xref: /linux/fs/ceph/caps.c (revision a234ca0faa65dcd5cc473915bd925130ebb7b74b)
1 #include "ceph_debug.h"
2 
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
10 
11 #include "super.h"
12 #include "decode.h"
13 #include "messenger.h"
14 
15 /*
16  * Capability management
17  *
18  * The Ceph metadata servers control client access to inode metadata
19  * and file data by issuing capabilities, granting clients permission
20  * to read and/or write both inode field and file data to OSDs
21  * (storage nodes).  Each capability consists of a set of bits
22  * indicating which operations are allowed.
23  *
24  * If the client holds a *_SHARED cap, the client has a coherent value
25  * that can be safely read from the cached inode.
26  *
27  * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
28  * client is allowed to change inode attributes (e.g., file size,
29  * mtime), note its dirty state in the ceph_cap, and asynchronously
30  * flush that metadata change to the MDS.
31  *
32  * In the event of a conflicting operation (perhaps by another
33  * client), the MDS will revoke the conflicting client capabilities.
34  *
35  * In order for a client to cache an inode, it must hold a capability
36  * with at least one MDS server.  When inodes are released, release
37  * notifications are batched and periodically sent en masse to the MDS
38  * cluster to release server state.
39  */
40 
41 
42 /*
43  * Generate readable cap strings for debugging output.
44  */
45 #define MAX_CAP_STR 20
46 static char cap_str[MAX_CAP_STR][40];
47 static DEFINE_SPINLOCK(cap_str_lock);
48 static int last_cap_str;
49 
50 static char *gcap_string(char *s, int c)
51 {
52 	if (c & CEPH_CAP_GSHARED)
53 		*s++ = 's';
54 	if (c & CEPH_CAP_GEXCL)
55 		*s++ = 'x';
56 	if (c & CEPH_CAP_GCACHE)
57 		*s++ = 'c';
58 	if (c & CEPH_CAP_GRD)
59 		*s++ = 'r';
60 	if (c & CEPH_CAP_GWR)
61 		*s++ = 'w';
62 	if (c & CEPH_CAP_GBUFFER)
63 		*s++ = 'b';
64 	if (c & CEPH_CAP_GLAZYIO)
65 		*s++ = 'l';
66 	return s;
67 }
68 
69 const char *ceph_cap_string(int caps)
70 {
71 	int i;
72 	char *s;
73 	int c;
74 
75 	spin_lock(&cap_str_lock);
76 	i = last_cap_str++;
77 	if (last_cap_str == MAX_CAP_STR)
78 		last_cap_str = 0;
79 	spin_unlock(&cap_str_lock);
80 
81 	s = cap_str[i];
82 
83 	if (caps & CEPH_CAP_PIN)
84 		*s++ = 'p';
85 
86 	c = (caps >> CEPH_CAP_SAUTH) & 3;
87 	if (c) {
88 		*s++ = 'A';
89 		s = gcap_string(s, c);
90 	}
91 
92 	c = (caps >> CEPH_CAP_SLINK) & 3;
93 	if (c) {
94 		*s++ = 'L';
95 		s = gcap_string(s, c);
96 	}
97 
98 	c = (caps >> CEPH_CAP_SXATTR) & 3;
99 	if (c) {
100 		*s++ = 'X';
101 		s = gcap_string(s, c);
102 	}
103 
104 	c = caps >> CEPH_CAP_SFILE;
105 	if (c) {
106 		*s++ = 'F';
107 		s = gcap_string(s, c);
108 	}
109 
110 	if (s == cap_str[i])
111 		*s++ = '-';
112 	*s = 0;
113 	return cap_str[i];
114 }
115 
116 void ceph_caps_init(struct ceph_mds_client *mdsc)
117 {
118 	INIT_LIST_HEAD(&mdsc->caps_list);
119 	spin_lock_init(&mdsc->caps_list_lock);
120 }
121 
122 void ceph_caps_finalize(struct ceph_mds_client *mdsc)
123 {
124 	struct ceph_cap *cap;
125 
126 	spin_lock(&mdsc->caps_list_lock);
127 	while (!list_empty(&mdsc->caps_list)) {
128 		cap = list_first_entry(&mdsc->caps_list,
129 				       struct ceph_cap, caps_item);
130 		list_del(&cap->caps_item);
131 		kmem_cache_free(ceph_cap_cachep, cap);
132 	}
133 	mdsc->caps_total_count = 0;
134 	mdsc->caps_avail_count = 0;
135 	mdsc->caps_use_count = 0;
136 	mdsc->caps_reserve_count = 0;
137 	mdsc->caps_min_count = 0;
138 	spin_unlock(&mdsc->caps_list_lock);
139 }
140 
141 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
142 {
143 	spin_lock(&mdsc->caps_list_lock);
144 	mdsc->caps_min_count += delta;
145 	BUG_ON(mdsc->caps_min_count < 0);
146 	spin_unlock(&mdsc->caps_list_lock);
147 }
148 
149 int ceph_reserve_caps(struct ceph_mds_client *mdsc,
150 		      struct ceph_cap_reservation *ctx, int need)
151 {
152 	int i;
153 	struct ceph_cap *cap;
154 	int have;
155 	int alloc = 0;
156 	LIST_HEAD(newcaps);
157 	int ret = 0;
158 
159 	dout("reserve caps ctx=%p need=%d\n", ctx, need);
160 
161 	/* first reserve any caps that are already allocated */
162 	spin_lock(&mdsc->caps_list_lock);
163 	if (mdsc->caps_avail_count >= need)
164 		have = need;
165 	else
166 		have = mdsc->caps_avail_count;
167 	mdsc->caps_avail_count -= have;
168 	mdsc->caps_reserve_count += have;
169 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
170 					 mdsc->caps_reserve_count +
171 					 mdsc->caps_avail_count);
172 	spin_unlock(&mdsc->caps_list_lock);
173 
174 	for (i = have; i < need; i++) {
175 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
176 		if (!cap) {
177 			ret = -ENOMEM;
178 			goto out_alloc_count;
179 		}
180 		list_add(&cap->caps_item, &newcaps);
181 		alloc++;
182 	}
183 	BUG_ON(have + alloc != need);
184 
185 	spin_lock(&mdsc->caps_list_lock);
186 	mdsc->caps_total_count += alloc;
187 	mdsc->caps_reserve_count += alloc;
188 	list_splice(&newcaps, &mdsc->caps_list);
189 
190 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
191 					 mdsc->caps_reserve_count +
192 					 mdsc->caps_avail_count);
193 	spin_unlock(&mdsc->caps_list_lock);
194 
195 	ctx->count = need;
196 	dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
197 	     ctx, mdsc->caps_total_count, mdsc->caps_use_count,
198 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
199 	return 0;
200 
201 out_alloc_count:
202 	/* we didn't manage to reserve as much as we needed */
203 	pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
204 		   ctx, need, have);
205 	return ret;
206 }
207 
208 int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
209 			struct ceph_cap_reservation *ctx)
210 {
211 	dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
212 	if (ctx->count) {
213 		spin_lock(&mdsc->caps_list_lock);
214 		BUG_ON(mdsc->caps_reserve_count < ctx->count);
215 		mdsc->caps_reserve_count -= ctx->count;
216 		mdsc->caps_avail_count += ctx->count;
217 		ctx->count = 0;
218 		dout("unreserve caps %d = %d used + %d resv + %d avail\n",
219 		     mdsc->caps_total_count, mdsc->caps_use_count,
220 		     mdsc->caps_reserve_count, mdsc->caps_avail_count);
221 		BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
222 						 mdsc->caps_reserve_count +
223 						 mdsc->caps_avail_count);
224 		spin_unlock(&mdsc->caps_list_lock);
225 	}
226 	return 0;
227 }
228 
229 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc,
230 				struct ceph_cap_reservation *ctx)
231 {
232 	struct ceph_cap *cap = NULL;
233 
234 	/* temporary, until we do something about cap import/export */
235 	if (!ctx) {
236 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
237 		if (cap) {
238 			mdsc->caps_use_count++;
239 			mdsc->caps_total_count++;
240 		}
241 		return cap;
242 	}
243 
244 	spin_lock(&mdsc->caps_list_lock);
245 	dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
246 	     ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
247 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
248 	BUG_ON(!ctx->count);
249 	BUG_ON(ctx->count > mdsc->caps_reserve_count);
250 	BUG_ON(list_empty(&mdsc->caps_list));
251 
252 	ctx->count--;
253 	mdsc->caps_reserve_count--;
254 	mdsc->caps_use_count++;
255 
256 	cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
257 	list_del(&cap->caps_item);
258 
259 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
260 	       mdsc->caps_reserve_count + mdsc->caps_avail_count);
261 	spin_unlock(&mdsc->caps_list_lock);
262 	return cap;
263 }
264 
265 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
266 {
267 	spin_lock(&mdsc->caps_list_lock);
268 	dout("put_cap %p %d = %d used + %d resv + %d avail\n",
269 	     cap, mdsc->caps_total_count, mdsc->caps_use_count,
270 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
271 	mdsc->caps_use_count--;
272 	/*
273 	 * Keep some preallocated caps around (ceph_min_count), to
274 	 * avoid lots of free/alloc churn.
275 	 */
276 	if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
277 				      mdsc->caps_min_count) {
278 		mdsc->caps_total_count--;
279 		kmem_cache_free(ceph_cap_cachep, cap);
280 	} else {
281 		mdsc->caps_avail_count++;
282 		list_add(&cap->caps_item, &mdsc->caps_list);
283 	}
284 
285 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
286 	       mdsc->caps_reserve_count + mdsc->caps_avail_count);
287 	spin_unlock(&mdsc->caps_list_lock);
288 }
289 
290 void ceph_reservation_status(struct ceph_client *client,
291 			     int *total, int *avail, int *used, int *reserved,
292 			     int *min)
293 {
294 	struct ceph_mds_client *mdsc = &client->mdsc;
295 
296 	if (total)
297 		*total = mdsc->caps_total_count;
298 	if (avail)
299 		*avail = mdsc->caps_avail_count;
300 	if (used)
301 		*used = mdsc->caps_use_count;
302 	if (reserved)
303 		*reserved = mdsc->caps_reserve_count;
304 	if (min)
305 		*min = mdsc->caps_min_count;
306 }
307 
308 /*
309  * Find ceph_cap for given mds, if any.
310  *
311  * Called with i_lock held.
312  */
313 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
314 {
315 	struct ceph_cap *cap;
316 	struct rb_node *n = ci->i_caps.rb_node;
317 
318 	while (n) {
319 		cap = rb_entry(n, struct ceph_cap, ci_node);
320 		if (mds < cap->mds)
321 			n = n->rb_left;
322 		else if (mds > cap->mds)
323 			n = n->rb_right;
324 		else
325 			return cap;
326 	}
327 	return NULL;
328 }
329 
330 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
331 {
332 	struct ceph_cap *cap;
333 
334 	spin_lock(&ci->vfs_inode.i_lock);
335 	cap = __get_cap_for_mds(ci, mds);
336 	spin_unlock(&ci->vfs_inode.i_lock);
337 	return cap;
338 }
339 
340 /*
341  * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
342  */
343 static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
344 {
345 	struct ceph_cap *cap;
346 	int mds = -1;
347 	struct rb_node *p;
348 
349 	/* prefer mds with WR|BUFFER|EXCL caps */
350 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
351 		cap = rb_entry(p, struct ceph_cap, ci_node);
352 		mds = cap->mds;
353 		if (cap->issued & (CEPH_CAP_FILE_WR |
354 				   CEPH_CAP_FILE_BUFFER |
355 				   CEPH_CAP_FILE_EXCL))
356 			break;
357 	}
358 	return mds;
359 }
360 
361 int ceph_get_cap_mds(struct inode *inode)
362 {
363 	int mds;
364 	spin_lock(&inode->i_lock);
365 	mds = __ceph_get_cap_mds(ceph_inode(inode));
366 	spin_unlock(&inode->i_lock);
367 	return mds;
368 }
369 
370 /*
371  * Called under i_lock.
372  */
373 static void __insert_cap_node(struct ceph_inode_info *ci,
374 			      struct ceph_cap *new)
375 {
376 	struct rb_node **p = &ci->i_caps.rb_node;
377 	struct rb_node *parent = NULL;
378 	struct ceph_cap *cap = NULL;
379 
380 	while (*p) {
381 		parent = *p;
382 		cap = rb_entry(parent, struct ceph_cap, ci_node);
383 		if (new->mds < cap->mds)
384 			p = &(*p)->rb_left;
385 		else if (new->mds > cap->mds)
386 			p = &(*p)->rb_right;
387 		else
388 			BUG();
389 	}
390 
391 	rb_link_node(&new->ci_node, parent, p);
392 	rb_insert_color(&new->ci_node, &ci->i_caps);
393 }
394 
395 /*
396  * (re)set cap hold timeouts, which control the delayed release
397  * of unused caps back to the MDS.  Should be called on cap use.
398  */
399 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
400 			       struct ceph_inode_info *ci)
401 {
402 	struct ceph_mount_args *ma = mdsc->client->mount_args;
403 
404 	ci->i_hold_caps_min = round_jiffies(jiffies +
405 					    ma->caps_wanted_delay_min * HZ);
406 	ci->i_hold_caps_max = round_jiffies(jiffies +
407 					    ma->caps_wanted_delay_max * HZ);
408 	dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
409 	     ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
410 }
411 
412 /*
413  * (Re)queue cap at the end of the delayed cap release list.
414  *
415  * If I_FLUSH is set, leave the inode at the front of the list.
