1 #include "ceph_debug.h" 2 3 #include <linux/fs.h> 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include <linux/wait.h> 9 #include <linux/writeback.h> 10 11 #include "super.h" 12 #include "decode.h" 13 #include "messenger.h" 14 15 /* 16 * Capability management 17 * 18 * The Ceph metadata servers control client access to inode metadata 19 * and file data by issuing capabilities, granting clients permission 20 * to read and/or write both inode field and file data to OSDs 21 * (storage nodes). Each capability consists of a set of bits 22 * indicating which operations are allowed. 23 * 24 * If the client holds a *_SHARED cap, the client has a coherent value 25 * that can be safely read from the cached inode. 26 * 27 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the 28 * client is allowed to change inode attributes (e.g., file size, 29 * mtime), note its dirty state in the ceph_cap, and asynchronously 30 * flush that metadata change to the MDS. 31 * 32 * In the event of a conflicting operation (perhaps by another 33 * client), the MDS will revoke the conflicting client capabilities. 34 * 35 * In order for a client to cache an inode, it must hold a capability 36 * with at least one MDS server. When inodes are released, release 37 * notifications are batched and periodically sent en masse to the MDS 38 * cluster to release server state. 39 */ 40 41 42 /* 43 * Generate readable cap strings for debugging output. 44 */ 45 #define MAX_CAP_STR 20 46 static char cap_str[MAX_CAP_STR][40]; 47 static DEFINE_SPINLOCK(cap_str_lock); 48 static int last_cap_str; 49 50 static char *gcap_string(char *s, int c) 51 { 52 if (c & CEPH_CAP_GSHARED) 53 *s++ = 's'; 54 if (c & CEPH_CAP_GEXCL) 55 *s++ = 'x'; 56 if (c & CEPH_CAP_GCACHE) 57 *s++ = 'c'; 58 if (c & CEPH_CAP_GRD) 59 *s++ = 'r'; 60 if (c & CEPH_CAP_GWR) 61 *s++ = 'w'; 62 if (c & CEPH_CAP_GBUFFER) 63 *s++ = 'b'; 64 if (c & CEPH_CAP_GLAZYIO) 65 *s++ = 'l'; 66 return s; 67 } 68 69 const char *ceph_cap_string(int caps) 70 { 71 int i; 72 char *s; 73 int c; 74 75 spin_lock(&cap_str_lock); 76 i = last_cap_str++; 77 if (last_cap_str == MAX_CAP_STR) 78 last_cap_str = 0; 79 spin_unlock(&cap_str_lock); 80 81 s = cap_str[i]; 82 83 if (caps & CEPH_CAP_PIN) 84 *s++ = 'p'; 85 86 c = (caps >> CEPH_CAP_SAUTH) & 3; 87 if (c) { 88 *s++ = 'A'; 89 s = gcap_string(s, c); 90 } 91 92 c = (caps >> CEPH_CAP_SLINK) & 3; 93 if (c) { 94 *s++ = 'L'; 95 s = gcap_string(s, c); 96 } 97 98 c = (caps >> CEPH_CAP_SXATTR) & 3; 99 if (c) { 100 *s++ = 'X'; 101 s = gcap_string(s, c); 102 } 103 104 c = caps >> CEPH_CAP_SFILE; 105 if (c) { 106 *s++ = 'F'; 107 s = gcap_string(s, c); 108 } 109 110 if (s == cap_str[i]) 111 *s++ = '-'; 112 *s = 0; 113 return cap_str[i]; 114 } 115 116 void ceph_caps_init(struct ceph_mds_client *mdsc) 117 { 118 INIT_LIST_HEAD(&mdsc->caps_list); 119 spin_lock_init(&mdsc->caps_list_lock); 120 } 121 122 void ceph_caps_finalize(struct ceph_mds_client *mdsc) 123 { 124 struct ceph_cap *cap; 125 126 spin_lock(&mdsc->caps_list_lock); 127 while (!list_empty(&mdsc->caps_list)) { 128 cap = list_first_entry(&mdsc->caps_list, 129 struct ceph_cap, caps_item); 130 list_del(&cap->caps_item); 131 kmem_cache_free(ceph_cap_cachep, cap); 132 } 133 mdsc->caps_total_count = 0; 134 mdsc->caps_avail_count = 0; 135 mdsc->caps_use_count = 0; 136 mdsc->caps_reserve_count = 0; 137 mdsc->caps_min_count = 0; 138 spin_unlock(&mdsc->caps_list_lock); 139 } 140 141 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta) 142 { 143 spin_lock(&mdsc->caps_list_lock); 144 mdsc->caps_min_count += delta; 145 BUG_ON(mdsc->caps_min_count < 0); 146 spin_unlock(&mdsc->caps_list_lock); 147 } 148 149 int ceph_reserve_caps(struct ceph_mds_client *mdsc, 150 struct ceph_cap_reservation *ctx, int need) 151 { 152 int i; 153 struct ceph_cap *cap; 154 int have; 155 int alloc = 0; 156 LIST_HEAD(newcaps); 157 int ret = 0; 158 159 dout("reserve caps ctx=%p need=%d\n", ctx, need); 160 161 /* first reserve any caps that are already allocated */ 162 spin_lock(&mdsc->caps_list_lock); 163 if (mdsc->caps_avail_count >= need) 164 have = need; 165 else 166 have = mdsc->caps_avail_count; 167 mdsc->caps_avail_count -= have; 168 mdsc->caps_reserve_count += have; 169 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 170 mdsc->caps_reserve_count + 171 mdsc->caps_avail_count); 172 spin_unlock(&mdsc->caps_list_lock); 173 174 for (i = have; i < need; i++) { 175 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 176 if (!cap) { 177 ret = -ENOMEM; 178 goto out_alloc_count; 179 } 180 list_add(&cap->caps_item, &newcaps); 181 alloc++; 182 } 183 BUG_ON(have + alloc != need); 184 185 spin_lock(&mdsc->caps_list_lock); 186 mdsc->caps_total_count += alloc; 187 mdsc->caps_reserve_count += alloc; 188 list_splice(&newcaps, &mdsc->caps_list); 189 190 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 191 mdsc->caps_reserve_count + 192 mdsc->caps_avail_count); 193 spin_unlock(&mdsc->caps_list_lock); 194 195 ctx->count = need; 196 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", 197 ctx, mdsc->caps_total_count, mdsc->caps_use_count, 198 mdsc->caps_reserve_count, mdsc->caps_avail_count); 199 return 0; 200 201 out_alloc_count: 202 /* we didn't manage to reserve as much as we needed */ 203 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n", 204 ctx, need, have); 205 return ret; 206 } 207 208 int ceph_unreserve_caps(struct ceph_mds_client *mdsc, 209 struct ceph_cap_reservation *ctx) 210 { 211 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); 212 if (ctx->count) { 213 spin_lock(&mdsc->caps_list_lock); 214 BUG_ON(mdsc->caps_reserve_count < ctx->count); 215 mdsc->caps_reserve_count -= ctx->count; 216 mdsc->caps_avail_count += ctx->count; 217 ctx->count = 0; 218 dout("unreserve caps %d = %d used + %d resv + %d avail\n", 219 mdsc->caps_total_count, mdsc->caps_use_count, 220 mdsc->caps_reserve_count, mdsc->caps_avail_count); 221 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 222 mdsc->caps_reserve_count + 223 mdsc->caps_avail_count); 224 spin_unlock(&mdsc->caps_list_lock); 225 } 226 return 0; 227 } 228 229 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc, 230 struct ceph_cap_reservation *ctx) 231 { 232 struct ceph_cap *cap = NULL; 233 234 /* temporary, until we do something about cap import/export */ 235 if (!ctx) { 236 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 237 if (cap) { 238 mdsc->caps_use_count++; 239 mdsc->caps_total_count++; 240 } 241 return cap; 242 } 243 244 spin_lock(&mdsc->caps_list_lock); 245 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 246 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count, 247 mdsc->caps_reserve_count, mdsc->caps_avail_count); 248 BUG_ON(!ctx->count); 249 BUG_ON(ctx->count > mdsc->caps_reserve_count); 250 BUG_ON(list_empty(&mdsc->caps_list)); 251 252 ctx->count--; 253 mdsc->caps_reserve_count--; 254 mdsc->caps_use_count++; 255 256 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item); 257 list_del(&cap->caps_item); 258 259 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 260 mdsc->caps_reserve_count + mdsc->caps_avail_count); 261 spin_unlock(&mdsc->caps_list_lock); 262 return cap; 263 } 264 265 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap) 266 { 267 spin_lock(&mdsc->caps_list_lock); 268 dout("put_cap %p %d = %d used + %d resv + %d avail\n", 269 cap, mdsc->caps_total_count, mdsc->caps_use_count, 270 mdsc->caps_reserve_count, mdsc->caps_avail_count); 271 mdsc->caps_use_count--; 272 /* 273 * Keep some preallocated caps around (ceph_min_count), to 274 * avoid lots of free/alloc churn. 275 */ 276 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count + 277 mdsc->caps_min_count) { 278 mdsc->caps_total_count--; 279 kmem_cache_free(ceph_cap_cachep, cap); 280 } else { 281 mdsc->caps_avail_count++; 282 list_add(&cap->caps_item, &mdsc->caps_list); 283 } 284 285 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 286 mdsc->caps_reserve_count + mdsc->caps_avail_count); 287 spin_unlock(&mdsc->caps_list_lock); 288 } 289 290 void ceph_reservation_status(struct ceph_client *client, 291 int *total, int *avail, int *used, int *reserved, 292 int *min) 293 { 294 struct ceph_mds_client *mdsc = &client->mdsc; 295 296 if (total) 297 *total = mdsc->caps_total_count; 298 if (avail) 299 *avail = mdsc->caps_avail_count; 300 if (used) 301 *used = mdsc->caps_use_count; 302 if (reserved) 303 *reserved = mdsc->caps_reserve_count; 304 if (min) 305 *min = mdsc->caps_min_count; 306 } 307 308 /* 309 * Find ceph_cap for given mds, if any. 310 * 311 * Called with i_lock held. 312 */ 313 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) 314 { 315 struct ceph_cap *cap; 316 struct rb_node *n = ci->i_caps.rb_node; 317 318 while (n) { 319 cap = rb_entry(n, struct ceph_cap, ci_node); 320 if (mds < cap->mds) 321 n = n->rb_left; 322 else if (mds > cap->mds) 323 n = n->rb_right; 324 else 325 return cap; 326 } 327 return NULL; 328 } 329 330 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds) 331 { 332 struct ceph_cap *cap; 333 334 spin_lock(&ci->vfs_inode.i_lock); 335 cap = __get_cap_for_mds(ci, mds); 336 spin_unlock(&ci->vfs_inode.i_lock); 337 return cap; 338 } 339 340 /* 341 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1. 342 */ 343 static int __ceph_get_cap_mds(struct ceph_inode_info *ci) 344 { 345 struct ceph_cap *cap; 346 int mds = -1; 347 struct rb_node *p; 348 349 /* prefer mds with WR|BUFFER|EXCL caps */ 350 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 351 cap = rb_entry(p, struct ceph_cap, ci_node); 352 mds = cap->mds; 353 if (cap->issued & (CEPH_CAP_FILE_WR | 354 CEPH_CAP_FILE_BUFFER | 355 CEPH_CAP_FILE_EXCL)) 356 break; 357 } 358 return mds; 359 } 360 361 int ceph_get_cap_mds(struct inode *inode) 362 { 363 int mds; 364 spin_lock(&inode->i_lock); 365 mds = __ceph_get_cap_mds(ceph_inode(inode)); 366 spin_unlock(&inode->i_lock); 367 return mds; 368 } 369 370 /* 371 * Called under i_lock. 372 */ 373 static void __insert_cap_node(struct ceph_inode_info *ci, 374 struct ceph_cap *new) 375 { 376 struct rb_node **p = &ci->i_caps.rb_node; 377 struct rb_node *parent = NULL; 378 struct ceph_cap *cap = NULL; 379 380 while (*p) { 381 parent = *p; 382 cap = rb_entry(parent, struct ceph_cap, ci_node); 383 if (new->mds < cap->mds) 384 p = &(*p)->rb_left; 385 else if (new->mds > cap->mds) 386 p = &(*p)->rb_right; 387 else 388 BUG(); 389 } 390 391 rb_link_node(&new->ci_node, parent, p); 392 rb_insert_color(&new->ci_node, &ci->i_caps); 393 } 394 395 /* 396 * (re)set cap hold timeouts, which control the delayed release 397 * of unused caps back to the MDS. Should be called on cap use. 398 */ 399 static void __cap_set_timeouts(struct ceph_mds_client *mdsc, 400 struct ceph_inode_info *ci) 401 { 402 struct ceph_mount_args *ma = mdsc->client->mount_args; 403 404 ci->i_hold_caps_min = round_jiffies(jiffies + 405 ma->caps_wanted_delay_min * HZ); 406 ci->i_hold_caps_max = round_jiffies(jiffies + 407 ma->caps_wanted_delay_max * HZ); 408 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, 409 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); 410 } 411 412 /* 413 * (Re)queue cap at the end of the delayed cap release list. 414 * 415 * If I_FLUSH is set, leave the inode at the front of the list. 416 * 417 * Caller holds i_lock 418 * -> we take mdsc->cap_delay_lock 419 */ 420 static void __cap_delay_requeue(struct ceph_mds_client *mdsc, 421 struct ceph_inode_info *ci) 422 { 423 __cap_set_timeouts(mdsc, ci); 424 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, 425 ci->i_ceph_flags, ci->i_hold_caps_max); 426 if (!mdsc->stopping) { 427 spin_lock(&mdsc->cap_delay_lock); 428 if (!list_empty(&ci->i_cap_delay_list)) { 429 if (ci->i_ceph_flags & CEPH_I_FLUSH) 430 goto no_change; 431 list_del_init(&ci->i_cap_delay_list); 432 } 433 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 434 no_change: 435 spin_unlock(&mdsc->cap_delay_lock); 436 } 437 } 438 439 /* 440 * Queue an inode for immediate writeback. Mark inode with I_FLUSH, 441 * indicating we should send a cap message to flush dirty metadata 442 * asap, and move to the front of the delayed cap list. 443 */ 444 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, 445 struct ceph_inode_info *ci) 446 { 447 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); 448 spin_lock(&mdsc->cap_delay_lock); 449 ci->i_ceph_flags |= CEPH_I_FLUSH; 450 if (!list_empty(&ci->i_cap_delay_list)) 451 list_del_init(&ci->i_cap_delay_list); 452 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 453 spin_unlock(&mdsc->cap_delay_lock); 454 } 455 456 /* 457 * Cancel delayed work on cap. 458 * 459 * Caller must hold i_lock. 460 */ 461 static void __cap_delay_cancel(struct ceph_mds_client *mdsc, 462 struct ceph_inode_info *ci) 463 { 464 dout("__cap_delay_cancel %p\n", &ci->vfs_inode); 465 if (list_empty(&ci->i_cap_delay_list)) 466 return; 467 spin_lock(&mdsc->cap_delay_lock); 468 list_del_init(&ci->i_cap_delay_list); 469 spin_unlock(&mdsc->cap_delay_lock); 470 } 471 472 /* 473 * Common issue checks for add_cap, handle_cap_grant. 