xref: /linux/fs/ceph/caps.c (revision 5bf2b19320ec31d094d7370fdf536f7fd91fd799)
1 #include "ceph_debug.h"
2 
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
10 
11 #include "super.h"
12 #include "decode.h"
13 #include "messenger.h"
14 
15 /*
16  * Capability management
17  *
18  * The Ceph metadata servers control client access to inode metadata
19  * and file data by issuing capabilities, granting clients permission
20  * to read and/or write both inode field and file data to OSDs
21  * (storage nodes).  Each capability consists of a set of bits
22  * indicating which operations are allowed.
23  *
24  * If the client holds a *_SHARED cap, the client has a coherent value
25  * that can be safely read from the cached inode.
26  *
27  * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
28  * client is allowed to change inode attributes (e.g., file size,
29  * mtime), note its dirty state in the ceph_cap, and asynchronously
30  * flush that metadata change to the MDS.
31  *
32  * In the event of a conflicting operation (perhaps by another
33  * client), the MDS will revoke the conflicting client capabilities.
34  *
35  * In order for a client to cache an inode, it must hold a capability
36  * with at least one MDS server.  When inodes are released, release
37  * notifications are batched and periodically sent en masse to the MDS
38  * cluster to release server state.
39  */
40 
41 
42 /*
43  * Generate readable cap strings for debugging output.
44  */
45 #define MAX_CAP_STR 20
46 static char cap_str[MAX_CAP_STR][40];
47 static DEFINE_SPINLOCK(cap_str_lock);
48 static int last_cap_str;
49 
50 static char *gcap_string(char *s, int c)
51 {
52 	if (c & CEPH_CAP_GSHARED)
53 		*s++ = 's';
54 	if (c & CEPH_CAP_GEXCL)
55 		*s++ = 'x';
56 	if (c & CEPH_CAP_GCACHE)
57 		*s++ = 'c';
58 	if (c & CEPH_CAP_GRD)
59 		*s++ = 'r';
60 	if (c & CEPH_CAP_GWR)
61 		*s++ = 'w';
62 	if (c & CEPH_CAP_GBUFFER)
63 		*s++ = 'b';
64 	if (c & CEPH_CAP_GLAZYIO)
65 		*s++ = 'l';
66 	return s;
67 }
68 
69 const char *ceph_cap_string(int caps)
70 {
71 	int i;
72 	char *s;
73 	int c;
74 
75 	spin_lock(&cap_str_lock);
76 	i = last_cap_str++;
77 	if (last_cap_str == MAX_CAP_STR)
78 		last_cap_str = 0;
79 	spin_unlock(&cap_str_lock);
80 
81 	s = cap_str[i];
82 
83 	if (caps & CEPH_CAP_PIN)
84 		*s++ = 'p';
85 
86 	c = (caps >> CEPH_CAP_SAUTH) & 3;
87 	if (c) {
88 		*s++ = 'A';
89 		s = gcap_string(s, c);
90 	}
91 
92 	c = (caps >> CEPH_CAP_SLINK) & 3;
93 	if (c) {
94 		*s++ = 'L';
95 		s = gcap_string(s, c);
96 	}
97 
98 	c = (caps >> CEPH_CAP_SXATTR) & 3;
99 	if (c) {
100 		*s++ = 'X';
101 		s = gcap_string(s, c);
102 	}
103 
104 	c = caps >> CEPH_CAP_SFILE;
105 	if (c) {
106 		*s++ = 'F';
107 		s = gcap_string(s, c);
108 	}
109 
110 	if (s == cap_str[i])
111 		*s++ = '-';
112 	*s = 0;
113 	return cap_str[i];
114 }
115 
116 /*
117  * Cap reservations
118  *
119  * Maintain a global pool of preallocated struct ceph_caps, referenced
120  * by struct ceph_caps_reservations.  This ensures that we preallocate
121  * memory needed to successfully process an MDS response.  (If an MDS
122  * sends us cap information and we fail to process it, we will have
123  * problems due to the client and MDS being out of sync.)
124  *
125  * Reservations are 'owned' by a ceph_cap_reservation context.
126  */
127 static spinlock_t caps_list_lock;
128 static struct list_head caps_list;  /* unused (reserved or unreserved) */
129 static int caps_total_count;        /* total caps allocated */
130 static int caps_use_count;          /* in use */
131 static int caps_reserve_count;      /* unused, reserved */
132 static int caps_avail_count;        /* unused, unreserved */
133 static int caps_min_count;          /* keep at least this many (unreserved) */
134 
135 void __init ceph_caps_init(void)
136 {
137 	INIT_LIST_HEAD(&caps_list);
138 	spin_lock_init(&caps_list_lock);
139 }
140 
141 void ceph_caps_finalize(void)
142 {
143 	struct ceph_cap *cap;
144 
145 	spin_lock(&caps_list_lock);
146 	while (!list_empty(&caps_list)) {
147 		cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
148 		list_del(&cap->caps_item);
149 		kmem_cache_free(ceph_cap_cachep, cap);
150 	}
151 	caps_total_count = 0;
152 	caps_avail_count = 0;
153 	caps_use_count = 0;
154 	caps_reserve_count = 0;
155 	caps_min_count = 0;
156 	spin_unlock(&caps_list_lock);
157 }
158 
159 void ceph_adjust_min_caps(int delta)
160 {
161 	spin_lock(&caps_list_lock);
162 	caps_min_count += delta;
163 	BUG_ON(caps_min_count < 0);
164 	spin_unlock(&caps_list_lock);
165 }
166 
167 int ceph_reserve_caps(struct ceph_cap_reservation *ctx, int need)
168 {
169 	int i;
170 	struct ceph_cap *cap;
171 	int have;
172 	int alloc = 0;
173 	LIST_HEAD(newcaps);
174 	int ret = 0;
175 
176 	dout("reserve caps ctx=%p need=%d\n", ctx, need);
177 
178 	/* first reserve any caps that are already allocated */
179 	spin_lock(&caps_list_lock);
180 	if (caps_avail_count >= need)
181 		have = need;
182 	else
183 		have = caps_avail_count;
184 	caps_avail_count -= have;
185 	caps_reserve_count += have;
186 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
187 	       caps_avail_count);
188 	spin_unlock(&caps_list_lock);
189 
190 	for (i = have; i < need; i++) {
191 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
192 		if (!cap) {
193 			ret = -ENOMEM;
194 			goto out_alloc_count;
195 		}
196 		list_add(&cap->caps_item, &newcaps);
197 		alloc++;
198 	}
199 	BUG_ON(have + alloc != need);
200 
201 	spin_lock(&caps_list_lock);
202 	caps_total_count += alloc;
203 	caps_reserve_count += alloc;
204 	list_splice(&newcaps, &caps_list);
205 
206 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
207 	       caps_avail_count);
208 	spin_unlock(&caps_list_lock);
209 
210 	ctx->count = need;
211 	dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
212 	     ctx, caps_total_count, caps_use_count, caps_reserve_count,
213 	     caps_avail_count);
214 	return 0;
215 
216 out_alloc_count:
217 	/* we didn't manage to reserve as much as we needed */
218 	pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
219 		   ctx, need, have);
220 	return ret;
221 }
222 
223 int ceph_unreserve_caps(struct ceph_cap_reservation *ctx)
224 {
225 	dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
226 	if (ctx->count) {
227 		spin_lock(&caps_list_lock);
228 		BUG_ON(caps_reserve_count < ctx->count);
229 		caps_reserve_count -= ctx->count;
230 		caps_avail_count += ctx->count;
231 		ctx->count = 0;
232 		dout("unreserve caps %d = %d used + %d resv + %d avail\n",
233 		     caps_total_count, caps_use_count, caps_reserve_count,
234 		     caps_avail_count);
235 		BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
236 		       caps_avail_count);
237 		spin_unlock(&caps_list_lock);
238 	}
239 	return 0;
240 }
241 
242 static struct ceph_cap *get_cap(struct ceph_cap_reservation *ctx)
243 {
244 	struct ceph_cap *cap = NULL;
245 
246 	/* temporary, until we do something about cap import/export */
247 	if (!ctx) {
248 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
249 		if (cap) {
250 			caps_use_count++;
251 			caps_total_count++;
252 		}
253 		return cap;
254 	}
255 
256 	spin_lock(&caps_list_lock);
257 	dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
258 	     ctx, ctx->count, caps_total_count, caps_use_count,
259 	     caps_reserve_count, caps_avail_count);
260 	BUG_ON(!ctx->count);
261 	BUG_ON(ctx->count > caps_reserve_count);
262 	BUG_ON(list_empty(&caps_list));
263 
264 	ctx->count--;
265 	caps_reserve_count--;
266 	caps_use_count++;
267 
268 	cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
269 	list_del(&cap->caps_item);
270 
271 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
272 	       caps_avail_count);
273 	spin_unlock(&caps_list_lock);
274 	return cap;
275 }
276 
277 void ceph_put_cap(struct ceph_cap *cap)
278 {
279 	spin_lock(&caps_list_lock);
280 	dout("put_cap %p %d = %d used + %d resv + %d avail\n",
281 	     cap, caps_total_count, caps_use_count,
282 	     caps_reserve_count, caps_avail_count);
283 	caps_use_count--;
284 	/*
285 	 * Keep some preallocated caps around (ceph_min_count), to
286 	 * avoid lots of free/alloc churn.
287 	 */
288 	if (caps_avail_count >= caps_reserve_count + caps_min_count) {
289 		caps_total_count--;
290 		kmem_cache_free(ceph_cap_cachep, cap);
291 	} else {
292 		caps_avail_count++;
293 		list_add(&cap->caps_item, &caps_list);
294 	}
295 
296 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
297 	       caps_avail_count);
298 	spin_unlock(&caps_list_lock);
299 }
300 
301 void ceph_reservation_status(struct ceph_client *client,
302 			     int *total, int *avail, int *used, int *reserved,
303 			     int *min)
304 {
305 	if (total)
306 		*total = caps_total_count;
307 	if (avail)
308 		*avail = caps_avail_count;
309 	if (used)
310 		*used = caps_use_count;
311 	if (reserved)
312 		*reserved = caps_reserve_count;
313 	if (min)
314 		*min = caps_min_count;
315 }
316 
317 /*
318  * Find ceph_cap for given mds, if any.
319  *
320  * Called with i_lock held.
321  */
322 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
323 {
324 	struct ceph_cap *cap;
325 	struct rb_node *n = ci->i_caps.rb_node;
326 
327 	while (n) {
328 		cap = rb_entry(n, struct ceph_cap, ci_node);
329 		if (mds < cap->mds)
330 			n = n->rb_left;
331 		else if (mds > cap->mds)
332 			n = n->rb_right;
333 		else
334 			return cap;
335 	}
336 	return NULL;
337 }
338 
339 /*
340  * Return id of any MDS with a cap, preferably FILE_WR|WRBUFFER|EXCL, else
341  * -1.
342  */
343 static int __ceph_get_cap_mds(struct ceph_inode_info *ci, u32 *mseq)
344 {
345 	struct ceph_cap *cap;
346 	int mds = -1;
347 	struct rb_node *p;
348 
349 	/* prefer mds with WR|WRBUFFER|EXCL caps */
350 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
351 		cap = rb_entry(p, struct ceph_cap, ci_node);
352 		mds = cap->mds;
353 		if (mseq)
354 			*mseq = cap->mseq;
355 		if (cap->issued & (CEPH_CAP_FILE_WR |
356 				   CEPH_CAP_FILE_BUFFER |
357 				   CEPH_CAP_FILE_EXCL))
358 			break;
359 	}
360 	return mds;
361 }
362 
363 int ceph_get_cap_mds(struct inode *inode)
364 {
365 	int mds;
366 	spin_lock(&inode->i_lock);
367 	mds = __ceph_get_cap_mds(ceph_inode(inode), NULL);
368 	spin_unlock(&inode->i_lock);
369 	return mds;
370 }
371 
372 /*
373  * Called under i_lock.
374  */
375 static void __insert_cap_node(struct ceph_inode_info *ci,
376 			      struct ceph_cap *new)
377 {
378 	struct rb_node **p = &ci->i_caps.rb_node;
379 	struct rb_node *parent = NULL;
380 	struct ceph_cap *cap = NULL;
381 
382 	while (*p) {
383 		parent = *p;
384 		cap = rb_entry(parent, struct ceph_cap, ci_node);
385 		if (new->mds < cap->mds)
386 			p = &(*p)->rb_left;
387 		else if (new->mds > cap->mds)
388 			p = &(*p)->rb_right;
389 		else
390 			BUG();
391 	}
392 
393 	rb_link_node(&new->ci_node, parent, p);
394 	rb_insert_color(&new->ci_node, &ci->i_caps);
395 }
396 
397 /*
398  * (re)set cap hold timeouts, which control the delayed release
399  * of unused caps back to the MDS.  Should be called on cap use.
400  */
401 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
402 			       struct ceph_inode_info *ci)
403 {
404 	struct ceph_mount_args *ma = mdsc->client->mount_args;
405 
406 	ci->i_hold_caps_min = round_jiffies(jiffies +
407 					    ma->caps_wanted_delay_min * HZ);
408 	ci->i_hold_caps_max = round_jiffies(jiffies +
409 					    ma->caps_wanted_delay_max * HZ);
410 	dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
411 	     ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
412 }
413 
414 /*
415  * (Re)queue cap at the end of the delayed cap release list.
416  *
417  * If I_FLUSH is set, leave the inode at the front of the list.
