xref: /linux/fs/ceph/caps.c (revision 56d06fa29edd58c448766014afd833b7ff51247b)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
10 
11 #include "super.h"
12 #include "mds_client.h"
13 #include "cache.h"
14 #include <linux/ceph/decode.h>
15 #include <linux/ceph/messenger.h>
16 
17 /*
18  * Capability management
19  *
20  * The Ceph metadata servers control client access to inode metadata
21  * and file data by issuing capabilities, granting clients permission
22  * to read and/or write both inode field and file data to OSDs
23  * (storage nodes).  Each capability consists of a set of bits
24  * indicating which operations are allowed.
25  *
26  * If the client holds a *_SHARED cap, the client has a coherent value
27  * that can be safely read from the cached inode.
28  *
29  * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
30  * client is allowed to change inode attributes (e.g., file size,
31  * mtime), note its dirty state in the ceph_cap, and asynchronously
32  * flush that metadata change to the MDS.
33  *
34  * In the event of a conflicting operation (perhaps by another
35  * client), the MDS will revoke the conflicting client capabilities.
36  *
37  * In order for a client to cache an inode, it must hold a capability
38  * with at least one MDS server.  When inodes are released, release
39  * notifications are batched and periodically sent en masse to the MDS
40  * cluster to release server state.
41  */
42 
43 
44 /*
45  * Generate readable cap strings for debugging output.
46  */
47 #define MAX_CAP_STR 20
48 static char cap_str[MAX_CAP_STR][40];
49 static DEFINE_SPINLOCK(cap_str_lock);
50 static int last_cap_str;
51 
52 static char *gcap_string(char *s, int c)
53 {
54 	if (c & CEPH_CAP_GSHARED)
55 		*s++ = 's';
56 	if (c & CEPH_CAP_GEXCL)
57 		*s++ = 'x';
58 	if (c & CEPH_CAP_GCACHE)
59 		*s++ = 'c';
60 	if (c & CEPH_CAP_GRD)
61 		*s++ = 'r';
62 	if (c & CEPH_CAP_GWR)
63 		*s++ = 'w';
64 	if (c & CEPH_CAP_GBUFFER)
65 		*s++ = 'b';
66 	if (c & CEPH_CAP_GLAZYIO)
67 		*s++ = 'l';
68 	return s;
69 }
70 
71 const char *ceph_cap_string(int caps)
72 {
73 	int i;
74 	char *s;
75 	int c;
76 
77 	spin_lock(&cap_str_lock);
78 	i = last_cap_str++;
79 	if (last_cap_str == MAX_CAP_STR)
80 		last_cap_str = 0;
81 	spin_unlock(&cap_str_lock);
82 
83 	s = cap_str[i];
84 
85 	if (caps & CEPH_CAP_PIN)
86 		*s++ = 'p';
87 
88 	c = (caps >> CEPH_CAP_SAUTH) & 3;
89 	if (c) {
90 		*s++ = 'A';
91 		s = gcap_string(s, c);
92 	}
93 
94 	c = (caps >> CEPH_CAP_SLINK) & 3;
95 	if (c) {
96 		*s++ = 'L';
97 		s = gcap_string(s, c);
98 	}
99 
100 	c = (caps >> CEPH_CAP_SXATTR) & 3;
101 	if (c) {
102 		*s++ = 'X';
103 		s = gcap_string(s, c);
104 	}
105 
106 	c = caps >> CEPH_CAP_SFILE;
107 	if (c) {
108 		*s++ = 'F';
109 		s = gcap_string(s, c);
110 	}
111 
112 	if (s == cap_str[i])
113 		*s++ = '-';
114 	*s = 0;
115 	return cap_str[i];
116 }
117 
118 void ceph_caps_init(struct ceph_mds_client *mdsc)
119 {
120 	INIT_LIST_HEAD(&mdsc->caps_list);
121 	spin_lock_init(&mdsc->caps_list_lock);
122 }
123 
124 void ceph_caps_finalize(struct ceph_mds_client *mdsc)
125 {
126 	struct ceph_cap *cap;
127 
128 	spin_lock(&mdsc->caps_list_lock);
129 	while (!list_empty(&mdsc->caps_list)) {
130 		cap = list_first_entry(&mdsc->caps_list,
131 				       struct ceph_cap, caps_item);
132 		list_del(&cap->caps_item);
133 		kmem_cache_free(ceph_cap_cachep, cap);
134 	}
135 	mdsc->caps_total_count = 0;
136 	mdsc->caps_avail_count = 0;
137 	mdsc->caps_use_count = 0;
138 	mdsc->caps_reserve_count = 0;
139 	mdsc->caps_min_count = 0;
140 	spin_unlock(&mdsc->caps_list_lock);
141 }
142 
143 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
144 {
145 	spin_lock(&mdsc->caps_list_lock);
146 	mdsc->caps_min_count += delta;
147 	BUG_ON(mdsc->caps_min_count < 0);
148 	spin_unlock(&mdsc->caps_list_lock);
149 }
150 
151 void ceph_reserve_caps(struct ceph_mds_client *mdsc,
152 		      struct ceph_cap_reservation *ctx, int need)
153 {
154 	int i;
155 	struct ceph_cap *cap;
156 	int have;
157 	int alloc = 0;
158 	LIST_HEAD(newcaps);
159 
160 	dout("reserve caps ctx=%p need=%d\n", ctx, need);
161 
162 	/* first reserve any caps that are already allocated */
163 	spin_lock(&mdsc->caps_list_lock);
164 	if (mdsc->caps_avail_count >= need)
165 		have = need;
166 	else
167 		have = mdsc->caps_avail_count;
168 	mdsc->caps_avail_count -= have;
169 	mdsc->caps_reserve_count += have;
170 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
171 					 mdsc->caps_reserve_count +
172 					 mdsc->caps_avail_count);
173 	spin_unlock(&mdsc->caps_list_lock);
174 
175 	for (i = have; i < need; i++) {
176 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
177 		if (!cap)
178 			break;
179 		list_add(&cap->caps_item, &newcaps);
180 		alloc++;
181 	}
182 	/* we didn't manage to reserve as much as we needed */
183 	if (have + alloc != need)
184 		pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
185 			ctx, need, have + alloc);
186 
187 	spin_lock(&mdsc->caps_list_lock);
188 	mdsc->caps_total_count += alloc;
189 	mdsc->caps_reserve_count += alloc;
190 	list_splice(&newcaps, &mdsc->caps_list);
191 
192 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
193 					 mdsc->caps_reserve_count +
194 					 mdsc->caps_avail_count);
195 	spin_unlock(&mdsc->caps_list_lock);
196 
197 	ctx->count = need;
198 	dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
199 	     ctx, mdsc->caps_total_count, mdsc->caps_use_count,
200 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
201 }
202 
203 int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
204 			struct ceph_cap_reservation *ctx)
205 {
206 	dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
207 	if (ctx->count) {
208 		spin_lock(&mdsc->caps_list_lock);
209 		BUG_ON(mdsc->caps_reserve_count < ctx->count);
210 		mdsc->caps_reserve_count -= ctx->count;
211 		mdsc->caps_avail_count += ctx->count;
212 		ctx->count = 0;
213 		dout("unreserve caps %d = %d used + %d resv + %d avail\n",
214 		     mdsc->caps_total_count, mdsc->caps_use_count,
215 		     mdsc->caps_reserve_count, mdsc->caps_avail_count);
216 		BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
217 						 mdsc->caps_reserve_count +
218 						 mdsc->caps_avail_count);
219 		spin_unlock(&mdsc->caps_list_lock);
220 	}
221 	return 0;
222 }
223 
224 struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc,
225 			      struct ceph_cap_reservation *ctx)
226 {
227 	struct ceph_cap *cap = NULL;
228 
229 	/* temporary, until we do something about cap import/export */
230 	if (!ctx) {
231 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
232 		if (cap) {
233 			spin_lock(&mdsc->caps_list_lock);
234 			mdsc->caps_use_count++;
235 			mdsc->caps_total_count++;
236 			spin_unlock(&mdsc->caps_list_lock);
237 		}
238 		return cap;
239 	}
240 
241 	spin_lock(&mdsc->caps_list_lock);
242 	dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
243 	     ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
244 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
245 	BUG_ON(!ctx->count);
246 	BUG_ON(ctx->count > mdsc->caps_reserve_count);
247 	BUG_ON(list_empty(&mdsc->caps_list));
248 
249 	ctx->count--;
250 	mdsc->caps_reserve_count--;
251 	mdsc->caps_use_count++;
252 
253 	cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
254 	list_del(&cap->caps_item);
255 
256 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
257 	       mdsc->caps_reserve_count + mdsc->caps_avail_count);
258 	spin_unlock(&mdsc->caps_list_lock);
259 	return cap;
260 }
261 
262 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
263 {
264 	spin_lock(&mdsc->caps_list_lock);
265 	dout("put_cap %p %d = %d used + %d resv + %d avail\n",
266 	     cap, mdsc->caps_total_count, mdsc->caps_use_count,
267 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
268 	mdsc->caps_use_count--;
269 	/*
270 	 * Keep some preallocated caps around (ceph_min_count), to
271 	 * avoid lots of free/alloc churn.
272 	 */
273 	if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
274 				      mdsc->caps_min_count) {
275 		mdsc->caps_total_count--;
276 		kmem_cache_free(ceph_cap_cachep, cap);
277 	} else {
278 		mdsc->caps_avail_count++;
279 		list_add(&cap->caps_item, &mdsc->caps_list);
280 	}
281 
282 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
283 	       mdsc->caps_reserve_count + mdsc->caps_avail_count);
284 	spin_unlock(&mdsc->caps_list_lock);
285 }
286 
287 void ceph_reservation_status(struct ceph_fs_client *fsc,
288 			     int *total, int *avail, int *used, int *reserved,
289 			     int *min)
290 {
291 	struct ceph_mds_client *mdsc = fsc->mdsc;
292 
293 	if (total)
294 		*total = mdsc->caps_total_count;
295 	if (avail)
296 		*avail = mdsc->caps_avail_count;
297 	if (used)
298 		*used = mdsc->caps_use_count;
299 	if (reserved)
300 		*reserved = mdsc->caps_reserve_count;
301 	if (min)
302 		*min = mdsc->caps_min_count;
303 }
304 
305 /*
306  * Find ceph_cap for given mds, if any.
307  *
308  * Called with i_ceph_lock held.
309  */
310 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
311 {
312 	struct ceph_cap *cap;
313 	struct rb_node *n = ci->i_caps.rb_node;
314 
315 	while (n) {
316 		cap = rb_entry(n, struct ceph_cap, ci_node);
317 		if (mds < cap->mds)
318 			n = n->rb_left;
319 		else if (mds > cap->mds)
320 			n = n->rb_right;
321 		else
322 			return cap;
323 	}
324 	return NULL;
325 }
326 
327 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
328 {
329 	struct ceph_cap *cap;
330 
331 	spin_lock(&ci->i_ceph_lock);
332 	cap = __get_cap_for_mds(ci, mds);
333 	spin_unlock(&ci->i_ceph_lock);
334 	return cap;
335 }
336 
337 /*
338  * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
339  */
340 static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
341 {
342 	struct ceph_cap *cap;
343 	int mds = -1;
344 	struct rb_node *p;
345 
346 	/* prefer mds with WR|BUFFER|EXCL caps */
347 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
348 		cap = rb_entry(p, struct ceph_cap, ci_node);
349 		mds = cap->mds;
350 		if (cap->issued & (CEPH_CAP_FILE_WR |
351 				   CEPH_CAP_FILE_BUFFER |
352 				   CEPH_CAP_FILE_EXCL))
353 			break;
354 	}
355 	return mds;
356 }
357 
358 int ceph_get_cap_mds(struct inode *inode)
359 {
360 	struct ceph_inode_info *ci = ceph_inode(inode);
361 	int mds;
362 	spin_lock(&ci->i_ceph_lock);
363 	mds = __ceph_get_cap_mds(ceph_inode(inode));
364 	spin_unlock(&ci->i_ceph_lock);
365 	return mds;
366 }
367 
368 /*
369  * Called under i_ceph_lock.
370  */
371 static void __insert_cap_node(struct ceph_inode_info *ci,
372 			      struct ceph_cap *new)
373 {
374 	struct rb_node **p = &ci->i_caps.rb_node;
375 	struct rb_node *parent = NULL;
376 	struct ceph_cap *cap = NULL;
377 
378 	while (*p) {
379 		parent = *p;
380 		cap = rb_entry(parent, struct ceph_cap, ci_node);
381 		if (new->mds < cap->mds)
382 			p = &(*p)->rb_left;
383 		else if (new->mds > cap->mds)
384 			p = &(*p)->rb_right;
385 		else
386 			BUG();
387 	}
388 
389 	rb_link_node(&new->ci_node, parent, p);
390 	rb_insert_color(&new->ci_node, &ci->i_caps);
391 }
392 
393 /*
394  * (re)set cap hold timeouts, which control the delayed release
395  * of unused caps back to the MDS.  Should be called on cap use.
396  */
397 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
398 			       struct ceph_inode_info *ci)
399 {
400 	struct ceph_mount_options *ma = mdsc->fsc->mount_options;
401 
402 	ci->i_hold_caps_min = round_jiffies(jiffies +
403 					    ma->caps_wanted_delay_min * HZ);
404 	ci->i_hold_caps_max = round_jiffies(jiffies +
405 					    ma->caps_wanted_delay_max * HZ);
406 	dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
407 	     ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
408 }
409 
410 /*
411  * (Re)queue cap at the end of the delayed cap release list.
412  *
413  * If I_FLUSH is set, leave the inode at the front of the list.
414  *
415  * Caller holds i_ceph_lock
416  *    -> we take mdsc->cap_delay_lock
417  */
418 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
419 				struct ceph_inode_info *ci)
420 {
421 	__cap_set_timeouts(mdsc, ci);
422 	dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
423 	     ci->i_ceph_flags, ci->i_hold_caps_max);
424 	if (!mdsc->stopping) {
425 		spin_lock(&mdsc->cap_delay_lock);
426 		if (!list_empty(&ci->i_cap_delay_list)) {
427 			if (ci->i_ceph_flags & CEPH_I_FLUSH)
428 				goto no_change;
429 			list_del_init(&ci->i_cap_delay_list);
430 		}
431 		list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
432 no_change:
433 		spin_unlock(&mdsc->cap_delay_lock);
434 	}
435 }
436 
437 /*
438  * Queue an inode for immediate writeback.  Mark inode with I_FLUSH,
439  * indicating we should send a cap message to flush dirty metadata
440  * asap, and move to the front of the delayed cap list.
441  */
442 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
443 				      struct ceph_inode_info *ci)
444 {
445 	dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
446 	spin_lock(&mdsc->cap_delay_lock);
447 	ci->i_ceph_flags |= CEPH_I_FLUSH;
448 	if (!list_empty(&ci->i_cap_delay_list))
449 		list_del_init(&ci->i_cap_delay_list);
450 	list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
451 	spin_unlock(&mdsc->cap_delay_lock);
452 }
453 
454 /*
455  * Cancel delayed work on cap.
456  *
457  * Caller must hold i_ceph_lock.
458  */
459 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
460 			       struct ceph_inode_info *ci)
461 {
462 	dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
463 	if (list_empty(&ci->i_cap_delay_list))
464 		return;
465 	spin_lock(&mdsc->cap_delay_lock);
466 	list_del_init(&ci->i_cap_delay_list);
467 	spin_unlock(&mdsc->cap_delay_lock);
468 }
469 
470 /*
471  * Common issue checks for add_cap, handle_cap_grant.
472  */
473 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
474 			      unsigned issued)
475 {
476 	unsigned had = __ceph_caps_issued(ci, NULL);
477 
478 	/*
479 	 * Each time we receive FILE_CACHE anew, we increment
480 	 * i_rdcache_gen.
481 	 */
482 	if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
483 	    (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) {
484 		ci->i_rdcache_gen++;
485 	}
486 
487 	/*
488 	 * if we are newly issued FILE_SHARED, mark dir not complete; we
489 	 * don't know what happened to this directory while we didn't
490 	 * have the cap.
491 	 */
492 	if ((issued & CEPH_CAP_FILE_SHARED) &&
493 	    (had & CEPH_CAP_FILE_SHARED) == 0) {
494 		ci->i_shared_gen++;
495 		if (S_ISDIR(ci->vfs_inode.i_mode)) {
496 			dout(" marking %p NOT complete\n", &ci->vfs_inode);
497 			__ceph_dir_clear_complete(ci);
498 		}
499 	}
500 }
501 
502 /*
503  * Add a capability under the given MDS session.
504  *
505  * Caller should hold session snap_rwsem (read) and s_mutex.
506  *
507  * @fmode is the open file mode, if we are opening a file, otherwise
508  * it is < 0.  (This is so we can atomically add the cap and add an
509  * open file reference to it.)
510  */
511 void ceph_add_cap(struct inode *inode,
512 		  struct ceph_mds_session *session, u64 cap_id,
513 		  int fmode, unsigned issued, unsigned wanted,
514 		  unsigned seq, unsigned mseq, u64 realmino, int flags,
515 		  struct ceph_cap **new_cap)
516 {
517 	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
518 	struct ceph_inode_info *ci = ceph_inode(inode);
519 	struct ceph_cap *cap;
520 	int mds = session->s_mds;
521 	int actual_wanted;
522 
523 	dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
524 	     session->s_mds, cap_id, ceph_cap_string(issued), seq);
525 
526 	/*
527 	 * If we are opening the file, include file mode wanted bits
528 	 * in wanted.
529 	 */
530 	if (fmode >= 0)
531 		wanted |= ceph_caps_for_mode(fmode);
532 
533 	cap = __get_cap_for_mds(ci, mds);
534 	if (!cap) {
535 		cap = *new_cap;
536 		*new_cap = NULL;
537 
538 		cap->issued = 0;
539 		cap->implemented = 0;
540 		cap->mds = mds;
541 		cap->mds_wanted = 0;
542 		cap->mseq = 0;
543 
544 		cap->ci = ci;
545 		__insert_cap_node(ci, cap);
546 
547 		/* add to session cap list */
548 		cap->session = session;
549 		spin_lock(&session->s_cap_lock);
550 		list_add_tail(&cap->session_caps, &session->s_caps);
551 		session->s_nr_caps++;
552 		spin_unlock(&session->s_cap_lock);
553 	} else {
554 		/*
555 		 * auth mds of the inode changed. we received the cap export
556 		 * message, but still haven't received the cap import message.