416  *
417  * Caller holds i_lock
418  *    -> we take mdsc->cap_delay_lock
419  */
420 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
421 				struct ceph_inode_info *ci)
422 {
423 	__cap_set_timeouts(mdsc, ci);
424 	dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
425 	     ci->i_ceph_flags, ci->i_hold_caps_max);
426 	if (!mdsc->stopping) {
427 		spin_lock(&mdsc->cap_delay_lock);
428 		if (!list_empty(&ci->i_cap_delay_list)) {
429 			if (ci->i_ceph_flags & CEPH_I_FLUSH)
430 				goto no_change;
431 			list_del_init(&ci->i_cap_delay_list);
432 		}
433 		list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
434 no_change:
435 		spin_unlock(&mdsc->cap_delay_lock);
436 	}
437 }
438 
439 /*
440  * Queue an inode for immediate writeback.  Mark inode with I_FLUSH,
441  * indicating we should send a cap message to flush dirty metadata
442  * asap, and move to the front of the delayed cap list.
443  */
444 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
445 				      struct ceph_inode_info *ci)
446 {
447 	dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
448 	spin_lock(&mdsc->cap_delay_lock);
449 	ci->i_ceph_flags |= CEPH_I_FLUSH;
450 	if (!list_empty(&ci->i_cap_delay_list))
451 		list_del_init(&ci->i_cap_delay_list);
452 	list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
453 	spin_unlock(&mdsc->cap_delay_lock);
454 }
455 
456 /*
457  * Cancel delayed work on cap.
458  *
459  * Caller must hold i_lock.
460  */
461 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
462 			       struct ceph_inode_info *ci)
463 {
464 	dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
465 	if (list_empty(&ci->i_cap_delay_list))
466 		return;
467 	spin_lock(&mdsc->cap_delay_lock);
468 	list_del_init(&ci->i_cap_delay_list);
469 	spin_unlock(&mdsc->cap_delay_lock);
470 }
471 
472 /*
473  * Common issue checks for add_cap, handle_cap_grant.
474  */
475 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
476 			      unsigned issued)
477 {
478 	unsigned had = __ceph_caps_issued(ci, NULL);
479 
480 	/*
481 	 * Each time we receive FILE_CACHE anew, we increment
482 	 * i_rdcache_gen.
483 	 */
484 	if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
485 	    (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0)
486 		ci->i_rdcache_gen++;
487 
488 	/*
489 	 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we
490 	 * don't know what happened to this directory while we didn't
491 	 * have the cap.
492 	 */
493 	if ((issued & CEPH_CAP_FILE_SHARED) &&
494 	    (had & CEPH_CAP_FILE_SHARED) == 0) {
495 		ci->i_shared_gen++;
496 		if (S_ISDIR(ci->vfs_inode.i_mode)) {
497 			dout(" marking %p NOT complete\n", &ci->vfs_inode);
498 			ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
499 		}
500 	}
501 }
502 
503 /*
504  * Add a capability under the given MDS session.
505  *
506  * Caller should hold session snap_rwsem (read) and s_mutex.
507  *
508  * @fmode is the open file mode, if we are opening a file, otherwise
509  * it is < 0.  (This is so we can atomically add the cap and add an
510  * open file reference to it.)
511  */
512 int ceph_add_cap(struct inode *inode,
513 		 struct ceph_mds_session *session, u64 cap_id,
514 		 int fmode, unsigned issued, unsigned wanted,
515 		 unsigned seq, unsigned mseq, u64 realmino, int flags,
516 		 struct ceph_cap_reservation *caps_reservation)
517 {
518 	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
519 	struct ceph_inode_info *ci = ceph_inode(inode);
520 	struct ceph_cap *new_cap = NULL;
521 	struct ceph_cap *cap;
522 	int mds = session->s_mds;
523 	int actual_wanted;
524 
525 	dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
526 	     session->s_mds, cap_id, ceph_cap_string(issued), seq);
527 
528 	/*
529 	 * If we are opening the file, include file mode wanted bits
530 	 * in wanted.
531 	 */
532 	if (fmode >= 0)
533 		wanted |= ceph_caps_for_mode(fmode);
534 
535 retry:
536 	spin_lock(&inode->i_lock);
537 	cap = __get_cap_for_mds(ci, mds);
538 	if (!cap) {
539 		if (new_cap) {
540 			cap = new_cap;
541 			new_cap = NULL;
542 		} else {
543 			spin_unlock(&inode->i_lock);
544 			new_cap = get_cap(mdsc, caps_reservation);
545 			if (new_cap == NULL)
546 				return -ENOMEM;
547 			goto retry;
548 		}
549 
550 		cap->issued = 0;
551 		cap->implemented = 0;
552 		cap->mds = mds;
553 		cap->mds_wanted = 0;
554 
555 		cap->ci = ci;
556 		__insert_cap_node(ci, cap);
557 
558 		/* clear out old exporting info?  (i.e. on cap import) */
559 		if (ci->i_cap_exporting_mds == mds) {
560 			ci->i_cap_exporting_issued = 0;
561 			ci->i_cap_exporting_mseq = 0;
562 			ci->i_cap_exporting_mds = -1;
563 		}
564 
565 		/* add to session cap list */
566 		cap->session = session;
567 		spin_lock(&session->s_cap_lock);
568 		list_add_tail(&cap->session_caps, &session->s_caps);
569 		session->s_nr_caps++;
570 		spin_unlock(&session->s_cap_lock);
571 	}
572 
573 	if (!ci->i_snap_realm) {
574 		/*
575 		 * add this inode to the appropriate snap realm
576 		 */
577 		struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
578 							       realmino);
579 		if (realm) {
580 			ceph_get_snap_realm(mdsc, realm);
581 			spin_lock(&realm->inodes_with_caps_lock);
582 			ci->i_snap_realm = realm;
583 			list_add(&ci->i_snap_realm_item,
584 				 &realm->inodes_with_caps);
585 			spin_unlock(&realm->inodes_with_caps_lock);
586 		} else {
587 			pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
588 			       realmino);
589 			WARN_ON(!realm);
590 		}
591 	}
592 
593 	__check_cap_issue(ci, cap, issued);
594 
595 	/*
596 	 * If we are issued caps we don't want, or the mds' wanted
597 	 * value appears to be off, queue a check so we'll release
598 	 * later and/or update the mds wanted value.
599 	 */
600 	actual_wanted = __ceph_caps_wanted(ci);
601 	if ((wanted & ~actual_wanted) ||
602 	    (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
603 		dout(" issued %s, mds wanted %s, actual %s, queueing\n",
604 		     ceph_cap_string(issued), ceph_cap_string(wanted),
605 		     ceph_cap_string(actual_wanted));
606 		__cap_delay_requeue(mdsc, ci);
607 	}
608 
609 	if (flags & CEPH_CAP_FLAG_AUTH)
610 		ci->i_auth_cap = cap;
611 	else if (ci->i_auth_cap == cap)
612 		ci->i_auth_cap = NULL;
613 
614 	dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
615 	     inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
616 	     ceph_cap_string(issued|cap->issued), seq, mds);
617 	cap->cap_id = cap_id;
618 	cap->issued = issued;
619 	cap->implemented |= issued;
620 	cap->mds_wanted |= wanted;
621 	cap->seq = seq;
622 	cap->issue_seq = seq;
623 	cap->mseq = mseq;
624 	cap->cap_gen = session->s_cap_gen;
625 
626 	if (fmode >= 0)
627 		__ceph_get_fmode(ci, fmode);
628 	spin_unlock(&inode->i_lock);
629 	wake_up_all(&ci->i_cap_wq);
630 	return 0;
631 }
632 
633 /*
634  * Return true if cap has not timed out and belongs to the current
635  * generation of the MDS session (i.e. has not gone 'stale' due to
636  * us losing touch with the mds).
637  */
638 static int __cap_is_valid(struct ceph_cap *cap)
639 {
640 	unsigned long ttl;
641 	u32 gen;
642 
643 	spin_lock(&cap->session->s_cap_lock);
644 	gen = cap->session->s_cap_gen;
645 	ttl = cap->session->s_cap_ttl;
646 	spin_unlock(&cap->session->s_cap_lock);
647 
648 	if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
649 		dout("__cap_is_valid %p cap %p issued %s "
650 		     "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
651 		     cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
652 		return 0;
653 	}
654 
655 	return 1;
656 }
657 
658 /*
659  * Return set of valid cap bits issued to us.  Note that caps time
660  * out, and may be invalidated in bulk if the client session times out
661  * and session->s_cap_gen is bumped.
662  */
663 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
664 {
665 	int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
666 	struct ceph_cap *cap;
667 	struct rb_node *p;
668 
669 	if (implemented)
670 		*implemented = 0;
671 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
672 		cap = rb_entry(p, struct ceph_cap, ci_node);
673 		if (!__cap_is_valid(cap))
674 			continue;
675 		dout("__ceph_caps_issued %p cap %p issued %s\n",
676 		     &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
677 		have |= cap->issued;
678 		if (implemented)
679 			*implemented |= cap->implemented;
680 	}
681 	return have;
682 }
683 
684 /*
685  * Get cap bits issued by caps other than @ocap
686  */
687 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
688 {
689 	int have = ci->i_snap_caps;
690 	struct ceph_cap *cap;
691 	struct rb_node *p;
692 
693 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
694 		cap = rb_entry(p, struct ceph_cap, ci_node);
695 		if (cap == ocap)
696 			continue;
697 		if (!__cap_is_valid(cap))
698 			continue;
699 		have |= cap->issued;
700 	}
701 	return have;
702 }
703 
704 /*
705  * Move a cap to the end of the LRU (oldest caps at list head, newest
706  * at list tail).
707  */
708 static void __touch_cap(struct ceph_cap *cap)
709 {
710 	struct ceph_mds_session *s = cap->session;
711 
712 	spin_lock(&s->s_cap_lock);
713 	if (s->s_cap_iterator == NULL) {
714 		dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
715 		     s->s_mds);
716 		list_move_tail(&cap->session_caps, &s->s_caps);
717 	} else {
718 		dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
719 		     &cap->ci->vfs_inode, cap, s->s_mds);
720 	}
721 	spin_unlock(&s->s_cap_lock);
722 }
723 
724 /*
725  * Check if we hold the given mask.  If so, move the cap(s) to the
726  * front of their respective LRUs.  (This is the preferred way for
727  * callers to check for caps they want.)
728  */
729 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
730 {
731 	struct ceph_cap *cap;
732 	struct rb_node *p;
733 	int have = ci->i_snap_caps;
734 
735 	if ((have & mask) == mask) {
736 		dout("__ceph_caps_issued_mask %p snap issued %s"
737 		     " (mask %s)\n", &ci->vfs_inode,
738 		     ceph_cap_string(have),
739 		     ceph_cap_string(mask));
740 		return 1;
741 	}
742 
743 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
744 		cap = rb_entry(p, struct ceph_cap, ci_node);
745 		if (!__cap_is_valid(cap))
746 			continue;
747 		if ((cap->issued & mask) == mask) {
748 			dout("__ceph_caps_issued_mask %p cap %p issued %s"
749 			     " (mask %s)\n", &ci->vfs_inode, cap,
750 			     ceph_cap_string(cap->issued),
751 			     ceph_cap_string(mask));
752 			if (touch)
753 				__touch_cap(cap);
754 			return 1;
755 		}
756 
757 		/* does a combination of caps satisfy mask? */
758 		have |= cap->issued;
759 		if ((have & mask) == mask) {
760 			dout("__ceph_caps_issued_mask %p combo issued %s"
761 			     " (mask %s)\n", &ci->vfs_inode,
762 			     ceph_cap_string(cap->issued),
763 			     ceph_cap_string(mask));
764 			if (touch) {
765 				struct rb_node *q;
766 
767 				/* touch this + preceeding caps */
768 				__touch_cap(cap);
769 				for (q = rb_first(&ci->i_caps); q != p;
770 				     q = rb_next(q)) {
771 					cap = rb_entry(q, struct ceph_cap,
772 						       ci_node);
773 					if (!__cap_is_valid(cap))
774 						continue;
775 					__touch_cap(cap);
776 				}
777 			}
778 			return 1;
779 		}
780 	}
781 
782 	return 0;
783 }
784 
785 /*
786  * Return true if mask caps are currently being revoked by an MDS.
787  */
788 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
789 {
790 	struct inode *inode = &ci->vfs_inode;
791 	struct ceph_cap *cap;
792 	struct rb_node *p;
793 	int ret = 0;
794 
795 	spin_lock(&inode->i_lock);
796 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
797 		cap = rb_entry(p, struct ceph_cap, ci_node);
798 		if (__cap_is_valid(cap) &&
799 		    (cap->implemented & ~cap->issued & mask)) {
800 			ret = 1;
801 			break;
802 		}
803 	}
804 	spin_unlock(&inode->i_lock);
805 	dout("ceph_caps_revoking %p %s = %d\n", inode,
806 	     ceph_cap_string(mask), ret);
807 	return ret;
808 }
809 
810 int __ceph_caps_used(struct ceph_inode_info *ci)
811 {
812 	int used = 0;
813 	if (ci->i_pin_ref)
814 		used |= CEPH_CAP_PIN;
815 	if (ci->i_rd_ref)
816 		used |= CEPH_CAP_FILE_RD;
817 	if (ci->i_rdcache_ref || ci->i_rdcache_gen)
818 		used |= CEPH_CAP_FILE_CACHE;
819 	if (ci->i_wr_ref)
820 		used |= CEPH_CAP_FILE_WR;
821 	if (ci->i_wrbuffer_ref)
822 		used |= CEPH_CAP_FILE_BUFFER;
823 	return used;
824 }
825 
826 /*
827  * wanted, by virtue of open file modes
828  */
829 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
830 {
831 	int want = 0;
832 	int mode;
833 	for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
834 		if (ci->i_nr_by_mode[mode])
835 			want |= ceph_caps_for_mode(mode);
836 	return want;
837 }
838 
839 /*
840  * Return caps we have registered with the MDS(s) as 'wanted'.