418  *
419  * Caller holds i_lock
420  *    -> we take mdsc->cap_delay_lock
421  */
422 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
423 				struct ceph_inode_info *ci)
424 {
425 	__cap_set_timeouts(mdsc, ci);
426 	dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
427 	     ci->i_ceph_flags, ci->i_hold_caps_max);
428 	if (!mdsc->stopping) {
429 		spin_lock(&mdsc->cap_delay_lock);
430 		if (!list_empty(&ci->i_cap_delay_list)) {
431 			if (ci->i_ceph_flags & CEPH_I_FLUSH)
432 				goto no_change;
433 			list_del_init(&ci->i_cap_delay_list);
434 		}
435 		list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
436 no_change:
437 		spin_unlock(&mdsc->cap_delay_lock);
438 	}
439 }
440 
441 /*
442  * Queue an inode for immediate writeback.  Mark inode with I_FLUSH,
443  * indicating we should send a cap message to flush dirty metadata
444  * asap, and move to the front of the delayed cap list.
445  */
446 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
447 				      struct ceph_inode_info *ci)
448 {
449 	dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
450 	spin_lock(&mdsc->cap_delay_lock);
451 	ci->i_ceph_flags |= CEPH_I_FLUSH;
452 	if (!list_empty(&ci->i_cap_delay_list))
453 		list_del_init(&ci->i_cap_delay_list);
454 	list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
455 	spin_unlock(&mdsc->cap_delay_lock);
456 }
457 
458 /*
459  * Cancel delayed work on cap.
460  *
461  * Caller must hold i_lock.
462  */
463 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
464 			       struct ceph_inode_info *ci)
465 {
466 	dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
467 	if (list_empty(&ci->i_cap_delay_list))
468 		return;
469 	spin_lock(&mdsc->cap_delay_lock);
470 	list_del_init(&ci->i_cap_delay_list);
471 	spin_unlock(&mdsc->cap_delay_lock);
472 }
473 
474 /*
475  * Common issue checks for add_cap, handle_cap_grant.
476  */
477 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
478 			      unsigned issued)
479 {
480 	unsigned had = __ceph_caps_issued(ci, NULL);
481 
482 	/*
483 	 * Each time we receive FILE_CACHE anew, we increment
484 	 * i_rdcache_gen.
485 	 */
486 	if ((issued & CEPH_CAP_FILE_CACHE) &&
487 	    (had & CEPH_CAP_FILE_CACHE) == 0)
488 		ci->i_rdcache_gen++;
489 
490 	/*
491 	 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we
492 	 * don't know what happened to this directory while we didn't
493 	 * have the cap.
494 	 */
495 	if ((issued & CEPH_CAP_FILE_SHARED) &&
496 	    (had & CEPH_CAP_FILE_SHARED) == 0) {
497 		ci->i_shared_gen++;
498 		if (S_ISDIR(ci->vfs_inode.i_mode)) {
499 			dout(" marking %p NOT complete\n", &ci->vfs_inode);
500 			ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
501 		}
502 	}
503 }
504 
505 /*
506  * Add a capability under the given MDS session.
507  *
508  * Caller should hold session snap_rwsem (read) and s_mutex.
509  *
510  * @fmode is the open file mode, if we are opening a file, otherwise
511  * it is < 0.  (This is so we can atomically add the cap and add an
512  * open file reference to it.)
513  */
514 int ceph_add_cap(struct inode *inode,
515 		 struct ceph_mds_session *session, u64 cap_id,
516 		 int fmode, unsigned issued, unsigned wanted,
517 		 unsigned seq, unsigned mseq, u64 realmino, int flags,
518 		 struct ceph_cap_reservation *caps_reservation)
519 {
520 	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
521 	struct ceph_inode_info *ci = ceph_inode(inode);
522 	struct ceph_cap *new_cap = NULL;
523 	struct ceph_cap *cap;
524 	int mds = session->s_mds;
525 	int actual_wanted;
526 
527 	dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
528 	     session->s_mds, cap_id, ceph_cap_string(issued), seq);
529 
530 	/*
531 	 * If we are opening the file, include file mode wanted bits
532 	 * in wanted.
533 	 */
534 	if (fmode >= 0)
535 		wanted |= ceph_caps_for_mode(fmode);
536 
537 retry:
538 	spin_lock(&inode->i_lock);
539 	cap = __get_cap_for_mds(ci, mds);
540 	if (!cap) {
541 		if (new_cap) {
542 			cap = new_cap;
543 			new_cap = NULL;
544 		} else {
545 			spin_unlock(&inode->i_lock);
546 			new_cap = get_cap(caps_reservation);
547 			if (new_cap == NULL)
548 				return -ENOMEM;
549 			goto retry;
550 		}
551 
552 		cap->issued = 0;
553 		cap->implemented = 0;
554 		cap->mds = mds;
555 		cap->mds_wanted = 0;
556 
557 		cap->ci = ci;
558 		__insert_cap_node(ci, cap);
559 
560 		/* clear out old exporting info?  (i.e. on cap import) */
561 		if (ci->i_cap_exporting_mds == mds) {
562 			ci->i_cap_exporting_issued = 0;
563 			ci->i_cap_exporting_mseq = 0;
564 			ci->i_cap_exporting_mds = -1;
565 		}
566 
567 		/* add to session cap list */
568 		cap->session = session;
569 		spin_lock(&session->s_cap_lock);
570 		list_add_tail(&cap->session_caps, &session->s_caps);
571 		session->s_nr_caps++;
572 		spin_unlock(&session->s_cap_lock);
573 	}
574 
575 	if (!ci->i_snap_realm) {
576 		/*
577 		 * add this inode to the appropriate snap realm
578 		 */
579 		struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
580 							       realmino);
581 		if (realm) {
582 			ceph_get_snap_realm(mdsc, realm);
583 			spin_lock(&realm->inodes_with_caps_lock);
584 			ci->i_snap_realm = realm;
585 			list_add(&ci->i_snap_realm_item,
586 				 &realm->inodes_with_caps);
587 			spin_unlock(&realm->inodes_with_caps_lock);
588 		} else {
589 			pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
590 			       realmino);
591 		}
592 	}
593 
594 	__check_cap_issue(ci, cap, issued);
595 
596 	/*
597 	 * If we are issued caps we don't want, or the mds' wanted
598 	 * value appears to be off, queue a check so we'll release
599 	 * later and/or update the mds wanted value.
600 	 */
601 	actual_wanted = __ceph_caps_wanted(ci);
602 	if ((wanted & ~actual_wanted) ||
603 	    (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
604 		dout(" issued %s, mds wanted %s, actual %s, queueing\n",
605 		     ceph_cap_string(issued), ceph_cap_string(wanted),
606 		     ceph_cap_string(actual_wanted));
607 		__cap_delay_requeue(mdsc, ci);
608 	}
609 
610 	if (flags & CEPH_CAP_FLAG_AUTH)
611 		ci->i_auth_cap = cap;
612 	else if (ci->i_auth_cap == cap)
613 		ci->i_auth_cap = NULL;
614 
615 	dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
616 	     inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
617 	     ceph_cap_string(issued|cap->issued), seq, mds);
618 	cap->cap_id = cap_id;
619 	cap->issued = issued;
620 	cap->implemented |= issued;
621 	cap->mds_wanted |= wanted;
622 	cap->seq = seq;
623 	cap->issue_seq = seq;
624 	cap->mseq = mseq;
625 	cap->cap_gen = session->s_cap_gen;
626 
627 	if (fmode >= 0)
628 		__ceph_get_fmode(ci, fmode);
629 	spin_unlock(&inode->i_lock);
630 	wake_up_all(&ci->i_cap_wq);
631 	return 0;
632 }
633 
634 /*
635  * Return true if cap has not timed out and belongs to the current
636  * generation of the MDS session (i.e. has not gone 'stale' due to
637  * us losing touch with the mds).
638  */
639 static int __cap_is_valid(struct ceph_cap *cap)
640 {
641 	unsigned long ttl;
642 	u32 gen;
643 
644 	spin_lock(&cap->session->s_cap_lock);
645 	gen = cap->session->s_cap_gen;
646 	ttl = cap->session->s_cap_ttl;
647 	spin_unlock(&cap->session->s_cap_lock);
648 
649 	if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
650 		dout("__cap_is_valid %p cap %p issued %s "
651 		     "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
652 		     cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
653 		return 0;
654 	}
655 
656 	return 1;
657 }
658 
659 /*
660  * Return set of valid cap bits issued to us.  Note that caps time
661  * out, and may be invalidated in bulk if the client session times out
662  * and session->s_cap_gen is bumped.
663  */
664 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
665 {
666 	int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
667 	struct ceph_cap *cap;
668 	struct rb_node *p;
669 
670 	if (implemented)
671 		*implemented = 0;
672 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
673 		cap = rb_entry(p, struct ceph_cap, ci_node);
674 		if (!__cap_is_valid(cap))
675 			continue;
676 		dout("__ceph_caps_issued %p cap %p issued %s\n",
677 		     &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
678 		have |= cap->issued;
679 		if (implemented)
680 			*implemented |= cap->implemented;
681 	}
682 	return have;
683 }
684 
685 /*
686  * Get cap bits issued by caps other than @ocap
687  */
688 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
689 {
690 	int have = ci->i_snap_caps;
691 	struct ceph_cap *cap;
692 	struct rb_node *p;
693 
694 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
695 		cap = rb_entry(p, struct ceph_cap, ci_node);
696 		if (cap == ocap)
697 			continue;
698 		if (!__cap_is_valid(cap))
699 			continue;
700 		have |= cap->issued;
701 	}
702 	return have;
703 }
704 
705 /*
706  * Move a cap to the end of the LRU (oldest caps at list head, newest
707  * at list tail).
708  */
709 static void __touch_cap(struct ceph_cap *cap)
710 {
711 	struct ceph_mds_session *s = cap->session;
712 
713 	spin_lock(&s->s_cap_lock);
714 	if (s->s_cap_iterator == NULL) {
715 		dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
716 		     s->s_mds);
717 		list_move_tail(&cap->session_caps, &s->s_caps);
718 	} else {
719 		dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
720 		     &cap->ci->vfs_inode, cap, s->s_mds);
721 	}
722 	spin_unlock(&s->s_cap_lock);
723 }
724 
725 /*
726  * Check if we hold the given mask.  If so, move the cap(s) to the
727  * front of their respective LRUs.  (This is the preferred way for
728  * callers to check for caps they want.)
729  */
730 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
731 {
732 	struct ceph_cap *cap;
733 	struct rb_node *p;
734 	int have = ci->i_snap_caps;
735 
736 	if ((have & mask) == mask) {
737 		dout("__ceph_caps_issued_mask %p snap issued %s"
738 		     " (mask %s)\n", &ci->vfs_inode,
739 		     ceph_cap_string(have),
740 		     ceph_cap_string(mask));
741 		return 1;
742 	}
743 
744 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
745 		cap = rb_entry(p, struct ceph_cap, ci_node);
746 		if (!__cap_is_valid(cap))
747 			continue;
748 		if ((cap->issued & mask) == mask) {
749 			dout("__ceph_caps_issued_mask %p cap %p issued %s"
750 			     " (mask %s)\n", &ci->vfs_inode, cap,
751 			     ceph_cap_string(cap->issued),
752 			     ceph_cap_string(mask));
753 			if (touch)
754 				__touch_cap(cap);
755 			return 1;
756 		}
757 
758 		/* does a combination of caps satisfy mask? */
759 		have |= cap->issued;
760 		if ((have & mask) == mask) {
761 			dout("__ceph_caps_issued_mask %p combo issued %s"
762 			     " (mask %s)\n", &ci->vfs_inode,
763 			     ceph_cap_string(cap->issued),
764 			     ceph_cap_string(mask));
765 			if (touch) {
766 				struct rb_node *q;
767 
768 				/* touch this + preceeding caps */
769 				__touch_cap(cap);
770 				for (q = rb_first(&ci->i_caps); q != p;
771 				     q = rb_next(q)) {
772 					cap = rb_entry(q, struct ceph_cap,
773 						       ci_node);
774 					if (!__cap_is_valid(cap))
775 						continue;
776 					__touch_cap(cap);
777 				}
778 			}
779 			return 1;
780 		}
781 	}
782 
783 	return 0;
784 }
785 
786 /*
787  * Return true if mask caps are currently being revoked by an MDS.
788  */
789 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
790 {
791 	struct inode *inode = &ci->vfs_inode;
792 	struct ceph_cap *cap;
793 	struct rb_node *p;
794 	int ret = 0;
795 
796 	spin_lock(&inode->i_lock);
797 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
798 		cap = rb_entry(p, struct ceph_cap, ci_node);
799 		if (__cap_is_valid(cap) &&
800 		    (cap->implemented & ~cap->issued & mask)) {
801 			ret = 1;
802 			break;
803 		}
804 	}
805 	spin_unlock(&inode->i_lock);
806 	dout("ceph_caps_revoking %p %s = %d\n", inode,
807 	     ceph_cap_string(mask), ret);
808 	return ret;
809 }
810 
811 int __ceph_caps_used(struct ceph_inode_info *ci)
812 {
813 	int used = 0;
814 	if (ci->i_pin_ref)
815 		used |= CEPH_CAP_PIN;
816 	if (ci->i_rd_ref)
817 		used |= CEPH_CAP_FILE_RD;
818 	if (ci->i_rdcache_ref || ci->i_rdcache_gen)
819 		used |= CEPH_CAP_FILE_CACHE;
820 	if (ci->i_wr_ref)
821 		used |= CEPH_CAP_FILE_WR;
822 	if (ci->i_wrbuffer_ref)
823 		used |= CEPH_CAP_FILE_BUFFER;
824 	return used;
825 }
826 
827 /*
828  * wanted, by virtue of open file modes
829  */
830 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
831 {
832 	int want = 0;
833 	int mode;
834 	for (mode = 0; mode < 4; mode++)
835 		if (ci->i_nr_by_mode[mode])
836 			want |= ceph_caps_for_mode(mode);
837 	return want;
838 }
839 
840 /*
841  * Return caps we have registered with the MDS(s) as 'wanted'.