557 		 * handle_cap_export() updated the new auth MDS' cap.
558 		 *
559 		 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing
560 		 * a message that was send before the cap import message. So
561 		 * don't remove caps.
562 		 */
563 		if (ceph_seq_cmp(seq, cap->seq) <= 0) {
564 			WARN_ON(cap != ci->i_auth_cap);
565 			WARN_ON(cap->cap_id != cap_id);
566 			seq = cap->seq;
567 			mseq = cap->mseq;
568 			issued |= cap->issued;
569 			flags |= CEPH_CAP_FLAG_AUTH;
570 		}
571 	}
572 
573 	if (!ci->i_snap_realm) {
574 		/*
575 		 * add this inode to the appropriate snap realm
576 		 */
577 		struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
578 							       realmino);
579 		if (realm) {
580 			spin_lock(&realm->inodes_with_caps_lock);
581 			ci->i_snap_realm = realm;
582 			list_add(&ci->i_snap_realm_item,
583 				 &realm->inodes_with_caps);
584 			spin_unlock(&realm->inodes_with_caps_lock);
585 		} else {
586 			pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
587 			       realmino);
588 			WARN_ON(!realm);
589 		}
590 	}
591 
592 	__check_cap_issue(ci, cap, issued);
593 
594 	/*
595 	 * If we are issued caps we don't want, or the mds' wanted
596 	 * value appears to be off, queue a check so we'll release
597 	 * later and/or update the mds wanted value.
598 	 */
599 	actual_wanted = __ceph_caps_wanted(ci);
600 	if ((wanted & ~actual_wanted) ||
601 	    (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
602 		dout(" issued %s, mds wanted %s, actual %s, queueing\n",
603 		     ceph_cap_string(issued), ceph_cap_string(wanted),
604 		     ceph_cap_string(actual_wanted));
605 		__cap_delay_requeue(mdsc, ci);
606 	}
607 
608 	if (flags & CEPH_CAP_FLAG_AUTH) {
609 		if (ci->i_auth_cap == NULL ||
610 		    ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0) {
611 			ci->i_auth_cap = cap;
612 			cap->mds_wanted = wanted;
613 		}
614 	} else {
615 		WARN_ON(ci->i_auth_cap == cap);
616 	}
617 
618 	dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
619 	     inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
620 	     ceph_cap_string(issued|cap->issued), seq, mds);
621 	cap->cap_id = cap_id;
622 	cap->issued = issued;
623 	cap->implemented |= issued;
624 	if (ceph_seq_cmp(mseq, cap->mseq) > 0)
625 		cap->mds_wanted = wanted;
626 	else
627 		cap->mds_wanted |= wanted;
628 	cap->seq = seq;
629 	cap->issue_seq = seq;
630 	cap->mseq = mseq;
631 	cap->cap_gen = session->s_cap_gen;
632 
633 	if (fmode >= 0)
634 		__ceph_get_fmode(ci, fmode);
635 }
636 
637 /*
638  * Return true if cap has not timed out and belongs to the current
639  * generation of the MDS session (i.e. has not gone 'stale' due to
640  * us losing touch with the mds).
641  */
642 static int __cap_is_valid(struct ceph_cap *cap)
643 {
644 	unsigned long ttl;
645 	u32 gen;
646 
647 	spin_lock(&cap->session->s_gen_ttl_lock);
648 	gen = cap->session->s_cap_gen;
649 	ttl = cap->session->s_cap_ttl;
650 	spin_unlock(&cap->session->s_gen_ttl_lock);
651 
652 	if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
653 		dout("__cap_is_valid %p cap %p issued %s "
654 		     "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
655 		     cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
656 		return 0;
657 	}
658 
659 	return 1;
660 }
661 
662 /*
663  * Return set of valid cap bits issued to us.  Note that caps time
664  * out, and may be invalidated in bulk if the client session times out
665  * and session->s_cap_gen is bumped.
666  */
667 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
668 {
669 	int have = ci->i_snap_caps;
670 	struct ceph_cap *cap;
671 	struct rb_node *p;
672 
673 	if (implemented)
674 		*implemented = 0;
675 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
676 		cap = rb_entry(p, struct ceph_cap, ci_node);
677 		if (!__cap_is_valid(cap))
678 			continue;
679 		dout("__ceph_caps_issued %p cap %p issued %s\n",
680 		     &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
681 		have |= cap->issued;
682 		if (implemented)
683 			*implemented |= cap->implemented;
684 	}
685 	/*
686 	 * exclude caps issued by non-auth MDS, but are been revoking
687 	 * by the auth MDS. The non-auth MDS should be revoking/exporting
688 	 * these caps, but the message is delayed.
689 	 */
690 	if (ci->i_auth_cap) {
691 		cap = ci->i_auth_cap;
692 		have &= ~cap->implemented | cap->issued;
693 	}
694 	return have;
695 }
696 
697 /*
698  * Get cap bits issued by caps other than @ocap
699  */
700 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
701 {
702 	int have = ci->i_snap_caps;
703 	struct ceph_cap *cap;
704 	struct rb_node *p;
705 
706 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
707 		cap = rb_entry(p, struct ceph_cap, ci_node);
708 		if (cap == ocap)
709 			continue;
710 		if (!__cap_is_valid(cap))
711 			continue;
712 		have |= cap->issued;
713 	}
714 	return have;
715 }
716 
717 /*
718  * Move a cap to the end of the LRU (oldest caps at list head, newest
719  * at list tail).
720  */
721 static void __touch_cap(struct ceph_cap *cap)
722 {
723 	struct ceph_mds_session *s = cap->session;
724 
725 	spin_lock(&s->s_cap_lock);
726 	if (s->s_cap_iterator == NULL) {
727 		dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
728 		     s->s_mds);
729 		list_move_tail(&cap->session_caps, &s->s_caps);
730 	} else {
731 		dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
732 		     &cap->ci->vfs_inode, cap, s->s_mds);
733 	}
734 	spin_unlock(&s->s_cap_lock);
735 }
736 
737 /*
738  * Check if we hold the given mask.  If so, move the cap(s) to the
739  * front of their respective LRUs.  (This is the preferred way for
740  * callers to check for caps they want.)
741  */
742 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
743 {
744 	struct ceph_cap *cap;
745 	struct rb_node *p;
746 	int have = ci->i_snap_caps;
747 
748 	if ((have & mask) == mask) {
749 		dout("__ceph_caps_issued_mask %p snap issued %s"
750 		     " (mask %s)\n", &ci->vfs_inode,
751 		     ceph_cap_string(have),
752 		     ceph_cap_string(mask));
753 		return 1;
754 	}
755 
756 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
757 		cap = rb_entry(p, struct ceph_cap, ci_node);
758 		if (!__cap_is_valid(cap))
759 			continue;
760 		if ((cap->issued & mask) == mask) {
761 			dout("__ceph_caps_issued_mask %p cap %p issued %s"
762 			     " (mask %s)\n", &ci->vfs_inode, cap,
763 			     ceph_cap_string(cap->issued),
764 			     ceph_cap_string(mask));
765 			if (touch)
766 				__touch_cap(cap);
767 			return 1;
768 		}
769 
770 		/* does a combination of caps satisfy mask? */
771 		have |= cap->issued;
772 		if ((have & mask) == mask) {
773 			dout("__ceph_caps_issued_mask %p combo issued %s"
774 			     " (mask %s)\n", &ci->vfs_inode,
775 			     ceph_cap_string(cap->issued),
776 			     ceph_cap_string(mask));
777 			if (touch) {
778 				struct rb_node *q;
779 
780 				/* touch this + preceding caps */
781 				__touch_cap(cap);
782 				for (q = rb_first(&ci->i_caps); q != p;
783 				     q = rb_next(q)) {
784 					cap = rb_entry(q, struct ceph_cap,
785 						       ci_node);
786 					if (!__cap_is_valid(cap))
787 						continue;
788 					__touch_cap(cap);
789 				}
790 			}
791 			return 1;
792 		}
793 	}
794 
795 	return 0;
796 }
797 
798 /*
799  * Return true if mask caps are currently being revoked by an MDS.
800  */
801 int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
802 			       struct ceph_cap *ocap, int mask)
803 {
804 	struct ceph_cap *cap;
805 	struct rb_node *p;
806 
807 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
808 		cap = rb_entry(p, struct ceph_cap, ci_node);
809 		if (cap != ocap &&
810 		    (cap->implemented & ~cap->issued & mask))
811 			return 1;
812 	}
813 	return 0;
814 }
815 
816 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
817 {
818 	struct inode *inode = &ci->vfs_inode;
819 	int ret;
820 
821 	spin_lock(&ci->i_ceph_lock);
822 	ret = __ceph_caps_revoking_other(ci, NULL, mask);
823 	spin_unlock(&ci->i_ceph_lock);
824 	dout("ceph_caps_revoking %p %s = %d\n", inode,
825 	     ceph_cap_string(mask), ret);
826 	return ret;
827 }
828 
829 int __ceph_caps_used(struct ceph_inode_info *ci)
830 {
831 	int used = 0;
832 	if (ci->i_pin_ref)
833 		used |= CEPH_CAP_PIN;
834 	if (ci->i_rd_ref)
835 		used |= CEPH_CAP_FILE_RD;
836 	if (ci->i_rdcache_ref ||
837 	    (!S_ISDIR(ci->vfs_inode.i_mode) && /* ignore readdir cache */
838 	     ci->vfs_inode.i_data.nrpages))
839 		used |= CEPH_CAP_FILE_CACHE;
840 	if (ci->i_wr_ref)
841 		used |= CEPH_CAP_FILE_WR;
842 	if (ci->i_wb_ref || ci->i_wrbuffer_ref)
843 		used |= CEPH_CAP_FILE_BUFFER;
844 	return used;
845 }
846 
847 /*
848  * wanted, by virtue of open file modes
849  */
850 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
851 {
852 	int want = 0;
853 	int mode;
854 	for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
855 		if (ci->i_nr_by_mode[mode])
856 			want |= ceph_caps_for_mode(mode);
857 	return want;
858 }
859 
860 /*
861  * Return caps we have registered with the MDS(s) as 'wanted'.
862  */
863 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
864 {
865 	struct ceph_cap *cap;
866 	struct rb_node *p;
867 	int mds_wanted = 0;
868 
869 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
870 		cap = rb_entry(p, struct ceph_cap, ci_node);
871 		if (!__cap_is_valid(cap))
872 			continue;
873 		if (cap == ci->i_auth_cap)
874 			mds_wanted |= cap->mds_wanted;
875 		else
876 			mds_wanted |= (cap->mds_wanted & ~CEPH_CAP_ANY_FILE_WR);
877 	}
878 	return mds_wanted;
879 }
880 
881 /*
882  * called under i_ceph_lock
883  */
884 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
885 {
886 	return !RB_EMPTY_ROOT(&ci->i_caps);
887 }
888 
889 int ceph_is_any_caps(struct inode *inode)
890 {
891 	struct ceph_inode_info *ci = ceph_inode(inode);
892 	int ret;
893 
894 	spin_lock(&ci->i_ceph_lock);
895 	ret = __ceph_is_any_caps(ci);
896 	spin_unlock(&ci->i_ceph_lock);
897 
898 	return ret;
899 }
900 
901 static void drop_inode_snap_realm(struct ceph_inode_info *ci)
902 {
903 	struct ceph_snap_realm *realm = ci->i_snap_realm;
904 	spin_lock(&realm->inodes_with_caps_lock);
905 	list_del_init(&ci->i_snap_realm_item);
906 	ci->i_snap_realm_counter++;
907 	ci->i_snap_realm = NULL;
908 	spin_unlock(&realm->inodes_with_caps_lock);
909 	ceph_put_snap_realm(ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc,
910 			    realm);
911 }
912 
913 /*
914  * Remove a cap.  Take steps to deal with a racing iterate_session_caps.
915  *
916  * caller should hold i_ceph_lock.
917  * caller will not hold session s_mutex if called from destroy_inode.
918  */
919 void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release)
920 {
921 	struct ceph_mds_session *session = cap->session;
922 	struct ceph_inode_info *ci = cap->ci;
923 	struct ceph_mds_client *mdsc =
924 		ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
925 	int removed = 0;
926 
927 	dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
928 
929 	/* remove from session list */
930 	spin_lock(&session->s_cap_lock);
931 	if (session->s_cap_iterator == cap) {
932 		/* not yet, we are iterating over this very cap */
933 		dout("__ceph_remove_cap  delaying %p removal from session %p\n",
934 		     cap, cap->session);
935 	} else {
936 		list_del_init(&cap->session_caps);
937 		session->s_nr_caps--;
938 		cap->session = NULL;
939 		removed = 1;
940 	}
941 	/* protect backpointer with s_cap_lock: see iterate_session_caps */
942 	cap->ci = NULL;
943 
944 	/*
945 	 * s_cap_reconnect is protected by s_cap_lock. no one changes
946 	 * s_cap_gen while session is in the reconnect state.
947 	 */
948 	if (queue_release &&
949 	    (!session->s_cap_reconnect || cap->cap_gen == session->s_cap_gen)) {
950 		cap->queue_release = 1;
951 		if (removed) {
952 			list_add_tail(&cap->session_caps,
953 				      &session->s_cap_releases);
954 			session->s_num_cap_releases++;
955 			removed = 0;
956 		}
957 	} else {
958 		cap->queue_release = 0;
959 	}
960 	cap->cap_ino = ci->i_vino.ino;
961 
962 	spin_unlock(&session->s_cap_lock);
963 
964 	/* remove from inode list */
965 	rb_erase(&cap->ci_node, &ci->i_caps);
966 	if (ci->i_auth_cap == cap)
967 		ci->i_auth_cap = NULL;
968 
969 	if (removed)
970 		ceph_put_cap(mdsc, cap);
971 
972 	/* when reconnect denied, we remove session caps forcibly,
973 	 * i_wr_ref can be non-zero. If there are ongoing write,
974 	 * keep i_snap_realm.
975 	 */
976 	if (!__ceph_is_any_caps(ci) && ci->i_wr_ref == 0 && ci->i_snap_realm)
977 		drop_inode_snap_realm(ci);
978 
979 	if (!__ceph_is_any_real_caps(ci))
980 		__cap_delay_cancel(mdsc, ci);
981 }
982 
983 /*
984  * Build and send a cap message to the given MDS.
985  *
986  * Caller should be holding s_mutex.
987  */
988 static int send_cap_msg(struct ceph_mds_session *session,
989 			u64 ino, u64 cid, int op,
990 			int caps, int wanted, int dirty,
991 			u32 seq, u64 flush_tid, u64 oldest_flush_tid,
992 			u32 issue_seq, u32 mseq, u64 size, u64 max_size,
993 			struct timespec *mtime, struct timespec *atime,
994 			struct timespec *ctime, u64 time_warp_seq,
995 			kuid_t uid, kgid_t gid, umode_t mode,
996 			u64 xattr_version,
997 			struct ceph_buffer *xattrs_buf,
998 			u64 follows, bool inline_data)
999 {
1000 	struct ceph_mds_caps *fc;
1001 	struct ceph_msg *msg;
1002 	void *p;
1003 	size_t extra_len;
1004 
1005 	dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
1006 	     " seq %u/%u tid %llu/%llu mseq %u follows %lld size %llu/%llu"
1007 	     " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
1008 	     cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
1009 	     ceph_cap_string(dirty),
1010 	     seq, issue_seq, flush_tid, oldest_flush_tid,
1011 	     mseq, follows, size, max_size,
1012 	     xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
1013 
1014 	/* flock buffer size + inline version + inline data size +
1015 	 * osd_epoch_barrier + oldest_flush_tid */
1016 	extra_len = 4 + 8 + 4 + 4 + 8;
1017 	msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc) + extra_len,
1018 			   GFP_NOFS, false);
1019 	if (!msg)
1020 		return -ENOMEM;
1021 
1022 	msg->hdr.version = cpu_to_le16(6);
1023 	msg->hdr.tid = cpu_to_le64(flush_tid);
1024 
1025 	fc = msg->front.iov_base;
1026 	memset(fc, 0, sizeof(*fc));
1027 
1028 	fc->cap_id = cpu_to_le64(cid);
1029 	fc->op = cpu_to_le32(op);
1030 	fc->seq = cpu_to_le32(seq);
1031 	fc->issue_seq = cpu_to_le32(issue_seq);
1032 	fc->migrate_seq = cpu_to_le32(mseq);
1033 	fc->caps = cpu_to_le32(caps);
1034 	fc->wanted = cpu_to_le32(wanted);
1035 	fc->dirty = cpu_to_le32(dirty);
1036 	fc->ino = cpu_to_le64(ino);
1037 	fc->snap_follows = cpu_to_le64(follows);
1038 
1039 	fc->size = cpu_to_le64(size);
1040 	fc->max_size = cpu_to_le64(max_size);
1041 	if (mtime)
1042 		ceph_encode_timespec(&fc->mtime, mtime);
1043 	if (atime)
1044 		ceph_encode_timespec(&fc->atime, atime);
1045 	if (ctime)
1046 		ceph_encode_timespec(&fc->ctime, ctime);
1047 	fc->time_warp_seq = cpu_to_le32(time_warp_seq);
1048 
1049 	fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid));
1050 	fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid));
1051 	fc->mode = cpu_to_le32(mode);
1052 
1053 	p = fc + 1;
1054 	/* flock buffer size */
1055 	ceph_encode_32(&p, 0);
1056 	/* inline version */
1057 	ceph_encode_64(&p, inline_data ? 0 : CEPH_INLINE_NONE);
1058 	/* inline data size */
1059 	ceph_encode_32(&p, 0);
1060 	/* osd_epoch_barrier */
1061 	ceph_encode_32(&p, 0);
1062 	/* oldest_flush_tid */
1063 	ceph_encode_64(&p, oldest_flush_tid);
1064 
1065 	fc->xattr_version = cpu_to_le64(xattr_version);
1066 	if (xattrs_buf) {
1067 		msg->middle = ceph_buffer_get(xattrs_buf);
1068 		fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1069 		msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1070 	}
1071 
1072 	ceph_con_send(&session->s_con, msg);
1073 	return 0;
1074 }
1075 
1076 /*
1077  * Queue cap releases when an inode is dropped from our cache.  Since
1078  * inode is about to be destroyed, there is no need for i_ceph_lock.