841  */
842 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
843 {
844 	struct ceph_cap *cap;
845 	struct rb_node *p;
846 	int mds_wanted = 0;
847 
848 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
849 		cap = rb_entry(p, struct ceph_cap, ci_node);
850 		if (!__cap_is_valid(cap))
851 			continue;
852 		mds_wanted |= cap->mds_wanted;
853 	}
854 	return mds_wanted;
855 }
856 
857 /*
858  * called under i_lock
859  */
860 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
861 {
862 	return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
863 }
864 
865 /*
866  * Remove a cap.  Take steps to deal with a racing iterate_session_caps.
867  *
868  * caller should hold i_lock.
869  * caller will not hold session s_mutex if called from destroy_inode.
870  */
871 void __ceph_remove_cap(struct ceph_cap *cap)
872 {
873 	struct ceph_mds_session *session = cap->session;
874 	struct ceph_inode_info *ci = cap->ci;
875 	struct ceph_mds_client *mdsc =
876 		&ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
877 	int removed = 0;
878 
879 	dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
880 
881 	/* remove from session list */
882 	spin_lock(&session->s_cap_lock);
883 	if (session->s_cap_iterator == cap) {
884 		/* not yet, we are iterating over this very cap */
885 		dout("__ceph_remove_cap  delaying %p removal from session %p\n",
886 		     cap, cap->session);
887 	} else {
888 		list_del_init(&cap->session_caps);
889 		session->s_nr_caps--;
890 		cap->session = NULL;
891 		removed = 1;
892 	}
893 	/* protect backpointer with s_cap_lock: see iterate_session_caps */
894 	cap->ci = NULL;
895 	spin_unlock(&session->s_cap_lock);
896 
897 	/* remove from inode list */
898 	rb_erase(&cap->ci_node, &ci->i_caps);
899 	if (ci->i_auth_cap == cap)
900 		ci->i_auth_cap = NULL;
901 
902 	if (removed)
903 		ceph_put_cap(mdsc, cap);
904 
905 	if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
906 		struct ceph_snap_realm *realm = ci->i_snap_realm;
907 		spin_lock(&realm->inodes_with_caps_lock);
908 		list_del_init(&ci->i_snap_realm_item);
909 		ci->i_snap_realm_counter++;
910 		ci->i_snap_realm = NULL;
911 		spin_unlock(&realm->inodes_with_caps_lock);
912 		ceph_put_snap_realm(mdsc, realm);
913 	}
914 	if (!__ceph_is_any_real_caps(ci))
915 		__cap_delay_cancel(mdsc, ci);
916 }
917 
918 /*
919  * Build and send a cap message to the given MDS.
920  *
921  * Caller should be holding s_mutex.
922  */
923 static int send_cap_msg(struct ceph_mds_session *session,
924 			u64 ino, u64 cid, int op,
925 			int caps, int wanted, int dirty,
926 			u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
927 			u64 size, u64 max_size,
928 			struct timespec *mtime, struct timespec *atime,
929 			u64 time_warp_seq,
930 			uid_t uid, gid_t gid, mode_t mode,
931 			u64 xattr_version,
932 			struct ceph_buffer *xattrs_buf,
933 			u64 follows)
934 {
935 	struct ceph_mds_caps *fc;
936 	struct ceph_msg *msg;
937 
938 	dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
939 	     " seq %u/%u mseq %u follows %lld size %llu/%llu"
940 	     " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
941 	     cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
942 	     ceph_cap_string(dirty),
943 	     seq, issue_seq, mseq, follows, size, max_size,
944 	     xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
945 
946 	msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS);
947 	if (!msg)
948 		return -ENOMEM;
949 
950 	msg->hdr.tid = cpu_to_le64(flush_tid);
951 
952 	fc = msg->front.iov_base;
953 	memset(fc, 0, sizeof(*fc));
954 
955 	fc->cap_id = cpu_to_le64(cid);
956 	fc->op = cpu_to_le32(op);
957 	fc->seq = cpu_to_le32(seq);
958 	fc->issue_seq = cpu_to_le32(issue_seq);
959 	fc->migrate_seq = cpu_to_le32(mseq);
960 	fc->caps = cpu_to_le32(caps);
961 	fc->wanted = cpu_to_le32(wanted);
962 	fc->dirty = cpu_to_le32(dirty);
963 	fc->ino = cpu_to_le64(ino);
964 	fc->snap_follows = cpu_to_le64(follows);
965 
966 	fc->size = cpu_to_le64(size);
967 	fc->max_size = cpu_to_le64(max_size);
968 	if (mtime)
969 		ceph_encode_timespec(&fc->mtime, mtime);
970 	if (atime)
971 		ceph_encode_timespec(&fc->atime, atime);
972 	fc->time_warp_seq = cpu_to_le32(time_warp_seq);
973 
974 	fc->uid = cpu_to_le32(uid);
975 	fc->gid = cpu_to_le32(gid);
976 	fc->mode = cpu_to_le32(mode);
977 
978 	fc->xattr_version = cpu_to_le64(xattr_version);
979 	if (xattrs_buf) {
980 		msg->middle = ceph_buffer_get(xattrs_buf);
981 		fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
982 		msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
983 	}
984 
985 	ceph_con_send(&session->s_con, msg);
986 	return 0;
987 }
988 
989 static void __queue_cap_release(struct ceph_mds_session *session,
990 				u64 ino, u64 cap_id, u32 migrate_seq,
991 				u32 issue_seq)
992 {
993 	struct ceph_msg *msg;
994 	struct ceph_mds_cap_release *head;
995 	struct ceph_mds_cap_item *item;
996 
997 	spin_lock(&session->s_cap_lock);
998 	BUG_ON(!session->s_num_cap_releases);
999 	msg = list_first_entry(&session->s_cap_releases,
1000 			       struct ceph_msg, list_head);
1001 
1002 	dout(" adding %llx release to mds%d msg %p (%d left)\n",
1003 	     ino, session->s_mds, msg, session->s_num_cap_releases);
1004 
1005 	BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1006 	head = msg->front.iov_base;
1007 	head->num = cpu_to_le32(le32_to_cpu(head->num) + 1);
1008 	item = msg->front.iov_base + msg->front.iov_len;
1009 	item->ino = cpu_to_le64(ino);
1010 	item->cap_id = cpu_to_le64(cap_id);
1011 	item->migrate_seq = cpu_to_le32(migrate_seq);
1012 	item->seq = cpu_to_le32(issue_seq);
1013 
1014 	session->s_num_cap_releases--;
1015 
1016 	msg->front.iov_len += sizeof(*item);
1017 	if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1018 		dout(" release msg %p full\n", msg);
1019 		list_move_tail(&msg->list_head, &session->s_cap_releases_done);
1020 	} else {
1021 		dout(" release msg %p at %d/%d (%d)\n", msg,
1022 		     (int)le32_to_cpu(head->num),
1023 		     (int)CEPH_CAPS_PER_RELEASE,
1024 		     (int)msg->front.iov_len);
1025 	}
1026 	spin_unlock(&session->s_cap_lock);
1027 }
1028 
1029 /*
1030  * Queue cap releases when an inode is dropped from our cache.  Since
1031  * inode is about to be destroyed, there is no need for i_lock.
1032  */
1033 void ceph_queue_caps_release(struct inode *inode)
1034 {
1035 	struct ceph_inode_info *ci = ceph_inode(inode);
1036 	struct rb_node *p;
1037 
1038 	p = rb_first(&ci->i_caps);
1039 	while (p) {
1040 		struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1041 		struct ceph_mds_session *session = cap->session;
1042 
1043 		__queue_cap_release(session, ceph_ino(inode), cap->cap_id,
1044 				    cap->mseq, cap->issue_seq);
1045 		p = rb_next(p);
1046 		__ceph_remove_cap(cap);
1047 	}
1048 }
1049 
1050 /*
1051  * Send a cap msg on the given inode.  Update our caps state, then
1052  * drop i_lock and send the message.
1053  *
1054  * Make note of max_size reported/requested from mds, revoked caps
1055  * that have now been implemented.
1056  *
1057  * Make half-hearted attempt ot to invalidate page cache if we are
1058  * dropping RDCACHE.  Note that this will leave behind locked pages
1059  * that we'll then need to deal with elsewhere.
1060  *
1061  * Return non-zero if delayed release, or we experienced an error
1062  * such that the caller should requeue + retry later.
1063  *
1064  * called with i_lock, then drops it.
1065  * caller should hold snap_rwsem (read), s_mutex.
1066  */
1067 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1068 		      int op, int used, int want, int retain, int flushing,
1069 		      unsigned *pflush_tid)
1070 	__releases(cap->ci->vfs_inode->i_lock)
1071 {
1072 	struct ceph_inode_info *ci = cap->ci;
1073 	struct inode *inode = &ci->vfs_inode;
1074 	u64 cap_id = cap->cap_id;
1075 	int held, revoking, dropping, keep;
1076 	u64 seq, issue_seq, mseq, time_warp_seq, follows;
1077 	u64 size, max_size;
1078 	struct timespec mtime, atime;
1079 	int wake = 0;
1080 	mode_t mode;
1081 	uid_t uid;
1082 	gid_t gid;
1083 	struct ceph_mds_session *session;
1084 	u64 xattr_version = 0;
1085 	int delayed = 0;
1086 	u64 flush_tid = 0;
1087 	int i;
1088 	int ret;
1089 
1090 	held = cap->issued | cap->implemented;
1091 	revoking = cap->implemented & ~cap->issued;
1092 	retain &= ~revoking;
1093 	dropping = cap->issued & ~retain;
1094 
1095 	dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1096 	     inode, cap, cap->session,
1097 	     ceph_cap_string(held), ceph_cap_string(held & retain),
1098 	     ceph_cap_string(revoking));
1099 	BUG_ON((retain & CEPH_CAP_PIN) == 0);
1100 
1101 	session = cap->session;
1102 
1103 	/* don't release wanted unless we've waited a bit. */
1104 	if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1105 	    time_before(jiffies, ci->i_hold_caps_min)) {
1106 		dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1107 		     ceph_cap_string(cap->issued),
1108 		     ceph_cap_string(cap->issued & retain),
1109 		     ceph_cap_string(cap->mds_wanted),
1110 		     ceph_cap_string(want));
1111 		want |= cap->mds_wanted;
1112 		retain |= cap->issued;
1113 		delayed = 1;
1114 	}
1115 	ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1116 
1117 	cap->issued &= retain;  /* drop bits we don't want */
1118 	if (cap->implemented & ~cap->issued) {
1119 		/*
1120 		 * Wake up any waiters on wanted -> needed transition.
1121 		 * This is due to the weird transition from buffered
1122 		 * to sync IO... we need to flush dirty pages _before_
1123 		 * allowing sync writes to avoid reordering.
1124 		 */
1125 		wake = 1;
1126 	}
1127 	cap->implemented &= cap->issued | used;
1128 	cap->mds_wanted = want;
1129 
1130 	if (flushing) {
1131 		/*
1132 		 * assign a tid for flush operations so we can avoid
1133 		 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1134 		 * clean type races.  track latest tid for every bit
1135 		 * so we can handle flush AxFw, flush Fw, and have the
1136 		 * first ack clean Ax.
1137 		 */
1138 		flush_tid = ++ci->i_cap_flush_last_tid;
1139 		if (pflush_tid)
1140 			*pflush_tid = flush_tid;
1141 		dout(" cap_flush_tid %d\n", (int)flush_tid);
1142 		for (i = 0; i < CEPH_CAP_BITS; i++)
1143 			if (flushing & (1 << i))
1144 				ci->i_cap_flush_tid[i] = flush_tid;
1145 	}
1146 
1147 	keep = cap->implemented;
1148 	seq = cap->seq;
1149 	issue_seq = cap->issue_seq;
1150 	mseq = cap->mseq;
1151 	size = inode->i_size;
1152 	ci->i_reported_size = size;
1153 	max_size = ci->i_wanted_max_size;
1154 	ci->i_requested_max_size = max_size;
1155 	mtime = inode->i_mtime;
1156 	atime = inode->i_atime;
1157 	time_warp_seq = ci->i_time_warp_seq;
1158 	follows = ci->i_snap_realm->cached_context->seq;
1159 	uid = inode->i_uid;
1160 	gid = inode->i_gid;
1161 	mode = inode->i_mode;
1162 
1163 	if (dropping & CEPH_CAP_XATTR_EXCL) {
1164 		__ceph_build_xattrs_blob(ci);
1165 		xattr_version = ci->i_xattrs.version + 1;
1166 	}
1167 
1168 	spin_unlock(&inode->i_lock);
1169 
1170 	ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1171 		op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1172 		size, max_size, &mtime, &atime, time_warp_seq,
1173 		uid, gid, mode,
1174 		xattr_version,
1175 		(flushing & CEPH_CAP_XATTR_EXCL) ? ci->i_xattrs.blob : NULL,
1176 		follows);
1177 	if (ret < 0) {
1178 		dout("error sending cap msg, must requeue %p\n", inode);
1179 		delayed = 1;
1180 	}
1181 
1182 	if (wake)
1183 		wake_up_all(&ci->i_cap_wq);
1184 
1185 	return delayed;
1186 }
1187 
1188 /*
1189  * When a snapshot is taken, clients accumulate dirty metadata on
1190  * inodes with capabilities in ceph_cap_snaps to describe the file
1191  * state at the time the snapshot was taken.  This must be flushed
1192  * asynchronously back to the MDS once sync writes complete and dirty
1193  * data is written out.
1194  *
1195  * Called under i_lock.  Takes s_mutex as needed.