474 */ 475 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, 476 unsigned issued) 477 { 478 unsigned had = __ceph_caps_issued(ci, NULL); 479 480 /* 481 * Each time we receive FILE_CACHE anew, we increment 482 * i_rdcache_gen. 483 */ 484 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && 485 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) 486 ci->i_rdcache_gen++; 487 488 /* 489 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we 490 * don't know what happened to this directory while we didn't 491 * have the cap. 492 */ 493 if ((issued & CEPH_CAP_FILE_SHARED) && 494 (had & CEPH_CAP_FILE_SHARED) == 0) { 495 ci->i_shared_gen++; 496 if (S_ISDIR(ci->vfs_inode.i_mode)) { 497 dout(" marking %p NOT complete\n", &ci->vfs_inode); 498 ci->i_ceph_flags &= ~CEPH_I_COMPLETE; 499 } 500 } 501 } 502 503 /* 504 * Add a capability under the given MDS session. 505 * 506 * Caller should hold session snap_rwsem (read) and s_mutex. 507 * 508 * @fmode is the open file mode, if we are opening a file, otherwise 509 * it is < 0. (This is so we can atomically add the cap and add an 510 * open file reference to it.) 511 */ 512 int ceph_add_cap(struct inode *inode, 513 struct ceph_mds_session *session, u64 cap_id, 514 int fmode, unsigned issued, unsigned wanted, 515 unsigned seq, unsigned mseq, u64 realmino, int flags, 516 struct ceph_cap_reservation *caps_reservation) 517 { 518 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc; 519 struct ceph_inode_info *ci = ceph_inode(inode); 520 struct ceph_cap *new_cap = NULL; 521 struct ceph_cap *cap; 522 int mds = session->s_mds; 523 int actual_wanted; 524 525 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, 526 session->s_mds, cap_id, ceph_cap_string(issued), seq); 527 528 /* 529 * If we are opening the file, include file mode wanted bits 530 * in wanted. 531 */ 532 if (fmode >= 0) 533 wanted |= ceph_caps_for_mode(fmode); 534 535 retry: 536 spin_lock(&inode->i_lock); 537 cap = __get_cap_for_mds(ci, mds); 538 if (!cap) { 539 if (new_cap) { 540 cap = new_cap; 541 new_cap = NULL; 542 } else { 543 spin_unlock(&inode->i_lock); 544 new_cap = get_cap(mdsc, caps_reservation); 545 if (new_cap == NULL) 546 return -ENOMEM; 547 goto retry; 548 } 549 550 cap->issued = 0; 551 cap->implemented = 0; 552 cap->mds = mds; 553 cap->mds_wanted = 0; 554 555 cap->ci = ci; 556 __insert_cap_node(ci, cap); 557 558 /* clear out old exporting info? (i.e. on cap import) */ 559 if (ci->i_cap_exporting_mds == mds) { 560 ci->i_cap_exporting_issued = 0; 561 ci->i_cap_exporting_mseq = 0; 562 ci->i_cap_exporting_mds = -1; 563 } 564 565 /* add to session cap list */ 566 cap->session = session; 567 spin_lock(&session->s_cap_lock); 568 list_add_tail(&cap->session_caps, &session->s_caps); 569 session->s_nr_caps++; 570 spin_unlock(&session->s_cap_lock); 571 } 572 573 if (!ci->i_snap_realm) { 574 /* 575 * add this inode to the appropriate snap realm 576 */ 577 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, 578 realmino); 579 if (realm) { 580 ceph_get_snap_realm(mdsc, realm); 581 spin_lock(&realm->inodes_with_caps_lock); 582 ci->i_snap_realm = realm; 583 list_add(&ci->i_snap_realm_item, 584 &realm->inodes_with_caps); 585 spin_unlock(&realm->inodes_with_caps_lock); 586 } else { 587 pr_err("ceph_add_cap: couldn't find snap realm %llx\n", 588 realmino); 589 WARN_ON(!realm); 590 } 591 } 592 593 __check_cap_issue(ci, cap, issued); 594 595 /* 596 * If we are issued caps we don't want, or the mds' wanted 597 * value appears to be off, queue a check so we'll release 598 * later and/or update the mds wanted value. 599 */ 600 actual_wanted = __ceph_caps_wanted(ci); 601 if ((wanted & ~actual_wanted) || 602 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { 603 dout(" issued %s, mds wanted %s, actual %s, queueing\n", 604 ceph_cap_string(issued), ceph_cap_string(wanted), 605 ceph_cap_string(actual_wanted)); 606 __cap_delay_requeue(mdsc, ci); 607 } 608 609 if (flags & CEPH_CAP_FLAG_AUTH) 610 ci->i_auth_cap = cap; 611 else if (ci->i_auth_cap == cap) 612 ci->i_auth_cap = NULL; 613 614 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", 615 inode, ceph_vinop(inode), cap, ceph_cap_string(issued), 616 ceph_cap_string(issued|cap->issued), seq, mds); 617 cap->cap_id = cap_id; 618 cap->issued = issued; 619 cap->implemented |= issued; 620 cap->mds_wanted |= wanted; 621 cap->seq = seq; 622 cap->issue_seq = seq; 623 cap->mseq = mseq; 624 cap->cap_gen = session->s_cap_gen; 625 626 if (fmode >= 0) 627 __ceph_get_fmode(ci, fmode); 628 spin_unlock(&inode->i_lock); 629 wake_up_all(&ci->i_cap_wq); 630 return 0; 631 } 632 633 /* 634 * Return true if cap has not timed out and belongs to the current 635 * generation of the MDS session (i.e. has not gone 'stale' due to 636 * us losing touch with the mds). 637 */ 638 static int __cap_is_valid(struct ceph_cap *cap) 639 { 640 unsigned long ttl; 641 u32 gen; 642 643 spin_lock(&cap->session->s_cap_lock); 644 gen = cap->session->s_cap_gen; 645 ttl = cap->session->s_cap_ttl; 646 spin_unlock(&cap->session->s_cap_lock); 647 648 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { 649 dout("__cap_is_valid %p cap %p issued %s " 650 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, 651 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); 652 return 0; 653 } 654 655 return 1; 656 } 657 658 /* 659 * Return set of valid cap bits issued to us. Note that caps time 660 * out, and may be invalidated in bulk if the client session times out 661 * and session->s_cap_gen is bumped. 662 */ 663 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) 664 { 665 int have = ci->i_snap_caps | ci->i_cap_exporting_issued; 666 struct ceph_cap *cap; 667 struct rb_node *p; 668 669 if (implemented) 670 *implemented = 0; 671 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 672 cap = rb_entry(p, struct ceph_cap, ci_node); 673 if (!__cap_is_valid(cap)) 674 continue; 675 dout("__ceph_caps_issued %p cap %p issued %s\n", 676 &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); 677 have |= cap->issued; 678 if (implemented) 679 *implemented |= cap->implemented; 680 } 681 return have; 682 } 683 684 /* 685 * Get cap bits issued by caps other than @ocap 686 */ 687 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) 688 { 689 int have = ci->i_snap_caps; 690 struct ceph_cap *cap; 691 struct rb_node *p; 692 693 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 694 cap = rb_entry(p, struct ceph_cap, ci_node); 695 if (cap == ocap) 696 continue; 697 if (!__cap_is_valid(cap)) 698 continue; 699 have |= cap->issued; 700 } 701 return have; 702 } 703 704 /* 705 * Move a cap to the end of the LRU (oldest caps at list head, newest 706 * at list tail). 707 */ 708 static void __touch_cap(struct ceph_cap *cap) 709 { 710 struct ceph_mds_session *s = cap->session; 711 712 spin_lock(&s->s_cap_lock); 713 if (s->s_cap_iterator == NULL) { 714 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, 715 s->s_mds); 716 list_move_tail(&cap->session_caps, &s->s_caps); 717 } else { 718 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", 719 &cap->ci->vfs_inode, cap, s->s_mds); 720 } 721 spin_unlock(&s->s_cap_lock); 722 } 723 724 /* 725 * Check if we hold the given mask. If so, move the cap(s) to the 726 * front of their respective LRUs. (This is the preferred way for 727 * callers to check for caps they want.) 728 */ 729 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) 730 { 731 struct ceph_cap *cap; 732 struct rb_node *p; 733 int have = ci->i_snap_caps; 734 735 if ((have & mask) == mask) { 736 dout("__ceph_caps_issued_mask %p snap issued %s" 737 " (mask %s)\n", &ci->vfs_inode, 738 ceph_cap_string(have), 739 ceph_cap_string(mask)); 740 return 1; 741 } 742 743 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 744 cap = rb_entry(p, struct ceph_cap, ci_node); 745 if (!__cap_is_valid(cap)) 746 continue; 747 if ((cap->issued & mask) == mask) { 748 dout("__ceph_caps_issued_mask %p cap %p issued %s" 749 " (mask %s)\n", &ci->vfs_inode, cap, 750 ceph_cap_string(cap->issued), 751 ceph_cap_string(mask)); 752 if (touch) 753 __touch_cap(cap); 754 return 1; 755 } 756 757 /* does a combination of caps satisfy mask? */ 758 have |= cap->issued; 759 if ((have & mask) == mask) { 760 dout("__ceph_caps_issued_mask %p combo issued %s" 761 " (mask %s)\n", &ci->vfs_inode, 762 ceph_cap_string(cap->issued), 763 ceph_cap_string(mask)); 764 if (touch) { 765 struct rb_node *q; 766 767 /* touch this + preceeding caps */ 768 __touch_cap(cap); 769 for (q = rb_first(&ci->i_caps); q != p; 770 q = rb_next(q)) { 771 cap = rb_entry(q, struct ceph_cap, 772 ci_node); 773 if (!__cap_is_valid(cap)) 774 continue; 775 __touch_cap(cap); 776 } 777 } 778 return 1; 779 } 780 } 781 782 return 0; 783 } 784 785 /* 786 * Return true if mask caps are currently being revoked by an MDS. 787 */ 788 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) 789 { 790 struct inode *inode = &ci->vfs_inode; 791 struct ceph_cap *cap; 792 struct rb_node *p; 793 int ret = 0; 794 795 spin_lock(&inode->i_lock); 796 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 797 cap = rb_entry(p, struct ceph_cap, ci_node); 798 if (__cap_is_valid(cap) && 799 (cap->implemented & ~cap->issued & mask)) { 800 ret = 1; 801 break; 802 } 803 } 804 spin_unlock(&inode->i_lock); 805 dout("ceph_caps_revoking %p %s = %d\n", inode, 806 ceph_cap_string(mask), ret); 807 return ret; 808 } 809 810 int __ceph_caps_used(struct ceph_inode_info *ci) 811 { 812 int used = 0; 813 if (ci->i_pin_ref) 814 used |= CEPH_CAP_PIN; 815 if (ci->i_rd_ref) 816 used |= CEPH_CAP_FILE_RD; 817 if (ci->i_rdcache_ref || ci->i_rdcache_gen) 818 used |= CEPH_CAP_FILE_CACHE; 819 if (ci->i_wr_ref) 820 used |= CEPH_CAP_FILE_WR; 821 if (ci->i_wrbuffer_ref) 822 used |= CEPH_CAP_FILE_BUFFER; 823 return used; 824 } 825 826 /* 827 * wanted, by virtue of open file modes 828 */ 829 int __ceph_caps_file_wanted(struct ceph_inode_info *ci) 830 { 831 int want = 0; 832 int mode; 833 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++) 834 if (ci->i_nr_by_mode[mode]) 835 want |= ceph_caps_for_mode(mode); 836 return want; 837 } 838 839 /* 840 * Return caps we have registered with the MDS(s) as 'wanted'. 