1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include <linux/wait.h> 9 #include <linux/writeback.h> 10 11 #include "super.h" 12 #include "mds_client.h" 13 #include "cache.h" 14 #include <linux/ceph/decode.h> 15 #include <linux/ceph/messenger.h> 16 17 /* 18 * Capability management 19 * 20 * The Ceph metadata servers control client access to inode metadata 21 * and file data by issuing capabilities, granting clients permission 22 * to read and/or write both inode field and file data to OSDs 23 * (storage nodes). Each capability consists of a set of bits 24 * indicating which operations are allowed. 25 * 26 * If the client holds a *_SHARED cap, the client has a coherent value 27 * that can be safely read from the cached inode. 28 * 29 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the 30 * client is allowed to change inode attributes (e.g., file size, 31 * mtime), note its dirty state in the ceph_cap, and asynchronously 32 * flush that metadata change to the MDS. 33 * 34 * In the event of a conflicting operation (perhaps by another 35 * client), the MDS will revoke the conflicting client capabilities. 36 * 37 * In order for a client to cache an inode, it must hold a capability 38 * with at least one MDS server. When inodes are released, release 39 * notifications are batched and periodically sent en masse to the MDS 40 * cluster to release server state. 41 */ 42 43 44 /* 45 * Generate readable cap strings for debugging output. 46 */ 47 #define MAX_CAP_STR 20 48 static char cap_str[MAX_CAP_STR][40]; 49 static DEFINE_SPINLOCK(cap_str_lock); 50 static int last_cap_str; 51 52 static char *gcap_string(char *s, int c) 53 { 54 if (c & CEPH_CAP_GSHARED) 55 *s++ = 's'; 56 if (c & CEPH_CAP_GEXCL) 57 *s++ = 'x'; 58 if (c & CEPH_CAP_GCACHE) 59 *s++ = 'c'; 60 if (c & CEPH_CAP_GRD) 61 *s++ = 'r'; 62 if (c & CEPH_CAP_GWR) 63 *s++ = 'w'; 64 if (c & CEPH_CAP_GBUFFER) 65 *s++ = 'b'; 66 if (c & CEPH_CAP_GLAZYIO) 67 *s++ = 'l'; 68 return s; 69 } 70 71 const char *ceph_cap_string(int caps) 72 { 73 int i; 74 char *s; 75 int c; 76 77 spin_lock(&cap_str_lock); 78 i = last_cap_str++; 79 if (last_cap_str == MAX_CAP_STR) 80 last_cap_str = 0; 81 spin_unlock(&cap_str_lock); 82 83 s = cap_str[i]; 84 85 if (caps & CEPH_CAP_PIN) 86 *s++ = 'p'; 87 88 c = (caps >> CEPH_CAP_SAUTH) & 3; 89 if (c) { 90 *s++ = 'A'; 91 s = gcap_string(s, c); 92 } 93 94 c = (caps >> CEPH_CAP_SLINK) & 3; 95 if (c) { 96 *s++ = 'L'; 97 s = gcap_string(s, c); 98 } 99 100 c = (caps >> CEPH_CAP_SXATTR) & 3; 101 if (c) { 102 *s++ = 'X'; 103 s = gcap_string(s, c); 104 } 105 106 c = caps >> CEPH_CAP_SFILE; 107 if (c) { 108 *s++ = 'F'; 109 s = gcap_string(s, c); 110 } 111 112 if (s == cap_str[i]) 113 *s++ = '-'; 114 *s = 0; 115 return cap_str[i]; 116 } 117 118 void ceph_caps_init(struct ceph_mds_client *mdsc) 119 { 120 INIT_LIST_HEAD(&mdsc->caps_list); 121 spin_lock_init(&mdsc->caps_list_lock); 122 } 123 124 void ceph_caps_finalize(struct ceph_mds_client *mdsc) 125 { 126 struct ceph_cap *cap; 127 128 spin_lock(&mdsc->caps_list_lock); 129 while (!list_empty(&mdsc->caps_list)) { 130 cap = list_first_entry(&mdsc->caps_list, 131 struct ceph_cap, caps_item); 132 list_del(&cap->caps_item); 133 kmem_cache_free(ceph_cap_cachep, cap); 134 } 135 mdsc->caps_total_count = 0; 136 mdsc->caps_avail_count = 0; 137 mdsc->caps_use_count = 0; 138 mdsc->caps_reserve_count = 0; 139 mdsc->caps_min_count = 0; 140 spin_unlock(&mdsc->caps_list_lock); 141 } 142 143 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta) 144 { 145 spin_lock(&mdsc->caps_list_lock); 146 mdsc->caps_min_count += delta; 147 BUG_ON(mdsc->caps_min_count < 0); 148 spin_unlock(&mdsc->caps_list_lock); 149 } 150 151 void ceph_reserve_caps(struct ceph_mds_client *mdsc, 152 struct ceph_cap_reservation *ctx, int need) 153 { 154 int i; 155 struct ceph_cap *cap; 156 int have; 157 int alloc = 0; 158 LIST_HEAD(newcaps); 159 160 dout("reserve caps ctx=%p need=%d\n", ctx, need); 161 162 /* first reserve any caps that are already allocated */ 163 spin_lock(&mdsc->caps_list_lock); 164 if (mdsc->caps_avail_count >= need) 165 have = need; 166 else 167 have = mdsc->caps_avail_count; 168 mdsc->caps_avail_count -= have; 169 mdsc->caps_reserve_count += have; 170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 171 mdsc->caps_reserve_count + 172 mdsc->caps_avail_count); 173 spin_unlock(&mdsc->caps_list_lock); 174 175 for (i = have; i < need; i++) { 176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 177 if (!cap) 178 break; 179 list_add(&cap->caps_item, &newcaps); 180 alloc++; 181 } 182 /* we didn't manage to reserve as much as we needed */ 183 if (have + alloc != need) 184 pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n", 185 ctx, need, have + alloc); 186 187 spin_lock(&mdsc->caps_list_lock); 188 mdsc->caps_total_count += alloc; 189 mdsc->caps_reserve_count += alloc; 190 list_splice(&newcaps, &mdsc->caps_list); 191 192 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 193 mdsc->caps_reserve_count + 194 mdsc->caps_avail_count); 195 spin_unlock(&mdsc->caps_list_lock); 196 197 ctx->count = need; 198 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", 199 ctx, mdsc->caps_total_count, mdsc->caps_use_count, 200 mdsc->caps_reserve_count, mdsc->caps_avail_count); 201 } 202 203 int ceph_unreserve_caps(struct ceph_mds_client *mdsc, 204 struct ceph_cap_reservation *ctx) 205 { 206 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); 207 if (ctx->count) { 208 spin_lock(&mdsc->caps_list_lock); 209 BUG_ON(mdsc->caps_reserve_count < ctx->count); 210 mdsc->caps_reserve_count -= ctx->count; 211 mdsc->caps_avail_count += ctx->count; 212 ctx->count = 0; 213 dout("unreserve caps %d = %d used + %d resv + %d avail\n", 214 mdsc->caps_total_count, mdsc->caps_use_count, 215 mdsc->caps_reserve_count, mdsc->caps_avail_count); 216 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 217 mdsc->caps_reserve_count + 218 mdsc->caps_avail_count); 219 spin_unlock(&mdsc->caps_list_lock); 220 } 221 return 0; 222 } 223 224 struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc, 225 struct ceph_cap_reservation *ctx) 226 { 227 struct ceph_cap *cap = NULL; 228 229 /* temporary, until we do something about cap import/export */ 230 if (!ctx) { 231 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 232 if (cap) { 233 spin_lock(&mdsc->caps_list_lock); 234 mdsc->caps_use_count++; 235 mdsc->caps_total_count++; 236 spin_unlock(&mdsc->caps_list_lock); 237 } 238 return cap; 239 } 240 241 spin_lock(&mdsc->caps_list_lock); 242 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 243 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count, 244 mdsc->caps_reserve_count, mdsc->caps_avail_count); 245 BUG_ON(!ctx->count); 246 BUG_ON(ctx->count > mdsc->caps_reserve_count); 247 BUG_ON(list_empty(&mdsc->caps_list)); 248 249 ctx->count--; 250 mdsc->caps_reserve_count--; 251 mdsc->caps_use_count++; 252 253 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item); 254 list_del(&cap->caps_item); 255 256 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 257 mdsc->caps_reserve_count + mdsc->caps_avail_count); 258 spin_unlock(&mdsc->caps_list_lock); 259 return cap; 260 } 261 262 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap) 263 { 264 spin_lock(&mdsc->caps_list_lock); 265 dout("put_cap %p %d = %d used + %d resv + %d avail\n", 266 cap, mdsc->caps_total_count, mdsc->caps_use_count, 267 mdsc->caps_reserve_count, mdsc->caps_avail_count); 268 mdsc->caps_use_count--; 269 /* 270 * Keep some preallocated caps around (ceph_min_count), to 271 * avoid lots of free/alloc churn. 272 */ 273 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count + 274 mdsc->caps_min_count) { 275 mdsc->caps_total_count--; 276 kmem_cache_free(ceph_cap_cachep, cap); 277 } else { 278 mdsc->caps_avail_count++; 279 list_add(&cap->caps_item, &mdsc->caps_list); 280 } 281 282 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 283 mdsc->caps_reserve_count + mdsc->caps_avail_count); 284 spin_unlock(&mdsc->caps_list_lock); 285 } 286 287 void ceph_reservation_status(struct ceph_fs_client *fsc, 288 int *total, int *avail, int *used, int *reserved, 289 int *min) 290 { 291 struct ceph_mds_client *mdsc = fsc->mdsc; 292 293 if (total) 294 *total = mdsc->caps_total_count; 295 if (avail) 296 *avail = mdsc->caps_avail_count; 297 if (used) 298 *used = mdsc->caps_use_count; 299 if (reserved) 300 *reserved = mdsc->caps_reserve_count; 301 if (min) 302 *min = mdsc->caps_min_count; 303 } 304 305 /* 306 * Find ceph_cap for given mds, if any. 307 * 308 * Called with i_ceph_lock held. 309 */ 310 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) 311 { 312 struct ceph_cap *cap; 313 struct rb_node *n = ci->i_caps.rb_node; 314 315 while (n) { 316 cap = rb_entry(n, struct ceph_cap, ci_node); 317 if (mds < cap->mds) 318 n = n->rb_left; 319 else if (mds > cap->mds) 320 n = n->rb_right; 321 else 322 return cap; 323 } 324 return NULL; 325 } 326 327 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds) 328 { 329 struct ceph_cap *cap; 330 331 spin_lock(&ci->i_ceph_lock); 332 cap = __get_cap_for_mds(ci, mds); 333 spin_unlock(&ci->i_ceph_lock); 334 return cap; 335 } 336 337 /* 338 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1. 339 */ 340 static int __ceph_get_cap_mds(struct ceph_inode_info *ci) 341 { 342 struct ceph_cap *cap; 343 int mds = -1; 344 struct rb_node *p; 345 346 /* prefer mds with WR|BUFFER|EXCL caps */ 347 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 348 cap = rb_entry(p, struct ceph_cap, ci_node); 349 mds = cap->mds; 350 if (cap->issued & (CEPH_CAP_FILE_WR | 351 CEPH_CAP_FILE_BUFFER | 352 CEPH_CAP_FILE_EXCL)) 353 break; 354 } 355 return mds; 356 } 357 358 int ceph_get_cap_mds(struct inode *inode) 359 { 360 struct ceph_inode_info *ci = ceph_inode(inode); 361 int mds; 362 spin_lock(&ci->i_ceph_lock); 363 mds = __ceph_get_cap_mds(ceph_inode(inode)); 364 spin_unlock(&ci->i_ceph_lock); 365 return mds; 366 } 367 368 /* 369 * Called under i_ceph_lock. 370 */ 371 static void __insert_cap_node(struct ceph_inode_info *ci, 372 struct ceph_cap *new) 373 { 374 struct rb_node **p = &ci->i_caps.rb_node; 375 struct rb_node *parent = NULL; 376 struct ceph_cap *cap = NULL; 377 378 while (*p) { 379 parent = *p; 380 cap = rb_entry(parent, struct ceph_cap, ci_node); 381 if (new->mds < cap->mds) 382 p = &(*p)->rb_left; 383 else if (new->mds > cap->mds) 384 p = &(*p)->rb_right; 385 else 386 BUG(); 387 } 388 389 rb_link_node(&new->ci_node, parent, p); 390 rb_insert_color(&new->ci_node, &ci->i_caps); 391 } 392 393 /* 394 * (re)set cap hold timeouts, which control the delayed release 395 * of unused caps back to the MDS. Should be called on cap use. 396 */ 397 static void __cap_set_timeouts(struct ceph_mds_client *mdsc, 398 struct ceph_inode_info *ci) 399 { 400 struct ceph_mount_options *ma = mdsc->fsc->mount_options; 401 402 ci->i_hold_caps_min = round_jiffies(jiffies + 403 ma->caps_wanted_delay_min * HZ); 404 ci->i_hold_caps_max = round_jiffies(jiffies + 405 ma->caps_wanted_delay_max * HZ); 406 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, 407 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); 408 } 409 410 /* 411 * (Re)queue cap at the end of the delayed cap release list. 412 * 413 * If I_FLUSH is set, leave the inode at the front of the list. 414 * 415 * Caller holds i_ceph_lock 416 * -> we take mdsc->cap_delay_lock 417 */ 418 static void __cap_delay_requeue(struct ceph_mds_client *mdsc, 419 struct ceph_inode_info *ci) 420 { 421 __cap_set_timeouts(mdsc, ci); 422 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, 423 ci->i_ceph_flags, ci->i_hold_caps_max); 424 if (!mdsc->stopping) { 425 spin_lock(&mdsc->cap_delay_lock); 426 if (!list_empty(&ci->i_cap_delay_list)) { 427 if (ci->i_ceph_flags & CEPH_I_FLUSH) 428 goto no_change; 429 list_del_init(&ci->i_cap_delay_list); 430 } 431 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 432 no_change: 433 spin_unlock(&mdsc->cap_delay_lock); 434 } 435 } 436 437 /* 438 * Queue an inode for immediate writeback. Mark inode with I_FLUSH, 439 * indicating we should send a cap message to flush dirty metadata 440 * asap, and move to the front of the delayed cap list. 441 */ 442 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, 443 struct ceph_inode_info *ci) 444 { 445 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); 446 spin_lock(&mdsc->cap_delay_lock); 447 ci->i_ceph_flags |= CEPH_I_FLUSH; 448 if (!list_empty(&ci->i_cap_delay_list)) 449 list_del_init(&ci->i_cap_delay_list); 450 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 451 spin_unlock(&mdsc->cap_delay_lock); 452 } 453 454 /* 455 * Cancel delayed work on cap. 456 * 457 * Caller must hold i_ceph_lock. 458 */ 459 static void __cap_delay_cancel(struct ceph_mds_client *mdsc, 460 struct ceph_inode_info *ci) 461 { 462 dout("__cap_delay_cancel %p\n", &ci->vfs_inode); 463 if (list_empty(&ci->i_cap_delay_list)) 464 return; 465 spin_lock(&mdsc->cap_delay_lock); 466 list_del_init(&ci->i_cap_delay_list); 467 spin_unlock(&mdsc->cap_delay_lock); 468 } 469 470 /* 471 * Common issue checks for add_cap, handle_cap_grant. 472 */ 473 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, 474 unsigned issued) 475 { 476 unsigned had = __ceph_caps_issued(ci, NULL); 477 478 /* 479 * Each time we receive FILE_CACHE anew, we increment 480 * i_rdcache_gen. 481 */ 482 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && 483 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) { 484 ci->i_rdcache_gen++; 485 } 486 487 /* 488 * if we are newly issued FILE_SHARED, mark dir not complete; we 489 * don't know what happened to this directory while we didn't 490 * have the cap. 491 */ 492 if ((issued & CEPH_CAP_FILE_SHARED) && 493 (had & CEPH_CAP_FILE_SHARED) == 0) { 494 ci->i_shared_gen++; 495 if (S_ISDIR(ci->vfs_inode.i_mode)) { 496 dout(" marking %p NOT complete\n", &ci->vfs_inode); 497 __ceph_dir_clear_complete(ci); 498 } 499 } 500 } 501 502 /* 503 * Add a capability under the given MDS session. 504 * 505 * Caller should hold session snap_rwsem (read) and s_mutex. 