1196  */
1197 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1198 			struct ceph_mds_session **psession)
1199 		__releases(ci->vfs_inode->i_lock)
1200 		__acquires(ci->vfs_inode->i_lock)
1201 {
1202 	struct inode *inode = &ci->vfs_inode;
1203 	int mds;
1204 	struct ceph_cap_snap *capsnap;
1205 	u32 mseq;
1206 	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
1207 	struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1208 						    session->s_mutex */
1209 	u64 next_follows = 0;  /* keep track of how far we've gotten through the
1210 			     i_cap_snaps list, and skip these entries next time
1211 			     around to avoid an infinite loop */
1212 
1213 	if (psession)
1214 		session = *psession;
1215 
1216 	dout("__flush_snaps %p\n", inode);
1217 retry:
1218 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1219 		/* avoid an infiniute loop after retry */
1220 		if (capsnap->follows < next_follows)
1221 			continue;
1222 		/*
1223 		 * we need to wait for sync writes to complete and for dirty
1224 		 * pages to be written out.
1225 		 */
1226 		if (capsnap->dirty_pages || capsnap->writing)
1227 			continue;
1228 
1229 		/*
1230 		 * if cap writeback already occurred, we should have dropped
1231 		 * the capsnap in ceph_put_wrbuffer_cap_refs.
1232 		 */
1233 		BUG_ON(capsnap->dirty == 0);
1234 
1235 		/* pick mds, take s_mutex */
1236 		if (ci->i_auth_cap == NULL) {
1237 			dout("no auth cap (migrating?), doing nothing\n");
1238 			goto out;
1239 		}
1240 		mds = ci->i_auth_cap->session->s_mds;
1241 		mseq = ci->i_auth_cap->mseq;
1242 
1243 		if (session && session->s_mds != mds) {
1244 			dout("oops, wrong session %p mutex\n", session);
1245 			mutex_unlock(&session->s_mutex);
1246 			ceph_put_mds_session(session);
1247 			session = NULL;
1248 		}
1249 		if (!session) {
1250 			spin_unlock(&inode->i_lock);
1251 			mutex_lock(&mdsc->mutex);
1252 			session = __ceph_lookup_mds_session(mdsc, mds);
1253 			mutex_unlock(&mdsc->mutex);
1254 			if (session) {
1255 				dout("inverting session/ino locks on %p\n",
1256 				     session);
1257 				mutex_lock(&session->s_mutex);
1258 			}
1259 			/*
1260 			 * if session == NULL, we raced against a cap
1261 			 * deletion or migration.  retry, and we'll
1262 			 * get a better @mds value next time.
1263 			 */
1264 			spin_lock(&inode->i_lock);
1265 			goto retry;
1266 		}
1267 
1268 		capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1269 		atomic_inc(&capsnap->nref);
1270 		if (!list_empty(&capsnap->flushing_item))
1271 			list_del_init(&capsnap->flushing_item);
1272 		list_add_tail(&capsnap->flushing_item,
1273 			      &session->s_cap_snaps_flushing);
1274 		spin_unlock(&inode->i_lock);
1275 
1276 		dout("flush_snaps %p cap_snap %p follows %lld size %llu\n",
1277 		     inode, capsnap, next_follows, capsnap->size);
1278 		send_cap_msg(session, ceph_vino(inode).ino, 0,
1279 			     CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1280 			     capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1281 			     capsnap->size, 0,
1282 			     &capsnap->mtime, &capsnap->atime,
1283 			     capsnap->time_warp_seq,
1284 			     capsnap->uid, capsnap->gid, capsnap->mode,
1285 			     0, NULL,
1286 			     capsnap->follows);
1287 
1288 		next_follows = capsnap->follows + 1;
1289 		ceph_put_cap_snap(capsnap);
1290 
1291 		spin_lock(&inode->i_lock);
1292 		goto retry;
1293 	}
1294 
1295 	/* we flushed them all; remove this inode from the queue */
1296 	spin_lock(&mdsc->snap_flush_lock);
1297 	list_del_init(&ci->i_snap_flush_item);
1298 	spin_unlock(&mdsc->snap_flush_lock);
1299 
1300 out:
1301 	if (psession)
1302 		*psession = session;
1303 	else if (session) {
1304 		mutex_unlock(&session->s_mutex);
1305 		ceph_put_mds_session(session);
1306 	}
1307 }
1308 
1309 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1310 {
1311 	struct inode *inode = &ci->vfs_inode;
1312 
1313 	spin_lock(&inode->i_lock);
1314 	__ceph_flush_snaps(ci, NULL);
1315 	spin_unlock(&inode->i_lock);
1316 }
1317 
1318 /*
1319  * Mark caps dirty.  If inode is newly dirty, add to the global dirty
1320  * list.
1321  */
1322 void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1323 {
1324 	struct ceph_mds_client *mdsc =
1325 		&ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1326 	struct inode *inode = &ci->vfs_inode;
1327 	int was = ci->i_dirty_caps;
1328 	int dirty = 0;
1329 
1330 	dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1331 	     ceph_cap_string(mask), ceph_cap_string(was),
1332 	     ceph_cap_string(was | mask));
1333 	ci->i_dirty_caps |= mask;
1334 	if (was == 0) {
1335 		dout(" inode %p now dirty\n", &ci->vfs_inode);
1336 		BUG_ON(!list_empty(&ci->i_dirty_item));
1337 		spin_lock(&mdsc->cap_dirty_lock);
1338 		list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1339 		spin_unlock(&mdsc->cap_dirty_lock);
1340 		if (ci->i_flushing_caps == 0) {
1341 			igrab(inode);
1342 			dirty |= I_DIRTY_SYNC;
1343 		}
1344 	}
1345 	BUG_ON(list_empty(&ci->i_dirty_item));
1346 	if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1347 	    (mask & CEPH_CAP_FILE_BUFFER))
1348 		dirty |= I_DIRTY_DATASYNC;
1349 	if (dirty)
1350 		__mark_inode_dirty(inode, dirty);
1351 	__cap_delay_requeue(mdsc, ci);
1352 }
1353 
1354 /*
1355  * Add dirty inode to the flushing list.  Assigned a seq number so we
1356  * can wait for caps to flush without starving.
1357  *
1358  * Called under i_lock.
1359  */
1360 static int __mark_caps_flushing(struct inode *inode,
1361 				 struct ceph_mds_session *session)
1362 {
1363 	struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc;
1364 	struct ceph_inode_info *ci = ceph_inode(inode);
1365 	int flushing;
1366 
1367 	BUG_ON(ci->i_dirty_caps == 0);
1368 	BUG_ON(list_empty(&ci->i_dirty_item));
1369 
1370 	flushing = ci->i_dirty_caps;
1371 	dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1372 	     ceph_cap_string(flushing),
1373 	     ceph_cap_string(ci->i_flushing_caps),
1374 	     ceph_cap_string(ci->i_flushing_caps | flushing));
1375 	ci->i_flushing_caps |= flushing;
1376 	ci->i_dirty_caps = 0;
1377 	dout(" inode %p now !dirty\n", inode);
1378 
1379 	spin_lock(&mdsc->cap_dirty_lock);
1380 	list_del_init(&ci->i_dirty_item);
1381 
1382 	ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1383 	if (list_empty(&ci->i_flushing_item)) {
1384 		list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1385 		mdsc->num_cap_flushing++;
1386 		dout(" inode %p now flushing seq %lld\n", inode,
1387 		     ci->i_cap_flush_seq);
1388 	} else {
1389 		list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1390 		dout(" inode %p now flushing (more) seq %lld\n", inode,
1391 		     ci->i_cap_flush_seq);
1392 	}
1393 	spin_unlock(&mdsc->cap_dirty_lock);
1394 
1395 	return flushing;
1396 }
1397 
1398 /*
1399  * try to invalidate mapping pages without blocking.
1400  */
1401 static int mapping_is_empty(struct address_space *mapping)
1402 {
1403 	struct page *page = find_get_page(mapping, 0);
1404 
1405 	if (!page)
1406 		return 1;
1407 
1408 	put_page(page);
1409 	return 0;
1410 }
1411 
1412 static int try_nonblocking_invalidate(struct inode *inode)
1413 {
1414 	struct ceph_inode_info *ci = ceph_inode(inode);
1415 	u32 invalidating_gen = ci->i_rdcache_gen;
1416 
1417 	spin_unlock(&inode->i_lock);
1418 	invalidate_mapping_pages(&inode->i_data, 0, -1);
1419 	spin_lock(&inode->i_lock);
1420 
1421 	if (mapping_is_empty(&inode->i_data) &&
1422 	    invalidating_gen == ci->i_rdcache_gen) {
1423 		/* success. */
1424 		dout("try_nonblocking_invalidate %p success\n", inode);
1425 		ci->i_rdcache_gen = 0;
1426 		ci->i_rdcache_revoking = 0;
1427 		return 0;
1428 	}
1429 	dout("try_nonblocking_invalidate %p failed\n", inode);
1430 	return -1;
1431 }
1432 
1433 /*
1434  * Swiss army knife function to examine currently used and wanted
1435  * versus held caps.  Release, flush, ack revoked caps to mds as
1436  * appropriate.
1437  *
1438  *  CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1439  *    cap release further.
1440  *  CHECK_CAPS_AUTHONLY - we should only check the auth cap
1441  *  CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1442  *    further delay.
1443  */
1444 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1445 		     struct ceph_mds_session *session)
1446 {
1447 	struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode);
1448 	struct ceph_mds_client *mdsc = &client->mdsc;
1449 	struct inode *inode = &ci->vfs_inode;
1450 	struct ceph_cap *cap;
1451 	int file_wanted, used;
1452 	int took_snap_rwsem = 0;             /* true if mdsc->snap_rwsem held */
1453 	int issued, implemented, want, retain, revoking, flushing = 0;
1454 	int mds = -1;   /* keep track of how far we've gone through i_caps list
1455 			   to avoid an infinite loop on retry */
1456 	struct rb_node *p;
1457 	int tried_invalidate = 0;
1458 	int delayed = 0, sent = 0, force_requeue = 0, num;
1459 	int queue_invalidate = 0;
1460 	int is_delayed = flags & CHECK_CAPS_NODELAY;
1461 
1462 	/* if we are unmounting, flush any unused caps immediately. */
1463 	if (mdsc->stopping)
1464 		is_delayed = 1;
1465 
1466 	spin_lock(&inode->i_lock);
1467 
1468 	if (ci->i_ceph_flags & CEPH_I_FLUSH)
1469 		flags |= CHECK_CAPS_FLUSH;
1470 
1471 	/* flush snaps first time around only */
1472 	if (!list_empty(&ci->i_cap_snaps))
1473 		__ceph_flush_snaps(ci, &session);
1474 	goto retry_locked;
1475 retry:
1476 	spin_lock(&inode->i_lock);
1477 retry_locked:
1478 	file_wanted = __ceph_caps_file_wanted(ci);
1479 	used = __ceph_caps_used(ci);
1480 	want = file_wanted | used;
1481 	issued = __ceph_caps_issued(ci, &implemented);
1482 	revoking = implemented & ~issued;
1483 
1484 	retain = want | CEPH_CAP_PIN;
1485 	if (!mdsc->stopping && inode->i_nlink > 0) {
1486 		if (want) {
1487 			retain |= CEPH_CAP_ANY;       /* be greedy */
1488 		} else {
1489 			retain |= CEPH_CAP_ANY_SHARED;
1490 			/*
1491 			 * keep RD only if we didn't have the file open RW,
1492 			 * because then the mds would revoke it anyway to
1493 			 * journal max_size=0.
1494 			 */
1495 			if (ci->i_max_size == 0)
1496 				retain |= CEPH_CAP_ANY_RD;
1497 		}
1498 	}
1499 
1500 	dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1501 	     " issued %s revoking %s retain %s %s%s%s\n", inode,
1502 	     ceph_cap_string(file_wanted),
1503 	     ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1504 	     ceph_cap_string(ci->i_flushing_caps),
1505 	     ceph_cap_string(issued), ceph_cap_string(revoking),
1506 	     ceph_cap_string(retain),
1507 	     (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1508 	     (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1509 	     (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1510 
1511 	/*
1512 	 * If we no longer need to hold onto old our caps, and we may
1513 	 * have cached pages, but don't want them, then try to invalidate.
1514 	 * If we fail, it's because pages are locked.... try again later.
