1 #include "ceph_debug.h" 2 3 #include <linux/fs.h> 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include <linux/wait.h> 9 #include <linux/writeback.h> 10 11 #include "super.h" 12 #include "decode.h" 13 #include "messenger.h" 14 15 /* 16 * Capability management 17 * 18 * The Ceph metadata servers control client access to inode metadata 19 * and file data by issuing capabilities, granting clients permission 20 * to read and/or write both inode field and file data to OSDs 21 * (storage nodes). Each capability consists of a set of bits 22 * indicating which operations are allowed. 23 * 24 * If the client holds a *_SHARED cap, the client has a coherent value 25 * that can be safely read from the cached inode. 26 * 27 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the 28 * client is allowed to change inode attributes (e.g., file size, 29 * mtime), note its dirty state in the ceph_cap, and asynchronously 30 * flush that metadata change to the MDS. 31 * 32 * In the event of a conflicting operation (perhaps by another 33 * client), the MDS will revoke the conflicting client capabilities. 34 * 35 * In order for a client to cache an inode, it must hold a capability 36 * with at least one MDS server. When inodes are released, release 37 * notifications are batched and periodically sent en masse to the MDS 38 * cluster to release server state. 39 */ 40 41 42 /* 43 * Generate readable cap strings for debugging output. 44 */ 45 #define MAX_CAP_STR 20 46 static char cap_str[MAX_CAP_STR][40]; 47 static DEFINE_SPINLOCK(cap_str_lock); 48 static int last_cap_str; 49 50 static char *gcap_string(char *s, int c) 51 { 52 if (c & CEPH_CAP_GSHARED) 53 *s++ = 's'; 54 if (c & CEPH_CAP_GEXCL) 55 *s++ = 'x'; 56 if (c & CEPH_CAP_GCACHE) 57 *s++ = 'c'; 58 if (c & CEPH_CAP_GRD) 59 *s++ = 'r'; 60 if (c & CEPH_CAP_GWR) 61 *s++ = 'w'; 62 if (c & CEPH_CAP_GBUFFER) 63 *s++ = 'b'; 64 if (c & CEPH_CAP_GLAZYIO) 65 *s++ = 'l'; 66 return s; 67 } 68 69 const char *ceph_cap_string(int caps) 70 { 71 int i; 72 char *s; 73 int c; 74 75 spin_lock(&cap_str_lock); 76 i = last_cap_str++; 77 if (last_cap_str == MAX_CAP_STR) 78 last_cap_str = 0; 79 spin_unlock(&cap_str_lock); 80 81 s = cap_str[i]; 82 83 if (caps & CEPH_CAP_PIN) 84 *s++ = 'p'; 85 86 c = (caps >> CEPH_CAP_SAUTH) & 3; 87 if (c) { 88 *s++ = 'A'; 89 s = gcap_string(s, c); 90 } 91 92 c = (caps >> CEPH_CAP_SLINK) & 3; 93 if (c) { 94 *s++ = 'L'; 95 s = gcap_string(s, c); 96 } 97 98 c = (caps >> CEPH_CAP_SXATTR) & 3; 99 if (c) { 100 *s++ = 'X'; 101 s = gcap_string(s, c); 102 } 103 104 c = caps >> CEPH_CAP_SFILE; 105 if (c) { 106 *s++ = 'F'; 107 s = gcap_string(s, c); 108 } 109 110 if (s == cap_str[i]) 111 *s++ = '-'; 112 *s = 0; 113 return cap_str[i]; 114 } 115 116 /* 117 * Cap reservations 118 * 119 * Maintain a global pool of preallocated struct ceph_caps, referenced 120 * by struct ceph_caps_reservations. This ensures that we preallocate 121 * memory needed to successfully process an MDS response. (If an MDS 122 * sends us cap information and we fail to process it, we will have 123 * problems due to the client and MDS being out of sync.) 124 * 125 * Reservations are 'owned' by a ceph_cap_reservation context. 126 */ 127 static spinlock_t caps_list_lock; 128 static struct list_head caps_list; /* unused (reserved or unreserved) */ 129 static int caps_total_count; /* total caps allocated */ 130 static int caps_use_count; /* in use */ 131 static int caps_reserve_count; /* unused, reserved */ 132 static int caps_avail_count; /* unused, unreserved */ 133 static int caps_min_count; /* keep at least this many (unreserved) */ 134 135 void __init ceph_caps_init(void) 136 { 137 INIT_LIST_HEAD(&caps_list); 138 spin_lock_init(&caps_list_lock); 139 } 140 141 void ceph_caps_finalize(void) 142 { 143 struct ceph_cap *cap; 144 145 spin_lock(&caps_list_lock); 146 while (!list_empty(&caps_list)) { 147 cap = list_first_entry(&caps_list, struct ceph_cap, caps_item); 148 list_del(&cap->caps_item); 149 kmem_cache_free(ceph_cap_cachep, cap); 150 } 151 caps_total_count = 0; 152 caps_avail_count = 0; 153 caps_use_count = 0; 154 caps_reserve_count = 0; 155 caps_min_count = 0; 156 spin_unlock(&caps_list_lock); 157 } 158 159 void ceph_adjust_min_caps(int delta) 160 { 161 spin_lock(&caps_list_lock); 162 caps_min_count += delta; 163 BUG_ON(caps_min_count < 0); 164 spin_unlock(&caps_list_lock); 165 } 166 167 int ceph_reserve_caps(struct ceph_cap_reservation *ctx, int need) 168 { 169 int i; 170 struct ceph_cap *cap; 171 int have; 172 int alloc = 0; 173 LIST_HEAD(newcaps); 174 int ret = 0; 175 176 dout("reserve caps ctx=%p need=%d\n", ctx, need); 177 178 /* first reserve any caps that are already allocated */ 179 spin_lock(&caps_list_lock); 180 if (caps_avail_count >= need) 181 have = need; 182 else 183 have = caps_avail_count; 184 caps_avail_count -= have; 185 caps_reserve_count += have; 186 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 187 caps_avail_count); 188 spin_unlock(&caps_list_lock); 189 190 for (i = have; i < need; i++) { 191 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 192 if (!cap) { 193 ret = -ENOMEM; 194 goto out_alloc_count; 195 } 196 list_add(&cap->caps_item, &newcaps); 197 alloc++; 198 } 199 BUG_ON(have + alloc != need); 200 201 spin_lock(&caps_list_lock); 202 caps_total_count += alloc; 203 caps_reserve_count += alloc; 204 list_splice(&newcaps, &caps_list); 205 206 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 207 caps_avail_count); 208 spin_unlock(&caps_list_lock); 209 210 ctx->count = need; 211 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", 212 ctx, caps_total_count, caps_use_count, caps_reserve_count, 213 caps_avail_count); 214 return 0; 215 216 out_alloc_count: 217 /* we didn't manage to reserve as much as we needed */ 218 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n", 219 ctx, need, have); 220 return ret; 221 } 222 223 int ceph_unreserve_caps(struct ceph_cap_reservation *ctx) 224 { 225 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); 226 if (ctx->count) { 227 spin_lock(&caps_list_lock); 228 BUG_ON(caps_reserve_count < ctx->count); 229 caps_reserve_count -= ctx->count; 230 caps_avail_count += ctx->count; 231 ctx->count = 0; 232 dout("unreserve caps %d = %d used + %d resv + %d avail\n", 233 caps_total_count, caps_use_count, caps_reserve_count, 234 caps_avail_count); 235 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 236 caps_avail_count); 237 spin_unlock(&caps_list_lock); 238 } 239 return 0; 240 } 241 242 static struct ceph_cap *get_cap(struct ceph_cap_reservation *ctx) 243 { 244 struct ceph_cap *cap = NULL; 245 246 /* temporary, until we do something about cap import/export */ 247 if (!ctx) { 248 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 249 if (cap) { 250 caps_use_count++; 251 caps_total_count++; 252 } 253 return cap; 254 } 255 256 spin_lock(&caps_list_lock); 257 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 258 ctx, ctx->count, caps_total_count, caps_use_count, 259 caps_reserve_count, caps_avail_count); 260 BUG_ON(!ctx->count); 261 BUG_ON(ctx->count > caps_reserve_count); 262 BUG_ON(list_empty(&caps_list)); 263 264 ctx->count--; 265 caps_reserve_count--; 266 caps_use_count++; 267 268 cap = list_first_entry(&caps_list, struct ceph_cap, caps_item); 269 list_del(&cap->caps_item); 270 271 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 272 caps_avail_count); 273 spin_unlock(&caps_list_lock); 274 return cap; 275 } 276 277 void ceph_put_cap(struct ceph_cap *cap) 278 { 279 spin_lock(&caps_list_lock); 280 dout("put_cap %p %d = %d used + %d resv + %d avail\n", 281 cap, caps_total_count, caps_use_count, 282 caps_reserve_count, caps_avail_count); 283 caps_use_count--; 284 /* 285 * Keep some preallocated caps around (ceph_min_count), to 286 * avoid lots of free/alloc churn. 287 */ 288 if (caps_avail_count >= caps_reserve_count + caps_min_count) { 289 caps_total_count--; 290 kmem_cache_free(ceph_cap_cachep, cap); 291 } else { 292 caps_avail_count++; 293 list_add(&cap->caps_item, &caps_list); 294 } 295 296 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 297 caps_avail_count); 298 spin_unlock(&caps_list_lock); 299 } 300 301 void ceph_reservation_status(struct ceph_client *client, 302 int *total, int *avail, int *used, int *reserved, 303 int *min) 304 { 305 if (total) 306 *total = caps_total_count; 307 if (avail) 308 *avail = caps_avail_count; 309 if (used) 310 *used = caps_use_count; 311 if (reserved) 312 *reserved = caps_reserve_count; 313 if (min) 314 *min = caps_min_count; 315 } 316 317 /* 318 * Find ceph_cap for given mds, if any. 319 * 320 * Called with i_lock held. 321 */ 322 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) 323 { 324 struct ceph_cap *cap; 325 struct rb_node *n = ci->i_caps.rb_node; 326 327 while (n) { 328 cap = rb_entry(n, struct ceph_cap, ci_node); 329 if (mds < cap->mds) 330 n = n->rb_left; 331 else if (mds > cap->mds) 332 n = n->rb_right; 333 else 334 return cap; 335 } 336 return NULL; 337 } 338 339 /* 340 * Return id of any MDS with a cap, preferably FILE_WR|WRBUFFER|EXCL, else 341 * -1. 342 */ 343 static int __ceph_get_cap_mds(struct ceph_inode_info *ci, u32 *mseq) 344 { 345 struct ceph_cap *cap; 346 int mds = -1; 347 struct rb_node *p; 348 349 /* prefer mds with WR|WRBUFFER|EXCL caps */ 350 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 351 cap = rb_entry(p, struct ceph_cap, ci_node); 352 mds = cap->mds; 353 if (mseq) 354 *mseq = cap->mseq; 355 if (cap->issued & (CEPH_CAP_FILE_WR | 356 CEPH_CAP_FILE_BUFFER | 357 CEPH_CAP_FILE_EXCL)) 358 break; 359 } 360 return mds; 361 } 362 363 int ceph_get_cap_mds(struct inode *inode) 364 { 365 int mds; 366 spin_lock(&inode->i_lock); 367 mds = __ceph_get_cap_mds(ceph_inode(inode), NULL); 368 spin_unlock(&inode->i_lock); 369 return mds; 370 } 371 372 /* 373 * Called under i_lock. 374 */ 375 static void __insert_cap_node(struct ceph_inode_info *ci, 376 struct ceph_cap *new) 377 { 378 struct rb_node **p = &ci->i_caps.rb_node; 379 struct rb_node *parent = NULL; 380 struct ceph_cap *cap = NULL; 381 382 while (*p) { 383 parent = *p; 384 cap = rb_entry(parent, struct ceph_cap, ci_node); 385 if (new->mds < cap->mds) 386 p = &(*p)->rb_left; 387 else if (new->mds > cap->mds) 388 p = &(*p)->rb_right; 389 else 390 BUG(); 391 } 392 393 rb_link_node(&new->ci_node, parent, p); 394 rb_insert_color(&new->ci_node, &ci->i_caps); 395 } 396 397 /* 398 * (re)set cap hold timeouts, which control the delayed release 399 * of unused caps back to the MDS. Should be called on cap use. 400 */ 401 static void __cap_set_timeouts(struct ceph_mds_client *mdsc, 402 struct ceph_inode_info *ci) 403 { 404 struct ceph_mount_args *ma = mdsc->client->mount_args; 405 406 ci->i_hold_caps_min = round_jiffies(jiffies + 407 ma->caps_wanted_delay_min * HZ); 408 ci->i_hold_caps_max = round_jiffies(jiffies + 409 ma->caps_wanted_delay_max * HZ); 410 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, 411 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); 412 } 413 414 /* 415 * (Re)queue cap at the end of the delayed cap release list. 416 * 417 * If I_FLUSH is set, leave the inode at the front of the list. 418 * 419 * Caller holds i_lock 420 * -> we take mdsc->cap_delay_lock 