841 */ 842 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) 843 { 844 struct ceph_cap *cap; 845 struct rb_node *p; 846 int mds_wanted = 0; 847 848 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 849 cap = rb_entry(p, struct ceph_cap, ci_node); 850 if (!__cap_is_valid(cap)) 851 continue; 852 mds_wanted |= cap->mds_wanted; 853 } 854 return mds_wanted; 855 } 856 857 /* 858 * called under i_lock 859 */ 860 static int __ceph_is_any_caps(struct ceph_inode_info *ci) 861 { 862 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0; 863 } 864 865 /* 866 * Remove a cap. Take steps to deal with a racing iterate_session_caps. 867 * 868 * caller should hold i_lock. 869 * caller will not hold session s_mutex if called from destroy_inode. 870 */ 871 void __ceph_remove_cap(struct ceph_cap *cap) 872 { 873 struct ceph_mds_session *session = cap->session; 874 struct ceph_inode_info *ci = cap->ci; 875 struct ceph_mds_client *mdsc = 876 &ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 877 int removed = 0; 878 879 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); 880 881 /* remove from session list */ 882 spin_lock(&session->s_cap_lock); 883 if (session->s_cap_iterator == cap) { 884 /* not yet, we are iterating over this very cap */ 885 dout("__ceph_remove_cap delaying %p removal from session %p\n", 886 cap, cap->session); 887 } else { 888 list_del_init(&cap->session_caps); 889 session->s_nr_caps--; 890 cap->session = NULL; 891 removed = 1; 892 } 893 /* protect backpointer with s_cap_lock: see iterate_session_caps */ 894 cap->ci = NULL; 895 spin_unlock(&session->s_cap_lock); 896 897 /* remove from inode list */ 898 rb_erase(&cap->ci_node, &ci->i_caps); 899 if (ci->i_auth_cap == cap) 900 ci->i_auth_cap = NULL; 901 902 if (removed) 903 ceph_put_cap(mdsc, cap); 904 905 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) { 906 struct ceph_snap_realm *realm = ci->i_snap_realm; 907 spin_lock(&realm->inodes_with_caps_lock); 908 list_del_init(&ci->i_snap_realm_item); 909 ci->i_snap_realm_counter++; 910 ci->i_snap_realm = NULL; 911 spin_unlock(&realm->inodes_with_caps_lock); 912 ceph_put_snap_realm(mdsc, realm); 913 } 914 if (!__ceph_is_any_real_caps(ci)) 915 __cap_delay_cancel(mdsc, ci); 916 } 917 918 /* 919 * Build and send a cap message to the given MDS. 920 * 921 * Caller should be holding s_mutex. 922 */ 923 static int send_cap_msg(struct ceph_mds_session *session, 924 u64 ino, u64 cid, int op, 925 int caps, int wanted, int dirty, 926 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq, 927 u64 size, u64 max_size, 928 struct timespec *mtime, struct timespec *atime, 929 u64 time_warp_seq, 930 uid_t uid, gid_t gid, mode_t mode, 931 u64 xattr_version, 932 struct ceph_buffer *xattrs_buf, 933 u64 follows) 934 { 935 struct ceph_mds_caps *fc; 936 struct ceph_msg *msg; 937 938 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" 939 " seq %u/%u mseq %u follows %lld size %llu/%llu" 940 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), 941 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), 942 ceph_cap_string(dirty), 943 seq, issue_seq, mseq, follows, size, max_size, 944 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); 945 946 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS); 947 if (!msg) 948 return -ENOMEM; 949 950 msg->hdr.tid = cpu_to_le64(flush_tid); 951 952 fc = msg->front.iov_base; 953 memset(fc, 0, sizeof(*fc)); 954 955 fc->cap_id = cpu_to_le64(cid); 956 fc->op = cpu_to_le32(op); 957 fc->seq = cpu_to_le32(seq); 958 fc->issue_seq = cpu_to_le32(issue_seq); 959 fc->migrate_seq = cpu_to_le32(mseq); 960 fc->caps = cpu_to_le32(caps); 961 fc->wanted = cpu_to_le32(wanted); 962 fc->dirty = cpu_to_le32(dirty); 963 fc->ino = cpu_to_le64(ino); 964 fc->snap_follows = cpu_to_le64(follows); 965 966 fc->size = cpu_to_le64(size); 967 fc->max_size = cpu_to_le64(max_size); 968 if (mtime) 969 ceph_encode_timespec(&fc->mtime, mtime); 970 if (atime) 971 ceph_encode_timespec(&fc->atime, atime); 972 fc->time_warp_seq = cpu_to_le32(time_warp_seq); 973 974 fc->uid = cpu_to_le32(uid); 975 fc->gid = cpu_to_le32(gid); 976 fc->mode = cpu_to_le32(mode); 977 978 fc->xattr_version = cpu_to_le64(xattr_version); 979 if (xattrs_buf) { 980 msg->middle = ceph_buffer_get(xattrs_buf); 981 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); 982 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); 983 } 984 985 ceph_con_send(&session->s_con, msg); 986 return 0; 987 } 988 989 static void __queue_cap_release(struct ceph_mds_session *session, 990 u64 ino, u64 cap_id, u32 migrate_seq, 991 u32 issue_seq) 992 { 993 struct ceph_msg *msg; 994 struct ceph_mds_cap_release *head; 995 struct ceph_mds_cap_item *item; 996 997 spin_lock(&session->s_cap_lock); 998 BUG_ON(!session->s_num_cap_releases); 999 msg = list_first_entry(&session->s_cap_releases, 1000 struct ceph_msg, list_head); 1001 1002 dout(" adding %llx release to mds%d msg %p (%d left)\n", 1003 ino, session->s_mds, msg, session->s_num_cap_releases); 1004 1005 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE); 1006 head = msg->front.iov_base; 1007 head->num = cpu_to_le32(le32_to_cpu(head->num) + 1); 1008 item = msg->front.iov_base + msg->front.iov_len; 1009 item->ino = cpu_to_le64(ino); 1010 item->cap_id = cpu_to_le64(cap_id); 1011 item->migrate_seq = cpu_to_le32(migrate_seq); 1012 item->seq = cpu_to_le32(issue_seq); 1013 1014 session->s_num_cap_releases--; 1015 1016 msg->front.iov_len += sizeof(*item); 1017 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1018 dout(" release msg %p full\n", msg); 1019 list_move_tail(&msg->list_head, &session->s_cap_releases_done); 1020 } else { 1021 dout(" release msg %p at %d/%d (%d)\n", msg, 1022 (int)le32_to_cpu(head->num), 1023 (int)CEPH_CAPS_PER_RELEASE, 1024 (int)msg->front.iov_len); 1025 } 1026 spin_unlock(&session->s_cap_lock); 1027 } 1028 1029 /* 1030 * Queue cap releases when an inode is dropped from our cache. Since 1031 * inode is about to be destroyed, there is no need for i_lock. 1032 */ 1033 void ceph_queue_caps_release(struct inode *inode) 1034 { 1035 struct ceph_inode_info *ci = ceph_inode(inode); 1036 struct rb_node *p; 1037 1038 p = rb_first(&ci->i_caps); 1039 while (p) { 1040 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); 1041 struct ceph_mds_session *session = cap->session; 1042 1043 __queue_cap_release(session, ceph_ino(inode), cap->cap_id, 1044 cap->mseq, cap->issue_seq); 1045 p = rb_next(p); 1046 __ceph_remove_cap(cap); 1047 } 1048 } 1049 1050 /* 1051 * Send a cap msg on the given inode. Update our caps state, then 1052 * drop i_lock and send the message. 1053 * 1054 * Make note of max_size reported/requested from mds, revoked caps 1055 * that have now been implemented. 1056 * 1057 * Make half-hearted attempt ot to invalidate page cache if we are 1058 * dropping RDCACHE. Note that this will leave behind locked pages 1059 * that we'll then need to deal with elsewhere. 1060 * 1061 * Return non-zero if delayed release, or we experienced an error 1062 * such that the caller should requeue + retry later. 1063 * 1064 * called with i_lock, then drops it. 1065 * caller should hold snap_rwsem (read), s_mutex. 1066 */ 1067 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, 1068 int op, int used, int want, int retain, int flushing, 1069 unsigned *pflush_tid) 1070 __releases(cap->ci->vfs_inode->i_lock) 1071 { 1072 struct ceph_inode_info *ci = cap->ci; 1073 struct inode *inode = &ci->vfs_inode; 1074 u64 cap_id = cap->cap_id; 1075 int held, revoking, dropping, keep; 1076 u64 seq, issue_seq, mseq, time_warp_seq, follows; 1077 u64 size, max_size; 1078 struct timespec mtime, atime; 1079 int wake = 0; 1080 mode_t mode; 1081 uid_t uid; 1082 gid_t gid; 1083 struct ceph_mds_session *session; 1084 u64 xattr_version = 0; 1085 struct ceph_buffer *xattr_blob = NULL; 1086 int delayed = 0; 1087 u64 flush_tid = 0; 1088 int i; 1089 int ret; 1090 1091 held = cap->issued | cap->implemented; 1092 revoking = cap->implemented & ~cap->issued; 1093 retain &= ~revoking; 1094 dropping = cap->issued & ~retain; 1095 1096 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", 1097 inode, cap, cap->session, 1098 ceph_cap_string(held), ceph_cap_string(held & retain), 1099 ceph_cap_string(revoking)); 1100 BUG_ON((retain & CEPH_CAP_PIN) == 0); 1101 1102 session = cap->session; 1103 1104 /* don't release wanted unless we've waited a bit. */ 1105 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1106 time_before(jiffies, ci->i_hold_caps_min)) { 1107 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", 1108 ceph_cap_string(cap->issued), 1109 ceph_cap_string(cap->issued & retain), 1110 ceph_cap_string(cap->mds_wanted), 1111 ceph_cap_string(want)); 1112 want |= cap->mds_wanted; 1113 retain |= cap->issued; 1114 delayed = 1; 1115 } 1116 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); 1117 1118 cap->issued &= retain; /* drop bits we don't want */ 1119 if (cap->implemented & ~cap->issued) { 1120 /* 1121 * Wake up any waiters on wanted -> needed transition. 1122 * This is due to the weird transition from buffered 1123 * to sync IO... we need to flush dirty pages _before_ 1124 * allowing sync writes to avoid reordering. 1125 */ 1126 wake = 1; 1127 } 1128 cap->implemented &= cap->issued | used; 1129 cap->mds_wanted = want; 1130 1131 if (flushing) { 1132 /* 1133 * assign a tid for flush operations so we can avoid 1134 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark 1135 * clean type races. track latest tid for every bit 1136 * so we can handle flush AxFw, flush Fw, and have the 1137 * first ack clean Ax. 1138 */ 1139 flush_tid = ++ci->i_cap_flush_last_tid; 1140 if (pflush_tid) 1141 *pflush_tid = flush_tid; 1142 dout(" cap_flush_tid %d\n", (int)flush_tid); 1143 for (i = 0; i < CEPH_CAP_BITS; i++) 1144 if (flushing & (1 << i)) 1145 ci->i_cap_flush_tid[i] = flush_tid; 1146 1147 follows = ci->i_head_snapc->seq; 1148 } else { 1149 follows = 0; 1150 } 1151 1152 keep = cap->implemented; 1153 seq = cap->seq; 1154 issue_seq = cap->issue_seq; 1155 mseq = cap->mseq; 1156 size = inode->i_size; 1157 ci->i_reported_size = size; 1158 max_size = ci->i_wanted_max_size; 1159 ci->i_requested_max_size = max_size; 1160 mtime = inode->i_mtime; 1161 atime = inode->i_atime; 1162 time_warp_seq = ci->i_time_warp_seq; 1163 uid = inode->i_uid; 1164 gid = inode->i_gid; 1165 mode = inode->i_mode; 1166 1167 if (flushing & CEPH_CAP_XATTR_EXCL) { 1168 __ceph_build_xattrs_blob(ci); 1169 xattr_blob = ci->i_xattrs.blob; 1170 xattr_version = ci->i_xattrs.version; 1171 } 1172 1173 spin_unlock(&inode->i_lock); 1174 1175 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, 1176 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq, 1177 size, max_size, &mtime, &atime, time_warp_seq, 1178 uid, gid, mode, xattr_version, xattr_blob, 1179 follows); 1180 if (ret < 0) { 1181 dout("error sending cap msg, must requeue %p\n", inode); 1182 delayed = 1; 1183 } 1184 1185 if (wake) 1186 wake_up_all(&ci->i_cap_wq); 1187 1188 return delayed; 1189 } 1190 1191 /* 1192 * When a snapshot is taken, clients accumulate dirty metadata on 1193 * inodes with capabilities in ceph_cap_snaps to describe the file 1194 * state at the time the snapshot was taken. This must be flushed 1195 * asynchronously back to the MDS once sync writes complete and dirty 1196 * data is written out. 1197 * 1198 * Called under i_lock. Takes s_mutex as needed. 