1515 	 */
1516 	if ((!is_delayed || mdsc->stopping) &&
1517 	    ci->i_wrbuffer_ref == 0 &&               /* no dirty pages... */
1518 	    ci->i_rdcache_gen &&                     /* may have cached pages */
1519 	    (file_wanted == 0 ||                     /* no open files */
1520 	     (revoking & (CEPH_CAP_FILE_CACHE|
1521 			  CEPH_CAP_FILE_LAZYIO))) && /*  or revoking cache */
1522 	    !tried_invalidate) {
1523 		dout("check_caps trying to invalidate on %p\n", inode);
1524 		if (try_nonblocking_invalidate(inode) < 0) {
1525 			if (revoking & (CEPH_CAP_FILE_CACHE|
1526 					CEPH_CAP_FILE_LAZYIO)) {
1527 				dout("check_caps queuing invalidate\n");
1528 				queue_invalidate = 1;
1529 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
1530 			} else {
1531 				dout("check_caps failed to invalidate pages\n");
1532 				/* we failed to invalidate pages.  check these
1533 				   caps again later. */
1534 				force_requeue = 1;
1535 				__cap_set_timeouts(mdsc, ci);
1536 			}
1537 		}
1538 		tried_invalidate = 1;
1539 		goto retry_locked;
1540 	}
1541 
1542 	num = 0;
1543 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1544 		cap = rb_entry(p, struct ceph_cap, ci_node);
1545 		num++;
1546 
1547 		/* avoid looping forever */
1548 		if (mds >= cap->mds ||
1549 		    ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1550 			continue;
1551 
1552 		/* NOTE: no side-effects allowed, until we take s_mutex */
1553 
1554 		revoking = cap->implemented & ~cap->issued;
1555 		if (revoking)
1556 			dout(" mds%d revoking %s\n", cap->mds,
1557 			     ceph_cap_string(revoking));
1558 
1559 		if (cap == ci->i_auth_cap &&
1560 		    (cap->issued & CEPH_CAP_FILE_WR)) {
1561 			/* request larger max_size from MDS? */
1562 			if (ci->i_wanted_max_size > ci->i_max_size &&
1563 			    ci->i_wanted_max_size > ci->i_requested_max_size) {
1564 				dout("requesting new max_size\n");
1565 				goto ack;
1566 			}
1567 
1568 			/* approaching file_max? */
1569 			if ((inode->i_size << 1) >= ci->i_max_size &&
1570 			    (ci->i_reported_size << 1) < ci->i_max_size) {
1571 				dout("i_size approaching max_size\n");
1572 				goto ack;
1573 			}
1574 		}
1575 		/* flush anything dirty? */
1576 		if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1577 		    ci->i_dirty_caps) {
1578 			dout("flushing dirty caps\n");
1579 			goto ack;
1580 		}
1581 
1582 		/* completed revocation? going down and there are no caps? */
1583 		if (revoking && (revoking & used) == 0) {
1584 			dout("completed revocation of %s\n",
1585 			     ceph_cap_string(cap->implemented & ~cap->issued));
1586 			goto ack;
1587 		}
1588 
1589 		/* want more caps from mds? */
1590 		if (want & ~(cap->mds_wanted | cap->issued))
1591 			goto ack;
1592 
1593 		/* things we might delay */
1594 		if ((cap->issued & ~retain) == 0 &&
1595 		    cap->mds_wanted == want)
1596 			continue;     /* nope, all good */
1597 
1598 		if (is_delayed)
1599 			goto ack;
1600 
1601 		/* delay? */
1602 		if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1603 		    time_before(jiffies, ci->i_hold_caps_max)) {
1604 			dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1605 			     ceph_cap_string(cap->issued),
1606 			     ceph_cap_string(cap->issued & retain),
1607 			     ceph_cap_string(cap->mds_wanted),
1608 			     ceph_cap_string(want));
1609 			delayed++;
1610 			continue;
1611 		}
1612 
1613 ack:
1614 		if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1615 			dout(" skipping %p I_NOFLUSH set\n", inode);
1616 			continue;
1617 		}
1618 
1619 		if (session && session != cap->session) {
1620 			dout("oops, wrong session %p mutex\n", session);
1621 			mutex_unlock(&session->s_mutex);
1622 			session = NULL;
1623 		}
1624 		if (!session) {
1625 			session = cap->session;
1626 			if (mutex_trylock(&session->s_mutex) == 0) {
1627 				dout("inverting session/ino locks on %p\n",
1628 				     session);
1629 				spin_unlock(&inode->i_lock);
1630 				if (took_snap_rwsem) {
1631 					up_read(&mdsc->snap_rwsem);
1632 					took_snap_rwsem = 0;
1633 				}
1634 				mutex_lock(&session->s_mutex);
1635 				goto retry;
1636 			}
1637 		}
1638 		/* take snap_rwsem after session mutex */
1639 		if (!took_snap_rwsem) {
1640 			if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1641 				dout("inverting snap/in locks on %p\n",
1642 				     inode);
1643 				spin_unlock(&inode->i_lock);
1644 				down_read(&mdsc->snap_rwsem);
1645 				took_snap_rwsem = 1;
1646 				goto retry;
1647 			}
1648 			took_snap_rwsem = 1;
1649 		}
1650 
1651 		if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1652 			flushing = __mark_caps_flushing(inode, session);
1653 
1654 		mds = cap->mds;  /* remember mds, so we don't repeat */
1655 		sent++;
1656 
1657 		/* __send_cap drops i_lock */
1658 		delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
1659 				      retain, flushing, NULL);
1660 		goto retry; /* retake i_lock and restart our cap scan. */
1661 	}
1662 
1663 	/*
1664 	 * Reschedule delayed caps release if we delayed anything,
1665 	 * otherwise cancel.
1666 	 */
1667 	if (delayed && is_delayed)
1668 		force_requeue = 1;   /* __send_cap delayed release; requeue */
1669 	if (!delayed && !is_delayed)
1670 		__cap_delay_cancel(mdsc, ci);
1671 	else if (!is_delayed || force_requeue)
1672 		__cap_delay_requeue(mdsc, ci);
1673 
1674 	spin_unlock(&inode->i_lock);
1675 
1676 	if (queue_invalidate)
1677 		ceph_queue_invalidate(inode);
1678 
1679 	if (session)
1680 		mutex_unlock(&session->s_mutex);
1681 	if (took_snap_rwsem)
1682 		up_read(&mdsc->snap_rwsem);
1683 }
1684 
1685 /*
1686  * Try to flush dirty caps back to the auth mds.
1687  */
1688 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1689 			  unsigned *flush_tid)
1690 {
1691 	struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc;
1692 	struct ceph_inode_info *ci = ceph_inode(inode);
1693 	int unlock_session = session ? 0 : 1;
1694 	int flushing = 0;
1695 
1696 retry:
1697 	spin_lock(&inode->i_lock);
1698 	if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1699 		dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1700 		goto out;
1701 	}
1702 	if (ci->i_dirty_caps && ci->i_auth_cap) {
1703 		struct ceph_cap *cap = ci->i_auth_cap;
1704 		int used = __ceph_caps_used(ci);
1705 		int want = __ceph_caps_wanted(ci);
1706 		int delayed;
1707 
1708 		if (!session) {
1709 			spin_unlock(&inode->i_lock);
1710 			session = cap->session;
1711 			mutex_lock(&session->s_mutex);
1712 			goto retry;
1713 		}
1714 		BUG_ON(session != cap->session);
1715 		if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1716 			goto out;
1717 
1718 		flushing = __mark_caps_flushing(inode, session);
1719 
1720 		/* __send_cap drops i_lock */
1721 		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1722 				     cap->issued | cap->implemented, flushing,
1723 				     flush_tid);
1724 		if (!delayed)
1725 			goto out_unlocked;
1726 
1727 		spin_lock(&inode->i_lock);
1728 		__cap_delay_requeue(mdsc, ci);
1729 	}
1730 out:
1731 	spin_unlock(&inode->i_lock);
1732 out_unlocked:
1733 	if (session && unlock_session)
1734 		mutex_unlock(&session->s_mutex);
1735 	return flushing;
1736 }
1737 
1738 /*
1739  * Return true if we've flushed caps through the given flush_tid.
1740  */
1741 static int caps_are_flushed(struct inode *inode, unsigned tid)
1742 {
1743 	struct ceph_inode_info *ci = ceph_inode(inode);
1744 	int i, ret = 1;
1745 
1746 	spin_lock(&inode->i_lock);
1747 	for (i = 0; i < CEPH_CAP_BITS; i++)
1748 		if ((ci->i_flushing_caps & (1 << i)) &&
1749 		    ci->i_cap_flush_tid[i] <= tid) {
1750 			/* still flushing this bit */
1751 			ret = 0;
1752 			break;
1753 		}
1754 	spin_unlock(&inode->i_lock);
1755 	return ret;
1756 }
1757 
1758 /*
1759  * Wait on any unsafe replies for the given inode.  First wait on the
1760  * newest request, and make that the upper bound.  Then, if there are
1761  * more requests, keep waiting on the oldest as long as it is still older
1762  * than the original request.
1763  */
1764 static void sync_write_wait(struct inode *inode)
1765 {
1766 	struct ceph_inode_info *ci = ceph_inode(inode);
1767 	struct list_head *head = &ci->i_unsafe_writes;
1768 	struct ceph_osd_request *req;
1769 	u64 last_tid;
1770 
1771 	spin_lock(&ci->i_unsafe_lock);
1772 	if (list_empty(head))
1773 		goto out;
1774 
1775 	/* set upper bound as _last_ entry in chain */
1776 	req = list_entry(head->prev, struct ceph_osd_request,
1777 			 r_unsafe_item);
1778 	last_tid = req->r_tid;
1779 
1780 	do {
1781 		ceph_osdc_get_request(req);
1782 		spin_unlock(&ci->i_unsafe_lock);
1783 		dout("sync_write_wait on tid %llu (until %llu)\n",
1784 		     req->r_tid, last_tid);
1785 		wait_for_completion(&req->r_safe_completion);
1786 		spin_lock(&ci->i_unsafe_lock);
1787 		ceph_osdc_put_request(req);
1788 
1789 		/*
1790 		 * from here on look at first entry in chain, since we
1791 		 * only want to wait for anything older than last_tid
1792 		 */
1793 		if (list_empty(head))
1794 			break;
1795 		req = list_entry(head->next, struct ceph_osd_request,
1796 				 r_unsafe_item);
1797 	} while (req->r_tid < last_tid);
1798 out:
1799 	spin_unlock(&ci->i_unsafe_lock);
1800 }
1801 
1802 int ceph_fsync(struct file *file, int datasync)
1803 {
1804 	struct inode *inode = file->f_mapping->host;
1805 	struct ceph_inode_info *ci = ceph_inode(inode);
1806 	unsigned flush_tid;
1807 	int ret;
1808 	int dirty;
1809 
1810 	dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1811 	sync_write_wait(inode);
1812 
1813 	ret = filemap_write_and_wait(inode->i_mapping);
1814 	if (ret < 0)
1815 		return ret;
1816 
1817 	dirty = try_flush_caps(inode, NULL, &flush_tid);
1818 	dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1819 
1820 	/*
1821 	 * only wait on non-file metadata writeback (the mds
1822 	 * can recover size and mtime, so we don't need to
1823 	 * wait for that)
1824 	 */
1825 	if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1826 		dout("fsync waiting for flush_tid %u\n", flush_tid);
1827 		ret = wait_event_interruptible(ci->i_cap_wq,
1828 				       caps_are_flushed(inode, flush_tid));
1829 	}
1830 
1831 	dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1832 	return ret;
1833 }
1834 
1835 /*
1836  * Flush any dirty caps back to the mds.  If we aren't asked to wait,
1837  * queue inode for flush but don't do so immediately, because we can
1838  * get by with fewer MDS messages if we wait for data writeback to
1839  * complete first.
1840  */
1841 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1842 {
1843 	struct ceph_inode_info *ci = ceph_inode(inode);
1844 	unsigned flush_tid;
1845 	int err = 0;
1846 	int dirty;
1847 	int wait = wbc->sync_mode == WB_SYNC_ALL;
1848 
1849 	dout("write_inode %p wait=%d\n", inode, wait);
1850 	if (wait) {
1851 		dirty = try_flush_caps(inode, NULL, &flush_tid);
1852 		if (dirty)
1853 			err = wait_event_interruptible(ci->i_cap_wq,
1854 				       caps_are_flushed(inode, flush_tid));
1855 	} else {
1856 		struct ceph_mds_client *mdsc =
1857 			&ceph_sb_to_client(inode->i_sb)->mdsc;
1858 
1859 		spin_lock(&inode->i_lock);
1860 		if (__ceph_caps_dirty(ci))
1861 			__cap_delay_requeue_front(mdsc, ci);
1862 		spin_unlock(&inode->i_lock);
1863 	}
1864 	return err;
1865 }
1866 
1867 /*
1868  * After a recovering MDS goes active, we need to resend any caps
1869  * we were flushing.
1870  *
1871  * Caller holds session->s_mutex.
1872  */
1873 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1874 				   struct ceph_mds_session *session)
1875 {
1876 	struct ceph_cap_snap *capsnap;
1877 
1878 	dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1879 	list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1880 			    flushing_item) {
1881 		struct ceph_inode_info *ci = capsnap->ci;
1882 		struct inode *inode = &ci->vfs_inode;
1883 		struct ceph_cap *cap;
1884 
1885 		spin_lock(&inode->i_lock);
1886 		cap = ci->i_auth_cap;
1887 		if (cap && cap->session == session) {
1888 			dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1889 			     cap, capsnap);
1890 			__ceph_flush_snaps(ci, &session);
1891 		} else {
1892 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1893 			       cap, session->s_mds);
1894 		}
1895 		spin_unlock(&inode->i_lock);
1896 	}
1897 }
1898 
1899 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1900 			     struct ceph_mds_session *session)
1901 {
1902 	struct ceph_inode_info *ci;
1903 
1904 	kick_flushing_capsnaps(mdsc, session);
1905 
1906 	dout("kick_flushing_caps mds%d\n", session->s_mds);
1907 	list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1908 		struct inode *inode = &ci->vfs_inode;
1909 		struct ceph_cap *cap;
1910 		int delayed = 0;
1911 
1912 		spin_lock(&inode->i_lock);
1913 		cap = ci->i_auth_cap;
1914 		if (cap && cap->session == session) {
1915 			dout("kick_flushing_caps %p cap %p %s\n", inode,
1916 			     cap, ceph_cap_string(ci->i_flushing_caps));
1917 			delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1918 					     __ceph_caps_used(ci),
1919 					     __ceph_caps_wanted(ci),
1920 					     cap->issued | cap->implemented,
1921 					     ci->i_flushing_caps, NULL);
1922 			if (delayed) {
1923 				spin_lock(&inode->i_lock);
1924 				__cap_delay_requeue(mdsc, ci);
1925 				spin_unlock(&inode->i_lock);
1926 			}
1927 		} else {
1928 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1929 			       cap, session->s_mds);
1930 			spin_unlock(&inode->i_lock);
1931 		}
1932 	}
1933 }
1934 
1935 
1936 /*
1937  * Take references to capabilities we hold, so that we don't release
1938  * them to the MDS prematurely.
1939  *
1940  * Protected by i_lock.