421 */ 422 static void __cap_delay_requeue(struct ceph_mds_client *mdsc, 423 struct ceph_inode_info *ci) 424 { 425 __cap_set_timeouts(mdsc, ci); 426 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, 427 ci->i_ceph_flags, ci->i_hold_caps_max); 428 if (!mdsc->stopping) { 429 spin_lock(&mdsc->cap_delay_lock); 430 if (!list_empty(&ci->i_cap_delay_list)) { 431 if (ci->i_ceph_flags & CEPH_I_FLUSH) 432 goto no_change; 433 list_del_init(&ci->i_cap_delay_list); 434 } 435 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 436 no_change: 437 spin_unlock(&mdsc->cap_delay_lock); 438 } 439 } 440 441 /* 442 * Queue an inode for immediate writeback. Mark inode with I_FLUSH, 443 * indicating we should send a cap message to flush dirty metadata 444 * asap, and move to the front of the delayed cap list. 445 */ 446 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, 447 struct ceph_inode_info *ci) 448 { 449 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); 450 spin_lock(&mdsc->cap_delay_lock); 451 ci->i_ceph_flags |= CEPH_I_FLUSH; 452 if (!list_empty(&ci->i_cap_delay_list)) 453 list_del_init(&ci->i_cap_delay_list); 454 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 455 spin_unlock(&mdsc->cap_delay_lock); 456 } 457 458 /* 459 * Cancel delayed work on cap. 460 * 461 * Caller must hold i_lock. 462 */ 463 static void __cap_delay_cancel(struct ceph_mds_client *mdsc, 464 struct ceph_inode_info *ci) 465 { 466 dout("__cap_delay_cancel %p\n", &ci->vfs_inode); 467 if (list_empty(&ci->i_cap_delay_list)) 468 return; 469 spin_lock(&mdsc->cap_delay_lock); 470 list_del_init(&ci->i_cap_delay_list); 471 spin_unlock(&mdsc->cap_delay_lock); 472 } 473 474 /* 475 * Common issue checks for add_cap, handle_cap_grant. 476 */ 477 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, 478 unsigned issued) 479 { 480 unsigned had = __ceph_caps_issued(ci, NULL); 481 482 /* 483 * Each time we receive FILE_CACHE anew, we increment 484 * i_rdcache_gen. 485 */ 486 if ((issued & CEPH_CAP_FILE_CACHE) && 487 (had & CEPH_CAP_FILE_CACHE) == 0) 488 ci->i_rdcache_gen++; 489 490 /* 491 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we 492 * don't know what happened to this directory while we didn't 493 * have the cap. 494 */ 495 if ((issued & CEPH_CAP_FILE_SHARED) && 496 (had & CEPH_CAP_FILE_SHARED) == 0) { 497 ci->i_shared_gen++; 498 if (S_ISDIR(ci->vfs_inode.i_mode)) { 499 dout(" marking %p NOT complete\n", &ci->vfs_inode); 500 ci->i_ceph_flags &= ~CEPH_I_COMPLETE; 501 } 502 } 503 } 504 505 /* 506 * Add a capability under the given MDS session. 507 * 508 * Caller should hold session snap_rwsem (read) and s_mutex. 509 * 510 * @fmode is the open file mode, if we are opening a file, otherwise 511 * it is < 0. (This is so we can atomically add the cap and add an 512 * open file reference to it.) 513 */ 514 int ceph_add_cap(struct inode *inode, 515 struct ceph_mds_session *session, u64 cap_id, 516 int fmode, unsigned issued, unsigned wanted, 517 unsigned seq, unsigned mseq, u64 realmino, int flags, 518 struct ceph_cap_reservation *caps_reservation) 519 { 520 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc; 521 struct ceph_inode_info *ci = ceph_inode(inode); 522 struct ceph_cap *new_cap = NULL; 523 struct ceph_cap *cap; 524 int mds = session->s_mds; 525 int actual_wanted; 526 527 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, 528 session->s_mds, cap_id, ceph_cap_string(issued), seq); 529 530 /* 531 * If we are opening the file, include file mode wanted bits 532 * in wanted. 533 */ 534 if (fmode >= 0) 535 wanted |= ceph_caps_for_mode(fmode); 536 537 retry: 538 spin_lock(&inode->i_lock); 539 cap = __get_cap_for_mds(ci, mds); 540 if (!cap) { 541 if (new_cap) { 542 cap = new_cap; 543 new_cap = NULL; 544 } else { 545 spin_unlock(&inode->i_lock); 546 new_cap = get_cap(caps_reservation); 547 if (new_cap == NULL) 548 return -ENOMEM; 549 goto retry; 550 } 551 552 cap->issued = 0; 553 cap->implemented = 0; 554 cap->mds = mds; 555 cap->mds_wanted = 0; 556 557 cap->ci = ci; 558 __insert_cap_node(ci, cap); 559 560 /* clear out old exporting info? (i.e. on cap import) */ 561 if (ci->i_cap_exporting_mds == mds) { 562 ci->i_cap_exporting_issued = 0; 563 ci->i_cap_exporting_mseq = 0; 564 ci->i_cap_exporting_mds = -1; 565 } 566 567 /* add to session cap list */ 568 cap->session = session; 569 spin_lock(&session->s_cap_lock); 570 list_add_tail(&cap->session_caps, &session->s_caps); 571 session->s_nr_caps++; 572 spin_unlock(&session->s_cap_lock); 573 } 574 575 if (!ci->i_snap_realm) { 576 /* 577 * add this inode to the appropriate snap realm 578 */ 579 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, 580 realmino); 581 if (realm) { 582 ceph_get_snap_realm(mdsc, realm); 583 spin_lock(&realm->inodes_with_caps_lock); 584 ci->i_snap_realm = realm; 585 list_add(&ci->i_snap_realm_item, 586 &realm->inodes_with_caps); 587 spin_unlock(&realm->inodes_with_caps_lock); 588 } else { 589 pr_err("ceph_add_cap: couldn't find snap realm %llx\n", 590 realmino); 591 } 592 } 593 594 __check_cap_issue(ci, cap, issued); 595 596 /* 597 * If we are issued caps we don't want, or the mds' wanted 598 * value appears to be off, queue a check so we'll release 599 * later and/or update the mds wanted value. 600 */ 601 actual_wanted = __ceph_caps_wanted(ci); 602 if ((wanted & ~actual_wanted) || 603 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { 604 dout(" issued %s, mds wanted %s, actual %s, queueing\n", 605 ceph_cap_string(issued), ceph_cap_string(wanted), 606 ceph_cap_string(actual_wanted)); 607 __cap_delay_requeue(mdsc, ci); 608 } 609 610 if (flags & CEPH_CAP_FLAG_AUTH) 611 ci->i_auth_cap = cap; 612 else if (ci->i_auth_cap == cap) 613 ci->i_auth_cap = NULL; 614 615 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", 616 inode, ceph_vinop(inode), cap, ceph_cap_string(issued), 617 ceph_cap_string(issued|cap->issued), seq, mds); 618 cap->cap_id = cap_id; 619 cap->issued = issued; 620 cap->implemented |= issued; 621 cap->mds_wanted |= wanted; 622 cap->seq = seq; 623 cap->issue_seq = seq; 624 cap->mseq = mseq; 625 cap->cap_gen = session->s_cap_gen; 626 627 if (fmode >= 0) 628 __ceph_get_fmode(ci, fmode); 629 spin_unlock(&inode->i_lock); 630 wake_up_all(&ci->i_cap_wq); 631 return 0; 632 } 633 634 /* 635 * Return true if cap has not timed out and belongs to the current 636 * generation of the MDS session (i.e. has not gone 'stale' due to 637 * us losing touch with the mds). 638 */ 639 static int __cap_is_valid(struct ceph_cap *cap) 640 { 641 unsigned long ttl; 642 u32 gen; 643 644 spin_lock(&cap->session->s_cap_lock); 645 gen = cap->session->s_cap_gen; 646 ttl = cap->session->s_cap_ttl; 647 spin_unlock(&cap->session->s_cap_lock); 648 649 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { 650 dout("__cap_is_valid %p cap %p issued %s " 651 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, 652 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); 653 return 0; 654 } 655 656 return 1; 657 } 658 659 /* 660 * Return set of valid cap bits issued to us. Note that caps time 661 * out, and may be invalidated in bulk if the client session times out 662 * and session->s_cap_gen is bumped. 663 */ 664 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) 665 { 666 int have = ci->i_snap_caps | ci->i_cap_exporting_issued; 667 struct ceph_cap *cap; 668 struct rb_node *p; 669 670 if (implemented) 671 *implemented = 0; 672 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 673 cap = rb_entry(p, struct ceph_cap, ci_node); 674 if (!__cap_is_valid(cap)) 675 continue; 676 dout("__ceph_caps_issued %p cap %p issued %s\n", 677 &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); 678 have |= cap->issued; 679 if (implemented) 680 *implemented |= cap->implemented; 681 } 682 return have; 683 } 684 685 /* 686 * Get cap bits issued by caps other than @ocap 687 */ 688 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) 689 { 690 int have = ci->i_snap_caps; 691 struct ceph_cap *cap; 692 struct rb_node *p; 693 694 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 695 cap = rb_entry(p, struct ceph_cap, ci_node); 696 if (cap == ocap) 697 continue; 698 if (!__cap_is_valid(cap)) 699 continue; 700 have |= cap->issued; 701 } 702 return have; 703 } 704 705 /* 706 * Move a cap to the end of the LRU (oldest caps at list head, newest 707 * at list tail). 708 */ 709 static void __touch_cap(struct ceph_cap *cap) 710 { 711 struct ceph_mds_session *s = cap->session; 712 713 spin_lock(&s->s_cap_lock); 714 if (s->s_cap_iterator == NULL) { 715 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, 716 s->s_mds); 717 list_move_tail(&cap->session_caps, &s->s_caps); 718 } else { 719 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", 720 &cap->ci->vfs_inode, cap, s->s_mds); 721 } 722 spin_unlock(&s->s_cap_lock); 723 } 724 725 /* 726 * Check if we hold the given mask. If so, move the cap(s) to the 727 * front of their respective LRUs. (This is the preferred way for 728 * callers to check for caps they want.) 729 */ 730 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) 731 { 732 struct ceph_cap *cap; 733 struct rb_node *p; 734 int have = ci->i_snap_caps; 735 736 if ((have & mask) == mask) { 737 dout("__ceph_caps_issued_mask %p snap issued %s" 738 " (mask %s)\n", &ci->vfs_inode, 739 ceph_cap_string(have), 740 ceph_cap_string(mask)); 741 return 1; 742 } 743 744 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 745 cap = rb_entry(p, struct ceph_cap, ci_node); 746 if (!__cap_is_valid(cap)) 747 continue; 748 if ((cap->issued & mask) == mask) { 749 dout("__ceph_caps_issued_mask %p cap %p issued %s" 750 " (mask %s)\n", &ci->vfs_inode, cap, 751 ceph_cap_string(cap->issued), 752 ceph_cap_string(mask)); 753 if (touch) 754 __touch_cap(cap); 755 return 1; 756 } 757 758 /* does a combination of caps satisfy mask? */ 759 have |= cap->issued; 760 if ((have & mask) == mask) { 761 dout("__ceph_caps_issued_mask %p combo issued %s" 762 " (mask %s)\n", &ci->vfs_inode, 763 ceph_cap_string(cap->issued), 764 ceph_cap_string(mask)); 765 if (touch) { 766 struct rb_node *q; 767 768 /* touch this + preceeding caps */ 769 __touch_cap(cap); 770 for (q = rb_first(&ci->i_caps); q != p; 771 q = rb_next(q)) { 772 cap = rb_entry(q, struct ceph_cap, 773 ci_node); 774 if (!__cap_is_valid(cap)) 775 continue; 776 __touch_cap(cap); 777 } 778 } 779 return 1; 780 } 781 } 782 783 return 0; 784 } 785 786 /* 787 * Return true if mask caps are currently being revoked by an MDS. 788 */ 789 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) 790 { 791 struct inode *inode = &ci->vfs_inode; 792 struct ceph_cap *cap; 793 struct rb_node *p; 794 int ret = 0; 795 796 spin_lock(&inode->i_lock); 797 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 798 cap = rb_entry(p, struct ceph_cap, ci_node); 799 if (__cap_is_valid(cap) && 800 (cap->implemented & ~cap->issued & mask)) { 801 ret = 1; 802 break; 803 } 804 } 805 spin_unlock(&inode->i_lock); 806 dout("ceph_caps_revoking %p %s = %d\n", inode, 807 ceph_cap_string(mask), ret); 808 return ret; 809 } 810 811 int __ceph_caps_used(struct ceph_inode_info *ci) 812 { 813 int used = 0; 814 if (ci->i_pin_ref) 815 used |= CEPH_CAP_PIN; 816 if (ci->i_rd_ref) 817 used |= CEPH_CAP_FILE_RD; 818 if (ci->i_rdcache_ref || ci->i_rdcache_gen) 819 used |= CEPH_CAP_FILE_CACHE; 820 if (ci->i_wr_ref) 821 used |= CEPH_CAP_FILE_WR; 822 if (ci->i_wrbuffer_ref) 823 used |= CEPH_CAP_FILE_BUFFER; 824 return used; 825 } 826 827 /* 828 * wanted, by virtue of open file modes 829 */ 830 int __ceph_caps_file_wanted(struct ceph_inode_info *ci) 831 { 832 int want = 0; 833 int mode; 834 for (mode = 0; mode < 4; mode++) 835 if (ci->i_nr_by_mode[mode]) 836 want |= ceph_caps_for_mode(mode); 837 return want; 838 } 839 840 /* 841 * Return caps we have registered with the MDS(s) as 'wanted'. 