842  */
843 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
844 {
845 	struct ceph_cap *cap;
846 	struct rb_node *p;
847 	int mds_wanted = 0;
848 
849 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
850 		cap = rb_entry(p, struct ceph_cap, ci_node);
851 		if (!__cap_is_valid(cap))
852 			continue;
853 		mds_wanted |= cap->mds_wanted;
854 	}
855 	return mds_wanted;
856 }
857 
858 /*
859  * called under i_lock
860  */
861 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
862 {
863 	return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
864 }
865 
866 /*
867  * Remove a cap.  Take steps to deal with a racing iterate_session_caps.
868  *
869  * caller should hold i_lock.
870  * caller will not hold session s_mutex if called from destroy_inode.
871  */
872 void __ceph_remove_cap(struct ceph_cap *cap)
873 {
874 	struct ceph_mds_session *session = cap->session;
875 	struct ceph_inode_info *ci = cap->ci;
876 	struct ceph_mds_client *mdsc =
877 		&ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
878 	int removed = 0;
879 
880 	dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
881 
882 	/* remove from session list */
883 	spin_lock(&session->s_cap_lock);
884 	if (session->s_cap_iterator == cap) {
885 		/* not yet, we are iterating over this very cap */
886 		dout("__ceph_remove_cap  delaying %p removal from session %p\n",
887 		     cap, cap->session);
888 	} else {
889 		list_del_init(&cap->session_caps);
890 		session->s_nr_caps--;
891 		cap->session = NULL;
892 		removed = 1;
893 	}
894 	/* protect backpointer with s_cap_lock: see iterate_session_caps */
895 	cap->ci = NULL;
896 	spin_unlock(&session->s_cap_lock);
897 
898 	/* remove from inode list */
899 	rb_erase(&cap->ci_node, &ci->i_caps);
900 	if (ci->i_auth_cap == cap)
901 		ci->i_auth_cap = NULL;
902 
903 	if (removed)
904 		ceph_put_cap(cap);
905 
906 	if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
907 		struct ceph_snap_realm *realm = ci->i_snap_realm;
908 		spin_lock(&realm->inodes_with_caps_lock);
909 		list_del_init(&ci->i_snap_realm_item);
910 		ci->i_snap_realm_counter++;
911 		ci->i_snap_realm = NULL;
912 		spin_unlock(&realm->inodes_with_caps_lock);
913 		ceph_put_snap_realm(mdsc, realm);
914 	}
915 	if (!__ceph_is_any_real_caps(ci))
916 		__cap_delay_cancel(mdsc, ci);
917 }
918 
919 /*
920  * Build and send a cap message to the given MDS.
921  *
922  * Caller should be holding s_mutex.
923  */
924 static int send_cap_msg(struct ceph_mds_session *session,
925 			u64 ino, u64 cid, int op,
926 			int caps, int wanted, int dirty,
927 			u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
928 			u64 size, u64 max_size,
929 			struct timespec *mtime, struct timespec *atime,
930 			u64 time_warp_seq,
931 			uid_t uid, gid_t gid, mode_t mode,
932 			u64 xattr_version,
933 			struct ceph_buffer *xattrs_buf,
934 			u64 follows)
935 {
936 	struct ceph_mds_caps *fc;
937 	struct ceph_msg *msg;
938 
939 	dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
940 	     " seq %u/%u mseq %u follows %lld size %llu/%llu"
941 	     " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
942 	     cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
943 	     ceph_cap_string(dirty),
944 	     seq, issue_seq, mseq, follows, size, max_size,
945 	     xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
946 
947 	msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS);
948 	if (!msg)
949 		return -ENOMEM;
950 
951 	msg->hdr.tid = cpu_to_le64(flush_tid);
952 
953 	fc = msg->front.iov_base;
954 	memset(fc, 0, sizeof(*fc));
955 
956 	fc->cap_id = cpu_to_le64(cid);
957 	fc->op = cpu_to_le32(op);
958 	fc->seq = cpu_to_le32(seq);
959 	fc->issue_seq = cpu_to_le32(issue_seq);
960 	fc->migrate_seq = cpu_to_le32(mseq);
961 	fc->caps = cpu_to_le32(caps);
962 	fc->wanted = cpu_to_le32(wanted);
963 	fc->dirty = cpu_to_le32(dirty);
964 	fc->ino = cpu_to_le64(ino);
965 	fc->snap_follows = cpu_to_le64(follows);
966 
967 	fc->size = cpu_to_le64(size);
968 	fc->max_size = cpu_to_le64(max_size);
969 	if (mtime)
970 		ceph_encode_timespec(&fc->mtime, mtime);
971 	if (atime)
972 		ceph_encode_timespec(&fc->atime, atime);
973 	fc->time_warp_seq = cpu_to_le32(time_warp_seq);
974 
975 	fc->uid = cpu_to_le32(uid);
976 	fc->gid = cpu_to_le32(gid);
977 	fc->mode = cpu_to_le32(mode);
978 
979 	fc->xattr_version = cpu_to_le64(xattr_version);
980 	if (xattrs_buf) {
981 		msg->middle = ceph_buffer_get(xattrs_buf);
982 		fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
983 		msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
984 	}
985 
986 	ceph_con_send(&session->s_con, msg);
987 	return 0;
988 }
989 
990 static void __queue_cap_release(struct ceph_mds_session *session,
991 				u64 ino, u64 cap_id, u32 migrate_seq,
992 				u32 issue_seq)
993 {
994 	struct ceph_msg *msg;
995 	struct ceph_mds_cap_release *head;
996 	struct ceph_mds_cap_item *item;
997 
998 	spin_lock(&session->s_cap_lock);
999 	BUG_ON(!session->s_num_cap_releases);
1000 	msg = list_first_entry(&session->s_cap_releases,
1001 			       struct ceph_msg, list_head);
1002 
1003 	dout(" adding %llx release to mds%d msg %p (%d left)\n",
1004 	     ino, session->s_mds, msg, session->s_num_cap_releases);
1005 
1006 	BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1007 	head = msg->front.iov_base;
1008 	head->num = cpu_to_le32(le32_to_cpu(head->num) + 1);
1009 	item = msg->front.iov_base + msg->front.iov_len;
1010 	item->ino = cpu_to_le64(ino);
1011 	item->cap_id = cpu_to_le64(cap_id);
1012 	item->migrate_seq = cpu_to_le32(migrate_seq);
1013 	item->seq = cpu_to_le32(issue_seq);
1014 
1015 	session->s_num_cap_releases--;
1016 
1017 	msg->front.iov_len += sizeof(*item);
1018 	if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1019 		dout(" release msg %p full\n", msg);
1020 		list_move_tail(&msg->list_head, &session->s_cap_releases_done);
1021 	} else {
1022 		dout(" release msg %p at %d/%d (%d)\n", msg,
1023 		     (int)le32_to_cpu(head->num),
1024 		     (int)CEPH_CAPS_PER_RELEASE,
1025 		     (int)msg->front.iov_len);
1026 	}
1027 	spin_unlock(&session->s_cap_lock);
1028 }
1029 
1030 /*
1031  * Queue cap releases when an inode is dropped from our cache.  Since
1032  * inode is about to be destroyed, there is no need for i_lock.
1033  */
1034 void ceph_queue_caps_release(struct inode *inode)
1035 {
1036 	struct ceph_inode_info *ci = ceph_inode(inode);
1037 	struct rb_node *p;
1038 
1039 	p = rb_first(&ci->i_caps);
1040 	while (p) {
1041 		struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1042 		struct ceph_mds_session *session = cap->session;
1043 
1044 		__queue_cap_release(session, ceph_ino(inode), cap->cap_id,
1045 				    cap->mseq, cap->issue_seq);
1046 		p = rb_next(p);
1047 		__ceph_remove_cap(cap);
1048 	}
1049 }
1050 
1051 /*
1052  * Send a cap msg on the given inode.  Update our caps state, then
1053  * drop i_lock and send the message.
1054  *
1055  * Make note of max_size reported/requested from mds, revoked caps
1056  * that have now been implemented.
1057  *
1058  * Make half-hearted attempt ot to invalidate page cache if we are
1059  * dropping RDCACHE.  Note that this will leave behind locked pages
1060  * that we'll then need to deal with elsewhere.
1061  *
1062  * Return non-zero if delayed release, or we experienced an error
1063  * such that the caller should requeue + retry later.
1064  *
1065  * called with i_lock, then drops it.
1066  * caller should hold snap_rwsem (read), s_mutex.
1067  */
1068 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1069 		      int op, int used, int want, int retain, int flushing,
1070 		      unsigned *pflush_tid)
1071 	__releases(cap->ci->vfs_inode->i_lock)
1072 {
1073 	struct ceph_inode_info *ci = cap->ci;
1074 	struct inode *inode = &ci->vfs_inode;
1075 	u64 cap_id = cap->cap_id;
1076 	int held, revoking, dropping, keep;
1077 	u64 seq, issue_seq, mseq, time_warp_seq, follows;
1078 	u64 size, max_size;
1079 	struct timespec mtime, atime;
1080 	int wake = 0;
1081 	mode_t mode;
1082 	uid_t uid;
1083 	gid_t gid;
1084 	struct ceph_mds_session *session;
1085 	u64 xattr_version = 0;
1086 	int delayed = 0;
1087 	u64 flush_tid = 0;
1088 	int i;
1089 	int ret;
1090 
1091 	held = cap->issued | cap->implemented;
1092 	revoking = cap->implemented & ~cap->issued;
1093 	retain &= ~revoking;
1094 	dropping = cap->issued & ~retain;
1095 
1096 	dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1097 	     inode, cap, cap->session,
1098 	     ceph_cap_string(held), ceph_cap_string(held & retain),
1099 	     ceph_cap_string(revoking));
1100 	BUG_ON((retain & CEPH_CAP_PIN) == 0);
1101 
1102 	session = cap->session;
1103 
1104 	/* don't release wanted unless we've waited a bit. */
1105 	if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1106 	    time_before(jiffies, ci->i_hold_caps_min)) {
1107 		dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1108 		     ceph_cap_string(cap->issued),
1109 		     ceph_cap_string(cap->issued & retain),
1110 		     ceph_cap_string(cap->mds_wanted),
1111 		     ceph_cap_string(want));
1112 		want |= cap->mds_wanted;
1113 		retain |= cap->issued;
1114 		delayed = 1;
1115 	}
1116 	ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1117 
1118 	cap->issued &= retain;  /* drop bits we don't want */
1119 	if (cap->implemented & ~cap->issued) {
1120 		/*
1121 		 * Wake up any waiters on wanted -> needed transition.
1122 		 * This is due to the weird transition from buffered
1123 		 * to sync IO... we need to flush dirty pages _before_
1124 		 * allowing sync writes to avoid reordering.
1125 		 */
1126 		wake = 1;
1127 	}
1128 	cap->implemented &= cap->issued | used;
1129 	cap->mds_wanted = want;
1130 
1131 	if (flushing) {
1132 		/*
1133 		 * assign a tid for flush operations so we can avoid
1134 		 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1135 		 * clean type races.  track latest tid for every bit
1136 		 * so we can handle flush AxFw, flush Fw, and have the
1137 		 * first ack clean Ax.
1138 		 */
1139 		flush_tid = ++ci->i_cap_flush_last_tid;
1140 		if (pflush_tid)
1141 			*pflush_tid = flush_tid;
1142 		dout(" cap_flush_tid %d\n", (int)flush_tid);
1143 		for (i = 0; i < CEPH_CAP_BITS; i++)
1144 			if (flushing & (1 << i))
1145 				ci->i_cap_flush_tid[i] = flush_tid;
1146 	}
1147 
1148 	keep = cap->implemented;
1149 	seq = cap->seq;
1150 	issue_seq = cap->issue_seq;
1151 	mseq = cap->mseq;
1152 	size = inode->i_size;
1153 	ci->i_reported_size = size;
1154 	max_size = ci->i_wanted_max_size;
1155 	ci->i_requested_max_size = max_size;
1156 	mtime = inode->i_mtime;
1157 	atime = inode->i_atime;
1158 	time_warp_seq = ci->i_time_warp_seq;
1159 	follows = ci->i_snap_realm->cached_context->seq;
1160 	uid = inode->i_uid;
1161 	gid = inode->i_gid;
1162 	mode = inode->i_mode;
1163 
1164 	if (dropping & CEPH_CAP_XATTR_EXCL) {
1165 		__ceph_build_xattrs_blob(ci);
1166 		xattr_version = ci->i_xattrs.version + 1;
1167 	}
1168 
1169 	spin_unlock(&inode->i_lock);
1170 
1171 	ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1172 		op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1173 		size, max_size, &mtime, &atime, time_warp_seq,
1174 		uid, gid, mode,
1175 		xattr_version,
1176 		(flushing & CEPH_CAP_XATTR_EXCL) ? ci->i_xattrs.blob : NULL,
1177 		follows);
1178 	if (ret < 0) {
1179 		dout("error sending cap msg, must requeue %p\n", inode);
1180 		delayed = 1;
1181 	}
1182 
1183 	if (wake)
1184 		wake_up_all(&ci->i_cap_wq);
1185 
1186 	return delayed;
1187 }
1188 
1189 /*
1190  * When a snapshot is taken, clients accumulate dirty metadata on
1191  * inodes with capabilities in ceph_cap_snaps to describe the file
1192  * state at the time the snapshot was taken.  This must be flushed
1193  * asynchronously back to the MDS once sync writes complete and dirty
1194  * data is written out.