1199 */ 1200 void __ceph_flush_snaps(struct ceph_inode_info *ci, 1201 struct ceph_mds_session **psession) 1202 __releases(ci->vfs_inode->i_lock) 1203 __acquires(ci->vfs_inode->i_lock) 1204 { 1205 struct inode *inode = &ci->vfs_inode; 1206 int mds; 1207 struct ceph_cap_snap *capsnap; 1208 u32 mseq; 1209 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc; 1210 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold 1211 session->s_mutex */ 1212 u64 next_follows = 0; /* keep track of how far we've gotten through the 1213 i_cap_snaps list, and skip these entries next time 1214 around to avoid an infinite loop */ 1215 1216 if (psession) 1217 session = *psession; 1218 1219 dout("__flush_snaps %p\n", inode); 1220 retry: 1221 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 1222 /* avoid an infiniute loop after retry */ 1223 if (capsnap->follows < next_follows) 1224 continue; 1225 /* 1226 * we need to wait for sync writes to complete and for dirty 1227 * pages to be written out. 1228 */ 1229 if (capsnap->dirty_pages || capsnap->writing) 1230 continue; 1231 1232 /* 1233 * if cap writeback already occurred, we should have dropped 1234 * the capsnap in ceph_put_wrbuffer_cap_refs. 1235 */ 1236 BUG_ON(capsnap->dirty == 0); 1237 1238 /* pick mds, take s_mutex */ 1239 if (ci->i_auth_cap == NULL) { 1240 dout("no auth cap (migrating?), doing nothing\n"); 1241 goto out; 1242 } 1243 mds = ci->i_auth_cap->session->s_mds; 1244 mseq = ci->i_auth_cap->mseq; 1245 1246 if (session && session->s_mds != mds) { 1247 dout("oops, wrong session %p mutex\n", session); 1248 mutex_unlock(&session->s_mutex); 1249 ceph_put_mds_session(session); 1250 session = NULL; 1251 } 1252 if (!session) { 1253 spin_unlock(&inode->i_lock); 1254 mutex_lock(&mdsc->mutex); 1255 session = __ceph_lookup_mds_session(mdsc, mds); 1256 mutex_unlock(&mdsc->mutex); 1257 if (session) { 1258 dout("inverting session/ino locks on %p\n", 1259 session); 1260 mutex_lock(&session->s_mutex); 1261 } 1262 /* 1263 * if session == NULL, we raced against a cap 1264 * deletion or migration. retry, and we'll 1265 * get a better @mds value next time. 1266 */ 1267 spin_lock(&inode->i_lock); 1268 goto retry; 1269 } 1270 1271 capsnap->flush_tid = ++ci->i_cap_flush_last_tid; 1272 atomic_inc(&capsnap->nref); 1273 if (!list_empty(&capsnap->flushing_item)) 1274 list_del_init(&capsnap->flushing_item); 1275 list_add_tail(&capsnap->flushing_item, 1276 &session->s_cap_snaps_flushing); 1277 spin_unlock(&inode->i_lock); 1278 1279 dout("flush_snaps %p cap_snap %p follows %lld size %llu\n", 1280 inode, capsnap, next_follows, capsnap->size); 1281 send_cap_msg(session, ceph_vino(inode).ino, 0, 1282 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, 1283 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq, 1284 capsnap->size, 0, 1285 &capsnap->mtime, &capsnap->atime, 1286 capsnap->time_warp_seq, 1287 capsnap->uid, capsnap->gid, capsnap->mode, 1288 capsnap->xattr_version, capsnap->xattr_blob, 1289 capsnap->follows); 1290 1291 next_follows = capsnap->follows + 1; 1292 ceph_put_cap_snap(capsnap); 1293 1294 spin_lock(&inode->i_lock); 1295 goto retry; 1296 } 1297 1298 /* we flushed them all; remove this inode from the queue */ 1299 spin_lock(&mdsc->snap_flush_lock); 1300 list_del_init(&ci->i_snap_flush_item); 1301 spin_unlock(&mdsc->snap_flush_lock); 1302 1303 out: 1304 if (psession) 1305 *psession = session; 1306 else if (session) { 1307 mutex_unlock(&session->s_mutex); 1308 ceph_put_mds_session(session); 1309 } 1310 } 1311 1312 static void ceph_flush_snaps(struct ceph_inode_info *ci) 1313 { 1314 struct inode *inode = &ci->vfs_inode; 1315 1316 spin_lock(&inode->i_lock); 1317 __ceph_flush_snaps(ci, NULL); 1318 spin_unlock(&inode->i_lock); 1319 } 1320 1321 /* 1322 * Mark caps dirty. If inode is newly dirty, add to the global dirty 1323 * list. 1324 */ 1325 void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask) 1326 { 1327 struct ceph_mds_client *mdsc = 1328 &ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 1329 struct inode *inode = &ci->vfs_inode; 1330 int was = ci->i_dirty_caps; 1331 int dirty = 0; 1332 1333 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, 1334 ceph_cap_string(mask), ceph_cap_string(was), 1335 ceph_cap_string(was | mask)); 1336 ci->i_dirty_caps |= mask; 1337 if (was == 0) { 1338 if (!ci->i_head_snapc) 1339 ci->i_head_snapc = ceph_get_snap_context( 1340 ci->i_snap_realm->cached_context); 1341 dout(" inode %p now dirty snapc %p\n", &ci->vfs_inode, 1342 ci->i_head_snapc); 1343 BUG_ON(!list_empty(&ci->i_dirty_item)); 1344 spin_lock(&mdsc->cap_dirty_lock); 1345 list_add(&ci->i_dirty_item, &mdsc->cap_dirty); 1346 spin_unlock(&mdsc->cap_dirty_lock); 1347 if (ci->i_flushing_caps == 0) { 1348 igrab(inode); 1349 dirty |= I_DIRTY_SYNC; 1350 } 1351 } 1352 BUG_ON(list_empty(&ci->i_dirty_item)); 1353 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && 1354 (mask & CEPH_CAP_FILE_BUFFER)) 1355 dirty |= I_DIRTY_DATASYNC; 1356 if (dirty) 1357 __mark_inode_dirty(inode, dirty); 1358 __cap_delay_requeue(mdsc, ci); 1359 } 1360 1361 /* 1362 * Add dirty inode to the flushing list. Assigned a seq number so we 1363 * can wait for caps to flush without starving. 1364 * 1365 * Called under i_lock. 1366 */ 1367 static int __mark_caps_flushing(struct inode *inode, 1368 struct ceph_mds_session *session) 1369 { 1370 struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc; 1371 struct ceph_inode_info *ci = ceph_inode(inode); 1372 int flushing; 1373 1374 BUG_ON(ci->i_dirty_caps == 0); 1375 BUG_ON(list_empty(&ci->i_dirty_item)); 1376 1377 flushing = ci->i_dirty_caps; 1378 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", 1379 ceph_cap_string(flushing), 1380 ceph_cap_string(ci->i_flushing_caps), 1381 ceph_cap_string(ci->i_flushing_caps | flushing)); 1382 ci->i_flushing_caps |= flushing; 1383 ci->i_dirty_caps = 0; 1384 dout(" inode %p now !dirty\n", inode); 1385 1386 spin_lock(&mdsc->cap_dirty_lock); 1387 list_del_init(&ci->i_dirty_item); 1388 1389 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq; 1390 if (list_empty(&ci->i_flushing_item)) { 1391 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1392 mdsc->num_cap_flushing++; 1393 dout(" inode %p now flushing seq %lld\n", inode, 1394 ci->i_cap_flush_seq); 1395 } else { 1396 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1397 dout(" inode %p now flushing (more) seq %lld\n", inode, 1398 ci->i_cap_flush_seq); 1399 } 1400 spin_unlock(&mdsc->cap_dirty_lock); 1401 1402 return flushing; 1403 } 1404 1405 /* 1406 * try to invalidate mapping pages without blocking. 1407 */ 1408 static int mapping_is_empty(struct address_space *mapping) 1409 { 1410 struct page *page = find_get_page(mapping, 0); 1411 1412 if (!page) 1413 return 1; 1414 1415 put_page(page); 1416 return 0; 1417 } 1418 1419 static int try_nonblocking_invalidate(struct inode *inode) 1420 { 1421 struct ceph_inode_info *ci = ceph_inode(inode); 1422 u32 invalidating_gen = ci->i_rdcache_gen; 1423 1424 spin_unlock(&inode->i_lock); 1425 invalidate_mapping_pages(&inode->i_data, 0, -1); 1426 spin_lock(&inode->i_lock); 1427 1428 if (mapping_is_empty(&inode->i_data) && 1429 invalidating_gen == ci->i_rdcache_gen) { 1430 /* success. */ 1431 dout("try_nonblocking_invalidate %p success\n", inode); 1432 ci->i_rdcache_gen = 0; 1433 ci->i_rdcache_revoking = 0; 1434 return 0; 1435 } 1436 dout("try_nonblocking_invalidate %p failed\n", inode); 1437 return -1; 1438 } 1439 1440 /* 1441 * Swiss army knife function to examine currently used and wanted 1442 * versus held caps. Release, flush, ack revoked caps to mds as 1443 * appropriate. 1444 * 1445 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay 1446 * cap release further. 1447 * CHECK_CAPS_AUTHONLY - we should only check the auth cap 1448 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without 1449 * further delay. 1450 */ 1451 void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1452 struct ceph_mds_session *session) 1453 { 1454 struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode); 1455 struct ceph_mds_client *mdsc = &client->mdsc; 1456 struct inode *inode = &ci->vfs_inode; 1457 struct ceph_cap *cap; 1458 int file_wanted, used; 1459 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ 1460 int issued, implemented, want, retain, revoking, flushing = 0; 1461 int mds = -1; /* keep track of how far we've gone through i_caps list 1462 to avoid an infinite loop on retry */ 1463 struct rb_node *p; 1464 int tried_invalidate = 0; 1465 int delayed = 0, sent = 0, force_requeue = 0, num; 1466 int queue_invalidate = 0; 1467 int is_delayed = flags & CHECK_CAPS_NODELAY; 1468 1469 /* if we are unmounting, flush any unused caps immediately. */ 1470 if (mdsc->stopping) 1471 is_delayed = 1; 1472 1473 spin_lock(&inode->i_lock); 1474 1475 if (ci->i_ceph_flags & CEPH_I_FLUSH) 1476 flags |= CHECK_CAPS_FLUSH; 1477 1478 /* flush snaps first time around only */ 1479 if (!list_empty(&ci->i_cap_snaps)) 1480 __ceph_flush_snaps(ci, &session); 1481 goto retry_locked; 1482 retry: 1483 spin_lock(&inode->i_lock); 1484 retry_locked: 1485 file_wanted = __ceph_caps_file_wanted(ci); 1486 used = __ceph_caps_used(ci); 1487 want = file_wanted | used; 1488 issued = __ceph_caps_issued(ci, &implemented); 1489 revoking = implemented & ~issued; 1490 1491 retain = want | CEPH_CAP_PIN; 1492 if (!mdsc->stopping && inode->i_nlink > 0) { 1493 if (want) { 1494 retain |= CEPH_CAP_ANY; /* be greedy */ 1495 } else { 1496 retain |= CEPH_CAP_ANY_SHARED; 1497 /* 1498 * keep RD only if we didn't have the file open RW, 1499 * because then the mds would revoke it anyway to 1500 * journal max_size=0. 1501 */ 1502 if (ci->i_max_size == 0) 1503 retain |= CEPH_CAP_ANY_RD; 1504 } 1505 } 1506 1507 dout("check_caps %p file_want %s used %s dirty %s flushing %s" 1508 " issued %s revoking %s retain %s %s%s%s\n", inode, 1509 ceph_cap_string(file_wanted), 1510 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), 1511 ceph_cap_string(ci->i_flushing_caps), 1512 ceph_cap_string(issued), ceph_cap_string(revoking), 1513 ceph_cap_string(retain), 1514 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", 1515 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", 1516 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); 1517 1518 /* 1519 * If we no longer need to hold onto old our caps, and we may 1520 * have cached pages, but don't want them, then try to invalidate. 1521 * If we fail, it's because pages are locked.... try again later. 