1079  */
1080 void ceph_queue_caps_release(struct inode *inode)
1081 {
1082 	struct ceph_inode_info *ci = ceph_inode(inode);
1083 	struct rb_node *p;
1084 
1085 	p = rb_first(&ci->i_caps);
1086 	while (p) {
1087 		struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1088 		p = rb_next(p);
1089 		__ceph_remove_cap(cap, true);
1090 	}
1091 }
1092 
1093 /*
1094  * Send a cap msg on the given inode.  Update our caps state, then
1095  * drop i_ceph_lock and send the message.
1096  *
1097  * Make note of max_size reported/requested from mds, revoked caps
1098  * that have now been implemented.
1099  *
1100  * Make half-hearted attempt ot to invalidate page cache if we are
1101  * dropping RDCACHE.  Note that this will leave behind locked pages
1102  * that we'll then need to deal with elsewhere.
1103  *
1104  * Return non-zero if delayed release, or we experienced an error
1105  * such that the caller should requeue + retry later.
1106  *
1107  * called with i_ceph_lock, then drops it.
1108  * caller should hold snap_rwsem (read), s_mutex.
1109  */
1110 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1111 		      int op, int used, int want, int retain, int flushing,
1112 		      u64 flush_tid, u64 oldest_flush_tid)
1113 	__releases(cap->ci->i_ceph_lock)
1114 {
1115 	struct ceph_inode_info *ci = cap->ci;
1116 	struct inode *inode = &ci->vfs_inode;
1117 	u64 cap_id = cap->cap_id;
1118 	int held, revoking, dropping, keep;
1119 	u64 seq, issue_seq, mseq, time_warp_seq, follows;
1120 	u64 size, max_size;
1121 	struct timespec mtime, atime, ctime;
1122 	int wake = 0;
1123 	umode_t mode;
1124 	kuid_t uid;
1125 	kgid_t gid;
1126 	struct ceph_mds_session *session;
1127 	u64 xattr_version = 0;
1128 	struct ceph_buffer *xattr_blob = NULL;
1129 	int delayed = 0;
1130 	int ret;
1131 	bool inline_data;
1132 
1133 	held = cap->issued | cap->implemented;
1134 	revoking = cap->implemented & ~cap->issued;
1135 	retain &= ~revoking;
1136 	dropping = cap->issued & ~retain;
1137 
1138 	dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1139 	     inode, cap, cap->session,
1140 	     ceph_cap_string(held), ceph_cap_string(held & retain),
1141 	     ceph_cap_string(revoking));
1142 	BUG_ON((retain & CEPH_CAP_PIN) == 0);
1143 
1144 	session = cap->session;
1145 
1146 	/* don't release wanted unless we've waited a bit. */
1147 	if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1148 	    time_before(jiffies, ci->i_hold_caps_min)) {
1149 		dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1150 		     ceph_cap_string(cap->issued),
1151 		     ceph_cap_string(cap->issued & retain),
1152 		     ceph_cap_string(cap->mds_wanted),
1153 		     ceph_cap_string(want));
1154 		want |= cap->mds_wanted;
1155 		retain |= cap->issued;
1156 		delayed = 1;
1157 	}
1158 	ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1159 
1160 	cap->issued &= retain;  /* drop bits we don't want */
1161 	if (cap->implemented & ~cap->issued) {
1162 		/*
1163 		 * Wake up any waiters on wanted -> needed transition.
1164 		 * This is due to the weird transition from buffered
1165 		 * to sync IO... we need to flush dirty pages _before_
1166 		 * allowing sync writes to avoid reordering.
1167 		 */
1168 		wake = 1;
1169 	}
1170 	cap->implemented &= cap->issued | used;
1171 	cap->mds_wanted = want;
1172 
1173 	follows = flushing ? ci->i_head_snapc->seq : 0;
1174 
1175 	keep = cap->implemented;
1176 	seq = cap->seq;
1177 	issue_seq = cap->issue_seq;
1178 	mseq = cap->mseq;
1179 	size = inode->i_size;
1180 	ci->i_reported_size = size;
1181 	max_size = ci->i_wanted_max_size;
1182 	ci->i_requested_max_size = max_size;
1183 	mtime = inode->i_mtime;
1184 	atime = inode->i_atime;
1185 	ctime = inode->i_ctime;
1186 	time_warp_seq = ci->i_time_warp_seq;
1187 	uid = inode->i_uid;
1188 	gid = inode->i_gid;
1189 	mode = inode->i_mode;
1190 
1191 	if (flushing & CEPH_CAP_XATTR_EXCL) {
1192 		__ceph_build_xattrs_blob(ci);
1193 		xattr_blob = ci->i_xattrs.blob;
1194 		xattr_version = ci->i_xattrs.version;
1195 	}
1196 
1197 	inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
1198 
1199 	spin_unlock(&ci->i_ceph_lock);
1200 
1201 	ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1202 		op, keep, want, flushing, seq,
1203 		flush_tid, oldest_flush_tid, issue_seq, mseq,
1204 		size, max_size, &mtime, &atime, &ctime, time_warp_seq,
1205 		uid, gid, mode, xattr_version, xattr_blob,
1206 		follows, inline_data);
1207 	if (ret < 0) {
1208 		dout("error sending cap msg, must requeue %p\n", inode);
1209 		delayed = 1;
1210 	}
1211 
1212 	if (wake)
1213 		wake_up_all(&ci->i_cap_wq);
1214 
1215 	return delayed;
1216 }
1217 
1218 /*
1219  * When a snapshot is taken, clients accumulate dirty metadata on
1220  * inodes with capabilities in ceph_cap_snaps to describe the file
1221  * state at the time the snapshot was taken.  This must be flushed
1222  * asynchronously back to the MDS once sync writes complete and dirty
1223  * data is written out.
1224  *
1225  * Unless @kick is true, skip cap_snaps that were already sent to
1226  * the MDS (i.e., during this session).
1227  *
1228  * Called under i_ceph_lock.  Takes s_mutex as needed.
1229  */
1230 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1231 			struct ceph_mds_session **psession,
1232 			int kick)
1233 		__releases(ci->i_ceph_lock)
1234 		__acquires(ci->i_ceph_lock)
1235 {
1236 	struct inode *inode = &ci->vfs_inode;
1237 	int mds;
1238 	struct ceph_cap_snap *capsnap;
1239 	u32 mseq;
1240 	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
1241 	struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1242 						    session->s_mutex */
1243 	u64 next_follows = 0;  /* keep track of how far we've gotten through the
1244 			     i_cap_snaps list, and skip these entries next time
1245 			     around to avoid an infinite loop */
1246 
1247 	if (psession)
1248 		session = *psession;
1249 
1250 	dout("__flush_snaps %p\n", inode);
1251 retry:
1252 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1253 		/* avoid an infiniute loop after retry */
1254 		if (capsnap->follows < next_follows)
1255 			continue;
1256 		/*
1257 		 * we need to wait for sync writes to complete and for dirty
1258 		 * pages to be written out.
1259 		 */
1260 		if (capsnap->dirty_pages || capsnap->writing)
1261 			break;
1262 
1263 		/* should be removed by ceph_try_drop_cap_snap() */
1264 		BUG_ON(!capsnap->need_flush);
1265 
1266 		/* pick mds, take s_mutex */
1267 		if (ci->i_auth_cap == NULL) {
1268 			dout("no auth cap (migrating?), doing nothing\n");
1269 			goto out;
1270 		}
1271 
1272 		/* only flush each capsnap once */
1273 		if (!kick && !list_empty(&capsnap->flushing_item)) {
1274 			dout("already flushed %p, skipping\n", capsnap);
1275 			continue;
1276 		}
1277 
1278 		mds = ci->i_auth_cap->session->s_mds;
1279 		mseq = ci->i_auth_cap->mseq;
1280 
1281 		if (session && session->s_mds != mds) {
1282 			dout("oops, wrong session %p mutex\n", session);
1283 			if (kick)
1284 				goto out;
1285 
1286 			mutex_unlock(&session->s_mutex);
1287 			ceph_put_mds_session(session);
1288 			session = NULL;
1289 		}
1290 		if (!session) {
1291 			spin_unlock(&ci->i_ceph_lock);
1292 			mutex_lock(&mdsc->mutex);
1293 			session = __ceph_lookup_mds_session(mdsc, mds);
1294 			mutex_unlock(&mdsc->mutex);
1295 			if (session) {
1296 				dout("inverting session/ino locks on %p\n",
1297 				     session);
1298 				mutex_lock(&session->s_mutex);
1299 			}
1300 			/*
1301 			 * if session == NULL, we raced against a cap
1302 			 * deletion or migration.  retry, and we'll
1303 			 * get a better @mds value next time.
1304 			 */
1305 			spin_lock(&ci->i_ceph_lock);
1306 			goto retry;
1307 		}
1308 
1309 		spin_lock(&mdsc->cap_dirty_lock);
1310 		capsnap->flush_tid = ++mdsc->last_cap_flush_tid;
1311 		spin_unlock(&mdsc->cap_dirty_lock);
1312 
1313 		atomic_inc(&capsnap->nref);
1314 		if (list_empty(&capsnap->flushing_item))
1315 			list_add_tail(&capsnap->flushing_item,
1316 				      &session->s_cap_snaps_flushing);
1317 		spin_unlock(&ci->i_ceph_lock);
1318 
1319 		dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
1320 		     inode, capsnap, capsnap->follows, capsnap->flush_tid);
1321 		send_cap_msg(session, ceph_vino(inode).ino, 0,
1322 			     CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1323 			     capsnap->dirty, 0, capsnap->flush_tid, 0,
1324 			     0, mseq, capsnap->size, 0,
1325 			     &capsnap->mtime, &capsnap->atime,
1326 			     &capsnap->ctime, capsnap->time_warp_seq,
1327 			     capsnap->uid, capsnap->gid, capsnap->mode,
1328 			     capsnap->xattr_version, capsnap->xattr_blob,
1329 			     capsnap->follows, capsnap->inline_data);
1330 
1331 		next_follows = capsnap->follows + 1;
1332 		ceph_put_cap_snap(capsnap);
1333 
1334 		spin_lock(&ci->i_ceph_lock);
1335 		goto retry;
1336 	}
1337 
1338 	/* we flushed them all; remove this inode from the queue */
1339 	spin_lock(&mdsc->snap_flush_lock);
1340 	list_del_init(&ci->i_snap_flush_item);
1341 	spin_unlock(&mdsc->snap_flush_lock);
1342 
1343 out:
1344 	if (psession)
1345 		*psession = session;
1346 	else if (session) {
1347 		mutex_unlock(&session->s_mutex);
1348 		ceph_put_mds_session(session);
1349 	}
1350 }
1351 
1352 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1353 {
1354 	spin_lock(&ci->i_ceph_lock);
1355 	__ceph_flush_snaps(ci, NULL, 0);
1356 	spin_unlock(&ci->i_ceph_lock);
1357 }
1358 
1359 /*
1360  * Mark caps dirty.  If inode is newly dirty, return the dirty flags.
1361  * Caller is then responsible for calling __mark_inode_dirty with the
1362  * returned flags value.
1363  */
1364 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask,
1365 			   struct ceph_cap_flush **pcf)
1366 {
1367 	struct ceph_mds_client *mdsc =
1368 		ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1369 	struct inode *inode = &ci->vfs_inode;
1370 	int was = ci->i_dirty_caps;
1371 	int dirty = 0;
1372 
1373 	if (!ci->i_auth_cap) {
1374 		pr_warn("__mark_dirty_caps %p %llx mask %s, "
1375 			"but no auth cap (session was closed?)\n",
1376 			inode, ceph_ino(inode), ceph_cap_string(mask));
1377 		return 0;
1378 	}
1379 
1380 	dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1381 	     ceph_cap_string(mask), ceph_cap_string(was),
1382 	     ceph_cap_string(was | mask));
1383 	ci->i_dirty_caps |= mask;
1384 	if (was == 0) {
1385 		WARN_ON_ONCE(ci->i_prealloc_cap_flush);
1386 		swap(ci->i_prealloc_cap_flush, *pcf);
1387 
1388 		if (!ci->i_head_snapc) {
1389 			WARN_ON_ONCE(!rwsem_is_locked(&mdsc->snap_rwsem));
1390 			ci->i_head_snapc = ceph_get_snap_context(
1391 				ci->i_snap_realm->cached_context);
1392 		}
1393 		dout(" inode %p now dirty snapc %p auth cap %p\n",
1394 		     &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap);
1395 		BUG_ON(!list_empty(&ci->i_dirty_item));
1396 		spin_lock(&mdsc->cap_dirty_lock);
1397 		list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1398 		spin_unlock(&mdsc->cap_dirty_lock);
1399 		if (ci->i_flushing_caps == 0) {
1400 			ihold(inode);
1401 			dirty |= I_DIRTY_SYNC;
1402 		}
1403 	} else {
1404 		WARN_ON_ONCE(!ci->i_prealloc_cap_flush);
1405 	}
1406 	BUG_ON(list_empty(&ci->i_dirty_item));
1407 	if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1408 	    (mask & CEPH_CAP_FILE_BUFFER))
1409 		dirty |= I_DIRTY_DATASYNC;
1410 	__cap_delay_requeue(mdsc, ci);
1411 	return dirty;
1412 }
1413 
1414 static void __add_cap_flushing_to_inode(struct ceph_inode_info *ci,
1415 					struct ceph_cap_flush *cf)
1416 {
1417 	struct rb_node **p = &ci->i_cap_flush_tree.rb_node;
1418 	struct rb_node *parent = NULL;
1419 	struct ceph_cap_flush *other = NULL;
1420 
1421 	while (*p) {
1422 		parent = *p;
1423 		other = rb_entry(parent, struct ceph_cap_flush, i_node);
1424 
1425 		if (cf->tid < other->tid)
1426 			p = &(*p)->rb_left;
1427 		else if (cf->tid > other->tid)
1428 			p = &(*p)->rb_right;
1429 		else
1430 			BUG();
1431 	}
1432 
1433 	rb_link_node(&cf->i_node, parent, p);
1434 	rb_insert_color(&cf->i_node, &ci->i_cap_flush_tree);
1435 }
1436 
1437 static void __add_cap_flushing_to_mdsc(struct ceph_mds_client *mdsc,
1438 				       struct ceph_cap_flush *cf)
1439 {
1440 	struct rb_node **p = &mdsc->cap_flush_tree.rb_node;
1441 	struct rb_node *parent = NULL;
1442 	struct ceph_cap_flush *other = NULL;
1443 
1444 	while (*p) {
1445 		parent = *p;
1446 		other = rb_entry(parent, struct ceph_cap_flush, g_node);
1447 
1448 		if (cf->tid < other->tid)
1449 			p = &(*p)->rb_left;
1450 		else if (cf->tid > other->tid)
1451 			p = &(*p)->rb_right;
1452 		else
1453 			BUG();
1454 	}
1455 
1456 	rb_link_node(&cf->g_node, parent, p);
1457 	rb_insert_color(&cf->g_node, &mdsc->cap_flush_tree);
1458 }
1459 
1460 struct ceph_cap_flush *ceph_alloc_cap_flush(void)
1461 {
1462 	return kmem_cache_alloc(ceph_cap_flush_cachep, GFP_KERNEL);
1463 }
1464 
1465 void ceph_free_cap_flush(struct ceph_cap_flush *cf)
1466 {
1467 	if (cf)
1468 		kmem_cache_free(ceph_cap_flush_cachep, cf);
1469 }
1470 
1471 static u64 __get_oldest_flush_tid(struct ceph_mds_client *mdsc)
1472 {
1473 	struct rb_node *n = rb_first(&mdsc->cap_flush_tree);
1474 	if (n) {
1475 		struct ceph_cap_flush *cf =
1476 			rb_entry(n, struct ceph_cap_flush, g_node);
1477 		return cf->tid;
1478 	}
1479 	return 0;
1480 }
1481 
1482 /*
1483  * Add dirty inode to the flushing list.  Assigned a seq number so we
1484  * can wait for caps to flush without starving.
1485  *
1486  * Called under i_ceph_lock.
1487  */
1488 static int __mark_caps_flushing(struct inode *inode,
1489 				struct ceph_mds_session *session,
1490 				u64 *flush_tid, u64 *oldest_flush_tid)
1491 {
1492 	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1493 	struct ceph_inode_info *ci = ceph_inode(inode);
1494 	struct ceph_cap_flush *cf = NULL;
1495 	int flushing;
1496 
1497 	BUG_ON(ci->i_dirty_caps == 0);
1498 	BUG_ON(list_empty(&ci->i_dirty_item));
1499 	BUG_ON(!ci->i_prealloc_cap_flush);
1500 
1501 	flushing = ci->i_dirty_caps;
1502 	dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1503 	     ceph_cap_string(flushing),
1504 	     ceph_cap_string(ci->i_flushing_caps),
1505 	     ceph_cap_string(ci->i_flushing_caps | flushing));
1506 	ci->i_flushing_caps |= flushing;
1507 	ci->i_dirty_caps = 0;
1508 	dout(" inode %p now !dirty\n", inode);
1509 
1510 	swap(cf, ci->i_prealloc_cap_flush);
1511 	cf->caps = flushing;
1512 
1513 	spin_lock(&mdsc->cap_dirty_lock);
1514 	list_del_init(&ci->i_dirty_item);
1515 
1516 	cf->tid = ++mdsc->last_cap_flush_tid;
1517 	__add_cap_flushing_to_mdsc(mdsc, cf);
1518 	*oldest_flush_tid = __get_oldest_flush_tid(mdsc);
1519 
1520 	if (list_empty(&ci->i_flushing_item)) {
1521 		list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1522 		mdsc->num_cap_flushing++;
1523 		dout(" inode %p now flushing tid %llu\n", inode, cf->tid);
1524 	} else {
1525 		list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1526 		dout(" inode %p now flushing (more) tid %llu\n",
1527 		     inode, cf->tid);
1528 	}
1529 	spin_unlock(&mdsc->cap_dirty_lock);
1530 
1531 	__add_cap_flushing_to_inode(ci, cf);
1532 
1533 	*flush_tid = cf->tid;
1534 	return flushing;
1535 }
1536 
1537 /*
1538  * try to invalidate mapping pages without blocking.