1195  *
1196  * Called under i_lock.  Takes s_mutex as needed.
1197  */
1198 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1199 			struct ceph_mds_session **psession)
1200 {
1201 	struct inode *inode = &ci->vfs_inode;
1202 	int mds;
1203 	struct ceph_cap_snap *capsnap;
1204 	u32 mseq;
1205 	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
1206 	struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1207 						    session->s_mutex */
1208 	u64 next_follows = 0;  /* keep track of how far we've gotten through the
1209 			     i_cap_snaps list, and skip these entries next time
1210 			     around to avoid an infinite loop */
1211 
1212 	if (psession)
1213 		session = *psession;
1214 
1215 	dout("__flush_snaps %p\n", inode);
1216 retry:
1217 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1218 		/* avoid an infiniute loop after retry */
1219 		if (capsnap->follows < next_follows)
1220 			continue;
1221 		/*
1222 		 * we need to wait for sync writes to complete and for dirty
1223 		 * pages to be written out.
1224 		 */
1225 		if (capsnap->dirty_pages || capsnap->writing)
1226 			continue;
1227 
1228 		/*
1229 		 * if cap writeback already occurred, we should have dropped
1230 		 * the capsnap in ceph_put_wrbuffer_cap_refs.
1231 		 */
1232 		BUG_ON(capsnap->dirty == 0);
1233 
1234 		/* pick mds, take s_mutex */
1235 		mds = __ceph_get_cap_mds(ci, &mseq);
1236 		if (session && session->s_mds != mds) {
1237 			dout("oops, wrong session %p mutex\n", session);
1238 			mutex_unlock(&session->s_mutex);
1239 			ceph_put_mds_session(session);
1240 			session = NULL;
1241 		}
1242 		if (!session) {
1243 			spin_unlock(&inode->i_lock);
1244 			mutex_lock(&mdsc->mutex);
1245 			session = __ceph_lookup_mds_session(mdsc, mds);
1246 			mutex_unlock(&mdsc->mutex);
1247 			if (session) {
1248 				dout("inverting session/ino locks on %p\n",
1249 				     session);
1250 				mutex_lock(&session->s_mutex);
1251 			}
1252 			/*
1253 			 * if session == NULL, we raced against a cap
1254 			 * deletion.  retry, and we'll get a better
1255 			 * @mds value next time.
1256 			 */
1257 			spin_lock(&inode->i_lock);
1258 			goto retry;
1259 		}
1260 
1261 		capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1262 		atomic_inc(&capsnap->nref);
1263 		if (!list_empty(&capsnap->flushing_item))
1264 			list_del_init(&capsnap->flushing_item);
1265 		list_add_tail(&capsnap->flushing_item,
1266 			      &session->s_cap_snaps_flushing);
1267 		spin_unlock(&inode->i_lock);
1268 
1269 		dout("flush_snaps %p cap_snap %p follows %lld size %llu\n",
1270 		     inode, capsnap, next_follows, capsnap->size);
1271 		send_cap_msg(session, ceph_vino(inode).ino, 0,
1272 			     CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1273 			     capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1274 			     capsnap->size, 0,
1275 			     &capsnap->mtime, &capsnap->atime,
1276 			     capsnap->time_warp_seq,
1277 			     capsnap->uid, capsnap->gid, capsnap->mode,
1278 			     0, NULL,
1279 			     capsnap->follows);
1280 
1281 		next_follows = capsnap->follows + 1;
1282 		ceph_put_cap_snap(capsnap);
1283 
1284 		spin_lock(&inode->i_lock);
1285 		goto retry;
1286 	}
1287 
1288 	/* we flushed them all; remove this inode from the queue */
1289 	spin_lock(&mdsc->snap_flush_lock);
1290 	list_del_init(&ci->i_snap_flush_item);
1291 	spin_unlock(&mdsc->snap_flush_lock);
1292 
1293 	if (psession)
1294 		*psession = session;
1295 	else if (session) {
1296 		mutex_unlock(&session->s_mutex);
1297 		ceph_put_mds_session(session);
1298 	}
1299 }
1300 
1301 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1302 {
1303 	struct inode *inode = &ci->vfs_inode;
1304 
1305 	spin_lock(&inode->i_lock);
1306 	__ceph_flush_snaps(ci, NULL);
1307 	spin_unlock(&inode->i_lock);
1308 }
1309 
1310 /*
1311  * Mark caps dirty.  If inode is newly dirty, add to the global dirty
1312  * list.
1313  */
1314 void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1315 {
1316 	struct ceph_mds_client *mdsc =
1317 		&ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1318 	struct inode *inode = &ci->vfs_inode;
1319 	int was = ci->i_dirty_caps;
1320 	int dirty = 0;
1321 
1322 	dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1323 	     ceph_cap_string(mask), ceph_cap_string(was),
1324 	     ceph_cap_string(was | mask));
1325 	ci->i_dirty_caps |= mask;
1326 	if (was == 0) {
1327 		dout(" inode %p now dirty\n", &ci->vfs_inode);
1328 		BUG_ON(!list_empty(&ci->i_dirty_item));
1329 		spin_lock(&mdsc->cap_dirty_lock);
1330 		list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1331 		spin_unlock(&mdsc->cap_dirty_lock);
1332 		if (ci->i_flushing_caps == 0) {
1333 			igrab(inode);
1334 			dirty |= I_DIRTY_SYNC;
1335 		}
1336 	}
1337 	BUG_ON(list_empty(&ci->i_dirty_item));
1338 	if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1339 	    (mask & CEPH_CAP_FILE_BUFFER))
1340 		dirty |= I_DIRTY_DATASYNC;
1341 	if (dirty)
1342 		__mark_inode_dirty(inode, dirty);
1343 	__cap_delay_requeue(mdsc, ci);
1344 }
1345 
1346 /*
1347  * Add dirty inode to the flushing list.  Assigned a seq number so we
1348  * can wait for caps to flush without starving.
1349  *
1350  * Called under i_lock.
1351  */
1352 static int __mark_caps_flushing(struct inode *inode,
1353 				 struct ceph_mds_session *session)
1354 {
1355 	struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc;
1356 	struct ceph_inode_info *ci = ceph_inode(inode);
1357 	int flushing;
1358 
1359 	BUG_ON(ci->i_dirty_caps == 0);
1360 	BUG_ON(list_empty(&ci->i_dirty_item));
1361 
1362 	flushing = ci->i_dirty_caps;
1363 	dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1364 	     ceph_cap_string(flushing),
1365 	     ceph_cap_string(ci->i_flushing_caps),
1366 	     ceph_cap_string(ci->i_flushing_caps | flushing));
1367 	ci->i_flushing_caps |= flushing;
1368 	ci->i_dirty_caps = 0;
1369 	dout(" inode %p now !dirty\n", inode);
1370 
1371 	spin_lock(&mdsc->cap_dirty_lock);
1372 	list_del_init(&ci->i_dirty_item);
1373 
1374 	ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1375 	if (list_empty(&ci->i_flushing_item)) {
1376 		list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1377 		mdsc->num_cap_flushing++;
1378 		dout(" inode %p now flushing seq %lld\n", inode,
1379 		     ci->i_cap_flush_seq);
1380 	} else {
1381 		list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1382 		dout(" inode %p now flushing (more) seq %lld\n", inode,
1383 		     ci->i_cap_flush_seq);
1384 	}
1385 	spin_unlock(&mdsc->cap_dirty_lock);
1386 
1387 	return flushing;
1388 }
1389 
1390 /*
1391  * try to invalidate mapping pages without blocking.
1392  */
1393 static int mapping_is_empty(struct address_space *mapping)
1394 {
1395 	struct page *page = find_get_page(mapping, 0);
1396 
1397 	if (!page)
1398 		return 1;
1399 
1400 	put_page(page);
1401 	return 0;
1402 }
1403 
1404 static int try_nonblocking_invalidate(struct inode *inode)
1405 {
1406 	struct ceph_inode_info *ci = ceph_inode(inode);
1407 	u32 invalidating_gen = ci->i_rdcache_gen;
1408 
1409 	spin_unlock(&inode->i_lock);
1410 	invalidate_mapping_pages(&inode->i_data, 0, -1);
1411 	spin_lock(&inode->i_lock);
1412 
1413 	if (mapping_is_empty(&inode->i_data) &&
1414 	    invalidating_gen == ci->i_rdcache_gen) {
1415 		/* success. */
1416 		dout("try_nonblocking_invalidate %p success\n", inode);
1417 		ci->i_rdcache_gen = 0;
1418 		ci->i_rdcache_revoking = 0;
1419 		return 0;
1420 	}
1421 	dout("try_nonblocking_invalidate %p failed\n", inode);
1422 	return -1;
1423 }
1424 
1425 /*
1426  * Swiss army knife function to examine currently used and wanted
1427  * versus held caps.  Release, flush, ack revoked caps to mds as
1428  * appropriate.
1429  *
1430  *  CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1431  *    cap release further.
1432  *  CHECK_CAPS_AUTHONLY - we should only check the auth cap
1433  *  CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1434  *    further delay.
1435  */
1436 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1437 		     struct ceph_mds_session *session)
1438 	__releases(session->s_mutex)
1439 {
1440 	struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode);
1441 	struct ceph_mds_client *mdsc = &client->mdsc;
1442 	struct inode *inode = &ci->vfs_inode;
1443 	struct ceph_cap *cap;
1444 	int file_wanted, used;
1445 	int took_snap_rwsem = 0;             /* true if mdsc->snap_rwsem held */
1446 	int issued, implemented, want, retain, revoking, flushing = 0;
1447 	int mds = -1;   /* keep track of how far we've gone through i_caps list
1448 			   to avoid an infinite loop on retry */
1449 	struct rb_node *p;
1450 	int tried_invalidate = 0;
1451 	int delayed = 0, sent = 0, force_requeue = 0, num;
1452 	int queue_invalidate = 0;
1453 	int is_delayed = flags & CHECK_CAPS_NODELAY;
1454 
1455 	/* if we are unmounting, flush any unused caps immediately. */
1456 	if (mdsc->stopping)
1457 		is_delayed = 1;
1458 
1459 	spin_lock(&inode->i_lock);
1460 
1461 	if (ci->i_ceph_flags & CEPH_I_FLUSH)
1462 		flags |= CHECK_CAPS_FLUSH;
1463 
1464 	/* flush snaps first time around only */
1465 	if (!list_empty(&ci->i_cap_snaps))
1466 		__ceph_flush_snaps(ci, &session);
1467 	goto retry_locked;
1468 retry:
1469 	spin_lock(&inode->i_lock);
1470 retry_locked:
1471 	file_wanted = __ceph_caps_file_wanted(ci);
1472 	used = __ceph_caps_used(ci);
1473 	want = file_wanted | used;
1474 	issued = __ceph_caps_issued(ci, &implemented);
1475 	revoking = implemented & ~issued;
1476 
1477 	retain = want | CEPH_CAP_PIN;
1478 	if (!mdsc->stopping && inode->i_nlink > 0) {
1479 		if (want) {
1480 			retain |= CEPH_CAP_ANY;       /* be greedy */
1481 		} else {
1482 			retain |= CEPH_CAP_ANY_SHARED;
1483 			/*
1484 			 * keep RD only if we didn't have the file open RW,
1485 			 * because then the mds would revoke it anyway to
1486 			 * journal max_size=0.
1487 			 */
1488 			if (ci->i_max_size == 0)
1489 				retain |= CEPH_CAP_ANY_RD;
1490 		}
1491 	}
1492 
1493 	dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1494 	     " issued %s revoking %s retain %s %s%s%s\n", inode,
1495 	     ceph_cap_string(file_wanted),
1496 	     ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1497 	     ceph_cap_string(ci->i_flushing_caps),
1498 	     ceph_cap_string(issued), ceph_cap_string(revoking),
1499 	     ceph_cap_string(retain),
1500 	     (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1501 	     (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1502 	     (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1503 
1504 	/*
1505 	 * If we no longer need to hold onto old our caps, and we may
1506 	 * have cached pages, but don't want them, then try to invalidate.
1507 	 * If we fail, it's because pages are locked.... try again later.