842 */ 843 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) 844 { 845 struct ceph_cap *cap; 846 struct rb_node *p; 847 int mds_wanted = 0; 848 849 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 850 cap = rb_entry(p, struct ceph_cap, ci_node); 851 if (!__cap_is_valid(cap)) 852 continue; 853 mds_wanted |= cap->mds_wanted; 854 } 855 return mds_wanted; 856 } 857 858 /* 859 * called under i_lock 860 */ 861 static int __ceph_is_any_caps(struct ceph_inode_info *ci) 862 { 863 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0; 864 } 865 866 /* 867 * Remove a cap. Take steps to deal with a racing iterate_session_caps. 868 * 869 * caller should hold i_lock. 870 * caller will not hold session s_mutex if called from destroy_inode. 871 */ 872 void __ceph_remove_cap(struct ceph_cap *cap) 873 { 874 struct ceph_mds_session *session = cap->session; 875 struct ceph_inode_info *ci = cap->ci; 876 struct ceph_mds_client *mdsc = 877 &ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 878 int removed = 0; 879 880 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); 881 882 /* remove from session list */ 883 spin_lock(&session->s_cap_lock); 884 if (session->s_cap_iterator == cap) { 885 /* not yet, we are iterating over this very cap */ 886 dout("__ceph_remove_cap delaying %p removal from session %p\n", 887 cap, cap->session); 888 } else { 889 list_del_init(&cap->session_caps); 890 session->s_nr_caps--; 891 cap->session = NULL; 892 removed = 1; 893 } 894 /* protect backpointer with s_cap_lock: see iterate_session_caps */ 895 cap->ci = NULL; 896 spin_unlock(&session->s_cap_lock); 897 898 /* remove from inode list */ 899 rb_erase(&cap->ci_node, &ci->i_caps); 900 if (ci->i_auth_cap == cap) 901 ci->i_auth_cap = NULL; 902 903 if (removed) 904 ceph_put_cap(cap); 905 906 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) { 907 struct ceph_snap_realm *realm = ci->i_snap_realm; 908 spin_lock(&realm->inodes_with_caps_lock); 909 list_del_init(&ci->i_snap_realm_item); 910 ci->i_snap_realm_counter++; 911 ci->i_snap_realm = NULL; 912 spin_unlock(&realm->inodes_with_caps_lock); 913 ceph_put_snap_realm(mdsc, realm); 914 } 915 if (!__ceph_is_any_real_caps(ci)) 916 __cap_delay_cancel(mdsc, ci); 917 } 918 919 /* 920 * Build and send a cap message to the given MDS. 921 * 922 * Caller should be holding s_mutex. 923 */ 924 static int send_cap_msg(struct ceph_mds_session *session, 925 u64 ino, u64 cid, int op, 926 int caps, int wanted, int dirty, 927 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq, 928 u64 size, u64 max_size, 929 struct timespec *mtime, struct timespec *atime, 930 u64 time_warp_seq, 931 uid_t uid, gid_t gid, mode_t mode, 932 u64 xattr_version, 933 struct ceph_buffer *xattrs_buf, 934 u64 follows) 935 { 936 struct ceph_mds_caps *fc; 937 struct ceph_msg *msg; 938 939 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" 940 " seq %u/%u mseq %u follows %lld size %llu/%llu" 941 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), 942 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), 943 ceph_cap_string(dirty), 944 seq, issue_seq, mseq, follows, size, max_size, 945 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); 946 947 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS); 948 if (!msg) 949 return -ENOMEM; 950 951 msg->hdr.tid = cpu_to_le64(flush_tid); 952 953 fc = msg->front.iov_base; 954 memset(fc, 0, sizeof(*fc)); 955 956 fc->cap_id = cpu_to_le64(cid); 957 fc->op = cpu_to_le32(op); 958 fc->seq = cpu_to_le32(seq); 959 fc->issue_seq = cpu_to_le32(issue_seq); 960 fc->migrate_seq = cpu_to_le32(mseq); 961 fc->caps = cpu_to_le32(caps); 962 fc->wanted = cpu_to_le32(wanted); 963 fc->dirty = cpu_to_le32(dirty); 964 fc->ino = cpu_to_le64(ino); 965 fc->snap_follows = cpu_to_le64(follows); 966 967 fc->size = cpu_to_le64(size); 968 fc->max_size = cpu_to_le64(max_size); 969 if (mtime) 970 ceph_encode_timespec(&fc->mtime, mtime); 971 if (atime) 972 ceph_encode_timespec(&fc->atime, atime); 973 fc->time_warp_seq = cpu_to_le32(time_warp_seq); 974 975 fc->uid = cpu_to_le32(uid); 976 fc->gid = cpu_to_le32(gid); 977 fc->mode = cpu_to_le32(mode); 978 979 fc->xattr_version = cpu_to_le64(xattr_version); 980 if (xattrs_buf) { 981 msg->middle = ceph_buffer_get(xattrs_buf); 982 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); 983 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); 984 } 985 986 ceph_con_send(&session->s_con, msg); 987 return 0; 988 } 989 990 static void __queue_cap_release(struct ceph_mds_session *session, 991 u64 ino, u64 cap_id, u32 migrate_seq, 992 u32 issue_seq) 993 { 994 struct ceph_msg *msg; 995 struct ceph_mds_cap_release *head; 996 struct ceph_mds_cap_item *item; 997 998 spin_lock(&session->s_cap_lock); 999 BUG_ON(!session->s_num_cap_releases); 1000 msg = list_first_entry(&session->s_cap_releases, 1001 struct ceph_msg, list_head); 1002 1003 dout(" adding %llx release to mds%d msg %p (%d left)\n", 1004 ino, session->s_mds, msg, session->s_num_cap_releases); 1005 1006 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE); 1007 head = msg->front.iov_base; 1008 head->num = cpu_to_le32(le32_to_cpu(head->num) + 1); 1009 item = msg->front.iov_base + msg->front.iov_len; 1010 item->ino = cpu_to_le64(ino); 1011 item->cap_id = cpu_to_le64(cap_id); 1012 item->migrate_seq = cpu_to_le32(migrate_seq); 1013 item->seq = cpu_to_le32(issue_seq); 1014 1015 session->s_num_cap_releases--; 1016 1017 msg->front.iov_len += sizeof(*item); 1018 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1019 dout(" release msg %p full\n", msg); 1020 list_move_tail(&msg->list_head, &session->s_cap_releases_done); 1021 } else { 1022 dout(" release msg %p at %d/%d (%d)\n", msg, 1023 (int)le32_to_cpu(head->num), 1024 (int)CEPH_CAPS_PER_RELEASE, 1025 (int)msg->front.iov_len); 1026 } 1027 spin_unlock(&session->s_cap_lock); 1028 } 1029 1030 /* 1031 * Queue cap releases when an inode is dropped from our cache. Since 1032 * inode is about to be destroyed, there is no need for i_lock. 1033 */ 1034 void ceph_queue_caps_release(struct inode *inode) 1035 { 1036 struct ceph_inode_info *ci = ceph_inode(inode); 1037 struct rb_node *p; 1038 1039 p = rb_first(&ci->i_caps); 1040 while (p) { 1041 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); 1042 struct ceph_mds_session *session = cap->session; 1043 1044 __queue_cap_release(session, ceph_ino(inode), cap->cap_id, 1045 cap->mseq, cap->issue_seq); 1046 p = rb_next(p); 1047 __ceph_remove_cap(cap); 1048 } 1049 } 1050 1051 /* 1052 * Send a cap msg on the given inode. Update our caps state, then 1053 * drop i_lock and send the message. 1054 * 1055 * Make note of max_size reported/requested from mds, revoked caps 1056 * that have now been implemented. 1057 * 1058 * Make half-hearted attempt ot to invalidate page cache if we are 1059 * dropping RDCACHE. Note that this will leave behind locked pages 1060 * that we'll then need to deal with elsewhere. 1061 * 1062 * Return non-zero if delayed release, or we experienced an error 1063 * such that the caller should requeue + retry later. 1064 * 1065 * called with i_lock, then drops it. 1066 * caller should hold snap_rwsem (read), s_mutex. 1067 */ 1068 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, 1069 int op, int used, int want, int retain, int flushing, 1070 unsigned *pflush_tid) 1071 __releases(cap->ci->vfs_inode->i_lock) 1072 { 1073 struct ceph_inode_info *ci = cap->ci; 1074 struct inode *inode = &ci->vfs_inode; 1075 u64 cap_id = cap->cap_id; 1076 int held, revoking, dropping, keep; 1077 u64 seq, issue_seq, mseq, time_warp_seq, follows; 1078 u64 size, max_size; 1079 struct timespec mtime, atime; 1080 int wake = 0; 1081 mode_t mode; 1082 uid_t uid; 1083 gid_t gid; 1084 struct ceph_mds_session *session; 1085 u64 xattr_version = 0; 1086 int delayed = 0; 1087 u64 flush_tid = 0; 1088 int i; 1089 int ret; 1090 1091 held = cap->issued | cap->implemented; 1092 revoking = cap->implemented & ~cap->issued; 1093 retain &= ~revoking; 1094 dropping = cap->issued & ~retain; 1095 1096 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", 1097 inode, cap, cap->session, 1098 ceph_cap_string(held), ceph_cap_string(held & retain), 1099 ceph_cap_string(revoking)); 1100 BUG_ON((retain & CEPH_CAP_PIN) == 0); 1101 1102 session = cap->session; 1103 1104 /* don't release wanted unless we've waited a bit. */ 1105 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1106 time_before(jiffies, ci->i_hold_caps_min)) { 1107 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", 1108 ceph_cap_string(cap->issued), 1109 ceph_cap_string(cap->issued & retain), 1110 ceph_cap_string(cap->mds_wanted), 1111 ceph_cap_string(want)); 1112 want |= cap->mds_wanted; 1113 retain |= cap->issued; 1114 delayed = 1; 1115 } 1116 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); 1117 1118 cap->issued &= retain; /* drop bits we don't want */ 1119 if (cap->implemented & ~cap->issued) { 1120 /* 1121 * Wake up any waiters on wanted -> needed transition. 1122 * This is due to the weird transition from buffered 1123 * to sync IO... we need to flush dirty pages _before_ 1124 * allowing sync writes to avoid reordering. 1125 */ 1126 wake = 1; 1127 } 1128 cap->implemented &= cap->issued | used; 1129 cap->mds_wanted = want; 1130 1131 if (flushing) { 1132 /* 1133 * assign a tid for flush operations so we can avoid 1134 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark 1135 * clean type races. track latest tid for every bit 1136 * so we can handle flush AxFw, flush Fw, and have the 1137 * first ack clean Ax. 1138 */ 1139 flush_tid = ++ci->i_cap_flush_last_tid; 1140 if (pflush_tid) 1141 *pflush_tid = flush_tid; 1142 dout(" cap_flush_tid %d\n", (int)flush_tid); 1143 for (i = 0; i < CEPH_CAP_BITS; i++) 1144 if (flushing & (1 << i)) 1145 ci->i_cap_flush_tid[i] = flush_tid; 1146 } 1147 1148 keep = cap->implemented; 1149 seq = cap->seq; 1150 issue_seq = cap->issue_seq; 1151 mseq = cap->mseq; 1152 size = inode->i_size; 1153 ci->i_reported_size = size; 1154 max_size = ci->i_wanted_max_size; 1155 ci->i_requested_max_size = max_size; 1156 mtime = inode->i_mtime; 1157 atime = inode->i_atime; 1158 time_warp_seq = ci->i_time_warp_seq; 1159 follows = ci->i_snap_realm->cached_context->seq; 1160 uid = inode->i_uid; 1161 gid = inode->i_gid; 1162 mode = inode->i_mode; 1163 1164 if (dropping & CEPH_CAP_XATTR_EXCL) { 1165 __ceph_build_xattrs_blob(ci); 1166 xattr_version = ci->i_xattrs.version + 1; 1167 } 1168 1169 spin_unlock(&inode->i_lock); 1170 1171 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, 1172 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq, 1173 size, max_size, &mtime, &atime, time_warp_seq, 1174 uid, gid, mode, 1175 xattr_version, 1176 (flushing & CEPH_CAP_XATTR_EXCL) ? ci->i_xattrs.blob : NULL, 1177 follows); 1178 if (ret < 0) { 1179 dout("error sending cap msg, must requeue %p\n", inode); 1180 delayed = 1; 1181 } 1182 1183 if (wake) 1184 wake_up_all(&ci->i_cap_wq); 1185 1186 return delayed; 1187 } 1188 1189 /* 1190 * When a snapshot is taken, clients accumulate dirty metadata on 1191 * inodes with capabilities in ceph_cap_snaps to describe the file 1192 * state at the time the snapshot was taken. This must be flushed 1193 * asynchronously back to the MDS once sync writes complete and dirty 1194 * data is written out. 1195 * 1196 * Called under i_lock. Takes s_mutex as needed. 