506 * 507 * @fmode is the open file mode, if we are opening a file, otherwise 508 * it is < 0. (This is so we can atomically add the cap and add an 509 * open file reference to it.) 510 */ 511 void ceph_add_cap(struct inode *inode, 512 struct ceph_mds_session *session, u64 cap_id, 513 int fmode, unsigned issued, unsigned wanted, 514 unsigned seq, unsigned mseq, u64 realmino, int flags, 515 struct ceph_cap **new_cap) 516 { 517 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 518 struct ceph_inode_info *ci = ceph_inode(inode); 519 struct ceph_cap *cap; 520 int mds = session->s_mds; 521 int actual_wanted; 522 523 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, 524 session->s_mds, cap_id, ceph_cap_string(issued), seq); 525 526 /* 527 * If we are opening the file, include file mode wanted bits 528 * in wanted. 529 */ 530 if (fmode >= 0) 531 wanted |= ceph_caps_for_mode(fmode); 532 533 cap = __get_cap_for_mds(ci, mds); 534 if (!cap) { 535 cap = *new_cap; 536 *new_cap = NULL; 537 538 cap->issued = 0; 539 cap->implemented = 0; 540 cap->mds = mds; 541 cap->mds_wanted = 0; 542 cap->mseq = 0; 543 544 cap->ci = ci; 545 __insert_cap_node(ci, cap); 546 547 /* add to session cap list */ 548 cap->session = session; 549 spin_lock(&session->s_cap_lock); 550 list_add_tail(&cap->session_caps, &session->s_caps); 551 session->s_nr_caps++; 552 spin_unlock(&session->s_cap_lock); 553 } else { 554 /* 555 * auth mds of the inode changed. we received the cap export 556 * message, but still haven't received the cap import message. 557 * handle_cap_export() updated the new auth MDS' cap. 558 * 559 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing 560 * a message that was send before the cap import message. So 561 * don't remove caps. 562 */ 563 if (ceph_seq_cmp(seq, cap->seq) <= 0) { 564 WARN_ON(cap != ci->i_auth_cap); 565 WARN_ON(cap->cap_id != cap_id); 566 seq = cap->seq; 567 mseq = cap->mseq; 568 issued |= cap->issued; 569 flags |= CEPH_CAP_FLAG_AUTH; 570 } 571 } 572 573 if (!ci->i_snap_realm) { 574 /* 575 * add this inode to the appropriate snap realm 576 */ 577 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, 578 realmino); 579 if (realm) { 580 spin_lock(&realm->inodes_with_caps_lock); 581 ci->i_snap_realm = realm; 582 list_add(&ci->i_snap_realm_item, 583 &realm->inodes_with_caps); 584 spin_unlock(&realm->inodes_with_caps_lock); 585 } else { 586 pr_err("ceph_add_cap: couldn't find snap realm %llx\n", 587 realmino); 588 WARN_ON(!realm); 589 } 590 } 591 592 __check_cap_issue(ci, cap, issued); 593 594 /* 595 * If we are issued caps we don't want, or the mds' wanted 596 * value appears to be off, queue a check so we'll release 597 * later and/or update the mds wanted value. 598 */ 599 actual_wanted = __ceph_caps_wanted(ci); 600 if ((wanted & ~actual_wanted) || 601 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { 602 dout(" issued %s, mds wanted %s, actual %s, queueing\n", 603 ceph_cap_string(issued), ceph_cap_string(wanted), 604 ceph_cap_string(actual_wanted)); 605 __cap_delay_requeue(mdsc, ci); 606 } 607 608 if (flags & CEPH_CAP_FLAG_AUTH) { 609 if (ci->i_auth_cap == NULL || 610 ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0) { 611 ci->i_auth_cap = cap; 612 cap->mds_wanted = wanted; 613 } 614 } else { 615 WARN_ON(ci->i_auth_cap == cap); 616 } 617 618 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", 619 inode, ceph_vinop(inode), cap, ceph_cap_string(issued), 620 ceph_cap_string(issued|cap->issued), seq, mds); 621 cap->cap_id = cap_id; 622 cap->issued = issued; 623 cap->implemented |= issued; 624 if (ceph_seq_cmp(mseq, cap->mseq) > 0) 625 cap->mds_wanted = wanted; 626 else 627 cap->mds_wanted |= wanted; 628 cap->seq = seq; 629 cap->issue_seq = seq; 630 cap->mseq = mseq; 631 cap->cap_gen = session->s_cap_gen; 632 633 if (fmode >= 0) 634 __ceph_get_fmode(ci, fmode); 635 } 636 637 /* 638 * Return true if cap has not timed out and belongs to the current 639 * generation of the MDS session (i.e. has not gone 'stale' due to 640 * us losing touch with the mds). 641 */ 642 static int __cap_is_valid(struct ceph_cap *cap) 643 { 644 unsigned long ttl; 645 u32 gen; 646 647 spin_lock(&cap->session->s_gen_ttl_lock); 648 gen = cap->session->s_cap_gen; 649 ttl = cap->session->s_cap_ttl; 650 spin_unlock(&cap->session->s_gen_ttl_lock); 651 652 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { 653 dout("__cap_is_valid %p cap %p issued %s " 654 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, 655 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); 656 return 0; 657 } 658 659 return 1; 660 } 661 662 /* 663 * Return set of valid cap bits issued to us. Note that caps time 664 * out, and may be invalidated in bulk if the client session times out 665 * and session->s_cap_gen is bumped. 666 */ 667 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) 668 { 669 int have = ci->i_snap_caps; 670 struct ceph_cap *cap; 671 struct rb_node *p; 672 673 if (implemented) 674 *implemented = 0; 675 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 676 cap = rb_entry(p, struct ceph_cap, ci_node); 677 if (!__cap_is_valid(cap)) 678 continue; 679 dout("__ceph_caps_issued %p cap %p issued %s\n", 680 &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); 681 have |= cap->issued; 682 if (implemented) 683 *implemented |= cap->implemented; 684 } 685 /* 686 * exclude caps issued by non-auth MDS, but are been revoking 687 * by the auth MDS. The non-auth MDS should be revoking/exporting 688 * these caps, but the message is delayed. 689 */ 690 if (ci->i_auth_cap) { 691 cap = ci->i_auth_cap; 692 have &= ~cap->implemented | cap->issued; 693 } 694 return have; 695 } 696 697 /* 698 * Get cap bits issued by caps other than @ocap 699 */ 700 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) 701 { 702 int have = ci->i_snap_caps; 703 struct ceph_cap *cap; 704 struct rb_node *p; 705 706 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 707 cap = rb_entry(p, struct ceph_cap, ci_node); 708 if (cap == ocap) 709 continue; 710 if (!__cap_is_valid(cap)) 711 continue; 712 have |= cap->issued; 713 } 714 return have; 715 } 716 717 /* 718 * Move a cap to the end of the LRU (oldest caps at list head, newest 719 * at list tail). 720 */ 721 static void __touch_cap(struct ceph_cap *cap) 722 { 723 struct ceph_mds_session *s = cap->session; 724 725 spin_lock(&s->s_cap_lock); 726 if (s->s_cap_iterator == NULL) { 727 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, 728 s->s_mds); 729 list_move_tail(&cap->session_caps, &s->s_caps); 730 } else { 731 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", 732 &cap->ci->vfs_inode, cap, s->s_mds); 733 } 734 spin_unlock(&s->s_cap_lock); 735 } 736 737 /* 738 * Check if we hold the given mask. If so, move the cap(s) to the 739 * front of their respective LRUs. (This is the preferred way for 740 * callers to check for caps they want.) 741 */ 742 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) 743 { 744 struct ceph_cap *cap; 745 struct rb_node *p; 746 int have = ci->i_snap_caps; 747 748 if ((have & mask) == mask) { 749 dout("__ceph_caps_issued_mask %p snap issued %s" 750 " (mask %s)\n", &ci->vfs_inode, 751 ceph_cap_string(have), 752 ceph_cap_string(mask)); 753 return 1; 754 } 755 756 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 757 cap = rb_entry(p, struct ceph_cap, ci_node); 758 if (!__cap_is_valid(cap)) 759 continue; 760 if ((cap->issued & mask) == mask) { 761 dout("__ceph_caps_issued_mask %p cap %p issued %s" 762 " (mask %s)\n", &ci->vfs_inode, cap, 763 ceph_cap_string(cap->issued), 764 ceph_cap_string(mask)); 765 if (touch) 766 __touch_cap(cap); 767 return 1; 768 } 769 770 /* does a combination of caps satisfy mask? */ 771 have |= cap->issued; 772 if ((have & mask) == mask) { 773 dout("__ceph_caps_issued_mask %p combo issued %s" 774 " (mask %s)\n", &ci->vfs_inode, 775 ceph_cap_string(cap->issued), 776 ceph_cap_string(mask)); 777 if (touch) { 778 struct rb_node *q; 779 780 /* touch this + preceding caps */ 781 __touch_cap(cap); 782 for (q = rb_first(&ci->i_caps); q != p; 783 q = rb_next(q)) { 784 cap = rb_entry(q, struct ceph_cap, 785 ci_node); 786 if (!__cap_is_valid(cap)) 787 continue; 788 __touch_cap(cap); 789 } 790 } 791 return 1; 792 } 793 } 794 795 return 0; 796 } 797 798 /* 799 * Return true if mask caps are currently being revoked by an MDS. 800 */ 801 int __ceph_caps_revoking_other(struct ceph_inode_info *ci, 802 struct ceph_cap *ocap, int mask) 803 { 804 struct ceph_cap *cap; 805 struct rb_node *p; 806 807 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 808 cap = rb_entry(p, struct ceph_cap, ci_node); 809 if (cap != ocap && 810 (cap->implemented & ~cap->issued & mask)) 811 return 1; 812 } 813 return 0; 814 } 815 816 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) 817 { 818 struct inode *inode = &ci->vfs_inode; 819 int ret; 820 821 spin_lock(&ci->i_ceph_lock); 822 ret = __ceph_caps_revoking_other(ci, NULL, mask); 823 spin_unlock(&ci->i_ceph_lock); 824 dout("ceph_caps_revoking %p %s = %d\n", inode, 825 ceph_cap_string(mask), ret); 826 return ret; 827 } 828 829 int __ceph_caps_used(struct ceph_inode_info *ci) 830 { 831 int used = 0; 832 if (ci->i_pin_ref) 833 used |= CEPH_CAP_PIN; 834 if (ci->i_rd_ref) 835 used |= CEPH_CAP_FILE_RD; 836 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages) 837 used |= CEPH_CAP_FILE_CACHE; 838 if (ci->i_wr_ref) 839 used |= CEPH_CAP_FILE_WR; 840 if (ci->i_wb_ref || ci->i_wrbuffer_ref) 841 used |= CEPH_CAP_FILE_BUFFER; 842 return used; 843 } 844 845 /* 846 * wanted, by virtue of open file modes 847 */ 848 int __ceph_caps_file_wanted(struct ceph_inode_info *ci) 849 { 850 int want = 0; 851 int mode; 852 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++) 853 if (ci->i_nr_by_mode[mode]) 854 want |= ceph_caps_for_mode(mode); 855 return want; 856 } 857 858 /* 859 * Return caps we have registered with the MDS(s) as 'wanted'. 860 */ 861 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) 862 { 863 struct ceph_cap *cap; 864 struct rb_node *p; 865 int mds_wanted = 0; 866 867 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 868 cap = rb_entry(p, struct ceph_cap, ci_node); 869 if (!__cap_is_valid(cap)) 870 continue; 871 if (cap == ci->i_auth_cap) 872 mds_wanted |= cap->mds_wanted; 873 else 874 mds_wanted |= (cap->mds_wanted & ~CEPH_CAP_ANY_FILE_WR); 875 } 876 return mds_wanted; 877 } 878 879 /* 880 * called under i_ceph_lock 881 */ 882 static int __ceph_is_any_caps(struct ceph_inode_info *ci) 883 { 884 return !RB_EMPTY_ROOT(&ci->i_caps); 885 } 886 887 int ceph_is_any_caps(struct inode *inode) 888 { 889 struct ceph_inode_info *ci = ceph_inode(inode); 890 int ret; 891 892 spin_lock(&ci->i_ceph_lock); 893 ret = __ceph_is_any_caps(ci); 894 spin_unlock(&ci->i_ceph_lock); 895 896 return ret; 897 } 898 899 static void drop_inode_snap_realm(struct ceph_inode_info *ci) 900 { 901 struct ceph_snap_realm *realm = ci->i_snap_realm; 902 spin_lock(&realm->inodes_with_caps_lock); 903 list_del_init(&ci->i_snap_realm_item); 904 ci->i_snap_realm_counter++; 905 ci->i_snap_realm = NULL; 906 spin_unlock(&realm->inodes_with_caps_lock); 907 ceph_put_snap_realm(ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc, 908 realm); 909 } 910 911 /* 912 * Remove a cap. Take steps to deal with a racing iterate_session_caps. 913 * 914 * caller should hold i_ceph_lock. 915 * caller will not hold session s_mutex if called from destroy_inode. 916 */ 917 void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release) 918 { 919 struct ceph_mds_session *session = cap->session; 920 struct ceph_inode_info *ci = cap->ci; 921 struct ceph_mds_client *mdsc = 922 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 923 int removed = 0; 924 925 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); 926 927 /* remove from session list */ 928 spin_lock(&session->s_cap_lock); 929 if (session->s_cap_iterator == cap) { 930 /* not yet, we are iterating over this very cap */ 931 dout("__ceph_remove_cap delaying %p removal from session %p\n", 932 cap, cap->session); 933 } else { 934 list_del_init(&cap->session_caps); 935 session->s_nr_caps--; 936 cap->session = NULL; 937 removed = 1; 938 } 939 /* protect backpointer with s_cap_lock: see iterate_session_caps */ 940 cap->ci = NULL; 941 942 /* 943 * s_cap_reconnect is protected by s_cap_lock. no one changes 944 * s_cap_gen while session is in the reconnect state. 945 */ 946 if (queue_release && 947 (!session->s_cap_reconnect || cap->cap_gen == session->s_cap_gen)) { 948 cap->queue_release = 1; 949 if (removed) { 950 list_add_tail(&cap->session_caps, 951 &session->s_cap_releases); 952 session->s_num_cap_releases++; 953 removed = 0; 954 } 955 } else { 956 cap->queue_release = 0; 957 } 958 cap->cap_ino = ci->i_vino.ino; 959 960 spin_unlock(&session->s_cap_lock); 961 962 /* remove from inode list */ 963 rb_erase(&cap->ci_node, &ci->i_caps); 964 if (ci->i_auth_cap == cap) 965 ci->i_auth_cap = NULL; 966 967 if (removed) 968 ceph_put_cap(mdsc, cap); 969 970 /* when reconnect denied, we remove session caps forcibly, 971 * i_wr_ref can be non-zero. If there are ongoing write, 972 * keep i_snap_realm. 973 */ 974 if (!__ceph_is_any_caps(ci) && ci->i_wr_ref == 0 && ci->i_snap_realm) 975 drop_inode_snap_realm(ci); 976 977 if (!__ceph_is_any_real_caps(ci)) 978 __cap_delay_cancel(mdsc, ci); 979 } 980 981 /* 982 * Build and send a cap message to the given MDS. 983 * 984 * Caller should be holding s_mutex. 