1508 	 */
1509 	if ((!is_delayed || mdsc->stopping) &&
1510 	    ci->i_wrbuffer_ref == 0 &&               /* no dirty pages... */
1511 	    ci->i_rdcache_gen &&                     /* may have cached pages */
1512 	    (file_wanted == 0 ||                     /* no open files */
1513 	     (revoking & CEPH_CAP_FILE_CACHE)) &&     /*  or revoking cache */
1514 	    !tried_invalidate) {
1515 		dout("check_caps trying to invalidate on %p\n", inode);
1516 		if (try_nonblocking_invalidate(inode) < 0) {
1517 			if (revoking & CEPH_CAP_FILE_CACHE) {
1518 				dout("check_caps queuing invalidate\n");
1519 				queue_invalidate = 1;
1520 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
1521 			} else {
1522 				dout("check_caps failed to invalidate pages\n");
1523 				/* we failed to invalidate pages.  check these
1524 				   caps again later. */
1525 				force_requeue = 1;
1526 				__cap_set_timeouts(mdsc, ci);
1527 			}
1528 		}
1529 		tried_invalidate = 1;
1530 		goto retry_locked;
1531 	}
1532 
1533 	num = 0;
1534 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1535 		cap = rb_entry(p, struct ceph_cap, ci_node);
1536 		num++;
1537 
1538 		/* avoid looping forever */
1539 		if (mds >= cap->mds ||
1540 		    ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1541 			continue;
1542 
1543 		/* NOTE: no side-effects allowed, until we take s_mutex */
1544 
1545 		revoking = cap->implemented & ~cap->issued;
1546 		if (revoking)
1547 			dout(" mds%d revoking %s\n", cap->mds,
1548 			     ceph_cap_string(revoking));
1549 
1550 		if (cap == ci->i_auth_cap &&
1551 		    (cap->issued & CEPH_CAP_FILE_WR)) {
1552 			/* request larger max_size from MDS? */
1553 			if (ci->i_wanted_max_size > ci->i_max_size &&
1554 			    ci->i_wanted_max_size > ci->i_requested_max_size) {
1555 				dout("requesting new max_size\n");
1556 				goto ack;
1557 			}
1558 
1559 			/* approaching file_max? */
1560 			if ((inode->i_size << 1) >= ci->i_max_size &&
1561 			    (ci->i_reported_size << 1) < ci->i_max_size) {
1562 				dout("i_size approaching max_size\n");
1563 				goto ack;
1564 			}
1565 		}
1566 		/* flush anything dirty? */
1567 		if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1568 		    ci->i_dirty_caps) {
1569 			dout("flushing dirty caps\n");
1570 			goto ack;
1571 		}
1572 
1573 		/* completed revocation? going down and there are no caps? */
1574 		if (revoking && (revoking & used) == 0) {
1575 			dout("completed revocation of %s\n",
1576 			     ceph_cap_string(cap->implemented & ~cap->issued));
1577 			goto ack;
1578 		}
1579 
1580 		/* want more caps from mds? */
1581 		if (want & ~(cap->mds_wanted | cap->issued))
1582 			goto ack;
1583 
1584 		/* things we might delay */
1585 		if ((cap->issued & ~retain) == 0 &&
1586 		    cap->mds_wanted == want)
1587 			continue;     /* nope, all good */
1588 
1589 		if (is_delayed)
1590 			goto ack;
1591 
1592 		/* delay? */
1593 		if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1594 		    time_before(jiffies, ci->i_hold_caps_max)) {
1595 			dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1596 			     ceph_cap_string(cap->issued),
1597 			     ceph_cap_string(cap->issued & retain),
1598 			     ceph_cap_string(cap->mds_wanted),
1599 			     ceph_cap_string(want));
1600 			delayed++;
1601 			continue;
1602 		}
1603 
1604 ack:
1605 		if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1606 			dout(" skipping %p I_NOFLUSH set\n", inode);
1607 			continue;
1608 		}
1609 
1610 		if (session && session != cap->session) {
1611 			dout("oops, wrong session %p mutex\n", session);
1612 			mutex_unlock(&session->s_mutex);
1613 			session = NULL;
1614 		}
1615 		if (!session) {
1616 			session = cap->session;
1617 			if (mutex_trylock(&session->s_mutex) == 0) {
1618 				dout("inverting session/ino locks on %p\n",
1619 				     session);
1620 				spin_unlock(&inode->i_lock);
1621 				if (took_snap_rwsem) {
1622 					up_read(&mdsc->snap_rwsem);
1623 					took_snap_rwsem = 0;
1624 				}
1625 				mutex_lock(&session->s_mutex);
1626 				goto retry;
1627 			}
1628 		}
1629 		/* take snap_rwsem after session mutex */
1630 		if (!took_snap_rwsem) {
1631 			if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1632 				dout("inverting snap/in locks on %p\n",
1633 				     inode);
1634 				spin_unlock(&inode->i_lock);
1635 				down_read(&mdsc->snap_rwsem);
1636 				took_snap_rwsem = 1;
1637 				goto retry;
1638 			}
1639 			took_snap_rwsem = 1;
1640 		}
1641 
1642 		if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1643 			flushing = __mark_caps_flushing(inode, session);
1644 
1645 		mds = cap->mds;  /* remember mds, so we don't repeat */
1646 		sent++;
1647 
1648 		/* __send_cap drops i_lock */
1649 		delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
1650 				      retain, flushing, NULL);
1651 		goto retry; /* retake i_lock and restart our cap scan. */
1652 	}
1653 
1654 	/*
1655 	 * Reschedule delayed caps release if we delayed anything,
1656 	 * otherwise cancel.
1657 	 */
1658 	if (delayed && is_delayed)
1659 		force_requeue = 1;   /* __send_cap delayed release; requeue */
1660 	if (!delayed && !is_delayed)
1661 		__cap_delay_cancel(mdsc, ci);
1662 	else if (!is_delayed || force_requeue)
1663 		__cap_delay_requeue(mdsc, ci);
1664 
1665 	spin_unlock(&inode->i_lock);
1666 
1667 	if (queue_invalidate)
1668 		ceph_queue_invalidate(inode);
1669 
1670 	if (session)
1671 		mutex_unlock(&session->s_mutex);
1672 	if (took_snap_rwsem)
1673 		up_read(&mdsc->snap_rwsem);
1674 }
1675 
1676 /*
1677  * Try to flush dirty caps back to the auth mds.
1678  */
1679 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1680 			  unsigned *flush_tid)
1681 {
1682 	struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc;
1683 	struct ceph_inode_info *ci = ceph_inode(inode);
1684 	int unlock_session = session ? 0 : 1;
1685 	int flushing = 0;
1686 
1687 retry:
1688 	spin_lock(&inode->i_lock);
1689 	if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1690 		dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1691 		goto out;
1692 	}
1693 	if (ci->i_dirty_caps && ci->i_auth_cap) {
1694 		struct ceph_cap *cap = ci->i_auth_cap;
1695 		int used = __ceph_caps_used(ci);
1696 		int want = __ceph_caps_wanted(ci);
1697 		int delayed;
1698 
1699 		if (!session) {
1700 			spin_unlock(&inode->i_lock);
1701 			session = cap->session;
1702 			mutex_lock(&session->s_mutex);
1703 			goto retry;
1704 		}
1705 		BUG_ON(session != cap->session);
1706 		if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1707 			goto out;
1708 
1709 		flushing = __mark_caps_flushing(inode, session);
1710 
1711 		/* __send_cap drops i_lock */
1712 		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1713 				     cap->issued | cap->implemented, flushing,
1714 				     flush_tid);
1715 		if (!delayed)
1716 			goto out_unlocked;
1717 
1718 		spin_lock(&inode->i_lock);
1719 		__cap_delay_requeue(mdsc, ci);
1720 	}
1721 out:
1722 	spin_unlock(&inode->i_lock);
1723 out_unlocked:
1724 	if (session && unlock_session)
1725 		mutex_unlock(&session->s_mutex);
1726 	return flushing;
1727 }
1728 
1729 /*
1730  * Return true if we've flushed caps through the given flush_tid.
1731  */
1732 static int caps_are_flushed(struct inode *inode, unsigned tid)
1733 {
1734 	struct ceph_inode_info *ci = ceph_inode(inode);
1735 	int i, ret = 1;
1736 
1737 	spin_lock(&inode->i_lock);
1738 	for (i = 0; i < CEPH_CAP_BITS; i++)
1739 		if ((ci->i_flushing_caps & (1 << i)) &&
1740 		    ci->i_cap_flush_tid[i] <= tid) {
1741 			/* still flushing this bit */
1742 			ret = 0;
1743 			break;
1744 		}
1745 	spin_unlock(&inode->i_lock);
1746 	return ret;
1747 }
1748 
1749 /*
1750  * Wait on any unsafe replies for the given inode.  First wait on the
1751  * newest request, and make that the upper bound.  Then, if there are
1752  * more requests, keep waiting on the oldest as long as it is still older
1753  * than the original request.
1754  */
1755 static void sync_write_wait(struct inode *inode)
1756 {
1757 	struct ceph_inode_info *ci = ceph_inode(inode);
1758 	struct list_head *head = &ci->i_unsafe_writes;
1759 	struct ceph_osd_request *req;
1760 	u64 last_tid;
1761 
1762 	spin_lock(&ci->i_unsafe_lock);
1763 	if (list_empty(head))
1764 		goto out;
1765 
1766 	/* set upper bound as _last_ entry in chain */
1767 	req = list_entry(head->prev, struct ceph_osd_request,
1768 			 r_unsafe_item);
1769 	last_tid = req->r_tid;
1770 
1771 	do {
1772 		ceph_osdc_get_request(req);
1773 		spin_unlock(&ci->i_unsafe_lock);
1774 		dout("sync_write_wait on tid %llu (until %llu)\n",
1775 		     req->r_tid, last_tid);
1776 		wait_for_completion(&req->r_safe_completion);
1777 		spin_lock(&ci->i_unsafe_lock);
1778 		ceph_osdc_put_request(req);
1779 
1780 		/*
1781 		 * from here on look at first entry in chain, since we
1782 		 * only want to wait for anything older than last_tid
1783 		 */
1784 		if (list_empty(head))
1785 			break;
1786 		req = list_entry(head->next, struct ceph_osd_request,
1787 				 r_unsafe_item);
1788 	} while (req->r_tid < last_tid);
1789 out:
1790 	spin_unlock(&ci->i_unsafe_lock);
1791 }
1792 
1793 int ceph_fsync(struct file *file, int datasync)
1794 {
1795 	struct inode *inode = file->f_mapping->host;
1796 	struct ceph_inode_info *ci = ceph_inode(inode);
1797 	unsigned flush_tid;
1798 	int ret;
1799 	int dirty;
1800 
1801 	dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1802 	sync_write_wait(inode);
1803 
1804 	ret = filemap_write_and_wait(inode->i_mapping);
1805 	if (ret < 0)
1806 		return ret;
1807 
1808 	dirty = try_flush_caps(inode, NULL, &flush_tid);
1809 	dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1810 
1811 	/*
1812 	 * only wait on non-file metadata writeback (the mds
1813 	 * can recover size and mtime, so we don't need to
1814 	 * wait for that)
1815 	 */
1816 	if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1817 		dout("fsync waiting for flush_tid %u\n", flush_tid);
1818 		ret = wait_event_interruptible(ci->i_cap_wq,
1819 				       caps_are_flushed(inode, flush_tid));
1820 	}
1821 
1822 	dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1823 	return ret;
1824 }
1825 
1826 /*
1827  * Flush any dirty caps back to the mds.  If we aren't asked to wait,
1828  * queue inode for flush but don't do so immediately, because we can
1829  * get by with fewer MDS messages if we wait for data writeback to
1830  * complete first.
1831  */
1832 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1833 {
1834 	struct ceph_inode_info *ci = ceph_inode(inode);
1835 	unsigned flush_tid;
1836 	int err = 0;
1837 	int dirty;
1838 	int wait = wbc->sync_mode == WB_SYNC_ALL;
1839 
1840 	dout("write_inode %p wait=%d\n", inode, wait);
1841 	if (wait) {
1842 		dirty = try_flush_caps(inode, NULL, &flush_tid);
1843 		if (dirty)
1844 			err = wait_event_interruptible(ci->i_cap_wq,
1845 				       caps_are_flushed(inode, flush_tid));
1846 	} else {
1847 		struct ceph_mds_client *mdsc =
1848 			&ceph_sb_to_client(inode->i_sb)->mdsc;
1849 
1850 		spin_lock(&inode->i_lock);
1851 		if (__ceph_caps_dirty(ci))
1852 			__cap_delay_requeue_front(mdsc, ci);
1853 		spin_unlock(&inode->i_lock);
1854 	}
1855 	return err;
1856 }
1857 
1858 /*
1859  * After a recovering MDS goes active, we need to resend any caps
1860  * we were flushing.
1861  *
1862  * Caller holds session->s_mutex.
1863  */
1864 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1865 				   struct ceph_mds_session *session)
1866 {
1867 	struct ceph_cap_snap *capsnap;
1868 
1869 	dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1870 	list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1871 			    flushing_item) {
1872 		struct ceph_inode_info *ci = capsnap->ci;
1873 		struct inode *inode = &ci->vfs_inode;
1874 		struct ceph_cap *cap;
1875 
1876 		spin_lock(&inode->i_lock);
1877 		cap = ci->i_auth_cap;
1878 		if (cap && cap->session == session) {
1879 			dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1880 			     cap, capsnap);
1881 			__ceph_flush_snaps(ci, &session);
1882 		} else {
1883 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1884 			       cap, session->s_mds);
1885 		}
1886 		spin_unlock(&inode->i_lock);
1887 	}
1888 }
1889 
1890 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1891 			     struct ceph_mds_session *session)
1892 {
1893 	struct ceph_inode_info *ci;
1894 
1895 	kick_flushing_capsnaps(mdsc, session);
1896 
1897 	dout("kick_flushing_caps mds%d\n", session->s_mds);
1898 	list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1899 		struct inode *inode = &ci->vfs_inode;
1900 		struct ceph_cap *cap;
1901 		int delayed = 0;
1902 
1903 		spin_lock(&inode->i_lock);
1904 		cap = ci->i_auth_cap;
1905 		if (cap && cap->session == session) {
1906 			dout("kick_flushing_caps %p cap %p %s\n", inode,
1907 			     cap, ceph_cap_string(ci->i_flushing_caps));
1908 			delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1909 					     __ceph_caps_used(ci),
1910 					     __ceph_caps_wanted(ci),
1911 					     cap->issued | cap->implemented,
1912 					     ci->i_flushing_caps, NULL);
1913 			if (delayed) {
1914 				spin_lock(&inode->i_lock);
1915 				__cap_delay_requeue(mdsc, ci);
1916 				spin_unlock(&inode->i_lock);
1917 			}
1918 		} else {
1919 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1920 			       cap, session->s_mds);
1921 			spin_unlock(&inode->i_lock);
1922 		}
1923 	}
1924 }
1925 
1926 
1927 /*
1928  * Take references to capabilities we hold, so that we don't release
1929  * them to the MDS prematurely.