1522 */ 1523 if ((!is_delayed || mdsc->stopping) && 1524 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ 1525 ci->i_rdcache_gen && /* may have cached pages */ 1526 (file_wanted == 0 || /* no open files */ 1527 (revoking & (CEPH_CAP_FILE_CACHE| 1528 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */ 1529 !tried_invalidate) { 1530 dout("check_caps trying to invalidate on %p\n", inode); 1531 if (try_nonblocking_invalidate(inode) < 0) { 1532 if (revoking & (CEPH_CAP_FILE_CACHE| 1533 CEPH_CAP_FILE_LAZYIO)) { 1534 dout("check_caps queuing invalidate\n"); 1535 queue_invalidate = 1; 1536 ci->i_rdcache_revoking = ci->i_rdcache_gen; 1537 } else { 1538 dout("check_caps failed to invalidate pages\n"); 1539 /* we failed to invalidate pages. check these 1540 caps again later. */ 1541 force_requeue = 1; 1542 __cap_set_timeouts(mdsc, ci); 1543 } 1544 } 1545 tried_invalidate = 1; 1546 goto retry_locked; 1547 } 1548 1549 num = 0; 1550 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 1551 cap = rb_entry(p, struct ceph_cap, ci_node); 1552 num++; 1553 1554 /* avoid looping forever */ 1555 if (mds >= cap->mds || 1556 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) 1557 continue; 1558 1559 /* NOTE: no side-effects allowed, until we take s_mutex */ 1560 1561 revoking = cap->implemented & ~cap->issued; 1562 if (revoking) 1563 dout(" mds%d revoking %s\n", cap->mds, 1564 ceph_cap_string(revoking)); 1565 1566 if (cap == ci->i_auth_cap && 1567 (cap->issued & CEPH_CAP_FILE_WR)) { 1568 /* request larger max_size from MDS? */ 1569 if (ci->i_wanted_max_size > ci->i_max_size && 1570 ci->i_wanted_max_size > ci->i_requested_max_size) { 1571 dout("requesting new max_size\n"); 1572 goto ack; 1573 } 1574 1575 /* approaching file_max? */ 1576 if ((inode->i_size << 1) >= ci->i_max_size && 1577 (ci->i_reported_size << 1) < ci->i_max_size) { 1578 dout("i_size approaching max_size\n"); 1579 goto ack; 1580 } 1581 } 1582 /* flush anything dirty? */ 1583 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && 1584 ci->i_dirty_caps) { 1585 dout("flushing dirty caps\n"); 1586 goto ack; 1587 } 1588 1589 /* completed revocation? going down and there are no caps? */ 1590 if (revoking && (revoking & used) == 0) { 1591 dout("completed revocation of %s\n", 1592 ceph_cap_string(cap->implemented & ~cap->issued)); 1593 goto ack; 1594 } 1595 1596 /* want more caps from mds? */ 1597 if (want & ~(cap->mds_wanted | cap->issued)) 1598 goto ack; 1599 1600 /* things we might delay */ 1601 if ((cap->issued & ~retain) == 0 && 1602 cap->mds_wanted == want) 1603 continue; /* nope, all good */ 1604 1605 if (is_delayed) 1606 goto ack; 1607 1608 /* delay? */ 1609 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1610 time_before(jiffies, ci->i_hold_caps_max)) { 1611 dout(" delaying issued %s -> %s, wanted %s -> %s\n", 1612 ceph_cap_string(cap->issued), 1613 ceph_cap_string(cap->issued & retain), 1614 ceph_cap_string(cap->mds_wanted), 1615 ceph_cap_string(want)); 1616 delayed++; 1617 continue; 1618 } 1619 1620 ack: 1621 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1622 dout(" skipping %p I_NOFLUSH set\n", inode); 1623 continue; 1624 } 1625 1626 if (session && session != cap->session) { 1627 dout("oops, wrong session %p mutex\n", session); 1628 mutex_unlock(&session->s_mutex); 1629 session = NULL; 1630 } 1631 if (!session) { 1632 session = cap->session; 1633 if (mutex_trylock(&session->s_mutex) == 0) { 1634 dout("inverting session/ino locks on %p\n", 1635 session); 1636 spin_unlock(&inode->i_lock); 1637 if (took_snap_rwsem) { 1638 up_read(&mdsc->snap_rwsem); 1639 took_snap_rwsem = 0; 1640 } 1641 mutex_lock(&session->s_mutex); 1642 goto retry; 1643 } 1644 } 1645 /* take snap_rwsem after session mutex */ 1646 if (!took_snap_rwsem) { 1647 if (down_read_trylock(&mdsc->snap_rwsem) == 0) { 1648 dout("inverting snap/in locks on %p\n", 1649 inode); 1650 spin_unlock(&inode->i_lock); 1651 down_read(&mdsc->snap_rwsem); 1652 took_snap_rwsem = 1; 1653 goto retry; 1654 } 1655 took_snap_rwsem = 1; 1656 } 1657 1658 if (cap == ci->i_auth_cap && ci->i_dirty_caps) 1659 flushing = __mark_caps_flushing(inode, session); 1660 1661 mds = cap->mds; /* remember mds, so we don't repeat */ 1662 sent++; 1663 1664 /* __send_cap drops i_lock */ 1665 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want, 1666 retain, flushing, NULL); 1667 goto retry; /* retake i_lock and restart our cap scan. */ 1668 } 1669 1670 /* 1671 * Reschedule delayed caps release if we delayed anything, 1672 * otherwise cancel. 1673 */ 1674 if (delayed && is_delayed) 1675 force_requeue = 1; /* __send_cap delayed release; requeue */ 1676 if (!delayed && !is_delayed) 1677 __cap_delay_cancel(mdsc, ci); 1678 else if (!is_delayed || force_requeue) 1679 __cap_delay_requeue(mdsc, ci); 1680 1681 spin_unlock(&inode->i_lock); 1682 1683 if (queue_invalidate) 1684 ceph_queue_invalidate(inode); 1685 1686 if (session) 1687 mutex_unlock(&session->s_mutex); 1688 if (took_snap_rwsem) 1689 up_read(&mdsc->snap_rwsem); 1690 } 1691 1692 /* 1693 * Try to flush dirty caps back to the auth mds. 1694 */ 1695 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session, 1696 unsigned *flush_tid) 1697 { 1698 struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc; 1699 struct ceph_inode_info *ci = ceph_inode(inode); 1700 int unlock_session = session ? 0 : 1; 1701 int flushing = 0; 1702 1703 retry: 1704 spin_lock(&inode->i_lock); 1705 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1706 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode); 1707 goto out; 1708 } 1709 if (ci->i_dirty_caps && ci->i_auth_cap) { 1710 struct ceph_cap *cap = ci->i_auth_cap; 1711 int used = __ceph_caps_used(ci); 1712 int want = __ceph_caps_wanted(ci); 1713 int delayed; 1714 1715 if (!session) { 1716 spin_unlock(&inode->i_lock); 1717 session = cap->session; 1718 mutex_lock(&session->s_mutex); 1719 goto retry; 1720 } 1721 BUG_ON(session != cap->session); 1722 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) 1723 goto out; 1724 1725 flushing = __mark_caps_flushing(inode, session); 1726 1727 /* __send_cap drops i_lock */ 1728 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, 1729 cap->issued | cap->implemented, flushing, 1730 flush_tid); 1731 if (!delayed) 1732 goto out_unlocked; 1733 1734 spin_lock(&inode->i_lock); 1735 __cap_delay_requeue(mdsc, ci); 1736 } 1737 out: 1738 spin_unlock(&inode->i_lock); 1739 out_unlocked: 1740 if (session && unlock_session) 1741 mutex_unlock(&session->s_mutex); 1742 return flushing; 1743 } 1744 1745 /* 1746 * Return true if we've flushed caps through the given flush_tid. 1747 */ 1748 static int caps_are_flushed(struct inode *inode, unsigned tid) 1749 { 1750 struct ceph_inode_info *ci = ceph_inode(inode); 1751 int i, ret = 1; 1752 1753 spin_lock(&inode->i_lock); 1754 for (i = 0; i < CEPH_CAP_BITS; i++) 1755 if ((ci->i_flushing_caps & (1 << i)) && 1756 ci->i_cap_flush_tid[i] <= tid) { 1757 /* still flushing this bit */ 1758 ret = 0; 1759 break; 1760 } 1761 spin_unlock(&inode->i_lock); 1762 return ret; 1763 } 1764 1765 /* 1766 * Wait on any unsafe replies for the given inode. First wait on the 1767 * newest request, and make that the upper bound. Then, if there are 1768 * more requests, keep waiting on the oldest as long as it is still older 1769 * than the original request. 1770 */ 1771 static void sync_write_wait(struct inode *inode) 1772 { 1773 struct ceph_inode_info *ci = ceph_inode(inode); 1774 struct list_head *head = &ci->i_unsafe_writes; 1775 struct ceph_osd_request *req; 1776 u64 last_tid; 1777 1778 spin_lock(&ci->i_unsafe_lock); 1779 if (list_empty(head)) 1780 goto out; 1781 1782 /* set upper bound as _last_ entry in chain */ 1783 req = list_entry(head->prev, struct ceph_osd_request, 1784 r_unsafe_item); 1785 last_tid = req->r_tid; 1786 1787 do { 1788 ceph_osdc_get_request(req); 1789 spin_unlock(&ci->i_unsafe_lock); 1790 dout("sync_write_wait on tid %llu (until %llu)\n", 1791 req->r_tid, last_tid); 1792 wait_for_completion(&req->r_safe_completion); 1793 spin_lock(&ci->i_unsafe_lock); 1794 ceph_osdc_put_request(req); 1795 1796 /* 1797 * from here on look at first entry in chain, since we 1798 * only want to wait for anything older than last_tid 1799 */ 1800 if (list_empty(head)) 1801 break; 1802 req = list_entry(head->next, struct ceph_osd_request, 1803 r_unsafe_item); 1804 } while (req->r_tid < last_tid); 1805 out: 1806 spin_unlock(&ci->i_unsafe_lock); 1807 } 1808 1809 int ceph_fsync(struct file *file, int datasync) 1810 { 1811 struct inode *inode = file->f_mapping->host; 1812 struct ceph_inode_info *ci = ceph_inode(inode); 1813 unsigned flush_tid; 1814 int ret; 1815 int dirty; 1816 1817 dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); 1818 sync_write_wait(inode); 1819 1820 ret = filemap_write_and_wait(inode->i_mapping); 1821 if (ret < 0) 1822 return ret; 1823 1824 dirty = try_flush_caps(inode, NULL, &flush_tid); 1825 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); 1826 1827 /* 1828 * only wait on non-file metadata writeback (the mds 1829 * can recover size and mtime, so we don't need to 1830 * wait for that) 1831 */ 1832 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { 1833 dout("fsync waiting for flush_tid %u\n", flush_tid); 1834 ret = wait_event_interruptible(ci->i_cap_wq, 1835 caps_are_flushed(inode, flush_tid)); 1836 } 1837 1838 dout("fsync %p%s done\n", inode, datasync ? " datasync" : ""); 1839 return ret; 1840 } 1841 1842 /* 1843 * Flush any dirty caps back to the mds. If we aren't asked to wait, 1844 * queue inode for flush but don't do so immediately, because we can 1845 * get by with fewer MDS messages if we wait for data writeback to 1846 * complete first. 1847 */ 1848 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc) 1849 { 1850 struct ceph_inode_info *ci = ceph_inode(inode); 1851 unsigned flush_tid; 1852 int err = 0; 1853 int dirty; 1854 int wait = wbc->sync_mode == WB_SYNC_ALL; 1855 1856 dout("write_inode %p wait=%d\n", inode, wait); 1857 if (wait) { 1858 dirty = try_flush_caps(inode, NULL, &flush_tid); 1859 if (dirty) 1860 err = wait_event_interruptible(ci->i_cap_wq, 1861 caps_are_flushed(inode, flush_tid)); 1862 } else { 1863 struct ceph_mds_client *mdsc = 1864 &ceph_sb_to_client(inode->i_sb)->mdsc; 1865 1866 spin_lock(&inode->i_lock); 1867 if (__ceph_caps_dirty(ci)) 1868 __cap_delay_requeue_front(mdsc, ci); 1869 spin_unlock(&inode->i_lock); 1870 } 1871 return err; 1872 } 1873 1874 /* 1875 * After a recovering MDS goes active, we need to resend any caps 1876 * we were flushing. 1877 * 1878 * Caller holds session->s_mutex. 1879 */ 1880 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, 1881 struct ceph_mds_session *session) 1882 { 1883 struct ceph_cap_snap *capsnap; 1884 1885 dout("kick_flushing_capsnaps mds%d\n", session->s_mds); 1886 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, 1887 flushing_item) { 1888 struct ceph_inode_info *ci = capsnap->ci; 1889 struct inode *inode = &ci->vfs_inode; 1890 struct ceph_cap *cap; 1891 1892 spin_lock(&inode->i_lock); 1893 cap = ci->i_auth_cap; 1894 if (cap && cap->session == session) { 1895 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, 1896 cap, capsnap); 1897 __ceph_flush_snaps(ci, &session); 1898 } else { 1899 pr_err("%p auth cap %p not mds%d ???\n", inode, 1900 cap, session->s_mds); 1901 } 1902 spin_unlock(&inode->i_lock); 1903 } 1904 } 1905 1906 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 1907 struct ceph_mds_session *session) 1908 { 1909 struct ceph_inode_info *ci; 1910 1911 kick_flushing_capsnaps(mdsc, session); 1912 1913 dout("kick_flushing_caps mds%d\n", session->s_mds); 1914 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 1915 struct inode *inode = &ci->vfs_inode; 1916 struct ceph_cap *cap; 1917 int delayed = 0; 1918 1919 spin_lock(&inode->i_lock); 1920 cap = ci->i_auth_cap; 1921 if (cap && cap->session == session) { 1922 dout("kick_flushing_caps %p cap %p %s\n", inode, 1923 cap, ceph_cap_string(ci->i_flushing_caps)); 1924 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1925 __ceph_caps_used(ci), 1926 __ceph_caps_wanted(ci), 1927 cap->issued | cap->implemented, 1928 ci->i_flushing_caps, NULL); 1929 if (delayed) { 1930 spin_lock(&inode->i_lock); 1931 __cap_delay_requeue(mdsc, ci); 1932 spin_unlock(&inode->i_lock); 1933 } 1934 } else { 1935 pr_err("%p auth cap %p not mds%d ???