1539  */
1540 static int try_nonblocking_invalidate(struct inode *inode)
1541 {
1542 	struct ceph_inode_info *ci = ceph_inode(inode);
1543 	u32 invalidating_gen = ci->i_rdcache_gen;
1544 
1545 	spin_unlock(&ci->i_ceph_lock);
1546 	invalidate_mapping_pages(&inode->i_data, 0, -1);
1547 	spin_lock(&ci->i_ceph_lock);
1548 
1549 	if (inode->i_data.nrpages == 0 &&
1550 	    invalidating_gen == ci->i_rdcache_gen) {
1551 		/* success. */
1552 		dout("try_nonblocking_invalidate %p success\n", inode);
1553 		/* save any racing async invalidate some trouble */
1554 		ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
1555 		return 0;
1556 	}
1557 	dout("try_nonblocking_invalidate %p failed\n", inode);
1558 	return -1;
1559 }
1560 
1561 /*
1562  * Swiss army knife function to examine currently used and wanted
1563  * versus held caps.  Release, flush, ack revoked caps to mds as
1564  * appropriate.
1565  *
1566  *  CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1567  *    cap release further.
1568  *  CHECK_CAPS_AUTHONLY - we should only check the auth cap
1569  *  CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1570  *    further delay.
1571  */
1572 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1573 		     struct ceph_mds_session *session)
1574 {
1575 	struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
1576 	struct ceph_mds_client *mdsc = fsc->mdsc;
1577 	struct inode *inode = &ci->vfs_inode;
1578 	struct ceph_cap *cap;
1579 	u64 flush_tid, oldest_flush_tid;
1580 	int file_wanted, used, cap_used;
1581 	int took_snap_rwsem = 0;             /* true if mdsc->snap_rwsem held */
1582 	int issued, implemented, want, retain, revoking, flushing = 0;
1583 	int mds = -1;   /* keep track of how far we've gone through i_caps list
1584 			   to avoid an infinite loop on retry */
1585 	struct rb_node *p;
1586 	int tried_invalidate = 0;
1587 	int delayed = 0, sent = 0, force_requeue = 0, num;
1588 	int queue_invalidate = 0;
1589 	int is_delayed = flags & CHECK_CAPS_NODELAY;
1590 
1591 	/* if we are unmounting, flush any unused caps immediately. */
1592 	if (mdsc->stopping)
1593 		is_delayed = 1;
1594 
1595 	spin_lock(&ci->i_ceph_lock);
1596 
1597 	if (ci->i_ceph_flags & CEPH_I_FLUSH)
1598 		flags |= CHECK_CAPS_FLUSH;
1599 
1600 	/* flush snaps first time around only */
1601 	if (!list_empty(&ci->i_cap_snaps))
1602 		__ceph_flush_snaps(ci, &session, 0);
1603 	goto retry_locked;
1604 retry:
1605 	spin_lock(&ci->i_ceph_lock);
1606 retry_locked:
1607 	file_wanted = __ceph_caps_file_wanted(ci);
1608 	used = __ceph_caps_used(ci);
1609 	issued = __ceph_caps_issued(ci, &implemented);
1610 	revoking = implemented & ~issued;
1611 
1612 	want = file_wanted;
1613 	retain = file_wanted | used | CEPH_CAP_PIN;
1614 	if (!mdsc->stopping && inode->i_nlink > 0) {
1615 		if (file_wanted) {
1616 			retain |= CEPH_CAP_ANY;       /* be greedy */
1617 		} else if (S_ISDIR(inode->i_mode) &&
1618 			   (issued & CEPH_CAP_FILE_SHARED) &&
1619 			    __ceph_dir_is_complete(ci)) {
1620 			/*
1621 			 * If a directory is complete, we want to keep
1622 			 * the exclusive cap. So that MDS does not end up
1623 			 * revoking the shared cap on every create/unlink
1624 			 * operation.
1625 			 */
1626 			want = CEPH_CAP_ANY_SHARED | CEPH_CAP_FILE_EXCL;
1627 			retain |= want;
1628 		} else {
1629 
1630 			retain |= CEPH_CAP_ANY_SHARED;
1631 			/*
1632 			 * keep RD only if we didn't have the file open RW,
1633 			 * because then the mds would revoke it anyway to
1634 			 * journal max_size=0.
1635 			 */
1636 			if (ci->i_max_size == 0)
1637 				retain |= CEPH_CAP_ANY_RD;
1638 		}
1639 	}
1640 
1641 	dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1642 	     " issued %s revoking %s retain %s %s%s%s\n", inode,
1643 	     ceph_cap_string(file_wanted),
1644 	     ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1645 	     ceph_cap_string(ci->i_flushing_caps),
1646 	     ceph_cap_string(issued), ceph_cap_string(revoking),
1647 	     ceph_cap_string(retain),
1648 	     (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1649 	     (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1650 	     (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1651 
1652 	/*
1653 	 * If we no longer need to hold onto old our caps, and we may
1654 	 * have cached pages, but don't want them, then try to invalidate.
1655 	 * If we fail, it's because pages are locked.... try again later.
1656 	 */
1657 	if ((!is_delayed || mdsc->stopping) &&
1658 	    !S_ISDIR(inode->i_mode) &&		/* ignore readdir cache */
1659 	    ci->i_wrbuffer_ref == 0 &&		/* no dirty pages... */
1660 	    inode->i_data.nrpages &&		/* have cached pages */
1661 	    (revoking & (CEPH_CAP_FILE_CACHE|
1662 			 CEPH_CAP_FILE_LAZYIO)) && /*  or revoking cache */
1663 	    !tried_invalidate) {
1664 		dout("check_caps trying to invalidate on %p\n", inode);
1665 		if (try_nonblocking_invalidate(inode) < 0) {
1666 			if (revoking & (CEPH_CAP_FILE_CACHE|
1667 					CEPH_CAP_FILE_LAZYIO)) {
1668 				dout("check_caps queuing invalidate\n");
1669 				queue_invalidate = 1;
1670 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
1671 			} else {
1672 				dout("check_caps failed to invalidate pages\n");
1673 				/* we failed to invalidate pages.  check these
1674 				   caps again later. */
1675 				force_requeue = 1;
1676 				__cap_set_timeouts(mdsc, ci);
1677 			}
1678 		}
1679 		tried_invalidate = 1;
1680 		goto retry_locked;
1681 	}
1682 
1683 	num = 0;
1684 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1685 		cap = rb_entry(p, struct ceph_cap, ci_node);
1686 		num++;
1687 
1688 		/* avoid looping forever */
1689 		if (mds >= cap->mds ||
1690 		    ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1691 			continue;
1692 
1693 		/* NOTE: no side-effects allowed, until we take s_mutex */
1694 
1695 		cap_used = used;
1696 		if (ci->i_auth_cap && cap != ci->i_auth_cap)
1697 			cap_used &= ~ci->i_auth_cap->issued;
1698 
1699 		revoking = cap->implemented & ~cap->issued;
1700 		dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n",
1701 		     cap->mds, cap, ceph_cap_string(cap->issued),
1702 		     ceph_cap_string(cap_used),
1703 		     ceph_cap_string(cap->implemented),
1704 		     ceph_cap_string(revoking));
1705 
1706 		if (cap == ci->i_auth_cap &&
1707 		    (cap->issued & CEPH_CAP_FILE_WR)) {
1708 			/* request larger max_size from MDS? */
1709 			if (ci->i_wanted_max_size > ci->i_max_size &&
1710 			    ci->i_wanted_max_size > ci->i_requested_max_size) {
1711 				dout("requesting new max_size\n");
1712 				goto ack;
1713 			}
1714 
1715 			/* approaching file_max? */
1716 			if ((inode->i_size << 1) >= ci->i_max_size &&
1717 			    (ci->i_reported_size << 1) < ci->i_max_size) {
1718 				dout("i_size approaching max_size\n");
1719 				goto ack;
1720 			}
1721 		}
1722 		/* flush anything dirty? */
1723 		if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1724 		    ci->i_dirty_caps) {
1725 			dout("flushing dirty caps\n");
1726 			goto ack;
1727 		}
1728 
1729 		/* completed revocation? going down and there are no caps? */
1730 		if (revoking && (revoking & cap_used) == 0) {
1731 			dout("completed revocation of %s\n",
1732 			     ceph_cap_string(cap->implemented & ~cap->issued));
1733 			goto ack;
1734 		}
1735 
1736 		/* want more caps from mds? */
1737 		if (want & ~(cap->mds_wanted | cap->issued))
1738 			goto ack;
1739 
1740 		/* things we might delay */
1741 		if ((cap->issued & ~retain) == 0 &&
1742 		    cap->mds_wanted == want)
1743 			continue;     /* nope, all good */
1744 
1745 		if (is_delayed)
1746 			goto ack;
1747 
1748 		/* delay? */
1749 		if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1750 		    time_before(jiffies, ci->i_hold_caps_max)) {
1751 			dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1752 			     ceph_cap_string(cap->issued),
1753 			     ceph_cap_string(cap->issued & retain),
1754 			     ceph_cap_string(cap->mds_wanted),
1755 			     ceph_cap_string(want));
1756 			delayed++;
1757 			continue;
1758 		}
1759 
1760 ack:
1761 		if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1762 			dout(" skipping %p I_NOFLUSH set\n", inode);
1763 			continue;
1764 		}
1765 
1766 		if (session && session != cap->session) {
1767 			dout("oops, wrong session %p mutex\n", session);
1768 			mutex_unlock(&session->s_mutex);
1769 			session = NULL;
1770 		}
1771 		if (!session) {
1772 			session = cap->session;
1773 			if (mutex_trylock(&session->s_mutex) == 0) {
1774 				dout("inverting session/ino locks on %p\n",
1775 				     session);
1776 				spin_unlock(&ci->i_ceph_lock);
1777 				if (took_snap_rwsem) {
1778 					up_read(&mdsc->snap_rwsem);
1779 					took_snap_rwsem = 0;
1780 				}
1781 				mutex_lock(&session->s_mutex);
1782 				goto retry;
1783 			}
1784 		}
1785 		/* take snap_rwsem after session mutex */
1786 		if (!took_snap_rwsem) {
1787 			if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1788 				dout("inverting snap/in locks on %p\n",
1789 				     inode);
1790 				spin_unlock(&ci->i_ceph_lock);
1791 				down_read(&mdsc->snap_rwsem);
1792 				took_snap_rwsem = 1;
1793 				goto retry;
1794 			}
1795 			took_snap_rwsem = 1;
1796 		}
1797 
1798 		if (cap == ci->i_auth_cap && ci->i_dirty_caps) {
1799 			flushing = __mark_caps_flushing(inode, session,
1800 							&flush_tid,
1801 							&oldest_flush_tid);
1802 		} else {
1803 			flushing = 0;
1804 			flush_tid = 0;
1805 			spin_lock(&mdsc->cap_dirty_lock);
1806 			oldest_flush_tid = __get_oldest_flush_tid(mdsc);
1807 			spin_unlock(&mdsc->cap_dirty_lock);
1808 		}
1809 
1810 		mds = cap->mds;  /* remember mds, so we don't repeat */
1811 		sent++;
1812 
1813 		/* __send_cap drops i_ceph_lock */
1814 		delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used,
1815 				      want, retain, flushing,
1816 				      flush_tid, oldest_flush_tid);
1817 		goto retry; /* retake i_ceph_lock and restart our cap scan. */
1818 	}
1819 
1820 	/*
1821 	 * Reschedule delayed caps release if we delayed anything,
1822 	 * otherwise cancel.
1823 	 */
1824 	if (delayed && is_delayed)
1825 		force_requeue = 1;   /* __send_cap delayed release; requeue */
1826 	if (!delayed && !is_delayed)
1827 		__cap_delay_cancel(mdsc, ci);
1828 	else if (!is_delayed || force_requeue)
1829 		__cap_delay_requeue(mdsc, ci);
1830 
1831 	spin_unlock(&ci->i_ceph_lock);
1832 
1833 	if (queue_invalidate)
1834 		ceph_queue_invalidate(inode);
1835 
1836 	if (session)
1837 		mutex_unlock(&session->s_mutex);
1838 	if (took_snap_rwsem)
1839 		up_read(&mdsc->snap_rwsem);
1840 }
1841 
1842 /*
1843  * Try to flush dirty caps back to the auth mds.
1844  */
1845 static int try_flush_caps(struct inode *inode, u64 *ptid)
1846 {
1847 	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1848 	struct ceph_inode_info *ci = ceph_inode(inode);
1849 	struct ceph_mds_session *session = NULL;
1850 	int flushing = 0;
1851 	u64 flush_tid = 0, oldest_flush_tid = 0;
1852 
1853 retry:
1854 	spin_lock(&ci->i_ceph_lock);
1855 	if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1856 		dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1857 		goto out;
1858 	}
1859 	if (ci->i_dirty_caps && ci->i_auth_cap) {
1860 		struct ceph_cap *cap = ci->i_auth_cap;
1861 		int used = __ceph_caps_used(ci);
1862 		int want = __ceph_caps_wanted(ci);
1863 		int delayed;
1864 
1865 		if (!session || session != cap->session) {
1866 			spin_unlock(&ci->i_ceph_lock);
1867 			if (session)
1868 				mutex_unlock(&session->s_mutex);
1869 			session = cap->session;
1870 			mutex_lock(&session->s_mutex);
1871 			goto retry;
1872 		}
1873 		if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1874 			goto out;
1875 
1876 		flushing = __mark_caps_flushing(inode, session, &flush_tid,
1877 						&oldest_flush_tid);
1878 
1879 		/* __send_cap drops i_ceph_lock */
1880 		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1881 				     (cap->issued | cap->implemented),
1882 				     flushing, flush_tid, oldest_flush_tid);
1883 
1884 		if (delayed) {
1885 			spin_lock(&ci->i_ceph_lock);
1886 			__cap_delay_requeue(mdsc, ci);
1887 			spin_unlock(&ci->i_ceph_lock);
1888 		}
1889 	} else {
1890 		struct rb_node *n = rb_last(&ci->i_cap_flush_tree);
1891 		if (n) {
1892 			struct ceph_cap_flush *cf =
1893 				rb_entry(n, struct ceph_cap_flush, i_node);
1894 			flush_tid = cf->tid;
1895 		}
1896 		flushing = ci->i_flushing_caps;
1897 		spin_unlock(&ci->i_ceph_lock);
1898 	}
1899 out:
1900 	if (session)
1901 		mutex_unlock(&session->s_mutex);
1902 
1903 	*ptid = flush_tid;
1904 	return flushing;
1905 }
1906 
1907 /*
1908  * Return true if we've flushed caps through the given flush_tid.
1909  */
1910 static int caps_are_flushed(struct inode *inode, u64 flush_tid)
1911 {
1912 	struct ceph_inode_info *ci = ceph_inode(inode);
1913 	struct ceph_cap_flush *cf;
1914 	struct rb_node *n;
1915 	int ret = 1;
1916 
1917 	spin_lock(&ci->i_ceph_lock);
1918 	n = rb_first(&ci->i_cap_flush_tree);
1919 	if (n) {
1920 		cf = rb_entry(n, struct ceph_cap_flush, i_node);
1921 		if (cf->tid <= flush_tid)
1922 			ret = 0;
1923 	}
1924 	spin_unlock(&ci->i_ceph_lock);
1925 	return ret;
1926 }
1927 
1928 /*
1929  * Wait on any unsafe replies for the given inode.  First wait on the
1930  * newest request, and make that the upper bound.  Then, if there are
1931  * more requests, keep waiting on the oldest as long as it is still older
1932  * than the original request.
1933  */
1934 static void sync_write_wait(struct inode *inode)
1935 {
1936 	struct ceph_inode_info *ci = ceph_inode(inode);
1937 	struct list_head *head = &ci->i_unsafe_writes;
1938 	struct ceph_osd_request *req;
1939 	u64 last_tid;
1940 
1941 	if (!S_ISREG(inode->i_mode))
1942 		return;
1943 
1944 	spin_lock(&ci->i_unsafe_lock);
1945 	if (list_empty(head))
1946 		goto out;
1947 
1948 	/* set upper bound as _last_ entry in chain */
1949 	req = list_last_entry(head, struct ceph_osd_request,
1950 			      r_unsafe_item);
1951 	last_tid = req->r_tid;
1952 
1953 	do {
1954 		ceph_osdc_get_request(req);
1955 		spin_unlock(&ci->i_unsafe_lock);
1956 		dout("sync_write_wait on tid %llu (until %llu)\n",
1957 		     req->r_tid, last_tid);
1958 		wait_for_completion(&req->r_safe_completion);
1959 		spin_lock(&ci->i_unsafe_lock);
1960 		ceph_osdc_put_request(req);
1961 
1962 		/*
1963 		 * from here on look at first entry in chain, since we
1964 		 * only want to wait for anything older than last_tid
1965 		 */
1966 		if (list_empty(head))
1967 			break;
1968 		req = list_first_entry(head, struct ceph_osd_request,
1969 				       r_unsafe_item);
1970 	} while (req->r_tid < last_tid);
1971 out:
1972 	spin_unlock(&ci->i_unsafe_lock);
1973 }
1974 
1975 /*
1976  * wait for any unsafe requests to complete.