1930  *
1931  * Protected by i_lock.
1932  */
1933 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
1934 {
1935 	if (got & CEPH_CAP_PIN)
1936 		ci->i_pin_ref++;
1937 	if (got & CEPH_CAP_FILE_RD)
1938 		ci->i_rd_ref++;
1939 	if (got & CEPH_CAP_FILE_CACHE)
1940 		ci->i_rdcache_ref++;
1941 	if (got & CEPH_CAP_FILE_WR)
1942 		ci->i_wr_ref++;
1943 	if (got & CEPH_CAP_FILE_BUFFER) {
1944 		if (ci->i_wrbuffer_ref == 0)
1945 			igrab(&ci->vfs_inode);
1946 		ci->i_wrbuffer_ref++;
1947 		dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n",
1948 		     &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref);
1949 	}
1950 }
1951 
1952 /*
1953  * Try to grab cap references.  Specify those refs we @want, and the
1954  * minimal set we @need.  Also include the larger offset we are writing
1955  * to (when applicable), and check against max_size here as well.
1956  * Note that caller is responsible for ensuring max_size increases are
1957  * requested from the MDS.
1958  */
1959 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
1960 			    int *got, loff_t endoff, int *check_max, int *err)
1961 {
1962 	struct inode *inode = &ci->vfs_inode;
1963 	int ret = 0;
1964 	int have, implemented;
1965 	int file_wanted;
1966 
1967 	dout("get_cap_refs %p need %s want %s\n", inode,
1968 	     ceph_cap_string(need), ceph_cap_string(want));
1969 	spin_lock(&inode->i_lock);
1970 
1971 	/* make sure file is actually open */
1972 	file_wanted = __ceph_caps_file_wanted(ci);
1973 	if ((file_wanted & need) == 0) {
1974 		dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
1975 		     ceph_cap_string(need), ceph_cap_string(file_wanted));
1976 		*err = -EBADF;
1977 		ret = 1;
1978 		goto out;
1979 	}
1980 
1981 	if (need & CEPH_CAP_FILE_WR) {
1982 		if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
1983 			dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
1984 			     inode, endoff, ci->i_max_size);
1985 			if (endoff > ci->i_wanted_max_size) {
1986 				*check_max = 1;
1987 				ret = 1;
1988 			}
1989 			goto out;
1990 		}
1991 		/*
1992 		 * If a sync write is in progress, we must wait, so that we
1993 		 * can get a final snapshot value for size+mtime.
1994 		 */
1995 		if (__ceph_have_pending_cap_snap(ci)) {
1996 			dout("get_cap_refs %p cap_snap_pending\n", inode);
1997 			goto out;
1998 		}
1999 	}
2000 	have = __ceph_caps_issued(ci, &implemented);
2001 
2002 	/*
2003 	 * disallow writes while a truncate is pending
2004 	 */
2005 	if (ci->i_truncate_pending)
2006 		have &= ~CEPH_CAP_FILE_WR;
2007 
2008 	if ((have & need) == need) {
2009 		/*
2010 		 * Look at (implemented & ~have & not) so that we keep waiting
2011 		 * on transition from wanted -> needed caps.  This is needed
2012 		 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2013 		 * going before a prior buffered writeback happens.
2014 		 */
2015 		int not = want & ~(have & need);
2016 		int revoking = implemented & ~have;
2017 		dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2018 		     inode, ceph_cap_string(have), ceph_cap_string(not),
2019 		     ceph_cap_string(revoking));
2020 		if ((revoking & not) == 0) {
2021 			*got = need | (have & want);
2022 			__take_cap_refs(ci, *got);
2023 			ret = 1;
2024 		}
2025 	} else {
2026 		dout("get_cap_refs %p have %s needed %s\n", inode,
2027 		     ceph_cap_string(have), ceph_cap_string(need));
2028 	}
2029 out:
2030 	spin_unlock(&inode->i_lock);
2031 	dout("get_cap_refs %p ret %d got %s\n", inode,
2032 	     ret, ceph_cap_string(*got));
2033 	return ret;
2034 }
2035 
2036 /*
2037  * Check the offset we are writing up to against our current
2038  * max_size.  If necessary, tell the MDS we want to write to
2039  * a larger offset.
2040  */
2041 static void check_max_size(struct inode *inode, loff_t endoff)
2042 {
2043 	struct ceph_inode_info *ci = ceph_inode(inode);
2044 	int check = 0;
2045 
2046 	/* do we need to explicitly request a larger max_size? */
2047 	spin_lock(&inode->i_lock);
2048 	if ((endoff >= ci->i_max_size ||
2049 	     endoff > (inode->i_size << 1)) &&
2050 	    endoff > ci->i_wanted_max_size) {
2051 		dout("write %p at large endoff %llu, req max_size\n",
2052 		     inode, endoff);
2053 		ci->i_wanted_max_size = endoff;
2054 		check = 1;
2055 	}
2056 	spin_unlock(&inode->i_lock);
2057 	if (check)
2058 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2059 }
2060 
2061 /*
2062  * Wait for caps, and take cap references.  If we can't get a WR cap
2063  * due to a small max_size, make sure we check_max_size (and possibly
2064  * ask the mds) so we don't get hung up indefinitely.
2065  */
2066 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2067 		  loff_t endoff)
2068 {
2069 	int check_max, ret, err;
2070 
2071 retry:
2072 	if (endoff > 0)
2073 		check_max_size(&ci->vfs_inode, endoff);
2074 	check_max = 0;
2075 	err = 0;
2076 	ret = wait_event_interruptible(ci->i_cap_wq,
2077 				       try_get_cap_refs(ci, need, want,
2078 							got, endoff,
2079 							&check_max, &err));
2080 	if (err)
2081 		ret = err;
2082 	if (check_max)
2083 		goto retry;
2084 	return ret;
2085 }
2086 
2087 /*
2088  * Take cap refs.  Caller must already know we hold at least one ref
2089  * on the caps in question or we don't know this is safe.
2090  */
2091 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2092 {
2093 	spin_lock(&ci->vfs_inode.i_lock);
2094 	__take_cap_refs(ci, caps);
2095 	spin_unlock(&ci->vfs_inode.i_lock);
2096 }
2097 
2098 /*
2099  * Release cap refs.
2100  *
2101  * If we released the last ref on any given cap, call ceph_check_caps
2102  * to release (or schedule a release).
2103  *
2104  * If we are releasing a WR cap (from a sync write), finalize any affected
2105  * cap_snap, and wake up any waiters.
2106  */
2107 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2108 {
2109 	struct inode *inode = &ci->vfs_inode;
2110 	int last = 0, put = 0, flushsnaps = 0, wake = 0;
2111 	struct ceph_cap_snap *capsnap;
2112 
2113 	spin_lock(&inode->i_lock);
2114 	if (had & CEPH_CAP_PIN)
2115 		--ci->i_pin_ref;
2116 	if (had & CEPH_CAP_FILE_RD)
2117 		if (--ci->i_rd_ref == 0)
2118 			last++;
2119 	if (had & CEPH_CAP_FILE_CACHE)
2120 		if (--ci->i_rdcache_ref == 0)
2121 			last++;
2122 	if (had & CEPH_CAP_FILE_BUFFER) {
2123 		if (--ci->i_wrbuffer_ref == 0) {
2124 			last++;
2125 			put++;
2126 		}
2127 		dout("put_cap_refs %p wrbuffer %d -> %d (?)\n",
2128 		     inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref);
2129 	}
2130 	if (had & CEPH_CAP_FILE_WR)
2131 		if (--ci->i_wr_ref == 0) {
2132 			last++;
2133 			if (!list_empty(&ci->i_cap_snaps)) {
2134 				capsnap = list_first_entry(&ci->i_cap_snaps,
2135 						     struct ceph_cap_snap,
2136 						     ci_item);
2137 				if (capsnap->writing) {
2138 					capsnap->writing = 0;
2139 					flushsnaps =
2140 						__ceph_finish_cap_snap(ci,
2141 								       capsnap);
2142 					wake = 1;
2143 				}
2144 			}
2145 		}
2146 	spin_unlock(&inode->i_lock);
2147 
2148 	dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2149 	     last ? " last" : "", put ? " put" : "");
2150 
2151 	if (last && !flushsnaps)
2152 		ceph_check_caps(ci, 0, NULL);
2153 	else if (flushsnaps)
2154 		ceph_flush_snaps(ci);
2155 	if (wake)
2156 		wake_up_all(&ci->i_cap_wq);
2157 	if (put)
2158 		iput(inode);
2159 }
2160 
2161 /*
2162  * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2163  * context.  Adjust per-snap dirty page accounting as appropriate.
2164  * Once all dirty data for a cap_snap is flushed, flush snapped file
2165  * metadata back to the MDS.  If we dropped the last ref, call
2166  * ceph_check_caps.
2167  */
2168 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2169 				struct ceph_snap_context *snapc)
2170 {
2171 	struct inode *inode = &ci->vfs_inode;
2172 	int last = 0;
2173 	int complete_capsnap = 0;
2174 	int drop_capsnap = 0;
2175 	int found = 0;
2176 	struct ceph_cap_snap *capsnap = NULL;
2177 
2178 	spin_lock(&inode->i_lock);
2179 	ci->i_wrbuffer_ref -= nr;
2180 	last = !ci->i_wrbuffer_ref;
2181 
2182 	if (ci->i_head_snapc == snapc) {
2183 		ci->i_wrbuffer_ref_head -= nr;
2184 		if (!ci->i_wrbuffer_ref_head) {
2185 			ceph_put_snap_context(ci->i_head_snapc);
2186 			ci->i_head_snapc = NULL;
2187 		}
2188 		dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2189 		     inode,
2190 		     ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2191 		     ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2192 		     last ? " LAST" : "");
2193 	} else {
2194 		list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2195 			if (capsnap->context == snapc) {
2196 				found = 1;
2197 				break;
2198 			}
2199 		}
2200 		BUG_ON(!found);
2201 		capsnap->dirty_pages -= nr;
2202 		if (capsnap->dirty_pages == 0) {
2203 			complete_capsnap = 1;
2204 			if (capsnap->dirty == 0)
2205 				/* cap writeback completed before we created
2206 				 * the cap_snap; no FLUSHSNAP is needed */
2207 				drop_capsnap = 1;
2208 		}
2209 		dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2210 		     " snap %lld %d/%d -> %d/%d %s%s%s\n",
2211 		     inode, capsnap, capsnap->context->seq,
2212 		     ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2213 		     ci->i_wrbuffer_ref, capsnap->dirty_pages,
2214 		     last ? " (wrbuffer last)" : "",
2215 		     complete_capsnap ? " (complete capsnap)" : "",
2216 		     drop_capsnap ? " (drop capsnap)" : "");
2217 		if (drop_capsnap) {
2218 			ceph_put_snap_context(capsnap->context);
2219 			list_del(&capsnap->ci_item);
2220 			list_del(&capsnap->flushing_item);
2221 			ceph_put_cap_snap(capsnap);
2222 		}
2223 	}
2224 
2225 	spin_unlock(&inode->i_lock);
2226 
2227 	if (last) {
2228 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2229 		iput(inode);
2230 	} else if (complete_capsnap) {
2231 		ceph_flush_snaps(ci);
2232 		wake_up_all(&ci->i_cap_wq);
2233 	}
2234 	if (drop_capsnap)
2235 		iput(inode);
2236 }
2237 
2238 /*
2239  * Handle a cap GRANT message from the MDS.  (Note that a GRANT may
2240  * actually be a revocation if it specifies a smaller cap set.)
2241  *
2242  * caller holds s_mutex and i_lock, we drop both.
2243  *
2244  * return value:
2245  *  0 - ok
2246  *  1 - check_caps on auth cap only (writeback)
2247  *  2 - check_caps (ack revoke)
2248  */
2249 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2250 			     struct ceph_mds_session *session,
2251 			     struct ceph_cap *cap,
2252 			     struct ceph_buffer *xattr_buf)
2253 	__releases(inode->i_lock)
2254 	__releases(session->s_mutex)
2255 {
2256 	struct ceph_inode_info *ci = ceph_inode(inode);
2257 	int mds = session->s_mds;
2258 	int seq = le32_to_cpu(grant->seq);
2259 	int newcaps = le32_to_cpu(grant->caps);
2260 	int issued, implemented, used, wanted, dirty;
2261 	u64 size = le64_to_cpu(grant->size);
2262 	u64 max_size = le64_to_cpu(grant->max_size);
2263 	struct timespec mtime, atime, ctime;
2264 	int check_caps = 0;
2265 	int wake = 0;
2266 	int writeback = 0;
2267 	int revoked_rdcache = 0;
2268 	int queue_invalidate = 0;
2269 
2270 	dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2271 	     inode, cap, mds, seq, ceph_cap_string(newcaps));
2272 	dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2273 		inode->i_size);
2274 
2275 	/*
2276 	 * If CACHE is being revoked, and we have no dirty buffers,
2277 	 * try to invalidate (once).  (If there are dirty buffers, we
2278 	 * will invalidate _after_ writeback.)