1197 */ 1198 void __ceph_flush_snaps(struct ceph_inode_info *ci, 1199 struct ceph_mds_session **psession) 1200 { 1201 struct inode *inode = &ci->vfs_inode; 1202 int mds; 1203 struct ceph_cap_snap *capsnap; 1204 u32 mseq; 1205 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc; 1206 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold 1207 session->s_mutex */ 1208 u64 next_follows = 0; /* keep track of how far we've gotten through the 1209 i_cap_snaps list, and skip these entries next time 1210 around to avoid an infinite loop */ 1211 1212 if (psession) 1213 session = *psession; 1214 1215 dout("__flush_snaps %p\n", inode); 1216 retry: 1217 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 1218 /* avoid an infiniute loop after retry */ 1219 if (capsnap->follows < next_follows) 1220 continue; 1221 /* 1222 * we need to wait for sync writes to complete and for dirty 1223 * pages to be written out. 1224 */ 1225 if (capsnap->dirty_pages || capsnap->writing) 1226 continue; 1227 1228 /* 1229 * if cap writeback already occurred, we should have dropped 1230 * the capsnap in ceph_put_wrbuffer_cap_refs. 1231 */ 1232 BUG_ON(capsnap->dirty == 0); 1233 1234 /* pick mds, take s_mutex */ 1235 mds = __ceph_get_cap_mds(ci, &mseq); 1236 if (session && session->s_mds != mds) { 1237 dout("oops, wrong session %p mutex\n", session); 1238 mutex_unlock(&session->s_mutex); 1239 ceph_put_mds_session(session); 1240 session = NULL; 1241 } 1242 if (!session) { 1243 spin_unlock(&inode->i_lock); 1244 mutex_lock(&mdsc->mutex); 1245 session = __ceph_lookup_mds_session(mdsc, mds); 1246 mutex_unlock(&mdsc->mutex); 1247 if (session) { 1248 dout("inverting session/ino locks on %p\n", 1249 session); 1250 mutex_lock(&session->s_mutex); 1251 } 1252 /* 1253 * if session == NULL, we raced against a cap 1254 * deletion. retry, and we'll get a better 1255 * @mds value next time. 1256 */ 1257 spin_lock(&inode->i_lock); 1258 goto retry; 1259 } 1260 1261 capsnap->flush_tid = ++ci->i_cap_flush_last_tid; 1262 atomic_inc(&capsnap->nref); 1263 if (!list_empty(&capsnap->flushing_item)) 1264 list_del_init(&capsnap->flushing_item); 1265 list_add_tail(&capsnap->flushing_item, 1266 &session->s_cap_snaps_flushing); 1267 spin_unlock(&inode->i_lock); 1268 1269 dout("flush_snaps %p cap_snap %p follows %lld size %llu\n", 1270 inode, capsnap, next_follows, capsnap->size); 1271 send_cap_msg(session, ceph_vino(inode).ino, 0, 1272 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, 1273 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq, 1274 capsnap->size, 0, 1275 &capsnap->mtime, &capsnap->atime, 1276 capsnap->time_warp_seq, 1277 capsnap->uid, capsnap->gid, capsnap->mode, 1278 0, NULL, 1279 capsnap->follows); 1280 1281 next_follows = capsnap->follows + 1; 1282 ceph_put_cap_snap(capsnap); 1283 1284 spin_lock(&inode->i_lock); 1285 goto retry; 1286 } 1287 1288 /* we flushed them all; remove this inode from the queue */ 1289 spin_lock(&mdsc->snap_flush_lock); 1290 list_del_init(&ci->i_snap_flush_item); 1291 spin_unlock(&mdsc->snap_flush_lock); 1292 1293 if (psession) 1294 *psession = session; 1295 else if (session) { 1296 mutex_unlock(&session->s_mutex); 1297 ceph_put_mds_session(session); 1298 } 1299 } 1300 1301 static void ceph_flush_snaps(struct ceph_inode_info *ci) 1302 { 1303 struct inode *inode = &ci->vfs_inode; 1304 1305 spin_lock(&inode->i_lock); 1306 __ceph_flush_snaps(ci, NULL); 1307 spin_unlock(&inode->i_lock); 1308 } 1309 1310 /* 1311 * Mark caps dirty. If inode is newly dirty, add to the global dirty 1312 * list. 1313 */ 1314 void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask) 1315 { 1316 struct ceph_mds_client *mdsc = 1317 &ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 1318 struct inode *inode = &ci->vfs_inode; 1319 int was = ci->i_dirty_caps; 1320 int dirty = 0; 1321 1322 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, 1323 ceph_cap_string(mask), ceph_cap_string(was), 1324 ceph_cap_string(was | mask)); 1325 ci->i_dirty_caps |= mask; 1326 if (was == 0) { 1327 dout(" inode %p now dirty\n", &ci->vfs_inode); 1328 BUG_ON(!list_empty(&ci->i_dirty_item)); 1329 spin_lock(&mdsc->cap_dirty_lock); 1330 list_add(&ci->i_dirty_item, &mdsc->cap_dirty); 1331 spin_unlock(&mdsc->cap_dirty_lock); 1332 if (ci->i_flushing_caps == 0) { 1333 igrab(inode); 1334 dirty |= I_DIRTY_SYNC; 1335 } 1336 } 1337 BUG_ON(list_empty(&ci->i_dirty_item)); 1338 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && 1339 (mask & CEPH_CAP_FILE_BUFFER)) 1340 dirty |= I_DIRTY_DATASYNC; 1341 if (dirty) 1342 __mark_inode_dirty(inode, dirty); 1343 __cap_delay_requeue(mdsc, ci); 1344 } 1345 1346 /* 1347 * Add dirty inode to the flushing list. Assigned a seq number so we 1348 * can wait for caps to flush without starving. 1349 * 1350 * Called under i_lock. 1351 */ 1352 static int __mark_caps_flushing(struct inode *inode, 1353 struct ceph_mds_session *session) 1354 { 1355 struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc; 1356 struct ceph_inode_info *ci = ceph_inode(inode); 1357 int flushing; 1358 1359 BUG_ON(ci->i_dirty_caps == 0); 1360 BUG_ON(list_empty(&ci->i_dirty_item)); 1361 1362 flushing = ci->i_dirty_caps; 1363 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", 1364 ceph_cap_string(flushing), 1365 ceph_cap_string(ci->i_flushing_caps), 1366 ceph_cap_string(ci->i_flushing_caps | flushing)); 1367 ci->i_flushing_caps |= flushing; 1368 ci->i_dirty_caps = 0; 1369 dout(" inode %p now !dirty\n", inode); 1370 1371 spin_lock(&mdsc->cap_dirty_lock); 1372 list_del_init(&ci->i_dirty_item); 1373 1374 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq; 1375 if (list_empty(&ci->i_flushing_item)) { 1376 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1377 mdsc->num_cap_flushing++; 1378 dout(" inode %p now flushing seq %lld\n", inode, 1379 ci->i_cap_flush_seq); 1380 } else { 1381 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1382 dout(" inode %p now flushing (more) seq %lld\n", inode, 1383 ci->i_cap_flush_seq); 1384 } 1385 spin_unlock(&mdsc->cap_dirty_lock); 1386 1387 return flushing; 1388 } 1389 1390 /* 1391 * try to invalidate mapping pages without blocking. 1392 */ 1393 static int mapping_is_empty(struct address_space *mapping) 1394 { 1395 struct page *page = find_get_page(mapping, 0); 1396 1397 if (!page) 1398 return 1; 1399 1400 put_page(page); 1401 return 0; 1402 } 1403 1404 static int try_nonblocking_invalidate(struct inode *inode) 1405 { 1406 struct ceph_inode_info *ci = ceph_inode(inode); 1407 u32 invalidating_gen = ci->i_rdcache_gen; 1408 1409 spin_unlock(&inode->i_lock); 1410 invalidate_mapping_pages(&inode->i_data, 0, -1); 1411 spin_lock(&inode->i_lock); 1412 1413 if (mapping_is_empty(&inode->i_data) && 1414 invalidating_gen == ci->i_rdcache_gen) { 1415 /* success. */ 1416 dout("try_nonblocking_invalidate %p success\n", inode); 1417 ci->i_rdcache_gen = 0; 1418 ci->i_rdcache_revoking = 0; 1419 return 0; 1420 } 1421 dout("try_nonblocking_invalidate %p failed\n", inode); 1422 return -1; 1423 } 1424 1425 /* 1426 * Swiss army knife function to examine currently used and wanted 1427 * versus held caps. Release, flush, ack revoked caps to mds as 1428 * appropriate. 1429 * 1430 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay 1431 * cap release further. 1432 * CHECK_CAPS_AUTHONLY - we should only check the auth cap 1433 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without 1434 * further delay. 1435 */ 1436 void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1437 struct ceph_mds_session *session) 1438 __releases(session->s_mutex) 1439 { 1440 struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode); 1441 struct ceph_mds_client *mdsc = &client->mdsc; 1442 struct inode *inode = &ci->vfs_inode; 1443 struct ceph_cap *cap; 1444 int file_wanted, used; 1445 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ 1446 int issued, implemented, want, retain, revoking, flushing = 0; 1447 int mds = -1; /* keep track of how far we've gone through i_caps list 1448 to avoid an infinite loop on retry */ 1449 struct rb_node *p; 1450 int tried_invalidate = 0; 1451 int delayed = 0, sent = 0, force_requeue = 0, num; 1452 int queue_invalidate = 0; 1453 int is_delayed = flags & CHECK_CAPS_NODELAY; 1454 1455 /* if we are unmounting, flush any unused caps immediately. */ 1456 if (mdsc->stopping) 1457 is_delayed = 1; 1458 1459 spin_lock(&inode->i_lock); 1460 1461 if (ci->i_ceph_flags & CEPH_I_FLUSH) 1462 flags |= CHECK_CAPS_FLUSH; 1463 1464 /* flush snaps first time around only */ 1465 if (!list_empty(&ci->i_cap_snaps)) 1466 __ceph_flush_snaps(ci, &session); 1467 goto retry_locked; 1468 retry: 1469 spin_lock(&inode->i_lock); 1470 retry_locked: 1471 file_wanted = __ceph_caps_file_wanted(ci); 1472 used = __ceph_caps_used(ci); 1473 want = file_wanted | used; 1474 issued = __ceph_caps_issued(ci, &implemented); 1475 revoking = implemented & ~issued; 1476 1477 retain = want | CEPH_CAP_PIN; 1478 if (!mdsc->stopping && inode->i_nlink > 0) { 1479 if (want) { 1480 retain |= CEPH_CAP_ANY; /* be greedy */ 1481 } else { 1482 retain |= CEPH_CAP_ANY_SHARED; 1483 /* 1484 * keep RD only if we didn't have the file open RW, 1485 * because then the mds would revoke it anyway to 1486 * journal max_size=0. 1487 */ 1488 if (ci->i_max_size == 0) 1489 retain |= CEPH_CAP_ANY_RD; 1490 } 1491 } 1492 1493 dout("check_caps %p file_want %s used %s dirty %s flushing %s" 1494 " issued %s revoking %s retain %s %s%s%s\n", inode, 1495 ceph_cap_string(file_wanted), 1496 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), 1497 ceph_cap_string(ci->i_flushing_caps), 1498 ceph_cap_string(issued), ceph_cap_string(revoking), 1499 ceph_cap_string(retain), 1500 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", 1501 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", 1502 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); 1503 1504 /* 1505 * If we no longer need to hold onto old our caps, and we may 1506 * have cached pages, but don't want them, then try to invalidate. 1507 * If we fail, it's because pages are locked.... try again later. 