985 */ 986 static int send_cap_msg(struct ceph_mds_session *session, 987 u64 ino, u64 cid, int op, 988 int caps, int wanted, int dirty, 989 u32 seq, u64 flush_tid, u64 oldest_flush_tid, 990 u32 issue_seq, u32 mseq, u64 size, u64 max_size, 991 struct timespec *mtime, struct timespec *atime, 992 u64 time_warp_seq, 993 kuid_t uid, kgid_t gid, umode_t mode, 994 u64 xattr_version, 995 struct ceph_buffer *xattrs_buf, 996 u64 follows, bool inline_data) 997 { 998 struct ceph_mds_caps *fc; 999 struct ceph_msg *msg; 1000 void *p; 1001 size_t extra_len; 1002 1003 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" 1004 " seq %u/%u tid %llu/%llu mseq %u follows %lld size %llu/%llu" 1005 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), 1006 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), 1007 ceph_cap_string(dirty), 1008 seq, issue_seq, flush_tid, oldest_flush_tid, 1009 mseq, follows, size, max_size, 1010 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); 1011 1012 /* flock buffer size + inline version + inline data size + 1013 * osd_epoch_barrier + oldest_flush_tid */ 1014 extra_len = 4 + 8 + 4 + 4 + 8; 1015 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc) + extra_len, 1016 GFP_NOFS, false); 1017 if (!msg) 1018 return -ENOMEM; 1019 1020 msg->hdr.version = cpu_to_le16(6); 1021 msg->hdr.tid = cpu_to_le64(flush_tid); 1022 1023 fc = msg->front.iov_base; 1024 memset(fc, 0, sizeof(*fc)); 1025 1026 fc->cap_id = cpu_to_le64(cid); 1027 fc->op = cpu_to_le32(op); 1028 fc->seq = cpu_to_le32(seq); 1029 fc->issue_seq = cpu_to_le32(issue_seq); 1030 fc->migrate_seq = cpu_to_le32(mseq); 1031 fc->caps = cpu_to_le32(caps); 1032 fc->wanted = cpu_to_le32(wanted); 1033 fc->dirty = cpu_to_le32(dirty); 1034 fc->ino = cpu_to_le64(ino); 1035 fc->snap_follows = cpu_to_le64(follows); 1036 1037 fc->size = cpu_to_le64(size); 1038 fc->max_size = cpu_to_le64(max_size); 1039 if (mtime) 1040 ceph_encode_timespec(&fc->mtime, mtime); 1041 if (atime) 1042 ceph_encode_timespec(&fc->atime, atime); 1043 fc->time_warp_seq = cpu_to_le32(time_warp_seq); 1044 1045 fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid)); 1046 fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid)); 1047 fc->mode = cpu_to_le32(mode); 1048 1049 p = fc + 1; 1050 /* flock buffer size */ 1051 ceph_encode_32(&p, 0); 1052 /* inline version */ 1053 ceph_encode_64(&p, inline_data ? 0 : CEPH_INLINE_NONE); 1054 /* inline data size */ 1055 ceph_encode_32(&p, 0); 1056 /* osd_epoch_barrier */ 1057 ceph_encode_32(&p, 0); 1058 /* oldest_flush_tid */ 1059 ceph_encode_64(&p, oldest_flush_tid); 1060 1061 fc->xattr_version = cpu_to_le64(xattr_version); 1062 if (xattrs_buf) { 1063 msg->middle = ceph_buffer_get(xattrs_buf); 1064 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); 1065 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); 1066 } 1067 1068 ceph_con_send(&session->s_con, msg); 1069 return 0; 1070 } 1071 1072 /* 1073 * Queue cap releases when an inode is dropped from our cache. Since 1074 * inode is about to be destroyed, there is no need for i_ceph_lock. 1075 */ 1076 void ceph_queue_caps_release(struct inode *inode) 1077 { 1078 struct ceph_inode_info *ci = ceph_inode(inode); 1079 struct rb_node *p; 1080 1081 p = rb_first(&ci->i_caps); 1082 while (p) { 1083 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); 1084 p = rb_next(p); 1085 __ceph_remove_cap(cap, true); 1086 } 1087 } 1088 1089 /* 1090 * Send a cap msg on the given inode. Update our caps state, then 1091 * drop i_ceph_lock and send the message. 1092 * 1093 * Make note of max_size reported/requested from mds, revoked caps 1094 * that have now been implemented. 1095 * 1096 * Make half-hearted attempt ot to invalidate page cache if we are 1097 * dropping RDCACHE. Note that this will leave behind locked pages 1098 * that we'll then need to deal with elsewhere. 1099 * 1100 * Return non-zero if delayed release, or we experienced an error 1101 * such that the caller should requeue + retry later. 1102 * 1103 * called with i_ceph_lock, then drops it. 1104 * caller should hold snap_rwsem (read), s_mutex. 1105 */ 1106 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, 1107 int op, int used, int want, int retain, int flushing, 1108 u64 flush_tid, u64 oldest_flush_tid) 1109 __releases(cap->ci->i_ceph_lock) 1110 { 1111 struct ceph_inode_info *ci = cap->ci; 1112 struct inode *inode = &ci->vfs_inode; 1113 u64 cap_id = cap->cap_id; 1114 int held, revoking, dropping, keep; 1115 u64 seq, issue_seq, mseq, time_warp_seq, follows; 1116 u64 size, max_size; 1117 struct timespec mtime, atime; 1118 int wake = 0; 1119 umode_t mode; 1120 kuid_t uid; 1121 kgid_t gid; 1122 struct ceph_mds_session *session; 1123 u64 xattr_version = 0; 1124 struct ceph_buffer *xattr_blob = NULL; 1125 int delayed = 0; 1126 int ret; 1127 bool inline_data; 1128 1129 held = cap->issued | cap->implemented; 1130 revoking = cap->implemented & ~cap->issued; 1131 retain &= ~revoking; 1132 dropping = cap->issued & ~retain; 1133 1134 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", 1135 inode, cap, cap->session, 1136 ceph_cap_string(held), ceph_cap_string(held & retain), 1137 ceph_cap_string(revoking)); 1138 BUG_ON((retain & CEPH_CAP_PIN) == 0); 1139 1140 session = cap->session; 1141 1142 /* don't release wanted unless we've waited a bit. */ 1143 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1144 time_before(jiffies, ci->i_hold_caps_min)) { 1145 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", 1146 ceph_cap_string(cap->issued), 1147 ceph_cap_string(cap->issued & retain), 1148 ceph_cap_string(cap->mds_wanted), 1149 ceph_cap_string(want)); 1150 want |= cap->mds_wanted; 1151 retain |= cap->issued; 1152 delayed = 1; 1153 } 1154 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); 1155 1156 cap->issued &= retain; /* drop bits we don't want */ 1157 if (cap->implemented & ~cap->issued) { 1158 /* 1159 * Wake up any waiters on wanted -> needed transition. 1160 * This is due to the weird transition from buffered 1161 * to sync IO... we need to flush dirty pages _before_ 1162 * allowing sync writes to avoid reordering. 1163 */ 1164 wake = 1; 1165 } 1166 cap->implemented &= cap->issued | used; 1167 cap->mds_wanted = want; 1168 1169 follows = flushing ? ci->i_head_snapc->seq : 0; 1170 1171 keep = cap->implemented; 1172 seq = cap->seq; 1173 issue_seq = cap->issue_seq; 1174 mseq = cap->mseq; 1175 size = inode->i_size; 1176 ci->i_reported_size = size; 1177 max_size = ci->i_wanted_max_size; 1178 ci->i_requested_max_size = max_size; 1179 mtime = inode->i_mtime; 1180 atime = inode->i_atime; 1181 time_warp_seq = ci->i_time_warp_seq; 1182 uid = inode->i_uid; 1183 gid = inode->i_gid; 1184 mode = inode->i_mode; 1185 1186 if (flushing & CEPH_CAP_XATTR_EXCL) { 1187 __ceph_build_xattrs_blob(ci); 1188 xattr_blob = ci->i_xattrs.blob; 1189 xattr_version = ci->i_xattrs.version; 1190 } 1191 1192 inline_data = ci->i_inline_version != CEPH_INLINE_NONE; 1193 1194 spin_unlock(&ci->i_ceph_lock); 1195 1196 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, 1197 op, keep, want, flushing, seq, 1198 flush_tid, oldest_flush_tid, issue_seq, mseq, 1199 size, max_size, &mtime, &atime, time_warp_seq, 1200 uid, gid, mode, xattr_version, xattr_blob, 1201 follows, inline_data); 1202 if (ret < 0) { 1203 dout("error sending cap msg, must requeue %p\n", inode); 1204 delayed = 1; 1205 } 1206 1207 if (wake) 1208 wake_up_all(&ci->i_cap_wq); 1209 1210 return delayed; 1211 } 1212 1213 /* 1214 * When a snapshot is taken, clients accumulate dirty metadata on 1215 * inodes with capabilities in ceph_cap_snaps to describe the file 1216 * state at the time the snapshot was taken. This must be flushed 1217 * asynchronously back to the MDS once sync writes complete and dirty 1218 * data is written out. 1219 * 1220 * Unless @kick is true, skip cap_snaps that were already sent to 1221 * the MDS (i.e., during this session). 1222 * 1223 * Called under i_ceph_lock. Takes s_mutex as needed. 1224 */ 1225 void __ceph_flush_snaps(struct ceph_inode_info *ci, 1226 struct ceph_mds_session **psession, 1227 int kick) 1228 __releases(ci->i_ceph_lock) 1229 __acquires(ci->i_ceph_lock) 1230 { 1231 struct inode *inode = &ci->vfs_inode; 1232 int mds; 1233 struct ceph_cap_snap *capsnap; 1234 u32 mseq; 1235 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 1236 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold 1237 session->s_mutex */ 1238 u64 next_follows = 0; /* keep track of how far we've gotten through the 1239 i_cap_snaps list, and skip these entries next time 1240 around to avoid an infinite loop */ 1241 1242 if (psession) 1243 session = *psession; 1244 1245 dout("__flush_snaps %p\n", inode); 1246 retry: 1247 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 1248 /* avoid an infiniute loop after retry */ 1249 if (capsnap->follows < next_follows) 1250 continue; 1251 /* 1252 * we need to wait for sync writes to complete and for dirty 1253 * pages to be written out. 1254 */ 1255 if (capsnap->dirty_pages || capsnap->writing) 1256 break; 1257 1258 /* should be removed by ceph_try_drop_cap_snap() */ 1259 BUG_ON(!capsnap->need_flush); 1260 1261 /* pick mds, take s_mutex */ 1262 if (ci->i_auth_cap == NULL) { 1263 dout("no auth cap (migrating?), doing nothing\n"); 1264 goto out; 1265 } 1266 1267 /* only flush each capsnap once */ 1268 if (!kick && !list_empty(&capsnap->flushing_item)) { 1269 dout("already flushed %p, skipping\n", capsnap); 1270 continue; 1271 } 1272 1273 mds = ci->i_auth_cap->session->s_mds; 1274 mseq = ci->i_auth_cap->mseq; 1275 1276 if (session && session->s_mds != mds) { 1277 dout("oops, wrong session %p mutex\n", session); 1278 if (kick) 1279 goto out; 1280 1281 mutex_unlock(&session->s_mutex); 1282 ceph_put_mds_session(session); 1283 session = NULL; 1284 } 1285 if (!session) { 1286 spin_unlock(&ci->i_ceph_lock); 1287 mutex_lock(&mdsc->mutex); 1288 session = __ceph_lookup_mds_session(mdsc, mds); 1289 mutex_unlock(&mdsc->mutex); 1290 if (session) { 1291 dout("inverting session/ino locks on %p\n", 1292 session); 1293 mutex_lock(&session->s_mutex); 1294 } 1295 /* 1296 * if session == NULL, we raced against a cap 1297 * deletion or migration. retry, and we'll 1298 * get a better @mds value next time. 1299 */ 1300 spin_lock(&ci->i_ceph_lock); 1301 goto retry; 1302 } 1303 1304 spin_lock(&mdsc->cap_dirty_lock); 1305 capsnap->flush_tid = ++mdsc->last_cap_flush_tid; 1306 spin_unlock(&mdsc->cap_dirty_lock); 1307 1308 atomic_inc(&capsnap->nref); 1309 if (list_empty(&capsnap->flushing_item)) 1310 list_add_tail(&capsnap->flushing_item, 1311 &session->s_cap_snaps_flushing); 1312 spin_unlock(&ci->i_ceph_lock); 1313 1314 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n", 1315 inode, capsnap, capsnap->follows, capsnap->flush_tid); 1316 send_cap_msg(session, ceph_vino(inode).ino, 0, 1317 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, 1318 capsnap->dirty, 0, capsnap->flush_tid, 0, 1319 0, mseq, capsnap->size, 0, 1320 &capsnap->mtime, &capsnap->atime, 1321 capsnap->time_warp_seq, 1322 capsnap->uid, capsnap->gid, capsnap->mode, 1323 capsnap->xattr_version, capsnap->xattr_blob, 1324 capsnap->follows, capsnap->inline_data); 1325 1326 next_follows = capsnap->follows + 1; 1327 ceph_put_cap_snap(capsnap); 1328 1329 spin_lock(&ci->i_ceph_lock); 1330 goto retry; 1331 } 1332 1333 /* we flushed them all; remove this inode from the queue */ 1334 spin_lock(&mdsc->snap_flush_lock); 1335 list_del_init(&ci->i_snap_flush_item); 1336 spin_unlock(&mdsc->snap_flush_lock); 1337 1338 out: 1339 if (psession) 1340 *psession = session; 1341 else if (session) { 1342 mutex_unlock(&session->s_mutex); 1343 ceph_put_mds_session(session); 1344 } 1345 } 1346 1347 static void ceph_flush_snaps(struct ceph_inode_info *ci) 1348 { 1349 spin_lock(&ci->i_ceph_lock); 1350 __ceph_flush_snaps(ci, NULL, 0); 1351 spin_unlock(&ci->i_ceph_lock); 1352 } 1353 1354 /* 1355 * Mark caps dirty. If inode is newly dirty, return the dirty flags. 1356 * Caller is then responsible for calling __mark_inode_dirty with the 1357 * returned flags value. 1358 */ 1359 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask, 1360 struct ceph_cap_flush **pcf) 1361 { 1362 struct ceph_mds_client *mdsc = 1363 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 1364 struct inode *inode = &ci->vfs_inode; 1365 int was = ci->i_dirty_caps; 1366 int dirty = 0; 1367 1368 if (!ci->i_auth_cap) { 1369 pr_warn("__mark_dirty_caps %p %llx mask %s, " 1370 "but no auth cap (session was closed?)\n", 1371 inode, ceph_ino(inode), ceph_cap_string(mask)); 1372 return 0; 1373 } 1374 1375 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, 1376 ceph_cap_string(mask), ceph_cap_string(was), 1377 ceph_cap_string(was | mask)); 1378 ci->i_dirty_caps |= mask; 1379 if (was == 0) { 1380 WARN_ON_ONCE(ci->i_prealloc_cap_flush); 1381 swap(ci->i_prealloc_cap_flush, *pcf); 1382 1383 if (!ci->i_head_snapc) { 1384 WARN_ON_ONCE(!rwsem_is_locked(&mdsc->snap_rwsem)); 1385 ci->i_head_snapc = ceph_get_snap_context( 1386 ci->i_snap_realm->cached_context); 1387 } 1388 dout(" inode %p now dirty snapc %p auth cap %p\n", 1389 &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap); 1390 BUG_ON(!list_empty(&ci->i_dirty_item)); 1391 spin_lock(&mdsc->cap_dirty_lock); 1392 list_add(&ci->i_dirty_item, &mdsc->cap_dirty); 1393 spin_unlock(&mdsc->cap_dirty_lock); 1394 if (ci->i_flushing_caps == 0) { 1395 ihold(inode); 1396 dirty |= I_DIRTY_SYNC; 1397 } 1398 } else { 1399 WARN_ON_ONCE(!ci->i_prealloc_cap_flush); 1400 } 1401 BUG_ON(list_empty(&ci->i_dirty_item)); 1402 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && 1403 (mask & CEPH_CAP_FILE_BUFFER)) 1404 dirty |= I_DIRTY_DATASYNC; 1405 __cap_delay_requeue(mdsc, ci); 1406 return dirty; 1407 } 1408 1409 static void __add_cap_flushing_to_inode(struct ceph_inode_info *ci, 1410 struct ceph_cap_flush *cf) 1411 { 1412 struct rb_node **p = &ci->i_cap_flush_tree.rb_node; 1413 struct rb_node *parent = NULL; 1414 struct ceph_cap_flush *other = NULL; 1415 1416 while (*p) { 1417 parent = *p; 1418 other = rb_entry(parent, struct ceph_cap_flush, i_node); 1419 1420 if (cf->tid < other->tid) 1421 p = &(*p)->rb_left; 1422 else if (cf->tid > other->tid) 1423 p = &(*p)->rb_right; 1424 else 1425 BUG(); 1426 } 1427 1428 rb_link_node(&cf->i_node, parent, p); 1429 rb_insert_color(&cf->i_node, &ci->i_cap_flush_tree); 1430 } 1431 1432 static void __add_cap_flushing_to_mdsc(struct ceph_mds_client *mdsc, 1433 struct ceph_cap_flush *cf) 1434 { 1435 struct rb_node **p = &mdsc->cap_flush_tree.rb_node; 1436 struct rb_node *parent = NULL; 1437 struct ceph_cap_flush *other = NULL; 1438 1439 while (*p) { 1440 parent = *p; 1441 other = rb_entry(parent, struct ceph_cap_flush, g_node); 1442 1443 if (cf->tid < other->tid) 1444 p = &(*p)->rb_left; 1445 else if (cf->tid > other->tid) 1446 p = &(*p)->rb_right; 1447 else 1448 BUG(); 1449 } 1450 1451 rb_link_node(&cf->g_node, parent, p); 1452 rb_insert_color(&cf->g_node, &mdsc->cap_flush_tree); 1453 } 1454 1455 struct ceph_cap_flush *ceph_alloc_cap_flush(void) 1456 { 1457 return kmem_cache_alloc(ceph_cap_flush_cachep, GFP_KERNEL); 1458 } 1459 1460 void ceph_free_cap_flush(struct ceph_cap_flush *cf) 1461 { 1462 if (cf) 1463 kmem_cache_free(ceph_cap_flush_cachep, cf); 1464 } 1465 1466 static u64 __get_oldest_flush_tid(struct ceph_mds_client *mdsc) 1467 { 1468 struct rb_node *n = rb_first(&mdsc->cap_flush_tree); 1469 if (n) { 1470 struct ceph_cap_flush *cf = 1471 rb_entry(n, struct ceph_cap_flush, g_node); 1472 return cf->tid; 1473 } 1474 return 0; 1475 } 1476 1477 /* 1478 * Add dirty inode to the flushing list. Assigned a seq number so we 1479 * can wait for caps to flush without starving. 