 ceph_cap_string(wanted), 2342 ceph_cap_string(used), 2343 ceph_cap_string(dirty)); 2344 if (wanted != le32_to_cpu(grant->wanted)) { 2345 dout("mds wanted %s -> %s\n", 2346 ceph_cap_string(le32_to_cpu(grant->wanted)), 2347 ceph_cap_string(wanted)); 2348 grant->wanted = cpu_to_le32(wanted); 2349 } 2350 2351 cap->seq = seq; 2352 2353 /* file layout may have changed */ 2354 ci->i_layout = grant->layout; 2355 2356 /* revocation, grant, or no-op? */ 2357 if (cap->issued & ~newcaps) { 2358 dout("revocation: %s -> %s\n", ceph_cap_string(cap->issued), 2359 ceph_cap_string(newcaps)); 2360 if ((used & ~newcaps) & CEPH_CAP_FILE_BUFFER) 2361 writeback = 1; /* will delay ack */ 2362 else if (dirty & ~newcaps) 2363 check_caps = 1; /* initiate writeback in check_caps */ 2364 else if (((used & ~newcaps) & CEPH_CAP_FILE_CACHE) == 0 || 2365 revoked_rdcache) 2366 check_caps = 2; /* send revoke ack in check_caps */ 2367 cap->issued = newcaps; 2368 cap->implemented |= newcaps; 2369 } else if (cap->issued == newcaps) { 2370 dout("caps unchanged: %s -> %s\n", 2371 ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); 2372 } else { 2373 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), 2374 ceph_cap_string(newcaps)); 2375 cap->issued = newcaps; 2376 cap->implemented |= newcaps; /* add bits only, to 2377 * avoid stepping on a 2378 * pending revocation */ 2379 wake = 1; 2380 } 2381 BUG_ON(cap->issued & ~cap->implemented); 2382 2383 spin_unlock(&inode->i_lock); 2384 if (writeback) 2385 /* 2386 * queue inode for writeback: we can't actually call 2387 * filemap_write_and_wait, etc. from message handler 2388 * context. 2389 */ 2390 ceph_queue_writeback(inode); 2391 if (queue_invalidate) 2392 ceph_queue_invalidate(inode); 2393 if (wake) 2394 wake_up(&ci->i_cap_wq); 2395 2396 if (check_caps == 1) 2397 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, 2398 session); 2399 else if (check_caps == 2) 2400 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session); 2401 else 2402 mutex_unlock(&session->s_mutex); 2403 } 2404 2405 /* 2406 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the 2407 * MDS has been safely committed. 2408 */ 2409 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, 2410 struct ceph_mds_caps *m, 2411 struct ceph_mds_session *session, 2412 struct ceph_cap *cap) 2413 __releases(inode->i_lock) 2414 { 2415 struct ceph_inode_info *ci = ceph_inode(inode); 2416 struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc; 2417 unsigned seq = le32_to_cpu(m->seq); 2418 int dirty = le32_to_cpu(m->dirty); 2419 int cleaned = 0; 2420 int drop = 0; 2421 int i; 2422 2423 for (i = 0; i < CEPH_CAP_BITS; i++) 2424 if ((dirty & (1 << i)) && 2425 flush_tid == ci->i_cap_flush_tid[i]) 2426 cleaned |= 1 << i; 2427 2428 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," 2429 " flushing %s -> %s\n", 2430 inode, session->s_mds, seq, ceph_cap_string(dirty), 2431 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), 2432 ceph_cap_string(ci->i_flushing_caps & ~cleaned)); 2433 2434 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned)) 2435 goto out; 2436 2437 ci->i_flushing_caps &= ~cleaned; 2438 2439 