1508 */ 1509 if ((!is_delayed || mdsc->stopping) && 1510 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ 1511 ci->i_rdcache_gen && /* may have cached pages */ 1512 (file_wanted == 0 || /* no open files */ 1513 (revoking & CEPH_CAP_FILE_CACHE)) && /* or revoking cache */ 1514 !tried_invalidate) { 1515 dout("check_caps trying to invalidate on %p\n", inode); 1516 if (try_nonblocking_invalidate(inode) < 0) { 1517 if (revoking & CEPH_CAP_FILE_CACHE) { 1518 dout("check_caps queuing invalidate\n"); 1519 queue_invalidate = 1; 1520 ci->i_rdcache_revoking = ci->i_rdcache_gen; 1521 } else { 1522 dout("check_caps failed to invalidate pages\n"); 1523 /* we failed to invalidate pages. check these 1524 caps again later. */ 1525 force_requeue = 1; 1526 __cap_set_timeouts(mdsc, ci); 1527 } 1528 } 1529 tried_invalidate = 1; 1530 goto retry_locked; 1531 } 1532 1533 num = 0; 1534 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 1535 cap = rb_entry(p, struct ceph_cap, ci_node); 1536 num++; 1537 1538 /* avoid looping forever */ 1539 if (mds >= cap->mds || 1540 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) 1541 continue; 1542 1543 /* NOTE: no side-effects allowed, until we take s_mutex */ 1544 1545 revoking = cap->implemented & ~cap->issued; 1546 if (revoking) 1547 dout(" mds%d revoking %s\n", cap->mds, 1548 ceph_cap_string(revoking)); 1549 1550 if (cap == ci->i_auth_cap && 1551 (cap->issued & CEPH_CAP_FILE_WR)) { 1552 /* request larger max_size from MDS? */ 1553 if (ci->i_wanted_max_size > ci->i_max_size && 1554 ci->i_wanted_max_size > ci->i_requested_max_size) { 1555 dout("requesting new max_size\n"); 1556 goto ack; 1557 } 1558 1559 /* approaching file_max? */ 1560 if ((inode->i_size << 1) >= ci->i_max_size && 1561 (ci->i_reported_size << 1) < ci->i_max_size) { 1562 dout("i_size approaching max_size\n"); 1563 goto ack; 1564 } 1565 } 1566 /* flush anything dirty? */ 1567 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && 1568 ci->i_dirty_caps) { 1569 dout("flushing dirty caps\n"); 1570 goto ack; 1571 } 1572 1573 /* completed revocation? going down and there are no caps? */ 1574 if (revoking && (revoking & used) == 0) { 1575 dout("completed revocation of %s\n", 1576 ceph_cap_string(cap->implemented & ~cap->issued)); 1577 goto ack; 1578 } 1579 1580 /* want more caps from mds? */ 1581 if (want & ~(cap->mds_wanted | cap->issued)) 1582 goto ack; 1583 1584 /* things we might delay */ 1585 if ((cap->issued & ~retain) == 0 && 1586 cap->mds_wanted == want) 1587 continue; /* nope, all good */ 1588 1589 if (is_delayed) 1590 goto ack; 1591 1592 /* delay? */ 1593 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1594 time_before(jiffies, ci->i_hold_caps_max)) { 1595 dout(" delaying issued %s -> %s, wanted %s -> %s\n", 1596 ceph_cap_string(cap->issued), 1597 ceph_cap_string(cap->issued & retain), 1598 ceph_cap_string(cap->mds_wanted), 1599 ceph_cap_string(want)); 1600 delayed++; 1601 continue; 1602 } 1603 1604 ack: 1605 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1606 dout(" skipping %p I_NOFLUSH set\n", inode); 1607 continue; 1608 } 1609 1610 if (session && session != cap->session) { 1611 dout("oops, wrong session %p mutex\n", session); 1612 mutex_unlock(&session->s_mutex); 1613 session = NULL; 1614 } 1615 if (!session) { 1616 session = cap->session; 1617 if (mutex_trylock(&session->s_mutex) == 0) { 1618 dout("inverting session/ino locks on %p\n", 1619 session); 1620 spin_unlock(&inode->i_lock); 1621 if (took_snap_rwsem) { 1622 up_read(&mdsc->snap_rwsem); 1623 took_snap_rwsem = 0; 1624 } 1625 mutex_lock(&session->s_mutex); 1626 goto retry; 1627 } 1628 } 1629 /* take snap_rwsem after session mutex */ 1630 if (!took_snap_rwsem) { 1631 if (down_read_trylock(&mdsc->snap_rwsem) == 0) { 1632 dout("inverting snap/in locks on %p\n", 1633 inode); 1634 spin_unlock(&inode->i_lock); 1635 down_read(&mdsc->snap_rwsem); 1636 took_snap_rwsem = 1; 1637 goto retry; 1638 } 1639 took_snap_rwsem = 1; 1640 } 1641 1642 if (cap == ci->i_auth_cap && ci->i_dirty_caps) 1643 flushing = __mark_caps_flushing(inode, session); 1644 1645 mds = cap->mds; /* remember mds, so we don't repeat */ 1646 sent++; 1647 1648 /* __send_cap drops i_lock */ 1649 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want, 1650 retain, flushing, NULL); 1651 goto retry; /* retake i_lock and restart our cap scan. */ 1652 } 1653 1654 /* 1655 * Reschedule delayed caps release if we delayed anything, 1656 * otherwise cancel. 1657 */ 1658 if (delayed && is_delayed) 1659 force_requeue = 1; /* __send_cap delayed release; requeue */ 1660 if (!delayed && !is_delayed) 1661 __cap_delay_cancel(mdsc, ci); 1662 else if (!is_delayed || force_requeue) 1663 __cap_delay_requeue(mdsc, ci); 1664 1665 spin_unlock(&inode->i_lock); 1666 1667 if (queue_invalidate) 1668 ceph_queue_invalidate(inode); 1669 1670 if (session) 1671 mutex_unlock(&session->s_mutex); 1672 if (took_snap_rwsem) 1673 up_read(&mdsc->snap_rwsem); 1674 } 1675 1676 /* 1677 * Try to flush dirty caps back to the auth mds. 1678 */ 1679 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session, 1680 unsigned *flush_tid) 1681 { 1682 struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc; 1683 struct ceph_inode_info *ci = ceph_inode(inode); 1684 int unlock_session = session ? 0 : 1; 1685 int flushing = 0; 1686 1687 retry: 1688 spin_lock(&inode->i_lock); 1689 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1690 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode); 1691 goto out; 1692 } 1693 if (ci->i_dirty_caps && ci->i_auth_cap) { 1694 struct ceph_cap *cap = ci->i_auth_cap; 1695 int used = __ceph_caps_used(ci); 1696 int want = __ceph_caps_wanted(ci); 1697 int delayed; 1698 1699 if (!session) { 1700 spin_unlock(&inode->i_lock); 1701 session = cap->session; 1702 mutex_lock(&session->s_mutex); 1703 goto retry; 1704 } 1705 BUG_ON(session != cap->session); 1706 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) 1707 goto out; 1708 1709 flushing = __mark_caps_flushing(inode, session); 1710 1711 /* __send_cap drops i_lock */ 1712 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, 1713 cap->issued | cap->implemented, flushing, 1714 flush_tid); 1715 if (!delayed) 1716 goto out_unlocked; 1717 1718 spin_lock(&inode->i_lock); 1719 __cap_delay_requeue(mdsc, ci); 1720 } 1721 out: 1722 spin_unlock(&inode->i_lock); 1723 out_unlocked: 1724 if (session && unlock_session) 1725 mutex_unlock(&session->s_mutex); 1726 return flushing; 1727 } 1728 1729 /* 1730 * Return true if we've flushed caps through the given flush_tid. 1731 */ 1732 static int caps_are_flushed(struct inode *inode, unsigned tid) 1733 { 1734 struct ceph_inode_info *ci = ceph_inode(inode); 1735 int i, ret = 1; 1736 1737 spin_lock(&inode->i_lock); 1738 for (i = 0; i < CEPH_CAP_BITS; i++) 1739 if ((ci->i_flushing_caps & (1 << i)) && 1740 ci->i_cap_flush_tid[i] <= tid) { 1741 /* still flushing this bit */ 1742 ret = 0; 1743 break; 1744 } 1745 spin_unlock(&inode->i_lock); 1746 return ret; 1747 } 1748 1749 /* 1750 * Wait on any unsafe replies for the given inode. First wait on the 1751 * newest request, and make that the upper bound. Then, if there are 1752 * more requests, keep waiting on the oldest as long as it is still older 1753 * than the original request. 1754 */ 1755 static void sync_write_wait(struct inode *inode) 1756 { 1757 struct ceph_inode_info *ci = ceph_inode(inode); 1758 struct list_head *head = &ci->i_unsafe_writes; 1759 struct ceph_osd_request *req; 1760 u64 last_tid; 1761 1762 spin_lock(&ci->i_unsafe_lock); 1763 if (list_empty(head)) 1764 goto out; 1765 1766 /* set upper bound as _last_ entry in chain */ 1767 req = list_entry(head->prev, struct ceph_osd_request, 1768 r_unsafe_item); 1769 last_tid = req->r_tid; 1770 1771 do { 1772 ceph_osdc_get_request(req); 1773 spin_unlock(&ci->i_unsafe_lock); 1774 dout("sync_write_wait on tid %llu (until %llu)\n", 1775 req->r_tid, last_tid); 1776 wait_for_completion(&req->r_safe_completion); 1777 spin_lock(&ci->i_unsafe_lock); 1778 ceph_osdc_put_request(req); 1779 1780 /* 1781 * from here on look at first entry in chain, since we 1782 * only want to wait for anything older than last_tid 1783 */ 1784 if (list_empty(head)) 1785 break; 1786 req = list_entry(head->next, struct ceph_osd_request, 1787 r_unsafe_item); 1788 } while (req->r_tid < last_tid); 1789 out: 1790 spin_unlock(&ci->i_unsafe_lock); 1791 } 1792 1793 int ceph_fsync(struct file *file, int datasync) 1794 { 1795 struct inode *inode = file->f_mapping->host; 1796 struct ceph_inode_info *ci = ceph_inode(inode); 1797 unsigned flush_tid; 1798 int ret; 1799 int dirty; 1800 1801 dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); 1802 sync_write_wait(inode); 1803 1804 ret = filemap_write_and_wait(inode->i_mapping); 1805 if (ret < 0) 1806 return ret; 1807 1808 dirty = try_flush_caps(inode, NULL, &flush_tid); 1809 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); 1810 1811 /* 1812 * only wait on non-file metadata writeback (the mds 1813 * can recover size and mtime, so we don't need to 1814 * wait for that) 1815 */ 1816 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { 1817 dout("fsync waiting for flush_tid %u\n", flush_tid); 1818 ret = wait_event_interruptible(ci->i_cap_wq, 1819 caps_are_flushed(inode, flush_tid)); 1820 } 1821 1822 dout("fsync %p%s done\n", inode, datasync ? " datasync" : ""); 1823 return ret; 1824 } 1825 1826 /* 1827 * Flush any dirty caps back to the mds. If we aren't asked to wait, 1828 * queue inode for flush but don't do so immediately, because we can 1829 * get by with fewer MDS messages if we wait for data writeback to 1830 * complete first. 1831 */ 1832 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc) 1833 { 1834 struct ceph_inode_info *ci = ceph_inode(inode); 1835 unsigned flush_tid; 1836 int err = 0; 1837 int dirty; 1838 int wait = wbc->sync_mode == WB_SYNC_ALL; 1839 1840 dout("write_inode %p wait=%d\n", inode, wait); 1841 if (wait) { 1842 dirty = try_flush_caps(inode, NULL, &flush_tid); 1843 if (dirty) 1844 err = wait_event_interruptible(ci->i_cap_wq, 1845 caps_are_flushed(inode, flush_tid)); 1846 } else { 1847 struct ceph_mds_client *mdsc = 1848 &ceph_sb_to_client(inode->i_sb)->mdsc; 1849 1850 spin_lock(&inode->i_lock); 1851 if (__ceph_caps_dirty(ci)) 1852 __cap_delay_requeue_front(mdsc, ci); 1853 spin_unlock(&inode->i_lock); 1854 } 1855 return err; 1856 } 1857 1858 /* 1859 * After a recovering MDS goes active, we need to resend any caps 1860 * we were flushing. 1861 * 1862 * Caller holds session->s_mutex. 1863 */ 1864 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, 1865 struct ceph_mds_session *session) 1866 { 1867 struct ceph_cap_snap *capsnap; 1868 1869 dout("kick_flushing_capsnaps mds%d\n", session->s_mds); 1870 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, 1871 flushing_item) { 1872 struct ceph_inode_info *ci = capsnap->ci; 1873 struct inode *inode = &ci->vfs_inode; 1874 struct ceph_cap *cap; 1875 1876 spin_lock(&inode->i_lock); 1877 cap = ci->i_auth_cap; 1878 if (cap && cap->session == session) { 1879 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, 1880 cap, capsnap); 1881 __ceph_flush_snaps(ci, &session); 1882 } else { 1883 pr_err("%p auth cap %p not mds%d ???