1480 * 1481 * Called under i_ceph_lock. 1482 */ 1483 static int __mark_caps_flushing(struct inode *inode, 1484 struct ceph_mds_session *session, 1485 u64 *flush_tid, u64 *oldest_flush_tid) 1486 { 1487 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1488 struct ceph_inode_info *ci = ceph_inode(inode); 1489 struct ceph_cap_flush *cf = NULL; 1490 int flushing; 1491 1492 BUG_ON(ci->i_dirty_caps == 0); 1493 BUG_ON(list_empty(&ci->i_dirty_item)); 1494 BUG_ON(!ci->i_prealloc_cap_flush); 1495 1496 flushing = ci->i_dirty_caps; 1497 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", 1498 ceph_cap_string(flushing), 1499 ceph_cap_string(ci->i_flushing_caps), 1500 ceph_cap_string(ci->i_flushing_caps | flushing)); 1501 ci->i_flushing_caps |= flushing; 1502 ci->i_dirty_caps = 0; 1503 dout(" inode %p now !dirty\n", inode); 1504 1505 swap(cf, ci->i_prealloc_cap_flush); 1506 cf->caps = flushing; 1507 cf->kick = false; 1508 1509 spin_lock(&mdsc->cap_dirty_lock); 1510 list_del_init(&ci->i_dirty_item); 1511 1512 cf->tid = ++mdsc->last_cap_flush_tid; 1513 __add_cap_flushing_to_mdsc(mdsc, cf); 1514 *oldest_flush_tid = __get_oldest_flush_tid(mdsc); 1515 1516 if (list_empty(&ci->i_flushing_item)) { 1517 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1518 mdsc->num_cap_flushing++; 1519 dout(" inode %p now flushing tid %llu\n", inode, cf->tid); 1520 } else { 1521 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1522 dout(" inode %p now flushing (more) tid %llu\n", 1523 inode, cf->tid); 1524 } 1525 spin_unlock(&mdsc->cap_dirty_lock); 1526 1527 __add_cap_flushing_to_inode(ci, cf); 1528 1529 *flush_tid = cf->tid; 1530 return flushing; 1531 } 1532 1533 /* 1534 * try to invalidate mapping pages without blocking. 1535 */ 1536 static int try_nonblocking_invalidate(struct inode *inode) 1537 { 1538 struct ceph_inode_info *ci = ceph_inode(inode); 1539 u32 invalidating_gen = ci->i_rdcache_gen; 1540 1541 spin_unlock(&ci->i_ceph_lock); 1542 invalidate_mapping_pages(&inode->i_data, 0, -1); 1543 spin_lock(&ci->i_ceph_lock); 1544 1545 if (inode->i_data.nrpages == 0 && 1546 invalidating_gen == ci->i_rdcache_gen) { 1547 /* success. */ 1548 dout("try_nonblocking_invalidate %p success\n", inode); 1549 /* save any racing async invalidate some trouble */ 1550 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1; 1551 return 0; 1552 } 1553 dout("try_nonblocking_invalidate %p failed\n", inode); 1554 return -1; 1555 } 1556 1557 /* 1558 * Swiss army knife function to examine currently used and wanted 1559 * versus held caps. Release, flush, ack revoked caps to mds as 1560 * appropriate. 1561 * 1562 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay 1563 * cap release further. 1564 * CHECK_CAPS_AUTHONLY - we should only check the auth cap 1565 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without 1566 * further delay. 1567 */ 1568 void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1569 struct ceph_mds_session *session) 1570 { 1571 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode); 1572 struct ceph_mds_client *mdsc = fsc->mdsc; 1573 struct inode *inode = &ci->vfs_inode; 1574 struct ceph_cap *cap; 1575 u64 flush_tid, oldest_flush_tid; 1576 int file_wanted, used, cap_used; 1577 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ 1578 int issued, implemented, want, retain, revoking, flushing = 0; 1579 int mds = -1; /* keep track of how far we've gone through i_caps list 1580 to avoid an infinite loop on retry */ 1581 struct rb_node *p; 1582 int tried_invalidate = 0; 1583 int delayed = 0, sent = 0, force_requeue = 0, num; 1584 int queue_invalidate = 0; 1585 int is_delayed = flags & CHECK_CAPS_NODELAY; 1586 1587 /* if we are unmounting, flush any unused caps immediately. */ 1588 if (mdsc->stopping) 1589 is_delayed = 1; 1590 1591 spin_lock(&ci->i_ceph_lock); 1592 1593 if (ci->i_ceph_flags & CEPH_I_FLUSH) 1594 flags |= CHECK_CAPS_FLUSH; 1595 1596 /* flush snaps first time around only */ 1597 if (!list_empty(&ci->i_cap_snaps)) 1598 __ceph_flush_snaps(ci, &session, 0); 1599 goto retry_locked; 1600 retry: 1601 spin_lock(&ci->i_ceph_lock); 1602 retry_locked: 1603 file_wanted = __ceph_caps_file_wanted(ci); 1604 used = __ceph_caps_used(ci); 1605 issued = __ceph_caps_issued(ci, &implemented); 1606 revoking = implemented & ~issued; 1607 1608 want = file_wanted; 1609 retain = file_wanted | used | CEPH_CAP_PIN; 1610 if (!mdsc->stopping && inode->i_nlink > 0) { 1611 if (file_wanted) { 1612 retain |= CEPH_CAP_ANY; /* be greedy */ 1613 } else if (S_ISDIR(inode->i_mode) && 1614 (issued & CEPH_CAP_FILE_SHARED) && 1615 __ceph_dir_is_complete(ci)) { 1616 /* 1617 * If a directory is complete, we want to keep 1618 * the exclusive cap. So that MDS does not end up 1619 * revoking the shared cap on every create/unlink 1620 * operation. 1621 */ 1622 want = CEPH_CAP_ANY_SHARED | CEPH_CAP_FILE_EXCL; 1623 retain |= want; 1624 } else { 1625 1626 retain |= CEPH_CAP_ANY_SHARED; 1627 /* 1628 * keep RD only if we didn't have the file open RW, 1629 * because then the mds would revoke it anyway to 1630 * journal max_size=0. 1631 */ 1632 if (ci->i_max_size == 0) 1633 retain |= CEPH_CAP_ANY_RD; 1634 } 1635 } 1636 1637 dout("check_caps %p file_want %s used %s dirty %s flushing %s" 1638 " issued %s revoking %s retain %s %s%s%s\n", inode, 1639 ceph_cap_string(file_wanted), 1640 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), 1641 ceph_cap_string(ci->i_flushing_caps), 1642 ceph_cap_string(issued), ceph_cap_string(revoking), 1643 ceph_cap_string(retain), 1644 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", 1645 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", 1646 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); 1647 1648 /* 1649 * If we no longer need to hold onto old our caps, and we may 1650 * have cached pages, but don't want them, then try to invalidate. 1651 * If we fail, it's because pages are locked.... try again later. 1652 */ 1653 if ((!is_delayed || mdsc->stopping) && 1654 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ 1655 inode->i_data.nrpages && /* have cached pages */ 1656 (file_wanted == 0 || /* no open files */ 1657 (revoking & (CEPH_CAP_FILE_CACHE| 1658 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */ 1659 !tried_invalidate) { 1660 dout("check_caps trying to invalidate on %p\n", inode); 1661 if (try_nonblocking_invalidate(inode) < 0) { 1662 if (revoking & (CEPH_CAP_FILE_CACHE| 1663 CEPH_CAP_FILE_LAZYIO)) { 1664 dout("check_caps queuing invalidate\n"); 1665 queue_invalidate = 1; 1666 ci->i_rdcache_revoking = ci->i_rdcache_gen; 1667 } else { 1668 dout("check_caps failed to invalidate pages\n"); 1669 /* we failed to invalidate pages. check these 1670 caps again later. */ 1671 force_requeue = 1; 1672 __cap_set_timeouts(mdsc, ci); 1673 } 1674 } 1675 tried_invalidate = 1; 1676 goto retry_locked; 1677 } 1678 1679 num = 0; 1680 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 1681 cap = rb_entry(p, struct ceph_cap, ci_node); 1682 num++; 1683 1684 /* avoid looping forever */ 1685 if (mds >= cap->mds || 1686 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) 1687 continue; 1688 1689 /* NOTE: no side-effects allowed, until we take s_mutex */ 1690 1691 cap_used = used; 1692 if (ci->i_auth_cap && cap != ci->i_auth_cap) 1693 cap_used &= ~ci->i_auth_cap->issued; 1694 1695 revoking = cap->implemented & ~cap->issued; 1696 dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n", 1697 cap->mds, cap, ceph_cap_string(cap->issued), 1698 ceph_cap_string(cap_used), 1699 ceph_cap_string(cap->implemented), 1700 ceph_cap_string(revoking)); 1701 1702 if (cap == ci->i_auth_cap && 1703 (cap->issued & CEPH_CAP_FILE_WR)) { 1704 /* request larger max_size from MDS? */ 1705 if (ci->i_wanted_max_size > ci->i_max_size && 1706 ci->i_wanted_max_size > ci->i_requested_max_size) { 1707 dout("requesting new max_size\n"); 1708 goto ack; 1709 } 1710 1711 /* approaching file_max? */ 1712 if ((inode->i_size << 1) >= ci->i_max_size && 1713 (ci->i_reported_size << 1) < ci->i_max_size) { 1714 dout("i_size approaching max_size\n"); 1715 goto ack; 1716 } 1717 } 1718 /* flush anything dirty? */ 1719 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && 1720 ci->i_dirty_caps) { 1721 dout("flushing dirty caps\n"); 1722 goto ack; 1723 } 1724 1725 /* completed revocation? going down and there are no caps? */ 1726 if (revoking && (revoking & cap_used) == 0) { 1727 dout("completed revocation of %s\n", 1728 ceph_cap_string(cap->implemented & ~cap->issued)); 1729 goto ack; 1730 } 1731 1732 /* want more caps from mds? */ 1733 if (want & ~(cap->mds_wanted | cap->issued)) 1734 goto ack; 1735 1736 /* things we might delay */ 1737 if ((cap->issued & ~retain) == 0 && 1738 cap->mds_wanted == want) 1739 continue; /* nope, all good */ 1740 1741 if (is_delayed) 1742 goto ack; 1743 1744 /* delay? */ 1745 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1746 time_before(jiffies, ci->i_hold_caps_max)) { 1747 dout(" delaying issued %s -> %s, wanted %s -> %s\n", 1748 ceph_cap_string(cap->issued), 1749 ceph_cap_string(cap->issued & retain), 1750 ceph_cap_string(cap->mds_wanted), 1751 ceph_cap_string(want)); 1752 delayed++; 1753 continue; 1754 } 1755 1756 ack: 1757 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1758 dout(" skipping %p I_NOFLUSH set\n", inode); 1759 continue; 1760 } 1761 1762 if (session && session != cap->session) { 1763 dout("oops, wrong session %p mutex\n", session); 1764 mutex_unlock(&session->s_mutex); 1765 session = NULL; 1766 } 1767 if (!session) { 1768 session = cap->session; 1769 if (mutex_trylock(&session->s_mutex) == 0) { 1770 dout("inverting session/ino locks on %p\n", 1771 session); 1772 spin_unlock(&ci->i_ceph_lock); 1773 if (took_snap_rwsem) { 1774 up_read(&mdsc->snap_rwsem); 1775 took_snap_rwsem = 0; 1776 } 1777 mutex_lock(&session->s_mutex); 1778 goto retry; 1779 } 1780 } 1781 /* take snap_rwsem after session mutex */ 1782 if (!took_snap_rwsem) { 1783 if (down_read_trylock(&mdsc->snap_rwsem) == 0) { 1784 dout("inverting snap/in locks on %p\n", 1785 inode); 1786 spin_unlock(&ci->i_ceph_lock); 1787 down_read(&mdsc->snap_rwsem); 1788 took_snap_rwsem = 1; 1789 goto retry; 1790 } 1791 took_snap_rwsem = 1; 1792 } 1793 1794 if (cap == ci->i_auth_cap && ci->i_dirty_caps) { 1795 flushing = __mark_caps_flushing(inode, session, 1796 &flush_tid, 1797 &oldest_flush_tid); 1798 } else { 1799 flushing = 0; 1800 flush_tid = 0; 1801 spin_lock(&mdsc->cap_dirty_lock); 1802 oldest_flush_tid = __get_oldest_flush_tid(mdsc); 1803 spin_unlock(&mdsc->cap_dirty_lock); 1804 } 1805 1806 mds = cap->mds; /* remember mds, so we don't repeat */ 1807 sent++; 1808 1809 /* __send_cap drops i_ceph_lock */ 1810 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used, 1811 want, retain, flushing, 1812 flush_tid, oldest_flush_tid); 1813 goto retry; /* retake i_ceph_lock and restart our cap scan. */ 1814 } 1815 1816 /* 1817 * Reschedule delayed caps release if we delayed anything, 1818 * otherwise cancel. 1819 */ 1820 if (delayed && is_delayed) 1821 force_requeue = 1; /* __send_cap delayed release; requeue */ 1822 if (!delayed && !is_delayed) 1823 __cap_delay_cancel(mdsc, ci); 1824 else if (!is_delayed || force_requeue) 1825 __cap_delay_requeue(mdsc, ci); 1826 1827 spin_unlock(&ci->i_ceph_lock); 1828 1829 if (queue_invalidate) 1830 ceph_queue_invalidate(inode); 1831 1832 if (session) 1833 mutex_unlock(&session->s_mutex); 1834 if (took_snap_rwsem) 1835 up_read(&mdsc->snap_rwsem); 1836 } 1837 1838 /* 1839 * Try to flush dirty caps back to the auth mds. 1840 */ 1841 static int try_flush_caps(struct inode *inode, u64 *ptid) 1842 { 1843 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1844 struct ceph_inode_info *ci = ceph_inode(inode); 1845 struct ceph_mds_session *session = NULL; 1846 int flushing = 0; 1847 u64 flush_tid = 0, oldest_flush_tid = 0; 1848 1849 retry: 1850 spin_lock(&ci->i_ceph_lock); 1851 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1852 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode); 1853 goto out; 1854 } 1855 if (ci->i_dirty_caps && ci->i_auth_cap) { 1856 struct ceph_cap *cap = ci->i_auth_cap; 1857 int used = __ceph_caps_used(ci); 1858 int want = __ceph_caps_wanted(ci); 1859 int delayed; 1860 1861 if (!session || session != cap->session) { 1862 spin_unlock(&ci->i_ceph_lock); 1863 if (session) 1864 mutex_unlock(&session->s_mutex); 1865 session = cap->session; 1866 mutex_lock(&session->s_mutex); 1867 goto retry; 1868 } 1869 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) 1870 goto out; 1871 1872 flushing = __mark_caps_flushing(inode, session, &flush_tid, 1873 &oldest_flush_tid); 1874 1875 /* __send_cap drops i_ceph_lock */ 1876 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, 1877 (cap->issued | cap->implemented), 1878 flushing, flush_tid, oldest_flush_tid); 1879 1880 if (delayed) { 1881 spin_lock(&ci->i_ceph_lock); 1882 __cap_delay_requeue(mdsc, ci); 1883 spin_unlock(&ci->i_ceph_lock); 1884 } 1885 } else { 1886 struct rb_node *n = rb_last(&ci->i_cap_flush_tree); 1887 if (n) { 1888 struct ceph_cap_flush *cf = 1889 rb_entry(n, struct ceph_cap_flush, i_node); 1890 flush_tid = cf->tid; 1891 } 1892 flushing = ci->i_flushing_caps; 1893 spin_unlock(&ci->i_ceph_lock); 1894 } 1895 out: 1896 if (session) 1897 mutex_unlock(&session->s_mutex); 1898 1899 *ptid = flush_tid; 1900 return flushing; 1901 } 1902 1903 /* 1904 * Return true if we've flushed caps through the given flush_tid. 1905 */ 1906 static int caps_are_flushed(struct inode *inode, u64 flush_tid) 1907 { 1908 struct ceph_inode_info *ci = ceph_inode(inode); 1909 struct ceph_cap_flush *cf; 1910 struct rb_node *n; 1911 int ret = 1; 1912 1913 spin_lock(&ci->i_ceph_lock); 1914 n = rb_first(&ci->i_cap_flush_tree); 1915 if (n) { 1916 cf = rb_entry(n, struct ceph_cap_flush, i_node); 1917 if (cf->tid <= flush_tid) 1918 ret = 0; 1919 } 1920 spin_unlock(&ci->i_ceph_lock); 1921 return ret; 1922 } 1923 1924 /* 1925 * Wait on any unsafe replies for the given inode. First wait on the 1926 * newest request, and make that the upper bound. Then, if there are 1927 * more requests, keep waiting on the oldest as long as it is still older 1928 * than the original request. 