1941  */
1942 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
1943 {
1944 	if (got & CEPH_CAP_PIN)
1945 		ci->i_pin_ref++;
1946 	if (got & CEPH_CAP_FILE_RD)
1947 		ci->i_rd_ref++;
1948 	if (got & CEPH_CAP_FILE_CACHE)
1949 		ci->i_rdcache_ref++;
1950 	if (got & CEPH_CAP_FILE_WR)
1951 		ci->i_wr_ref++;
1952 	if (got & CEPH_CAP_FILE_BUFFER) {
1953 		if (ci->i_wrbuffer_ref == 0)
1954 			igrab(&ci->vfs_inode);
1955 		ci->i_wrbuffer_ref++;
1956 		dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n",
1957 		     &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref);
1958 	}
1959 }
1960 
1961 /*
1962  * Try to grab cap references.  Specify those refs we @want, and the
1963  * minimal set we @need.  Also include the larger offset we are writing
1964  * to (when applicable), and check against max_size here as well.
1965  * Note that caller is responsible for ensuring max_size increases are
1966  * requested from the MDS.
1967  */
1968 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
1969 			    int *got, loff_t endoff, int *check_max, int *err)
1970 {
1971 	struct inode *inode = &ci->vfs_inode;
1972 	int ret = 0;
1973 	int have, implemented;
1974 	int file_wanted;
1975 
1976 	dout("get_cap_refs %p need %s want %s\n", inode,
1977 	     ceph_cap_string(need), ceph_cap_string(want));
1978 	spin_lock(&inode->i_lock);
1979 
1980 	/* make sure file is actually open */
1981 	file_wanted = __ceph_caps_file_wanted(ci);
1982 	if ((file_wanted & need) == 0) {
1983 		dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
1984 		     ceph_cap_string(need), ceph_cap_string(file_wanted));
1985 		*err = -EBADF;
1986 		ret = 1;
1987 		goto out;
1988 	}
1989 
1990 	if (need & CEPH_CAP_FILE_WR) {
1991 		if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
1992 			dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
1993 			     inode, endoff, ci->i_max_size);
1994 			if (endoff > ci->i_wanted_max_size) {
1995 				*check_max = 1;
1996 				ret = 1;
1997 			}
1998 			goto out;
1999 		}
2000 		/*
2001 		 * If a sync write is in progress, we must wait, so that we
2002 		 * can get a final snapshot value for size+mtime.
2003 		 */
2004 		if (__ceph_have_pending_cap_snap(ci)) {
2005 			dout("get_cap_refs %p cap_snap_pending\n", inode);
2006 			goto out;
2007 		}
2008 	}
2009 	have = __ceph_caps_issued(ci, &implemented);
2010 
2011 	/*
2012 	 * disallow writes while a truncate is pending
2013 	 */
2014 	if (ci->i_truncate_pending)
2015 		have &= ~CEPH_CAP_FILE_WR;
2016 
2017 	if ((have & need) == need) {
2018 		/*
2019 		 * Look at (implemented & ~have & not) so that we keep waiting
2020 		 * on transition from wanted -> needed caps.  This is needed
2021 		 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2022 		 * going before a prior buffered writeback happens.
2023 		 */
2024 		int not = want & ~(have & need);
2025 		int revoking = implemented & ~have;
2026 		dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2027 		     inode, ceph_cap_string(have), ceph_cap_string(not),
2028 		     ceph_cap_string(revoking));
2029 		if ((revoking & not) == 0) {
2030 			*got = need | (have & want);
2031 			__take_cap_refs(ci, *got);
2032 			ret = 1;
2033 		}
2034 	} else {
2035 		dout("get_cap_refs %p have %s needed %s\n", inode,
2036 		     ceph_cap_string(have), ceph_cap_string(need));
2037 	}
2038 out:
2039 	spin_unlock(&inode->i_lock);
2040 	dout("get_cap_refs %p ret %d got %s\n", inode,
2041 	     ret, ceph_cap_string(*got));
2042 	return ret;
2043 }
2044 
2045 /*
2046  * Check the offset we are writing up to against our current
2047  * max_size.  If necessary, tell the MDS we want to write to
2048  * a larger offset.
2049  */
2050 static void check_max_size(struct inode *inode, loff_t endoff)
2051 {
2052 	struct ceph_inode_info *ci = ceph_inode(inode);
2053 	int check = 0;
2054 
2055 	/* do we need to explicitly request a larger max_size? */
2056 	spin_lock(&inode->i_lock);
2057 	if ((endoff >= ci->i_max_size ||
2058 	     endoff > (inode->i_size << 1)) &&
2059 	    endoff > ci->i_wanted_max_size) {
2060 		dout("write %p at large endoff %llu, req max_size\n",
2061 		     inode, endoff);
2062 		ci->i_wanted_max_size = endoff;
2063 		check = 1;
2064 	}
2065 	spin_unlock(&inode->i_lock);
2066 	if (check)
2067 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2068 }
2069 
2070 /*
2071  * Wait for caps, and take cap references.  If we can't get a WR cap
2072  * due to a small max_size, make sure we check_max_size (and possibly
2073  * ask the mds) so we don't get hung up indefinitely.
2074  */
2075 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2076 		  loff_t endoff)
2077 {
2078 	int check_max, ret, err;
2079 
2080 retry:
2081 	if (endoff > 0)
2082 		check_max_size(&ci->vfs_inode, endoff);
2083 	check_max = 0;
2084 	err = 0;
2085 	ret = wait_event_interruptible(ci->i_cap_wq,
2086 				       try_get_cap_refs(ci, need, want,
2087 							got, endoff,
2088 							&check_max, &err));
2089 	if (err)
2090 		ret = err;
2091 	if (check_max)
2092 		goto retry;
2093 	return ret;
2094 }
2095 
2096 /*
2097  * Take cap refs.  Caller must already know we hold at least one ref
2098  * on the caps in question or we don't know this is safe.
2099  */
2100 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2101 {
2102 	spin_lock(&ci->vfs_inode.i_lock);
2103 	__take_cap_refs(ci, caps);
2104 	spin_unlock(&ci->vfs_inode.i_lock);
2105 }
2106 
2107 /*
2108  * Release cap refs.
2109  *
2110  * If we released the last ref on any given cap, call ceph_check_caps
2111  * to release (or schedule a release).
2112  *
2113  * If we are releasing a WR cap (from a sync write), finalize any affected
2114  * cap_snap, and wake up any waiters.
2115  */
2116 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2117 {
2118 	struct inode *inode = &ci->vfs_inode;
2119 	int last = 0, put = 0, flushsnaps = 0, wake = 0;
2120 	struct ceph_cap_snap *capsnap;
2121 
2122 	spin_lock(&inode->i_lock);
2123 	if (had & CEPH_CAP_PIN)
2124 		--ci->i_pin_ref;
2125 	if (had & CEPH_CAP_FILE_RD)
2126 		if (--ci->i_rd_ref == 0)
2127 			last++;
2128 	if (had & CEPH_CAP_FILE_CACHE)
2129 		if (--ci->i_rdcache_ref == 0)
2130 			last++;
2131 	if (had & CEPH_CAP_FILE_BUFFER) {
2132 		if (--ci->i_wrbuffer_ref == 0) {
2133 			last++;
2134 			put++;
2135 		}
2136 		dout("put_cap_refs %p wrbuffer %d -> %d (?)\n",
2137 		     inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref);
2138 	}
2139 	if (had & CEPH_CAP_FILE_WR)
2140 		if (--ci->i_wr_ref == 0) {
2141 			last++;
2142 			if (!list_empty(&ci->i_cap_snaps)) {
2143 				capsnap = list_first_entry(&ci->i_cap_snaps,
2144 						     struct ceph_cap_snap,
2145 						     ci_item);
2146 				if (capsnap->writing) {
2147 					capsnap->writing = 0;
2148 					flushsnaps =
2149 						__ceph_finish_cap_snap(ci,
2150 								       capsnap);
2151 					wake = 1;
2152 				}
2153 			}
2154 		}
2155 	spin_unlock(&inode->i_lock);
2156 
2157 	dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2158 	     last ? " last" : "", put ? " put" : "");
2159 
2160 	if (last && !flushsnaps)
2161 		ceph_check_caps(ci, 0, NULL);
2162 	else if (flushsnaps)
2163 		ceph_flush_snaps(ci);
2164 	if (wake)
2165 		wake_up_all(&ci->i_cap_wq);
2166 	if (put)
2167 		iput(inode);
2168 }
2169 
2170 /*
2171  * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2172  * context.  Adjust per-snap dirty page accounting as appropriate.
2173  * Once all dirty data for a cap_snap is flushed, flush snapped file
2174  * metadata back to the MDS.  If we dropped the last ref, call
2175  * ceph_check_caps.
2176  */
2177 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2178 				struct ceph_snap_context *snapc)
2179 {
2180 	struct inode *inode = &ci->vfs_inode;
2181 	int last = 0;
2182 	int complete_capsnap = 0;
2183 	int drop_capsnap = 0;
2184 	int found = 0;
2185 	struct ceph_cap_snap *capsnap = NULL;
2186 
2187 	spin_lock(&inode->i_lock);
2188 	ci->i_wrbuffer_ref -= nr;
2189 	last = !ci->i_wrbuffer_ref;
2190 
2191 	if (ci->i_head_snapc == snapc) {
2192 		ci->i_wrbuffer_ref_head -= nr;
2193 		if (!ci->i_wrbuffer_ref_head) {
2194 			ceph_put_snap_context(ci->i_head_snapc);
2195 			ci->i_head_snapc = NULL;
2196 		}
2197 		dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2198 		     inode,
2199 		     ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2200 		     ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2201 		     last ? " LAST" : "");
2202 	} else {
2203 		list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2204 			if (capsnap->context == snapc) {
2205 				found = 1;
2206 				break;
2207 			}
2208 		}
2209 		BUG_ON(!found);
2210 		capsnap->dirty_pages -= nr;
2211 		if (capsnap->dirty_pages == 0) {
2212 			complete_capsnap = 1;
2213 			if (capsnap->dirty == 0)
2214 				/* cap writeback completed before we created
2215 				 * the cap_snap; no FLUSHSNAP is needed */
2216 				drop_capsnap = 1;
2217 		}
2218 		dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2219 		     " snap %lld %d/%d -> %d/%d %s%s%s\n",
2220 		     inode, capsnap, capsnap->context->seq,
2221 		     ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2222 		     ci->i_wrbuffer_ref, capsnap->dirty_pages,
2223 		     last ? " (wrbuffer last)" : "",
2224 		     complete_capsnap ? " (complete capsnap)" : "",
2225 		     drop_capsnap ? " (drop capsnap)" : "");
2226 		if (drop_capsnap) {
2227 			ceph_put_snap_context(capsnap->context);
2228 			list_del(&capsnap->ci_item);
2229 			list_del(&capsnap->flushing_item);
2230 			ceph_put_cap_snap(capsnap);
2231 		}
2232 	}
2233 
2234 	spin_unlock(&inode->i_lock);
2235 
2236 	if (last) {
2237 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2238 		iput(inode);
2239 	} else if (complete_capsnap) {
2240 		ceph_flush_snaps(ci);
2241 		wake_up_all(&ci->i_cap_wq);
2242 	}
2243 	if (drop_capsnap)
2244 		iput(inode);
2245 }
2246 
2247 /*
2248  * Handle a cap GRANT message from the MDS.  (Note that a GRANT may
2249  * actually be a revocation if it specifies a smaller cap set.)
2250  *
2251  * caller holds s_mutex and i_lock, we drop both.
2252  *
2253  * return value:
2254  *  0 - ok
2255  *  1 - check_caps on auth cap only (writeback)
2256  *  2 - check_caps (ack revoke)
2257  */
2258 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2259 			     struct ceph_mds_session *session,
2260 			     struct ceph_cap *cap,
2261 			     struct ceph_buffer *xattr_buf)
2262 		__releases(inode->i_lock)
2263 {
2264 	struct ceph_inode_info *ci = ceph_inode(inode);
2265 	int mds = session->s_mds;
2266 	int seq = le32_to_cpu(grant->seq);
2267 	int newcaps = le32_to_cpu(grant->caps);
2268 	int issued, implemented, used, wanted, dirty;
2269 	u64 size = le64_to_cpu(grant->size);
2270 	u64 max_size = le64_to_cpu(grant->max_size);
2271 	struct timespec mtime, atime, ctime;
2272 	int check_caps = 0;
2273 	int wake = 0;
2274 	int writeback = 0;
2275 	int revoked_rdcache = 0;
2276 	int queue_invalidate = 0;
2277 
2278 	dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2279 	     inode, cap, mds, seq, ceph_cap_string(newcaps));
2280 	dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2281 		inode->i_size);
2282 
2283 	/*
2284 	 * If CACHE is being revoked, and we have no dirty buffers,
2285 	 * try to invalidate (once).  (If there are dirty buffers, we
2286 	 * will invalidate _after_ writeback.)