\n", inode, 1884 cap, session->s_mds); 1885 } 1886 spin_unlock(&inode->i_lock); 1887 } 1888 } 1889 1890 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 1891 struct ceph_mds_session *session) 1892 { 1893 struct ceph_inode_info *ci; 1894 1895 kick_flushing_capsnaps(mdsc, session); 1896 1897 dout("kick_flushing_caps mds%d\n", session->s_mds); 1898 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 1899 struct inode *inode = &ci->vfs_inode; 1900 struct ceph_cap *cap; 1901 int delayed = 0; 1902 1903 spin_lock(&inode->i_lock); 1904 cap = ci->i_auth_cap; 1905 if (cap && cap->session == session) { 1906 dout("kick_flushing_caps %p cap %p %s\n", inode, 1907 cap, ceph_cap_string(ci->i_flushing_caps)); 1908 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1909 __ceph_caps_used(ci), 1910 __ceph_caps_wanted(ci), 1911 cap->issued | cap->implemented, 1912 ci->i_flushing_caps, NULL); 1913 if (delayed) { 1914 spin_lock(&inode->i_lock); 1915 __cap_delay_requeue(mdsc, ci); 1916 spin_unlock(&inode->i_lock); 1917 } 1918 } else { 1919 pr_err("%p auth cap %p not mds%d ???\n", inode, 1920 cap, session->s_mds); 1921 spin_unlock(&inode->i_lock); 1922 } 1923 } 1924 } 1925 1926 1927 /* 1928 * Take references to capabilities we hold, so that we don't release 1929 * them to the MDS prematurely. 1930 * 1931 * Protected by i_lock. 1932 */ 1933 static void __take_cap_refs(struct ceph_inode_info *ci, int got) 1934 { 1935 if (got & CEPH_CAP_PIN) 1936 ci->i_pin_ref++; 1937 if (got & CEPH_CAP_FILE_RD) 1938 ci->i_rd_ref++; 1939 if (got & CEPH_CAP_FILE_CACHE) 1940 ci->i_rdcache_ref++; 1941 if (got & CEPH_CAP_FILE_WR) 1942 ci->i_wr_ref++; 1943 if (got & CEPH_CAP_FILE_BUFFER) { 1944 if (ci->i_wrbuffer_ref == 0) 1945 igrab(&ci->vfs_inode); 1946 ci->i_wrbuffer_ref++; 1947 dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n", 1948 &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref); 1949 } 1950 } 1951 1952 /* 1953 * Try to grab cap references. Specify those refs we @want, and the 1954 * minimal set we @need. Also include the larger offset we are writing 1955 * to (when applicable), and check against max_size here as well. 1956 * Note that caller is responsible for ensuring max_size increases are 1957 * requested from the MDS. 1958 */ 1959 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, 1960 int *got, loff_t endoff, int *check_max, int *err) 1961 { 1962 struct inode *inode = &ci->vfs_inode; 1963 int ret = 0; 1964 int have, implemented; 1965 int file_wanted; 1966 1967 dout("get_cap_refs %p need %s want %s\n", inode, 1968 ceph_cap_string(need), ceph_cap_string(want)); 1969 spin_lock(&inode->i_lock); 1970 1971 /* make sure file is actually open */ 1972 file_wanted = __ceph_caps_file_wanted(ci); 1973 if ((file_wanted & need) == 0) { 1974 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n", 1975 ceph_cap_string(need), ceph_cap_string(file_wanted)); 1976 *err = -EBADF; 1977 ret = 1; 1978 goto out; 1979 } 1980 1981 if (need & CEPH_CAP_FILE_WR) { 1982 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { 1983 dout("get_cap_refs %p endoff %llu > maxsize %llu\n", 1984 inode, endoff, ci->i_max_size); 1985 if (endoff > ci->i_wanted_max_size) { 1986 *check_max = 1; 1987 ret = 1; 1988 } 1989 goto out; 1990 } 1991 /* 1992 * If a sync write is in progress, we must wait, so that we 1993 * can get a final snapshot value for size+mtime. 1994 */ 1995 if (__ceph_have_pending_cap_snap(ci)) { 1996 dout("get_cap_refs %p cap_snap_pending\n", inode); 1997 goto out; 1998 } 1999 } 2000 have = __ceph_caps_issued(ci, &implemented); 2001 2002 /* 2003 * disallow writes while a truncate is pending 2004 */ 2005 if (ci->i_truncate_pending) 2006 have &= ~CEPH_CAP_FILE_WR; 2007 2008 if ((have & need) == need) { 2009 /* 2010 * Look at (implemented & ~have & not) so that we keep waiting 2011 * on transition from wanted -> needed caps. This is needed 2012 * for WRBUFFER|WR -> WR to avoid a new WR sync write from 2013 * going before a prior buffered writeback happens. 2014 */ 2015 int not = want & ~(have & need); 2016 int revoking = implemented & ~have; 2017 dout("get_cap_refs %p have %s but not %s (revoking %s)\n", 2018 inode, ceph_cap_string(have), ceph_cap_string(not), 2019 ceph_cap_string(revoking)); 2020 if ((revoking & not) == 0) { 2021 *got = need | (have & want); 2022 __take_cap_refs(ci, *got); 2023 ret = 1; 2024 } 2025 } else { 2026 dout("get_cap_refs %p have %s needed %s\n", inode, 2027 ceph_cap_string(have), ceph_cap_string(need)); 2028 } 2029 out: 2030 spin_unlock(&inode->i_lock); 2031 dout("get_cap_refs %p ret %d got %s\n", inode, 2032 ret, ceph_cap_string(*got)); 2033 return ret; 2034 } 2035 2036 /* 2037 * Check the offset we are writing up to against our current 2038 * max_size. If necessary, tell the MDS we want to write to 2039 * a larger offset. 2040 */ 2041 static void check_max_size(struct inode *inode, loff_t endoff) 2042 { 2043 struct ceph_inode_info *ci = ceph_inode(inode); 2044 int check = 0; 2045 2046 /* do we need to explicitly request a larger max_size? */ 2047 spin_lock(&inode->i_lock); 2048 if ((endoff >= ci->i_max_size || 2049 endoff > (inode->i_size << 1)) && 2050 endoff > ci->i_wanted_max_size) { 2051 dout("write %p at large endoff %llu, req max_size\n", 2052 inode, endoff); 2053 ci->i_wanted_max_size = endoff; 2054 check = 1; 2055 } 2056 spin_unlock(&inode->i_lock); 2057 if (check) 2058 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2059 } 2060 2061 /* 2062 * Wait for caps, and take cap references. If we can't get a WR cap 2063 * due to a small max_size, make sure we check_max_size (and possibly 2064 * ask the mds) so we don't get hung up indefinitely. 2065 */ 2066 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got, 2067 loff_t endoff) 2068 { 2069 int check_max, ret, err; 2070 2071 retry: 2072 if (endoff > 0) 2073 check_max_size(&ci->vfs_inode, endoff); 2074 check_max = 0; 2075 err = 0; 2076 ret = wait_event_interruptible(ci->i_cap_wq, 2077 try_get_cap_refs(ci, need, want, 2078 got, endoff, 2079 &check_max, &err)); 2080 if (err) 2081 ret = err; 2082 if (check_max) 2083 goto retry; 2084 return ret; 2085 } 2086 2087 /* 2088 * Take cap refs. Caller must already know we hold at least one ref 2089 * on the caps in question or we don't know this is safe. 2090 */ 2091 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) 2092 { 2093 spin_lock(&ci->vfs_inode.i_lock); 2094 __take_cap_refs(ci, caps); 2095 spin_unlock(&ci->vfs_inode.i_lock); 2096 } 2097 2098 /* 2099 * Release cap refs. 2100 * 2101 * If we released the last ref on any given cap, call ceph_check_caps 2102 * to release (or schedule a release). 2103 * 2104 * If we are releasing a WR cap (from a sync write), finalize any affected 2105 * cap_snap, and wake up any waiters. 2106 */ 2107 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) 2108 { 2109 struct inode *inode = &ci->vfs_inode; 2110 int last = 0, put = 0, flushsnaps = 0, wake = 0; 2111 struct ceph_cap_snap *capsnap; 2112 2113 spin_lock(&inode->i_lock); 2114 if (had & CEPH_CAP_PIN) 2115 --ci->i_pin_ref; 2116 if (had & CEPH_CAP_FILE_RD) 2117 if (--ci->i_rd_ref == 0) 2118 last++; 2119 if (had & CEPH_CAP_FILE_CACHE) 2120 if (--ci->i_rdcache_ref == 0) 2121 last++; 2122 if (had & CEPH_CAP_FILE_BUFFER) { 2123 if (--ci->i_wrbuffer_ref == 0) { 2124 last++; 2125 put++; 2126 } 2127 dout("put_cap_refs %p wrbuffer %d -> %d (?)\n", 2128 inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref); 2129 } 2130 if (had & CEPH_CAP_FILE_WR) 2131 if (--ci->i_wr_ref == 0) { 2132 last++; 2133 if (!list_empty(&ci->i_cap_snaps)) { 2134 capsnap = list_first_entry(&ci->i_cap_snaps, 2135 struct ceph_cap_snap, 2136 ci_item); 2137 if (capsnap->writing) { 2138 capsnap->writing = 0; 2139 flushsnaps = 2140 __ceph_finish_cap_snap(ci, 2141 capsnap); 2142 wake = 1; 2143 } 2144 } 2145 } 2146 spin_unlock(&inode->i_lock); 2147 2148 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had), 2149 last ? " last" : "", put ? " put" : ""); 2150 2151 if (last && !flushsnaps) 2152 ceph_check_caps(ci, 0, NULL); 2153 else if (flushsnaps) 2154 ceph_flush_snaps(ci); 2155 if (wake) 2156 wake_up_all(&ci->i_cap_wq); 2157 if (put) 2158 iput(inode); 2159 } 2160 2161 /* 2162 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap 2163 * context. Adjust per-snap dirty page accounting as appropriate. 2164 * Once all dirty data for a cap_snap is flushed, flush snapped file 2165 * metadata back to the MDS. If we dropped the last ref, call 2166 * ceph_check_caps. 2167 */ 2168 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 2169 struct ceph_snap_context *snapc) 2170 { 2171 struct inode *inode = &ci->vfs_inode; 2172 int last = 0; 2173 int complete_capsnap = 0; 2174 int drop_capsnap = 0; 2175 int found = 0; 2176 struct ceph_cap_snap *capsnap = NULL; 2177 2178 spin_lock(&inode->i_lock); 2179 ci->i_wrbuffer_ref -= nr; 2180 last = !ci->i_wrbuffer_ref; 2181 2182 if (ci->i_head_snapc == snapc) { 2183 ci->i_wrbuffer_ref_head -= nr; 2184 if (!ci->i_wrbuffer_ref_head) { 2185 ceph_put_snap_context(ci->i_head_snapc); 2186 ci->i_head_snapc = NULL; 2187 } 2188 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", 2189 inode, 2190 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, 2191 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 2192 last ? " LAST" : ""); 2193 } else { 2194 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2195 if (capsnap->context == snapc) { 2196 found = 1; 2197 break; 2198 } 2199 } 2200 BUG_ON(!found); 2201 capsnap->dirty_pages -= nr; 2202 if (capsnap->dirty_pages == 0) { 2203 complete_capsnap = 1; 2204 if (capsnap->dirty == 0) 2205 /* cap writeback completed before we created 2206 * the cap_snap; no FLUSHSNAP is needed */ 2207 drop_capsnap = 1; 2208 } 2209 dout("put_wrbuffer_cap_refs on %p cap_snap %p " 2210 " snap %lld %d/%d -> %d/%d %s%s%s\n", 2211 inode, capsnap, capsnap->context->seq, 2212 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, 2213 ci->i_wrbuffer_ref, capsnap->dirty_pages, 2214 last ? " (wrbuffer last)" : "", 2215 complete_capsnap ? " (complete capsnap)" : "", 2216 drop_capsnap ? " (drop capsnap)" : ""); 2217 if (drop_capsnap) { 2218 ceph_put_snap_context(capsnap->context); 2219 list_del(&capsnap->ci_item); 2220 list_del(&capsnap->flushing_item); 2221 ceph_put_cap_snap(capsnap); 2222 } 2223 } 2224 2225 spin_unlock(&inode->i_lock); 2226 2227 if (last) { 2228 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2229 iput(inode); 2230 } else if (complete_capsnap) { 2231 ceph_flush_snaps(ci); 2232 wake_up_all(&ci->i_cap_wq); 2233 } 2234 if (drop_capsnap) 2235 iput(inode); 2236 } 2237 2238 /* 2239 * Handle a cap GRANT message from the MDS. (Note that a GRANT may 2240 * actually be a revocation if it specifies a smaller cap set.) 2241 * 2242 * caller holds s_mutex and i_lock, we drop both. 2243 * 2244 * return value: 2245 * 0 - ok 2246 * 1 - check_caps on auth cap only (writeback) 2247 * 2 - check_caps (ack revoke) 2248 */ 2249 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant, 2250 struct ceph_mds_session *session, 2251 struct ceph_cap *cap, 2252 struct ceph_buffer *xattr_buf) 2253 __releases(inode->i_lock) 2254 __releases(session->s_mutex) 2255 { 2256 struct ceph_inode_info *ci = ceph_inode(inode); 2257 int mds = session->s_mds; 2258 int seq = le32_to_cpu(grant->seq); 2259 int newcaps = le32_to_cpu(grant->caps); 2260 int issued, implemented, used, wanted, dirty; 2261 u64 size = le64_to_cpu(grant->size); 2262 u64 max_size = le64_to_cpu(grant->max_size); 2263 struct timespec mtime, atime, ctime; 2264 int check_caps = 0; 2265 int wake = 0; 2266 int writeback = 0; 2267 int revoked_rdcache = 0; 2268 int queue_invalidate = 0; 2269 2270 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", 2271 inode, cap, mds, seq, ceph_cap_string(newcaps)); 2272 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, 2273 inode->i_size); 2274 2275 /* 2276 * If CACHE is being revoked, and we have no dirty buffers, 2277 * try to invalidate (once). (If there are dirty buffers, we 2278 * will invalidate _after_ writeback.) 