2279 	 */
2280 	if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2281 	    !ci->i_wrbuffer_ref) {
2282 		if (try_nonblocking_invalidate(inode) == 0) {
2283 			revoked_rdcache = 1;
2284 		} else {
2285 			/* there were locked pages.. invalidate later
2286 			   in a separate thread. */
2287 			if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2288 				queue_invalidate = 1;
2289 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
2290 			}
2291 		}
2292 	}
2293 
2294 	/* side effects now are allowed */
2295 
2296 	issued = __ceph_caps_issued(ci, &implemented);
2297 	issued |= implemented | __ceph_caps_dirty(ci);
2298 
2299 	cap->cap_gen = session->s_cap_gen;
2300 
2301 	__check_cap_issue(ci, cap, newcaps);
2302 
2303 	if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2304 		inode->i_mode = le32_to_cpu(grant->mode);
2305 		inode->i_uid = le32_to_cpu(grant->uid);
2306 		inode->i_gid = le32_to_cpu(grant->gid);
2307 		dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2308 		     inode->i_uid, inode->i_gid);
2309 	}
2310 
2311 	if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2312 		inode->i_nlink = le32_to_cpu(grant->nlink);
2313 
2314 	if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2315 		int len = le32_to_cpu(grant->xattr_len);
2316 		u64 version = le64_to_cpu(grant->xattr_version);
2317 
2318 		if (version > ci->i_xattrs.version) {
2319 			dout(" got new xattrs v%llu on %p len %d\n",
2320 			     version, inode, len);
2321 			if (ci->i_xattrs.blob)
2322 				ceph_buffer_put(ci->i_xattrs.blob);
2323 			ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2324 			ci->i_xattrs.version = version;
2325 		}
2326 	}
2327 
2328 	/* size/ctime/mtime/atime? */
2329 	ceph_fill_file_size(inode, issued,
2330 			    le32_to_cpu(grant->truncate_seq),
2331 			    le64_to_cpu(grant->truncate_size), size);
2332 	ceph_decode_timespec(&mtime, &grant->mtime);
2333 	ceph_decode_timespec(&atime, &grant->atime);
2334 	ceph_decode_timespec(&ctime, &grant->ctime);
2335 	ceph_fill_file_time(inode, issued,
2336 			    le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2337 			    &atime);
2338 
2339 	/* max size increase? */
2340 	if (max_size != ci->i_max_size) {
2341 		dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2342 		ci->i_max_size = max_size;
2343 		if (max_size >= ci->i_wanted_max_size) {
2344 			ci->i_wanted_max_size = 0;  /* reset */
2345 			ci->i_requested_max_size = 0;
2346 		}
2347 		wake = 1;
2348 	}
2349 
2350 	/* check cap bits */
2351 	wanted = __ceph_caps_wanted(ci);
2352 	used = __ceph_caps_used(ci);
2353 	dirty = __ceph_caps_dirty(ci);
2354 	dout(" my wanted = %s, used = %s, dirty %s\n",
2355 	     ceph_cap_string(wanted),
2356 	     ceph_cap_string(used),
2357 	     ceph_cap_string(dirty));
2358 	if (wanted != le32_to_cpu(grant->wanted)) {
2359 		dout("mds wanted %s -> %s\n",
2360 		     ceph_cap_string(le32_to_cpu(grant->wanted)),
2361 		     ceph_cap_string(wanted));
2362 		grant->wanted = cpu_to_le32(wanted);
2363 	}
2364 
2365 	cap->seq = seq;
2366 
2367 	/* file layout may have changed */
2368 	ci->i_layout = grant->layout;
2369 
2370 	/* revocation, grant, or no-op? */
2371 	if (cap->issued & ~newcaps) {
2372 		dout("revocation: %s -> %s\n", ceph_cap_string(cap->issued),
2373 		     ceph_cap_string(newcaps));
2374 		if ((used & ~newcaps) & CEPH_CAP_FILE_BUFFER)
2375 			writeback = 1; /* will delay ack */
2376 		else if (dirty & ~newcaps)
2377 			check_caps = 1;  /* initiate writeback in check_caps */
2378 		else if (((used & ~newcaps) & CEPH_CAP_FILE_CACHE) == 0 ||
2379 			   revoked_rdcache)
2380 			check_caps = 2;     /* send revoke ack in check_caps */
2381 		cap->issued = newcaps;
2382 		cap->implemented |= newcaps;
2383 	} else if (cap->issued == newcaps) {
2384 		dout("caps unchanged: %s -> %s\n",
2385 		     ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2386 	} else {
2387 		dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2388 		     ceph_cap_string(newcaps));
2389 		cap->issued = newcaps;
2390 		cap->implemented |= newcaps; /* add bits only, to
2391 					      * avoid stepping on a
2392 					      * pending revocation */
2393 		wake = 1;
2394 	}
2395 	BUG_ON(cap->issued & ~cap->implemented);
2396 
2397 	spin_unlock(&inode->i_lock);
2398 	if (writeback)
2399 		/*
2400 		 * queue inode for writeback: we can't actually call
2401 		 * filemap_write_and_wait, etc. from message handler
2402 		 * context.
2403 		 */
2404 		ceph_queue_writeback(inode);
2405 	if (queue_invalidate)
2406 		ceph_queue_invalidate(inode);
2407 	if (wake)
2408 		wake_up_all(&ci->i_cap_wq);
2409 
2410 	if (check_caps == 1)
2411 		ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2412 				session);
2413 	else if (check_caps == 2)
2414 		ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2415 	else
2416 		mutex_unlock(&session->s_mutex);
2417 }
2418 
2419 /*
2420  * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2421  * MDS has been safely committed.
2422  */
2423 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2424 				 struct ceph_mds_caps *m,
2425 				 struct ceph_mds_session *session,
2426 				 struct ceph_cap *cap)
2427 	__releases(inode->i_lock)
2428 {
2429 	struct ceph_inode_info *ci = ceph_inode(inode);
2430 	struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc;
2431 	unsigned seq = le32_to_cpu(m->seq);
2432 	int dirty = le32_to_cpu(m->dirty);
2433 	int cleaned = 0;
2434 	int drop = 0;
2435 	int i;
2436 
2437 	for (i = 0; i < CEPH_CAP_BITS; i++)
2438 		if ((dirty & (1 << i)) &&
2439 		    flush_tid == ci->i_cap_flush_tid[i])
2440 			cleaned |= 1 << i;
2441 
2442 	dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2443 	     " flushing %s -> %s\n",
2444 	     inode, session->s_mds, seq, ceph_cap_string(dirty),
2445 	     ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2446 	     ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2447 
2448 	if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2449 		goto out;
2450 
2451 	ci->i_flushing_caps &= ~cleaned;
2452 
2453 	spin_lock(&mdsc->cap_dirty_lock);
2454 	if (ci->i_flushing_caps == 0) {
2455 		list_del_init(&ci->i_flushing_item);
2456 		if (!list_empty(&session->s_cap_flushing))
2457 			dout(" mds%d still flushing cap on %p\n",
2458 			     session->s_mds,
2459 			     &list_entry(session->s_cap_flushing.next,
2460 					 struct ceph_inode_info,
2461 					 i_flushing_item)->vfs_inode);
2462 		mdsc->num_cap_flushing--;
2463 		wake_up_all(&mdsc->cap_flushing_wq);
2464 		dout(" inode %p now !flushing\n", inode);
2465 
2466 		if (ci->i_dirty_caps == 0) {
2467 			dout(" inode %p now clean\n", inode);
2468 			BUG_ON(!list_empty(&ci->i_dirty_item));
2469 			drop = 1;
2470 		} else {
2471 			BUG_ON(list_empty(&ci->i_dirty_item));
2472 		}
2473 	}
2474 	spin_unlock(&mdsc->cap_dirty_lock);
2475 	wake_up_all(&ci->i_cap_wq);
2476 
2477 out:
2478 	spin_unlock(&inode->i_lock);
2479 	if (drop)
2480 		iput(inode);
2481 }
2482 
2483 /*
2484  * Handle FLUSHSNAP_ACK.  MDS has flushed snap data to disk and we can
2485  * throw away our cap_snap.
2486  *
2487  * Caller hold s_mutex.
2488  */
2489 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2490 				     struct ceph_mds_caps *m,
2491 				     struct ceph_mds_session *session)
2492 {
2493 	struct ceph_inode_info *ci = ceph_inode(inode);
2494 	u64 follows = le64_to_cpu(m->snap_follows);
2495 	struct ceph_cap_snap *capsnap;
2496 	int drop = 0;
2497 
2498 	dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2499 	     inode, ci, session->s_mds, follows);
2500 
2501 	spin_lock(&inode->i_lock);
2502 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2503 		if (capsnap->follows == follows) {
2504 			if (capsnap->flush_tid != flush_tid) {
2505 				dout(" cap_snap %p follows %lld tid %lld !="
2506 				     " %lld\n", capsnap, follows,
2507 				     flush_tid, capsnap->flush_tid);
2508 				break;
2509 			}
2510 			WARN_ON(capsnap->dirty_pages || capsnap->writing);
2511 			dout(" removing %p cap_snap %p follows %lld\n",
2512 			     inode, capsnap, follows);
2513 			ceph_put_snap_context(capsnap->context);
2514 			list_del(&capsnap->ci_item);
2515 			list_del(&capsnap->flushing_item);
2516 			ceph_put_cap_snap(capsnap);
2517 			drop = 1;
2518 			break;
2519 		} else {
2520 			dout(" skipping cap_snap %p follows %lld\n",
2521 			     capsnap, capsnap->follows);
2522 		}
2523 	}
2524 	spin_unlock(&inode->i_lock);
2525 	if (drop)
2526 		iput(inode);
2527 }
2528 
2529 /*
2530  * Handle TRUNC from MDS, indicating file truncation.
2531  *
2532  * caller hold s_mutex.
2533  */
2534 static void handle_cap_trunc(struct inode *inode,
2535 			     struct ceph_mds_caps *trunc,
2536 			     struct ceph_mds_session *session)
2537 	__releases(inode->i_lock)
2538 {
2539 	struct ceph_inode_info *ci = ceph_inode(inode);
2540 	int mds = session->s_mds;
2541 	int seq = le32_to_cpu(trunc->seq);
2542 	u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2543 	u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2544 	u64 size = le64_to_cpu(trunc->size);
2545 	int implemented = 0;
2546 	int dirty = __ceph_caps_dirty(ci);
2547 	int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2548 	int queue_trunc = 0;
2549 
2550 	issued |= implemented | dirty;
2551 
2552 	dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2553 	     inode, mds, seq, truncate_size, truncate_seq);
2554 	queue_trunc = ceph_fill_file_size(inode, issued,
2555 					  truncate_seq, truncate_size, size);
2556 	spin_unlock(&inode->i_lock);
2557 
2558 	if (queue_trunc)
2559 		ceph_queue_vmtruncate(inode);
2560 }
2561 
2562 /*
2563  * Handle EXPORT from MDS.  Cap is being migrated _from_ this mds to a
2564  * different one.  If we are the most recent migration we've seen (as
2565  * indicated by mseq), make note of the migrating cap bits for the
2566  * duration (until we see the corresponding IMPORT).
2567  *
2568  * caller holds s_mutex
2569  */
2570 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2571 			      struct ceph_mds_session *session)
2572 {
2573 	struct ceph_inode_info *ci = ceph_inode(inode);
2574 	int mds = session->s_mds;
2575 	unsigned mseq = le32_to_cpu(ex->migrate_seq);
2576 	struct ceph_cap *cap = NULL, *t;
2577 	struct rb_node *p;
2578 	int remember = 1;
2579 
2580 	dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2581 	     inode, ci, mds, mseq);
2582 
2583 	spin_lock(&inode->i_lock);
2584 
2585 	/* make sure we haven't seen a higher mseq */
2586 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2587 		t = rb_entry(p, struct ceph_cap, ci_node);
2588 		if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2589 			dout(" higher mseq on cap from mds%d\n",
2590 			     t->session->s_mds);
2591 			remember = 0;
2592 		}
2593 		if (t->session->s_mds == mds)
2594 			cap = t;
2595 	}
2596 
2597 	if (cap) {
2598 		if (remember) {
2599 			/* make note */
2600 			ci->i_cap_exporting_mds = mds;
2601 			ci->i_cap_exporting_mseq = mseq;
2602 			ci->i_cap_exporting_issued = cap->issued;
2603 		}
2604 		__ceph_remove_cap(cap);
2605 	}
2606 	/* else, we already released it */
2607 
2608 	spin_unlock(&inode->i_lock);
2609 }
2610 
2611 /*
2612  * Handle cap IMPORT.  If there are temp bits from an older EXPORT,
2613  * clean them up.
2614  *
2615  * caller holds s_mutex.
2616  */
2617 static void handle_cap_import(struct ceph_mds_client *mdsc,
2618 			      struct inode *inode, struct ceph_mds_caps *im,
2619 			      struct ceph_mds_session *session,
2620 			      void *snaptrace, int snaptrace_len)
2621 {
2622 	struct ceph_inode_info *ci = ceph_inode(inode);
2623 	int mds = session->s_mds;
2624 	unsigned issued = le32_to_cpu(im->caps);
2625 	unsigned wanted = le32_to_cpu(im->wanted);
2626 	unsigned seq = le32_to_cpu(im->seq);
2627 	unsigned mseq = le32_to_cpu(im->migrate_seq);
2628 	u64 realmino = le64_to_cpu(im->realm);
2629 	u64 cap_id = le64_to_cpu(im->cap_id);
2630 
2631 	if (ci->i_cap_exporting_mds >= 0 &&
2632 	    ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2633 		dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2634 		     " - cleared exporting from mds%d\n",
2635 		     inode, ci, mds, mseq,
2636 		     ci->i_cap_exporting_mds);
2637 		ci->i_cap_exporting_issued = 0;
2638 		ci->i_cap_exporting_mseq = 0;
2639 		ci->i_cap_exporting_mds = -1;
2640 	} else {
2641 		dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2642 		     inode, ci, mds, mseq);
2643 	}
2644 
2645 	down_write(&mdsc->snap_rwsem);
2646 	ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2647 			       false);
2648 	downgrade_write(&mdsc->snap_rwsem);
2649 	ceph_add_cap(inode, session, cap_id, -1,
2650 		     issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2651 		     NULL /* no caps context */);
2652 	try_flush_caps(inode, session, NULL);
2653 	up_read(&mdsc->snap_rwsem);
2654 }
2655 
2656 /*
2657  * Handle a caps message from the MDS.