1929 */ 1930 static void sync_write_wait(struct inode *inode) 1931 { 1932 struct ceph_inode_info *ci = ceph_inode(inode); 1933 struct list_head *head = &ci->i_unsafe_writes; 1934 struct ceph_osd_request *req; 1935 u64 last_tid; 1936 1937 if (!S_ISREG(inode->i_mode)) 1938 return; 1939 1940 spin_lock(&ci->i_unsafe_lock); 1941 if (list_empty(head)) 1942 goto out; 1943 1944 /* set upper bound as _last_ entry in chain */ 1945 req = list_last_entry(head, struct ceph_osd_request, 1946 r_unsafe_item); 1947 last_tid = req->r_tid; 1948 1949 do { 1950 ceph_osdc_get_request(req); 1951 spin_unlock(&ci->i_unsafe_lock); 1952 dout("sync_write_wait on tid %llu (until %llu)\n", 1953 req->r_tid, last_tid); 1954 wait_for_completion(&req->r_safe_completion); 1955 spin_lock(&ci->i_unsafe_lock); 1956 ceph_osdc_put_request(req); 1957 1958 /* 1959 * from here on look at first entry in chain, since we 1960 * only want to wait for anything older than last_tid 1961 */ 1962 if (list_empty(head)) 1963 break; 1964 req = list_first_entry(head, struct ceph_osd_request, 1965 r_unsafe_item); 1966 } while (req->r_tid < last_tid); 1967 out: 1968 spin_unlock(&ci->i_unsafe_lock); 1969 } 1970 1971 /* 1972 * wait for any uncommitted directory operations to commit. 1973 */ 1974 static int unsafe_dirop_wait(struct inode *inode) 1975 { 1976 struct ceph_inode_info *ci = ceph_inode(inode); 1977 struct list_head *head = &ci->i_unsafe_dirops; 1978 struct ceph_mds_request *req; 1979 u64 last_tid; 1980 int ret = 0; 1981 1982 if (!S_ISDIR(inode->i_mode)) 1983 return 0; 1984 1985 spin_lock(&ci->i_unsafe_lock); 1986 if (list_empty(head)) 1987 goto out; 1988 1989 req = list_last_entry(head, struct ceph_mds_request, 1990 r_unsafe_dir_item); 1991 last_tid = req->r_tid; 1992 1993 do { 1994 ceph_mdsc_get_request(req); 1995 spin_unlock(&ci->i_unsafe_lock); 1996 1997 dout("unsafe_dirop_wait %p wait on tid %llu (until %llu)\n", 1998 inode, req->r_tid, last_tid); 1999 ret = !wait_for_completion_timeout(&req->r_safe_completion, 2000 ceph_timeout_jiffies(req->r_timeout)); 2001 if (ret) 2002 ret = -EIO; /* timed out */ 2003 2004 ceph_mdsc_put_request(req); 2005 2006 spin_lock(&ci->i_unsafe_lock); 2007 if (ret || list_empty(head)) 2008 break; 2009 req = list_first_entry(head, struct ceph_mds_request, 2010 r_unsafe_dir_item); 2011 } while (req->r_tid < last_tid); 2012 out: 2013 spin_unlock(&ci->i_unsafe_lock); 2014 return ret; 2015 } 2016 2017 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync) 2018 { 2019 struct inode *inode = file->f_mapping->host; 2020 struct ceph_inode_info *ci = ceph_inode(inode); 2021 u64 flush_tid; 2022 int ret; 2023 int dirty; 2024 2025 dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); 2026 sync_write_wait(inode); 2027 2028 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 2029 if (ret < 0) 2030 goto out; 2031 2032 if (datasync) 2033 goto out; 2034 2035 mutex_lock(&inode->i_mutex); 2036 2037 dirty = try_flush_caps(inode, &flush_tid); 2038 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); 2039 2040 ret = unsafe_dirop_wait(inode); 2041 2042 /* 2043 * only wait on non-file metadata writeback (the mds 2044 * can recover size and mtime, so we don't need to 2045 * wait for that) 2046 */ 2047 if (!ret && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { 2048 ret = wait_event_interruptible(ci->i_cap_wq, 2049 caps_are_flushed(inode, flush_tid)); 2050 } 2051 mutex_unlock(&inode->i_mutex); 2052 out: 2053 dout("fsync %p%s result=%d\n", inode, datasync ? " datasync" : "", ret); 2054 return ret; 2055 } 2056 2057 /* 2058 * Flush any dirty caps back to the mds. If we aren't asked to wait, 2059 * queue inode for flush but don't do so immediately, because we can 2060 * get by with fewer MDS messages if we wait for data writeback to 2061 * complete first. 2062 */ 2063 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc) 2064 { 2065 struct ceph_inode_info *ci = ceph_inode(inode); 2066 u64 flush_tid; 2067 int err = 0; 2068 int dirty; 2069 int wait = wbc->sync_mode == WB_SYNC_ALL; 2070 2071 dout("write_inode %p wait=%d\n", inode, wait); 2072 if (wait) { 2073 dirty = try_flush_caps(inode, &flush_tid); 2074 if (dirty) 2075 err = wait_event_interruptible(ci->i_cap_wq, 2076 caps_are_flushed(inode, flush_tid)); 2077 } else { 2078 struct ceph_mds_client *mdsc = 2079 ceph_sb_to_client(inode->i_sb)->mdsc; 2080 2081 spin_lock(&ci->i_ceph_lock); 2082 if (__ceph_caps_dirty(ci)) 2083 __cap_delay_requeue_front(mdsc, ci); 2084 spin_unlock(&ci->i_ceph_lock); 2085 } 2086 return err; 2087 } 2088 2089 /* 2090 * After a recovering MDS goes active, we need to resend any caps 2091 * we were flushing. 2092 * 2093 * Caller holds session->s_mutex. 2094 */ 2095 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, 2096 struct ceph_mds_session *session) 2097 { 2098 struct ceph_cap_snap *capsnap; 2099 2100 dout("kick_flushing_capsnaps mds%d\n", session->s_mds); 2101 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, 2102 flushing_item) { 2103 struct ceph_inode_info *ci = capsnap->ci; 2104 struct inode *inode = &ci->vfs_inode; 2105 struct ceph_cap *cap; 2106 2107 spin_lock(&ci->i_ceph_lock); 2108 cap = ci->i_auth_cap; 2109 if (cap && cap->session == session) { 2110 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, 2111 cap, capsnap); 2112 __ceph_flush_snaps(ci, &session, 1); 2113 } else { 2114 pr_err("%p auth cap %p not mds%d ???\n", inode, 2115 cap, session->s_mds); 2116 } 2117 spin_unlock(&ci->i_ceph_lock); 2118 } 2119 } 2120 2121 static int __kick_flushing_caps(struct ceph_mds_client *mdsc, 2122 struct ceph_mds_session *session, 2123 struct ceph_inode_info *ci, 2124 bool kick_all) 2125 { 2126 struct inode *inode = &ci->vfs_inode; 2127 struct ceph_cap *cap; 2128 struct ceph_cap_flush *cf; 2129 struct rb_node *n; 2130 int delayed = 0; 2131 u64 first_tid = 0; 2132 u64 oldest_flush_tid; 2133 2134 spin_lock(&mdsc->cap_dirty_lock); 2135 oldest_flush_tid = __get_oldest_flush_tid(mdsc); 2136 spin_unlock(&mdsc->cap_dirty_lock); 2137 2138 while (true) { 2139 spin_lock(&ci->i_ceph_lock); 2140 cap = ci->i_auth_cap; 2141 if (!(cap && cap->session == session)) { 2142 pr_err("%p auth cap %p not mds%d ???\n", inode, 2143 cap, session->s_mds); 2144 spin_unlock(&ci->i_ceph_lock); 2145 break; 2146 } 2147 2148 for (n = rb_first(&ci->i_cap_flush_tree); n; n = rb_next(n)) { 2149 cf = rb_entry(n, struct ceph_cap_flush, i_node); 2150 if (cf->tid < first_tid) 2151 continue; 2152 if (kick_all || cf->kick) 2153 break; 2154 } 2155 if (!n) { 2156 spin_unlock(&ci->i_ceph_lock); 2157 break; 2158 } 2159 2160 cf = rb_entry(n, struct ceph_cap_flush, i_node); 2161 cf->kick = false; 2162 2163 first_tid = cf->tid + 1; 2164 2165 dout("kick_flushing_caps %p cap %p tid %llu %s\n", inode, 2166 cap, cf->tid, ceph_cap_string(cf->caps)); 2167 delayed |= __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 2168 __ceph_caps_used(ci), 2169 __ceph_caps_wanted(ci), 2170 cap->issued | cap->implemented, 2171 cf->caps, cf->tid, oldest_flush_tid); 2172 } 2173 return delayed; 2174 } 2175 2176 void ceph_early_kick_flushing_caps(struct ceph_mds_client *mdsc, 2177 struct ceph_mds_session *session) 2178 { 2179 struct ceph_inode_info *ci; 2180 struct ceph_cap *cap; 2181 struct ceph_cap_flush *cf; 2182 struct rb_node *n; 2183 2184 dout("early_kick_flushing_caps mds%d\n", session->s_mds); 2185 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 2186 spin_lock(&ci->i_ceph_lock); 2187 cap = ci->i_auth_cap; 2188 if (!(cap && cap->session == session)) { 2189 pr_err("%p auth cap %p not mds%d ???\n", 2190 &ci->vfs_inode, cap, session->s_mds); 2191 spin_unlock(&ci->i_ceph_lock); 2192 continue; 2193 } 2194 2195 2196 /* 2197 * if flushing caps were revoked, we re-send the cap flush 2198 * in client reconnect stage. This guarantees MDS * processes 2199 * the cap flush message before issuing the flushing caps to 2200 * other client. 2201 */ 2202 if ((cap->issued & ci->i_flushing_caps) != 2203 ci->i_flushing_caps) { 2204 spin_unlock(&ci->i_ceph_lock); 2205 if (!__kick_flushing_caps(mdsc, session, ci, true)) 2206 continue; 2207 spin_lock(&ci->i_ceph_lock); 2208 } 2209 2210 for (n = rb_first(&ci->i_cap_flush_tree); n; n = rb_next(n)) { 2211 cf = rb_entry(n, struct ceph_cap_flush, i_node); 2212 cf->kick = true; 2213 } 2214 2215 spin_unlock(&ci->i_ceph_lock); 2216 } 2217 } 2218 2219 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 2220 struct ceph_mds_session *session) 2221 { 2222 struct ceph_inode_info *ci; 2223 2224 kick_flushing_capsnaps(mdsc, session); 2225 2226 dout("kick_flushing_caps mds%d\n", session->s_mds); 2227 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 2228 int delayed = __kick_flushing_caps(mdsc, session, ci, false); 2229 if (delayed) { 2230 spin_lock(&ci->i_ceph_lock); 2231 __cap_delay_requeue(mdsc, ci); 2232 spin_unlock(&ci->i_ceph_lock); 2233 } 2234 } 2235 } 2236 2237 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc, 2238 struct ceph_mds_session *session, 2239 struct inode *inode) 2240 { 2241 struct ceph_inode_info *ci = ceph_inode(inode); 2242 struct ceph_cap *cap; 2243 2244 spin_lock(&ci->i_ceph_lock); 2245 cap = ci->i_auth_cap; 2246 dout("kick_flushing_inode_caps %p flushing %s\n", inode, 2247 ceph_cap_string(ci->i_flushing_caps)); 2248 2249 __ceph_flush_snaps(ci, &session, 1); 2250 2251 if (ci->i_flushing_caps) { 2252 int delayed; 2253 2254 spin_lock(&mdsc->cap_dirty_lock); 2255 list_move_tail(&ci->i_flushing_item, 2256 &cap->session->s_cap_flushing); 2257 spin_unlock(&mdsc->cap_dirty_lock); 2258 2259 spin_unlock(&ci->i_ceph_lock); 2260 2261 delayed = __kick_flushing_caps(mdsc, session, ci, true); 2262 if (delayed) { 2263 spin_lock(&ci->i_ceph_lock); 2264 __cap_delay_requeue(mdsc, ci); 2265 spin_unlock(&ci->i_ceph_lock); 2266 } 2267 } else { 2268 spin_unlock(&ci->i_ceph_lock); 2269 } 2270 } 2271 2272 2273 /* 2274 * Take references to capabilities we hold, so that we don't release 2275 * them to the MDS prematurely. 2276 * 2277 * Protected by i_ceph_lock. 2278 */ 2279 static void __take_cap_refs(struct ceph_inode_info *ci, int got, 2280 bool snap_rwsem_locked) 2281 { 2282 if (got & CEPH_CAP_PIN) 2283 ci->i_pin_ref++; 2284 if (got & CEPH_CAP_FILE_RD) 2285 ci->i_rd_ref++; 2286 if (got & CEPH_CAP_FILE_CACHE) 2287 ci->i_rdcache_ref++; 2288 if (got & CEPH_CAP_FILE_WR) { 2289 if (ci->i_wr_ref == 0 && !ci->i_head_snapc) { 2290 BUG_ON(!snap_rwsem_locked); 2291 ci->i_head_snapc = ceph_get_snap_context( 2292 ci->i_snap_realm->cached_context); 2293 } 2294 ci->i_wr_ref++; 2295 } 2296 if (got & CEPH_CAP_FILE_BUFFER) { 2297 if (ci->i_wb_ref == 0) 2298 ihold(&ci->vfs_inode); 2299 ci->i_wb_ref++; 2300 dout("__take_cap_refs %p wb %d -> %d (?)\n", 2301 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref); 2302 } 2303 } 2304 2305 /* 2306 * Try to grab cap references. Specify those refs we @want, and the 2307 * minimal set we @need. Also include the larger offset we are writing 2308 * to (when applicable), and check against max_size here as well. 2309 * Note that caller is responsible for ensuring max_size increases are 2310 * requested from the MDS. 2311 */ 2312 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, 2313 loff_t endoff, bool nonblock, int *got, int *err) 2314 { 2315 struct inode *inode = &ci->vfs_inode; 2316 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 2317 int ret = 0; 2318 int have, implemented; 2319 int file_wanted; 2320 bool snap_rwsem_locked = false; 2321 2322 dout("get_cap_refs %p need %s want %s\n", inode, 2323 ceph_cap_string(need), ceph_cap_string(want)); 2324 2325 again: 2326 spin_lock(&ci->i_ceph_lock); 2327 2328 /* make sure file is actually open */ 2329 file_wanted = __ceph_caps_file_wanted(ci); 2330 if ((file_wanted & need) == 0) { 2331 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n", 2332 ceph_cap_string(need), ceph_cap_string(file_wanted)); 2333 *err = -EBADF; 2334 ret = 1; 2335 goto out_unlock; 2336 } 2337 2338 /* finish pending truncate */ 2339 while (ci->i_truncate_pending) { 2340 spin_unlock(&ci->i_ceph_lock); 2341 if (snap_rwsem_locked) { 2342 up_read(&mdsc->snap_rwsem); 2343 snap_rwsem_locked = false; 2344 } 2345 __ceph_do_pending_vmtruncate(inode); 2346 spin_lock(&ci->i_ceph_lock); 2347 } 2348 2349 have = __ceph_caps_issued(ci, &implemented); 2350 2351 if (have & need & CEPH_CAP_FILE_WR) { 2352 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { 2353 dout("get_cap_refs %p endoff %llu > maxsize %llu\n", 2354 inode, endoff, ci->i_max_size); 2355 if (endoff > ci->i_requested_max_size) { 2356 *err = -EAGAIN; 2357 ret = 1; 2358 } 2359 goto out_unlock; 2360 } 2361 /* 2362 * If a sync write is in progress, we must wait, so that we 2363 * can get a final snapshot value for size+mtime. 2364 */ 2365 if (__ceph_have_pending_cap_snap(ci)) { 2366 dout("get_cap_refs %p cap_snap_pending\n", inode); 2367 goto out_unlock; 2368 } 2369 } 2370 2371 if ((have & need) == need) { 2372 /* 2373 * Look at (implemented & ~have & not) so that we keep waiting 2374 * on transition from wanted -> needed caps. This is needed 2375 * for WRBUFFER|WR -> WR to avoid a new WR sync write from 2376 * going before a prior buffered writeback happens. 