1977  */
1978 static int unsafe_request_wait(struct inode *inode)
1979 {
1980 	struct ceph_inode_info *ci = ceph_inode(inode);
1981 	struct ceph_mds_request *req1 = NULL, *req2 = NULL;
1982 	int ret, err = 0;
1983 
1984 	spin_lock(&ci->i_unsafe_lock);
1985 	if (S_ISDIR(inode->i_mode) && !list_empty(&ci->i_unsafe_dirops)) {
1986 		req1 = list_last_entry(&ci->i_unsafe_dirops,
1987 					struct ceph_mds_request,
1988 					r_unsafe_dir_item);
1989 		ceph_mdsc_get_request(req1);
1990 	}
1991 	if (!list_empty(&ci->i_unsafe_iops)) {
1992 		req2 = list_last_entry(&ci->i_unsafe_iops,
1993 					struct ceph_mds_request,
1994 					r_unsafe_target_item);
1995 		ceph_mdsc_get_request(req2);
1996 	}
1997 	spin_unlock(&ci->i_unsafe_lock);
1998 
1999 	dout("unsafe_requeset_wait %p wait on tid %llu %llu\n",
2000 	     inode, req1 ? req1->r_tid : 0ULL, req2 ? req2->r_tid : 0ULL);
2001 	if (req1) {
2002 		ret = !wait_for_completion_timeout(&req1->r_safe_completion,
2003 					ceph_timeout_jiffies(req1->r_timeout));
2004 		if (ret)
2005 			err = -EIO;
2006 		ceph_mdsc_put_request(req1);
2007 	}
2008 	if (req2) {
2009 		ret = !wait_for_completion_timeout(&req2->r_safe_completion,
2010 					ceph_timeout_jiffies(req2->r_timeout));
2011 		if (ret)
2012 			err = -EIO;
2013 		ceph_mdsc_put_request(req2);
2014 	}
2015 	return err;
2016 }
2017 
2018 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
2019 {
2020 	struct inode *inode = file->f_mapping->host;
2021 	struct ceph_inode_info *ci = ceph_inode(inode);
2022 	u64 flush_tid;
2023 	int ret;
2024 	int dirty;
2025 
2026 	dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
2027 	sync_write_wait(inode);
2028 
2029 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
2030 	if (ret < 0)
2031 		goto out;
2032 
2033 	if (datasync)
2034 		goto out;
2035 
2036 	inode_lock(inode);
2037 
2038 	dirty = try_flush_caps(inode, &flush_tid);
2039 	dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
2040 
2041 	ret = unsafe_request_wait(inode);
2042 
2043 	/*
2044 	 * only wait on non-file metadata writeback (the mds
2045 	 * can recover size and mtime, so we don't need to
2046 	 * wait for that)
2047 	 */
2048 	if (!ret && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
2049 		ret = wait_event_interruptible(ci->i_cap_wq,
2050 					caps_are_flushed(inode, flush_tid));
2051 	}
2052 	inode_unlock(inode);
2053 out:
2054 	dout("fsync %p%s result=%d\n", inode, datasync ? " datasync" : "", ret);
2055 	return ret;
2056 }
2057 
2058 /*
2059  * Flush any dirty caps back to the mds.  If we aren't asked to wait,
2060  * queue inode for flush but don't do so immediately, because we can
2061  * get by with fewer MDS messages if we wait for data writeback to
2062  * complete first.
2063  */
2064 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
2065 {
2066 	struct ceph_inode_info *ci = ceph_inode(inode);
2067 	u64 flush_tid;
2068 	int err = 0;
2069 	int dirty;
2070 	int wait = wbc->sync_mode == WB_SYNC_ALL;
2071 
2072 	dout("write_inode %p wait=%d\n", inode, wait);
2073 	if (wait) {
2074 		dirty = try_flush_caps(inode, &flush_tid);
2075 		if (dirty)
2076 			err = wait_event_interruptible(ci->i_cap_wq,
2077 				       caps_are_flushed(inode, flush_tid));
2078 	} else {
2079 		struct ceph_mds_client *mdsc =
2080 			ceph_sb_to_client(inode->i_sb)->mdsc;
2081 
2082 		spin_lock(&ci->i_ceph_lock);
2083 		if (__ceph_caps_dirty(ci))
2084 			__cap_delay_requeue_front(mdsc, ci);
2085 		spin_unlock(&ci->i_ceph_lock);
2086 	}
2087 	return err;
2088 }
2089 
2090 /*
2091  * After a recovering MDS goes active, we need to resend any caps
2092  * we were flushing.
2093  *
2094  * Caller holds session->s_mutex.
2095  */
2096 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
2097 				   struct ceph_mds_session *session)
2098 {
2099 	struct ceph_cap_snap *capsnap;
2100 
2101 	dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
2102 	list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
2103 			    flushing_item) {
2104 		struct ceph_inode_info *ci = capsnap->ci;
2105 		struct inode *inode = &ci->vfs_inode;
2106 		struct ceph_cap *cap;
2107 
2108 		spin_lock(&ci->i_ceph_lock);
2109 		cap = ci->i_auth_cap;
2110 		if (cap && cap->session == session) {
2111 			dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
2112 			     cap, capsnap);
2113 			__ceph_flush_snaps(ci, &session, 1);
2114 		} else {
2115 			pr_err("%p auth cap %p not mds%d ???\n", inode,
2116 			       cap, session->s_mds);
2117 		}
2118 		spin_unlock(&ci->i_ceph_lock);
2119 	}
2120 }
2121 
2122 static int __kick_flushing_caps(struct ceph_mds_client *mdsc,
2123 				struct ceph_mds_session *session,
2124 				struct ceph_inode_info *ci)
2125 {
2126 	struct inode *inode = &ci->vfs_inode;
2127 	struct ceph_cap *cap;
2128 	struct ceph_cap_flush *cf;
2129 	struct rb_node *n;
2130 	int delayed = 0;
2131 	u64 first_tid = 0;
2132 	u64 oldest_flush_tid;
2133 
2134 	spin_lock(&mdsc->cap_dirty_lock);
2135 	oldest_flush_tid = __get_oldest_flush_tid(mdsc);
2136 	spin_unlock(&mdsc->cap_dirty_lock);
2137 
2138 	while (true) {
2139 		spin_lock(&ci->i_ceph_lock);
2140 		cap = ci->i_auth_cap;
2141 		if (!(cap && cap->session == session)) {
2142 			pr_err("%p auth cap %p not mds%d ???\n", inode,
2143 					cap, session->s_mds);
2144 			spin_unlock(&ci->i_ceph_lock);
2145 			break;
2146 		}
2147 
2148 		for (n = rb_first(&ci->i_cap_flush_tree); n; n = rb_next(n)) {
2149 			cf = rb_entry(n, struct ceph_cap_flush, i_node);
2150 			if (cf->tid >= first_tid)
2151 				break;
2152 		}
2153 		if (!n) {
2154 			spin_unlock(&ci->i_ceph_lock);
2155 			break;
2156 		}
2157 
2158 		cf = rb_entry(n, struct ceph_cap_flush, i_node);
2159 
2160 		first_tid = cf->tid + 1;
2161 
2162 		dout("kick_flushing_caps %p cap %p tid %llu %s\n", inode,
2163 		     cap, cf->tid, ceph_cap_string(cf->caps));
2164 		delayed |= __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
2165 				      __ceph_caps_used(ci),
2166 				      __ceph_caps_wanted(ci),
2167 				      cap->issued | cap->implemented,
2168 				      cf->caps, cf->tid, oldest_flush_tid);
2169 	}
2170 	return delayed;
2171 }
2172 
2173 void ceph_early_kick_flushing_caps(struct ceph_mds_client *mdsc,
2174 				   struct ceph_mds_session *session)
2175 {
2176 	struct ceph_inode_info *ci;
2177 	struct ceph_cap *cap;
2178 
2179 	dout("early_kick_flushing_caps mds%d\n", session->s_mds);
2180 	list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
2181 		spin_lock(&ci->i_ceph_lock);
2182 		cap = ci->i_auth_cap;
2183 		if (!(cap && cap->session == session)) {
2184 			pr_err("%p auth cap %p not mds%d ???\n",
2185 				&ci->vfs_inode, cap, session->s_mds);
2186 			spin_unlock(&ci->i_ceph_lock);
2187 			continue;
2188 		}
2189 
2190 
2191 		/*
2192 		 * if flushing caps were revoked, we re-send the cap flush
2193 		 * in client reconnect stage. This guarantees MDS * processes
2194 		 * the cap flush message before issuing the flushing caps to
2195 		 * other client.
2196 		 */
2197 		if ((cap->issued & ci->i_flushing_caps) !=
2198 		    ci->i_flushing_caps) {
2199 			spin_unlock(&ci->i_ceph_lock);
2200 			if (!__kick_flushing_caps(mdsc, session, ci))
2201 				continue;
2202 			spin_lock(&ci->i_ceph_lock);
2203 		}
2204 
2205 		spin_unlock(&ci->i_ceph_lock);
2206 	}
2207 }
2208 
2209 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
2210 			     struct ceph_mds_session *session)
2211 {
2212 	struct ceph_inode_info *ci;
2213 
2214 	kick_flushing_capsnaps(mdsc, session);
2215 
2216 	dout("kick_flushing_caps mds%d\n", session->s_mds);
2217 	list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
2218 		int delayed = __kick_flushing_caps(mdsc, session, ci);
2219 		if (delayed) {
2220 			spin_lock(&ci->i_ceph_lock);
2221 			__cap_delay_requeue(mdsc, ci);
2222 			spin_unlock(&ci->i_ceph_lock);
2223 		}
2224 	}
2225 }
2226 
2227 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
2228 				     struct ceph_mds_session *session,
2229 				     struct inode *inode)
2230 {
2231 	struct ceph_inode_info *ci = ceph_inode(inode);
2232 	struct ceph_cap *cap;
2233 
2234 	spin_lock(&ci->i_ceph_lock);
2235 	cap = ci->i_auth_cap;
2236 	dout("kick_flushing_inode_caps %p flushing %s\n", inode,
2237 	     ceph_cap_string(ci->i_flushing_caps));
2238 
2239 	__ceph_flush_snaps(ci, &session, 1);
2240 
2241 	if (ci->i_flushing_caps) {
2242 		int delayed;
2243 
2244 		spin_lock(&mdsc->cap_dirty_lock);
2245 		list_move_tail(&ci->i_flushing_item,
2246 			       &cap->session->s_cap_flushing);
2247 		spin_unlock(&mdsc->cap_dirty_lock);
2248 
2249 		spin_unlock(&ci->i_ceph_lock);
2250 
2251 		delayed = __kick_flushing_caps(mdsc, session, ci);
2252 		if (delayed) {
2253 			spin_lock(&ci->i_ceph_lock);
2254 			__cap_delay_requeue(mdsc, ci);
2255 			spin_unlock(&ci->i_ceph_lock);
2256 		}
2257 	} else {
2258 		spin_unlock(&ci->i_ceph_lock);
2259 	}
2260 }
2261 
2262 
2263 /*
2264  * Take references to capabilities we hold, so that we don't release
2265  * them to the MDS prematurely.
2266  *
2267  * Protected by i_ceph_lock.
2268  */
2269 static void __take_cap_refs(struct ceph_inode_info *ci, int got,
2270 			    bool snap_rwsem_locked)
2271 {
2272 	if (got & CEPH_CAP_PIN)
2273 		ci->i_pin_ref++;
2274 	if (got & CEPH_CAP_FILE_RD)
2275 		ci->i_rd_ref++;
2276 	if (got & CEPH_CAP_FILE_CACHE)
2277 		ci->i_rdcache_ref++;
2278 	if (got & CEPH_CAP_FILE_WR) {
2279 		if (ci->i_wr_ref == 0 && !ci->i_head_snapc) {
2280 			BUG_ON(!snap_rwsem_locked);
2281 			ci->i_head_snapc = ceph_get_snap_context(
2282 					ci->i_snap_realm->cached_context);
2283 		}
2284 		ci->i_wr_ref++;
2285 	}
2286 	if (got & CEPH_CAP_FILE_BUFFER) {
2287 		if (ci->i_wb_ref == 0)
2288 			ihold(&ci->vfs_inode);
2289 		ci->i_wb_ref++;
2290 		dout("__take_cap_refs %p wb %d -> %d (?)\n",
2291 		     &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
2292 	}
2293 }
2294 
2295 /*
2296  * Try to grab cap references.  Specify those refs we @want, and the
2297  * minimal set we @need.  Also include the larger offset we are writing
2298  * to (when applicable), and check against max_size here as well.
2299  * Note that caller is responsible for ensuring max_size increases are
2300  * requested from the MDS.
2301  */
2302 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
2303 			    loff_t endoff, bool nonblock, int *got, int *err)
2304 {
2305 	struct inode *inode = &ci->vfs_inode;
2306 	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
2307 	int ret = 0;
2308 	int have, implemented;
2309 	int file_wanted;
2310 	bool snap_rwsem_locked = false;
2311 
2312 	dout("get_cap_refs %p need %s want %s\n", inode,
2313 	     ceph_cap_string(need), ceph_cap_string(want));
2314 
2315 again:
2316 	spin_lock(&ci->i_ceph_lock);
2317 
2318 	/* make sure file is actually open */
2319 	file_wanted = __ceph_caps_file_wanted(ci);
2320 	if ((file_wanted & need) == 0) {
2321 		dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
2322 		     ceph_cap_string(need), ceph_cap_string(file_wanted));
2323 		*err = -EBADF;
2324 		ret = 1;
2325 		goto out_unlock;
2326 	}
2327 
2328 	/* finish pending truncate */
2329 	while (ci->i_truncate_pending) {
2330 		spin_unlock(&ci->i_ceph_lock);
2331 		if (snap_rwsem_locked) {
2332 			up_read(&mdsc->snap_rwsem);
2333 			snap_rwsem_locked = false;
2334 		}
2335 		__ceph_do_pending_vmtruncate(inode);
2336 		spin_lock(&ci->i_ceph_lock);
2337 	}
2338 
2339 	have = __ceph_caps_issued(ci, &implemented);
2340 
2341 	if (have & need & CEPH_CAP_FILE_WR) {
2342 		if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
2343 			dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
2344 			     inode, endoff, ci->i_max_size);
2345 			if (endoff > ci->i_requested_max_size) {
2346 				*err = -EAGAIN;
2347 				ret = 1;
2348 			}
2349 			goto out_unlock;
2350 		}
2351 		/*
2352 		 * If a sync write is in progress, we must wait, so that we
2353 		 * can get a final snapshot value for size+mtime.
2354 		 */
2355 		if (__ceph_have_pending_cap_snap(ci)) {
2356 			dout("get_cap_refs %p cap_snap_pending\n", inode);
2357 			goto out_unlock;
2358 		}
2359 	}
2360 
2361 	if ((have & need) == need) {
2362 		/*
2363 		 * Look at (implemented & ~have & not) so that we keep waiting
2364 		 * on transition from wanted -> needed caps.  This is needed
2365 		 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2366 		 * going before a prior buffered writeback happens.
2367 		 */
2368 		int not = want & ~(have & need);
2369 		int revoking = implemented & ~have;
2370 		dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2371 		     inode, ceph_cap_string(have), ceph_cap_string(not),
2372 		     ceph_cap_string(revoking));
2373 		if ((revoking & not) == 0) {
2374 			if (!snap_rwsem_locked &&
2375 			    !ci->i_head_snapc &&
2376 			    (need & CEPH_CAP_FILE_WR)) {
2377 				if (!down_read_trylock(&mdsc->snap_rwsem)) {
2378 					/*
2379 					 * we can not call down_read() when
2380 					 * task isn't in TASK_RUNNING state
2381 					 */
2382 					if (nonblock) {
2383 						*err = -EAGAIN;
2384 						ret = 1;
2385 						goto out_unlock;
2386 					}
2387 
2388 					spin_unlock(&ci->i_ceph_lock);
2389 					down_read(&mdsc->snap_rwsem);
2390 					snap_rwsem_locked = true;
2391 					goto again;
2392 				}
2393 				snap_rwsem_locked = true;
2394 			}
2395 			*got = need | (have & want);
2396 			__take_cap_refs(ci, *got, true);
2397 			ret = 1;
2398 		}
2399 	} else {
2400 		int session_readonly = false;
2401 		if ((need & CEPH_CAP_FILE_WR) && ci->i_auth_cap) {
2402 			struct ceph_mds_session *s = ci->i_auth_cap->session;
2403 			spin_lock(&s->s_cap_lock);
2404 			session_readonly = s->s_readonly;
2405 			spin_unlock(&s->s_cap_lock);
2406 		}
2407 		if (session_readonly) {
2408 			dout("get_cap_refs %p needed %s but mds%d readonly\n",
2409 			     inode, ceph_cap_string(need), ci->i_auth_cap->mds);
2410 			*err = -EROFS;
2411 			ret = 1;
2412 			goto out_unlock;
2413 		}
2414 
2415 		if (!__ceph_is_any_caps(ci) &&
2416 		    ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) {
2417 			dout("get_cap_refs %p forced umount\n", inode);
2418 			*err = -EIO;
2419 			ret = 1;
2420 			goto out_unlock;
2421 		}
2422 
2423 		dout("get_cap_refs %p have %s needed %s\n", inode,
2424 		     ceph_cap_string(have), ceph_cap_string(need));
2425 	}
2426 out_unlock:
2427 	spin_unlock(&ci->i_ceph_lock);
2428 	if (snap_rwsem_locked)
2429 		up_read(&mdsc->snap_rwsem);
2430 
2431 	dout("get_cap_refs %p ret %d got %s\n", inode,
2432 	     ret, ceph_cap_string(*got));
2433 	return ret;
2434 }
2435 
2436 /*
2437  * Check the offset we are writing up to against our current
2438  * max_size.  If necessary, tell the MDS we want to write to
2439  * a larger offset.