\n", inode, 1936 cap, session->s_mds); 1937 spin_unlock(&inode->i_lock); 1938 } 1939 } 1940 } 1941 1942 1943 /* 1944 * Take references to capabilities we hold, so that we don't release 1945 * them to the MDS prematurely. 1946 * 1947 * Protected by i_lock. 1948 */ 1949 static void __take_cap_refs(struct ceph_inode_info *ci, int got) 1950 { 1951 if (got & CEPH_CAP_PIN) 1952 ci->i_pin_ref++; 1953 if (got & CEPH_CAP_FILE_RD) 1954 ci->i_rd_ref++; 1955 if (got & CEPH_CAP_FILE_CACHE) 1956 ci->i_rdcache_ref++; 1957 if (got & CEPH_CAP_FILE_WR) 1958 ci->i_wr_ref++; 1959 if (got & CEPH_CAP_FILE_BUFFER) { 1960 if (ci->i_wrbuffer_ref == 0) 1961 igrab(&ci->vfs_inode); 1962 ci->i_wrbuffer_ref++; 1963 dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n", 1964 &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref); 1965 } 1966 } 1967 1968 /* 1969 * Try to grab cap references. Specify those refs we @want, and the 1970 * minimal set we @need. Also include the larger offset we are writing 1971 * to (when applicable), and check against max_size here as well. 1972 * Note that caller is responsible for ensuring max_size increases are 1973 * requested from the MDS. 1974 */ 1975 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, 1976 int *got, loff_t endoff, int *check_max, int *err) 1977 { 1978 struct inode *inode = &ci->vfs_inode; 1979 int ret = 0; 1980 int have, implemented; 1981 int file_wanted; 1982 1983 dout("get_cap_refs %p need %s want %s\n", inode, 1984 ceph_cap_string(need), ceph_cap_string(want)); 1985 spin_lock(&inode->i_lock); 1986 1987 /* make sure file is actually open */ 1988 file_wanted = __ceph_caps_file_wanted(ci); 1989 if ((file_wanted & need) == 0) { 1990 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n", 1991 ceph_cap_string(need), ceph_cap_string(file_wanted)); 1992 *err = -EBADF; 1993 ret = 1; 1994 goto out; 1995 } 1996 1997 if (need & CEPH_CAP_FILE_WR) { 1998 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { 1999 dout("get_cap_refs %p endoff %llu > maxsize %llu\n", 2000 inode, endoff, ci->i_max_size); 2001 if (endoff > ci->i_wanted_max_size) { 2002 *check_max = 1; 2003 ret = 1; 2004 } 2005 goto out; 2006 } 2007 /* 2008 * If a sync write is in progress, we must wait, so that we 2009 * can get a final snapshot value for size+mtime. 2010 */ 2011 if (__ceph_have_pending_cap_snap(ci)) { 2012 dout("get_cap_refs %p cap_snap_pending\n", inode); 2013 goto out; 2014 } 2015 } 2016 have = __ceph_caps_issued(ci, &implemented); 2017 2018 /* 2019 * disallow writes while a truncate is pending 2020 */ 2021 if (ci->i_truncate_pending) 2022 have &= ~CEPH_CAP_FILE_WR; 2023 2024 if ((have & need) == need) { 2025 /* 2026 * Look at (implemented & ~have & not) so that we keep waiting 2027 * on transition from wanted -> needed caps. This is needed 2028 * for WRBUFFER|WR -> WR to avoid a new WR sync write from 2029 * going before a prior buffered writeback happens. 2030 */ 2031 int not = want & ~(have & need); 2032 int revoking = implemented & ~have; 2033 dout("get_cap_refs %p have %s but not %s (revoking %s)\n", 2034 inode, ceph_cap_string(have), ceph_cap_string(not), 2035 ceph_cap_string(revoking)); 2036 if ((revoking & not) == 0) { 2037 *got = need | (have & want); 2038 __take_cap_refs(ci, *got); 2039 ret = 1; 2040 } 2041 } else { 2042 dout("get_cap_refs %p have %s needed %s\n", inode, 2043 ceph_cap_string(have), ceph_cap_string(need)); 2044 } 2045 out: 2046 spin_unlock(&inode->i_lock); 2047 dout("get_cap_refs %p ret %d got %s\n", inode, 2048 ret, ceph_cap_string(*got)); 2049 return ret; 2050 } 2051 2052 /* 2053 * Check the offset we are writing up to against our current 2054 * max_size. If necessary, tell the MDS we want to write to 2055 * a larger offset. 2056 */ 2057 static void check_max_size(struct inode *inode, loff_t endoff) 2058 { 2059 struct ceph_inode_info *ci = ceph_inode(inode); 2060 int check = 0; 2061 2062 /* do we need to explicitly request a larger max_size? */ 2063 spin_lock(&inode->i_lock); 2064 if ((endoff >= ci->i_max_size || 2065 endoff > (inode->i_size << 1)) && 2066 endoff > ci->i_wanted_max_size) { 2067 dout("write %p at large endoff %llu, req max_size\n", 2068 inode, endoff); 2069 ci->i_wanted_max_size = endoff; 2070 check = 1; 2071 } 2072 spin_unlock(&inode->i_lock); 2073 if (check) 2074 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2075 } 2076 2077 /* 2078 * Wait for caps, and take cap references. If we can't get a WR cap 2079 * due to a small max_size, make sure we check_max_size (and possibly 2080 * ask the mds) so we don't get hung up indefinitely. 2081 */ 2082 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got, 2083 loff_t endoff) 2084 { 2085 int check_max, ret, err; 2086 2087 retry: 2088 if (endoff > 0) 2089 check_max_size(&ci->vfs_inode, endoff); 2090 check_max = 0; 2091 err = 0; 2092 ret = wait_event_interruptible(ci->i_cap_wq, 2093 try_get_cap_refs(ci, need, want, 2094 got, endoff, 2095 &check_max, &err)); 2096 if (err) 2097 ret = err; 2098 if (check_max) 2099 goto retry; 2100 return ret; 2101 } 2102 2103 /* 2104 * Take cap refs. Caller must already know we hold at least one ref 2105 * on the caps in question or we don't know this is safe. 2106 */ 2107 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) 2108 { 2109 spin_lock(&ci->vfs_inode.i_lock); 2110 __take_cap_refs(ci, caps); 2111 spin_unlock(&ci->vfs_inode.i_lock); 2112 } 2113 2114 /* 2115 * Release cap refs. 2116 * 2117 * If we released the last ref on any given cap, call ceph_check_caps 2118 * to release (or schedule a release). 2119 * 2120 * If we are releasing a WR cap (from a sync write), finalize any affected 2121 * cap_snap, and wake up any waiters. 2122 */ 2123 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) 2124 { 2125 struct inode *inode = &ci->vfs_inode; 2126 int last = 0, put = 0, flushsnaps = 0, wake = 0; 2127 struct ceph_cap_snap *capsnap; 2128 2129 spin_lock(&inode->i_lock); 2130 if (had & CEPH_CAP_PIN) 2131 --ci->i_pin_ref; 2132 if (had & CEPH_CAP_FILE_RD) 2133 if (--ci->i_rd_ref == 0) 2134 last++; 2135 if (had & CEPH_CAP_FILE_CACHE) 2136 if (--ci->i_rdcache_ref == 0) 2137 last++; 2138 if (had & CEPH_CAP_FILE_BUFFER) { 2139 if (--ci->i_wrbuffer_ref == 0) { 2140 last++; 2141 put++; 2142 } 2143 dout("put_cap_refs %p wrbuffer %d -> %d (?)\n", 2144 inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref); 2145 } 2146 if (had & CEPH_CAP_FILE_WR) 2147 if (--ci->i_wr_ref == 0) { 2148 last++; 2149 if (!list_empty(&ci->i_cap_snaps)) { 2150 capsnap = list_first_entry(&ci->i_cap_snaps, 2151 struct ceph_cap_snap, 2152 ci_item); 2153 if (capsnap->writing) { 2154 capsnap->writing = 0; 2155 flushsnaps = 2156 __ceph_finish_cap_snap(ci, 2157 capsnap); 2158 wake = 1; 2159 } 2160 } 2161 } 2162 spin_unlock(&inode->i_lock); 2163 2164 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had), 2165 last ? " last" : "", put ? " put" : ""); 2166 2167 if (last && !flushsnaps) 2168 ceph_check_caps(ci, 0, NULL); 2169 else if (flushsnaps) 2170 ceph_flush_snaps(ci); 2171 if (wake) 2172 wake_up_all(&ci->i_cap_wq); 2173 if (put) 2174 iput(inode); 2175 } 2176 2177 /* 2178 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap 2179 * context. Adjust per-snap dirty page accounting as appropriate. 2180 * Once all dirty data for a cap_snap is flushed, flush snapped file 2181 * metadata back to the MDS. If we dropped the last ref, call 2182 * ceph_check_caps. 2183 */ 2184 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 2185 struct ceph_snap_context *snapc) 2186 { 2187 struct inode *inode = &ci->vfs_inode; 2188 int last = 0; 2189 int complete_capsnap = 0; 2190 int drop_capsnap = 0; 2191 int found = 0; 2192 struct ceph_cap_snap *capsnap = NULL; 2193 2194 spin_lock(&inode->i_lock); 2195 ci->i_wrbuffer_ref -= nr; 2196 last = !ci->i_wrbuffer_ref; 2197 2198 if (ci->i_head_snapc == snapc) { 2199 ci->i_wrbuffer_ref_head -= nr; 2200 if (ci->i_wrbuffer_ref_head == 0 && 2201 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) { 2202 BUG_ON(!ci->i_head_snapc); 2203 ceph_put_snap_context(ci->i_head_snapc); 2204 ci->i_head_snapc = NULL; 2205 } 2206 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", 2207 inode, 2208 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, 2209 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 2210 last ? " LAST" : ""); 2211 } else { 2212 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2213 if (capsnap->context == snapc) { 2214 found = 1; 2215 break; 2216 } 2217 } 2218 BUG_ON(!found); 2219 capsnap->dirty_pages -= nr; 2220 if (capsnap->dirty_pages == 0) { 2221 complete_capsnap = 1; 2222 if (capsnap->dirty == 0) 2223 /* cap writeback completed before we created 2224 * the cap_snap; no FLUSHSNAP is needed */ 2225 drop_capsnap = 1; 2226 } 2227 dout("put_wrbuffer_cap_refs on %p cap_snap %p " 2228 " snap %lld %d/%d -> %d/%d %s%s%s\n", 2229 inode, capsnap, capsnap->context->seq, 2230 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, 2231 ci->i_wrbuffer_ref, capsnap->dirty_pages, 2232 last ? " (wrbuffer last)" : "", 2233 complete_capsnap ? " (complete capsnap)" : "", 2234 drop_capsnap ? " (drop capsnap)" : ""); 2235 if (drop_capsnap) { 2236 ceph_put_snap_context(capsnap->context); 2237 list_del(&capsnap->ci_item); 2238 list_del(&capsnap->flushing_item); 2239 ceph_put_cap_snap(capsnap); 2240 } 2241 } 2242 2243 spin_unlock(&inode->i_lock); 2244 2245 if (last) { 2246 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2247 iput(inode); 2248 } else if (complete_capsnap) { 2249 ceph_flush_snaps(ci); 2250 wake_up_all(&ci->i_cap_wq); 2251 } 2252 if (drop_capsnap) 2253 iput(inode); 2254 } 2255 2256 /* 2257 * Handle a cap GRANT message from the MDS. (Note that a GRANT may 2258 * actually be a revocation if it specifies a smaller cap set.) 2259 * 2260 * caller holds s_mutex and i_lock, we drop both. 2261 * 2262 * return value: 2263 * 0 - ok 2264 * 1 - check_caps on auth cap only (writeback) 2265 * 2 - check_caps (ack revoke) 2266 */ 2267 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant, 2268 struct ceph_mds_session *session, 2269 struct ceph_cap *cap, 2270 struct ceph_buffer *xattr_buf) 2271 __releases(inode->i_lock) 2272 { 2273 struct ceph_inode_info *ci = ceph_inode(inode); 2274 int mds = session->s_mds; 2275 int seq = le32_to_cpu(grant->seq); 2276 int newcaps = le32_to_cpu(grant->caps); 2277 int issued, implemented, used, wanted, dirty; 2278 u64 size = le64_to_cpu(grant->size); 2279 u64 max_size = le64_to_cpu(grant->max_size); 2280 struct timespec mtime, atime, ctime; 2281 int check_caps = 0; 2282 int wake = 0; 2283 int writeback = 0; 2284 int revoked_rdcache = 0; 2285 int queue_invalidate = 0; 2286 2287 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", 2288 inode, cap, mds, seq, ceph_cap_string(newcaps)); 2289 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, 2290 inode->i_size); 2291 2292 /* 2293 * If CACHE is being revoked, and we have no dirty buffers, 2294 * try to invalidate (once). (If there are dirty buffers, we 2295 * will invalidate _after_ writeback.) 