spin_lock(&mdsc->cap_dirty_lock); 2440 if (ci->i_flushing_caps == 0) { 2441 list_del_init(&ci->i_flushing_item); 2442 if (!list_empty(&session->s_cap_flushing)) 2443 dout(" mds%d still flushing cap on %p\n", 2444 session->s_mds, 2445 &list_entry(session->s_cap_flushing.next, 2446 struct ceph_inode_info, 2447 i_flushing_item)->vfs_inode); 2448 mdsc->num_cap_flushing--; 2449 wake_up(&mdsc->cap_flushing_wq); 2450 dout(" inode %p now !flushing\n", inode); 2451 2452 if (ci->i_dirty_caps == 0) { 2453 dout(" inode %p now clean\n", inode); 2454 BUG_ON(!list_empty(&ci->i_dirty_item)); 2455 drop = 1; 2456 } else { 2457 BUG_ON(list_empty(&ci->i_dirty_item)); 2458 } 2459 } 2460 spin_unlock(&mdsc->cap_dirty_lock); 2461 wake_up(&ci->i_cap_wq); 2462 2463 out: 2464 spin_unlock(&inode->i_lock); 2465 if (drop) 2466 iput(inode); 2467 } 2468 2469 /* 2470 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can 2471 * throw away our cap_snap. 2472 * 2473 * Caller hold s_mutex. 2474 */ 2475 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, 2476 struct ceph_mds_caps *m, 2477 struct ceph_mds_session *session) 2478 { 2479 struct ceph_inode_info *ci = ceph_inode(inode); 2480 u64 follows = le64_to_cpu(m->snap_follows); 2481 struct ceph_cap_snap *capsnap; 2482 int drop = 0; 2483 2484 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", 2485 inode, ci, session->s_mds, follows); 2486 2487 spin_lock(&inode->i_lock); 2488 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2489 if (capsnap->follows == follows) { 2490 if (capsnap->flush_tid != flush_tid) { 2491 dout(" cap_snap %p follows %lld tid %lld !=" 2492 " %lld\n", capsnap, follows, 2493 flush_tid, capsnap->flush_tid); 2494 break; 2495 } 2496 WARN_ON(capsnap->dirty_pages || capsnap->writing); 2497 dout(" removing %p cap_snap %p follows %lld\n", 2498 inode, capsnap, follows); 2499 ceph_put_snap_context(capsnap->context); 2500 list_del(&capsnap->ci_item); 2501 list_del(&capsnap->flushing_item); 2502 ceph_put_cap_snap(capsnap); 2503 drop = 1; 2504 break; 2505 } else { 2506 dout(" skipping cap_snap %p follows %lld\n", 2507 capsnap, capsnap->follows); 2508 } 2509 } 2510 spin_unlock(&inode->i_lock); 2511 if (drop) 2512 iput(inode); 2513 } 2514 2515 /* 2516 * Handle TRUNC from MDS, indicating file truncation. 2517 * 2518 * caller hold s_mutex. 2519 */ 2520 static void handle_cap_trunc(struct inode *inode, 2521 struct ceph_mds_caps *trunc, 2522 struct ceph_mds_session *session) 2523 __releases(inode->i_lock) 2524 { 2525 struct ceph_inode_info *ci = ceph_inode(inode); 2526 int mds = session->s_mds; 2527 int seq = le32_to_cpu(trunc->seq); 2528 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); 2529 u64 truncate_size = le64_to_cpu(trunc->truncate_size); 2530 u64 size = le64_to_cpu(trunc->size); 2531 int implemented = 0; 2532 int dirty = __ceph_caps_dirty(ci); 2533 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); 2534 int queue_trunc = 0; 2535 2536 issued |= implemented | dirty; 2537 2538 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", 2539 inode, mds, seq, truncate_size, truncate_seq); 2540 queue_trunc = ceph_fill_file_size(inode, issued, 2541 truncate_seq, truncate_size, size); 2542 spin_unlock(&inode->i_lock); 2543 2544 if (queue_trunc) 2545 ceph_queue_vmtruncate(inode); 2546 } 2547 2548 /* 2549 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a 2550 * different one. If we are the most recent migration we've seen (as 2551 * indicated by mseq), make note of the migrating cap bits for the 2552 * duration (until we see the corresponding IMPORT). 