2440  */
2441 static void check_max_size(struct inode *inode, loff_t endoff)
2442 {
2443 	struct ceph_inode_info *ci = ceph_inode(inode);
2444 	int check = 0;
2445 
2446 	/* do we need to explicitly request a larger max_size? */
2447 	spin_lock(&ci->i_ceph_lock);
2448 	if (endoff >= ci->i_max_size && endoff > ci->i_wanted_max_size) {
2449 		dout("write %p at large endoff %llu, req max_size\n",
2450 		     inode, endoff);
2451 		ci->i_wanted_max_size = endoff;
2452 	}
2453 	/* duplicate ceph_check_caps()'s logic */
2454 	if (ci->i_auth_cap &&
2455 	    (ci->i_auth_cap->issued & CEPH_CAP_FILE_WR) &&
2456 	    ci->i_wanted_max_size > ci->i_max_size &&
2457 	    ci->i_wanted_max_size > ci->i_requested_max_size)
2458 		check = 1;
2459 	spin_unlock(&ci->i_ceph_lock);
2460 	if (check)
2461 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2462 }
2463 
2464 /*
2465  * Wait for caps, and take cap references.  If we can't get a WR cap
2466  * due to a small max_size, make sure we check_max_size (and possibly
2467  * ask the mds) so we don't get hung up indefinitely.
2468  */
2469 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want,
2470 		  loff_t endoff, int *got, struct page **pinned_page)
2471 {
2472 	int _got, ret, err = 0;
2473 
2474 	ret = ceph_pool_perm_check(ci, need);
2475 	if (ret < 0)
2476 		return ret;
2477 
2478 	while (true) {
2479 		if (endoff > 0)
2480 			check_max_size(&ci->vfs_inode, endoff);
2481 
2482 		err = 0;
2483 		_got = 0;
2484 		ret = try_get_cap_refs(ci, need, want, endoff,
2485 				       false, &_got, &err);
2486 		if (ret) {
2487 			if (err == -EAGAIN)
2488 				continue;
2489 			if (err < 0)
2490 				return err;
2491 		} else {
2492 			ret = wait_event_interruptible(ci->i_cap_wq,
2493 					try_get_cap_refs(ci, need, want, endoff,
2494 							 true, &_got, &err));
2495 			if (err == -EAGAIN)
2496 				continue;
2497 			if (err < 0)
2498 				ret = err;
2499 			if (ret < 0)
2500 				return ret;
2501 		}
2502 
2503 		if (ci->i_inline_version != CEPH_INLINE_NONE &&
2504 		    (_got & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
2505 		    i_size_read(&ci->vfs_inode) > 0) {
2506 			struct page *page =
2507 				find_get_page(ci->vfs_inode.i_mapping, 0);
2508 			if (page) {
2509 				if (PageUptodate(page)) {
2510 					*pinned_page = page;
2511 					break;
2512 				}
2513 				put_page(page);
2514 			}
2515 			/*
2516 			 * drop cap refs first because getattr while
2517 			 * holding * caps refs can cause deadlock.
2518 			 */
2519 			ceph_put_cap_refs(ci, _got);
2520 			_got = 0;
2521 
2522 			/*
2523 			 * getattr request will bring inline data into
2524 			 * page cache
2525 			 */
2526 			ret = __ceph_do_getattr(&ci->vfs_inode, NULL,
2527 						CEPH_STAT_CAP_INLINE_DATA,
2528 						true);
2529 			if (ret < 0)
2530 				return ret;
2531 			continue;
2532 		}
2533 		break;
2534 	}
2535 
2536 	*got = _got;
2537 	return 0;
2538 }
2539 
2540 /*
2541  * Take cap refs.  Caller must already know we hold at least one ref
2542  * on the caps in question or we don't know this is safe.
2543  */
2544 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2545 {
2546 	spin_lock(&ci->i_ceph_lock);
2547 	__take_cap_refs(ci, caps, false);
2548 	spin_unlock(&ci->i_ceph_lock);
2549 }
2550 
2551 
2552 /*
2553  * drop cap_snap that is not associated with any snapshot.
2554  * we don't need to send FLUSHSNAP message for it.
2555  */
2556 static int ceph_try_drop_cap_snap(struct ceph_cap_snap *capsnap)
2557 {
2558 	if (!capsnap->need_flush &&
2559 	    !capsnap->writing && !capsnap->dirty_pages) {
2560 
2561 		dout("dropping cap_snap %p follows %llu\n",
2562 		     capsnap, capsnap->follows);
2563 		ceph_put_snap_context(capsnap->context);
2564 		list_del(&capsnap->ci_item);
2565 		list_del(&capsnap->flushing_item);
2566 		ceph_put_cap_snap(capsnap);
2567 		return 1;
2568 	}
2569 	return 0;
2570 }
2571 
2572 /*
2573  * Release cap refs.
2574  *
2575  * If we released the last ref on any given cap, call ceph_check_caps
2576  * to release (or schedule a release).
2577  *
2578  * If we are releasing a WR cap (from a sync write), finalize any affected
2579  * cap_snap, and wake up any waiters.
2580  */
2581 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2582 {
2583 	struct inode *inode = &ci->vfs_inode;
2584 	int last = 0, put = 0, flushsnaps = 0, wake = 0;
2585 
2586 	spin_lock(&ci->i_ceph_lock);
2587 	if (had & CEPH_CAP_PIN)
2588 		--ci->i_pin_ref;
2589 	if (had & CEPH_CAP_FILE_RD)
2590 		if (--ci->i_rd_ref == 0)
2591 			last++;
2592 	if (had & CEPH_CAP_FILE_CACHE)
2593 		if (--ci->i_rdcache_ref == 0)
2594 			last++;
2595 	if (had & CEPH_CAP_FILE_BUFFER) {
2596 		if (--ci->i_wb_ref == 0) {
2597 			last++;
2598 			put++;
2599 		}
2600 		dout("put_cap_refs %p wb %d -> %d (?)\n",
2601 		     inode, ci->i_wb_ref+1, ci->i_wb_ref);
2602 	}
2603 	if (had & CEPH_CAP_FILE_WR)
2604 		if (--ci->i_wr_ref == 0) {
2605 			last++;
2606 			if (__ceph_have_pending_cap_snap(ci)) {
2607 				struct ceph_cap_snap *capsnap =
2608 					list_last_entry(&ci->i_cap_snaps,
2609 							struct ceph_cap_snap,
2610 							ci_item);
2611 				capsnap->writing = 0;
2612 				if (ceph_try_drop_cap_snap(capsnap))
2613 					put++;
2614 				else if (__ceph_finish_cap_snap(ci, capsnap))
2615 					flushsnaps = 1;
2616 				wake = 1;
2617 			}
2618 			if (ci->i_wrbuffer_ref_head == 0 &&
2619 			    ci->i_dirty_caps == 0 &&
2620 			    ci->i_flushing_caps == 0) {
2621 				BUG_ON(!ci->i_head_snapc);
2622 				ceph_put_snap_context(ci->i_head_snapc);
2623 				ci->i_head_snapc = NULL;
2624 			}
2625 			/* see comment in __ceph_remove_cap() */
2626 			if (!__ceph_is_any_caps(ci) && ci->i_snap_realm)
2627 				drop_inode_snap_realm(ci);
2628 		}
2629 	spin_unlock(&ci->i_ceph_lock);
2630 
2631 	dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2632 	     last ? " last" : "", put ? " put" : "");
2633 
2634 	if (last && !flushsnaps)
2635 		ceph_check_caps(ci, 0, NULL);
2636 	else if (flushsnaps)
2637 		ceph_flush_snaps(ci);
2638 	if (wake)
2639 		wake_up_all(&ci->i_cap_wq);
2640 	while (put-- > 0)
2641 		iput(inode);
2642 }
2643 
2644 /*
2645  * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2646  * context.  Adjust per-snap dirty page accounting as appropriate.
2647  * Once all dirty data for a cap_snap is flushed, flush snapped file
2648  * metadata back to the MDS.  If we dropped the last ref, call
2649  * ceph_check_caps.
2650  */
2651 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2652 				struct ceph_snap_context *snapc)
2653 {
2654 	struct inode *inode = &ci->vfs_inode;
2655 	int last = 0;
2656 	int complete_capsnap = 0;
2657 	int drop_capsnap = 0;
2658 	int found = 0;
2659 	struct ceph_cap_snap *capsnap = NULL;
2660 
2661 	spin_lock(&ci->i_ceph_lock);
2662 	ci->i_wrbuffer_ref -= nr;
2663 	last = !ci->i_wrbuffer_ref;
2664 
2665 	if (ci->i_head_snapc == snapc) {
2666 		ci->i_wrbuffer_ref_head -= nr;
2667 		if (ci->i_wrbuffer_ref_head == 0 &&
2668 		    ci->i_wr_ref == 0 &&
2669 		    ci->i_dirty_caps == 0 &&
2670 		    ci->i_flushing_caps == 0) {
2671 			BUG_ON(!ci->i_head_snapc);
2672 			ceph_put_snap_context(ci->i_head_snapc);
2673 			ci->i_head_snapc = NULL;
2674 		}
2675 		dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2676 		     inode,
2677 		     ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2678 		     ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2679 		     last ? " LAST" : "");
2680 	} else {
2681 		list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2682 			if (capsnap->context == snapc) {
2683 				found = 1;
2684 				break;
2685 			}
2686 		}
2687 		BUG_ON(!found);
2688 		capsnap->dirty_pages -= nr;
2689 		if (capsnap->dirty_pages == 0) {
2690 			complete_capsnap = 1;
2691 			drop_capsnap = ceph_try_drop_cap_snap(capsnap);
2692 		}
2693 		dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2694 		     " snap %lld %d/%d -> %d/%d %s%s\n",
2695 		     inode, capsnap, capsnap->context->seq,
2696 		     ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2697 		     ci->i_wrbuffer_ref, capsnap->dirty_pages,
2698 		     last ? " (wrbuffer last)" : "",
2699 		     complete_capsnap ? " (complete capsnap)" : "");
2700 	}
2701 
2702 	spin_unlock(&ci->i_ceph_lock);
2703 
2704 	if (last) {
2705 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2706 		iput(inode);
2707 	} else if (complete_capsnap) {
2708 		ceph_flush_snaps(ci);
2709 		wake_up_all(&ci->i_cap_wq);
2710 	}
2711 	if (drop_capsnap)
2712 		iput(inode);
2713 }
2714 
2715 /*
2716  * Invalidate unlinked inode's aliases, so we can drop the inode ASAP.
2717  */
2718 static void invalidate_aliases(struct inode *inode)
2719 {
2720 	struct dentry *dn, *prev = NULL;
2721 
2722 	dout("invalidate_aliases inode %p\n", inode);
2723 	d_prune_aliases(inode);
2724 	/*
2725 	 * For non-directory inode, d_find_alias() only returns
2726 	 * hashed dentry. After calling d_invalidate(), the
2727 	 * dentry becomes unhashed.
2728 	 *
2729 	 * For directory inode, d_find_alias() can return
2730 	 * unhashed dentry. But directory inode should have
2731 	 * one alias at most.
2732 	 */
2733 	while ((dn = d_find_alias(inode))) {
2734 		if (dn == prev) {
2735 			dput(dn);
2736 			break;
2737 		}
2738 		d_invalidate(dn);
2739 		if (prev)
2740 			dput(prev);
2741 		prev = dn;
2742 	}
2743 	if (prev)
2744 		dput(prev);
2745 }
2746 
2747 /*
2748  * Handle a cap GRANT message from the MDS.  (Note that a GRANT may
2749  * actually be a revocation if it specifies a smaller cap set.)
2750  *
2751  * caller holds s_mutex and i_ceph_lock, we drop both.
2752  */
2753 static void handle_cap_grant(struct ceph_mds_client *mdsc,
2754 			     struct inode *inode, struct ceph_mds_caps *grant,
2755 			     u64 inline_version,
2756 			     void *inline_data, int inline_len,
2757 			     struct ceph_buffer *xattr_buf,
2758 			     struct ceph_mds_session *session,
2759 			     struct ceph_cap *cap, int issued,
2760 			     u32 pool_ns_len)
2761 	__releases(ci->i_ceph_lock)
2762 	__releases(mdsc->snap_rwsem)
2763 {
2764 	struct ceph_inode_info *ci = ceph_inode(inode);
2765 	int mds = session->s_mds;
2766 	int seq = le32_to_cpu(grant->seq);
2767 	int newcaps = le32_to_cpu(grant->caps);
2768 	int used, wanted, dirty;
2769 	u64 size = le64_to_cpu(grant->size);
2770 	u64 max_size = le64_to_cpu(grant->max_size);
2771 	struct timespec mtime, atime, ctime;
2772 	int check_caps = 0;
2773 	bool wake = false;
2774 	bool writeback = false;
2775 	bool queue_trunc = false;
2776 	bool queue_invalidate = false;
2777 	bool queue_revalidate = false;
2778 	bool deleted_inode = false;
2779 	bool fill_inline = false;
2780 
2781 	dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2782 	     inode, cap, mds, seq, ceph_cap_string(newcaps));
2783 	dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2784 		inode->i_size);
2785 
2786 
2787 	/*
2788 	 * auth mds of the inode changed. we received the cap export message,
2789 	 * but still haven't received the cap import message. handle_cap_export
2790 	 * updated the new auth MDS' cap.
2791 	 *
2792 	 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing a message
2793 	 * that was sent before the cap import message. So don't remove caps.
2794 	 */
2795 	if (ceph_seq_cmp(seq, cap->seq) <= 0) {
2796 		WARN_ON(cap != ci->i_auth_cap);
2797 		WARN_ON(cap->cap_id != le64_to_cpu(grant->cap_id));
2798 		seq = cap->seq;
2799 		newcaps |= cap->issued;
2800 	}
2801 
2802 	/*
2803 	 * If CACHE is being revoked, and we have no dirty buffers,
2804 	 * try to invalidate (once).  (If there are dirty buffers, we
2805 	 * will invalidate _after_ writeback.)
2806 	 */
2807 	if (!S_ISDIR(inode->i_mode) && /* don't invalidate readdir cache */
2808 	    ((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2809 	    (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2810 	    !ci->i_wrbuffer_ref) {
2811 		if (try_nonblocking_invalidate(inode)) {
2812 			/* there were locked pages.. invalidate later
2813 			   in a separate thread. */
2814 			if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2815 				queue_invalidate = true;
2816 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
2817 			}
2818 		}
2819 
2820 		ceph_fscache_invalidate(inode);
2821 	}
2822 
2823 	/* side effects now are allowed */
2824 	cap->cap_gen = session->s_cap_gen;
2825 	cap->seq = seq;
2826 
2827 	__check_cap_issue(ci, cap, newcaps);
2828 
2829 	if ((newcaps & CEPH_CAP_AUTH_SHARED) &&
2830 	    (issued & CEPH_CAP_AUTH_EXCL) == 0) {
2831 		inode->i_mode = le32_to_cpu(grant->mode);
2832 		inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid));
2833 		inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid));
2834 		dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2835 		     from_kuid(&init_user_ns, inode->i_uid),
2836 		     from_kgid(&init_user_ns, inode->i_gid));
2837 	}
2838 
2839 	if ((newcaps & CEPH_CAP_AUTH_SHARED) &&
2840 	    (issued & CEPH_CAP_LINK_EXCL) == 0) {
2841 		set_nlink(inode, le32_to_cpu(grant->nlink));
2842 		if (inode->i_nlink == 0 &&
2843 		    (newcaps & (CEPH_CAP_LINK_SHARED | CEPH_CAP_LINK_EXCL)))
2844 			deleted_inode = true;
2845 	}
2846 
2847 	if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2848 		int len = le32_to_cpu(grant->xattr_len);
2849 		u64 version = le64_to_cpu(grant->xattr_version);
2850 
2851 		if (version > ci->i_xattrs.version) {
2852 			dout(" got new xattrs v%llu on %p len %d\n",
2853 			     version, inode, len);
2854 			if (ci->i_xattrs.blob)
2855 				ceph_buffer_put(ci->i_xattrs.blob);
2856 			ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2857 			ci->i_xattrs.version = version;
2858 			ceph_forget_all_cached_acls(inode);
2859 		}
2860 	}
2861 
2862 	/* Do we need to revalidate our fscache cookie. Don't bother on the
2863 	 * first cache cap as we already validate at cookie creation time. */
2864 	if ((issued & CEPH_CAP_FILE_CACHE) && ci->i_rdcache_gen > 1)
2865 		queue_revalidate = true;
2866 
2867 	if (newcaps & CEPH_CAP_ANY_RD) {
2868 		/* ctime/mtime/atime? */
2869 		ceph_decode_timespec(&mtime, &grant->mtime);
2870 		ceph_decode_timespec(&atime, &grant->atime);
2871 		ceph_decode_timespec(&ctime, &grant->ctime);
2872 		ceph_fill_file_time(inode, issued,
2873 				    le32_to_cpu(grant->time_warp_seq),
2874 				    &ctime, &mtime, &atime);
2875 	}
2876 
2877 	if (newcaps & (CEPH_CAP_ANY_FILE_RD | CEPH_CAP_ANY_FILE_WR)) {
2878 		/* file layout may have changed */
2879 		ci->i_layout = grant->layout;
2880 		ci->i_pool_ns_len = pool_ns_len;
2881 
2882 		/* size/truncate_seq? */
2883 		queue_trunc = ceph_fill_file_size(inode, issued,
2884 					le32_to_cpu(grant->truncate_seq),
2885 					le64_to_cpu(grant->truncate_size),
2886 					size);
2887 		/* max size increase? */
2888 		if (ci->i_auth_cap == cap && max_size != ci->i_max_size) {
2889 			dout("max_size %lld -> %llu\n",
2890 			     ci->i_max_size, max_size);
2891 			ci->i_max_size = max_size;
2892 			if (max_size >= ci->i_wanted_max_size) {
2893 				ci->i_wanted_max_size = 0;  /* reset */
2894 				ci->i_requested_max_size = 0;
2895 			}
2896 			wake = true;
2897 		}
2898 	}
2899 
2900 	/* check cap bits */
2901 	wanted = __ceph_caps_wanted(ci);
2902 	used = __ceph_caps_used(ci);
2903 	dirty = __ceph_caps_dirty(ci);
2904 	dout(" my wanted = %s, used = %s, dirty %s\n",
2905 	     ceph_cap_string(wanted),
2906 	     ceph_cap_string(used),
2907 	     ceph_cap_string(dirty));
2908 	if (wanted != le32_to_cpu(grant->wanted)) {
2909 		dout("mds wanted %s -> %s\n",
2910 		     ceph_cap_string(le32_to_cpu(grant->wanted)),
2911 		     ceph_cap_string(wanted));
2912 		/* imported cap may not have correct mds_wanted */
2913 		if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT)
2914 			check_caps = 1;
2915 	}
2916 
2917 	/* revocation, grant, or no-op? */
2918 	if (cap->issued & ~newcaps) {
2919 		int revoking = cap->issued & ~newcaps;
2920 
2921 		dout("revocation: %s -> %s (revoking %s)\n",
2922 		     ceph_cap_string(cap->issued),
2923 		     ceph_cap_string(newcaps),
2924 		     ceph_cap_string(revoking));
2925 		if (revoking & used & CEPH_CAP_FILE_BUFFER)
2926 			writeback = true;  /* initiate writeback; will delay ack */
2927 		else if (revoking == CEPH_CAP_FILE_CACHE &&
2928 			 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2929 			 queue_invalidate)
2930 			; /* do nothing yet, invalidation will be queued */
2931 		else if (cap == ci->i_auth_cap)
2932 			check_caps = 1; /* check auth cap only */
2933 		else
2934 			check_caps = 2; /* check all caps */
2935 		cap->issued = newcaps;
2936 		cap->implemented |= newcaps;
2937 	} else if (cap->issued == newcaps) {
2938 		dout("caps unchanged: %s -> %s\n",
2939 		     ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2940 	} else {
2941 		dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2942 		     ceph_cap_string(newcaps));
2943 		/* non-auth MDS is revoking the newly grant caps ? */
2944 		if (cap == ci->i_auth_cap &&
2945 		    __ceph_caps_revoking_other(ci, cap, newcaps))
2946 		    check_caps = 2;
2947 
2948 		cap->issued = newcaps;
2949 		cap->implemented |= newcaps; /* add bits only, to
2950 					      * avoid stepping on a
2951 					      * pending revocation */
2952 		wake = true;
2953 	}
2954 	BUG_ON(cap->issued & ~cap->implemented);
2955 
2956 	if (inline_version > 0 && inline_version >= ci->i_inline_version) {
2957 		ci->i_inline_version = inline_version;
2958 		if (ci->i_inline_version != CEPH_INLINE_NONE &&
2959 		    (newcaps & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)))
2960 			fill_inline = true;
2961 	}
2962 
2963 	spin_unlock(&ci->i_ceph_lock);
2964 
2965 	if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) {
2966 		kick_flushing_inode_caps(mdsc, session, inode);
2967 		up_read(&mdsc->snap_rwsem);
2968 		if (newcaps & ~issued)
2969 			wake = true;
2970 	}
2971 
2972 	if (fill_inline)
2973 		ceph_fill_inline_data(inode, NULL, inline_data, inline_len);
2974 
2975 	if (queue_trunc) {
2976 		ceph_queue_vmtruncate(inode);
2977 		ceph_queue_revalidate(inode);
2978 	} else if (queue_revalidate)
2979 		ceph_queue_revalidate(inode);
2980 
2981 	if (writeback)
2982 		/*
2983 		 * queue inode for writeback: we can't actually call
2984 		 * filemap_write_and_wait, etc. from message handler
2985 		 * context.