2377 */ 2378 int not = want & ~(have & need); 2379 int revoking = implemented & ~have; 2380 dout("get_cap_refs %p have %s but not %s (revoking %s)\n", 2381 inode, ceph_cap_string(have), ceph_cap_string(not), 2382 ceph_cap_string(revoking)); 2383 if ((revoking & not) == 0) { 2384 if (!snap_rwsem_locked && 2385 !ci->i_head_snapc && 2386 (need & CEPH_CAP_FILE_WR)) { 2387 if (!down_read_trylock(&mdsc->snap_rwsem)) { 2388 /* 2389 * we can not call down_read() when 2390 * task isn't in TASK_RUNNING state 2391 */ 2392 if (nonblock) { 2393 *err = -EAGAIN; 2394 ret = 1; 2395 goto out_unlock; 2396 } 2397 2398 spin_unlock(&ci->i_ceph_lock); 2399 down_read(&mdsc->snap_rwsem); 2400 snap_rwsem_locked = true; 2401 goto again; 2402 } 2403 snap_rwsem_locked = true; 2404 } 2405 *got = need | (have & want); 2406 __take_cap_refs(ci, *got, true); 2407 ret = 1; 2408 } 2409 } else { 2410 int session_readonly = false; 2411 if ((need & CEPH_CAP_FILE_WR) && ci->i_auth_cap) { 2412 struct ceph_mds_session *s = ci->i_auth_cap->session; 2413 spin_lock(&s->s_cap_lock); 2414 session_readonly = s->s_readonly; 2415 spin_unlock(&s->s_cap_lock); 2416 } 2417 if (session_readonly) { 2418 dout("get_cap_refs %p needed %s but mds%d readonly\n", 2419 inode, ceph_cap_string(need), ci->i_auth_cap->mds); 2420 *err = -EROFS; 2421 ret = 1; 2422 goto out_unlock; 2423 } 2424 2425 dout("get_cap_refs %p have %s needed %s\n", inode, 2426 ceph_cap_string(have), ceph_cap_string(need)); 2427 } 2428 out_unlock: 2429 spin_unlock(&ci->i_ceph_lock); 2430 if (snap_rwsem_locked) 2431 up_read(&mdsc->snap_rwsem); 2432 2433 dout("get_cap_refs %p ret %d got %s\n", inode, 2434 ret, ceph_cap_string(*got)); 2435 return ret; 2436 } 2437 2438 /* 2439 * Check the offset we are writing up to against our current 2440 * max_size. If necessary, tell the MDS we want to write to 2441 * a larger offset. 2442 */ 2443 static void check_max_size(struct inode *inode, loff_t endoff) 2444 { 2445 struct ceph_inode_info *ci = ceph_inode(inode); 2446 int check = 0; 2447 2448 /* do we need to explicitly request a larger max_size? */ 2449 spin_lock(&ci->i_ceph_lock); 2450 if (endoff >= ci->i_max_size && endoff > ci->i_wanted_max_size) { 2451 dout("write %p at large endoff %llu, req max_size\n", 2452 inode, endoff); 2453 ci->i_wanted_max_size = endoff; 2454 } 2455 /* duplicate ceph_check_caps()'s logic */ 2456 if (ci->i_auth_cap && 2457 (ci->i_auth_cap->issued & CEPH_CAP_FILE_WR) && 2458 ci->i_wanted_max_size > ci->i_max_size && 2459 ci->i_wanted_max_size > ci->i_requested_max_size) 2460 check = 1; 2461 spin_unlock(&ci->i_ceph_lock); 2462 if (check) 2463 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2464 } 2465 2466 /* 2467 * Wait for caps, and take cap references. If we can't get a WR cap 2468 * due to a small max_size, make sure we check_max_size (and possibly 2469 * ask the mds) so we don't get hung up indefinitely. 2470 */ 2471 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, 2472 loff_t endoff, int *got, struct page **pinned_page) 2473 { 2474 int _got, ret, err = 0; 2475 2476 ret = ceph_pool_perm_check(ci, need); 2477 if (ret < 0) 2478 return ret; 2479 2480 while (true) { 2481 if (endoff > 0) 2482 check_max_size(&ci->vfs_inode, endoff); 2483 2484 err = 0; 2485 _got = 0; 2486 ret = try_get_cap_refs(ci, need, want, endoff, 2487 false, &_got, &err); 2488 if (ret) { 2489 if (err == -EAGAIN) 2490 continue; 2491 if (err < 0) 2492 return err; 2493 } else { 2494 ret = wait_event_interruptible(ci->i_cap_wq, 2495 try_get_cap_refs(ci, need, want, endoff, 2496 true, &_got, &err)); 2497 if (err == -EAGAIN) 2498 continue; 2499 if (err < 0) 2500 ret = err; 2501 if (ret < 0) 2502 return ret; 2503 } 2504 2505 if (ci->i_inline_version != CEPH_INLINE_NONE && 2506 (_got & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && 2507 i_size_read(&ci->vfs_inode) > 0) { 2508 struct page *page = 2509 find_get_page(ci->vfs_inode.i_mapping, 0); 2510 if (page) { 2511 if (PageUptodate(page)) { 2512 *pinned_page = page; 2513 break; 2514 } 2515 page_cache_release(page); 2516 } 2517 /* 2518 * drop cap refs first because getattr while 2519 * holding * caps refs can cause deadlock. 2520 */ 2521 ceph_put_cap_refs(ci, _got); 2522 _got = 0; 2523 2524 /* 2525 * getattr request will bring inline data into 2526 * page cache 2527 */ 2528 ret = __ceph_do_getattr(&ci->vfs_inode, NULL, 2529 CEPH_STAT_CAP_INLINE_DATA, 2530 true); 2531 if (ret < 0) 2532 return ret; 2533 continue; 2534 } 2535 break; 2536 } 2537 2538 *got = _got; 2539 return 0; 2540 } 2541 2542 /* 2543 * Take cap refs. Caller must already know we hold at least one ref 2544 * on the caps in question or we don't know this is safe. 2545 */ 2546 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) 2547 { 2548 spin_lock(&ci->i_ceph_lock); 2549 __take_cap_refs(ci, caps, false); 2550 spin_unlock(&ci->i_ceph_lock); 2551 } 2552 2553 2554 /* 2555 * drop cap_snap that is not associated with any snapshot. 2556 * we don't need to send FLUSHSNAP message for it. 2557 */ 2558 static int ceph_try_drop_cap_snap(struct ceph_cap_snap *capsnap) 2559 { 2560 if (!capsnap->need_flush && 2561 !capsnap->writing && !capsnap->dirty_pages) { 2562 2563 dout("dropping cap_snap %p follows %llu\n", 2564 capsnap, capsnap->follows); 2565 ceph_put_snap_context(capsnap->context); 2566 list_del(&capsnap->ci_item); 2567 list_del(&capsnap->flushing_item); 2568 ceph_put_cap_snap(capsnap); 2569 return 1; 2570 } 2571 return 0; 2572 } 2573 2574 /* 2575 * Release cap refs. 2576 * 2577 * If we released the last ref on any given cap, call ceph_check_caps 2578 * to release (or schedule a release). 2579 * 2580 * If we are releasing a WR cap (from a sync write), finalize any affected 2581 * cap_snap, and wake up any waiters. 2582 */ 2583 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) 2584 { 2585 struct inode *inode = &ci->vfs_inode; 2586 int last = 0, put = 0, flushsnaps = 0, wake = 0; 2587 2588 spin_lock(&ci->i_ceph_lock); 2589 if (had & CEPH_CAP_PIN) 2590 --ci->i_pin_ref; 2591 if (had & CEPH_CAP_FILE_RD) 2592 if (--ci->i_rd_ref == 0) 2593 last++; 2594 if (had & CEPH_CAP_FILE_CACHE) 2595 if (--ci->i_rdcache_ref == 0) 2596 last++; 2597 if (had & CEPH_CAP_FILE_BUFFER) { 2598 if (--ci->i_wb_ref == 0) { 2599 last++; 2600 put++; 2601 } 2602 dout("put_cap_refs %p wb %d -> %d (?)\n", 2603 inode, ci->i_wb_ref+1, ci->i_wb_ref); 2604 } 2605 if (had & CEPH_CAP_FILE_WR) 2606 if (--ci->i_wr_ref == 0) { 2607 last++; 2608 if (__ceph_have_pending_cap_snap(ci)) { 2609 struct ceph_cap_snap *capsnap = 2610 list_last_entry(&ci->i_cap_snaps, 2611 struct ceph_cap_snap, 2612 ci_item); 2613 capsnap->writing = 0; 2614 if (ceph_try_drop_cap_snap(capsnap)) 2615 put++; 2616 else if (__ceph_finish_cap_snap(ci, capsnap)) 2617 flushsnaps = 1; 2618 wake = 1; 2619 } 2620 if (ci->i_wrbuffer_ref_head == 0 && 2621 ci->i_dirty_caps == 0 && 2622 ci->i_flushing_caps == 0) { 2623 BUG_ON(!ci->i_head_snapc); 2624 ceph_put_snap_context(ci->i_head_snapc); 2625 ci->i_head_snapc = NULL; 2626 } 2627 /* see comment in __ceph_remove_cap() */ 2628 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) 2629 drop_inode_snap_realm(ci); 2630 } 2631 spin_unlock(&ci->i_ceph_lock); 2632 2633 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had), 2634 last ? " last" : "", put ? " put" : ""); 2635 2636 if (last && !flushsnaps) 2637 ceph_check_caps(ci, 0, NULL); 2638 else if (flushsnaps) 2639 ceph_flush_snaps(ci); 2640 if (wake) 2641 wake_up_all(&ci->i_cap_wq); 2642 while (put-- > 0) 2643 iput(inode); 2644 } 2645 2646 /* 2647 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap 2648 * context. Adjust per-snap dirty page accounting as appropriate. 2649 * Once all dirty data for a cap_snap is flushed, flush snapped file 2650 * metadata back to the MDS. If we dropped the last ref, call 2651 * ceph_check_caps. 2652 */ 2653 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 2654 struct ceph_snap_context *snapc) 2655 { 2656 struct inode *inode = &ci->vfs_inode; 2657 int last = 0; 2658 int complete_capsnap = 0; 2659 int drop_capsnap = 0; 2660 int found = 0; 2661 struct ceph_cap_snap *capsnap = NULL; 2662 2663 spin_lock(&ci->i_ceph_lock); 2664 ci->i_wrbuffer_ref -= nr; 2665 last = !ci->i_wrbuffer_ref; 2666 2667 if (ci->i_head_snapc == snapc) { 2668 ci->i_wrbuffer_ref_head -= nr; 2669 if (ci->i_wrbuffer_ref_head == 0 && 2670 ci->i_wr_ref == 0 && 2671 ci->i_dirty_caps == 0 && 2672 ci->i_flushing_caps == 0) { 2673 BUG_ON(!ci->i_head_snapc); 2674 ceph_put_snap_context(ci->i_head_snapc); 2675 ci->i_head_snapc = NULL; 2676 } 2677 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", 2678 inode, 2679 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, 2680 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 2681 last ? " LAST" : ""); 2682 } else { 2683 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2684 if (capsnap->context == snapc) { 2685 found = 1; 2686 break; 2687 } 2688 } 2689 BUG_ON(!found); 2690 capsnap->dirty_pages -= nr; 2691 if (capsnap->dirty_pages == 0) { 2692 complete_capsnap = 1; 2693 drop_capsnap = ceph_try_drop_cap_snap(capsnap); 2694 } 2695 dout("put_wrbuffer_cap_refs on %p cap_snap %p " 2696 " snap %lld %d/%d -> %d/%d %s%s\n", 2697 inode, capsnap, capsnap->context->seq, 2698 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, 2699 ci->i_wrbuffer_ref, capsnap->dirty_pages, 2700 last ? " (wrbuffer last)" : "", 2701 complete_capsnap ? " (complete capsnap)" : ""); 2702 } 2703 2704 spin_unlock(&ci->i_ceph_lock); 2705 2706 if (last) { 2707 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2708 iput(inode); 2709 } else if (complete_capsnap) { 2710 ceph_flush_snaps(ci); 2711 wake_up_all(&ci->i_cap_wq); 2712 } 2713 if (drop_capsnap) 2714 iput(inode); 2715 } 2716 2717 /* 2718 * Invalidate unlinked inode's aliases, so we can drop the inode ASAP. 2719 */ 2720 static void invalidate_aliases(struct inode *inode) 2721 { 2722 struct dentry *dn, *prev = NULL; 2723 2724 dout("invalidate_aliases inode %p\n", inode); 2725 d_prune_aliases(inode); 2726 /* 2727 * For non-directory inode, d_find_alias() only returns 2728 * hashed dentry. After calling d_invalidate(), the 2729 * dentry becomes unhashed. 2730 * 2731 * For directory inode, d_find_alias() can return 2732 * unhashed dentry. But directory inode should have 2733 * one alias at most. 2734 */ 2735 while ((dn = d_find_alias(inode))) { 2736 if (dn == prev) { 2737 dput(dn); 2738 break; 2739 } 2740 d_invalidate(dn); 2741 if (prev) 2742 dput(prev); 2743 prev = dn; 2744 } 2745 if (prev) 2746 dput(prev); 2747 } 2748 2749 /* 2750 * Handle a cap GRANT message from the MDS. (Note that a GRANT may 2751 * actually be a revocation if it specifies a smaller cap set.) 2752 * 2753 * caller holds s_mutex and i_ceph_lock, we drop both. 2754 */ 2755 static void handle_cap_grant(struct ceph_mds_client *mdsc, 2756 struct inode *inode, struct ceph_mds_caps *grant, 2757 u64 inline_version, 2758 void *inline_data, int inline_len, 2759 struct ceph_buffer *xattr_buf, 2760 struct ceph_mds_session *session, 2761 struct ceph_cap *cap, int issued) 2762 __releases(ci->i_ceph_lock) 2763 __releases(mdsc->snap_rwsem) 2764 { 2765 struct ceph_inode_info *ci = ceph_inode(inode); 2766 int mds = session->s_mds; 2767 int seq = le32_to_cpu(grant->seq); 2768 int newcaps = le32_to_cpu(grant->caps); 2769 int used, wanted, dirty; 2770 u64 size = le64_to_cpu(grant->size); 2771 u64 max_size = le64_to_cpu(grant->max_size); 2772 struct timespec mtime, atime, ctime; 2773 int check_caps = 0; 2774 bool wake = false; 2775 bool writeback = false; 2776 bool queue_trunc = false; 2777 bool queue_invalidate = false; 2778 bool queue_revalidate = false; 2779 bool deleted_inode = false; 2780 bool fill_inline = false; 2781 2782 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", 2783 inode, cap, mds, seq, ceph_cap_string(newcaps)); 2784 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, 2785 inode->i_size); 2786 2787 2788 /* 2789 * auth mds of the inode changed. we received the cap export message, 2790 * but still haven't received the cap import message. handle_cap_export 2791 * updated the new auth MDS' cap. 2792 * 2793 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing a message 2794 * that was sent before the cap import message. So don't remove caps. 2795 */ 2796 if (ceph_seq_cmp(seq, cap->seq) <= 0) { 2797 WARN_ON(cap != ci->i_auth_cap); 2798 WARN_ON(cap->cap_id != le64_to_cpu(grant->cap_id)); 2799 seq = cap->seq; 2800 newcaps |= cap->issued; 2801 } 2802 2803 /* 2804 * If CACHE is being revoked, and we have no dirty buffers, 2805 * try to invalidate (once). (If there are dirty buffers, we 2806 * will invalidate _after_ writeback.) 