2296 */ 2297 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && 2298 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2299 !ci->i_wrbuffer_ref) { 2300 if (try_nonblocking_invalidate(inode) == 0) { 2301 revoked_rdcache = 1; 2302 } else { 2303 /* there were locked pages.. invalidate later 2304 in a separate thread. */ 2305 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { 2306 queue_invalidate = 1; 2307 ci->i_rdcache_revoking = ci->i_rdcache_gen; 2308 } 2309 } 2310 } 2311 2312 /* side effects now are allowed */ 2313 2314 issued = __ceph_caps_issued(ci, &implemented); 2315 issued |= implemented | __ceph_caps_dirty(ci); 2316 2317 cap->cap_gen = session->s_cap_gen; 2318 2319 __check_cap_issue(ci, cap, newcaps); 2320 2321 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) { 2322 inode->i_mode = le32_to_cpu(grant->mode); 2323 inode->i_uid = le32_to_cpu(grant->uid); 2324 inode->i_gid = le32_to_cpu(grant->gid); 2325 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, 2326 inode->i_uid, inode->i_gid); 2327 } 2328 2329 if ((issued & CEPH_CAP_LINK_EXCL) == 0) 2330 inode->i_nlink = le32_to_cpu(grant->nlink); 2331 2332 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { 2333 int len = le32_to_cpu(grant->xattr_len); 2334 u64 version = le64_to_cpu(grant->xattr_version); 2335 2336 if (version > ci->i_xattrs.version) { 2337 dout(" got new xattrs v%llu on %p len %d\n", 2338 version, inode, len); 2339 if (ci->i_xattrs.blob) 2340 ceph_buffer_put(ci->i_xattrs.blob); 2341 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); 2342 ci->i_xattrs.version = version; 2343 } 2344 } 2345 2346 /* size/ctime/mtime/atime? */ 2347 ceph_fill_file_size(inode, issued, 2348 le32_to_cpu(grant->truncate_seq), 2349 le64_to_cpu(grant->truncate_size), size); 2350 ceph_decode_timespec(&mtime, &grant->mtime); 2351 ceph_decode_timespec(&atime, &grant->atime); 2352 ceph_decode_timespec(&ctime, &grant->ctime); 2353 ceph_fill_file_time(inode, issued, 2354 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime, 2355 &atime); 2356 2357 /* max size increase? */ 2358 if (max_size != ci->i_max_size) { 2359 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size); 2360 ci->i_max_size = max_size; 2361 if (max_size >= ci->i_wanted_max_size) { 2362 ci->i_wanted_max_size = 0; /* reset */ 2363 ci->i_requested_max_size = 0; 2364 } 2365 wake = 1; 2366 } 2367 2368 /* check cap bits */ 2369 wanted = __ceph_caps_wanted(ci); 2370 used = __ceph_caps_used(ci); 2371 dirty = __ceph_caps_dirty(ci); 2372 dout(" my wanted = %s, used = %s, dirty %s\n", 2373 ceph_cap_string(wanted), 2374 ceph_cap_string(used), 2375 ceph_cap_string(dirty)); 2376 if (wanted != le32_to_cpu(grant->wanted)) { 2377 dout("mds wanted %s -> %s\n", 2378 ceph_cap_string(le32_to_cpu(grant->wanted)), 2379 ceph_cap_string(wanted)); 2380 grant->wanted = cpu_to_le32(wanted); 2381 } 2382 2383 cap->seq = seq; 2384 2385 /* file layout may have changed */ 2386 ci->i_layout = grant->layout; 2387 2388 /* revocation, grant, or no-op? */ 2389 if (cap->issued & ~newcaps) { 2390 int revoking = cap->issued & ~newcaps; 2391 2392 dout("revocation: %s -> %s (revoking %s)\n", 2393 ceph_cap_string(cap->issued), 2394 ceph_cap_string(newcaps), 2395 ceph_cap_string(revoking)); 2396 if (revoking & used & CEPH_CAP_FILE_BUFFER) 2397 writeback = 1; /* initiate writeback; will delay ack */ 2398 else if (revoking == CEPH_CAP_FILE_CACHE && 2399 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2400 queue_invalidate) 2401 ; /* do nothing yet, invalidation will be queued */ 2402 else if (cap == ci->i_auth_cap) 2403 check_caps = 1; /* check auth cap only */ 2404 else 2405 check_caps = 2; /* check all caps */ 2406 cap->issued = newcaps; 2407 cap->implemented |= newcaps; 2408 } else if (cap->issued == newcaps) { 2409 dout("caps unchanged: %s -> %s\n", 2410 ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); 2411 } else { 2412 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), 2413 ceph_cap_string(newcaps)); 2414 cap->issued = newcaps; 2415 cap->implemented |= newcaps; /* add bits only, to 2416 * avoid stepping on a 2417 * pending revocation */ 2418 wake = 1; 2419 } 2420 BUG_ON(cap->issued & ~cap->implemented); 2421 2422 spin_unlock(&inode->i_lock); 2423 if (writeback) 2424 /* 2425 * queue inode for writeback: we can't actually call 2426 * filemap_write_and_wait, etc. from message handler 2427 * context. 2428 */ 2429 ceph_queue_writeback(inode); 2430 if (queue_invalidate) 2431 ceph_queue_invalidate(inode); 2432 if (wake) 2433 wake_up_all(&ci->i_cap_wq); 2434 2435 if (check_caps == 1) 2436 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, 2437 session); 2438 else if (check_caps == 2) 2439 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session); 2440 else 2441 mutex_unlock(&session->s_mutex); 2442 } 2443 2444 /* 2445 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the 2446 * MDS has been safely committed. 2447 */ 2448 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, 2449 struct ceph_mds_caps *m, 2450 struct ceph_mds_session *session, 2451 struct ceph_cap *cap) 2452 __releases(inode->i_lock) 2453 { 2454 struct ceph_inode_info *ci = ceph_inode(inode); 2455 struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc; 2456 unsigned seq = le32_to_cpu(m->seq); 2457 int dirty = le32_to_cpu(m->dirty); 2458 int cleaned = 0; 2459 int drop = 0; 2460 int i; 2461 2462 for (i = 0; i < CEPH_CAP_BITS; i++) 2463 if ((dirty & (1 << i)) && 2464 flush_tid == ci->i_cap_flush_tid[i]) 2465 cleaned |= 1 << i; 2466 2467 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," 2468 " flushing %s -> %s\n", 2469 inode, session->s_mds, seq, ceph_cap_string(dirty), 2470 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), 2471 ceph_cap_string(ci->i_flushing_caps & ~cleaned)); 2472 2473 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned)) 2474 goto out; 2475 2476 ci->i_flushing_caps &= ~cleaned; 2477 2478 spin_lock(&mdsc->cap_dirty_lock); 2479 if (ci->i_flushing_caps == 0) { 2480 list_del_init(&ci->i_flushing_item); 2481 if (!list_empty(&session->s_cap_flushing)) 2482 dout(" mds%d still flushing cap on %p\n", 2483 session->s_mds, 2484 &list_entry(session->s_cap_flushing.next, 2485 struct ceph_inode_info, 2486 i_flushing_item)->vfs_inode); 2487 mdsc->num_cap_flushing--; 2488 wake_up_all(&mdsc->cap_flushing_wq); 2489 dout(" inode %p now !flushing\n", inode); 2490 2491 if (ci->i_dirty_caps == 0) { 2492 dout(" inode %p now clean\n", inode); 2493 BUG_ON(!list_empty(&ci->i_dirty_item)); 2494 drop = 1; 2495 if (ci->i_wrbuffer_ref_head == 0) { 2496 BUG_ON(!ci->i_head_snapc); 2497 ceph_put_snap_context(ci->i_head_snapc); 2498 ci->i_head_snapc = NULL; 2499 } 2500 } else { 2501 BUG_ON(list_empty(&ci->i_dirty_item)); 2502 } 2503 } 2504 spin_unlock(&mdsc->cap_dirty_lock); 2505 wake_up_all(&ci->i_cap_wq); 2506 2507 out: 2508 spin_unlock(&inode->i_lock); 2509 if (drop) 2510 iput(inode); 2511 } 2512 2513 /* 2514 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can 2515 * throw away our cap_snap. 2516 * 2517 * Caller hold s_mutex. 2518 */ 2519 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, 2520 struct ceph_mds_caps *m, 2521 struct ceph_mds_session *session) 2522 { 2523 struct ceph_inode_info *ci = ceph_inode(inode); 2524 u64 follows = le64_to_cpu(m->snap_follows); 2525 struct ceph_cap_snap *capsnap; 2526 int drop = 0; 2527 2528 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", 2529 inode, ci, session->s_mds, follows); 2530 2531 spin_lock(&inode->i_lock); 2532 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2533 if (capsnap->follows == follows) { 2534 if (capsnap->flush_tid != flush_tid) { 2535 dout(" cap_snap %p follows %lld tid %lld !=" 2536 " %lld\n", capsnap, follows, 2537 flush_tid, capsnap->flush_tid); 2538 break; 2539 } 2540 WARN_ON(capsnap->dirty_pages || capsnap->writing); 2541 dout(" removing %p cap_snap %p follows %lld\n", 2542 inode, capsnap, follows); 2543 ceph_put_snap_context(capsnap->context); 2544 list_del(&capsnap->ci_item); 2545 list_del(&capsnap->flushing_item); 2546 ceph_put_cap_snap(capsnap); 2547 drop = 1; 2548 break; 2549 } else { 2550 dout(" skipping cap_snap %p follows %lld\n", 2551 capsnap, capsnap->follows); 2552 } 2553 } 2554 spin_unlock(&inode->i_lock); 2555 if (drop) 2556 iput(inode); 2557 } 2558 2559 /* 2560 * Handle TRUNC from MDS, indicating file truncation. 2561 * 2562 * caller hold s_mutex. 2563 */ 2564 static void handle_cap_trunc(struct inode *inode, 2565 struct ceph_mds_caps *trunc, 2566 struct ceph_mds_session *session) 2567 __releases(inode->i_lock) 2568 { 2569 struct ceph_inode_info *ci = ceph_inode(inode); 2570 int mds = session->s_mds; 2571 int seq = le32_to_cpu(trunc->seq); 2572 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); 2573 u64 truncate_size = le64_to_cpu(trunc->truncate_size); 2574 u64 size = le64_to_cpu(trunc->size); 2575 int implemented = 0; 2576 int dirty = __ceph_caps_dirty(ci); 2577 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); 2578 int queue_trunc = 0; 2579 2580 issued |= implemented | dirty; 2581 2582 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", 2583 inode, mds, seq, truncate_size, truncate_seq); 2584 queue_trunc = ceph_fill_file_size(inode, issued, 2585 truncate_seq, truncate_size, size); 2586 spin_unlock(&inode->i_lock); 2587 2588 if (queue_trunc) 2589 ceph_queue_vmtruncate(inode); 2590 } 2591 2592 /* 2593 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a 2594 * different one. If we are the most recent migration we've seen (as 2595 * indicated by mseq), make note of the migrating cap bits for the 2596 * duration (until we see the corresponding IMPORT). 2597 * 2598 * caller holds s_mutex 2599 */ 2600 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, 2601 struct ceph_mds_session *session, 2602 int *open_target_sessions) 2603 { 2604 struct ceph_inode_info *ci = ceph_inode(inode); 2605 int mds = session->s_mds; 2606 unsigned mseq = le32_to_cpu(ex->migrate_seq); 2607 struct ceph_cap *cap = NULL, *t; 2608 struct rb_node *p; 2609 int remember = 1; 2610 2611 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n", 2612 inode, ci, mds, mseq); 2613 2614 spin_lock(&inode->i_lock); 2615 2616 /* make sure we haven't seen a higher mseq */ 2617 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 2618 t = rb_entry(p, struct ceph_cap, ci_node); 2619 if (ceph_seq_cmp(t->mseq, mseq) > 0) { 2620 dout(" higher mseq on cap from mds%d\n", 2621 t->session->s_mds); 2622 remember = 0; 2623 } 2624 if (t->session->s_mds == mds) 2625 cap = t; 2626 } 2627 2628 if (cap) { 2629 if (remember) { 2630 /* make note */ 2631 ci->i_cap_exporting_mds = mds; 2632 ci->i_cap_exporting_mseq = mseq; 2633 ci->i_cap_exporting_issued = cap->issued; 2634 2635 /* 2636 * make sure we have open sessions with all possible 2637 * export targets, so that we get the matching IMPORT 2638 */ 2639 *open_target_sessions = 1; 2640 } 2641 __ceph_remove_cap(cap); 2642 } 2643 /* else, we already released it */ 2644 2645 spin_unlock(&inode->i_lock); 2646 } 2647 2648 /* 2649 * Handle cap IMPORT. If there are temp bits from an older EXPORT, 2650 * clean them up. 2651 * 2652 * caller holds s_mutex. 