2658  *
2659  * Identify the appropriate session, inode, and call the right handler
2660  * based on the cap op.
2661  */
2662 void ceph_handle_caps(struct ceph_mds_session *session,
2663 		      struct ceph_msg *msg)
2664 {
2665 	struct ceph_mds_client *mdsc = session->s_mdsc;
2666 	struct super_block *sb = mdsc->client->sb;
2667 	struct inode *inode;
2668 	struct ceph_cap *cap;
2669 	struct ceph_mds_caps *h;
2670 	int mds = session->s_mds;
2671 	int op;
2672 	u32 seq, mseq;
2673 	struct ceph_vino vino;
2674 	u64 cap_id;
2675 	u64 size, max_size;
2676 	u64 tid;
2677 	void *snaptrace;
2678 
2679 	dout("handle_caps from mds%d\n", mds);
2680 
2681 	/* decode */
2682 	tid = le64_to_cpu(msg->hdr.tid);
2683 	if (msg->front.iov_len < sizeof(*h))
2684 		goto bad;
2685 	h = msg->front.iov_base;
2686 	snaptrace = h + 1;
2687 	op = le32_to_cpu(h->op);
2688 	vino.ino = le64_to_cpu(h->ino);
2689 	vino.snap = CEPH_NOSNAP;
2690 	cap_id = le64_to_cpu(h->cap_id);
2691 	seq = le32_to_cpu(h->seq);
2692 	mseq = le32_to_cpu(h->migrate_seq);
2693 	size = le64_to_cpu(h->size);
2694 	max_size = le64_to_cpu(h->max_size);
2695 
2696 	mutex_lock(&session->s_mutex);
2697 	session->s_seq++;
2698 	dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2699 	     (unsigned)seq);
2700 
2701 	/* lookup ino */
2702 	inode = ceph_find_inode(sb, vino);
2703 	dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2704 	     vino.snap, inode);
2705 	if (!inode) {
2706 		dout(" i don't have ino %llx\n", vino.ino);
2707 
2708 		if (op == CEPH_CAP_OP_IMPORT)
2709 			__queue_cap_release(session, vino.ino, cap_id,
2710 					    mseq, seq);
2711 
2712 		/*
2713 		 * send any full release message to try to move things
2714 		 * along for the mds (who clearly thinks we still have this
2715 		 * cap).
2716 		 */
2717 		ceph_add_cap_releases(mdsc, session, -1);
2718 		ceph_send_cap_releases(mdsc, session);
2719 		goto done;
2720 	}
2721 
2722 	/* these will work even if we don't have a cap yet */
2723 	switch (op) {
2724 	case CEPH_CAP_OP_FLUSHSNAP_ACK:
2725 		handle_cap_flushsnap_ack(inode, tid, h, session);
2726 		goto done;
2727 
2728 	case CEPH_CAP_OP_EXPORT:
2729 		handle_cap_export(inode, h, session);
2730 		goto done;
2731 
2732 	case CEPH_CAP_OP_IMPORT:
2733 		handle_cap_import(mdsc, inode, h, session,
2734 				  snaptrace, le32_to_cpu(h->snap_trace_len));
2735 		ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY,
2736 				session);
2737 		goto done_unlocked;
2738 	}
2739 
2740 	/* the rest require a cap */
2741 	spin_lock(&inode->i_lock);
2742 	cap = __get_cap_for_mds(ceph_inode(inode), mds);
2743 	if (!cap) {
2744 		dout(" no cap on %p ino %llx.%llx from mds%d\n",
2745 		     inode, ceph_ino(inode), ceph_snap(inode), mds);
2746 		spin_unlock(&inode->i_lock);
2747 		goto done;
2748 	}
2749 
2750 	/* note that each of these drops i_lock for us */
2751 	switch (op) {
2752 	case CEPH_CAP_OP_REVOKE:
2753 	case CEPH_CAP_OP_GRANT:
2754 		handle_cap_grant(inode, h, session, cap, msg->middle);
2755 		goto done_unlocked;
2756 
2757 	case CEPH_CAP_OP_FLUSH_ACK:
2758 		handle_cap_flush_ack(inode, tid, h, session, cap);
2759 		break;
2760 
2761 	case CEPH_CAP_OP_TRUNC:
2762 		handle_cap_trunc(inode, h, session);
2763 		break;
2764 
2765 	default:
2766 		spin_unlock(&inode->i_lock);
2767 		pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2768 		       ceph_cap_op_name(op));
2769 	}
2770 
2771 done:
2772 	mutex_unlock(&session->s_mutex);
2773 done_unlocked:
2774 	if (inode)
2775 		iput(inode);
2776 	return;
2777 
2778 bad:
2779 	pr_err("ceph_handle_caps: corrupt message\n");
2780 	ceph_msg_dump(msg);
2781 	return;
2782 }
2783 
2784 /*
2785  * Delayed work handler to process end of delayed cap release LRU list.
2786  */
2787 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
2788 {
2789 	struct ceph_inode_info *ci;
2790 	int flags = CHECK_CAPS_NODELAY;
2791 
2792 	dout("check_delayed_caps\n");
2793 	while (1) {
2794 		spin_lock(&mdsc->cap_delay_lock);
2795 		if (list_empty(&mdsc->cap_delay_list))
2796 			break;
2797 		ci = list_first_entry(&mdsc->cap_delay_list,
2798 				      struct ceph_inode_info,
2799 				      i_cap_delay_list);
2800 		if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2801 		    time_before(jiffies, ci->i_hold_caps_max))
2802 			break;
2803 		list_del_init(&ci->i_cap_delay_list);
2804 		spin_unlock(&mdsc->cap_delay_lock);
2805 		dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2806 		ceph_check_caps(ci, flags, NULL);
2807 	}
2808 	spin_unlock(&mdsc->cap_delay_lock);
2809 }
2810 
2811 /*
2812  * Flush all dirty caps to the mds
2813  */
2814 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2815 {
2816 	struct ceph_inode_info *ci, *nci = NULL;
2817 	struct inode *inode, *ninode = NULL;
2818 	struct list_head *p, *n;
2819 
2820 	dout("flush_dirty_caps\n");
2821 	spin_lock(&mdsc->cap_dirty_lock);
2822 	list_for_each_safe(p, n, &mdsc->cap_dirty) {
2823 		if (nci) {
2824 			ci = nci;
2825 			inode = ninode;
2826 			ci->i_ceph_flags &= ~CEPH_I_NOFLUSH;
2827 			dout("flush_dirty_caps inode %p (was next inode)\n",
2828 			     inode);
2829 		} else {
2830 			ci = list_entry(p, struct ceph_inode_info,
2831 					i_dirty_item);
2832 			inode = igrab(&ci->vfs_inode);
2833 			BUG_ON(!inode);
2834 			dout("flush_dirty_caps inode %p\n", inode);
2835 		}
2836 		if (n != &mdsc->cap_dirty) {
2837 			nci = list_entry(n, struct ceph_inode_info,
2838 					 i_dirty_item);
2839 			ninode = igrab(&nci->vfs_inode);
2840 			BUG_ON(!ninode);
2841 			nci->i_ceph_flags |= CEPH_I_NOFLUSH;
2842 			dout("flush_dirty_caps next inode %p, noflush\n",
2843 			     ninode);
2844 		} else {
2845 			nci = NULL;
2846 			ninode = NULL;
2847 		}
2848 		spin_unlock(&mdsc->cap_dirty_lock);
2849 		if (inode) {
2850 			ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH,
2851 					NULL);
2852 			iput(inode);
2853 		}
2854 		spin_lock(&mdsc->cap_dirty_lock);
2855 	}
2856 	spin_unlock(&mdsc->cap_dirty_lock);
2857 }
2858 
2859 /*
2860  * Drop open file reference.  If we were the last open file,
2861  * we may need to release capabilities to the MDS (or schedule
2862  * their delayed release).
2863  */
2864 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2865 {
2866 	struct inode *inode = &ci->vfs_inode;
2867 	int last = 0;
2868 
2869 	spin_lock(&inode->i_lock);
2870 	dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
2871 	     ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
2872 	BUG_ON(ci->i_nr_by_mode[fmode] == 0);
2873 	if (--ci->i_nr_by_mode[fmode] == 0)
2874 		last++;
2875 	spin_unlock(&inode->i_lock);
2876 
2877 	if (last && ci->i_vino.snap == CEPH_NOSNAP)
2878 		ceph_check_caps(ci, 0, NULL);
2879 }
2880 
2881 /*
2882  * Helpers for embedding cap and dentry lease releases into mds
2883  * requests.
2884  *
2885  * @force is used by dentry_release (below) to force inclusion of a
2886  * record for the directory inode, even when there aren't any caps to
2887  * drop.
2888  */
2889 int ceph_encode_inode_release(void **p, struct inode *inode,
2890 			      int mds, int drop, int unless, int force)
2891 {
2892 	struct ceph_inode_info *ci = ceph_inode(inode);
2893 	struct ceph_cap *cap;
2894 	struct ceph_mds_request_release *rel = *p;
2895 	int used, dirty;
2896 	int ret = 0;
2897 
2898 	spin_lock(&inode->i_lock);
2899 	used = __ceph_caps_used(ci);
2900 	dirty = __ceph_caps_dirty(ci);
2901 
2902 	dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
2903 	     inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
2904 	     ceph_cap_string(unless));
2905 
2906 	/* only drop unused, clean caps */
2907 	drop &= ~(used | dirty);
2908 
2909 	cap = __get_cap_for_mds(ci, mds);
2910 	if (cap && __cap_is_valid(cap)) {
2911 		if (force ||
2912 		    ((cap->issued & drop) &&
2913 		     (cap->issued & unless) == 0)) {
2914 			if ((cap->issued & drop) &&
2915 			    (cap->issued & unless) == 0) {
2916 				dout("encode_inode_release %p cap %p %s -> "
2917 				     "%s\n", inode, cap,
2918 				     ceph_cap_string(cap->issued),
2919 				     ceph_cap_string(cap->issued & ~drop));
2920 				cap->issued &= ~drop;
2921 				cap->implemented &= ~drop;
2922 				if (ci->i_ceph_flags & CEPH_I_NODELAY) {
2923 					int wanted = __ceph_caps_wanted(ci);
2924 					dout("  wanted %s -> %s (act %s)\n",
2925 					     ceph_cap_string(cap->mds_wanted),
2926 					     ceph_cap_string(cap->mds_wanted &
2927 							     ~wanted),
2928 					     ceph_cap_string(wanted));
2929 					cap->mds_wanted &= wanted;
2930 				}
2931 			} else {
2932 				dout("encode_inode_release %p cap %p %s"
2933 				     " (force)\n", inode, cap,
2934 				     ceph_cap_string(cap->issued));
2935 			}
2936 
2937 			rel->ino = cpu_to_le64(ceph_ino(inode));
2938 			rel->cap_id = cpu_to_le64(cap->cap_id);
2939 			rel->seq = cpu_to_le32(cap->seq);
2940 			rel->issue_seq = cpu_to_le32(cap->issue_seq),
2941 			rel->mseq = cpu_to_le32(cap->mseq);
2942 			rel->caps = cpu_to_le32(cap->issued);
2943 			rel->wanted = cpu_to_le32(cap->mds_wanted);
2944 			rel->dname_len = 0;
2945 			rel->dname_seq = 0;
2946 			*p += sizeof(*rel);
2947 			ret = 1;
2948 		} else {
2949 			dout("encode_inode_release %p cap %p %s\n",
2950 			     inode, cap, ceph_cap_string(cap->issued));
2951 		}
2952 	}
2953 	spin_unlock(&inode->i_lock);
2954 	return ret;
2955 }
2956 
2957 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
2958 			       int mds, int drop, int unless)
2959 {
2960 	struct inode *dir = dentry->d_parent->d_inode;
2961 	struct ceph_mds_request_release *rel = *p;
2962 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2963 	int force = 0;
2964 	int ret;
2965 
2966 	/*
2967 	 * force an record for the directory caps if we have a dentry lease.
2968 	 * this is racy (can't take i_lock and d_lock together), but it
2969 	 * doesn't have to be perfect; the mds will revoke anything we don't
2970 	 * release.
2971 	 */
2972 	spin_lock(&dentry->d_lock);
2973 	if (di->lease_session && di->lease_session->s_mds == mds)
2974 		force = 1;
2975 	spin_unlock(&dentry->d_lock);
2976 
2977 	ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
2978 
2979 	spin_lock(&dentry->d_lock);
2980 	if (ret && di->lease_session && di->lease_session->s_mds == mds) {
2981 		dout("encode_dentry_release %p mds%d seq %d\n",
2982 		     dentry, mds, (int)di->lease_seq);
2983 		rel->dname_len = cpu_to_le32(dentry->d_name.len);
2984 		memcpy(*p, dentry->d_name.name, dentry->d_name.len);
2985 		*p += dentry->d_name.len;
2986 		rel->dname_seq = cpu_to_le32(di->lease_seq);
2987 		__ceph_mdsc_drop_dentry_lease(dentry);
2988 	}
2989 	spin_unlock(&dentry->d_lock);
2990 	return ret;
2991 }
2992