2807 */ 2808 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && 2809 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2810 !ci->i_wrbuffer_ref) { 2811 if (try_nonblocking_invalidate(inode)) { 2812 /* there were locked pages.. invalidate later 2813 in a separate thread. */ 2814 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { 2815 queue_invalidate = true; 2816 ci->i_rdcache_revoking = ci->i_rdcache_gen; 2817 } 2818 } 2819 2820 ceph_fscache_invalidate(inode); 2821 } 2822 2823 /* side effects now are allowed */ 2824 cap->cap_gen = session->s_cap_gen; 2825 cap->seq = seq; 2826 2827 __check_cap_issue(ci, cap, newcaps); 2828 2829 if ((newcaps & CEPH_CAP_AUTH_SHARED) && 2830 (issued & CEPH_CAP_AUTH_EXCL) == 0) { 2831 inode->i_mode = le32_to_cpu(grant->mode); 2832 inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid)); 2833 inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid)); 2834 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, 2835 from_kuid(&init_user_ns, inode->i_uid), 2836 from_kgid(&init_user_ns, inode->i_gid)); 2837 } 2838 2839 if ((newcaps & CEPH_CAP_AUTH_SHARED) && 2840 (issued & CEPH_CAP_LINK_EXCL) == 0) { 2841 set_nlink(inode, le32_to_cpu(grant->nlink)); 2842 if (inode->i_nlink == 0 && 2843 (newcaps & (CEPH_CAP_LINK_SHARED | CEPH_CAP_LINK_EXCL))) 2844 deleted_inode = true; 2845 } 2846 2847 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { 2848 int len = le32_to_cpu(grant->xattr_len); 2849 u64 version = le64_to_cpu(grant->xattr_version); 2850 2851 if (version > ci->i_xattrs.version) { 2852 dout(" got new xattrs v%llu on %p len %d\n", 2853 version, inode, len); 2854 if (ci->i_xattrs.blob) 2855 ceph_buffer_put(ci->i_xattrs.blob); 2856 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); 2857 ci->i_xattrs.version = version; 2858 ceph_forget_all_cached_acls(inode); 2859 } 2860 } 2861 2862 /* Do we need to revalidate our fscache cookie. Don't bother on the 2863 * first cache cap as we already validate at cookie creation time. */ 2864 if ((issued & CEPH_CAP_FILE_CACHE) && ci->i_rdcache_gen > 1) 2865 queue_revalidate = true; 2866 2867 if (newcaps & CEPH_CAP_ANY_RD) { 2868 /* ctime/mtime/atime? */ 2869 ceph_decode_timespec(&mtime, &grant->mtime); 2870 ceph_decode_timespec(&atime, &grant->atime); 2871 ceph_decode_timespec(&ctime, &grant->ctime); 2872 ceph_fill_file_time(inode, issued, 2873 le32_to_cpu(grant->time_warp_seq), 2874 &ctime, &mtime, &atime); 2875 } 2876 2877 if (newcaps & (CEPH_CAP_ANY_FILE_RD | CEPH_CAP_ANY_FILE_WR)) { 2878 /* file layout may have changed */ 2879 ci->i_layout = grant->layout; 2880 /* size/truncate_seq? */ 2881 queue_trunc = ceph_fill_file_size(inode, issued, 2882 le32_to_cpu(grant->truncate_seq), 2883 le64_to_cpu(grant->truncate_size), 2884 size); 2885 /* max size increase? */ 2886 if (ci->i_auth_cap == cap && max_size != ci->i_max_size) { 2887 dout("max_size %lld -> %llu\n", 2888 ci->i_max_size, max_size); 2889 ci->i_max_size = max_size; 2890 if (max_size >= ci->i_wanted_max_size) { 2891 ci->i_wanted_max_size = 0; /* reset */ 2892 ci->i_requested_max_size = 0; 2893 } 2894 wake = true; 2895 } 2896 } 2897 2898 /* check cap bits */ 2899 wanted = __ceph_caps_wanted(ci); 2900 used = __ceph_caps_used(ci); 2901 dirty = __ceph_caps_dirty(ci); 2902 dout(" my wanted = %s, used = %s, dirty %s\n", 2903 ceph_cap_string(wanted), 2904 ceph_cap_string(used), 2905 ceph_cap_string(dirty)); 2906 if (wanted != le32_to_cpu(grant->wanted)) { 2907 dout("mds wanted %s -> %s\n", 2908 ceph_cap_string(le32_to_cpu(grant->wanted)), 2909 ceph_cap_string(wanted)); 2910 /* imported cap may not have correct mds_wanted */ 2911 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) 2912 check_caps = 1; 2913 } 2914 2915 /* revocation, grant, or no-op? */ 2916 if (cap->issued & ~newcaps) { 2917 int revoking = cap->issued & ~newcaps; 2918 2919 dout("revocation: %s -> %s (revoking %s)\n", 2920 ceph_cap_string(cap->issued), 2921 ceph_cap_string(newcaps), 2922 ceph_cap_string(revoking)); 2923 if (revoking & used & CEPH_CAP_FILE_BUFFER) 2924 writeback = true; /* initiate writeback; will delay ack */ 2925 else if (revoking == CEPH_CAP_FILE_CACHE && 2926 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2927 queue_invalidate) 2928 ; /* do nothing yet, invalidation will be queued */ 2929 else if (cap == ci->i_auth_cap) 2930 check_caps = 1; /* check auth cap only */ 2931 else 2932 check_caps = 2; /* check all caps */ 2933 cap->issued = newcaps; 2934 cap->implemented |= newcaps; 2935 } else if (cap->issued == newcaps) { 2936 dout("caps unchanged: %s -> %s\n", 2937 ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); 2938 } else { 2939 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), 2940 ceph_cap_string(newcaps)); 2941 /* non-auth MDS is revoking the newly grant caps ? */ 2942 if (cap == ci->i_auth_cap && 2943 __ceph_caps_revoking_other(ci, cap, newcaps)) 2944 check_caps = 2; 2945 2946 cap->issued = newcaps; 2947 cap->implemented |= newcaps; /* add bits only, to 2948 * avoid stepping on a 2949 * pending revocation */ 2950 wake = true; 2951 } 2952 BUG_ON(cap->issued & ~cap->implemented); 2953 2954 if (inline_version > 0 && inline_version >= ci->i_inline_version) { 2955 ci->i_inline_version = inline_version; 2956 if (ci->i_inline_version != CEPH_INLINE_NONE && 2957 (newcaps & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO))) 2958 fill_inline = true; 2959 } 2960 2961 spin_unlock(&ci->i_ceph_lock); 2962 2963 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) { 2964 kick_flushing_inode_caps(mdsc, session, inode); 2965 up_read(&mdsc->snap_rwsem); 2966 if (newcaps & ~issued) 2967 wake = true; 2968 } 2969 2970 if (fill_inline) 2971 ceph_fill_inline_data(inode, NULL, inline_data, inline_len); 2972 2973 if (queue_trunc) { 2974 ceph_queue_vmtruncate(inode); 2975 ceph_queue_revalidate(inode); 2976 } else if (queue_revalidate) 2977 ceph_queue_revalidate(inode); 2978 2979 if (writeback) 2980 /* 2981 * queue inode for writeback: we can't actually call 2982 * filemap_write_and_wait, etc. from message handler 2983 * context. 2984 */ 2985 ceph_queue_writeback(inode); 2986 if (queue_invalidate) 2987 ceph_queue_invalidate(inode); 2988 if (deleted_inode) 2989 invalidate_aliases(inode); 2990 if (wake) 2991 wake_up_all(&ci->i_cap_wq); 2992 2993 if (check_caps == 1) 2994 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, 2995 session); 2996 else if (check_caps == 2) 2997 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session); 2998 else 2999 mutex_unlock(&session->s_mutex); 3000 } 3001 3002 /* 3003 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the 3004 * MDS has been safely committed. 3005 */ 3006 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, 3007 struct ceph_mds_caps *m, 3008 struct ceph_mds_session *session, 3009 struct ceph_cap *cap) 3010 __releases(ci->i_ceph_lock) 3011 { 3012 struct ceph_inode_info *ci = ceph_inode(inode); 3013 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 3014 struct ceph_cap_flush *cf; 3015 struct rb_node *n; 3016 LIST_HEAD(to_remove); 3017 unsigned seq = le32_to_cpu(m->seq); 3018 int dirty = le32_to_cpu(m->dirty); 3019 int cleaned = 0; 3020 int drop = 0; 3021 3022 n = rb_first(&ci->i_cap_flush_tree); 3023 while (n) { 3024 cf = rb_entry(n, struct ceph_cap_flush, i_node); 3025 n = rb_next(&cf->i_node); 3026 if (cf->tid == flush_tid) 3027 cleaned = cf->caps; 3028 if (cf->tid <= flush_tid) { 3029 rb_erase(&cf->i_node, &ci->i_cap_flush_tree); 3030 list_add_tail(&cf->list, &to_remove); 3031 } else { 3032 cleaned &= ~cf->caps; 3033 if (!cleaned) 3034 break; 3035 } 3036 } 3037 3038 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," 3039 " flushing %s -> %s\n", 3040 inode, session->s_mds, seq, ceph_cap_string(dirty), 3041 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), 3042 ceph_cap_string(ci->i_flushing_caps & ~cleaned)); 3043 3044 if (list_empty(&to_remove) && !cleaned) 3045 goto out; 3046 3047 ci->i_flushing_caps &= ~cleaned; 3048 3049 spin_lock(&mdsc->cap_dirty_lock); 3050 3051 if (!list_empty(&to_remove)) { 3052 list_for_each_entry(cf, &to_remove, list) 3053 rb_erase(&cf->g_node, &mdsc->cap_flush_tree); 3054 3055 n = rb_first(&mdsc->cap_flush_tree); 3056 cf = n ? rb_entry(n, struct ceph_cap_flush, g_node) : NULL; 3057 if (!cf || cf->tid > flush_tid) 3058 wake_up_all(&mdsc->cap_flushing_wq); 3059 } 3060 3061 if (ci->i_flushing_caps == 0) { 3062 list_del_init(&ci->i_flushing_item); 3063 if (!list_empty(&session->s_cap_flushing)) 3064 dout(" mds%d still flushing cap on %p\n", 3065 session->s_mds, 3066 &list_entry(session->s_cap_flushing.next, 3067 struct ceph_inode_info, 3068 i_flushing_item)->vfs_inode); 3069 mdsc->num_cap_flushing--; 3070 dout(" inode %p now !flushing\n", inode); 3071 3072 if (ci->i_dirty_caps == 0) { 3073 dout(" inode %p now clean\n", inode); 3074 BUG_ON(!list_empty(&ci->i_dirty_item)); 3075 drop = 1; 3076 if (ci->i_wr_ref == 0 && 3077 ci->i_wrbuffer_ref_head == 0) { 3078 BUG_ON(!ci->i_head_snapc); 3079 ceph_put_snap_context(ci->i_head_snapc); 3080 ci->i_head_snapc = NULL; 3081 } 3082 } else { 3083 BUG_ON(list_empty(&ci->i_dirty_item)); 3084 } 3085 } 3086 spin_unlock(&mdsc->cap_dirty_lock); 3087 wake_up_all(&ci->i_cap_wq); 3088 3089 out: 3090 spin_unlock(&ci->i_ceph_lock); 3091 3092 while (!list_empty(&to_remove)) { 3093 cf = list_first_entry(&to_remove, 3094 struct ceph_cap_flush, list); 3095 list_del(&cf->list); 3096 ceph_free_cap_flush(cf); 3097 } 3098 if (drop) 3099 iput(inode); 3100 } 3101 3102 /* 3103 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can 3104 * throw away our cap_snap. 3105 * 3106 * Caller hold s_mutex. 3107 */ 3108 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, 3109 struct ceph_mds_caps *m, 3110 struct ceph_mds_session *session) 3111 { 3112 struct ceph_inode_info *ci = ceph_inode(inode); 3113 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 3114 u64 follows = le64_to_cpu(m->snap_follows); 3115 struct ceph_cap_snap *capsnap; 3116 int drop = 0; 3117 3118 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", 3119 inode, ci, session->s_mds, follows); 3120 3121 spin_lock(&ci->i_ceph_lock); 3122 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 3123 if (capsnap->follows == follows) { 3124 if (capsnap->flush_tid != flush_tid) { 3125 dout(" cap_snap %p follows %lld tid %lld !=" 3126 " %lld\n", capsnap, follows, 3127 flush_tid, capsnap->flush_tid); 3128 break; 3129 } 3130 WARN_ON(capsnap->dirty_pages || capsnap->writing); 3131 dout(" removing %p cap_snap %p follows %lld\n", 3132 inode, capsnap, follows); 3133 ceph_put_snap_context(capsnap->context); 3134 list_del(&capsnap->ci_item); 3135 list_del(&capsnap->flushing_item); 3136 ceph_put_cap_snap(capsnap); 3137 wake_up_all(&mdsc->cap_flushing_wq); 3138 drop = 1; 3139 break; 3140 } else { 3141 dout(" skipping cap_snap %p follows %lld\n", 3142 capsnap, capsnap->follows); 3143 } 3144 } 3145 spin_unlock(&ci->i_ceph_lock); 3146 if (drop) 3147 iput(inode); 3148 } 3149 3150 /* 3151 * Handle TRUNC from MDS, indicating file truncation. 3152 * 3153 * caller hold s_mutex. 3154 */ 3155 static void handle_cap_trunc(struct inode *inode, 3156 struct ceph_mds_caps *trunc, 3157 struct ceph_mds_session *session) 3158 __releases(ci->i_ceph_lock) 3159 { 3160 struct ceph_inode_info *ci = ceph_inode(inode); 3161 int mds = session->s_mds; 3162 int seq = le32_to_cpu(trunc->seq); 3163 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); 3164 u64 truncate_size = le64_to_cpu(trunc->truncate_size); 3165 u64 size = le64_to_cpu(trunc->size); 3166 int implemented = 0; 3167 int dirty = __ceph_caps_dirty(ci); 3168 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); 3169 int queue_trunc = 0; 3170 3171 issued |= implemented | dirty; 3172 3173 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", 3174 inode, mds, seq, truncate_size, truncate_seq); 3175 queue_trunc = ceph_fill_file_size(inode, issued, 3176 truncate_seq, truncate_size, size); 3177 spin_unlock(&ci->i_ceph_lock); 3178 3179 if (queue_trunc) { 3180 ceph_queue_vmtruncate(inode); 3181 ceph_fscache_invalidate(inode); 3182 } 3183 } 3184 3185 /* 3186 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a 3187 * different one. If we are the most recent migration we've seen (as 3188 * indicated by mseq), make note of the migrating cap bits for the 3189 * duration (until we see the corresponding IMPORT). 3190 * 3191 * caller holds s_mutex 3192 */ 3193 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, 3194 struct ceph_mds_cap_peer *ph, 3195 struct ceph_mds_session *session) 3196 { 3197 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 3198 struct ceph_mds_session *tsession = NULL; 3199 struct ceph_cap *cap, *tcap, *new_cap = NULL; 3200 struct ceph_inode_info *ci = ceph_inode(inode); 3201 u64 t_cap_id; 3202 unsigned mseq = le32_to_cpu(ex->migrate_seq); 3203 unsigned t_seq, t_mseq; 3204 int target, issued; 3205 int mds = session->s_mds; 3206 3207 if (ph) { 3208 t_cap_id = le64_to_cpu(ph->cap_id); 3209 t_seq = le32_to_cpu(ph->seq); 3210 t_mseq = le32_to_cpu(ph->mseq); 3211 target = le32_to_cpu(ph->mds); 3212 } else { 3213 t_cap_id = t_seq = t_mseq = 0; 3214 target = -1; 3215 } 3216 3217 dout("handle_cap_export inode %p ci %p mds%d mseq %d target %d\n", 3218 inode, ci, mds, mseq, target); 3219 retry: 3220 spin_lock(&ci->i_ceph_lock); 3221 cap = __get_cap_for_mds(ci, mds); 3222 if (!cap || cap->cap_id != le64_to_cpu(ex->cap_id)) 3223 goto out_unlock; 3224 3225 if (target < 0) { 3226 __ceph_remove_cap(cap, false); 3227 goto out_unlock; 3228 } 3229 3230 /* 3231 * now we know we haven't received the cap import message yet 3232 * because the exported cap still exist. 3233 */ 3234 3235 issued = cap->issued; 3236 WARN_ON(issued != cap->implemented); 3237 3238 tcap = __get_cap_for_mds(ci, target); 3239 if (tcap) { 3240 /* already have caps from the target */ 3241 if (tcap->cap_id != t_cap_id || 3242 ceph_seq_cmp(tcap->seq, t_seq) < 0) { 3243 dout(" updating import cap %p mds%d\n", tcap, target); 3244 tcap->cap_id = t_cap_id; 3245 tcap->seq = t_seq - 1; 3246 tcap->issue_seq = t_seq - 1; 3247 tcap->mseq = t_mseq; 3248 tcap->issued |= issued; 3249 tcap->implemented |= issued; 3250 if (cap == ci->i_auth_cap) 3251 ci->i_auth_cap = tcap; 3252 if (ci->i_flushing_caps && ci->i_auth_cap == tcap) { 3253 spin_lock(&mdsc->cap_dirty_lock); 3254 list_move_tail(&ci->i_flushing_item, 3255 &tcap->session->s_cap_flushing); 3256 spin_unlock(&mdsc->cap_dirty_lock); 3257 } 3258 } 3259 __ceph_remove_cap(cap, false); 3260 goto out_unlock; 3261 } else if (tsession) { 3262 /* add placeholder for the export tagert */ 3263 int flag = (cap == ci->i_auth_cap) ? CEPH_CAP_FLAG_AUTH : 0; 3264 ceph_add_cap(inode, tsession, t_cap_id, -1, issued, 0, 3265 t_seq - 1, t_mseq, (u64)-1, flag, &new_cap); 3266 3267 __ceph_remove_cap(cap, false); 3268 goto out_unlock; 3269 } 3270 3271 spin_unlock(&ci->i_ceph_lock); 3272 mutex_unlock(&session->s_mutex); 3273 3274 /* open target session */ 3275 tsession = ceph_mdsc_open_export_target_session(mdsc, target); 3276 if (!IS_ERR(tsession)) { 3277 if (mds > target) { 3278 mutex_lock(&session->s_mutex); 3279 mutex_lock_nested(&tsession->s_mutex, 3280 SINGLE_DEPTH_NESTING); 3281 } else { 3282 mutex_lock(&tsession->s_mutex); 3283 mutex_lock_nested(&session->s_mutex, 3284 SINGLE_DEPTH_NESTING); 3285 } 3286 new_cap = ceph_get_cap(mdsc, NULL); 3287 } else { 3288 WARN_ON(1); 3289 tsession = NULL; 3290 target = -1; 3291 } 3292 goto retry; 3293 3294 out_unlock: 3295 spin_unlock(&ci->i_ceph_lock); 3296 mutex_unlock(&session->s_mutex); 3297 if (tsession) { 3298 mutex_unlock(&tsession->s_mutex); 3299 ceph_put_mds_session(tsession); 3300 } 3301 if (new_cap) 3302 ceph_put_cap(mdsc, new_cap); 3303 } 3304 3305 /* 3306 * Handle cap IMPORT. 