2287 	 */
2288 	if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2289 	    (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2290 	    !ci->i_wrbuffer_ref) {
2291 		if (try_nonblocking_invalidate(inode) == 0) {
2292 			revoked_rdcache = 1;
2293 		} else {
2294 			/* there were locked pages.. invalidate later
2295 			   in a separate thread. */
2296 			if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2297 				queue_invalidate = 1;
2298 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
2299 			}
2300 		}
2301 	}
2302 
2303 	/* side effects now are allowed */
2304 
2305 	issued = __ceph_caps_issued(ci, &implemented);
2306 	issued |= implemented | __ceph_caps_dirty(ci);
2307 
2308 	cap->cap_gen = session->s_cap_gen;
2309 
2310 	__check_cap_issue(ci, cap, newcaps);
2311 
2312 	if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2313 		inode->i_mode = le32_to_cpu(grant->mode);
2314 		inode->i_uid = le32_to_cpu(grant->uid);
2315 		inode->i_gid = le32_to_cpu(grant->gid);
2316 		dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2317 		     inode->i_uid, inode->i_gid);
2318 	}
2319 
2320 	if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2321 		inode->i_nlink = le32_to_cpu(grant->nlink);
2322 
2323 	if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2324 		int len = le32_to_cpu(grant->xattr_len);
2325 		u64 version = le64_to_cpu(grant->xattr_version);
2326 
2327 		if (version > ci->i_xattrs.version) {
2328 			dout(" got new xattrs v%llu on %p len %d\n",
2329 			     version, inode, len);
2330 			if (ci->i_xattrs.blob)
2331 				ceph_buffer_put(ci->i_xattrs.blob);
2332 			ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2333 			ci->i_xattrs.version = version;
2334 		}
2335 	}
2336 
2337 	/* size/ctime/mtime/atime? */
2338 	ceph_fill_file_size(inode, issued,
2339 			    le32_to_cpu(grant->truncate_seq),
2340 			    le64_to_cpu(grant->truncate_size), size);
2341 	ceph_decode_timespec(&mtime, &grant->mtime);
2342 	ceph_decode_timespec(&atime, &grant->atime);
2343 	ceph_decode_timespec(&ctime, &grant->ctime);
2344 	ceph_fill_file_time(inode, issued,
2345 			    le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2346 			    &atime);
2347 
2348 	/* max size increase? */
2349 	if (max_size != ci->i_max_size) {
2350 		dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2351 		ci->i_max_size = max_size;
2352 		if (max_size >= ci->i_wanted_max_size) {
2353 			ci->i_wanted_max_size = 0;  /* reset */
2354 			ci->i_requested_max_size = 0;
2355 		}
2356 		wake = 1;
2357 	}
2358 
2359 	/* check cap bits */
2360 	wanted = __ceph_caps_wanted(ci);
2361 	used = __ceph_caps_used(ci);
2362 	dirty = __ceph_caps_dirty(ci);
2363 	dout(" my wanted = %s, used = %s, dirty %s\n",
2364 	     ceph_cap_string(wanted),
2365 	     ceph_cap_string(used),
2366 	     ceph_cap_string(dirty));
2367 	if (wanted != le32_to_cpu(grant->wanted)) {
2368 		dout("mds wanted %s -> %s\n",
2369 		     ceph_cap_string(le32_to_cpu(grant->wanted)),
2370 		     ceph_cap_string(wanted));
2371 		grant->wanted = cpu_to_le32(wanted);
2372 	}
2373 
2374 	cap->seq = seq;
2375 
2376 	/* file layout may have changed */
2377 	ci->i_layout = grant->layout;
2378 
2379 	/* revocation, grant, or no-op? */
2380 	if (cap->issued & ~newcaps) {
2381 		int revoking = cap->issued & ~newcaps;
2382 
2383 		dout("revocation: %s -> %s (revoking %s)\n",
2384 		     ceph_cap_string(cap->issued),
2385 		     ceph_cap_string(newcaps),
2386 		     ceph_cap_string(revoking));
2387 		if (revoking & used & CEPH_CAP_FILE_BUFFER)
2388 			writeback = 1;  /* initiate writeback; will delay ack */
2389 		else if (revoking == CEPH_CAP_FILE_CACHE &&
2390 			 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2391 			 queue_invalidate)
2392 			; /* do nothing yet, invalidation will be queued */
2393 		else if (cap == ci->i_auth_cap)
2394 			check_caps = 1; /* check auth cap only */
2395 		else
2396 			check_caps = 2; /* check all caps */
2397 		cap->issued = newcaps;
2398 		cap->implemented |= newcaps;
2399 	} else if (cap->issued == newcaps) {
2400 		dout("caps unchanged: %s -> %s\n",
2401 		     ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2402 	} else {
2403 		dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2404 		     ceph_cap_string(newcaps));
2405 		cap->issued = newcaps;
2406 		cap->implemented |= newcaps; /* add bits only, to
2407 					      * avoid stepping on a
2408 					      * pending revocation */
2409 		wake = 1;
2410 	}
2411 	BUG_ON(cap->issued & ~cap->implemented);
2412 
2413 	spin_unlock(&inode->i_lock);
2414 	if (writeback)
2415 		/*
2416 		 * queue inode for writeback: we can't actually call
2417 		 * filemap_write_and_wait, etc. from message handler
2418 		 * context.
2419 		 */
2420 		ceph_queue_writeback(inode);
2421 	if (queue_invalidate)
2422 		ceph_queue_invalidate(inode);
2423 	if (wake)
2424 		wake_up_all(&ci->i_cap_wq);
2425 
2426 	if (check_caps == 1)
2427 		ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2428 				session);
2429 	else if (check_caps == 2)
2430 		ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2431 	else
2432 		mutex_unlock(&session->s_mutex);
2433 }
2434 
2435 /*
2436  * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2437  * MDS has been safely committed.
2438  */
2439 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2440 				 struct ceph_mds_caps *m,
2441 				 struct ceph_mds_session *session,
2442 				 struct ceph_cap *cap)
2443 	__releases(inode->i_lock)
2444 {
2445 	struct ceph_inode_info *ci = ceph_inode(inode);
2446 	struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc;
2447 	unsigned seq = le32_to_cpu(m->seq);
2448 	int dirty = le32_to_cpu(m->dirty);
2449 	int cleaned = 0;
2450 	int drop = 0;
2451 	int i;
2452 
2453 	for (i = 0; i < CEPH_CAP_BITS; i++)
2454 		if ((dirty & (1 << i)) &&
2455 		    flush_tid == ci->i_cap_flush_tid[i])
2456 			cleaned |= 1 << i;
2457 
2458 	dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2459 	     " flushing %s -> %s\n",
2460 	     inode, session->s_mds, seq, ceph_cap_string(dirty),
2461 	     ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2462 	     ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2463 
2464 	if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2465 		goto out;
2466 
2467 	ci->i_flushing_caps &= ~cleaned;
2468 
2469 	spin_lock(&mdsc->cap_dirty_lock);
2470 	if (ci->i_flushing_caps == 0) {
2471 		list_del_init(&ci->i_flushing_item);
2472 		if (!list_empty(&session->s_cap_flushing))
2473 			dout(" mds%d still flushing cap on %p\n",
2474 			     session->s_mds,
2475 			     &list_entry(session->s_cap_flushing.next,
2476 					 struct ceph_inode_info,
2477 					 i_flushing_item)->vfs_inode);
2478 		mdsc->num_cap_flushing--;
2479 		wake_up_all(&mdsc->cap_flushing_wq);
2480 		dout(" inode %p now !flushing\n", inode);
2481 
2482 		if (ci->i_dirty_caps == 0) {
2483 			dout(" inode %p now clean\n", inode);
2484 			BUG_ON(!list_empty(&ci->i_dirty_item));
2485 			drop = 1;
2486 		} else {
2487 			BUG_ON(list_empty(&ci->i_dirty_item));
2488 		}
2489 	}
2490 	spin_unlock(&mdsc->cap_dirty_lock);
2491 	wake_up_all(&ci->i_cap_wq);
2492 
2493 out:
2494 	spin_unlock(&inode->i_lock);
2495 	if (drop)
2496 		iput(inode);
2497 }
2498 
2499 /*
2500  * Handle FLUSHSNAP_ACK.  MDS has flushed snap data to disk and we can
2501  * throw away our cap_snap.
2502  *
2503  * Caller hold s_mutex.
2504  */
2505 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2506 				     struct ceph_mds_caps *m,
2507 				     struct ceph_mds_session *session)
2508 {
2509 	struct ceph_inode_info *ci = ceph_inode(inode);
2510 	u64 follows = le64_to_cpu(m->snap_follows);
2511 	struct ceph_cap_snap *capsnap;
2512 	int drop = 0;
2513 
2514 	dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2515 	     inode, ci, session->s_mds, follows);
2516 
2517 	spin_lock(&inode->i_lock);
2518 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2519 		if (capsnap->follows == follows) {
2520 			if (capsnap->flush_tid != flush_tid) {
2521 				dout(" cap_snap %p follows %lld tid %lld !="
2522 				     " %lld\n", capsnap, follows,
2523 				     flush_tid, capsnap->flush_tid);
2524 				break;
2525 			}
2526 			WARN_ON(capsnap->dirty_pages || capsnap->writing);
2527 			dout(" removing %p cap_snap %p follows %lld\n",
2528 			     inode, capsnap, follows);
2529 			ceph_put_snap_context(capsnap->context);
2530 			list_del(&capsnap->ci_item);
2531 			list_del(&capsnap->flushing_item);
2532 			ceph_put_cap_snap(capsnap);
2533 			drop = 1;
2534 			break;
2535 		} else {
2536 			dout(" skipping cap_snap %p follows %lld\n",
2537 			     capsnap, capsnap->follows);
2538 		}
2539 	}
2540 	spin_unlock(&inode->i_lock);
2541 	if (drop)
2542 		iput(inode);
2543 }
2544 
2545 /*
2546  * Handle TRUNC from MDS, indicating file truncation.
2547  *
2548  * caller hold s_mutex.
2549  */
2550 static void handle_cap_trunc(struct inode *inode,
2551 			     struct ceph_mds_caps *trunc,
2552 			     struct ceph_mds_session *session)
2553 	__releases(inode->i_lock)
2554 {
2555 	struct ceph_inode_info *ci = ceph_inode(inode);
2556 	int mds = session->s_mds;
2557 	int seq = le32_to_cpu(trunc->seq);
2558 	u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2559 	u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2560 	u64 size = le64_to_cpu(trunc->size);
2561 	int implemented = 0;
2562 	int dirty = __ceph_caps_dirty(ci);
2563 	int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2564 	int queue_trunc = 0;
2565 
2566 	issued |= implemented | dirty;
2567 
2568 	dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2569 	     inode, mds, seq, truncate_size, truncate_seq);
2570 	queue_trunc = ceph_fill_file_size(inode, issued,
2571 					  truncate_seq, truncate_size, size);
2572 	spin_unlock(&inode->i_lock);
2573 
2574 	if (queue_trunc)
2575 		ceph_queue_vmtruncate(inode);
2576 }
2577 
2578 /*
2579  * Handle EXPORT from MDS.  Cap is being migrated _from_ this mds to a
2580  * different one.  If we are the most recent migration we've seen (as
2581  * indicated by mseq), make note of the migrating cap bits for the
2582  * duration (until we see the corresponding IMPORT).
2583  *
2584  * caller holds s_mutex
2585  */
2586 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2587 			      struct ceph_mds_session *session,
2588 			      int *open_target_sessions)
2589 {
2590 	struct ceph_inode_info *ci = ceph_inode(inode);
2591 	int mds = session->s_mds;
2592 	unsigned mseq = le32_to_cpu(ex->migrate_seq);
2593 	struct ceph_cap *cap = NULL, *t;
2594 	struct rb_node *p;
2595 	int remember = 1;
2596 
2597 	dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2598 	     inode, ci, mds, mseq);
2599 
2600 	spin_lock(&inode->i_lock);
2601 
2602 	/* make sure we haven't seen a higher mseq */
2603 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2604 		t = rb_entry(p, struct ceph_cap, ci_node);
2605 		if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2606 			dout(" higher mseq on cap from mds%d\n",
2607 			     t->session->s_mds);
2608 			remember = 0;
2609 		}
2610 		if (t->session->s_mds == mds)
2611 			cap = t;
2612 	}
2613 
2614 	if (cap) {
2615 		if (remember) {
2616 			/* make note */
2617 			ci->i_cap_exporting_mds = mds;
2618 			ci->i_cap_exporting_mseq = mseq;
2619 			ci->i_cap_exporting_issued = cap->issued;
2620 
2621 			/*
2622 			 * make sure we have open sessions with all possible
2623 			 * export targets, so that we get the matching IMPORT
2624 			 */
2625 			*open_target_sessions = 1;
2626 		}
2627 		__ceph_remove_cap(cap);
2628 	}
2629 	/* else, we already released it */
2630 
2631 	spin_unlock(&inode->i_lock);
2632 }
2633 
2634 /*
2635  * Handle cap IMPORT.  If there are temp bits from an older EXPORT,
2636  * clean them up.
2637  *
2638  * caller holds s_mutex.
2639  */
2640 static void handle_cap_import(struct ceph_mds_client *mdsc,
2641 			      struct inode *inode, struct ceph_mds_caps *im,
2642 			      struct ceph_mds_session *session,
2643 			      void *snaptrace, int snaptrace_len)
2644 {
2645 	struct ceph_inode_info *ci = ceph_inode(inode);
2646 	int mds = session->s_mds;
2647 	unsigned issued = le32_to_cpu(im->caps);
2648 	unsigned wanted = le32_to_cpu(im->wanted);
2649 	unsigned seq = le32_to_cpu(im->seq);
2650 	unsigned mseq = le32_to_cpu(im->migrate_seq);
2651 	u64 realmino = le64_to_cpu(im->realm);
2652 	u64 cap_id = le64_to_cpu(im->cap_id);
2653 
2654 	if (ci->i_cap_exporting_mds >= 0 &&
2655 	    ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2656 		dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2657 		     " - cleared exporting from mds%d\n",
2658 		     inode, ci, mds, mseq,
2659 		     ci->i_cap_exporting_mds);
2660 		ci->i_cap_exporting_issued = 0;
2661 		ci->i_cap_exporting_mseq = 0;
2662 		ci->i_cap_exporting_mds = -1;
2663 	} else {
2664 		dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2665 		     inode, ci, mds, mseq);
2666 	}
2667 
2668 	down_write(&mdsc->snap_rwsem);
2669 	ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2670 			       false);
2671 	downgrade_write(&mdsc->snap_rwsem);
2672 	ceph_add_cap(inode, session, cap_id, -1,
2673 		     issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2674 		     NULL /* no caps context */);
2675 	try_flush_caps(inode, session, NULL);
2676 	up_read(&mdsc->snap_rwsem);
2677 }
2678 
2679 /*
2680  * Handle a caps message from the MDS.
2681  *
2682  * Identify the appropriate session, inode, and call the right handler
2683  * based on the cap op.