2279 */ 2280 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && 2281 !ci->i_wrbuffer_ref) { 2282 if (try_nonblocking_invalidate(inode) == 0) { 2283 revoked_rdcache = 1; 2284 } else { 2285 /* there were locked pages.. invalidate later 2286 in a separate thread. */ 2287 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { 2288 queue_invalidate = 1; 2289 ci->i_rdcache_revoking = ci->i_rdcache_gen; 2290 } 2291 } 2292 } 2293 2294 /* side effects now are allowed */ 2295 2296 issued = __ceph_caps_issued(ci, &implemented); 2297 issued |= implemented | __ceph_caps_dirty(ci); 2298 2299 cap->cap_gen = session->s_cap_gen; 2300 2301 __check_cap_issue(ci, cap, newcaps); 2302 2303 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) { 2304 inode->i_mode = le32_to_cpu(grant->mode); 2305 inode->i_uid = le32_to_cpu(grant->uid); 2306 inode->i_gid = le32_to_cpu(grant->gid); 2307 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, 2308 inode->i_uid, inode->i_gid); 2309 } 2310 2311 if ((issued & CEPH_CAP_LINK_EXCL) == 0) 2312 inode->i_nlink = le32_to_cpu(grant->nlink); 2313 2314 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { 2315 int len = le32_to_cpu(grant->xattr_len); 2316 u64 version = le64_to_cpu(grant->xattr_version); 2317 2318 if (version > ci->i_xattrs.version) { 2319 dout(" got new xattrs v%llu on %p len %d\n", 2320 version, inode, len); 2321 if (ci->i_xattrs.blob) 2322 ceph_buffer_put(ci->i_xattrs.blob); 2323 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); 2324 ci->i_xattrs.version = version; 2325 } 2326 } 2327 2328 /* size/ctime/mtime/atime? */ 2329 ceph_fill_file_size(inode, issued, 2330 le32_to_cpu(grant->truncate_seq), 2331 le64_to_cpu(grant->truncate_size), size); 2332 ceph_decode_timespec(&mtime, &grant->mtime); 2333 ceph_decode_timespec(&atime, &grant->atime); 2334 ceph_decode_timespec(&ctime, &grant->ctime); 2335 ceph_fill_file_time(inode, issued, 2336 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime, 2337 &atime); 2338 2339 /* max size increase? */ 2340 if (max_size != ci->i_max_size) { 2341 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size); 2342 ci->i_max_size = max_size; 2343 if (max_size >= ci->i_wanted_max_size) { 2344 ci->i_wanted_max_size = 0; /* reset */ 2345 ci->i_requested_max_size = 0; 2346 } 2347 wake = 1; 2348 } 2349 2350 /* check cap bits */ 2351 wanted = __ceph_caps_wanted(ci); 2352 used = __ceph_caps_used(ci); 2353 dirty = __ceph_caps_dirty(ci); 2354 dout(" my wanted = %s, used = %s, dirty %s\n", 2355 ceph_cap_string(wanted), 2356 ceph_cap_string(used), 2357 ceph_cap_string(dirty)); 2358 if (wanted != le32_to_cpu(grant->wanted)) { 2359 dout("mds wanted %s -> %s\n", 2360 ceph_cap_string(le32_to_cpu(grant->wanted)), 2361 ceph_cap_string(wanted)); 2362 grant->wanted = cpu_to_le32(wanted); 2363 } 2364 2365 cap->seq = seq; 2366 2367 /* file layout may have changed */ 2368 ci->i_layout = grant->layout; 2369 2370 /* revocation, grant, or no-op? */ 2371 if (cap->issued & ~newcaps) { 2372 dout("revocation: %s -> %s\n", ceph_cap_string(cap->issued), 2373 ceph_cap_string(newcaps)); 2374 if ((used & ~newcaps) & CEPH_CAP_FILE_BUFFER) 2375 writeback = 1; /* will delay ack */ 2376 else if (dirty & ~newcaps) 2377 check_caps = 1; /* initiate writeback in check_caps */ 2378 else if (((used & ~newcaps) & CEPH_CAP_FILE_CACHE) == 0 || 2379 revoked_rdcache) 2380 check_caps = 2; /* send revoke ack in check_caps */ 2381 cap->issued = newcaps; 2382 cap->implemented |= newcaps; 2383 } else if (cap->issued == newcaps) { 2384 dout("caps unchanged: %s -> %s\n", 2385 ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); 2386 } else { 2387 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), 2388 ceph_cap_string(newcaps)); 2389 cap->issued = newcaps; 2390 cap->implemented |= newcaps; /* add bits only, to 2391 * avoid stepping on a 2392 * pending revocation */ 2393 wake = 1; 2394 } 2395 BUG_ON(cap->issued & ~cap->implemented); 2396 2397 spin_unlock(&inode->i_lock); 2398 if (writeback) 2399 /* 2400 * queue inode for writeback: we can't actually call 2401 * filemap_write_and_wait, etc. from message handler 2402 * context. 2403 */ 2404 ceph_queue_writeback(inode); 2405 if (queue_invalidate) 2406 ceph_queue_invalidate(inode); 2407 if (wake) 2408 wake_up_all(&ci->i_cap_wq); 2409 2410 if (check_caps == 1) 2411 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, 2412 session); 2413 else if (check_caps == 2) 2414 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session); 2415 else 2416 mutex_unlock(&session->s_mutex); 2417 } 2418 2419 /* 2420 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the 2421 * MDS has been safely committed. 2422 */ 2423 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, 2424 struct ceph_mds_caps *m, 2425 struct ceph_mds_session *session, 2426 struct ceph_cap *cap) 2427 __releases(inode->i_lock) 2428 { 2429 struct ceph_inode_info *ci = ceph_inode(inode); 2430 struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc; 2431 unsigned seq = le32_to_cpu(m->seq); 2432 int dirty = le32_to_cpu(m->dirty); 2433 int cleaned = 0; 2434 int drop = 0; 2435 int i; 2436 2437 for (i = 0; i < CEPH_CAP_BITS; i++) 2438 if ((dirty & (1 << i)) && 2439 flush_tid == ci->i_cap_flush_tid[i]) 2440 cleaned |= 1 << i; 2441 2442 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," 2443 " flushing %s -> %s\n", 2444 inode, session->s_mds, seq, ceph_cap_string(dirty), 2445 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), 2446 ceph_cap_string(ci->i_flushing_caps & ~cleaned)); 2447 2448 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned)) 2449 goto out; 2450 2451 ci->i_flushing_caps &= ~cleaned; 2452 2453 spin_lock(&mdsc->cap_dirty_lock); 2454 if (ci->i_flushing_caps == 0) { 2455 list_del_init(&ci->i_flushing_item); 2456 if (!list_empty(&session->s_cap_flushing)) 2457 dout(" mds%d still flushing cap on %p\n", 2458 session->s_mds, 2459 &list_entry(session->s_cap_flushing.next, 2460 struct ceph_inode_info, 2461 i_flushing_item)->vfs_inode); 2462 mdsc->num_cap_flushing--; 2463 wake_up_all(&mdsc->cap_flushing_wq); 2464 dout(" inode %p now !flushing\n", inode); 2465 2466 if (ci->i_dirty_caps == 0) { 2467 dout(" inode %p now clean\n", inode); 2468 BUG_ON(!list_empty(&ci->i_dirty_item)); 2469 drop = 1; 2470 } else { 2471 BUG_ON(list_empty(&ci->i_dirty_item)); 2472 } 2473 } 2474 spin_unlock(&mdsc->cap_dirty_lock); 2475 wake_up_all(&ci->i_cap_wq); 2476 2477 out: 2478 spin_unlock(&inode->i_lock); 2479 if (drop) 2480 iput(inode); 2481 } 2482 2483 /* 2484 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can 2485 * throw away our cap_snap. 2486 * 2487 * Caller hold s_mutex. 2488 */ 2489 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, 2490 struct ceph_mds_caps *m, 2491 struct ceph_mds_session *session) 2492 { 2493 struct ceph_inode_info *ci = ceph_inode(inode); 2494 u64 follows = le64_to_cpu(m->snap_follows); 2495 struct ceph_cap_snap *capsnap; 2496 int drop = 0; 2497 2498 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", 2499 inode, ci, session->s_mds, follows); 2500 2501 spin_lock(&inode->i_lock); 2502 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2503 if (capsnap->follows == follows) { 2504 if (capsnap->flush_tid != flush_tid) { 2505 dout(" cap_snap %p follows %lld tid %lld !=" 2506 " %lld\n", capsnap, follows, 2507 flush_tid, capsnap->flush_tid); 2508 break; 2509 } 2510 WARN_ON(capsnap->dirty_pages || capsnap->writing); 2511 dout(" removing %p cap_snap %p follows %lld\n", 2512 inode, capsnap, follows); 2513 ceph_put_snap_context(capsnap->context); 2514 list_del(&capsnap->ci_item); 2515 list_del(&capsnap->flushing_item); 2516 ceph_put_cap_snap(capsnap); 2517 drop = 1; 2518 break; 2519 } else { 2520 dout(" skipping cap_snap %p follows %lld\n", 2521 capsnap, capsnap->follows); 2522 } 2523 } 2524 spin_unlock(&inode->i_lock); 2525 if (drop) 2526 iput(inode); 2527 } 2528 2529 /* 2530 * Handle TRUNC from MDS, indicating file truncation. 2531 * 2532 * caller hold s_mutex. 2533 */ 2534 static void handle_cap_trunc(struct inode *inode, 2535 struct ceph_mds_caps *trunc, 2536 struct ceph_mds_session *session) 2537 __releases(inode->i_lock) 2538 { 2539 struct ceph_inode_info *ci = ceph_inode(inode); 2540 int mds = session->s_mds; 2541 int seq = le32_to_cpu(trunc->seq); 2542 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); 2543 u64 truncate_size = le64_to_cpu(trunc->truncate_size); 2544 u64 size = le64_to_cpu(trunc->size); 2545 int implemented = 0; 2546 int dirty = __ceph_caps_dirty(ci); 2547 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); 2548 int queue_trunc = 0; 2549 2550 issued |= implemented | dirty; 2551 2552 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", 2553 inode, mds, seq, truncate_size, truncate_seq); 2554 queue_trunc = ceph_fill_file_size(inode, issued, 2555 truncate_seq, truncate_size, size); 2556 spin_unlock(&inode->i_lock); 2557 2558 if (queue_trunc) 2559 ceph_queue_vmtruncate(inode); 2560 } 2561 2562 /* 2563 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a 2564 * different one. If we are the most recent migration we've seen (as 2565 * indicated by mseq), make note of the migrating cap bits for the 2566 * duration (until we see the corresponding IMPORT). 2567 * 2568 * caller holds s_mutex 2569 */ 2570 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, 2571 struct ceph_mds_session *session) 2572 { 2573 struct ceph_inode_info *ci = ceph_inode(inode); 2574 int mds = session->s_mds; 2575 unsigned mseq = le32_to_cpu(ex->migrate_seq); 2576 struct ceph_cap *cap = NULL, *t; 2577 struct rb_node *p; 2578 int remember = 1; 2579 2580 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n", 2581 inode, ci, mds, mseq); 2582 2583 spin_lock(&inode->i_lock); 2584 2585 /* make sure we haven't seen a higher mseq */ 2586 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 2587 t = rb_entry(p, struct ceph_cap, ci_node); 2588 if (ceph_seq_cmp(t->mseq, mseq) > 0) { 2589 dout(" higher mseq on cap from mds%d\n", 2590 t->session->s_mds); 2591 remember = 0; 2592 } 2593 if (t->session->s_mds == mds) 2594 cap = t; 2595 } 2596 2597 if (cap) { 2598 if (remember) { 2599 /* make note */ 2600 ci->i_cap_exporting_mds = mds; 2601 ci->i_cap_exporting_mseq = mseq; 2602 ci->i_cap_exporting_issued = cap->issued; 2603 } 2604 __ceph_remove_cap(cap); 2605 } 2606 /* else, we already released it */ 2607 2608 spin_unlock(&inode->i_lock); 2609 } 2610 2611 /* 2612 * Handle cap IMPORT. If there are temp bits from an older EXPORT, 2613 * clean them up. 2614 * 2615 * caller holds s_mutex. 