2653 */ 2654 static void handle_cap_import(struct ceph_mds_client *mdsc, 2655 struct inode *inode, struct ceph_mds_caps *im, 2656 struct ceph_mds_session *session, 2657 void *snaptrace, int snaptrace_len) 2658 { 2659 struct ceph_inode_info *ci = ceph_inode(inode); 2660 int mds = session->s_mds; 2661 unsigned issued = le32_to_cpu(im->caps); 2662 unsigned wanted = le32_to_cpu(im->wanted); 2663 unsigned seq = le32_to_cpu(im->seq); 2664 unsigned mseq = le32_to_cpu(im->migrate_seq); 2665 u64 realmino = le64_to_cpu(im->realm); 2666 u64 cap_id = le64_to_cpu(im->cap_id); 2667 2668 if (ci->i_cap_exporting_mds >= 0 && 2669 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) { 2670 dout("handle_cap_import inode %p ci %p mds%d mseq %d" 2671 " - cleared exporting from mds%d\n", 2672 inode, ci, mds, mseq, 2673 ci->i_cap_exporting_mds); 2674 ci->i_cap_exporting_issued = 0; 2675 ci->i_cap_exporting_mseq = 0; 2676 ci->i_cap_exporting_mds = -1; 2677 } else { 2678 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n", 2679 inode, ci, mds, mseq); 2680 } 2681 2682 down_write(&mdsc->snap_rwsem); 2683 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len, 2684 false); 2685 downgrade_write(&mdsc->snap_rwsem); 2686 ceph_add_cap(inode, session, cap_id, -1, 2687 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH, 2688 NULL /* no caps context */); 2689 try_flush_caps(inode, session, NULL); 2690 up_read(&mdsc->snap_rwsem); 2691 } 2692 2693 /* 2694 * Handle a caps message from the MDS. 2695 * 2696 * Identify the appropriate session, inode, and call the right handler 2697 * based on the cap op. 2698 */ 2699 void ceph_handle_caps(struct ceph_mds_session *session, 2700 struct ceph_msg *msg) 2701 { 2702 struct ceph_mds_client *mdsc = session->s_mdsc; 2703 struct super_block *sb = mdsc->client->sb; 2704 struct inode *inode; 2705 struct ceph_cap *cap; 2706 struct ceph_mds_caps *h; 2707 int mds = session->s_mds; 2708 int op; 2709 u32 seq, mseq; 2710 struct ceph_vino vino; 2711 u64 cap_id; 2712 u64 size, max_size; 2713 u64 tid; 2714 void *snaptrace; 2715 size_t snaptrace_len; 2716 void *flock; 2717 u32 flock_len; 2718 int open_target_sessions = 0; 2719 2720 dout("handle_caps from mds%d\n", mds); 2721 2722 /* decode */ 2723 tid = le64_to_cpu(msg->hdr.tid); 2724 if (msg->front.iov_len < sizeof(*h)) 2725 goto bad; 2726 h = msg->front.iov_base; 2727 op = le32_to_cpu(h->op); 2728 vino.ino = le64_to_cpu(h->ino); 2729 vino.snap = CEPH_NOSNAP; 2730 cap_id = le64_to_cpu(h->cap_id); 2731 seq = le32_to_cpu(h->seq); 2732 mseq = le32_to_cpu(h->migrate_seq); 2733 size = le64_to_cpu(h->size); 2734 max_size = le64_to_cpu(h->max_size); 2735 2736 snaptrace = h + 1; 2737 snaptrace_len = le32_to_cpu(h->snap_trace_len); 2738 2739 if (le16_to_cpu(msg->hdr.version) >= 2) { 2740 void *p, *end; 2741 2742 p = snaptrace + snaptrace_len; 2743 end = msg->front.iov_base + msg->front.iov_len; 2744 ceph_decode_32_safe(&p, end, flock_len, bad); 2745 flock = p; 2746 } else { 2747 flock = NULL; 2748 flock_len = 0; 2749 } 2750 2751 mutex_lock(&session->s_mutex); 2752 session->s_seq++; 2753 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, 2754 (unsigned)seq); 2755 2756 /* lookup ino */ 2757 inode = ceph_find_inode(sb, vino); 2758 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, 2759 vino.snap, inode); 2760 if (!inode) { 2761 dout(" i don't have ino %llx\n", vino.ino); 2762 2763 if (op == CEPH_CAP_OP_IMPORT) 2764 __queue_cap_release(session, vino.ino, cap_id, 2765 mseq, seq); 2766 2767 /* 2768 * send any full release message to try to move things 2769 * along for the mds (who clearly thinks we still have this 2770 * cap). 2771 */ 2772 ceph_add_cap_releases(mdsc, session); 2773 ceph_send_cap_releases(mdsc, session); 2774 goto done; 2775 } 2776 2777 /* these will work even if we don't have a cap yet */ 2778 switch (op) { 2779 case CEPH_CAP_OP_FLUSHSNAP_ACK: 2780 handle_cap_flushsnap_ack(inode, tid, h, session); 2781 goto done; 2782 2783 case CEPH_CAP_OP_EXPORT: 2784 handle_cap_export(inode, h, session, &open_target_sessions); 2785 goto done; 2786 2787 case CEPH_CAP_OP_IMPORT: 2788 handle_cap_import(mdsc, inode, h, session, 2789 snaptrace, snaptrace_len); 2790 ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY, 2791 session); 2792 goto done_unlocked; 2793 } 2794 2795 /* the rest require a cap */ 2796 spin_lock(&inode->i_lock); 2797 cap = __get_cap_for_mds(ceph_inode(inode), mds); 2798 if (!cap) { 2799 dout(" no cap on %p ino %llx.%llx from mds%d\n", 2800 inode, ceph_ino(inode), ceph_snap(inode), mds); 2801 spin_unlock(&inode->i_lock); 2802 goto done; 2803 } 2804 2805 /* note that each of these drops i_lock for us */ 2806 switch (op) { 2807 case CEPH_CAP_OP_REVOKE: 2808 case CEPH_CAP_OP_GRANT: 2809 handle_cap_grant(inode, h, session, cap, msg->middle); 2810 goto done_unlocked; 2811 2812 case CEPH_CAP_OP_FLUSH_ACK: 2813 handle_cap_flush_ack(inode, tid, h, session, cap); 2814 break; 2815 2816 case CEPH_CAP_OP_TRUNC: 2817 handle_cap_trunc(inode, h, session); 2818 break; 2819 2820 default: 2821 spin_unlock(&inode->i_lock); 2822 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, 2823 ceph_cap_op_name(op)); 2824 } 2825 2826 done: 2827 mutex_unlock(&session->s_mutex); 2828 done_unlocked: 2829 if (inode) 2830 iput(inode); 2831 if (open_target_sessions) 2832 ceph_mdsc_open_export_target_sessions(mdsc, session); 2833 return; 2834 2835 bad: 2836 pr_err("ceph_handle_caps: corrupt message\n"); 2837 ceph_msg_dump(msg); 2838 return; 2839 } 2840 2841 /* 2842 * Delayed work handler to process end of delayed cap release LRU list. 2843 */ 2844 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) 2845 { 2846 struct ceph_inode_info *ci; 2847 int flags = CHECK_CAPS_NODELAY; 2848 2849 dout("check_delayed_caps\n"); 2850 while (1) { 2851 spin_lock(&mdsc->cap_delay_lock); 2852 if (list_empty(&mdsc->cap_delay_list)) 2853 break; 2854 ci = list_first_entry(&mdsc->cap_delay_list, 2855 struct ceph_inode_info, 2856 i_cap_delay_list); 2857 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && 2858 time_before(jiffies, ci->i_hold_caps_max)) 2859 break; 2860 list_del_init(&ci->i_cap_delay_list); 2861 spin_unlock(&mdsc->cap_delay_lock); 2862 dout("check_delayed_caps on %p\n", &ci->vfs_inode); 2863 ceph_check_caps(ci, flags, NULL); 2864 } 2865 spin_unlock(&mdsc->cap_delay_lock); 2866 } 2867 2868 /* 2869 * Flush all dirty caps to the mds 2870 */ 2871 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) 2872 { 2873 struct ceph_inode_info *ci, *nci = NULL; 2874 struct inode *inode, *ninode = NULL; 2875 struct list_head *p, *n; 2876 2877 dout("flush_dirty_caps\n"); 2878 spin_lock(&mdsc->cap_dirty_lock); 2879 list_for_each_safe(p, n, &mdsc->cap_dirty) { 2880 if (nci) { 2881 ci = nci; 2882 inode = ninode; 2883 ci->i_ceph_flags &= ~CEPH_I_NOFLUSH; 2884 dout("flush_dirty_caps inode %p (was next inode)\n", 2885 inode); 2886 } else { 2887 ci = list_entry(p, struct ceph_inode_info, 2888 i_dirty_item); 2889 inode = igrab(&ci->vfs_inode); 2890 BUG_ON(!inode); 2891 dout("flush_dirty_caps inode %p\n", inode); 2892 } 2893 if (n != &mdsc->cap_dirty) { 2894 nci = list_entry(n, struct ceph_inode_info, 2895 i_dirty_item); 2896 ninode = igrab(&nci->vfs_inode); 2897 BUG_ON(!ninode); 2898 nci->i_ceph_flags |= CEPH_I_NOFLUSH; 2899 dout("flush_dirty_caps next inode %p, noflush\n", 2900 ninode); 2901 } else { 2902 nci = NULL; 2903 ninode = NULL; 2904 } 2905 spin_unlock(&mdsc->cap_dirty_lock); 2906 if (inode) { 2907 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, 2908 NULL); 2909 iput(inode); 2910 } 2911 spin_lock(&mdsc->cap_dirty_lock); 2912 } 2913 spin_unlock(&mdsc->cap_dirty_lock); 2914 } 2915 2916 /* 2917 * Drop open file reference. If we were the last open file, 2918 * we may need to release capabilities to the MDS (or schedule 2919 * their delayed release). 2920 */ 2921 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) 2922 { 2923 struct inode *inode = &ci->vfs_inode; 2924 int last = 0; 2925 2926 spin_lock(&inode->i_lock); 2927 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, 2928 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); 2929 BUG_ON(ci->i_nr_by_mode[fmode] == 0); 2930 if (--ci->i_nr_by_mode[fmode] == 0) 2931 last++; 2932 spin_unlock(&inode->i_lock); 2933 2934 if (last && ci->i_vino.snap == CEPH_NOSNAP) 2935 ceph_check_caps(ci, 0, NULL); 2936 } 2937 2938 /* 2939 * Helpers for embedding cap and dentry lease releases into mds 2940 * requests. 2941 * 2942 * @force is used by dentry_release (below) to force inclusion of a 2943 * record for the directory inode, even when there aren't any caps to 2944 * drop. 2945 */ 2946 int ceph_encode_inode_release(void **p, struct inode *inode, 2947 int mds, int drop, int unless, int force) 2948 { 2949 struct ceph_inode_info *ci = ceph_inode(inode); 2950 struct ceph_cap *cap; 2951 struct ceph_mds_request_release *rel = *p; 2952 int used, dirty; 2953 int ret = 0; 2954 2955 spin_lock(&inode->i_lock); 2956 used = __ceph_caps_used(ci); 2957 dirty = __ceph_caps_dirty(ci); 2958 2959 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n", 2960 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop), 2961 ceph_cap_string(unless)); 2962 2963 /* only drop unused, clean caps */ 2964 drop &= ~(used | dirty); 2965 2966 cap = __get_cap_for_mds(ci, mds); 2967 if (cap && __cap_is_valid(cap)) { 2968 if (force || 2969 ((cap->issued & drop) && 2970 (cap->issued & unless) == 0)) { 2971 if ((cap->issued & drop) && 2972 (cap->issued & unless) == 0) { 2973 dout("encode_inode_release %p cap %p %s -> " 2974 "%s\n", inode, cap, 2975 ceph_cap_string(cap->issued), 2976 ceph_cap_string(cap->issued & ~drop)); 2977 cap->issued &= ~drop; 2978 cap->implemented &= ~drop; 2979 if (ci->i_ceph_flags & CEPH_I_NODELAY) { 2980 int wanted = __ceph_caps_wanted(ci); 2981 dout(" wanted %s -> %s (act %s)\n", 2982 ceph_cap_string(cap->mds_wanted), 2983 ceph_cap_string(cap->mds_wanted & 2984 ~wanted), 2985 ceph_cap_string(wanted)); 2986 cap->mds_wanted &= wanted; 2987 } 2988 } else { 2989 dout("encode_inode_release %p cap %p %s" 2990 " (force)\n", inode, cap, 2991 ceph_cap_string(cap->issued)); 2992 } 2993 2994 rel->ino = cpu_to_le64(ceph_ino(inode)); 2995 rel->cap_id = cpu_to_le64(cap->cap_id); 2996 rel->seq = cpu_to_le32(cap->seq); 2997 rel->issue_seq = cpu_to_le32(cap->issue_seq), 2998 rel->mseq = cpu_to_le32(cap->mseq); 2999 rel->caps = cpu_to_le32(cap->issued); 3000 rel->wanted = cpu_to_le32(cap->mds_wanted); 3001 rel->dname_len = 0; 3002 rel->dname_seq = 0; 3003 *p += sizeof(*rel); 3004 ret = 1; 3005 } else { 3006 dout("encode_inode_release %p cap %p %s\n", 3007 inode, cap, ceph_cap_string(cap->issued)); 3008 } 3009 } 3010 spin_unlock(&inode->i_lock); 3011 return ret; 3012 } 3013 3014 int ceph_encode_dentry_release(void **p, struct dentry *dentry, 3015 int mds, int drop, int unless) 3016 { 3017 struct inode *dir = dentry->d_parent->d_inode; 3018 struct ceph_mds_request_release *rel = *p; 3019 struct ceph_dentry_info *di = ceph_dentry(dentry); 3020 int force = 0; 3021 int ret; 3022 3023 /* 3024 * force an record for the directory caps if we have a dentry lease. 3025 * this is racy (can't take i_lock and d_lock together), but it 3026 * doesn't have to be perfect; the mds will revoke anything we don't 3027 * release. 3028 */ 3029 spin_lock(&dentry->d_lock); 3030 if (di->lease_session && di->lease_session->s_mds == mds) 3031 force = 1; 3032 spin_unlock(&dentry->d_lock); 3033 3034 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); 3035 3036 spin_lock(&dentry->d_lock); 3037 if (ret && di->lease_session && di->lease_session->s_mds == mds) { 3038 dout("encode_dentry_release %p mds%d seq %d\n", 3039 dentry, mds, (int)di->lease_seq); 3040 rel->dname_len = cpu_to_le32(dentry->d_name.len); 3041 memcpy(*p, dentry->d_name.name, dentry->d_name.len); 3042 *p += dentry->d_name.len; 3043 rel->dname_seq = cpu_to_le32(di->lease_seq); 3044 __ceph_mdsc_drop_dentry_lease(dentry); 3045 } 3046 spin_unlock(&dentry->d_lock); 3047 return ret; 3048 } 3049