3307 * 3308 * caller holds s_mutex. acquires i_ceph_lock 3309 */ 3310 static void handle_cap_import(struct ceph_mds_client *mdsc, 3311 struct inode *inode, struct ceph_mds_caps *im, 3312 struct ceph_mds_cap_peer *ph, 3313 struct ceph_mds_session *session, 3314 struct ceph_cap **target_cap, int *old_issued) 3315 __acquires(ci->i_ceph_lock) 3316 { 3317 struct ceph_inode_info *ci = ceph_inode(inode); 3318 struct ceph_cap *cap, *ocap, *new_cap = NULL; 3319 int mds = session->s_mds; 3320 int issued; 3321 unsigned caps = le32_to_cpu(im->caps); 3322 unsigned wanted = le32_to_cpu(im->wanted); 3323 unsigned seq = le32_to_cpu(im->seq); 3324 unsigned mseq = le32_to_cpu(im->migrate_seq); 3325 u64 realmino = le64_to_cpu(im->realm); 3326 u64 cap_id = le64_to_cpu(im->cap_id); 3327 u64 p_cap_id; 3328 int peer; 3329 3330 if (ph) { 3331 p_cap_id = le64_to_cpu(ph->cap_id); 3332 peer = le32_to_cpu(ph->mds); 3333 } else { 3334 p_cap_id = 0; 3335 peer = -1; 3336 } 3337 3338 dout("handle_cap_import inode %p ci %p mds%d mseq %d peer %d\n", 3339 inode, ci, mds, mseq, peer); 3340 3341 retry: 3342 spin_lock(&ci->i_ceph_lock); 3343 cap = __get_cap_for_mds(ci, mds); 3344 if (!cap) { 3345 if (!new_cap) { 3346 spin_unlock(&ci->i_ceph_lock); 3347 new_cap = ceph_get_cap(mdsc, NULL); 3348 goto retry; 3349 } 3350 cap = new_cap; 3351 } else { 3352 if (new_cap) { 3353 ceph_put_cap(mdsc, new_cap); 3354 new_cap = NULL; 3355 } 3356 } 3357 3358 __ceph_caps_issued(ci, &issued); 3359 issued |= __ceph_caps_dirty(ci); 3360 3361 ceph_add_cap(inode, session, cap_id, -1, caps, wanted, seq, mseq, 3362 realmino, CEPH_CAP_FLAG_AUTH, &new_cap); 3363 3364 ocap = peer >= 0 ? __get_cap_for_mds(ci, peer) : NULL; 3365 if (ocap && ocap->cap_id == p_cap_id) { 3366 dout(" remove export cap %p mds%d flags %d\n", 3367 ocap, peer, ph->flags); 3368 if ((ph->flags & CEPH_CAP_FLAG_AUTH) && 3369 (ocap->seq != le32_to_cpu(ph->seq) || 3370 ocap->mseq != le32_to_cpu(ph->mseq))) { 3371 pr_err("handle_cap_import: mismatched seq/mseq: " 3372 "ino (%llx.%llx) mds%d seq %d mseq %d " 3373 "importer mds%d has peer seq %d mseq %d\n", 3374 ceph_vinop(inode), peer, ocap->seq, 3375 ocap->mseq, mds, le32_to_cpu(ph->seq), 3376 le32_to_cpu(ph->mseq)); 3377 } 3378 __ceph_remove_cap(ocap, (ph->flags & CEPH_CAP_FLAG_RELEASE)); 3379 } 3380 3381 /* make sure we re-request max_size, if necessary */ 3382 ci->i_wanted_max_size = 0; 3383 ci->i_requested_max_size = 0; 3384 3385 *old_issued = issued; 3386 *target_cap = cap; 3387 } 3388 3389 /* 3390 * Handle a caps message from the MDS. 3391 * 3392 * Identify the appropriate session, inode, and call the right handler 3393 * based on the cap op. 3394 */ 3395 void ceph_handle_caps(struct ceph_mds_session *session, 3396 struct ceph_msg *msg) 3397 { 3398 struct ceph_mds_client *mdsc = session->s_mdsc; 3399 struct super_block *sb = mdsc->fsc->sb; 3400 struct inode *inode; 3401 struct ceph_inode_info *ci; 3402 struct ceph_cap *cap; 3403 struct ceph_mds_caps *h; 3404 struct ceph_mds_cap_peer *peer = NULL; 3405 struct ceph_snap_realm *realm; 3406 int mds = session->s_mds; 3407 int op, issued; 3408 u32 seq, mseq; 3409 struct ceph_vino vino; 3410 u64 cap_id; 3411 u64 size, max_size; 3412 u64 tid; 3413 u64 inline_version = 0; 3414 void *inline_data = NULL; 3415 u32 inline_len = 0; 3416 void *snaptrace; 3417 size_t snaptrace_len; 3418 void *p, *end; 3419 3420 dout("handle_caps from mds%d\n", mds); 3421 3422 /* decode */ 3423 end = msg->front.iov_base + msg->front.iov_len; 3424 tid = le64_to_cpu(msg->hdr.tid); 3425 if (msg->front.iov_len < sizeof(*h)) 3426 goto bad; 3427 h = msg->front.iov_base; 3428 op = le32_to_cpu(h->op); 3429 vino.ino = le64_to_cpu(h->ino); 3430 vino.snap = CEPH_NOSNAP; 3431 cap_id = le64_to_cpu(h->cap_id); 3432 seq = le32_to_cpu(h->seq); 3433 mseq = le32_to_cpu(h->migrate_seq); 3434 size = le64_to_cpu(h->size); 3435 max_size = le64_to_cpu(h->max_size); 3436 3437 snaptrace = h + 1; 3438 snaptrace_len = le32_to_cpu(h->snap_trace_len); 3439 p = snaptrace + snaptrace_len; 3440 3441 if (le16_to_cpu(msg->hdr.version) >= 2) { 3442 u32 flock_len; 3443 ceph_decode_32_safe(&p, end, flock_len, bad); 3444 if (p + flock_len > end) 3445 goto bad; 3446 p += flock_len; 3447 } 3448 3449 if (le16_to_cpu(msg->hdr.version) >= 3) { 3450 if (op == CEPH_CAP_OP_IMPORT) { 3451 if (p + sizeof(*peer) > end) 3452 goto bad; 3453 peer = p; 3454 p += sizeof(*peer); 3455 } else if (op == CEPH_CAP_OP_EXPORT) { 3456 /* recorded in unused fields */ 3457 peer = (void *)&h->size; 3458 } 3459 } 3460 3461 if (le16_to_cpu(msg->hdr.version) >= 4) { 3462 ceph_decode_64_safe(&p, end, inline_version, bad); 3463 ceph_decode_32_safe(&p, end, inline_len, bad); 3464 if (p + inline_len > end) 3465 goto bad; 3466 inline_data = p; 3467 p += inline_len; 3468 } 3469 3470 /* lookup ino */ 3471 inode = ceph_find_inode(sb, vino); 3472 ci = ceph_inode(inode); 3473 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, 3474 vino.snap, inode); 3475 3476 mutex_lock(&session->s_mutex); 3477 session->s_seq++; 3478 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, 3479 (unsigned)seq); 3480 3481 if (!inode) { 3482 dout(" i don't have ino %llx\n", vino.ino); 3483 3484 if (op == CEPH_CAP_OP_IMPORT) { 3485 cap = ceph_get_cap(mdsc, NULL); 3486 cap->cap_ino = vino.ino; 3487 cap->queue_release = 1; 3488 cap->cap_id = cap_id; 3489 cap->mseq = mseq; 3490 cap->seq = seq; 3491 spin_lock(&session->s_cap_lock); 3492 list_add_tail(&cap->session_caps, 3493 &session->s_cap_releases); 3494 session->s_num_cap_releases++; 3495 spin_unlock(&session->s_cap_lock); 3496 } 3497 goto flush_cap_releases; 3498 } 3499 3500 /* these will work even if we don't have a cap yet */ 3501 switch (op) { 3502 case CEPH_CAP_OP_FLUSHSNAP_ACK: 3503 handle_cap_flushsnap_ack(inode, tid, h, session); 3504 goto done; 3505 3506 case CEPH_CAP_OP_EXPORT: 3507 handle_cap_export(inode, h, peer, session); 3508 goto done_unlocked; 3509 3510 case CEPH_CAP_OP_IMPORT: 3511 realm = NULL; 3512 if (snaptrace_len) { 3513 down_write(&mdsc->snap_rwsem); 3514 ceph_update_snap_trace(mdsc, snaptrace, 3515 snaptrace + snaptrace_len, 3516 false, &realm); 3517 downgrade_write(&mdsc->snap_rwsem); 3518 } else { 3519 down_read(&mdsc->snap_rwsem); 3520 } 3521 handle_cap_import(mdsc, inode, h, peer, session, 3522 &cap, &issued); 3523 handle_cap_grant(mdsc, inode, h, 3524 inline_version, inline_data, inline_len, 3525 msg->middle, session, cap, issued); 3526 if (realm) 3527 ceph_put_snap_realm(mdsc, realm); 3528 goto done_unlocked; 3529 } 3530 3531 /* the rest require a cap */ 3532 spin_lock(&ci->i_ceph_lock); 3533 cap = __get_cap_for_mds(ceph_inode(inode), mds); 3534 if (!cap) { 3535 dout(" no cap on %p ino %llx.%llx from mds%d\n", 3536 inode, ceph_ino(inode), ceph_snap(inode), mds); 3537 spin_unlock(&ci->i_ceph_lock); 3538 goto flush_cap_releases; 3539 } 3540 3541 /* note that each of these drops i_ceph_lock for us */ 3542 switch (op) { 3543 case CEPH_CAP_OP_REVOKE: 3544 case CEPH_CAP_OP_GRANT: 3545 __ceph_caps_issued(ci, &issued); 3546 issued |= __ceph_caps_dirty(ci); 3547 handle_cap_grant(mdsc, inode, h, 3548 inline_version, inline_data, inline_len, 3549 msg->middle, session, cap, issued); 3550 goto done_unlocked; 3551 3552 case CEPH_CAP_OP_FLUSH_ACK: 3553 handle_cap_flush_ack(inode, tid, h, session, cap); 3554 break; 3555 3556 case CEPH_CAP_OP_TRUNC: 3557 handle_cap_trunc(inode, h, session); 3558 break; 3559 3560 default: 3561 spin_unlock(&ci->i_ceph_lock); 3562 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, 3563 ceph_cap_op_name(op)); 3564 } 3565 3566 goto done; 3567 3568 flush_cap_releases: 3569 /* 3570 * send any cap release message to try to move things 3571 * along for the mds (who clearly thinks we still have this 3572 * cap). 3573 */ 3574 ceph_send_cap_releases(mdsc, session); 3575 3576 done: 3577 mutex_unlock(&session->s_mutex); 3578 done_unlocked: 3579 iput(inode); 3580 return; 3581 3582 bad: 3583 pr_err("ceph_handle_caps: corrupt message\n"); 3584 ceph_msg_dump(msg); 3585 return; 3586 } 3587 3588 /* 3589 * Delayed work handler to process end of delayed cap release LRU list. 3590 */ 3591 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) 3592 { 3593 struct ceph_inode_info *ci; 3594 int flags = CHECK_CAPS_NODELAY; 3595 3596 dout("check_delayed_caps\n"); 3597 while (1) { 3598 spin_lock(&mdsc->cap_delay_lock); 3599 if (list_empty(&mdsc->cap_delay_list)) 3600 break; 3601 ci = list_first_entry(&mdsc->cap_delay_list, 3602 struct ceph_inode_info, 3603 i_cap_delay_list); 3604 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && 3605 time_before(jiffies, ci->i_hold_caps_max)) 3606 break; 3607 list_del_init(&ci->i_cap_delay_list); 3608 spin_unlock(&mdsc->cap_delay_lock); 3609 dout("check_delayed_caps on %p\n", &ci->vfs_inode); 3610 ceph_check_caps(ci, flags, NULL); 3611 } 3612 spin_unlock(&mdsc->cap_delay_lock); 3613 } 3614 3615 /* 3616 * Flush all dirty caps to the mds 3617 */ 3618 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) 3619 { 3620 struct ceph_inode_info *ci; 3621 struct inode *inode; 3622 3623 dout("flush_dirty_caps\n"); 3624 spin_lock(&mdsc->cap_dirty_lock); 3625 while (!list_empty(&mdsc->cap_dirty)) { 3626 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info, 3627 i_dirty_item); 3628 inode = &ci->vfs_inode; 3629 ihold(inode); 3630 dout("flush_dirty_caps %p\n", inode); 3631 spin_unlock(&mdsc->cap_dirty_lock); 3632 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL); 3633 iput(inode); 3634 spin_lock(&mdsc->cap_dirty_lock); 3635 } 3636 spin_unlock(&mdsc->cap_dirty_lock); 3637 dout("flush_dirty_caps done\n"); 3638 } 3639 3640 /* 3641 * Drop open file reference. If we were the last open file, 3642 * we may need to release capabilities to the MDS (or schedule 3643 * their delayed release). 3644 */ 3645 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) 3646 { 3647 struct inode *inode = &ci->vfs_inode; 3648 int last = 0; 3649 3650 spin_lock(&ci->i_ceph_lock); 3651 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, 3652 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); 3653 BUG_ON(ci->i_nr_by_mode[fmode] == 0); 3654 if (--ci->i_nr_by_mode[fmode] == 0) 3655 last++; 3656 spin_unlock(&ci->i_ceph_lock); 3657 3658 if (last && ci->i_vino.snap == CEPH_NOSNAP) 3659 ceph_check_caps(ci, 0, NULL); 3660 } 3661 3662 /* 3663 * Helpers for embedding cap and dentry lease releases into mds 3664 * requests. 3665 * 3666 * @force is used by dentry_release (below) to force inclusion of a 3667 * record for the directory inode, even when there aren't any caps to 3668 * drop. 3669 */ 3670 int ceph_encode_inode_release(void **p, struct inode *inode, 3671 int mds, int drop, int unless, int force) 3672 { 3673 struct ceph_inode_info *ci = ceph_inode(inode); 3674 struct ceph_cap *cap; 3675 struct ceph_mds_request_release *rel = *p; 3676 int used, dirty; 3677 int ret = 0; 3678 3679 spin_lock(&ci->i_ceph_lock); 3680 used = __ceph_caps_used(ci); 3681 dirty = __ceph_caps_dirty(ci); 3682 3683 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n", 3684 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop), 3685 ceph_cap_string(unless)); 3686 3687 /* only drop unused, clean caps */ 3688 drop &= ~(used | dirty); 3689 3690 cap = __get_cap_for_mds(ci, mds); 3691 if (cap && __cap_is_valid(cap)) { 3692 if (force || 3693 ((cap->issued & drop) && 3694 (cap->issued & unless) == 0)) { 3695 if ((cap->issued & drop) && 3696 (cap->issued & unless) == 0) { 3697 int wanted = __ceph_caps_wanted(ci); 3698 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0) 3699 wanted |= cap->mds_wanted; 3700 dout("encode_inode_release %p cap %p " 3701 "%s -> %s, wanted %s -> %s\n", inode, cap, 3702 ceph_cap_string(cap->issued), 3703 ceph_cap_string(cap->issued & ~drop), 3704 ceph_cap_string(cap->mds_wanted), 3705 ceph_cap_string(wanted)); 3706 3707 cap->issued &= ~drop; 3708 cap->implemented &= ~drop; 3709 cap->mds_wanted = wanted; 3710 } else { 3711 dout("encode_inode_release %p cap %p %s" 3712 " (force)\n", inode, cap, 3713 ceph_cap_string(cap->issued)); 3714 } 3715 3716 rel->ino = cpu_to_le64(ceph_ino(inode)); 3717 rel->cap_id = cpu_to_le64(cap->cap_id); 3718 rel->seq = cpu_to_le32(cap->seq); 3719 rel->issue_seq = cpu_to_le32(cap->issue_seq); 3720 rel->mseq = cpu_to_le32(cap->mseq); 3721 rel->caps = cpu_to_le32(cap->implemented); 3722 rel->wanted = cpu_to_le32(cap->mds_wanted); 3723 rel->dname_len = 0; 3724 rel->dname_seq = 0; 3725 *p += sizeof(*rel); 3726 ret = 1; 3727 } else { 3728 dout("encode_inode_release %p cap %p %s\n", 3729 inode, cap, ceph_cap_string(cap->issued)); 3730 } 3731 } 3732 spin_unlock(&ci->i_ceph_lock); 3733 return ret; 3734 } 3735 3736 int ceph_encode_dentry_release(void **p, struct dentry *dentry, 3737 int mds, int drop, int unless) 3738 { 3739 struct inode *dir = d_inode(dentry->d_parent); 3740 struct ceph_mds_request_release *rel = *p; 3741 struct ceph_dentry_info *di = ceph_dentry(dentry); 3742 int force = 0; 3743 int ret; 3744 3745 /* 3746 * force an record for the directory caps if we have a dentry lease. 3747 * this is racy (can't take i_ceph_lock and d_lock together), but it 3748 * doesn't have to be perfect; the mds will revoke anything we don't 3749 * release. 3750 */ 3751 spin_lock(&dentry->d_lock); 3752 if (di->lease_session && di->lease_session->s_mds == mds) 3753 force = 1; 3754 spin_unlock(&dentry->d_lock); 3755 3756 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); 3757 3758 spin_lock(&dentry->d_lock); 3759 if (ret && di->lease_session && di->lease_session->s_mds == mds) { 3760 dout("encode_dentry_release %p mds%d seq %d\n", 3761 dentry, mds, (int)di->lease_seq); 3762 rel->dname_len = cpu_to_le32(dentry->d_name.len); 3763 memcpy(*p, dentry->d_name.name, dentry->d_name.len); 3764 *p += dentry->d_name.len; 3765 rel->dname_seq = cpu_to_le32(di->lease_seq); 3766 __ceph_mdsc_drop_dentry_lease(dentry); 3767 } 3768 spin_unlock(&dentry->d_lock); 3769 return ret; 3770 } 3771