2616 */ 2617 static void handle_cap_import(struct ceph_mds_client *mdsc, 2618 struct inode *inode, struct ceph_mds_caps *im, 2619 struct ceph_mds_session *session, 2620 void *snaptrace, int snaptrace_len) 2621 { 2622 struct ceph_inode_info *ci = ceph_inode(inode); 2623 int mds = session->s_mds; 2624 unsigned issued = le32_to_cpu(im->caps); 2625 unsigned wanted = le32_to_cpu(im->wanted); 2626 unsigned seq = le32_to_cpu(im->seq); 2627 unsigned mseq = le32_to_cpu(im->migrate_seq); 2628 u64 realmino = le64_to_cpu(im->realm); 2629 u64 cap_id = le64_to_cpu(im->cap_id); 2630 2631 if (ci->i_cap_exporting_mds >= 0 && 2632 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) { 2633 dout("handle_cap_import inode %p ci %p mds%d mseq %d" 2634 " - cleared exporting from mds%d\n", 2635 inode, ci, mds, mseq, 2636 ci->i_cap_exporting_mds); 2637 ci->i_cap_exporting_issued = 0; 2638 ci->i_cap_exporting_mseq = 0; 2639 ci->i_cap_exporting_mds = -1; 2640 } else { 2641 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n", 2642 inode, ci, mds, mseq); 2643 } 2644 2645 down_write(&mdsc->snap_rwsem); 2646 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len, 2647 false); 2648 downgrade_write(&mdsc->snap_rwsem); 2649 ceph_add_cap(inode, session, cap_id, -1, 2650 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH, 2651 NULL /* no caps context */); 2652 try_flush_caps(inode, session, NULL); 2653 up_read(&mdsc->snap_rwsem); 2654 } 2655 2656 /* 2657 * Handle a caps message from the MDS. 2658 * 2659 * Identify the appropriate session, inode, and call the right handler 2660 * based on the cap op. 2661 */ 2662 void ceph_handle_caps(struct ceph_mds_session *session, 2663 struct ceph_msg *msg) 2664 { 2665 struct ceph_mds_client *mdsc = session->s_mdsc; 2666 struct super_block *sb = mdsc->client->sb; 2667 struct inode *inode; 2668 struct ceph_cap *cap; 2669 struct ceph_mds_caps *h; 2670 int mds = session->s_mds; 2671 int op; 2672 u32 seq, mseq; 2673 struct ceph_vino vino; 2674 u64 cap_id; 2675 u64 size, max_size; 2676 u64 tid; 2677 void *snaptrace; 2678 2679 dout("handle_caps from mds%d\n", mds); 2680 2681 /* decode */ 2682 tid = le64_to_cpu(msg->hdr.tid); 2683 if (msg->front.iov_len < sizeof(*h)) 2684 goto bad; 2685 h = msg->front.iov_base; 2686 snaptrace = h + 1; 2687 op = le32_to_cpu(h->op); 2688 vino.ino = le64_to_cpu(h->ino); 2689 vino.snap = CEPH_NOSNAP; 2690 cap_id = le64_to_cpu(h->cap_id); 2691 seq = le32_to_cpu(h->seq); 2692 mseq = le32_to_cpu(h->migrate_seq); 2693 size = le64_to_cpu(h->size); 2694 max_size = le64_to_cpu(h->max_size); 2695 2696 mutex_lock(&session->s_mutex); 2697 session->s_seq++; 2698 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, 2699 (unsigned)seq); 2700 2701 /* lookup ino */ 2702 inode = ceph_find_inode(sb, vino); 2703 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, 2704 vino.snap, inode); 2705 if (!inode) { 2706 dout(" i don't have ino %llx\n", vino.ino); 2707 2708 if (op == CEPH_CAP_OP_IMPORT) 2709 __queue_cap_release(session, vino.ino, cap_id, 2710 mseq, seq); 2711 2712 /* 2713 * send any full release message to try to move things 2714 * along for the mds (who clearly thinks we still have this 2715 * cap). 2716 */ 2717 ceph_add_cap_releases(mdsc, session, -1); 2718 ceph_send_cap_releases(mdsc, session); 2719 goto done; 2720 } 2721 2722 /* these will work even if we don't have a cap yet */ 2723 switch (op) { 2724 case CEPH_CAP_OP_FLUSHSNAP_ACK: 2725 handle_cap_flushsnap_ack(inode, tid, h, session); 2726 goto done; 2727 2728 case CEPH_CAP_OP_EXPORT: 2729 handle_cap_export(inode, h, session); 2730 goto done; 2731 2732 case CEPH_CAP_OP_IMPORT: 2733 handle_cap_import(mdsc, inode, h, session, 2734 snaptrace, le32_to_cpu(h->snap_trace_len)); 2735 ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY, 2736 session); 2737 goto done_unlocked; 2738 } 2739 2740 /* the rest require a cap */ 2741 spin_lock(&inode->i_lock); 2742 cap = __get_cap_for_mds(ceph_inode(inode), mds); 2743 if (!cap) { 2744 dout(" no cap on %p ino %llx.%llx from mds%d\n", 2745 inode, ceph_ino(inode), ceph_snap(inode), mds); 2746 spin_unlock(&inode->i_lock); 2747 goto done; 2748 } 2749 2750 /* note that each of these drops i_lock for us */ 2751 switch (op) { 2752 case CEPH_CAP_OP_REVOKE: 2753 case CEPH_CAP_OP_GRANT: 2754 handle_cap_grant(inode, h, session, cap, msg->middle); 2755 goto done_unlocked; 2756 2757 case CEPH_CAP_OP_FLUSH_ACK: 2758 handle_cap_flush_ack(inode, tid, h, session, cap); 2759 break; 2760 2761 case CEPH_CAP_OP_TRUNC: 2762 handle_cap_trunc(inode, h, session); 2763 break; 2764 2765 default: 2766 spin_unlock(&inode->i_lock); 2767 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, 2768 ceph_cap_op_name(op)); 2769 } 2770 2771 done: 2772 mutex_unlock(&session->s_mutex); 2773 done_unlocked: 2774 if (inode) 2775 iput(inode); 2776 return; 2777 2778 bad: 2779 pr_err("ceph_handle_caps: corrupt message\n"); 2780 ceph_msg_dump(msg); 2781 return; 2782 } 2783 2784 /* 2785 * Delayed work handler to process end of delayed cap release LRU list. 2786 */ 2787 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) 2788 { 2789 struct ceph_inode_info *ci; 2790 int flags = CHECK_CAPS_NODELAY; 2791 2792 dout("check_delayed_caps\n"); 2793 while (1) { 2794 spin_lock(&mdsc->cap_delay_lock); 2795 if (list_empty(&mdsc->cap_delay_list)) 2796 break; 2797 ci = list_first_entry(&mdsc->cap_delay_list, 2798 struct ceph_inode_info, 2799 i_cap_delay_list); 2800 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && 2801 time_before(jiffies, ci->i_hold_caps_max)) 2802 break; 2803 list_del_init(&ci->i_cap_delay_list); 2804 spin_unlock(&mdsc->cap_delay_lock); 2805 dout("check_delayed_caps on %p\n", &ci->vfs_inode); 2806 ceph_check_caps(ci, flags, NULL); 2807 } 2808 spin_unlock(&mdsc->cap_delay_lock); 2809 } 2810 2811 /* 2812 * Flush all dirty caps to the mds 2813 */ 2814 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) 2815 { 2816 struct ceph_inode_info *ci, *nci = NULL; 2817 struct inode *inode, *ninode = NULL; 2818 struct list_head *p, *n; 2819 2820 dout("flush_dirty_caps\n"); 2821 spin_lock(&mdsc->cap_dirty_lock); 2822 list_for_each_safe(p, n, &mdsc->cap_dirty) { 2823 if (nci) { 2824 ci = nci; 2825 inode = ninode; 2826 ci->i_ceph_flags &= ~CEPH_I_NOFLUSH; 2827 dout("flush_dirty_caps inode %p (was next inode)\n", 2828 inode); 2829 } else { 2830 ci = list_entry(p, struct ceph_inode_info, 2831 i_dirty_item); 2832 inode = igrab(&ci->vfs_inode); 2833 BUG_ON(!inode); 2834 dout("flush_dirty_caps inode %p\n", inode); 2835 } 2836 if (n != &mdsc->cap_dirty) { 2837 nci = list_entry(n, struct ceph_inode_info, 2838 i_dirty_item); 2839 ninode = igrab(&nci->vfs_inode); 2840 BUG_ON(!ninode); 2841 nci->i_ceph_flags |= CEPH_I_NOFLUSH; 2842 dout("flush_dirty_caps next inode %p, noflush\n", 2843 ninode); 2844 } else { 2845 nci = NULL; 2846 ninode = NULL; 2847 } 2848 spin_unlock(&mdsc->cap_dirty_lock); 2849 if (inode) { 2850 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, 2851 NULL); 2852 iput(inode); 2853 } 2854 spin_lock(&mdsc->cap_dirty_lock); 2855 } 2856 spin_unlock(&mdsc->cap_dirty_lock); 2857 } 2858 2859 /* 2860 * Drop open file reference. If we were the last open file, 2861 * we may need to release capabilities to the MDS (or schedule 2862 * their delayed release). 2863 */ 2864 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) 2865 { 2866 struct inode *inode = &ci->vfs_inode; 2867 int last = 0; 2868 2869 spin_lock(&inode->i_lock); 2870 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, 2871 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); 2872 BUG_ON(ci->i_nr_by_mode[fmode] == 0); 2873 if (--ci->i_nr_by_mode[fmode] == 0) 2874 last++; 2875 spin_unlock(&inode->i_lock); 2876 2877 if (last && ci->i_vino.snap == CEPH_NOSNAP) 2878 ceph_check_caps(ci, 0, NULL); 2879 } 2880 2881 /* 2882 * Helpers for embedding cap and dentry lease releases into mds 2883 * requests. 2884 * 2885 * @force is used by dentry_release (below) to force inclusion of a 2886 * record for the directory inode, even when there aren't any caps to 2887 * drop. 2888 */ 2889 int ceph_encode_inode_release(void **p, struct inode *inode, 2890 int mds, int drop, int unless, int force) 2891 { 2892 struct ceph_inode_info *ci = ceph_inode(inode); 2893 struct ceph_cap *cap; 2894 struct ceph_mds_request_release *rel = *p; 2895 int used, dirty; 2896 int ret = 0; 2897 2898 spin_lock(&inode->i_lock); 2899 used = __ceph_caps_used(ci); 2900 dirty = __ceph_caps_dirty(ci); 2901 2902 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n", 2903 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop), 2904 ceph_cap_string(unless)); 2905 2906 /* only drop unused, clean caps */ 2907 drop &= ~(used | dirty); 2908 2909 cap = __get_cap_for_mds(ci, mds); 2910 if (cap && __cap_is_valid(cap)) { 2911 if (force || 2912 ((cap->issued & drop) && 2913 (cap->issued & unless) == 0)) { 2914 if ((cap->issued & drop) && 2915 (cap->issued & unless) == 0) { 2916 dout("encode_inode_release %p cap %p %s -> " 2917 "%s\n", inode, cap, 2918 ceph_cap_string(cap->issued), 2919 ceph_cap_string(cap->issued & ~drop)); 2920 cap->issued &= ~drop; 2921 cap->implemented &= ~drop; 2922 if (ci->i_ceph_flags & CEPH_I_NODELAY) { 2923 int wanted = __ceph_caps_wanted(ci); 2924 dout(" wanted %s -> %s (act %s)\n", 2925 ceph_cap_string(cap->mds_wanted), 2926 ceph_cap_string(cap->mds_wanted & 2927 ~wanted), 2928 ceph_cap_string(wanted)); 2929 cap->mds_wanted &= wanted; 2930 } 2931 } else { 2932 dout("encode_inode_release %p cap %p %s" 2933 " (force)\n", inode, cap, 2934 ceph_cap_string(cap->issued)); 2935 } 2936 2937 rel->ino = cpu_to_le64(ceph_ino(inode)); 2938 rel->cap_id = cpu_to_le64(cap->cap_id); 2939 rel->seq = cpu_to_le32(cap->seq); 2940 rel->issue_seq = cpu_to_le32(cap->issue_seq), 2941 rel->mseq = cpu_to_le32(cap->mseq); 2942 rel->caps = cpu_to_le32(cap->issued); 2943 rel->wanted = cpu_to_le32(cap->mds_wanted); 2944 rel->dname_len = 0; 2945 rel->dname_seq = 0; 2946 *p += sizeof(*rel); 2947 ret = 1; 2948 } else { 2949 dout("encode_inode_release %p cap %p %s\n", 2950 inode, cap, ceph_cap_string(cap->issued)); 2951 } 2952 } 2953 spin_unlock(&inode->i_lock); 2954 return ret; 2955 } 2956 2957 int ceph_encode_dentry_release(void **p, struct dentry *dentry, 2958 int mds, int drop, int unless) 2959 { 2960 struct inode *dir = dentry->d_parent->d_inode; 2961 struct ceph_mds_request_release *rel = *p; 2962 struct ceph_dentry_info *di = ceph_dentry(dentry); 2963 int force = 0; 2964 int ret; 2965 2966 /* 2967 * force an record for the directory caps if we have a dentry lease. 2968 * this is racy (can't take i_lock and d_lock together), but it 2969 * doesn't have to be perfect; the mds will revoke anything we don't 2970 * release. 2971 */ 2972 spin_lock(&dentry->d_lock); 2973 if (di->lease_session && di->lease_session->s_mds == mds) 2974 force = 1; 2975 spin_unlock(&dentry->d_lock); 2976 2977 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); 2978 2979 spin_lock(&dentry->d_lock); 2980 if (ret && di->lease_session && di->lease_session->s_mds == mds) { 2981 dout("encode_dentry_release %p mds%d seq %d\n", 2982 dentry, mds, (int)di->lease_seq); 2983 rel->dname_len = cpu_to_le32(dentry->d_name.len); 2984 memcpy(*p, dentry->d_name.name, dentry->d_name.len); 2985 *p += dentry->d_name.len; 2986 rel->dname_seq = cpu_to_le32(di->lease_seq); 2987 __ceph_mdsc_drop_dentry_lease(dentry); 2988 } 2989 spin_unlock(&dentry->d_lock); 2990 return ret; 2991 } 2992