2684  */
2685 void ceph_handle_caps(struct ceph_mds_session *session,
2686 		      struct ceph_msg *msg)
2687 {
2688 	struct ceph_mds_client *mdsc = session->s_mdsc;
2689 	struct super_block *sb = mdsc->client->sb;
2690 	struct inode *inode;
2691 	struct ceph_cap *cap;
2692 	struct ceph_mds_caps *h;
2693 	int mds = session->s_mds;
2694 	int op;
2695 	u32 seq, mseq;
2696 	struct ceph_vino vino;
2697 	u64 cap_id;
2698 	u64 size, max_size;
2699 	u64 tid;
2700 	void *snaptrace;
2701 	size_t snaptrace_len;
2702 	void *flock;
2703 	u32 flock_len;
2704 	int open_target_sessions = 0;
2705 
2706 	dout("handle_caps from mds%d\n", mds);
2707 
2708 	/* decode */
2709 	tid = le64_to_cpu(msg->hdr.tid);
2710 	if (msg->front.iov_len < sizeof(*h))
2711 		goto bad;
2712 	h = msg->front.iov_base;
2713 	op = le32_to_cpu(h->op);
2714 	vino.ino = le64_to_cpu(h->ino);
2715 	vino.snap = CEPH_NOSNAP;
2716 	cap_id = le64_to_cpu(h->cap_id);
2717 	seq = le32_to_cpu(h->seq);
2718 	mseq = le32_to_cpu(h->migrate_seq);
2719 	size = le64_to_cpu(h->size);
2720 	max_size = le64_to_cpu(h->max_size);
2721 
2722 	snaptrace = h + 1;
2723 	snaptrace_len = le32_to_cpu(h->snap_trace_len);
2724 
2725 	if (le16_to_cpu(msg->hdr.version) >= 2) {
2726 		void *p, *end;
2727 
2728 		p = snaptrace + snaptrace_len;
2729 		end = msg->front.iov_base + msg->front.iov_len;
2730 		ceph_decode_32_safe(&p, end, flock_len, bad);
2731 		flock = p;
2732 	} else {
2733 		flock = NULL;
2734 		flock_len = 0;
2735 	}
2736 
2737 	mutex_lock(&session->s_mutex);
2738 	session->s_seq++;
2739 	dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2740 	     (unsigned)seq);
2741 
2742 	/* lookup ino */
2743 	inode = ceph_find_inode(sb, vino);
2744 	dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2745 	     vino.snap, inode);
2746 	if (!inode) {
2747 		dout(" i don't have ino %llx\n", vino.ino);
2748 
2749 		if (op == CEPH_CAP_OP_IMPORT)
2750 			__queue_cap_release(session, vino.ino, cap_id,
2751 					    mseq, seq);
2752 
2753 		/*
2754 		 * send any full release message to try to move things
2755 		 * along for the mds (who clearly thinks we still have this
2756 		 * cap).
2757 		 */
2758 		ceph_add_cap_releases(mdsc, session);
2759 		ceph_send_cap_releases(mdsc, session);
2760 		goto done;
2761 	}
2762 
2763 	/* these will work even if we don't have a cap yet */
2764 	switch (op) {
2765 	case CEPH_CAP_OP_FLUSHSNAP_ACK:
2766 		handle_cap_flushsnap_ack(inode, tid, h, session);
2767 		goto done;
2768 
2769 	case CEPH_CAP_OP_EXPORT:
2770 		handle_cap_export(inode, h, session, &open_target_sessions);
2771 		goto done;
2772 
2773 	case CEPH_CAP_OP_IMPORT:
2774 		handle_cap_import(mdsc, inode, h, session,
2775 				  snaptrace, snaptrace_len);
2776 		ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY,
2777 				session);
2778 		goto done_unlocked;
2779 	}
2780 
2781 	/* the rest require a cap */
2782 	spin_lock(&inode->i_lock);
2783 	cap = __get_cap_for_mds(ceph_inode(inode), mds);
2784 	if (!cap) {
2785 		dout(" no cap on %p ino %llx.%llx from mds%d\n",
2786 		     inode, ceph_ino(inode), ceph_snap(inode), mds);
2787 		spin_unlock(&inode->i_lock);
2788 		goto done;
2789 	}
2790 
2791 	/* note that each of these drops i_lock for us */
2792 	switch (op) {
2793 	case CEPH_CAP_OP_REVOKE:
2794 	case CEPH_CAP_OP_GRANT:
2795 		handle_cap_grant(inode, h, session, cap, msg->middle);
2796 		goto done_unlocked;
2797 
2798 	case CEPH_CAP_OP_FLUSH_ACK:
2799 		handle_cap_flush_ack(inode, tid, h, session, cap);
2800 		break;
2801 
2802 	case CEPH_CAP_OP_TRUNC:
2803 		handle_cap_trunc(inode, h, session);
2804 		break;
2805 
2806 	default:
2807 		spin_unlock(&inode->i_lock);
2808 		pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2809 		       ceph_cap_op_name(op));
2810 	}
2811 
2812 done:
2813 	mutex_unlock(&session->s_mutex);
2814 done_unlocked:
2815 	if (inode)
2816 		iput(inode);
2817 	if (open_target_sessions)
2818 		ceph_mdsc_open_export_target_sessions(mdsc, session);
2819 	return;
2820 
2821 bad:
2822 	pr_err("ceph_handle_caps: corrupt message\n");
2823 	ceph_msg_dump(msg);
2824 	return;
2825 }
2826 
2827 /*
2828  * Delayed work handler to process end of delayed cap release LRU list.
2829  */
2830 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
2831 {
2832 	struct ceph_inode_info *ci;
2833 	int flags = CHECK_CAPS_NODELAY;
2834 
2835 	dout("check_delayed_caps\n");
2836 	while (1) {
2837 		spin_lock(&mdsc->cap_delay_lock);
2838 		if (list_empty(&mdsc->cap_delay_list))
2839 			break;
2840 		ci = list_first_entry(&mdsc->cap_delay_list,
2841 				      struct ceph_inode_info,
2842 				      i_cap_delay_list);
2843 		if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2844 		    time_before(jiffies, ci->i_hold_caps_max))
2845 			break;
2846 		list_del_init(&ci->i_cap_delay_list);
2847 		spin_unlock(&mdsc->cap_delay_lock);
2848 		dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2849 		ceph_check_caps(ci, flags, NULL);
2850 	}
2851 	spin_unlock(&mdsc->cap_delay_lock);
2852 }
2853 
2854 /*
2855  * Flush all dirty caps to the mds
2856  */
2857 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2858 {
2859 	struct ceph_inode_info *ci, *nci = NULL;
2860 	struct inode *inode, *ninode = NULL;
2861 	struct list_head *p, *n;
2862 
2863 	dout("flush_dirty_caps\n");
2864 	spin_lock(&mdsc->cap_dirty_lock);
2865 	list_for_each_safe(p, n, &mdsc->cap_dirty) {
2866 		if (nci) {
2867 			ci = nci;
2868 			inode = ninode;
2869 			ci->i_ceph_flags &= ~CEPH_I_NOFLUSH;
2870 			dout("flush_dirty_caps inode %p (was next inode)\n",
2871 			     inode);
2872 		} else {
2873 			ci = list_entry(p, struct ceph_inode_info,
2874 					i_dirty_item);
2875 			inode = igrab(&ci->vfs_inode);
2876 			BUG_ON(!inode);
2877 			dout("flush_dirty_caps inode %p\n", inode);
2878 		}
2879 		if (n != &mdsc->cap_dirty) {
2880 			nci = list_entry(n, struct ceph_inode_info,
2881 					 i_dirty_item);
2882 			ninode = igrab(&nci->vfs_inode);
2883 			BUG_ON(!ninode);
2884 			nci->i_ceph_flags |= CEPH_I_NOFLUSH;
2885 			dout("flush_dirty_caps next inode %p, noflush\n",
2886 			     ninode);
2887 		} else {
2888 			nci = NULL;
2889 			ninode = NULL;
2890 		}
2891 		spin_unlock(&mdsc->cap_dirty_lock);
2892 		if (inode) {
2893 			ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH,
2894 					NULL);
2895 			iput(inode);
2896 		}
2897 		spin_lock(&mdsc->cap_dirty_lock);
2898 	}
2899 	spin_unlock(&mdsc->cap_dirty_lock);
2900 }
2901 
2902 /*
2903  * Drop open file reference.  If we were the last open file,
2904  * we may need to release capabilities to the MDS (or schedule
2905  * their delayed release).
2906  */
2907 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2908 {
2909 	struct inode *inode = &ci->vfs_inode;
2910 	int last = 0;
2911 
2912 	spin_lock(&inode->i_lock);
2913 	dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
2914 	     ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
2915 	BUG_ON(ci->i_nr_by_mode[fmode] == 0);
2916 	if (--ci->i_nr_by_mode[fmode] == 0)
2917 		last++;
2918 	spin_unlock(&inode->i_lock);
2919 
2920 	if (last && ci->i_vino.snap == CEPH_NOSNAP)
2921 		ceph_check_caps(ci, 0, NULL);
2922 }
2923 
2924 /*
2925  * Helpers for embedding cap and dentry lease releases into mds
2926  * requests.
2927  *
2928  * @force is used by dentry_release (below) to force inclusion of a
2929  * record for the directory inode, even when there aren't any caps to
2930  * drop.
2931  */
2932 int ceph_encode_inode_release(void **p, struct inode *inode,
2933 			      int mds, int drop, int unless, int force)
2934 {
2935 	struct ceph_inode_info *ci = ceph_inode(inode);
2936 	struct ceph_cap *cap;
2937 	struct ceph_mds_request_release *rel = *p;
2938 	int used, dirty;
2939 	int ret = 0;
2940 
2941 	spin_lock(&inode->i_lock);
2942 	used = __ceph_caps_used(ci);
2943 	dirty = __ceph_caps_dirty(ci);
2944 
2945 	dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
2946 	     inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
2947 	     ceph_cap_string(unless));
2948 
2949 	/* only drop unused, clean caps */
2950 	drop &= ~(used | dirty);
2951 
2952 	cap = __get_cap_for_mds(ci, mds);
2953 	if (cap && __cap_is_valid(cap)) {
2954 		if (force ||
2955 		    ((cap->issued & drop) &&
2956 		     (cap->issued & unless) == 0)) {
2957 			if ((cap->issued & drop) &&
2958 			    (cap->issued & unless) == 0) {
2959 				dout("encode_inode_release %p cap %p %s -> "
2960 				     "%s\n", inode, cap,
2961 				     ceph_cap_string(cap->issued),
2962 				     ceph_cap_string(cap->issued & ~drop));
2963 				cap->issued &= ~drop;
2964 				cap->implemented &= ~drop;
2965 				if (ci->i_ceph_flags & CEPH_I_NODELAY) {
2966 					int wanted = __ceph_caps_wanted(ci);
2967 					dout("  wanted %s -> %s (act %s)\n",
2968 					     ceph_cap_string(cap->mds_wanted),
2969 					     ceph_cap_string(cap->mds_wanted &
2970 							     ~wanted),
2971 					     ceph_cap_string(wanted));
2972 					cap->mds_wanted &= wanted;
2973 				}
2974 			} else {
2975 				dout("encode_inode_release %p cap %p %s"
2976 				     " (force)\n", inode, cap,
2977 				     ceph_cap_string(cap->issued));
2978 			}
2979 
2980 			rel->ino = cpu_to_le64(ceph_ino(inode));
2981 			rel->cap_id = cpu_to_le64(cap->cap_id);
2982 			rel->seq = cpu_to_le32(cap->seq);
2983 			rel->issue_seq = cpu_to_le32(cap->issue_seq),
2984 			rel->mseq = cpu_to_le32(cap->mseq);
2985 			rel->caps = cpu_to_le32(cap->issued);
2986 			rel->wanted = cpu_to_le32(cap->mds_wanted);
2987 			rel->dname_len = 0;
2988 			rel->dname_seq = 0;
2989 			*p += sizeof(*rel);
2990 			ret = 1;
2991 		} else {
2992 			dout("encode_inode_release %p cap %p %s\n",
2993 			     inode, cap, ceph_cap_string(cap->issued));
2994 		}
2995 	}
2996 	spin_unlock(&inode->i_lock);
2997 	return ret;
2998 }
2999 
3000 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
3001 			       int mds, int drop, int unless)
3002 {
3003 	struct inode *dir = dentry->d_parent->d_inode;
3004 	struct ceph_mds_request_release *rel = *p;
3005 	struct ceph_dentry_info *di = ceph_dentry(dentry);
3006 	int force = 0;
3007 	int ret;
3008 
3009 	/*
3010 	 * force an record for the directory caps if we have a dentry lease.
3011 	 * this is racy (can't take i_lock and d_lock together), but it
3012 	 * doesn't have to be perfect; the mds will revoke anything we don't
3013 	 * release.
3014 	 */
3015 	spin_lock(&dentry->d_lock);
3016 	if (di->lease_session && di->lease_session->s_mds == mds)
3017 		force = 1;
3018 	spin_unlock(&dentry->d_lock);
3019 
3020 	ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
3021 
3022 	spin_lock(&dentry->d_lock);
3023 	if (ret && di->lease_session && di->lease_session->s_mds == mds) {
3024 		dout("encode_dentry_release %p mds%d seq %d\n",
3025 		     dentry, mds, (int)di->lease_seq);
3026 		rel->dname_len = cpu_to_le32(dentry->d_name.len);
3027 		memcpy(*p, dentry->d_name.name, dentry->d_name.len);
3028 		*p += dentry->d_name.len;
3029 		rel->dname_seq = cpu_to_le32(di->lease_seq);
3030 		__ceph_mdsc_drop_dentry_lease(dentry);
3031 	}
3032 	spin_unlock(&dentry->d_lock);
3033 	return ret;
3034 }
3035