2553 * 2554 * caller holds s_mutex 2555 */ 2556 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, 2557 struct ceph_mds_session *session) 2558 { 2559 struct ceph_inode_info *ci = ceph_inode(inode); 2560 int mds = session->s_mds; 2561 unsigned mseq = le32_to_cpu(ex->migrate_seq); 2562 struct ceph_cap *cap = NULL, *t; 2563 struct rb_node *p; 2564 int remember = 1; 2565 2566 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n", 2567 inode, ci, mds, mseq); 2568 2569 spin_lock(&inode->i_lock); 2570 2571 /* make sure we haven't seen a higher mseq */ 2572 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 2573 t = rb_entry(p, struct ceph_cap, ci_node); 2574 if (ceph_seq_cmp(t->mseq, mseq) > 0) { 2575 dout(" higher mseq on cap from mds%d\n", 2576 t->session->s_mds); 2577 remember = 0; 2578 } 2579 if (t->session->s_mds == mds) 2580 cap = t; 2581 } 2582 2583 if (cap) { 2584 if (remember) { 2585 /* make note */ 2586 ci->i_cap_exporting_mds = mds; 2587 ci->i_cap_exporting_mseq = mseq; 2588 ci->i_cap_exporting_issued = cap->issued; 2589 } 2590 __ceph_remove_cap(cap); 2591 } 2592 /* else, we already released it */ 2593 2594 spin_unlock(&inode->i_lock); 2595 } 2596 2597 /* 2598 * Handle cap IMPORT. If there are temp bits from an older EXPORT, 2599 * clean them up. 2600 * 2601 * caller holds s_mutex. 2602 */ 2603 static void handle_cap_import(struct ceph_mds_client *mdsc, 2604 struct inode *inode, struct ceph_mds_caps *im, 2605 struct ceph_mds_session *session, 2606 void *snaptrace, int snaptrace_len) 2607 { 2608 struct ceph_inode_info *ci = ceph_inode(inode); 2609 int mds = session->s_mds; 2610 unsigned issued = le32_to_cpu(im->caps); 2611 unsigned wanted = le32_to_cpu(im->wanted); 2612 unsigned seq = le32_to_cpu(im->seq); 2613 unsigned mseq = le32_to_cpu(im->migrate_seq); 2614 u64 realmino = le64_to_cpu(im->realm); 2615 u64 cap_id = le64_to_cpu(im->cap_id); 2616 2617 if (ci->i_cap_exporting_mds >= 0 && 2618 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) { 2619 dout("handle_cap_import inode %p ci %p mds%d mseq %d" 2620 " - cleared exporting from mds%d\n", 2621 inode, ci, mds, mseq, 2622 ci->i_cap_exporting_mds); 2623 ci->i_cap_exporting_issued = 0; 2624 ci->i_cap_exporting_mseq = 0; 2625 ci->i_cap_exporting_mds = -1; 2626 } else { 2627 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n", 2628 inode, ci, mds, mseq); 2629 } 2630 2631 down_write(&mdsc->snap_rwsem); 2632 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len, 2633 false); 2634 downgrade_write(&mdsc->snap_rwsem); 2635 ceph_add_cap(inode, session, cap_id, -1, 2636 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH, 2637 NULL /* no caps context */); 2638 try_flush_caps(inode, session, NULL); 2639 up_read(&mdsc->snap_rwsem); 2640 } 2641 2642 /* 2643 * Handle a caps