2986 		 */
2987 		ceph_queue_writeback(inode);
2988 	if (queue_invalidate)
2989 		ceph_queue_invalidate(inode);
2990 	if (deleted_inode)
2991 		invalidate_aliases(inode);
2992 	if (wake)
2993 		wake_up_all(&ci->i_cap_wq);
2994 
2995 	if (check_caps == 1)
2996 		ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2997 				session);
2998 	else if (check_caps == 2)
2999 		ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
3000 	else
3001 		mutex_unlock(&session->s_mutex);
3002 }
3003 
3004 /*
3005  * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
3006  * MDS has been safely committed.
3007  */
3008 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
3009 				 struct ceph_mds_caps *m,
3010 				 struct ceph_mds_session *session,
3011 				 struct ceph_cap *cap)
3012 	__releases(ci->i_ceph_lock)
3013 {
3014 	struct ceph_inode_info *ci = ceph_inode(inode);
3015 	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
3016 	struct ceph_cap_flush *cf;
3017 	struct rb_node *n;
3018 	LIST_HEAD(to_remove);
3019 	unsigned seq = le32_to_cpu(m->seq);
3020 	int dirty = le32_to_cpu(m->dirty);
3021 	int cleaned = 0;
3022 	int drop = 0;
3023 
3024 	n = rb_first(&ci->i_cap_flush_tree);
3025 	while (n) {
3026 		cf = rb_entry(n, struct ceph_cap_flush, i_node);
3027 		n = rb_next(&cf->i_node);
3028 		if (cf->tid == flush_tid)
3029 			cleaned = cf->caps;
3030 		if (cf->tid <= flush_tid) {
3031 			rb_erase(&cf->i_node, &ci->i_cap_flush_tree);
3032 			list_add_tail(&cf->list, &to_remove);
3033 		} else {
3034 			cleaned &= ~cf->caps;
3035 			if (!cleaned)
3036 				break;
3037 		}
3038 	}
3039 
3040 	dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
3041 	     " flushing %s -> %s\n",
3042 	     inode, session->s_mds, seq, ceph_cap_string(dirty),
3043 	     ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
3044 	     ceph_cap_string(ci->i_flushing_caps & ~cleaned));
3045 
3046 	if (list_empty(&to_remove) && !cleaned)
3047 		goto out;
3048 
3049 	ci->i_flushing_caps &= ~cleaned;
3050 
3051 	spin_lock(&mdsc->cap_dirty_lock);
3052 
3053 	if (!list_empty(&to_remove)) {
3054 		list_for_each_entry(cf, &to_remove, list)
3055 			rb_erase(&cf->g_node, &mdsc->cap_flush_tree);
3056 
3057 		n = rb_first(&mdsc->cap_flush_tree);
3058 		cf = n ? rb_entry(n, struct ceph_cap_flush, g_node) : NULL;
3059 		if (!cf || cf->tid > flush_tid)
3060 			wake_up_all(&mdsc->cap_flushing_wq);
3061 	}
3062 
3063 	if (ci->i_flushing_caps == 0) {
3064 		list_del_init(&ci->i_flushing_item);
3065 		if (!list_empty(&session->s_cap_flushing))
3066 			dout(" mds%d still flushing cap on %p\n",
3067 			     session->s_mds,
3068 			     &list_entry(session->s_cap_flushing.next,
3069 					 struct ceph_inode_info,
3070 					 i_flushing_item)->vfs_inode);
3071 		mdsc->num_cap_flushing--;
3072 		dout(" inode %p now !flushing\n", inode);
3073 
3074 		if (ci->i_dirty_caps == 0) {
3075 			dout(" inode %p now clean\n", inode);
3076 			BUG_ON(!list_empty(&ci->i_dirty_item));
3077 			drop = 1;
3078 			if (ci->i_wr_ref == 0 &&
3079 			    ci->i_wrbuffer_ref_head == 0) {
3080 				BUG_ON(!ci->i_head_snapc);
3081 				ceph_put_snap_context(ci->i_head_snapc);
3082 				ci->i_head_snapc = NULL;
3083 			}
3084 		} else {
3085 			BUG_ON(list_empty(&ci->i_dirty_item));
3086 		}
3087 	}
3088 	spin_unlock(&mdsc->cap_dirty_lock);
3089 	wake_up_all(&ci->i_cap_wq);
3090 
3091 out:
3092 	spin_unlock(&ci->i_ceph_lock);
3093 
3094 	while (!list_empty(&to_remove)) {
3095 		cf = list_first_entry(&to_remove,
3096 				      struct ceph_cap_flush, list);
3097 		list_del(&cf->list);
3098 		ceph_free_cap_flush(cf);
3099 	}
3100 	if (drop)
3101 		iput(inode);
3102 }
3103 
3104 /*
3105  * Handle FLUSHSNAP_ACK.  MDS has flushed snap data to disk and we can
3106  * throw away our cap_snap.
3107  *
3108  * Caller hold s_mutex.
3109  */
3110 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
3111 				     struct ceph_mds_caps *m,
3112 				     struct ceph_mds_session *session)
3113 {
3114 	struct ceph_inode_info *ci = ceph_inode(inode);
3115 	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
3116 	u64 follows = le64_to_cpu(m->snap_follows);
3117 	struct ceph_cap_snap *capsnap;
3118 	int drop = 0;
3119 
3120 	dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
3121 	     inode, ci, session->s_mds, follows);
3122 
3123 	spin_lock(&ci->i_ceph_lock);
3124 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
3125 		if (capsnap->follows == follows) {
3126 			if (capsnap->flush_tid != flush_tid) {
3127 				dout(" cap_snap %p follows %lld tid %lld !="
3128 				     " %lld\n", capsnap, follows,
3129 				     flush_tid, capsnap->flush_tid);
3130 				break;
3131 			}
3132 			WARN_ON(capsnap->dirty_pages || capsnap->writing);
3133 			dout(" removing %p cap_snap %p follows %lld\n",
3134 			     inode, capsnap, follows);
3135 			ceph_put_snap_context(capsnap->context);
3136 			list_del(&capsnap->ci_item);
3137 			list_del(&capsnap->flushing_item);
3138 			ceph_put_cap_snap(capsnap);
3139 			wake_up_all(&mdsc->cap_flushing_wq);
3140 			drop = 1;
3141 			break;
3142 		} else {
3143 			dout(" skipping cap_snap %p follows %lld\n",
3144 			     capsnap, capsnap->follows);
3145 		}
3146 	}
3147 	spin_unlock(&ci->i_ceph_lock);
3148 	if (drop)
3149 		iput(inode);
3150 }
3151 
3152 /*
3153  * Handle TRUNC from MDS, indicating file truncation.
3154  *
3155  * caller hold s_mutex.
3156  */
3157 static void handle_cap_trunc(struct inode *inode,
3158 			     struct ceph_mds_caps *trunc,
3159 			     struct ceph_mds_session *session)
3160 	__releases(ci->i_ceph_lock)
3161 {
3162 	struct ceph_inode_info *ci = ceph_inode(inode);
3163 	int mds = session->s_mds;
3164 	int seq = le32_to_cpu(trunc->seq);
3165 	u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
3166 	u64 truncate_size = le64_to_cpu(trunc->truncate_size);
3167 	u64 size = le64_to_cpu(trunc->size);
3168 	int implemented = 0;
3169 	int dirty = __ceph_caps_dirty(ci);
3170 	int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
3171 	int queue_trunc = 0;
3172 
3173 	issued |= implemented | dirty;
3174 
3175 	dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
3176 	     inode, mds, seq, truncate_size, truncate_seq);
3177 	queue_trunc = ceph_fill_file_size(inode, issued,
3178 					  truncate_seq, truncate_size, size);
3179 	spin_unlock(&ci->i_ceph_lock);
3180 
3181 	if (queue_trunc) {
3182 		ceph_queue_vmtruncate(inode);
3183 		ceph_fscache_invalidate(inode);
3184 	}
3185 }
3186 
3187 /*
3188  * Handle EXPORT from MDS.  Cap is being migrated _from_ this mds to a
3189  * different one.  If we are the most recent migration we've seen (as
3190  * indicated by mseq), make note of the migrating cap bits for the
3191  * duration (until we see the corresponding IMPORT).
3192  *
3193  * caller holds s_mutex
3194  */
3195 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
3196 			      struct ceph_mds_cap_peer *ph,
3197 			      struct ceph_mds_session *session)
3198 {
3199 	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
3200 	struct ceph_mds_session *tsession = NULL;
3201 	struct ceph_cap *cap, *tcap, *new_cap = NULL;
3202 	struct ceph_inode_info *ci = ceph_inode(inode);
3203 	u64 t_cap_id;
3204 	unsigned mseq = le32_to_cpu(ex->migrate_seq);
3205 	unsigned t_seq, t_mseq;
3206 	int target, issued;
3207 	int mds = session->s_mds;
3208 
3209 	if (ph) {
3210 		t_cap_id = le64_to_cpu(ph->cap_id);
3211 		t_seq = le32_to_cpu(ph->seq);
3212 		t_mseq = le32_to_cpu(ph->mseq);
3213 		target = le32_to_cpu(ph->mds);
3214 	} else {
3215 		t_cap_id = t_seq = t_mseq = 0;
3216 		target = -1;
3217 	}
3218 
3219 	dout("handle_cap_export inode %p ci %p mds%d mseq %d target %d\n",
3220 	     inode, ci, mds, mseq, target);
3221 retry:
3222 	spin_lock(&ci->i_ceph_lock);
3223 	cap = __get_cap_for_mds(ci, mds);
3224 	if (!cap || cap->cap_id != le64_to_cpu(ex->cap_id))
3225 		goto out_unlock;
3226 
3227 	if (target < 0) {
3228 		__ceph_remove_cap(cap, false);
3229 		goto out_unlock;
3230 	}
3231 
3232 	/*
3233 	 * now we know we haven't received the cap import message yet
3234 	 * because the exported cap still exist.
3235 	 */
3236 
3237 	issued = cap->issued;
3238 	WARN_ON(issued != cap->implemented);
3239 
3240 	tcap = __get_cap_for_mds(ci, target);
3241 	if (tcap) {
3242 		/* already have caps from the target */
3243 		if (tcap->cap_id != t_cap_id ||
3244 		    ceph_seq_cmp(tcap->seq, t_seq) < 0) {
3245 			dout(" updating import cap %p mds%d\n", tcap, target);
3246 			tcap->cap_id = t_cap_id;
3247 			tcap->seq = t_seq - 1;
3248 			tcap->issue_seq = t_seq - 1;
3249 			tcap->mseq = t_mseq;
3250 			tcap->issued |= issued;
3251 			tcap->implemented |= issued;
3252 			if (cap == ci->i_auth_cap)
3253 				ci->i_auth_cap = tcap;
3254 			if (ci->i_flushing_caps && ci->i_auth_cap == tcap) {
3255 				spin_lock(&mdsc->cap_dirty_lock);
3256 				list_move_tail(&ci->i_flushing_item,
3257 					       &tcap->session->s_cap_flushing);
3258 				spin_unlock(&mdsc->cap_dirty_lock);
3259 			}
3260 		}
3261 		__ceph_remove_cap(cap, false);
3262 		goto out_unlock;
3263 	} else if (tsession) {
3264 		/* add placeholder for the export tagert */
3265 		int flag = (cap == ci->i_auth_cap) ? CEPH_CAP_FLAG_AUTH : 0;
3266 		ceph_add_cap(inode, tsession, t_cap_id, -1, issued, 0,
3267 			     t_seq - 1, t_mseq, (u64)-1, flag, &new_cap);
3268 
3269 		__ceph_remove_cap(cap, false);
3270 		goto out_unlock;
3271 	}
3272 
3273 	spin_unlock(&ci->i_ceph_lock);
3274 	mutex_unlock(&session->s_mutex);
3275 
3276 	/* open target session */
3277 	tsession = ceph_mdsc_open_export_target_session(mdsc, target);
3278 	if (!IS_ERR(tsession)) {
3279 		if (mds > target) {
3280 			mutex_lock(&session->s_mutex);
3281 			mutex_lock_nested(&tsession->s_mutex,
3282 					  SINGLE_DEPTH_NESTING);
3283 		} else {
3284 			mutex_lock(&tsession->s_mutex);
3285 			mutex_lock_nested(&session->s_mutex,
3286 					  SINGLE_DEPTH_NESTING);
3287 		}
3288 		new_cap = ceph_get_cap(mdsc, NULL);
3289 	} else {
3290 		WARN_ON(1);
3291 		tsession = NULL;
3292 		target = -1;
3293 	}
3294 	goto retry;
3295 
3296 out_unlock:
3297 	spin_unlock(&ci->i_ceph_lock);
3298 	mutex_unlock(&session->s_mutex);
3299 	if (tsession) {
3300 		mutex_unlock(&tsession->s_mutex);
3301 		ceph_put_mds_session(tsession);
3302 	}
3303 	if (new_cap)
3304 		ceph_put_cap(mdsc, new_cap);
3305 }
3306 
3307 /*
3308  * Handle cap IMPORT.
3309  *
3310  * caller holds s_mutex. acquires i_ceph_lock
3311  */
3312 static void handle_cap_import(struct ceph_mds_client *mdsc,
3313 			      struct inode *inode, struct ceph_mds_caps *im,
3314 			      struct ceph_mds_cap_peer *ph,
3315 			      struct ceph_mds_session *session,
3316 			      struct ceph_cap **target_cap, int *old_issued)
3317 	__acquires(ci->i_ceph_lock)
3318 {
3319 	struct ceph_inode_info *ci = ceph_inode(inode);
3320 	struct ceph_cap *cap, *ocap, *new_cap = NULL;
3321 	int mds = session->s_mds;
3322 	int issued;
3323 	unsigned caps = le32_to_cpu(im->caps);
3324 	unsigned wanted = le32_to_cpu(im->wanted);
3325 	unsigned seq = le32_to_cpu(im->seq);
3326 	unsigned mseq = le32_to_cpu(im->migrate_seq);
3327 	u64 realmino = le64_to_cpu(im->realm);
3328 	u64 cap_id = le64_to_cpu(im->cap_id);
3329 	u64 p_cap_id;
3330 	int peer;
3331 
3332 	if (ph) {
3333 		p_cap_id = le64_to_cpu(ph->cap_id);
3334 		peer = le32_to_cpu(ph->mds);
3335 	} else {
3336 		p_cap_id = 0;
3337 		peer = -1;
3338 	}
3339 
3340 	dout("handle_cap_import inode %p ci %p mds%d mseq %d peer %d\n",
3341 	     inode, ci, mds, mseq, peer);
3342 
3343 retry:
3344 	spin_lock(&ci->i_ceph_lock);
3345 	cap = __get_cap_for_mds(ci, mds);
3346 	if (!cap) {
3347 		if (!new_cap) {
3348 			spin_unlock(&ci->i_ceph_lock);
3349 			new_cap = ceph_get_cap(mdsc, NULL);
3350 			goto retry;
3351 		}
3352 		cap = new_cap;
3353 	} else {
3354 		if (new_cap) {
3355 			ceph_put_cap(mdsc, new_cap);
3356 			new_cap = NULL;
3357 		}
3358 	}
3359 
3360 	__ceph_caps_issued(ci, &issued);
3361 	issued |= __ceph_caps_dirty(ci);
3362 
3363 	ceph_add_cap(inode, session, cap_id, -1, caps, wanted, seq, mseq,
3364 		     realmino, CEPH_CAP_FLAG_AUTH, &new_cap);
3365 
3366 	ocap = peer >= 0 ? __get_cap_for_mds(ci, peer) : NULL;
3367 	if (ocap && ocap->cap_id == p_cap_id) {
3368 		dout(" remove export cap %p mds%d flags %d\n",
3369 		     ocap, peer, ph->flags);
3370 		if ((ph->flags & CEPH_CAP_FLAG_AUTH) &&
3371 		    (ocap->seq != le32_to_cpu(ph->seq) ||
3372 		     ocap->mseq != le32_to_cpu(ph->mseq))) {
3373 			pr_err("handle_cap_import: mismatched seq/mseq: "
3374 			       "ino (%llx.%llx) mds%d seq %d mseq %d "
3375 			       "importer mds%d has peer seq %d mseq %d\n",
3376 			       ceph_vinop(inode), peer, ocap->seq,
3377 			       ocap->mseq, mds, le32_to_cpu(ph->seq),
3378 			       le32_to_cpu(ph->mseq));
3379 		}
3380 		__ceph_remove_cap(ocap, (ph->flags & CEPH_CAP_FLAG_RELEASE));
3381 	}
3382 
3383 	/* make sure we re-request max_size, if necessary */
3384 	ci->i_wanted_max_size = 0;
3385 	ci->i_requested_max_size = 0;
3386 
3387 	*old_issued = issued;
3388 	*target_cap = cap;
3389 }
3390 
3391 /*
3392  * Handle a caps message from the MDS.
3393  *
3394  * Identify the appropriate session, inode, and call the right handler
3395  * based on the cap op.
3396  */
3397 void ceph_handle_caps(struct ceph_mds_session *session,
3398 		      struct ceph_msg *msg)
3399 {
3400 	struct ceph_mds_client *mdsc = session->s_mdsc;
3401 	struct super_block *sb = mdsc->fsc->sb;
3402 	struct inode *inode;
3403 	struct ceph_inode_info *ci;
3404 	struct ceph_cap *cap;
3405 	struct ceph_mds_caps *h;
3406 	struct ceph_mds_cap_peer *peer = NULL;
3407 	struct ceph_snap_realm *realm;
3408 	int mds = session->s_mds;
3409 	int op, issued;
3410 	u32 seq, mseq;
3411 	struct ceph_vino vino;
3412 	u64 cap_id;
3413 	u64 size, max_size;
3414 	u64 tid;
3415 	u64 inline_version = 0;
3416 	void *inline_data = NULL;
3417 	u32  inline_len = 0;
3418 	void *snaptrace;
3419 	size_t snaptrace_len;
3420 	u32 pool_ns_len = 0;
3421 	void *p, *end;
3422 
3423 	dout("handle_caps from mds%d\n", mds);
3424 
3425 	/* decode */
3426 	end = msg->front.iov_base + msg->front.iov_len;
3427 	tid = le64_to_cpu(msg->hdr.tid);
3428 	if (msg->front.iov_len < sizeof(*h))
3429 		goto bad;
3430 	h = msg->front.iov_base;
3431 	op = le32_to_cpu(h->op);
3432 	vino.ino = le64_to_cpu(h->ino);
3433 	vino.snap = CEPH_NOSNAP;
3434 	cap_id = le64_to_cpu(h->cap_id);
3435 	seq = le32_to_cpu(h->seq);
3436 	mseq = le32_to_cpu(h->migrate_seq);
3437 	size = le64_to_cpu(h->size);
3438 	max_size = le64_to_cpu(h->max_size);
3439 
3440 	snaptrace = h + 1;
3441 	snaptrace_len = le32_to_cpu(h->snap_trace_len);
3442 	p = snaptrace + snaptrace_len;
3443 
3444 	if (le16_to_cpu(msg->hdr.version) >= 2) {
3445 		u32 flock_len;
3446 		ceph_decode_32_safe(&p, end, flock_len, bad);
3447 		if (p + flock_len > end)
3448 			goto bad;
3449 		p += flock_len;
3450 	}
3451 
3452 	if (le16_to_cpu(msg->hdr.version) >= 3) {
3453 		if (op == CEPH_CAP_OP_IMPORT) {
3454 			if (p + sizeof(*peer) > end)
3455 				goto bad;
3456 			peer = p;
3457 			p += sizeof(*peer);
3458 		} else if (op == CEPH_CAP_OP_EXPORT) {
3459 			/* recorded in unused fields */
3460 			peer = (void *)&h->size;
3461 		}
3462 	}
3463 
3464 	if (le16_to_cpu(msg->hdr.version) >= 4) {
3465 		ceph_decode_64_safe(&p, end, inline_version, bad);
3466 		ceph_decode_32_safe(&p, end, inline_len, bad);
3467 		if (p + inline_len > end)
3468 			goto bad;
3469 		inline_data = p;
3470 		p += inline_len;
3471 	}
3472 
3473 	if (le16_to_cpu(msg->hdr.version) >= 8) {
3474 		u64 flush_tid;
3475 		u32 caller_uid, caller_gid;
3476 		u32 osd_epoch_barrier;
3477 		/* version >= 5 */
3478 		ceph_decode_32_safe(&p, end, osd_epoch_barrier, bad);
3479 		/* version >= 6 */
3480 		ceph_decode_64_safe(&p, end, flush_tid, bad);
3481 		/* version >= 7 */
3482 		ceph_decode_32_safe(&p, end, caller_uid, bad);
3483 		ceph_decode_32_safe(&p, end, caller_gid, bad);
3484 		/* version >= 8 */
3485 		ceph_decode_32_safe(&p, end, pool_ns_len, bad);
3486 	}
3487 
3488 	/* lookup ino */
3489 	inode = ceph_find_inode(sb, vino);
3490 	ci = ceph_inode(inode);
3491 	dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
3492 	     vino.snap, inode);
3493 
3494 	mutex_lock(&session->s_mutex);
3495 	session->s_seq++;
3496 	dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
3497 	     (unsigned)seq);
3498 
3499 	if (!inode) {
3500 		dout(" i don't have ino %llx\n", vino.ino);
3501 
3502 		if (op == CEPH_CAP_OP_IMPORT) {
3503 			cap = ceph_get_cap(mdsc, NULL);
3504 			cap->cap_ino = vino.ino;
3505 			cap->queue_release = 1;
3506 			cap->cap_id = cap_id;
3507 			cap->mseq = mseq;
3508 			cap->seq = seq;
3509 			spin_lock(&session->s_cap_lock);
3510 			list_add_tail(&cap->session_caps,
3511 					&session->s_cap_releases);
3512 			session->s_num_cap_releases++;
3513 			spin_unlock(&session->s_cap_lock);
3514 		}
3515 		goto flush_cap_releases;
3516 	}
3517 
3518 	/* these will work even if we don't have a cap yet */
3519 	switch (op) {
3520 	case CEPH_CAP_OP_FLUSHSNAP_ACK:
3521 		handle_cap_flushsnap_ack(inode, tid, h, session);
3522 		goto done;
3523 
3524 	case CEPH_CAP_OP_EXPORT:
3525 		handle_cap_export(inode, h, peer, session);
3526 		goto done_unlocked;
3527 
3528 	case CEPH_CAP_OP_IMPORT:
3529 		realm = NULL;
3530 		if (snaptrace_len) {
3531 			down_write(&mdsc->snap_rwsem);
3532 			ceph_update_snap_trace(mdsc, snaptrace,
3533 					       snaptrace + snaptrace_len,
3534 					       false, &realm);
3535 			downgrade_write(&mdsc->snap_rwsem);
3536 		} else {
3537 			down_read(&mdsc->snap_rwsem);
3538 		}
3539 		handle_cap_import(mdsc, inode, h, peer, session,
3540 				  &cap, &issued);
3541 		handle_cap_grant(mdsc, inode, h,
3542 				 inline_version, inline_data, inline_len,
3543 				 msg->middle, session, cap, issued,
3544 				 pool_ns_len);
3545 		if (realm)
3546 			ceph_put_snap_realm(mdsc, realm);
3547 		goto done_unlocked;
3548 	}
3549 
3550 	/* the rest require a cap */
3551 	spin_lock(&ci->i_ceph_lock);
3552 	cap = __get_cap_for_mds(ceph_inode(inode), mds);
3553 	if (!cap) {
3554 		dout(" no cap on %p ino %llx.%llx from mds%d\n",
3555 		     inode, ceph_ino(inode), ceph_snap(inode), mds);
3556 		spin_unlock(&ci->i_ceph_lock);
3557 		goto flush_cap_releases;
3558 	}
3559 
3560 	/* note that each of these drops i_ceph_lock for us */
3561 	switch (op) {
3562 	case CEPH_CAP_OP_REVOKE:
3563 	case CEPH_CAP_OP_GRANT:
3564 		__ceph_caps_issued(ci, &issued);
3565 		issued |= __ceph_caps_dirty(ci);
3566 		handle_cap_grant(mdsc, inode, h,
3567 				 inline_version, inline_data, inline_len,
3568 				 msg->middle, session, cap, issued,
3569 				 pool_ns_len);
3570 		goto done_unlocked;
3571 
3572 	case CEPH_CAP_OP_FLUSH_ACK:
3573 		handle_cap_flush_ack(inode, tid, h, session, cap);
3574 		break;
3575 
3576 	case CEPH_CAP_OP_TRUNC:
3577 		handle_cap_trunc(inode, h, session);
3578 		break;
3579 
3580 	default:
3581 		spin_unlock(&ci->i_ceph_lock);
3582 		pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
3583 		       ceph_cap_op_name(op));
3584 	}
3585 
3586 	goto done;
3587 
3588 flush_cap_releases:
3589 	/*
3590 	 * send any cap release message to try to move things
3591 	 * along for the mds (who clearly thinks we still have this
3592 	 * cap).
3593 	 */
3594 	ceph_send_cap_releases(mdsc, session);
3595 
3596 done:
3597 	mutex_unlock(&session->s_mutex);
3598 done_unlocked:
3599 	iput(inode);
3600 	return;
3601 
3602 bad:
3603 	pr_err("ceph_handle_caps: corrupt message\n");
3604 	ceph_msg_dump(msg);
3605 	return;
3606 }
3607 
3608 /*
3609  * Delayed work handler to process end of delayed cap release LRU list.
3610  */
3611 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
3612 {
3613 	struct ceph_inode_info *ci;
3614 	int flags = CHECK_CAPS_NODELAY;
3615 
3616 	dout("check_delayed_caps\n");
3617 	while (1) {
3618 		spin_lock(&mdsc->cap_delay_lock);
3619 		if (list_empty(&mdsc->cap_delay_list))
3620 			break;
3621 		ci = list_first_entry(&mdsc->cap_delay_list,
3622 				      struct ceph_inode_info,
3623 				      i_cap_delay_list);
3624 		if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
3625 		    time_before(jiffies, ci->i_hold_caps_max))
3626 			break;
3627 		list_del_init(&ci->i_cap_delay_list);
3628 		spin_unlock(&mdsc->cap_delay_lock);
3629 		dout("check_delayed_caps on %p\n", &ci->vfs_inode);
3630 		ceph_check_caps(ci, flags, NULL);
3631 	}
3632 	spin_unlock(&mdsc->cap_delay_lock);
3633 }
3634 
3635 /*
3636  * Flush all dirty caps to the mds
3637  */
3638 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
3639 {
3640 	struct ceph_inode_info *ci;
3641 	struct inode *inode;
3642 
3643 	dout("flush_dirty_caps\n");
3644 	spin_lock(&mdsc->cap_dirty_lock);
3645 	while (!list_empty(&mdsc->cap_dirty)) {
3646 		ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info,
3647 				      i_dirty_item);
3648 		inode = &ci->vfs_inode;
3649 		ihold(inode);
3650 		dout("flush_dirty_caps %p\n", inode);
3651 		spin_unlock(&mdsc->cap_dirty_lock);
3652 		ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL);
3653 		iput(inode);
3654 		spin_lock(&mdsc->cap_dirty_lock);
3655 	}
3656 	spin_unlock(&mdsc->cap_dirty_lock);
3657 	dout("flush_dirty_caps done\n");
3658 }
3659 
3660 /*
3661  * Drop open file reference.  If we were the last open file,
3662  * we may need to release capabilities to the MDS (or schedule
3663  * their delayed release).
3664  */
3665 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
3666 {
3667 	struct inode *inode = &ci->vfs_inode;
3668 	int last = 0;
3669 
3670 	spin_lock(&ci->i_ceph_lock);
3671 	dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
3672 	     ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
3673 	BUG_ON(ci->i_nr_by_mode[fmode] == 0);
3674 	if (--ci->i_nr_by_mode[fmode] == 0)
3675 		last++;
3676 	spin_unlock(&ci->i_ceph_lock);
3677 
3678 	if (last && ci->i_vino.snap == CEPH_NOSNAP)
3679 		ceph_check_caps(ci, 0, NULL);
3680 }
3681 
3682 /*
3683  * Helpers for embedding cap and dentry lease releases into mds
3684  * requests.
3685  *
3686  * @force is used by dentry_release (below) to force inclusion of a
3687  * record for the directory inode, even when there aren't any caps to
3688  * drop.
3689  */
3690 int ceph_encode_inode_release(void **p, struct inode *inode,
3691 			      int mds, int drop, int unless, int force)
3692 {
3693 	struct ceph_inode_info *ci = ceph_inode(inode);
3694 	struct ceph_cap *cap;
3695 	struct ceph_mds_request_release *rel = *p;
3696 	int used, dirty;
3697 	int ret = 0;
3698 
3699 	spin_lock(&ci->i_ceph_lock);
3700 	used = __ceph_caps_used(ci);
3701 	dirty = __ceph_caps_dirty(ci);
3702 
3703 	dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
3704 	     inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
3705 	     ceph_cap_string(unless));
3706 
3707 	/* only drop unused, clean caps */
3708 	drop &= ~(used | dirty);
3709 
3710 	cap = __get_cap_for_mds(ci, mds);
3711 	if (cap && __cap_is_valid(cap)) {
3712 		if (force ||
3713 		    ((cap->issued & drop) &&
3714 		     (cap->issued & unless) == 0)) {
3715 			if ((cap->issued & drop) &&
3716 			    (cap->issued & unless) == 0) {
3717 				int wanted = __ceph_caps_wanted(ci);
3718 				if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0)
3719 					wanted |= cap->mds_wanted;
3720 				dout("encode_inode_release %p cap %p "
3721 				     "%s -> %s, wanted %s -> %s\n", inode, cap,
3722 				     ceph_cap_string(cap->issued),
3723 				     ceph_cap_string(cap->issued & ~drop),
3724 				     ceph_cap_string(cap->mds_wanted),
3725 				     ceph_cap_string(wanted));
3726 
3727 				cap->issued &= ~drop;
3728 				cap->implemented &= ~drop;
3729 				cap->mds_wanted = wanted;
3730 			} else {
3731 				dout("encode_inode_release %p cap %p %s"
3732 				     " (force)\n", inode, cap,
3733 				     ceph_cap_string(cap->issued));
3734 			}
3735 
3736 			rel->ino = cpu_to_le64(ceph_ino(inode));
3737 			rel->cap_id = cpu_to_le64(cap->cap_id);
3738 			rel->seq = cpu_to_le32(cap->seq);
3739 			rel->issue_seq = cpu_to_le32(cap->issue_seq);
3740 			rel->mseq = cpu_to_le32(cap->mseq);
3741 			rel->caps = cpu_to_le32(cap->implemented);
3742 			rel->wanted = cpu_to_le32(cap->mds_wanted);
3743 			rel->dname_len = 0;
3744 			rel->dname_seq = 0;
3745 			*p += sizeof(*rel);
3746 			ret = 1;
3747 		} else {
3748 			dout("encode_inode_release %p cap %p %s\n",
3749 			     inode, cap, ceph_cap_string(cap->issued));
3750 		}
3751 	}
3752 	spin_unlock(&ci->i_ceph_lock);
3753 	return ret;
3754 }
3755 
3756 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
3757 			       int mds, int drop, int unless)
3758 {
3759 	struct inode *dir = d_inode(dentry->d_parent);
3760 	struct ceph_mds_request_release *rel = *p;
3761 	struct ceph_dentry_info *di = ceph_dentry(dentry);
3762 	int force = 0;
3763 	int ret;
3764 
3765 	/*
3766 	 * force an record for the directory caps if we have a dentry lease.
3767 	 * this is racy (can't take i_ceph_lock and d_lock together), but it
3768 	 * doesn't have to be perfect; the mds will revoke anything we don't
3769 	 * release.
3770 	 */
3771 	spin_lock(&dentry->d_lock);
3772 	if (di->lease_session && di->lease_session->s_mds == mds)
3773 		force = 1;
3774 	spin_unlock(&dentry->d_lock);
3775 
3776 	ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
3777 
3778 	spin_lock(&dentry->d_lock);
3779 	if (ret && di->lease_session && di->lease_session->s_mds == mds) {
3780 		dout("encode_dentry_release %p mds%d seq %d\n",
3781 		     dentry, mds, (int)di->lease_seq);
3782 		rel->dname_len = cpu_to_le32(dentry->d_name.len);
3783 		memcpy(*p, dentry->d_name.name, dentry->d_name.len);
3784 		*p += dentry->d_name.len;
3785 		rel->dname_seq = cpu_to_le32(di->lease_seq);
3786 		__ceph_mdsc_drop_dentry_lease(dentry);
3787 	}
3788 	spin_unlock(&dentry->d_lock);
3789 	return ret;
3790 }
3791