message from the MDS. 2644 * 2645 * Identify the appropriate session, inode, and call the right handler 2646 * based on the cap op. 2647 */ 2648 void ceph_handle_caps(struct ceph_mds_session *session, 2649 struct ceph_msg *msg) 2650 { 2651 struct ceph_mds_client *mdsc = session->s_mdsc; 2652 struct super_block *sb = mdsc->client->sb; 2653 struct inode *inode; 2654 struct ceph_cap *cap; 2655 struct ceph_mds_caps *h; 2656 int mds = session->s_mds; 2657 int op; 2658 u32 seq; 2659 struct ceph_vino vino; 2660 u64 cap_id; 2661 u64 size, max_size; 2662 u64 tid; 2663 void *snaptrace; 2664 2665 dout("handle_caps from mds%d\n", mds); 2666 2667 /* decode */ 2668 tid = le64_to_cpu(msg->hdr.tid); 2669 if (msg->front.iov_len < sizeof(*h)) 2670 goto bad; 2671 h = msg->front.iov_base; 2672 snaptrace = h + 1; 2673 op = le32_to_cpu(h->op); 2674 vino.ino = le64_to_cpu(h->ino); 2675 vino.snap = CEPH_NOSNAP; 2676 cap_id = le64_to_cpu(h->cap_id); 2677 seq = le32_to_cpu(h->seq); 2678 size = le64_to_cpu(h->size); 2679 max_size = le64_to_cpu(h->max_size); 2680 2681 mutex_lock(&session->s_mutex); 2682 session->s_seq++; 2683 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, 2684 (unsigned)seq); 2685 2686 /* lookup ino */ 2687 inode = ceph_find_inode(sb, vino); 2688 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, 2689 vino.snap, inode); 2690 if (!inode) { 2691 dout(" i don't have ino %llx\n", vino.ino); 2692 goto done; 2693 } 2694 2695 /* these will work even if we don't have a cap yet */ 2696 switch (op) { 2697 case CEPH_CAP_OP_FLUSHSNAP_ACK: 2698 handle_cap_flushsnap_ack(inode, tid, h, session); 2699 goto done; 2700 2701 case CEPH_CAP_OP_EXPORT: 2702 handle_cap_export(inode, h, session); 2703 goto done; 2704 2705 case CEPH_CAP_OP_IMPORT: 2706 handle_cap_import(mdsc, inode, h, session, 2707 snaptrace, le32_to_cpu(h->snap_trace_len)); 2708 ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY, 2709 session); 2710 goto done_unlocked; 2711 } 2712 2713 /* the rest require a cap */ 2714 spin_lock(&inode->i_lock); 2715 cap = __get_cap_for_mds(ceph_inode(inode), mds); 2716 if (!cap) { 2717 dout("no cap on %p ino %llx.%llx from mds%d, releasing\n", 2718 inode, ceph_ino(inode), ceph_snap(inode), mds); 2719 spin_unlock(&inode->i_lock); 2720 goto done; 2721 } 2722 2723 /* note that each of these drops i_lock for us */ 2724 switch (op) { 2725 case CEPH_CAP_OP_REVOKE: 2726 case CEPH_CAP_OP_GRANT: 2727 handle_cap_grant(inode, h, session, cap, msg->middle); 2728 goto done_unlocked; 2729 2730 case CEPH_CAP_OP_FLUSH_ACK: 2731 handle_cap_flush_ack(inode, tid, h, session, cap); 2732 break; 2733 2734 case CEPH_CAP_OP_TRUNC: 2735 handle_cap_trunc(inode, h, session); 2736 break; 2737 2738 default: 2739 spin_unlock(&inode->i_lock); 2740 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, 2741 ceph_cap_op_name(op)); 2742 } 2743 2744 done: 2745 mutex_unlock(&session->s_mutex); 2746 done_unlocked: 2747 if (inode) 2748 iput(inode); 2749 return; 2750 2751 bad: 2752 pr_err("ceph_handle_caps: corrupt message\n"); 2753 ceph_msg_dump(msg); 2754 return; 2755 } 2756 2757 /* 2758 * Delayed work handler to process end of delayed cap release LRU list. 2759 */ 2760 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) 2761 { 2762 struct ceph_inode_info *ci; 2763 int flags = CHECK_CAPS_NODELAY; 2764 2765 dout("check_delayed_caps\n"); 2766 while (1) { 2767 spin_lock(&mdsc->cap_delay_lock); 2768 if (list_empty(&mdsc->cap_delay_list)) 2769 break; 2770 ci = list_first_entry(&mdsc->cap_delay_list, 2771 struct ceph_inode_info, 2772 i_cap_delay_list); 2773 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && 2774 time_before(jiffies, ci->i_hold_caps_max)) 2775 break; 2776 list_del_init(&ci->i_cap_delay_list); 2777 spin_unlock(&mdsc->cap_delay_lock); 2778 dout("check_delayed_caps on %p\n", &ci->vfs_inode); 2779 ceph_check_caps(ci, flags, NULL); 2780 } 2781 spin_unlock(&mdsc->cap_delay_lock); 2782 } 2783 2784 /* 2785 * Flush all dirty caps to the mds 2786 */ 2787 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) 2788 { 2789 struct ceph_inode_info *ci, *nci = NULL; 2790 struct inode *inode, *ninode = NULL; 2791 struct list_head *p, *n; 2792 2793 dout("flush_dirty_caps\n"); 2794 spin_lock(&mdsc->cap_dirty_lock); 2795 list_for_each_safe(p, n, &mdsc->cap_dirty) { 2796 if (nci) { 2797 ci = nci; 2798 inode = ninode; 2799 ci->i_ceph_flags &= ~CEPH_I_NOFLUSH; 2800 dout("flush_dirty_caps inode %p (was next inode)\n", 2801 inode); 2802 } else { 2803 ci = list_entry(p, struct ceph_inode_info, 2804 i_dirty_item); 2805 inode = igrab(&ci->vfs_inode); 2806 BUG_ON(!inode); 2807 dout("flush_dirty_caps inode %p\n", inode); 2808 } 2809 if (n != &mdsc->cap_dirty) { 2810 nci = list_entry(n, struct ceph_inode_info, 2811 i_dirty_item); 2812 ninode = igrab(&nci->vfs_inode); 2813 BUG_ON(!ninode); 2814 nci->i_ceph_flags |= CEPH_I_NOFLUSH; 2815 dout("flush_dirty_caps next inode %p, noflush\n", 2816 ninode); 2817 } else { 2818 nci = NULL; 2819 ninode = NULL; 2820 } 2821 spin_unlock(&mdsc->cap_dirty_lock); 2822 if (inode) { 2823 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, 2824 NULL); 2825 iput(inode); 2826 } 2827 spin_lock(&mdsc->cap_dirty_lock); 2828 } 2829 spin_unlock(&mdsc->cap_dirty_lock); 2830 } 2831 2832 /* 2833 * Drop open file reference. If we were the last open file, 2834 * we may need to release capabilities to the MDS (or schedule 2835 * their delayed release). 2836 */ 2837 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) 2838 { 2839 struct inode *inode = &ci->vfs_inode; 2840 int last = 0; 2841 2842 spin_lock(&inode->i_lock); 2843 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, 2844 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); 2845 BUG_ON(ci->i_nr_by_mode[fmode] == 0); 2846 if (--ci->i_nr_by_mode[fmode] == 0) 2847 last++; 2848 spin_unlock(&inode->i_lock); 2849 2850 if (last && ci->i_vino.snap == CEPH_NOSNAP) 2851 ceph_check_caps(ci, 0, NULL); 2852 } 2853 2854 /* 2855 * Helpers for embedding cap and dentry lease releases into mds 2856 * requests. 2857 * 2858 * @force is used by dentry_release (below) to force inclusion of a 2859 * record for the directory inode, even when there aren't any caps to 2860 * drop. 2861 */ 2862 int ceph_encode_inode_release(void **p, struct inode *inode, 2863 int mds, int drop, int unless, int force) 2864 { 2865 struct ceph_inode_info *ci = ceph_inode(inode); 2866 struct ceph_cap *cap; 2867 struct ceph_mds_request_release *rel = *p; 2868 int ret = 0; 2869 int used = 0; 2870 2871 spin_lock(&inode->i_lock); 2872 used = __ceph_caps_used(ci); 2873 2874 dout("encode_inode_release %p mds%d used %s drop %s unless %s\n", inode, 2875 mds, ceph_cap_string(used), ceph_cap_string(drop), 2876 ceph_cap_string(unless)); 2877 2878 /* only drop unused caps */ 2879 drop &= ~used; 2880 2881 cap = __get_cap_for_mds(ci, mds); 2882 if (cap && __cap_is_valid(cap)) { 2883 if (force || 2884 ((cap->issued & drop) && 2885 (cap->issued & unless) == 0)) { 2886 if ((cap->issued & drop) && 2887 (cap->issued & unless) == 0) { 2888 dout("encode_inode_release %p cap %p %s -> " 2889 "%s\n", inode, cap, 2890 ceph_cap_string(cap->issued), 2891 ceph_cap_string(cap->issued & ~drop)); 2892 cap->issued &= ~drop; 2893 cap->implemented &= ~drop; 2894 if (ci->i_ceph_flags & CEPH_I_NODELAY) { 2895 int wanted = __ceph_caps_wanted(ci); 2896 dout(" wanted %s -> %s (act %s)\n", 2897 ceph_cap_string(cap->mds_wanted), 2898 ceph_cap_string(cap->mds_wanted & 2899 ~wanted), 2900 ceph_cap_string(wanted)); 2901 cap->mds_wanted &= wanted; 2902 } 2903 } else { 2904 dout("encode_inode_release %p cap %p %s" 2905 " (force)\n", inode, cap, 2906 ceph_cap_string(cap->issued)); 2907 } 2908 2909 rel->ino = cpu_to_le64(ceph_ino(inode)); 2910 rel->cap_id = cpu_to_le64(cap->cap_id); 2911 rel->seq = cpu_to_le32(cap->seq); 2912 rel->issue_seq = cpu_to_le32(cap->issue_seq), 2913 rel->mseq = cpu_to_le32(cap->mseq); 2914 rel->caps = cpu_to_le32(cap->issued); 2915 rel->wanted = cpu_to_le32(cap->mds_wanted); 2916 rel->dname_len = 0; 2917 rel->dname_seq = 0; 2918 *p += sizeof(*rel); 2919 ret = 1; 2920 } else { 2921 dout("encode_inode_release %p cap %p %s\n", 2922 inode, cap, ceph_cap_string(cap->issued)); 2923 } 2924 } 2925 spin_unlock(&inode->i_lock); 2926 return ret; 2927 } 2928 2929 int ceph_encode_dentry_release(void **p, struct dentry *dentry, 2930 int mds, int drop, int unless) 2931 { 2932 struct inode *dir = dentry->d_parent->d_inode; 2933 struct ceph_mds_request_release *rel = *p; 2934 struct ceph_dentry_info *di = ceph_dentry(dentry); 2935 int force = 0; 2936 int ret; 2937 2938 /* 2939 * force an record for the directory caps if we have a dentry lease. 2940 * this is racy (can't take i_lock and d_lock together), but it 2941 * doesn't have to be perfect; the mds will revoke anything we don't 2942 * release. 2943 */ 2944 spin_lock(&dentry->d_lock); 2945 if (di->lease_session && di->lease_session->s_mds == mds) 2946 force = 1; 2947 spin_unlock(&dentry->d_lock); 2948 2949 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); 2950 2951 spin_lock(&dentry->d_lock); 2952 if (ret && di->lease_session && di->lease_session->s_mds == mds) { 2953 dout("encode_dentry_release %p mds%d seq %d\n", 2954 dentry, mds, (int)di->lease_seq); 2955 rel->dname_len = cpu_to_le32(dentry->d_name.len); 2956 memcpy(*p, dentry->d_name.name, dentry->d_name.len); 2957 *p += dentry->d_name.len; 2958 rel->dname_seq = cpu_to_le32(di->lease_seq); 2959 } 2960 spin_unlock(&dentry->d_lock); 2961 return ret; 2962 } 2963